]> gcc.gnu.org Git - gcc.git/blame - gcc/except.c
Warning fix:
[gcc.git] / gcc / except.c
CommitLineData
12670d88 1/* Implements exception handling.
e5e809f4 2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
4956d07c
MS
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
12670d88
RK
23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
956d6950 26 be transferred to any arbitrary code associated with a function call
12670d88
RK
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
27a36778
MS
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
e9a25f70 48 approach, which is the default. -fno-sjlj-exceptions can be used to
27a36778
MS
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
12670d88
RK
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
2ed18e63
MS
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
956d6950 74 In the current implementation, cleanups are handled by allocating an
2ed18e63
MS
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
12670d88 89
ca55abae
JM
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
12670d88 92 __register_exceptions with the address of its local
ca55abae
JM
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
6d8ccdbb 100 __register_frame_info. On other targets, the information for each
d1485032 101 translation unit is registered from the file generated by collect2.
6d8ccdbb 102 __register_frame_info is defined in frame.c, and is responsible for
ca55abae
JM
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
12670d88 105
27a36778 106 The function __throw is actually responsible for doing the
ca55abae
JM
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
12670d88 109 per-object-file basis for each source file compiled with
38e01259 110 -fexceptions by the C++ frontend. Before __throw is invoked,
ca55abae
JM
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
12670d88 113
27a36778 114 __throw attempts to find the appropriate exception handler for the
12670d88 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
2ed18e63 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
ca55abae
JM
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
12670d88
RK
131
132 Internal implementation details:
133
12670d88 134 To associate a user-defined handler with a block of statements, the
27a36778 135 function expand_start_try_stmts is used to mark the start of the
12670d88 136 block of statements with which the handler is to be associated
2ed18e63
MS
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
27a36778 140 A call to expand_start_all_catch marks the end of the try block,
2ed18e63
MS
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
27a36778 155 handler. expand_end_all_catch and expand_leftover_cleanups
2ed18e63
MS
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
27a36778 163 to the topmost entry's label via expand_goto will resume normal
2ed18e63
MS
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
27a36778
MS
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
12670d88
RK
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
2ed18e63
MS
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
27a36778 187 calling expand_eh_region_start to mark the start of the region,
2ed18e63
MS
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
12670d88
RK
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
2ed18e63
MS
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
27a36778 210 and end_protect_partials. add_partial_entry creates the start of
2ed18e63
MS
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
27a36778 217 group of calls to add_partial_entry as the entries are queued
2ed18e63
MS
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
12670d88
RK
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
2ed18e63
MS
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
12670d88
RK
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
2ed18e63 234 can be safely optimized away (along with its exception handlers)
27a36778
MS
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
12670d88 246
ca55abae 247 Walking the stack:
12670d88 248
ca55abae
JM
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
12670d88 252
ca55abae 253 Unwinding the stack:
12670d88 254
ca55abae
JM
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
956d6950 282 should call __terminate.
ca55abae
JM
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
2ed18e63
MS
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
ca55abae
JM
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
12670d88 296
ca55abae
JM
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
12670d88 302
27a36778 303 On some platforms it is possible that neither __unwind_function
12670d88 304 nor inlined unwinders are available. For these platforms it is not
27a36778 305 possible to throw through a function call, and abort will be
2ed18e63
MS
306 invoked instead of performing the throw.
307
ca55abae
JM
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
2ed18e63
MS
320 Future directions:
321
27a36778 322 Currently __throw makes no differentiation between cleanups and
2ed18e63
MS
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
27a36778 333 A two-pass scheme could then be used by __throw to iterate
2ed18e63
MS
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
27a36778 343 __throw to be able to determine if a given user-defined
2ed18e63
MS
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
27a36778 348 as to the types of exceptions accepted by each handler. __throw
2ed18e63
MS
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
27a36778 353 available, other than to place a breakpoint on __throw. While
2ed18e63
MS
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
27a36778 359 scheme by adding additional labels to __throw for appropriate
2ed18e63
MS
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
ca55abae
JM
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
27a36778
MS
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
956d6950 380 table, and no calls to __register_exceptions. __sjthrow is used
27a36778
MS
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
4956d07c
MS
389
390
391#include "config.h"
ca55abae 392#include "defaults.h"
9a0d1e1b 393#include "eh-common.h"
670ee920 394#include "system.h"
4956d07c
MS
395#include "rtl.h"
396#include "tree.h"
397#include "flags.h"
398#include "except.h"
399#include "function.h"
400#include "insn-flags.h"
401#include "expr.h"
402#include "insn-codes.h"
403#include "regs.h"
404#include "hard-reg-set.h"
405#include "insn-config.h"
406#include "recog.h"
407#include "output.h"
10f0ad3d 408#include "toplev.h"
4956d07c 409
27a36778
MS
410/* One to use setjmp/longjmp method of generating code for exception
411 handling. */
412
d1485032 413int exceptions_via_longjmp = 2;
27a36778
MS
414
415/* One to enable asynchronous exception support. */
416
417int asynchronous_exceptions = 0;
418
419/* One to protect cleanup actions with a handler that calls
420 __terminate, zero otherwise. */
421
e701eb4d 422int protect_cleanup_actions_with_terminate;
27a36778 423
12670d88 424/* A list of labels used for exception handlers. Created by
4956d07c
MS
425 find_exception_handler_labels for the optimization passes. */
426
427rtx exception_handler_labels;
428
154bba13
TT
429/* The EH context. Nonzero if the function has already
430 fetched a pointer to the EH context for exception handling. */
27a36778 431
154bba13 432rtx current_function_ehc;
27a36778 433
956d6950 434/* A stack used for keeping track of the currently active exception
12670d88 435 handling region. As each exception region is started, an entry
4956d07c
MS
436 describing the region is pushed onto this stack. The current
437 region can be found by looking at the top of the stack, and as we
12670d88
RK
438 exit regions, the corresponding entries are popped.
439
27a36778 440 Entries cannot overlap; they can be nested. So there is only one
12670d88
RK
441 entry at most that corresponds to the current instruction, and that
442 is the entry on the top of the stack. */
4956d07c 443
27a36778 444static struct eh_stack ehstack;
4956d07c 445
9a0d1e1b
AM
446
447/* This stack is used to represent what the current eh region is
448 for the catch blocks beings processed */
449
450static struct eh_stack catchstack;
451
12670d88
RK
452/* A queue used for tracking which exception regions have closed but
453 whose handlers have not yet been expanded. Regions are emitted in
454 groups in an attempt to improve paging performance.
455
456 As we exit a region, we enqueue a new entry. The entries are then
27a36778 457 dequeued during expand_leftover_cleanups and expand_start_all_catch,
12670d88
RK
458
459 We should redo things so that we either take RTL for the handler,
460 or we expand the handler expressed as a tree immediately at region
461 end time. */
4956d07c 462
27a36778 463static struct eh_queue ehqueue;
4956d07c 464
12670d88 465/* Insns for all of the exception handlers for the current function.
abeeec2a 466 They are currently emitted by the frontend code. */
4956d07c
MS
467
468rtx catch_clauses;
469
12670d88
RK
470/* A TREE_CHAINed list of handlers for regions that are not yet
471 closed. The TREE_VALUE of each entry contains the handler for the
abeeec2a 472 corresponding entry on the ehstack. */
4956d07c 473
12670d88 474static tree protect_list;
4956d07c
MS
475
476/* Stacks to keep track of various labels. */
477
12670d88
RK
478/* Keeps track of the label to resume to should one want to resume
479 normal control flow out of a handler (instead of, say, returning to
1418bb67 480 the caller of the current function or exiting the program). */
4956d07c
MS
481
482struct label_node *caught_return_label_stack = NULL;
483
956d6950
JL
484/* Keeps track of the label used as the context of a throw to rethrow an
485 exception to the outer exception region. */
486
487struct label_node *outer_context_label_stack = NULL;
488
12670d88 489/* A random data area for the front end's own use. */
4956d07c
MS
490
491struct label_node *false_label_stack = NULL;
492
242c13b0
JL
493static void push_eh_entry PROTO((struct eh_stack *));
494static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
495static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
496static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
497static rtx call_get_eh_context PROTO((void));
498static void start_dynamic_cleanup PROTO((tree, tree));
499static void start_dynamic_handler PROTO((void));
e701eb4d 500static void expand_rethrow PROTO((rtx));
242c13b0
JL
501static void output_exception_table_entry PROTO((FILE *, int));
502static int can_throw PROTO((rtx));
503static rtx scan_region PROTO((rtx, int, int *));
504static void eh_regs PROTO((rtx *, rtx *, int));
505static void set_insn_eh_region PROTO((rtx *, int));
e701eb4d 506
242c13b0 507rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
4956d07c
MS
508\f
509/* Various support routines to manipulate the various data structures
510 used by the exception handling code. */
511
512/* Push a label entry onto the given STACK. */
513
514void
515push_label_entry (stack, rlabel, tlabel)
516 struct label_node **stack;
517 rtx rlabel;
518 tree tlabel;
519{
520 struct label_node *newnode
521 = (struct label_node *) xmalloc (sizeof (struct label_node));
522
523 if (rlabel)
524 newnode->u.rlabel = rlabel;
525 else
526 newnode->u.tlabel = tlabel;
527 newnode->chain = *stack;
528 *stack = newnode;
529}
530
531/* Pop a label entry from the given STACK. */
532
533rtx
534pop_label_entry (stack)
535 struct label_node **stack;
536{
537 rtx label;
538 struct label_node *tempnode;
539
540 if (! *stack)
541 return NULL_RTX;
542
543 tempnode = *stack;
544 label = tempnode->u.rlabel;
545 *stack = (*stack)->chain;
546 free (tempnode);
547
548 return label;
549}
550
551/* Return the top element of the given STACK. */
552
553tree
554top_label_entry (stack)
555 struct label_node **stack;
556{
557 if (! *stack)
558 return NULL_TREE;
559
560 return (*stack)->u.tlabel;
561}
562
9a0d1e1b
AM
563/* get an exception label. These must be on the permanent obstack */
564
565rtx
566gen_exception_label ()
567{
568 rtx lab;
569
570 push_obstacks_nochange ();
571 end_temporary_allocation ();
572 lab = gen_label_rtx ();
573 pop_obstacks ();
574 return lab;
575}
576
478b0752 577/* Push a new eh_node entry onto STACK. */
4956d07c 578
478b0752 579static void
4956d07c
MS
580push_eh_entry (stack)
581 struct eh_stack *stack;
582{
583 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
584 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
585
478b0752 586 entry->outer_context = gen_label_rtx ();
4956d07c 587 entry->finalization = NULL_TREE;
9a0d1e1b
AM
588 entry->label_used = 0;
589 entry->exception_handler_label = gen_exception_label ();
590
591 node->entry = entry;
592 node->chain = stack->top;
593 stack->top = node;
594}
4956d07c 595
9a0d1e1b
AM
596/* push an existing entry onto a stack. */
597static void
598push_entry (stack, entry)
599 struct eh_stack *stack;
600 struct eh_entry *entry;
601{
602 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
4956d07c
MS
603 node->entry = entry;
604 node->chain = stack->top;
605 stack->top = node;
4956d07c
MS
606}
607
608/* Pop an entry from the given STACK. */
609
610static struct eh_entry *
611pop_eh_entry (stack)
612 struct eh_stack *stack;
613{
614 struct eh_node *tempnode;
615 struct eh_entry *tempentry;
616
617 tempnode = stack->top;
618 tempentry = tempnode->entry;
619 stack->top = stack->top->chain;
620 free (tempnode);
621
622 return tempentry;
623}
624
625/* Enqueue an ENTRY onto the given QUEUE. */
626
627static void
628enqueue_eh_entry (queue, entry)
629 struct eh_queue *queue;
630 struct eh_entry *entry;
631{
632 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
633
634 node->entry = entry;
635 node->chain = NULL;
636
637 if (queue->head == NULL)
638 {
639 queue->head = node;
640 }
641 else
642 {
643 queue->tail->chain = node;
644 }
645 queue->tail = node;
646}
647
648/* Dequeue an entry from the given QUEUE. */
649
650static struct eh_entry *
651dequeue_eh_entry (queue)
652 struct eh_queue *queue;
653{
654 struct eh_node *tempnode;
655 struct eh_entry *tempentry;
656
657 if (queue->head == NULL)
658 return NULL;
659
660 tempnode = queue->head;
661 queue->head = queue->head->chain;
662
663 tempentry = tempnode->entry;
664 free (tempnode);
665
666 return tempentry;
667}
9a0d1e1b
AM
668
669static void
670receive_exception_label (handler_label)
671 rtx handler_label;
672{
673 emit_label (handler_label);
674
675#ifdef HAVE_exception_receiver
676 if (! exceptions_via_longjmp)
677 if (HAVE_exception_receiver)
678 emit_insn (gen_exception_receiver ());
679#endif
680
681#ifdef HAVE_nonlocal_goto_receiver
682 if (! exceptions_via_longjmp)
683 if (HAVE_nonlocal_goto_receiver)
684 emit_insn (gen_nonlocal_goto_receiver ());
685#endif
686}
687
688
689struct func_eh_entry
690{
691 int range_number; /* EH region number from EH NOTE insn's */
692 struct handler_info *handlers;
693};
694
695
696/* table of function eh regions */
697static struct func_eh_entry *function_eh_regions = NULL;
698static int num_func_eh_entries = 0;
699static int current_func_eh_entry = 0;
700
701#define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
702
703/* Add a new eh_entry for this function, and base it off of the information
704 in the EH_ENTRY parameter. A NULL parameter is invalid. The number
705 returned is an number which uniquely identifies this exception range. */
706
707int
708new_eh_region_entry (note_eh_region)
709 int note_eh_region;
710{
711 if (current_func_eh_entry == num_func_eh_entries)
712 {
713 if (num_func_eh_entries == 0)
714 {
715 function_eh_regions =
716 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
717 num_func_eh_entries = 50;
718 }
719 else
720 {
721 num_func_eh_entries = num_func_eh_entries * 3 / 2;
722 function_eh_regions = (struct func_eh_entry *)
723 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
724 }
725 }
726 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
727 function_eh_regions[current_func_eh_entry].handlers = NULL;
728
729 return current_func_eh_entry++;
730}
731
732/* Add new handler information to an exception range. The first parameter
733 specifies the range number (returned from new_eh_entry()). The second
734 parameter specifies the handler. By default the handler is inserted at
735 the end of the list. A handler list may contain only ONE NULL_TREE
736 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
737 is always output as the LAST handler in the exception table for a region. */
738
739void
740add_new_handler (region, newhandler)
741 int region;
742 struct handler_info *newhandler;
743{
744 struct handler_info *last;
745
746 newhandler->next = NULL;
747 last = function_eh_regions[region].handlers;
748 if (last == NULL)
749 function_eh_regions[region].handlers = newhandler;
750 else
751 {
752 for ( ; last->next != NULL; last = last->next)
d7e78529
AM
753 ;
754 last->next = newhandler;
9a0d1e1b
AM
755 }
756}
757
9f8e6243
AM
758/* Remove a handler label. The handler label is being deleted, so all
759 regions which reference this handler should have it removed from their
760 list of possible handlers. Any region which has the final handler
761 removed can be deleted. */
762
763void remove_handler (removing_label)
764 rtx removing_label;
765{
766 struct handler_info *handler, *last;
767 int x;
768 for (x = 0 ; x < current_func_eh_entry; ++x)
769 {
770 last = NULL;
771 handler = function_eh_regions[x].handlers;
772 for ( ; handler; last = handler, handler = handler->next)
773 if (handler->handler_label == removing_label)
774 {
775 if (last)
776 {
777 last->next = handler->next;
778 handler = last;
779 }
780 else
781 function_eh_regions[x].handlers = handler->next;
782 }
783 }
784}
785
9a0d1e1b
AM
786/* Create a new handler structure initialized with the handler label and
787 typeinfo fields passed in. */
788
789struct handler_info *
790get_new_handler (handler, typeinfo)
791 rtx handler;
792 void *typeinfo;
793{
794 struct handler_info* ptr;
795 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
796 ptr->handler_label = handler;
797 ptr->type_info = typeinfo;
798 ptr->next = NULL;
799
800 return ptr;
801}
802
803
804
805/* Find the index in function_eh_regions associated with a NOTE region. If
806 the region cannot be found, a -1 is returned. This should never happen! */
807
808int
809find_func_region (insn_region)
810 int insn_region;
811{
812 int x;
813 for (x = 0; x < current_func_eh_entry; x++)
814 if (function_eh_regions[x].range_number == insn_region)
815 return x;
816
817 return -1;
818}
819
820/* Get a pointer to the first handler in an exception region's list. */
821
822struct handler_info *
823get_first_handler (region)
824 int region;
825{
826 return function_eh_regions[find_func_region (region)].handlers;
827}
828
829/* Clean out the function_eh_region table and free all memory */
830
831static void
832clear_function_eh_region ()
833{
834 int x;
835 struct handler_info *ptr, *next;
836 for (x = 0; x < current_func_eh_entry; x++)
837 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
838 {
839 next = ptr->next;
840 free (ptr);
841 }
842 free (function_eh_regions);
843 num_func_eh_entries = 0;
844 current_func_eh_entry = 0;
845}
846
847/* Make a duplicate of an exception region by copying all the handlers
848 for an exception region. Return the new handler index. */
849
850int
851duplicate_handlers (old_note_eh_region, new_note_eh_region)
852 int old_note_eh_region, new_note_eh_region;
853{
854 struct handler_info *ptr, *new_ptr;
855 int new_region, region;
856
857 region = find_func_region (old_note_eh_region);
858 if (region == -1)
859 error ("Cannot duplicate non-existant exception region.");
860
861 if (find_func_region (new_note_eh_region) != -1)
862 error ("Cannot duplicate EH region because new note region already exists");
863
864 new_region = new_eh_region_entry (new_note_eh_region);
865 ptr = function_eh_regions[region].handlers;
866
867 for ( ; ptr; ptr = ptr->next)
868 {
869 new_ptr = get_new_handler (ptr->handler_label, ptr->type_info);
870 add_new_handler (new_region, new_ptr);
871 }
872
873 return new_region;
874}
875
4956d07c 876\f
38e01259 877/* Routine to see if exception handling is turned on.
4956d07c 878 DO_WARN is non-zero if we want to inform the user that exception
12670d88
RK
879 handling is turned off.
880
881 This is used to ensure that -fexceptions has been specified if the
abeeec2a 882 compiler tries to use any exception-specific functions. */
4956d07c
MS
883
884int
885doing_eh (do_warn)
886 int do_warn;
887{
888 if (! flag_exceptions)
889 {
890 static int warned = 0;
891 if (! warned && do_warn)
892 {
893 error ("exception handling disabled, use -fexceptions to enable");
894 warned = 1;
895 }
896 return 0;
897 }
898 return 1;
899}
900
12670d88 901/* Given a return address in ADDR, determine the address we should use
abeeec2a 902 to find the corresponding EH region. */
4956d07c
MS
903
904rtx
905eh_outer_context (addr)
906 rtx addr;
907{
908 /* First mask out any unwanted bits. */
909#ifdef MASK_RETURN_ADDR
ca55abae 910 expand_and (addr, MASK_RETURN_ADDR, addr);
4956d07c
MS
911#endif
912
ca55abae
JM
913 /* Then adjust to find the real return address. */
914#if defined (RETURN_ADDR_OFFSET)
915 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
4956d07c
MS
916#endif
917
918 return addr;
919}
920
27a36778
MS
921/* Start a new exception region for a region of code that has a
922 cleanup action and push the HANDLER for the region onto
923 protect_list. All of the regions created with add_partial_entry
924 will be ended when end_protect_partials is invoked. */
12670d88
RK
925
926void
927add_partial_entry (handler)
928 tree handler;
929{
930 expand_eh_region_start ();
931
abeeec2a 932 /* Make sure the entry is on the correct obstack. */
12670d88
RK
933 push_obstacks_nochange ();
934 resume_temporary_allocation ();
27a36778
MS
935
936 /* Because this is a cleanup action, we may have to protect the handler
937 with __terminate. */
938 handler = protect_with_terminate (handler);
939
12670d88
RK
940 protect_list = tree_cons (NULL_TREE, handler, protect_list);
941 pop_obstacks ();
942}
943
100d81d4 944/* Emit code to get EH context to current function. */
27a36778 945
154bba13 946static rtx
01eb7f9a 947call_get_eh_context ()
27a36778 948{
bb727b5a
JM
949 static tree fn;
950 tree expr;
951
952 if (fn == NULL_TREE)
953 {
954 tree fntype;
154bba13 955 fn = get_identifier ("__get_eh_context");
bb727b5a
JM
956 push_obstacks_nochange ();
957 end_temporary_allocation ();
958 fntype = build_pointer_type (build_pointer_type
959 (build_pointer_type (void_type_node)));
960 fntype = build_function_type (fntype, NULL_TREE);
961 fn = build_decl (FUNCTION_DECL, fn, fntype);
962 DECL_EXTERNAL (fn) = 1;
963 TREE_PUBLIC (fn) = 1;
964 DECL_ARTIFICIAL (fn) = 1;
965 TREE_READONLY (fn) = 1;
966 make_decl_rtl (fn, NULL_PTR, 1);
967 assemble_external (fn);
968 pop_obstacks ();
969 }
970
971 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
972 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
973 expr, NULL_TREE, NULL_TREE);
974 TREE_SIDE_EFFECTS (expr) = 1;
bb727b5a 975
100d81d4 976 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
154bba13
TT
977}
978
979/* Get a reference to the EH context.
980 We will only generate a register for the current function EH context here,
981 and emit a USE insn to mark that this is a EH context register.
982
983 Later, emit_eh_context will emit needed call to __get_eh_context
984 in libgcc2, and copy the value to the register we have generated. */
985
986rtx
01eb7f9a 987get_eh_context ()
154bba13
TT
988{
989 if (current_function_ehc == 0)
990 {
991 rtx insn;
992
993 current_function_ehc = gen_reg_rtx (Pmode);
994
38a448ca
RH
995 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
996 current_function_ehc);
154bba13
TT
997 insn = emit_insn_before (insn, get_first_nonparm_insn ());
998
999 REG_NOTES (insn)
38a448ca
RH
1000 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1001 REG_NOTES (insn));
154bba13
TT
1002 }
1003 return current_function_ehc;
1004}
1005
154bba13
TT
1006/* Get a reference to the dynamic handler chain. It points to the
1007 pointer to the next element in the dynamic handler chain. It ends
1008 when there are no more elements in the dynamic handler chain, when
1009 the value is &top_elt from libgcc2.c. Immediately after the
1010 pointer, is an area suitable for setjmp/longjmp when
1011 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1012 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1013 isn't defined. */
1014
1015rtx
1016get_dynamic_handler_chain ()
1017{
1018 rtx ehc, dhc, result;
1019
01eb7f9a 1020 ehc = get_eh_context ();
3301dc51
AM
1021
1022 /* This is the offset of dynamic_handler_chain in the eh_context struct
1023 declared in eh-common.h. If its location is change, change this offset */
1024 dhc = plus_constant (ehc, GET_MODE_SIZE (Pmode));
154bba13
TT
1025
1026 result = copy_to_reg (dhc);
1027
1028 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1029 return gen_rtx_MEM (Pmode, result);
27a36778
MS
1030}
1031
1032/* Get a reference to the dynamic cleanup chain. It points to the
1033 pointer to the next element in the dynamic cleanup chain.
1034 Immediately after the pointer, are two Pmode variables, one for a
1035 pointer to a function that performs the cleanup action, and the
1036 second, the argument to pass to that function. */
1037
1038rtx
1039get_dynamic_cleanup_chain ()
1040{
154bba13 1041 rtx dhc, dcc, result;
27a36778
MS
1042
1043 dhc = get_dynamic_handler_chain ();
1044 dcc = plus_constant (dhc, GET_MODE_SIZE (Pmode));
1045
154bba13 1046 result = copy_to_reg (dcc);
27a36778
MS
1047
1048 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1049 return gen_rtx_MEM (Pmode, result);
154bba13
TT
1050}
1051
27a36778
MS
1052/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1053 LABEL is an rtx of code CODE_LABEL, in this function. */
1054
1055void
1056jumpif_rtx (x, label)
1057 rtx x;
1058 rtx label;
1059{
1060 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1061}
1062
1063/* Generate code to evaluate X and jump to LABEL if the value is zero.
1064 LABEL is an rtx of code CODE_LABEL, in this function. */
1065
1066void
1067jumpifnot_rtx (x, label)
1068 rtx x;
1069 rtx label;
1070{
1071 jumpifnot (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1072}
1073
1074/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1075 We just need to create an element for the cleanup list, and push it
1076 into the chain.
1077
1078 A dynamic cleanup is a cleanup action implied by the presence of an
1079 element on the EH runtime dynamic cleanup stack that is to be
1080 performed when an exception is thrown. The cleanup action is
1081 performed by __sjthrow when an exception is thrown. Only certain
1082 actions can be optimized into dynamic cleanup actions. For the
1083 restrictions on what actions can be performed using this routine,
1084 see expand_eh_region_start_tree. */
1085
1086static void
1087start_dynamic_cleanup (func, arg)
1088 tree func;
1089 tree arg;
1090{
381127e8 1091 rtx dcc;
27a36778
MS
1092 rtx new_func, new_arg;
1093 rtx x, buf;
1094 int size;
1095
1096 /* We allocate enough room for a pointer to the function, and
1097 one argument. */
1098 size = 2;
1099
1100 /* XXX, FIXME: The stack space allocated this way is too long lived,
1101 but there is no allocation routine that allocates at the level of
1102 the last binding contour. */
1103 buf = assign_stack_local (BLKmode,
1104 GET_MODE_SIZE (Pmode)*(size+1),
1105 0);
1106
1107 buf = change_address (buf, Pmode, NULL_RTX);
1108
1109 /* Store dcc into the first word of the newly allocated buffer. */
1110
1111 dcc = get_dynamic_cleanup_chain ();
1112 emit_move_insn (buf, dcc);
1113
1114 /* Store func and arg into the cleanup list element. */
1115
38a448ca
RH
1116 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1117 GET_MODE_SIZE (Pmode)));
1118 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1119 GET_MODE_SIZE (Pmode)*2));
27a36778
MS
1120 x = expand_expr (func, new_func, Pmode, 0);
1121 if (x != new_func)
1122 emit_move_insn (new_func, x);
1123
1124 x = expand_expr (arg, new_arg, Pmode, 0);
1125 if (x != new_arg)
1126 emit_move_insn (new_arg, x);
1127
1128 /* Update the cleanup chain. */
1129
1130 emit_move_insn (dcc, XEXP (buf, 0));
1131}
1132
1133/* Emit RTL to start a dynamic handler on the EH runtime dynamic
1134 handler stack. This should only be used by expand_eh_region_start
1135 or expand_eh_region_start_tree. */
1136
1137static void
1138start_dynamic_handler ()
1139{
1140 rtx dhc, dcc;
6e6a07d2 1141 rtx x, arg, buf;
27a36778
MS
1142 int size;
1143
6e6a07d2 1144#ifndef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1145 /* The number of Pmode words for the setjmp buffer, when using the
1146 builtin setjmp/longjmp, see expand_builtin, case
1147 BUILT_IN_LONGJMP. */
1148 size = 5;
1149#else
1150#ifdef JMP_BUF_SIZE
1151 size = JMP_BUF_SIZE;
1152#else
1153 /* Should be large enough for most systems, if it is not,
1154 JMP_BUF_SIZE should be defined with the proper value. It will
1155 also tend to be larger than necessary for most systems, a more
1156 optimal port will define JMP_BUF_SIZE. */
1157 size = FIRST_PSEUDO_REGISTER+2;
1158#endif
1159#endif
1160 /* XXX, FIXME: The stack space allocated this way is too long lived,
1161 but there is no allocation routine that allocates at the level of
1162 the last binding contour. */
1163 arg = assign_stack_local (BLKmode,
1164 GET_MODE_SIZE (Pmode)*(size+1),
1165 0);
1166
1167 arg = change_address (arg, Pmode, NULL_RTX);
1168
1169 /* Store dhc into the first word of the newly allocated buffer. */
1170
1171 dhc = get_dynamic_handler_chain ();
38a448ca
RH
1172 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1173 GET_MODE_SIZE (Pmode)));
27a36778
MS
1174 emit_move_insn (arg, dhc);
1175
1176 /* Zero out the start of the cleanup chain. */
1177 emit_move_insn (dcc, const0_rtx);
1178
1179 /* The jmpbuf starts two words into the area allocated. */
6e6a07d2 1180 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
27a36778 1181
6e6a07d2 1182#ifdef DONT_USE_BUILTIN_SETJMP
27a36778 1183 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
6e6a07d2 1184 buf, Pmode);
6fd1c67b
RH
1185 /* If we come back here for a catch, transfer control to the handler. */
1186 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
6e6a07d2 1187#else
6fd1c67b
RH
1188 {
1189 /* A label to continue execution for the no exception case. */
1190 rtx noex = gen_label_rtx();
1191 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1192 ehstack.top->entry->exception_handler_label);
1193 emit_label (noex);
1194 }
6e6a07d2 1195#endif
27a36778 1196
27a36778
MS
1197 /* We are committed to this, so update the handler chain. */
1198
1199 emit_move_insn (dhc, XEXP (arg, 0));
1200}
1201
1202/* Start an exception handling region for the given cleanup action.
12670d88 1203 All instructions emitted after this point are considered to be part
27a36778
MS
1204 of the region until expand_eh_region_end is invoked. CLEANUP is
1205 the cleanup action to perform. The return value is true if the
1206 exception region was optimized away. If that case,
1207 expand_eh_region_end does not need to be called for this cleanup,
1208 nor should it be.
1209
1210 This routine notices one particular common case in C++ code
1211 generation, and optimizes it so as to not need the exception
1212 region. It works by creating a dynamic cleanup action, instead of
38e01259 1213 a using an exception region. */
27a36778
MS
1214
1215int
4c581243
MS
1216expand_eh_region_start_tree (decl, cleanup)
1217 tree decl;
27a36778
MS
1218 tree cleanup;
1219{
27a36778
MS
1220 /* This is the old code. */
1221 if (! doing_eh (0))
1222 return 0;
1223
1224 /* The optimization only applies to actions protected with
1225 terminate, and only applies if we are using the setjmp/longjmp
1226 codegen method. */
1227 if (exceptions_via_longjmp
1228 && protect_cleanup_actions_with_terminate)
1229 {
1230 tree func, arg;
1231 tree args;
1232
1233 /* Ignore any UNSAVE_EXPR. */
1234 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1235 cleanup = TREE_OPERAND (cleanup, 0);
1236
1237 /* Further, it only applies if the action is a call, if there
1238 are 2 arguments, and if the second argument is 2. */
1239
1240 if (TREE_CODE (cleanup) == CALL_EXPR
1241 && (args = TREE_OPERAND (cleanup, 1))
1242 && (func = TREE_OPERAND (cleanup, 0))
1243 && (arg = TREE_VALUE (args))
1244 && (args = TREE_CHAIN (args))
1245
1246 /* is the second argument 2? */
1247 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1248 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1249 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1250
1251 /* Make sure there are no other arguments. */
1252 && TREE_CHAIN (args) == NULL_TREE)
1253 {
1254 /* Arrange for returns and gotos to pop the entry we make on the
1255 dynamic cleanup stack. */
4c581243 1256 expand_dcc_cleanup (decl);
27a36778
MS
1257 start_dynamic_cleanup (func, arg);
1258 return 1;
1259 }
1260 }
1261
4c581243 1262 expand_eh_region_start_for_decl (decl);
9762d48d 1263 ehstack.top->entry->finalization = cleanup;
27a36778
MS
1264
1265 return 0;
1266}
1267
4c581243
MS
1268/* Just like expand_eh_region_start, except if a cleanup action is
1269 entered on the cleanup chain, the TREE_PURPOSE of the element put
1270 on the chain is DECL. DECL should be the associated VAR_DECL, if
1271 any, otherwise it should be NULL_TREE. */
4956d07c
MS
1272
1273void
4c581243
MS
1274expand_eh_region_start_for_decl (decl)
1275 tree decl;
4956d07c
MS
1276{
1277 rtx note;
1278
1279 /* This is the old code. */
1280 if (! doing_eh (0))
1281 return;
1282
27a36778
MS
1283 if (exceptions_via_longjmp)
1284 {
1285 /* We need a new block to record the start and end of the
1286 dynamic handler chain. We could always do this, but we
1287 really want to permit jumping into such a block, and we want
1288 to avoid any errors or performance impact in the SJ EH code
1289 for now. */
1290 expand_start_bindings (0);
1291
1292 /* But we don't need or want a new temporary level. */
1293 pop_temp_slots ();
1294
1295 /* Mark this block as created by expand_eh_region_start. This
1296 is so that we can pop the block with expand_end_bindings
1297 automatically. */
1298 mark_block_as_eh_region ();
1299
1300 /* Arrange for returns and gotos to pop the entry we make on the
1301 dynamic handler stack. */
4c581243 1302 expand_dhc_cleanup (decl);
27a36778 1303 }
4956d07c 1304
478b0752 1305 push_eh_entry (&ehstack);
9ad8a5f0
MS
1306 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1307 NOTE_BLOCK_NUMBER (note)
1308 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
27a36778
MS
1309 if (exceptions_via_longjmp)
1310 start_dynamic_handler ();
4956d07c
MS
1311}
1312
4c581243
MS
1313/* Start an exception handling region. All instructions emitted after
1314 this point are considered to be part of the region until
1315 expand_eh_region_end is invoked. */
1316
1317void
1318expand_eh_region_start ()
1319{
1320 expand_eh_region_start_for_decl (NULL_TREE);
1321}
1322
27a36778
MS
1323/* End an exception handling region. The information about the region
1324 is found on the top of ehstack.
12670d88
RK
1325
1326 HANDLER is either the cleanup for the exception region, or if we're
1327 marking the end of a try block, HANDLER is integer_zero_node.
1328
27a36778 1329 HANDLER will be transformed to rtl when expand_leftover_cleanups
abeeec2a 1330 is invoked. */
4956d07c
MS
1331
1332void
1333expand_eh_region_end (handler)
1334 tree handler;
1335{
4956d07c 1336 struct eh_entry *entry;
9ad8a5f0 1337 rtx note;
4956d07c
MS
1338
1339 if (! doing_eh (0))
1340 return;
1341
1342 entry = pop_eh_entry (&ehstack);
1343
9ad8a5f0
MS
1344 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1345 NOTE_BLOCK_NUMBER (note)
1346 = CODE_LABEL_NUMBER (entry->exception_handler_label);
e701eb4d
JM
1347 if (exceptions_via_longjmp == 0
1348 /* We share outer_context between regions; only emit it once. */
1349 && INSN_UID (entry->outer_context) == 0)
27a36778 1350 {
478b0752 1351 rtx label;
4956d07c 1352
478b0752
MS
1353 label = gen_label_rtx ();
1354 emit_jump (label);
1355
1356 /* Emit a label marking the end of this exception region that
1357 is used for rethrowing into the outer context. */
1358 emit_label (entry->outer_context);
e701eb4d 1359 expand_internal_throw ();
4956d07c 1360
478b0752 1361 emit_label (label);
27a36778 1362 }
4956d07c
MS
1363
1364 entry->finalization = handler;
1365
9a0d1e1b
AM
1366 /* create region entry in final exception table */
1367 new_eh_region_entry (NOTE_BLOCK_NUMBER (note));
1368
4956d07c
MS
1369 enqueue_eh_entry (&ehqueue, entry);
1370
27a36778
MS
1371 /* If we have already started ending the bindings, don't recurse.
1372 This only happens when exceptions_via_longjmp is true. */
1373 if (is_eh_region ())
1374 {
1375 /* Because we don't need or want a new temporary level and
1376 because we didn't create one in expand_eh_region_start,
1377 create a fake one now to avoid removing one in
1378 expand_end_bindings. */
1379 push_temp_slots ();
1380
1381 mark_block_as_not_eh_region ();
1382
1383 /* Maybe do this to prevent jumping in and so on... */
1384 expand_end_bindings (NULL_TREE, 0, 0);
1385 }
4956d07c
MS
1386}
1387
9762d48d
JM
1388/* End the EH region for a goto fixup. We only need them in the region-based
1389 EH scheme. */
1390
1391void
1392expand_fixup_region_start ()
1393{
1394 if (! doing_eh (0) || exceptions_via_longjmp)
1395 return;
1396
1397 expand_eh_region_start ();
1398}
1399
1400/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1401 expanded; to avoid running it twice if it throws, we look through the
1402 ehqueue for a matching region and rethrow from its outer_context. */
1403
1404void
1405expand_fixup_region_end (cleanup)
1406 tree cleanup;
1407{
9762d48d 1408 struct eh_node *node;
9762d48d
JM
1409
1410 if (! doing_eh (0) || exceptions_via_longjmp)
1411 return;
1412
1413 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1414 node = node->chain;
1415 if (node == 0)
1416 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1417 node = node->chain;
1418 if (node == 0)
1419 abort ();
1420
e701eb4d 1421 ehstack.top->entry->outer_context = node->entry->outer_context;
9762d48d 1422
e701eb4d
JM
1423 /* Just rethrow. size_zero_node is just a NOP. */
1424 expand_eh_region_end (size_zero_node);
9762d48d
JM
1425}
1426
27a36778
MS
1427/* If we are using the setjmp/longjmp EH codegen method, we emit a
1428 call to __sjthrow.
1429
1430 Otherwise, we emit a call to __throw and note that we threw
1431 something, so we know we need to generate the necessary code for
1432 __throw.
12670d88
RK
1433
1434 Before invoking throw, the __eh_pc variable must have been set up
1435 to contain the PC being thrown from. This address is used by
27a36778 1436 __throw to determine which exception region (if any) is
abeeec2a 1437 responsible for handling the exception. */
4956d07c 1438
27a36778 1439void
4956d07c
MS
1440emit_throw ()
1441{
27a36778
MS
1442 if (exceptions_via_longjmp)
1443 {
1444 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1445 }
1446 else
1447 {
4956d07c 1448#ifdef JUMP_TO_THROW
27a36778 1449 emit_indirect_jump (throw_libfunc);
4956d07c 1450#else
27a36778 1451 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
4956d07c 1452#endif
27a36778 1453 }
4956d07c
MS
1454 emit_barrier ();
1455}
1456
e701eb4d
JM
1457/* Throw the current exception. If appropriate, this is done by jumping
1458 to the next handler. */
4956d07c
MS
1459
1460void
e701eb4d 1461expand_internal_throw ()
4956d07c 1462{
e701eb4d 1463 emit_throw ();
4956d07c
MS
1464}
1465
1466/* Called from expand_exception_blocks and expand_end_catch_block to
27a36778 1467 emit any pending handlers/cleanups queued from expand_eh_region_end. */
4956d07c
MS
1468
1469void
1470expand_leftover_cleanups ()
1471{
1472 struct eh_entry *entry;
1473
1474 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1475 {
1476 rtx prev;
1477
12670d88
RK
1478 /* A leftover try block. Shouldn't be one here. */
1479 if (entry->finalization == integer_zero_node)
1480 abort ();
1481
abeeec2a 1482 /* Output the label for the start of the exception handler. */
4956d07c 1483
9a0d1e1b 1484 receive_exception_label (entry->exception_handler_label);
f51430ed 1485
9a0d1e1b
AM
1486 /* register a handler for this cleanup region */
1487 add_new_handler (
1488 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1489 get_new_handler (entry->exception_handler_label, NULL));
05f5b2cd 1490
abeeec2a 1491 /* And now generate the insns for the handler. */
4956d07c
MS
1492 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1493
1494 prev = get_last_insn ();
27a36778 1495 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1496 /* Emit code to throw to the outer context if we fall off
1497 the end of the handler. */
1498 expand_rethrow (entry->outer_context);
4956d07c 1499
c7ae64f2 1500 do_pending_stack_adjust ();
4956d07c
MS
1501 free (entry);
1502 }
1503}
1504
abeeec2a 1505/* Called at the start of a block of try statements. */
12670d88
RK
1506void
1507expand_start_try_stmts ()
1508{
1509 if (! doing_eh (1))
1510 return;
1511
1512 expand_eh_region_start ();
1513}
1514
9a0d1e1b
AM
1515/* Called to begin a catch clause. The parameter is the object which
1516 will be passed to the runtime type check routine. */
1517void
0d3453df 1518start_catch_handler (rtime)
9a0d1e1b
AM
1519 tree rtime;
1520{
1521 rtx handler_label = catchstack.top->entry->exception_handler_label;
1522 int insn_region_num = CODE_LABEL_NUMBER (handler_label);
1523 int eh_region_entry = find_func_region (insn_region_num);
1524
1525 /* If we've already issued this label, pick a new one */
7ecb5d27 1526 if (catchstack.top->entry->label_used)
9a0d1e1b
AM
1527 handler_label = gen_exception_label ();
1528 else
1529 catchstack.top->entry->label_used = 1;
1530
1531 receive_exception_label (handler_label);
1532
1533 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1534}
1535
12670d88
RK
1536/* Generate RTL for the start of a group of catch clauses.
1537
1538 It is responsible for starting a new instruction sequence for the
1539 instructions in the catch block, and expanding the handlers for the
1540 internally-generated exception regions nested within the try block
abeeec2a 1541 corresponding to this catch block. */
4956d07c
MS
1542
1543void
1544expand_start_all_catch ()
1545{
1546 struct eh_entry *entry;
1547 tree label;
e701eb4d 1548 rtx outer_context;
4956d07c
MS
1549
1550 if (! doing_eh (1))
1551 return;
1552
e701eb4d 1553 outer_context = ehstack.top->entry->outer_context;
1418bb67 1554
abeeec2a 1555 /* End the try block. */
12670d88
RK
1556 expand_eh_region_end (integer_zero_node);
1557
4956d07c
MS
1558 emit_line_note (input_filename, lineno);
1559 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1560
12670d88 1561 /* The label for the exception handling block that we will save.
956d6950 1562 This is Lresume in the documentation. */
4956d07c
MS
1563 expand_label (label);
1564
12670d88 1565 /* Push the label that points to where normal flow is resumed onto
abeeec2a 1566 the top of the label stack. */
4956d07c
MS
1567 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1568
1569 /* Start a new sequence for all the catch blocks. We will add this
12670d88 1570 to the global sequence catch_clauses when we have completed all
4956d07c
MS
1571 the handlers in this handler-seq. */
1572 start_sequence ();
1573
9a0d1e1b
AM
1574 entry = dequeue_eh_entry (&ehqueue);
1575 for ( ; entry->finalization != integer_zero_node;
1576 entry = dequeue_eh_entry (&ehqueue))
4956d07c
MS
1577 {
1578 rtx prev;
1579
9a0d1e1b 1580 /* Emit the label for the cleanup handler for this region, and
12670d88
RK
1581 expand the code for the handler.
1582
1583 Note that a catch region is handled as a side-effect here;
1584 for a try block, entry->finalization will contain
1585 integer_zero_node, so no code will be generated in the
1586 expand_expr call below. But, the label for the handler will
1587 still be emitted, so any code emitted after this point will
abeeec2a 1588 end up being the handler. */
9a0d1e1b
AM
1589
1590 receive_exception_label (entry->exception_handler_label);
05f5b2cd 1591
9a0d1e1b
AM
1592 /* register a handler for this cleanup region */
1593 add_new_handler (
1594 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1595 get_new_handler (entry->exception_handler_label, NULL));
4956d07c 1596
9a0d1e1b 1597 /* And now generate the insns for the cleanup handler. */
27a36778
MS
1598 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1599
4956d07c 1600 prev = get_last_insn ();
12670d88 1601 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1602 /* Code to throw out to outer context when we fall off end
1603 of the handler. We can't do this here for catch blocks,
1604 so it's done in expand_end_all_catch instead. */
1605 expand_rethrow (entry->outer_context);
12670d88 1606
f45ebe47 1607 do_pending_stack_adjust ();
4956d07c
MS
1608 free (entry);
1609 }
e701eb4d 1610
9a0d1e1b
AM
1611 /* At this point, all the cleanups are done, and the ehqueue now has
1612 the current exception region at its head. We dequeue it, and put it
1613 on the catch stack. */
1614
1615 push_entry (&catchstack, entry);
1616
e701eb4d
JM
1617 /* If we are not doing setjmp/longjmp EH, because we are reordered
1618 out of line, we arrange to rethrow in the outer context. We need to
1619 do this because we are not physically within the region, if any, that
1620 logically contains this catch block. */
1621 if (! exceptions_via_longjmp)
1622 {
1623 expand_eh_region_start ();
1624 ehstack.top->entry->outer_context = outer_context;
1625 }
4956d07c
MS
1626}
1627
12670d88
RK
1628/* Finish up the catch block. At this point all the insns for the
1629 catch clauses have already been generated, so we only have to add
1630 them to the catch_clauses list. We also want to make sure that if
1631 we fall off the end of the catch clauses that we rethrow to the
abeeec2a 1632 outer EH region. */
4956d07c
MS
1633
1634void
1635expand_end_all_catch ()
1636{
5dfa7520 1637 rtx new_catch_clause, outer_context = NULL_RTX;
0d3453df 1638 struct eh_entry *entry;
4956d07c
MS
1639
1640 if (! doing_eh (1))
1641 return;
1642
0d3453df
AM
1643 /* Dequeue the current catch clause region. */
1644 entry = pop_eh_entry (&catchstack);
1645 free (entry);
1646
e701eb4d 1647 if (! exceptions_via_longjmp)
5dfa7520
JM
1648 {
1649 outer_context = ehstack.top->entry->outer_context;
1650
1651 /* Finish the rethrow region. size_zero_node is just a NOP. */
1652 expand_eh_region_end (size_zero_node);
1653 }
1654
e701eb4d
JM
1655 /* Code to throw out to outer context, if we fall off end of catch
1656 handlers. This is rethrow (Lresume, same id, same obj) in the
1657 documentation. We use Lresume because we know that it will throw
1658 to the correct context.
12670d88 1659
e701eb4d
JM
1660 In other words, if the catch handler doesn't exit or return, we
1661 do a "throw" (using the address of Lresume as the point being
1662 thrown from) so that the outer EH region can then try to process
1663 the exception. */
1664 expand_rethrow (outer_context);
4956d07c
MS
1665
1666 /* Now we have the complete catch sequence. */
1667 new_catch_clause = get_insns ();
1668 end_sequence ();
1669
1670 /* This level of catch blocks is done, so set up the successful
1671 catch jump label for the next layer of catch blocks. */
1672 pop_label_entry (&caught_return_label_stack);
956d6950 1673 pop_label_entry (&outer_context_label_stack);
4956d07c
MS
1674
1675 /* Add the new sequence of catches to the main one for this function. */
1676 push_to_sequence (catch_clauses);
1677 emit_insns (new_catch_clause);
1678 catch_clauses = get_insns ();
1679 end_sequence ();
1680
1681 /* Here we fall through into the continuation code. */
1682}
1683
e701eb4d
JM
1684/* Rethrow from the outer context LABEL. */
1685
1686static void
1687expand_rethrow (label)
1688 rtx label;
1689{
1690 if (exceptions_via_longjmp)
1691 emit_throw ();
1692 else
1693 emit_jump (label);
1694}
1695
12670d88 1696/* End all the pending exception regions on protect_list. The handlers
27a36778 1697 will be emitted when expand_leftover_cleanups is invoked. */
4956d07c
MS
1698
1699void
1700end_protect_partials ()
1701{
1702 while (protect_list)
1703 {
1704 expand_eh_region_end (TREE_VALUE (protect_list));
1705 protect_list = TREE_CHAIN (protect_list);
1706 }
1707}
27a36778
MS
1708
1709/* Arrange for __terminate to be called if there is an unhandled throw
1710 from within E. */
1711
1712tree
1713protect_with_terminate (e)
1714 tree e;
1715{
1716 /* We only need to do this when using setjmp/longjmp EH and the
1717 language requires it, as otherwise we protect all of the handlers
1718 at once, if we need to. */
1719 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1720 {
1721 tree handler, result;
1722
1723 /* All cleanups must be on the function_obstack. */
1724 push_obstacks_nochange ();
1725 resume_temporary_allocation ();
1726
1727 handler = make_node (RTL_EXPR);
1728 TREE_TYPE (handler) = void_type_node;
1729 RTL_EXPR_RTL (handler) = const0_rtx;
1730 TREE_SIDE_EFFECTS (handler) = 1;
1731 start_sequence_for_rtl_expr (handler);
1732
1733 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1734 emit_barrier ();
1735
1736 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1737 end_sequence ();
1738
1739 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1740 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1741 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1742 TREE_READONLY (result) = TREE_READONLY (e);
1743
1744 pop_obstacks ();
1745
1746 e = result;
1747 }
1748
1749 return e;
1750}
4956d07c
MS
1751\f
1752/* The exception table that we build that is used for looking up and
12670d88
RK
1753 dispatching exceptions, the current number of entries, and its
1754 maximum size before we have to extend it.
1755
1756 The number in eh_table is the code label number of the exception
27a36778
MS
1757 handler for the region. This is added by add_eh_table_entry and
1758 used by output_exception_table_entry. */
12670d88 1759
9a0d1e1b
AM
1760static int *eh_table = NULL;
1761static int eh_table_size = 0;
1762static int eh_table_max_size = 0;
4956d07c
MS
1763
1764/* Note the need for an exception table entry for region N. If we
12670d88
RK
1765 don't need to output an explicit exception table, avoid all of the
1766 extra work.
1767
1768 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
9a0d1e1b 1769 (Or NOTE_INSN_EH_REGION_END sometimes)
12670d88 1770 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
abeeec2a 1771 label number of the exception handler for the region. */
4956d07c
MS
1772
1773void
1774add_eh_table_entry (n)
1775 int n;
1776{
1777#ifndef OMIT_EH_TABLE
1778 if (eh_table_size >= eh_table_max_size)
1779 {
1780 if (eh_table)
1781 {
1782 eh_table_max_size += eh_table_max_size>>1;
1783
1784 if (eh_table_max_size < 0)
1785 abort ();
1786
ca55abae
JM
1787 eh_table = (int *) xrealloc (eh_table,
1788 eh_table_max_size * sizeof (int));
4956d07c
MS
1789 }
1790 else
1791 {
1792 eh_table_max_size = 252;
1793 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
1794 }
1795 }
1796 eh_table[eh_table_size++] = n;
1797#endif
1798}
1799
12670d88
RK
1800/* Return a non-zero value if we need to output an exception table.
1801
1802 On some platforms, we don't have to output a table explicitly.
1803 This routine doesn't mean we don't have one. */
4956d07c
MS
1804
1805int
1806exception_table_p ()
1807{
1808 if (eh_table)
1809 return 1;
1810
1811 return 0;
1812}
1813
38e01259 1814/* Output the entry of the exception table corresponding to the
12670d88
RK
1815 exception region numbered N to file FILE.
1816
1817 N is the code label number corresponding to the handler of the
abeeec2a 1818 region. */
4956d07c
MS
1819
1820static void
1821output_exception_table_entry (file, n)
1822 FILE *file;
1823 int n;
1824{
1825 char buf[256];
1826 rtx sym;
9a0d1e1b
AM
1827 struct handler_info *handler;
1828
1829 handler = get_first_handler (n);
4956d07c 1830
9a0d1e1b
AM
1831 for ( ; handler != NULL; handler = handler->next)
1832 {
1833 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
1834 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1835 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 1836
9a0d1e1b
AM
1837 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
1838 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1839 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
1840
1841 assemble_integer (handler->handler_label,
1842 POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 1843
a1622f83
AM
1844 if (flag_new_exceptions)
1845 {
1846 if (handler->type_info == NULL)
1847 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1848 else
1849 output_constant ((tree)(handler->type_info),
9a0d1e1b 1850 POINTER_SIZE / BITS_PER_UNIT);
a1622f83 1851 }
9a0d1e1b
AM
1852 putc ('\n', file); /* blank line */
1853 }
4956d07c
MS
1854}
1855
abeeec2a 1856/* Output the exception table if we have and need one. */
4956d07c 1857
9a0d1e1b
AM
1858static short language_code = 0;
1859static short version_code = 0;
1860
1861/* This routine will set the language code for exceptions. */
1862void set_exception_lang_code (code)
1863 short code;
1864{
1865 language_code = code;
1866}
1867
1868/* This routine will set the language version code for exceptions. */
1869void set_exception_version_code (code)
1870 short code;
1871{
1872 version_code = code;
1873}
1874
9a0d1e1b 1875
4956d07c
MS
1876void
1877output_exception_table ()
1878{
1879 int i;
1880 extern FILE *asm_out_file;
1881
ca55abae 1882 if (! doing_eh (0) || ! eh_table)
4956d07c
MS
1883 return;
1884
1885 exception_section ();
1886
1887 /* Beginning marker for table. */
1888 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
1889 assemble_label ("__EXCEPTION_TABLE__");
1890
a1622f83
AM
1891 if (flag_new_exceptions)
1892 {
1893 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
1894 POINTER_SIZE / BITS_PER_UNIT, 1);
1895 assemble_integer (GEN_INT (language_code), 2 , 1);
1896 assemble_integer (GEN_INT (version_code), 2 , 1);
1897
1898 /* Add enough padding to make sure table aligns on a pointer boundry. */
1899 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
1900 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
1901 ;
1902 if (i != 0)
1903 assemble_integer (const0_rtx, i , 1);
1904 }
9a0d1e1b 1905
4956d07c
MS
1906 for (i = 0; i < eh_table_size; ++i)
1907 output_exception_table_entry (asm_out_file, eh_table[i]);
1908
1909 free (eh_table);
9a0d1e1b 1910 clear_function_eh_region ();
4956d07c
MS
1911
1912 /* Ending marker for table. */
4956d07c 1913 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
a1622f83 1914
9a0d1e1b
AM
1915 /* for binary compatability, the old __throw checked the second
1916 position for a -1, so we should output at least 2 -1's */
a1622f83
AM
1917 if (! flag_new_exceptions)
1918 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1919
4956d07c
MS
1920 putc ('\n', asm_out_file); /* blank line */
1921}
4956d07c 1922\f
154bba13
TT
1923/* Emit code to get EH context.
1924
1925 We have to scan thru the code to find possible EH context registers.
1926 Inlined functions may use it too, and thus we'll have to be able
1927 to change them too.
1928
1929 This is done only if using exceptions_via_longjmp. */
1930
1931void
1932emit_eh_context ()
1933{
1934 rtx insn;
1935 rtx ehc = 0;
1936
1937 if (! doing_eh (0))
1938 return;
1939
1940 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1941 if (GET_CODE (insn) == INSN
1942 && GET_CODE (PATTERN (insn)) == USE)
1943 {
1944 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
1945 if (reg)
1946 {
1947 rtx insns;
1948
100d81d4
JM
1949 start_sequence ();
1950
d9c92f32
JM
1951 /* If this is the first use insn, emit the call here. This
1952 will always be at the top of our function, because if
1953 expand_inline_function notices a REG_EH_CONTEXT note, it
1954 adds a use insn to this function as well. */
154bba13 1955 if (ehc == 0)
01eb7f9a 1956 ehc = call_get_eh_context ();
154bba13 1957
154bba13
TT
1958 emit_move_insn (XEXP (reg, 0), ehc);
1959 insns = get_insns ();
1960 end_sequence ();
1961
1962 emit_insns_before (insns, insn);
1963 }
1964 }
1965}
1966
12670d88
RK
1967/* Scan the current insns and build a list of handler labels. The
1968 resulting list is placed in the global variable exception_handler_labels.
1969
1970 It is called after the last exception handling region is added to
1971 the current function (when the rtl is almost all built for the
1972 current function) and before the jump optimization pass. */
4956d07c
MS
1973
1974void
1975find_exception_handler_labels ()
1976{
1977 rtx insn;
4956d07c
MS
1978
1979 exception_handler_labels = NULL_RTX;
1980
1981 /* If we aren't doing exception handling, there isn't much to check. */
1982 if (! doing_eh (0))
1983 return;
1984
12670d88
RK
1985 /* For each start of a region, add its label to the list. */
1986
4956d07c
MS
1987 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1988 {
9a0d1e1b 1989 struct handler_info* ptr;
4956d07c
MS
1990 if (GET_CODE (insn) == NOTE
1991 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
1992 {
9a0d1e1b
AM
1993 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
1994 for ( ; ptr; ptr = ptr->next)
1995 {
1996 /* make sure label isn't in the list already */
1997 rtx x;
1998 for (x = exception_handler_labels; x; x = XEXP (x, 1))
1999 if (XEXP (x, 0) == ptr->handler_label)
2000 break;
2001 if (! x)
2002 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2003 ptr->handler_label, exception_handler_labels);
2004 }
4956d07c
MS
2005 }
2006 }
9a0d1e1b
AM
2007}
2008
2009/* Return a value of 1 if the parameter label number is an exception handler
2010 label. Return 0 otherwise. */
988cea7d 2011
9a0d1e1b
AM
2012int
2013is_exception_handler_label (lab)
2014 int lab;
2015{
2016 rtx x;
2017 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2018 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2019 return 1;
2020 return 0;
4956d07c
MS
2021}
2022
12670d88
RK
2023/* Perform sanity checking on the exception_handler_labels list.
2024
2025 Can be called after find_exception_handler_labels is called to
2026 build the list of exception handlers for the current function and
2027 before we finish processing the current function. */
4956d07c
MS
2028
2029void
2030check_exception_handler_labels ()
2031{
9a0d1e1b 2032 rtx insn, insn2;
4956d07c
MS
2033
2034 /* If we aren't doing exception handling, there isn't much to check. */
2035 if (! doing_eh (0))
2036 return;
2037
9a0d1e1b
AM
2038 /* Make sure there is no more than 1 copy of a label */
2039 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
4956d07c 2040 {
9a0d1e1b
AM
2041 int count = 0;
2042 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2043 if (XEXP (insn, 0) == XEXP (insn2, 0))
2044 count++;
2045 if (count != 1)
2046 warning ("Counted %d copies of EH region %d in list.\n", count,
2047 CODE_LABEL_NUMBER (insn));
4956d07c
MS
2048 }
2049
4956d07c
MS
2050}
2051\f
2052/* This group of functions initializes the exception handling data
2053 structures at the start of the compilation, initializes the data
12670d88 2054 structures at the start of a function, and saves and restores the
4956d07c
MS
2055 exception handling data structures for the start/end of a nested
2056 function. */
2057
2058/* Toplevel initialization for EH things. */
2059
2060void
2061init_eh ()
2062{
4956d07c
MS
2063}
2064
abeeec2a 2065/* Initialize the per-function EH information. */
4956d07c
MS
2066
2067void
2068init_eh_for_function ()
2069{
2070 ehstack.top = 0;
9a0d1e1b 2071 catchstack.top = 0;
4956d07c
MS
2072 ehqueue.head = ehqueue.tail = 0;
2073 catch_clauses = NULL_RTX;
2074 false_label_stack = 0;
2075 caught_return_label_stack = 0;
2076 protect_list = NULL_TREE;
154bba13 2077 current_function_ehc = NULL_RTX;
4956d07c
MS
2078}
2079
12670d88
RK
2080/* Save some of the per-function EH info into the save area denoted by
2081 P.
2082
27a36778 2083 This is currently called from save_stmt_status. */
4956d07c
MS
2084
2085void
2086save_eh_status (p)
2087 struct function *p;
2088{
3a88cbd1
JL
2089 if (p == NULL)
2090 abort ();
12670d88 2091
4956d07c 2092 p->ehstack = ehstack;
9a0d1e1b 2093 p->catchstack = catchstack;
4956d07c
MS
2094 p->ehqueue = ehqueue;
2095 p->catch_clauses = catch_clauses;
2096 p->false_label_stack = false_label_stack;
2097 p->caught_return_label_stack = caught_return_label_stack;
2098 p->protect_list = protect_list;
154bba13 2099 p->ehc = current_function_ehc;
4956d07c 2100
6e1f1f93 2101 init_eh_for_function ();
4956d07c
MS
2102}
2103
12670d88
RK
2104/* Restore the per-function EH info saved into the area denoted by P.
2105
abeeec2a 2106 This is currently called from restore_stmt_status. */
4956d07c
MS
2107
2108void
2109restore_eh_status (p)
2110 struct function *p;
2111{
3a88cbd1
JL
2112 if (p == NULL)
2113 abort ();
12670d88 2114
4956d07c
MS
2115 protect_list = p->protect_list;
2116 caught_return_label_stack = p->caught_return_label_stack;
2117 false_label_stack = p->false_label_stack;
2118 catch_clauses = p->catch_clauses;
2119 ehqueue = p->ehqueue;
2120 ehstack = p->ehstack;
9a0d1e1b 2121 catchstack = p->catchstack;
154bba13 2122 current_function_ehc = p->ehc;
4956d07c
MS
2123}
2124\f
2125/* This section is for the exception handling specific optimization
2126 pass. First are the internal routines, and then the main
2127 optimization pass. */
2128
2129/* Determine if the given INSN can throw an exception. */
2130
2131static int
2132can_throw (insn)
2133 rtx insn;
2134{
abeeec2a 2135 /* Calls can always potentially throw exceptions. */
4956d07c
MS
2136 if (GET_CODE (insn) == CALL_INSN)
2137 return 1;
2138
27a36778
MS
2139 if (asynchronous_exceptions)
2140 {
2141 /* If we wanted asynchronous exceptions, then everything but NOTEs
2142 and CODE_LABELs could throw. */
2143 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2144 return 1;
2145 }
4956d07c
MS
2146
2147 return 0;
2148}
2149
12670d88
RK
2150/* Scan a exception region looking for the matching end and then
2151 remove it if possible. INSN is the start of the region, N is the
2152 region number, and DELETE_OUTER is to note if anything in this
2153 region can throw.
2154
2155 Regions are removed if they cannot possibly catch an exception.
27a36778 2156 This is determined by invoking can_throw on each insn within the
12670d88
RK
2157 region; if can_throw returns true for any of the instructions, the
2158 region can catch an exception, since there is an insn within the
2159 region that is capable of throwing an exception.
2160
2161 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
27a36778 2162 calls abort if it can't find one.
12670d88
RK
2163
2164 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
abeeec2a 2165 correspond to the region number, or if DELETE_OUTER is NULL. */
4956d07c
MS
2166
2167static rtx
2168scan_region (insn, n, delete_outer)
2169 rtx insn;
2170 int n;
2171 int *delete_outer;
2172{
2173 rtx start = insn;
2174
2175 /* Assume we can delete the region. */
2176 int delete = 1;
2177
3a88cbd1
JL
2178 if (insn == NULL_RTX
2179 || GET_CODE (insn) != NOTE
2180 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2181 || NOTE_BLOCK_NUMBER (insn) != n
2182 || delete_outer == NULL)
2183 abort ();
12670d88 2184
4956d07c
MS
2185 insn = NEXT_INSN (insn);
2186
2187 /* Look for the matching end. */
2188 while (! (GET_CODE (insn) == NOTE
2189 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2190 {
2191 /* If anything can throw, we can't remove the region. */
2192 if (delete && can_throw (insn))
2193 {
2194 delete = 0;
2195 }
2196
2197 /* Watch out for and handle nested regions. */
2198 if (GET_CODE (insn) == NOTE
2199 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2200 {
2201 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2202 }
2203
2204 insn = NEXT_INSN (insn);
2205 }
2206
2207 /* The _BEG/_END NOTEs must match and nest. */
2208 if (NOTE_BLOCK_NUMBER (insn) != n)
2209 abort ();
2210
12670d88 2211 /* If anything in this exception region can throw, we can throw. */
4956d07c
MS
2212 if (! delete)
2213 *delete_outer = 0;
2214 else
2215 {
2216 /* Delete the start and end of the region. */
2217 delete_insn (start);
2218 delete_insn (insn);
2219
9a0d1e1b
AM
2220/* We no longer removed labels here, since flow will now remove any
2221 handler which cannot be called any more. */
2222
2223#if 0
4956d07c
MS
2224 /* Only do this part if we have built the exception handler
2225 labels. */
2226 if (exception_handler_labels)
2227 {
2228 rtx x, *prev = &exception_handler_labels;
2229
2230 /* Find it in the list of handlers. */
2231 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2232 {
2233 rtx label = XEXP (x, 0);
2234 if (CODE_LABEL_NUMBER (label) == n)
2235 {
2236 /* If we are the last reference to the handler,
2237 delete it. */
2238 if (--LABEL_NUSES (label) == 0)
2239 delete_insn (label);
2240
2241 if (optimize)
2242 {
2243 /* Remove it from the list of exception handler
2244 labels, if we are optimizing. If we are not, then
2245 leave it in the list, as we are not really going to
2246 remove the region. */
2247 *prev = XEXP (x, 1);
2248 XEXP (x, 1) = 0;
2249 XEXP (x, 0) = 0;
2250 }
2251
2252 break;
2253 }
2254 prev = &XEXP (x, 1);
2255 }
2256 }
9a0d1e1b 2257#endif
4956d07c
MS
2258 }
2259 return insn;
2260}
2261
2262/* Perform various interesting optimizations for exception handling
2263 code.
2264
12670d88
RK
2265 We look for empty exception regions and make them go (away). The
2266 jump optimization code will remove the handler if nothing else uses
abeeec2a 2267 it. */
4956d07c
MS
2268
2269void
2270exception_optimize ()
2271{
381127e8 2272 rtx insn;
4956d07c
MS
2273 int n;
2274
12670d88 2275 /* Remove empty regions. */
4956d07c
MS
2276 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2277 {
2278 if (GET_CODE (insn) == NOTE
2279 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2280 {
27a36778 2281 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
12670d88
RK
2282 insn, we will indirectly skip through all the insns
2283 inbetween. We are also guaranteed that the value of insn
27a36778 2284 returned will be valid, as otherwise scan_region won't
abeeec2a 2285 return. */
4956d07c
MS
2286 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2287 }
2288 }
2289}
ca55abae
JM
2290\f
2291/* Various hooks for the DWARF 2 __throw routine. */
2292
2293/* Do any necessary initialization to access arbitrary stack frames.
2294 On the SPARC, this means flushing the register windows. */
2295
2296void
2297expand_builtin_unwind_init ()
2298{
2299 /* Set this so all the registers get saved in our frame; we need to be
2300 able to copy the saved values for any registers from frames we unwind. */
2301 current_function_has_nonlocal_label = 1;
2302
2303#ifdef SETUP_FRAME_ADDRESSES
2304 SETUP_FRAME_ADDRESSES ();
2305#endif
2306}
2307
2308/* Given a value extracted from the return address register or stack slot,
2309 return the actual address encoded in that value. */
2310
2311rtx
2312expand_builtin_extract_return_addr (addr_tree)
2313 tree addr_tree;
2314{
2315 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2316 return eh_outer_context (addr);
2317}
2318
2319/* Given an actual address in addr_tree, do any necessary encoding
2320 and return the value to be stored in the return address register or
2321 stack slot so the epilogue will return to that address. */
2322
2323rtx
2324expand_builtin_frob_return_addr (addr_tree)
2325 tree addr_tree;
2326{
2327 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2328#ifdef RETURN_ADDR_OFFSET
2329 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2330#endif
2331 return addr;
2332}
2333
2334/* Given an actual address in addr_tree, set the return address register up
2335 so the epilogue will return to that address. If the return address is
2336 not in a register, do nothing. */
2337
2338void
2339expand_builtin_set_return_addr_reg (addr_tree)
2340 tree addr_tree;
2341{
4f870c04 2342 rtx tmp;
ca55abae
JM
2343 rtx ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2344 0, hard_frame_pointer_rtx);
2345
2346 if (GET_CODE (ra) != REG || REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2347 return;
2348
4f870c04
JM
2349 tmp = force_operand (expand_builtin_frob_return_addr (addr_tree), ra);
2350 if (tmp != ra)
2351 emit_move_insn (ra, tmp);
ca55abae
JM
2352}
2353
2354/* Choose two registers for communication between the main body of
2355 __throw and the stub for adjusting the stack pointer. The first register
2356 is used to pass the address of the exception handler; the second register
2357 is used to pass the stack pointer offset.
2358
2359 For register 1 we use the return value register for a void *.
2360 For register 2 we use the static chain register if it exists and is
2361 different from register 1, otherwise some arbitrary call-clobbered
2362 register. */
2363
2364static void
2365eh_regs (r1, r2, outgoing)
2366 rtx *r1, *r2;
2367 int outgoing;
2368{
2369 rtx reg1, reg2;
2370
2371#ifdef FUNCTION_OUTGOING_VALUE
2372 if (outgoing)
2373 reg1 = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2374 current_function_decl);
2375 else
2376#endif
2377 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2378 current_function_decl);
2379
2380#ifdef STATIC_CHAIN_REGNUM
2381 if (outgoing)
2382 reg2 = static_chain_incoming_rtx;
2383 else
2384 reg2 = static_chain_rtx;
2385 if (REGNO (reg2) == REGNO (reg1))
2386#endif /* STATIC_CHAIN_REGNUM */
2387 reg2 = NULL_RTX;
2388
2389 if (reg2 == NULL_RTX)
2390 {
2391 int i;
2392 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2393 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (reg1))
2394 {
38a448ca 2395 reg2 = gen_rtx_REG (Pmode, i);
ca55abae
JM
2396 break;
2397 }
2398
2399 if (reg2 == NULL_RTX)
2400 abort ();
2401 }
2402
2403 *r1 = reg1;
2404 *r2 = reg2;
2405}
2406
9a0d1e1b
AM
2407
2408/* Retrieve the register which contains the pointer to the eh_context
2409 structure set the __throw. */
2410
2411rtx
2412get_reg_for_handler ()
2413{
2414 rtx reg1;
2415 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2416 current_function_decl);
2417 return reg1;
2418}
2419
2420
ca55abae
JM
2421/* Emit inside of __throw a stub which adjusts the stack pointer and jumps
2422 to the exception handler. __throw will set up the necessary values
2423 and then return to the stub. */
2424
a1622f83
AM
2425rtx
2426expand_builtin_eh_stub_old ()
2427{
2428 rtx stub_start = gen_label_rtx ();
2429 rtx after_stub = gen_label_rtx ();
2430 rtx handler, offset;
2431
2432 emit_jump (after_stub);
2433 emit_label (stub_start);
2434
2435 eh_regs (&handler, &offset, 0);
2436
2437 adjust_stack (offset);
2438 emit_indirect_jump (handler);
2439 emit_label (after_stub);
2440 return gen_rtx_LABEL_REF (Pmode, stub_start);
2441}
2442
ca55abae
JM
2443rtx
2444expand_builtin_eh_stub ()
2445{
2446 rtx stub_start = gen_label_rtx ();
2447 rtx after_stub = gen_label_rtx ();
381127e8 2448 rtx handler, offset;
a1622f83 2449 rtx jump_to, temp;
ca55abae
JM
2450
2451 emit_jump (after_stub);
2452 emit_label (stub_start);
2453
2454 eh_regs (&handler, &offset, 0);
2455
2456 adjust_stack (offset);
9a0d1e1b
AM
2457
2458 /* Handler is in fact a pointer to the _eh_context structure, we need
2459 to pick out the handler field (first element), and jump to there,
2460 leaving the pointer to _eh_conext in the same hardware register. */
9a0d1e1b 2461
fb95c8c9 2462 temp = gen_rtx_MEM (Pmode, handler);
a1622f83
AM
2463 MEM_IN_STRUCT_P (temp) = 1;
2464 RTX_UNCHANGING_P (temp) = 1;
fb95c8c9 2465 emit_move_insn (offset, temp);
a1622f83 2466 emit_insn (gen_rtx_USE (Pmode, handler));
9a0d1e1b 2467
a1622f83 2468 emit_indirect_jump (offset);
9a0d1e1b 2469
ca55abae 2470 emit_label (after_stub);
38a448ca 2471 return gen_rtx_LABEL_REF (Pmode, stub_start);
ca55abae
JM
2472}
2473
2474/* Set up the registers for passing the handler address and stack offset
2475 to the stub above. */
2476
2477void
2478expand_builtin_set_eh_regs (handler, offset)
2479 tree handler, offset;
2480{
2481 rtx reg1, reg2;
2482
2483 eh_regs (&reg1, &reg2, 1);
2484
2485 store_expr (offset, reg2, 0);
2486 store_expr (handler, reg1, 0);
2487
2488 /* These will be used by the stub. */
38a448ca
RH
2489 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2490 emit_insn (gen_rtx_USE (VOIDmode, reg2));
ca55abae 2491}
77d33a84
AM
2492
2493\f
2494
2495/* This contains the code required to verify whether arbitrary instructions
2496 are in the same exception region. */
2497
2498static int *insn_eh_region = (int *)0;
2499static int maximum_uid;
2500
242c13b0
JL
2501static void
2502set_insn_eh_region (first, region_num)
77d33a84
AM
2503 rtx *first;
2504 int region_num;
2505{
2506 rtx insn;
2507 int rnum;
2508
2509 for (insn = *first; insn; insn = NEXT_INSN (insn))
2510 {
2511 if ((GET_CODE (insn) == NOTE) &&
2512 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2513 {
2514 rnum = NOTE_BLOCK_NUMBER (insn);
2515 insn_eh_region[INSN_UID (insn)] = rnum;
2516 insn = NEXT_INSN (insn);
2517 set_insn_eh_region (&insn, rnum);
2518 /* Upon return, insn points to the EH_REGION_END of nested region */
2519 continue;
2520 }
2521 insn_eh_region[INSN_UID (insn)] = region_num;
2522 if ((GET_CODE (insn) == NOTE) &&
2523 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2524 break;
2525 }
2526 *first = insn;
2527}
2528
2529/* Free the insn table, an make sure it cannot be used again. */
2530
9a0d1e1b
AM
2531void
2532free_insn_eh_region ()
77d33a84
AM
2533{
2534 if (!doing_eh (0))
2535 return;
2536
2537 if (insn_eh_region)
2538 {
2539 free (insn_eh_region);
2540 insn_eh_region = (int *)0;
2541 }
2542}
2543
2544/* Initialize the table. max_uid must be calculated and handed into
2545 this routine. If it is unavailable, passing a value of 0 will
2546 cause this routine to calculate it as well. */
2547
9a0d1e1b
AM
2548void
2549init_insn_eh_region (first, max_uid)
77d33a84
AM
2550 rtx first;
2551 int max_uid;
2552{
2553 rtx insn;
2554
2555 if (!doing_eh (0))
2556 return;
2557
2558 if (insn_eh_region)
2559 free_insn_eh_region();
2560
2561 if (max_uid == 0)
2562 for (insn = first; insn; insn = NEXT_INSN (insn))
2563 if (INSN_UID (insn) > max_uid) /* find largest UID */
2564 max_uid = INSN_UID (insn);
2565
2566 maximum_uid = max_uid;
2567 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2568 insn = first;
2569 set_insn_eh_region (&insn, 0);
2570}
2571
2572
2573/* Check whether 2 instructions are within the same region. */
2574
9a0d1e1b
AM
2575int
2576in_same_eh_region (insn1, insn2)
2577 rtx insn1, insn2;
77d33a84
AM
2578{
2579 int ret, uid1, uid2;
2580
2581 /* If no exceptions, instructions are always in same region. */
2582 if (!doing_eh (0))
2583 return 1;
2584
2585 /* If the table isn't allocated, assume the worst. */
2586 if (!insn_eh_region)
2587 return 0;
2588
2589 uid1 = INSN_UID (insn1);
2590 uid2 = INSN_UID (insn2);
2591
2592 /* if instructions have been allocated beyond the end, either
2593 the table is out of date, or this is a late addition, or
2594 something... Assume the worst. */
2595 if (uid1 > maximum_uid || uid2 > maximum_uid)
2596 return 0;
2597
2598 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2599 return ret;
2600}
2601
This page took 0.473056 seconds and 5 git commands to generate.