]> gcc.gnu.org Git - gcc.git/blame - gcc/except.c
reload.c: PROTO -> PARAMS.
[gcc.git] / gcc / except.c
CommitLineData
12670d88 1/* Implements exception handling.
dd1bd863 2 Copyright (C) 1989, 1992-1999, 2000 Free Software Foundation, Inc.
4956d07c
MS
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
12670d88
RK
23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
956d6950 26 be transferred to any arbitrary code associated with a function call
12670d88
RK
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
27a36778
MS
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
e9a25f70 48 approach, which is the default. -fno-sjlj-exceptions can be used to
27a36778
MS
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
12670d88
RK
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
2ed18e63
MS
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
956d6950 74 In the current implementation, cleanups are handled by allocating an
2ed18e63
MS
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
12670d88 89
ca55abae
JM
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
12670d88 92 __register_exceptions with the address of its local
ca55abae
JM
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
6d8ccdbb 100 __register_frame_info. On other targets, the information for each
d1485032 101 translation unit is registered from the file generated by collect2.
6d8ccdbb 102 __register_frame_info is defined in frame.c, and is responsible for
ca55abae
JM
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
12670d88 105
27a36778 106 The function __throw is actually responsible for doing the
ca55abae
JM
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
12670d88 109 per-object-file basis for each source file compiled with
38e01259 110 -fexceptions by the C++ frontend. Before __throw is invoked,
ca55abae
JM
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
12670d88 113
27a36778 114 __throw attempts to find the appropriate exception handler for the
12670d88 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
2ed18e63 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
ca55abae
JM
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
12670d88
RK
131
132 Internal implementation details:
133
12670d88 134 To associate a user-defined handler with a block of statements, the
27a36778 135 function expand_start_try_stmts is used to mark the start of the
12670d88 136 block of statements with which the handler is to be associated
2ed18e63
MS
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
27a36778 140 A call to expand_start_all_catch marks the end of the try block,
2ed18e63
MS
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
27a36778 155 handler. expand_end_all_catch and expand_leftover_cleanups
2ed18e63
MS
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
27a36778 163 to the topmost entry's label via expand_goto will resume normal
2ed18e63
MS
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
27a36778
MS
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
12670d88
RK
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
2ed18e63
MS
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
27a36778 187 calling expand_eh_region_start to mark the start of the region,
2ed18e63
MS
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
12670d88
RK
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
2ed18e63
MS
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
27a36778 210 and end_protect_partials. add_partial_entry creates the start of
2ed18e63
MS
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
27a36778 217 group of calls to add_partial_entry as the entries are queued
2ed18e63
MS
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
12670d88
RK
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
2ed18e63
MS
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
12670d88
RK
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
2ed18e63 234 can be safely optimized away (along with its exception handlers)
27a36778
MS
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
12670d88 246
ca55abae 247 Walking the stack:
12670d88 248
ca55abae
JM
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
12670d88 252
ca55abae 253 Unwinding the stack:
12670d88 254
ca55abae
JM
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
956d6950 282 should call __terminate.
ca55abae
JM
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
2ed18e63
MS
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
ca55abae
JM
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
12670d88 296
ca55abae
JM
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
12670d88 302
27a36778 303 On some platforms it is possible that neither __unwind_function
12670d88 304 nor inlined unwinders are available. For these platforms it is not
27a36778 305 possible to throw through a function call, and abort will be
2ed18e63
MS
306 invoked instead of performing the throw.
307
ca55abae
JM
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
2ed18e63
MS
320 Future directions:
321
27a36778 322 Currently __throw makes no differentiation between cleanups and
2ed18e63
MS
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
27a36778 333 A two-pass scheme could then be used by __throw to iterate
2ed18e63
MS
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
27a36778 343 __throw to be able to determine if a given user-defined
2ed18e63
MS
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
27a36778 348 as to the types of exceptions accepted by each handler. __throw
2ed18e63
MS
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
27a36778 353 available, other than to place a breakpoint on __throw. While
2ed18e63
MS
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
27a36778 359 scheme by adding additional labels to __throw for appropriate
2ed18e63
MS
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
ca55abae
JM
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
27a36778
MS
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
956d6950 380 table, and no calls to __register_exceptions. __sjthrow is used
27a36778
MS
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
4956d07c
MS
389
390
391#include "config.h"
ca55abae 392#include "defaults.h"
9a0d1e1b 393#include "eh-common.h"
670ee920 394#include "system.h"
4956d07c
MS
395#include "rtl.h"
396#include "tree.h"
397#include "flags.h"
398#include "except.h"
399#include "function.h"
400#include "insn-flags.h"
401#include "expr.h"
402#include "insn-codes.h"
403#include "regs.h"
404#include "hard-reg-set.h"
405#include "insn-config.h"
406#include "recog.h"
407#include "output.h"
10f0ad3d 408#include "toplev.h"
2b12ffe0 409#include "intl.h"
e6cfb550 410#include "obstack.h"
87ff9c8e 411#include "ggc.h"
b1474bb7 412#include "tm_p.h"
4956d07c 413
27a36778
MS
414/* One to use setjmp/longjmp method of generating code for exception
415 handling. */
416
d1485032 417int exceptions_via_longjmp = 2;
27a36778
MS
418
419/* One to enable asynchronous exception support. */
420
421int asynchronous_exceptions = 0;
422
423/* One to protect cleanup actions with a handler that calls
424 __terminate, zero otherwise. */
425
e701eb4d 426int protect_cleanup_actions_with_terminate;
27a36778 427
12670d88 428/* A list of labels used for exception handlers. Created by
4956d07c
MS
429 find_exception_handler_labels for the optimization passes. */
430
431rtx exception_handler_labels;
432
956d6950
JL
433/* Keeps track of the label used as the context of a throw to rethrow an
434 exception to the outer exception region. */
435
436struct label_node *outer_context_label_stack = NULL;
437
71038426
RH
438/* Pseudos used to hold exception return data in the interim between
439 __builtin_eh_return and the end of the function. */
440
441static rtx eh_return_context;
442static rtx eh_return_stack_adjust;
443static rtx eh_return_handler;
444
e6cfb550
AM
445/* This is used for targets which can call rethrow with an offset instead
446 of an address. This is subtracted from the rethrow label we are
447 interested in. */
448
449static rtx first_rethrow_symbol = NULL_RTX;
450static rtx final_rethrow = NULL_RTX;
451static rtx last_rethrow_symbol = NULL_RTX;
452
453
71038426
RH
454/* Prototypes for local functions. */
455
711d877c
KG
456static void push_eh_entry PARAMS ((struct eh_stack *));
457static struct eh_entry * pop_eh_entry PARAMS ((struct eh_stack *));
458static void enqueue_eh_entry PARAMS ((struct eh_queue *, struct eh_entry *));
459static struct eh_entry * dequeue_eh_entry PARAMS ((struct eh_queue *));
460static rtx call_get_eh_context PARAMS ((void));
461static void start_dynamic_cleanup PARAMS ((tree, tree));
462static void start_dynamic_handler PARAMS ((void));
463static void expand_rethrow PARAMS ((rtx));
464static void output_exception_table_entry PARAMS ((FILE *, int));
465static int can_throw PARAMS ((rtx));
466static rtx scan_region PARAMS ((rtx, int, int *));
467static void eh_regs PARAMS ((rtx *, rtx *, rtx *, int));
468static void set_insn_eh_region PARAMS ((rtx *, int));
767f5b14 469#ifdef DONT_USE_BUILTIN_SETJMP
711d877c 470static void jumpif_rtx PARAMS ((rtx, rtx));
767f5b14 471#endif
711d877c
KG
472static void mark_eh_node PARAMS ((struct eh_node *));
473static void mark_eh_stack PARAMS ((struct eh_stack *));
474static void mark_eh_queue PARAMS ((struct eh_queue *));
475static void mark_tree_label_node PARAMS ((struct label_node *));
476static void mark_func_eh_entry PARAMS ((void *));
477static rtx create_rethrow_ref PARAMS ((int));
478static void push_entry PARAMS ((struct eh_stack *, struct eh_entry*));
479static void receive_exception_label PARAMS ((rtx));
480static int new_eh_region_entry PARAMS ((int, rtx));
481static int find_func_region PARAMS ((int));
482static int find_func_region_from_symbol PARAMS ((rtx));
483static void clear_function_eh_region PARAMS ((void));
484static void process_nestinfo PARAMS ((int, eh_nesting_info *, int *));
485
486rtx expand_builtin_return_addr PARAMS ((enum built_in_function, int, rtx));
487static void emit_cleanup_handler PARAMS ((struct eh_entry *));
488static int eh_region_from_symbol PARAMS ((rtx));
1e4ceb6f 489
4956d07c
MS
490\f
491/* Various support routines to manipulate the various data structures
492 used by the exception handling code. */
493
e6cfb550
AM
494extern struct obstack permanent_obstack;
495
496/* Generate a SYMBOL_REF for rethrow to use */
497static rtx
498create_rethrow_ref (region_num)
499 int region_num;
500{
501 rtx def;
502 char *ptr;
503 char buf[60];
504
505 push_obstacks_nochange ();
506 end_temporary_allocation ();
507
508 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
76095e2f 509 ptr = ggc_alloc_string (buf, -1);
e6cfb550
AM
510 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
511 SYMBOL_REF_NEED_ADJUST (def) = 1;
512
513 pop_obstacks ();
514 return def;
515}
516
4956d07c
MS
517/* Push a label entry onto the given STACK. */
518
519void
520push_label_entry (stack, rlabel, tlabel)
521 struct label_node **stack;
522 rtx rlabel;
523 tree tlabel;
524{
525 struct label_node *newnode
526 = (struct label_node *) xmalloc (sizeof (struct label_node));
527
528 if (rlabel)
529 newnode->u.rlabel = rlabel;
530 else
531 newnode->u.tlabel = tlabel;
532 newnode->chain = *stack;
533 *stack = newnode;
534}
535
536/* Pop a label entry from the given STACK. */
537
538rtx
539pop_label_entry (stack)
540 struct label_node **stack;
541{
542 rtx label;
543 struct label_node *tempnode;
544
545 if (! *stack)
546 return NULL_RTX;
547
548 tempnode = *stack;
549 label = tempnode->u.rlabel;
550 *stack = (*stack)->chain;
551 free (tempnode);
552
553 return label;
554}
555
556/* Return the top element of the given STACK. */
557
558tree
559top_label_entry (stack)
560 struct label_node **stack;
561{
562 if (! *stack)
563 return NULL_TREE;
564
565 return (*stack)->u.tlabel;
566}
567
9a0d1e1b
AM
568/* get an exception label. These must be on the permanent obstack */
569
570rtx
571gen_exception_label ()
572{
573 rtx lab;
9a0d1e1b 574 lab = gen_label_rtx ();
9a0d1e1b
AM
575 return lab;
576}
577
478b0752 578/* Push a new eh_node entry onto STACK. */
4956d07c 579
478b0752 580static void
4956d07c
MS
581push_eh_entry (stack)
582 struct eh_stack *stack;
583{
584 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
585 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
586
e6cfb550 587 rtx rlab = gen_exception_label ();
4956d07c 588 entry->finalization = NULL_TREE;
9a0d1e1b 589 entry->label_used = 0;
e6cfb550 590 entry->exception_handler_label = rlab;
bf71cd2e 591 entry->false_label = NULL_RTX;
e6cfb550
AM
592 if (! flag_new_exceptions)
593 entry->outer_context = gen_label_rtx ();
594 else
595 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
596 entry->rethrow_label = entry->outer_context;
1e4ceb6f 597 entry->goto_entry_p = 0;
9a0d1e1b
AM
598
599 node->entry = entry;
600 node->chain = stack->top;
601 stack->top = node;
602}
4956d07c 603
9a0d1e1b
AM
604/* push an existing entry onto a stack. */
605static void
606push_entry (stack, entry)
607 struct eh_stack *stack;
608 struct eh_entry *entry;
609{
610 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
4956d07c
MS
611 node->entry = entry;
612 node->chain = stack->top;
613 stack->top = node;
4956d07c
MS
614}
615
616/* Pop an entry from the given STACK. */
617
618static struct eh_entry *
619pop_eh_entry (stack)
620 struct eh_stack *stack;
621{
622 struct eh_node *tempnode;
623 struct eh_entry *tempentry;
624
625 tempnode = stack->top;
626 tempentry = tempnode->entry;
627 stack->top = stack->top->chain;
628 free (tempnode);
629
630 return tempentry;
631}
632
633/* Enqueue an ENTRY onto the given QUEUE. */
634
635static void
636enqueue_eh_entry (queue, entry)
637 struct eh_queue *queue;
638 struct eh_entry *entry;
639{
640 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
641
642 node->entry = entry;
643 node->chain = NULL;
644
645 if (queue->head == NULL)
76fc91c7 646 queue->head = node;
4956d07c 647 else
76fc91c7 648 queue->tail->chain = node;
4956d07c
MS
649 queue->tail = node;
650}
651
652/* Dequeue an entry from the given QUEUE. */
653
654static struct eh_entry *
655dequeue_eh_entry (queue)
656 struct eh_queue *queue;
657{
658 struct eh_node *tempnode;
659 struct eh_entry *tempentry;
660
661 if (queue->head == NULL)
662 return NULL;
663
664 tempnode = queue->head;
665 queue->head = queue->head->chain;
666
667 tempentry = tempnode->entry;
668 free (tempnode);
669
670 return tempentry;
671}
9a0d1e1b
AM
672
673static void
674receive_exception_label (handler_label)
675 rtx handler_label;
676{
677 emit_label (handler_label);
678
679#ifdef HAVE_exception_receiver
680 if (! exceptions_via_longjmp)
681 if (HAVE_exception_receiver)
682 emit_insn (gen_exception_receiver ());
683#endif
684
685#ifdef HAVE_nonlocal_goto_receiver
686 if (! exceptions_via_longjmp)
687 if (HAVE_nonlocal_goto_receiver)
688 emit_insn (gen_nonlocal_goto_receiver ());
689#endif
690}
691
692
693struct func_eh_entry
694{
1ef1bf06
AM
695 int range_number; /* EH region number from EH NOTE insn's. */
696 rtx rethrow_label; /* Label for rethrow. */
697 int rethrow_ref; /* Is rethrow referenced? */
9a0d1e1b
AM
698 struct handler_info *handlers;
699};
700
701
702/* table of function eh regions */
703static struct func_eh_entry *function_eh_regions = NULL;
704static int num_func_eh_entries = 0;
705static int current_func_eh_entry = 0;
706
707#define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
708
1e4ceb6f
MM
709/* Add a new eh_entry for this function. The number returned is an
710 number which uniquely identifies this exception range. */
9a0d1e1b 711
e6cfb550
AM
712static int
713new_eh_region_entry (note_eh_region, rethrow)
9a0d1e1b 714 int note_eh_region;
e6cfb550 715 rtx rethrow;
9a0d1e1b
AM
716{
717 if (current_func_eh_entry == num_func_eh_entries)
718 {
719 if (num_func_eh_entries == 0)
720 {
721 function_eh_regions =
ad85216e 722 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
9a0d1e1b
AM
723 num_func_eh_entries = 50;
724 }
725 else
726 {
727 num_func_eh_entries = num_func_eh_entries * 3 / 2;
728 function_eh_regions = (struct func_eh_entry *)
ad85216e 729 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
9a0d1e1b
AM
730 }
731 }
732 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
e6cfb550
AM
733 if (rethrow == NULL_RTX)
734 function_eh_regions[current_func_eh_entry].rethrow_label =
735 create_rethrow_ref (note_eh_region);
736 else
737 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
9a0d1e1b
AM
738 function_eh_regions[current_func_eh_entry].handlers = NULL;
739
740 return current_func_eh_entry++;
741}
742
743/* Add new handler information to an exception range. The first parameter
744 specifies the range number (returned from new_eh_entry()). The second
745 parameter specifies the handler. By default the handler is inserted at
746 the end of the list. A handler list may contain only ONE NULL_TREE
747 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
748 is always output as the LAST handler in the exception table for a region. */
749
750void
751add_new_handler (region, newhandler)
752 int region;
753 struct handler_info *newhandler;
754{
755 struct handler_info *last;
756
1e4ceb6f
MM
757 /* If find_func_region returns -1, callers might attempt to pass us
758 this region number. If that happens, something has gone wrong;
759 -1 is never a valid region. */
760 if (region == -1)
761 abort ();
762
9a0d1e1b
AM
763 newhandler->next = NULL;
764 last = function_eh_regions[region].handlers;
765 if (last == NULL)
766 function_eh_regions[region].handlers = newhandler;
767 else
768 {
9bbdf48e
JM
769 for ( ; ; last = last->next)
770 {
771 if (last->type_info == CATCH_ALL_TYPE)
772 pedwarn ("additional handler after ...");
773 if (last->next == NULL)
774 break;
775 }
d7e78529 776 last->next = newhandler;
9a0d1e1b
AM
777 }
778}
779
9f8e6243
AM
780/* Remove a handler label. The handler label is being deleted, so all
781 regions which reference this handler should have it removed from their
782 list of possible handlers. Any region which has the final handler
783 removed can be deleted. */
784
785void remove_handler (removing_label)
786 rtx removing_label;
787{
788 struct handler_info *handler, *last;
789 int x;
790 for (x = 0 ; x < current_func_eh_entry; ++x)
791 {
792 last = NULL;
793 handler = function_eh_regions[x].handlers;
794 for ( ; handler; last = handler, handler = handler->next)
795 if (handler->handler_label == removing_label)
796 {
797 if (last)
798 {
799 last->next = handler->next;
800 handler = last;
801 }
802 else
803 function_eh_regions[x].handlers = handler->next;
804 }
805 }
806}
807
9c606f69
AM
808/* This function will return a malloc'd pointer to an array of
809 void pointer representing the runtime match values that
810 currently exist in all regions. */
811
812int
4f70758f
KG
813find_all_handler_type_matches (array)
814 void ***array;
9c606f69
AM
815{
816 struct handler_info *handler, *last;
817 int x,y;
818 void *val;
819 void **ptr;
820 int max_ptr;
821 int n_ptr = 0;
822
823 *array = NULL;
824
825 if (!doing_eh (0) || ! flag_new_exceptions)
826 return 0;
827
828 max_ptr = 100;
ad85216e 829 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
9c606f69
AM
830
831 for (x = 0 ; x < current_func_eh_entry; x++)
832 {
833 last = NULL;
834 handler = function_eh_regions[x].handlers;
835 for ( ; handler; last = handler, handler = handler->next)
836 {
837 val = handler->type_info;
838 if (val != NULL && val != CATCH_ALL_TYPE)
839 {
840 /* See if this match value has already been found. */
841 for (y = 0; y < n_ptr; y++)
842 if (ptr[y] == val)
843 break;
844
845 /* If we break early, we already found this value. */
846 if (y < n_ptr)
847 continue;
848
849 /* Do we need to allocate more space? */
850 if (n_ptr >= max_ptr)
851 {
852 max_ptr += max_ptr / 2;
ad85216e 853 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
9c606f69
AM
854 }
855 ptr[n_ptr] = val;
856 n_ptr++;
857 }
858 }
859 }
a9f0664a
RH
860
861 if (n_ptr == 0)
862 {
863 free (ptr);
864 ptr = NULL;
865 }
9c606f69
AM
866 *array = ptr;
867 return n_ptr;
868}
869
9a0d1e1b
AM
870/* Create a new handler structure initialized with the handler label and
871 typeinfo fields passed in. */
872
873struct handler_info *
874get_new_handler (handler, typeinfo)
875 rtx handler;
876 void *typeinfo;
877{
878 struct handler_info* ptr;
ad85216e 879 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
9a0d1e1b 880 ptr->handler_label = handler;
0177de87 881 ptr->handler_number = CODE_LABEL_NUMBER (handler);
9a0d1e1b
AM
882 ptr->type_info = typeinfo;
883 ptr->next = NULL;
884
885 return ptr;
886}
887
888
889
890/* Find the index in function_eh_regions associated with a NOTE region. If
1e4ceb6f 891 the region cannot be found, a -1 is returned. */
9a0d1e1b 892
ca3075bd 893static int
9a0d1e1b
AM
894find_func_region (insn_region)
895 int insn_region;
896{
897 int x;
898 for (x = 0; x < current_func_eh_entry; x++)
899 if (function_eh_regions[x].range_number == insn_region)
900 return x;
901
902 return -1;
903}
904
905/* Get a pointer to the first handler in an exception region's list. */
906
907struct handler_info *
908get_first_handler (region)
909 int region;
910{
76fc91c7
MM
911 int r = find_func_region (region);
912 if (r == -1)
913 abort ();
914 return function_eh_regions[r].handlers;
9a0d1e1b
AM
915}
916
917/* Clean out the function_eh_region table and free all memory */
918
919static void
920clear_function_eh_region ()
921{
922 int x;
923 struct handler_info *ptr, *next;
924 for (x = 0; x < current_func_eh_entry; x++)
925 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
926 {
927 next = ptr->next;
928 free (ptr);
929 }
930 free (function_eh_regions);
931 num_func_eh_entries = 0;
932 current_func_eh_entry = 0;
933}
934
935/* Make a duplicate of an exception region by copying all the handlers
e6cfb550
AM
936 for an exception region. Return the new handler index. The final
937 parameter is a routine which maps old labels to new ones. */
9a0d1e1b
AM
938
939int
e6cfb550 940duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
9a0d1e1b 941 int old_note_eh_region, new_note_eh_region;
3b89e9d1 942 rtx (*map) PARAMS ((rtx));
9a0d1e1b
AM
943{
944 struct handler_info *ptr, *new_ptr;
945 int new_region, region;
946
947 region = find_func_region (old_note_eh_region);
948 if (region == -1)
e6cfb550
AM
949 fatal ("Cannot duplicate non-existant exception region.");
950
951 /* duplicate_eh_handlers may have been called during a symbol remap. */
952 new_region = find_func_region (new_note_eh_region);
953 if (new_region != -1)
954 return (new_region);
9a0d1e1b 955
e6cfb550 956 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
9a0d1e1b 957
9a0d1e1b
AM
958 ptr = function_eh_regions[region].handlers;
959
960 for ( ; ptr; ptr = ptr->next)
961 {
e6cfb550 962 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
9a0d1e1b
AM
963 add_new_handler (new_region, new_ptr);
964 }
965
966 return new_region;
967}
968
e6cfb550
AM
969
970/* Given a rethrow symbol, find the EH region number this is for. */
1e4ceb6f 971static int
e6cfb550
AM
972eh_region_from_symbol (sym)
973 rtx sym;
974{
975 int x;
976 if (sym == last_rethrow_symbol)
977 return 1;
978 for (x = 0; x < current_func_eh_entry; x++)
979 if (function_eh_regions[x].rethrow_label == sym)
980 return function_eh_regions[x].range_number;
981 return -1;
982}
983
1e4ceb6f
MM
984/* Like find_func_region, but using the rethrow symbol for the region
985 rather than the region number itself. */
986static int
987find_func_region_from_symbol (sym)
988 rtx sym;
989{
990 return find_func_region (eh_region_from_symbol (sym));
991}
e6cfb550
AM
992
993/* When inlining/unrolling, we have to map the symbols passed to
994 __rethrow as well. This performs the remap. If a symbol isn't foiund,
995 the original one is returned. This is not an efficient routine,
996 so don't call it on everything!! */
997rtx
998rethrow_symbol_map (sym, map)
999 rtx sym;
3b89e9d1 1000 rtx (*map) PARAMS ((rtx));
e6cfb550
AM
1001{
1002 int x, y;
1003 for (x = 0; x < current_func_eh_entry; x++)
1004 if (function_eh_regions[x].rethrow_label == sym)
1005 {
1006 /* We've found the original region, now lets determine which region
1007 this now maps to. */
1008 rtx l1 = function_eh_regions[x].handlers->handler_label;
1009 rtx l2 = map (l1);
1010 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1011 x = find_func_region (y); /* Get the new permanent region */
1012 if (x == -1) /* Hmm, Doesn't exist yet */
1013 {
1014 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1015 /* Since we're mapping it, it must be used. */
1ef1bf06 1016 function_eh_regions[x].rethrow_ref = 1;
e6cfb550
AM
1017 }
1018 return function_eh_regions[x].rethrow_label;
1019 }
1020 return sym;
1021}
1022
1023int
1024rethrow_used (region)
1025 int region;
1026{
1027 if (flag_new_exceptions)
1028 {
1ef1bf06
AM
1029 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
1030 return ret;
e6cfb550
AM
1031 }
1032 return 0;
1033}
1034
4956d07c 1035\f
38e01259 1036/* Routine to see if exception handling is turned on.
4956d07c 1037 DO_WARN is non-zero if we want to inform the user that exception
12670d88
RK
1038 handling is turned off.
1039
1040 This is used to ensure that -fexceptions has been specified if the
abeeec2a 1041 compiler tries to use any exception-specific functions. */
4956d07c
MS
1042
1043int
1044doing_eh (do_warn)
1045 int do_warn;
1046{
1047 if (! flag_exceptions)
1048 {
1049 static int warned = 0;
1050 if (! warned && do_warn)
1051 {
1052 error ("exception handling disabled, use -fexceptions to enable");
1053 warned = 1;
1054 }
1055 return 0;
1056 }
1057 return 1;
1058}
1059
12670d88 1060/* Given a return address in ADDR, determine the address we should use
abeeec2a 1061 to find the corresponding EH region. */
4956d07c
MS
1062
1063rtx
1064eh_outer_context (addr)
1065 rtx addr;
1066{
1067 /* First mask out any unwanted bits. */
1068#ifdef MASK_RETURN_ADDR
ca55abae 1069 expand_and (addr, MASK_RETURN_ADDR, addr);
4956d07c
MS
1070#endif
1071
ca55abae
JM
1072 /* Then adjust to find the real return address. */
1073#if defined (RETURN_ADDR_OFFSET)
1074 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
4956d07c
MS
1075#endif
1076
1077 return addr;
1078}
1079
27a36778
MS
1080/* Start a new exception region for a region of code that has a
1081 cleanup action and push the HANDLER for the region onto
1082 protect_list. All of the regions created with add_partial_entry
1083 will be ended when end_protect_partials is invoked. */
12670d88
RK
1084
1085void
1086add_partial_entry (handler)
1087 tree handler;
1088{
1089 expand_eh_region_start ();
1090
abeeec2a 1091 /* Make sure the entry is on the correct obstack. */
12670d88
RK
1092 push_obstacks_nochange ();
1093 resume_temporary_allocation ();
27a36778
MS
1094
1095 /* Because this is a cleanup action, we may have to protect the handler
1096 with __terminate. */
1097 handler = protect_with_terminate (handler);
1098
76fc91c7
MM
1099 /* For backwards compatibility, we allow callers to omit calls to
1100 begin_protect_partials for the outermost region. So, we must
1101 explicitly do so here. */
1102 if (!protect_list)
1103 begin_protect_partials ();
1104
1105 /* Add this entry to the front of the list. */
1106 TREE_VALUE (protect_list)
1107 = tree_cons (NULL_TREE, handler, TREE_VALUE (protect_list));
12670d88
RK
1108 pop_obstacks ();
1109}
1110
100d81d4 1111/* Emit code to get EH context to current function. */
27a36778 1112
154bba13 1113static rtx
01eb7f9a 1114call_get_eh_context ()
27a36778 1115{
bb727b5a
JM
1116 static tree fn;
1117 tree expr;
1118
1119 if (fn == NULL_TREE)
1120 {
1121 tree fntype;
154bba13 1122 fn = get_identifier ("__get_eh_context");
bb727b5a
JM
1123 push_obstacks_nochange ();
1124 end_temporary_allocation ();
1125 fntype = build_pointer_type (build_pointer_type
1126 (build_pointer_type (void_type_node)));
1127 fntype = build_function_type (fntype, NULL_TREE);
1128 fn = build_decl (FUNCTION_DECL, fn, fntype);
1129 DECL_EXTERNAL (fn) = 1;
1130 TREE_PUBLIC (fn) = 1;
1131 DECL_ARTIFICIAL (fn) = 1;
1132 TREE_READONLY (fn) = 1;
1133 make_decl_rtl (fn, NULL_PTR, 1);
1134 assemble_external (fn);
1135 pop_obstacks ();
638e6ebc
BS
1136
1137 ggc_add_tree_root (&fn, 1);
bb727b5a
JM
1138 }
1139
1140 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1141 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1142 expr, NULL_TREE, NULL_TREE);
1143 TREE_SIDE_EFFECTS (expr) = 1;
bb727b5a 1144
100d81d4 1145 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
154bba13
TT
1146}
1147
1148/* Get a reference to the EH context.
1149 We will only generate a register for the current function EH context here,
1150 and emit a USE insn to mark that this is a EH context register.
1151
1152 Later, emit_eh_context will emit needed call to __get_eh_context
1153 in libgcc2, and copy the value to the register we have generated. */
1154
1155rtx
01eb7f9a 1156get_eh_context ()
154bba13
TT
1157{
1158 if (current_function_ehc == 0)
1159 {
1160 rtx insn;
1161
1162 current_function_ehc = gen_reg_rtx (Pmode);
1163
38a448ca
RH
1164 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1165 current_function_ehc);
154bba13
TT
1166 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1167
1168 REG_NOTES (insn)
38a448ca
RH
1169 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1170 REG_NOTES (insn));
154bba13
TT
1171 }
1172 return current_function_ehc;
1173}
1174
154bba13
TT
1175/* Get a reference to the dynamic handler chain. It points to the
1176 pointer to the next element in the dynamic handler chain. It ends
1177 when there are no more elements in the dynamic handler chain, when
1178 the value is &top_elt from libgcc2.c. Immediately after the
1179 pointer, is an area suitable for setjmp/longjmp when
1180 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1181 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1182 isn't defined. */
1183
1184rtx
1185get_dynamic_handler_chain ()
1186{
1187 rtx ehc, dhc, result;
1188
01eb7f9a 1189 ehc = get_eh_context ();
3301dc51
AM
1190
1191 /* This is the offset of dynamic_handler_chain in the eh_context struct
1192 declared in eh-common.h. If its location is change, change this offset */
5816cb14 1193 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
154bba13
TT
1194
1195 result = copy_to_reg (dhc);
1196
1197 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1198 return gen_rtx_MEM (Pmode, result);
27a36778
MS
1199}
1200
1201/* Get a reference to the dynamic cleanup chain. It points to the
1202 pointer to the next element in the dynamic cleanup chain.
1203 Immediately after the pointer, are two Pmode variables, one for a
1204 pointer to a function that performs the cleanup action, and the
1205 second, the argument to pass to that function. */
1206
1207rtx
1208get_dynamic_cleanup_chain ()
1209{
154bba13 1210 rtx dhc, dcc, result;
27a36778
MS
1211
1212 dhc = get_dynamic_handler_chain ();
5816cb14 1213 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
27a36778 1214
154bba13 1215 result = copy_to_reg (dcc);
27a36778
MS
1216
1217 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1218 return gen_rtx_MEM (Pmode, result);
154bba13
TT
1219}
1220
767f5b14 1221#ifdef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1222/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1223 LABEL is an rtx of code CODE_LABEL, in this function. */
1224
561592c5 1225static void
27a36778
MS
1226jumpif_rtx (x, label)
1227 rtx x;
1228 rtx label;
1229{
1230 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1231}
767f5b14 1232#endif
27a36778
MS
1233
1234/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1235 We just need to create an element for the cleanup list, and push it
1236 into the chain.
1237
1238 A dynamic cleanup is a cleanup action implied by the presence of an
1239 element on the EH runtime dynamic cleanup stack that is to be
1240 performed when an exception is thrown. The cleanup action is
1241 performed by __sjthrow when an exception is thrown. Only certain
1242 actions can be optimized into dynamic cleanup actions. For the
1243 restrictions on what actions can be performed using this routine,
1244 see expand_eh_region_start_tree. */
1245
1246static void
1247start_dynamic_cleanup (func, arg)
1248 tree func;
1249 tree arg;
1250{
381127e8 1251 rtx dcc;
27a36778
MS
1252 rtx new_func, new_arg;
1253 rtx x, buf;
1254 int size;
1255
1256 /* We allocate enough room for a pointer to the function, and
1257 one argument. */
1258 size = 2;
1259
1260 /* XXX, FIXME: The stack space allocated this way is too long lived,
1261 but there is no allocation routine that allocates at the level of
1262 the last binding contour. */
1263 buf = assign_stack_local (BLKmode,
1264 GET_MODE_SIZE (Pmode)*(size+1),
1265 0);
1266
1267 buf = change_address (buf, Pmode, NULL_RTX);
1268
1269 /* Store dcc into the first word of the newly allocated buffer. */
1270
1271 dcc = get_dynamic_cleanup_chain ();
1272 emit_move_insn (buf, dcc);
1273
1274 /* Store func and arg into the cleanup list element. */
1275
38a448ca
RH
1276 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1277 GET_MODE_SIZE (Pmode)));
1278 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1279 GET_MODE_SIZE (Pmode)*2));
27a36778
MS
1280 x = expand_expr (func, new_func, Pmode, 0);
1281 if (x != new_func)
1282 emit_move_insn (new_func, x);
1283
1284 x = expand_expr (arg, new_arg, Pmode, 0);
1285 if (x != new_arg)
1286 emit_move_insn (new_arg, x);
1287
1288 /* Update the cleanup chain. */
1289
f654e526
RH
1290 x = force_operand (XEXP (buf, 0), dcc);
1291 if (x != dcc)
1292 emit_move_insn (dcc, x);
27a36778
MS
1293}
1294
1295/* Emit RTL to start a dynamic handler on the EH runtime dynamic
1296 handler stack. This should only be used by expand_eh_region_start
1297 or expand_eh_region_start_tree. */
1298
1299static void
1300start_dynamic_handler ()
1301{
1302 rtx dhc, dcc;
6e6a07d2 1303 rtx x, arg, buf;
27a36778
MS
1304 int size;
1305
6e6a07d2 1306#ifndef DONT_USE_BUILTIN_SETJMP
27a36778 1307 /* The number of Pmode words for the setjmp buffer, when using the
007598f9
JW
1308 builtin setjmp/longjmp, see expand_builtin, case BUILT_IN_LONGJMP. */
1309 /* We use 2 words here before calling expand_builtin_setjmp.
1310 expand_builtin_setjmp uses 2 words, and then calls emit_stack_save.
1311 emit_stack_save needs space of size STACK_SAVEAREA_MODE (SAVE_NONLOCAL).
1312 Subtract one, because the assign_stack_local call below adds 1. */
1313 size = (2 + 2 + (GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
1314 / GET_MODE_SIZE (Pmode))
1315 - 1);
27a36778
MS
1316#else
1317#ifdef JMP_BUF_SIZE
1318 size = JMP_BUF_SIZE;
1319#else
1320 /* Should be large enough for most systems, if it is not,
1321 JMP_BUF_SIZE should be defined with the proper value. It will
1322 also tend to be larger than necessary for most systems, a more
1323 optimal port will define JMP_BUF_SIZE. */
1324 size = FIRST_PSEUDO_REGISTER+2;
1325#endif
1326#endif
1327 /* XXX, FIXME: The stack space allocated this way is too long lived,
1328 but there is no allocation routine that allocates at the level of
1329 the last binding contour. */
1330 arg = assign_stack_local (BLKmode,
1331 GET_MODE_SIZE (Pmode)*(size+1),
1332 0);
1333
1334 arg = change_address (arg, Pmode, NULL_RTX);
1335
1336 /* Store dhc into the first word of the newly allocated buffer. */
1337
1338 dhc = get_dynamic_handler_chain ();
38a448ca
RH
1339 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1340 GET_MODE_SIZE (Pmode)));
27a36778
MS
1341 emit_move_insn (arg, dhc);
1342
1343 /* Zero out the start of the cleanup chain. */
1344 emit_move_insn (dcc, const0_rtx);
1345
1346 /* The jmpbuf starts two words into the area allocated. */
6e6a07d2 1347 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
27a36778 1348
6e6a07d2 1349#ifdef DONT_USE_BUILTIN_SETJMP
27a36778 1350 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
6e6a07d2 1351 buf, Pmode);
6fd1c67b
RH
1352 /* If we come back here for a catch, transfer control to the handler. */
1353 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
6e6a07d2 1354#else
6fd1c67b
RH
1355 {
1356 /* A label to continue execution for the no exception case. */
1357 rtx noex = gen_label_rtx();
1358 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1359 ehstack.top->entry->exception_handler_label);
1360 emit_label (noex);
1361 }
6e6a07d2 1362#endif
27a36778 1363
27a36778
MS
1364 /* We are committed to this, so update the handler chain. */
1365
b68e8bdd 1366 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
27a36778
MS
1367}
1368
1369/* Start an exception handling region for the given cleanup action.
12670d88 1370 All instructions emitted after this point are considered to be part
27a36778
MS
1371 of the region until expand_eh_region_end is invoked. CLEANUP is
1372 the cleanup action to perform. The return value is true if the
1373 exception region was optimized away. If that case,
1374 expand_eh_region_end does not need to be called for this cleanup,
1375 nor should it be.
1376
1377 This routine notices one particular common case in C++ code
1378 generation, and optimizes it so as to not need the exception
1379 region. It works by creating a dynamic cleanup action, instead of
38e01259 1380 a using an exception region. */
27a36778
MS
1381
1382int
4c581243
MS
1383expand_eh_region_start_tree (decl, cleanup)
1384 tree decl;
27a36778
MS
1385 tree cleanup;
1386{
27a36778
MS
1387 /* This is the old code. */
1388 if (! doing_eh (0))
1389 return 0;
1390
1391 /* The optimization only applies to actions protected with
1392 terminate, and only applies if we are using the setjmp/longjmp
1393 codegen method. */
1394 if (exceptions_via_longjmp
1395 && protect_cleanup_actions_with_terminate)
1396 {
1397 tree func, arg;
1398 tree args;
1399
1400 /* Ignore any UNSAVE_EXPR. */
1401 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1402 cleanup = TREE_OPERAND (cleanup, 0);
1403
1404 /* Further, it only applies if the action is a call, if there
1405 are 2 arguments, and if the second argument is 2. */
1406
1407 if (TREE_CODE (cleanup) == CALL_EXPR
1408 && (args = TREE_OPERAND (cleanup, 1))
1409 && (func = TREE_OPERAND (cleanup, 0))
1410 && (arg = TREE_VALUE (args))
1411 && (args = TREE_CHAIN (args))
1412
1413 /* is the second argument 2? */
1414 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1415 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1416 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1417
1418 /* Make sure there are no other arguments. */
1419 && TREE_CHAIN (args) == NULL_TREE)
1420 {
1421 /* Arrange for returns and gotos to pop the entry we make on the
1422 dynamic cleanup stack. */
4c581243 1423 expand_dcc_cleanup (decl);
27a36778
MS
1424 start_dynamic_cleanup (func, arg);
1425 return 1;
1426 }
1427 }
1428
4c581243 1429 expand_eh_region_start_for_decl (decl);
9762d48d 1430 ehstack.top->entry->finalization = cleanup;
27a36778
MS
1431
1432 return 0;
1433}
1434
4c581243
MS
1435/* Just like expand_eh_region_start, except if a cleanup action is
1436 entered on the cleanup chain, the TREE_PURPOSE of the element put
1437 on the chain is DECL. DECL should be the associated VAR_DECL, if
1438 any, otherwise it should be NULL_TREE. */
4956d07c
MS
1439
1440void
4c581243
MS
1441expand_eh_region_start_for_decl (decl)
1442 tree decl;
4956d07c
MS
1443{
1444 rtx note;
1445
1446 /* This is the old code. */
1447 if (! doing_eh (0))
1448 return;
1449
e7b9b18e
JM
1450 /* We need a new block to record the start and end of the
1451 dynamic handler chain. We also want to prevent jumping into
1452 a try block. */
8e91754e 1453 expand_start_bindings (2);
27a36778 1454
e7b9b18e
JM
1455 /* But we don't need or want a new temporary level. */
1456 pop_temp_slots ();
27a36778 1457
e7b9b18e
JM
1458 /* Mark this block as created by expand_eh_region_start. This
1459 is so that we can pop the block with expand_end_bindings
1460 automatically. */
1461 mark_block_as_eh_region ();
27a36778 1462
e7b9b18e
JM
1463 if (exceptions_via_longjmp)
1464 {
27a36778
MS
1465 /* Arrange for returns and gotos to pop the entry we make on the
1466 dynamic handler stack. */
4c581243 1467 expand_dhc_cleanup (decl);
27a36778 1468 }
4956d07c 1469
478b0752 1470 push_eh_entry (&ehstack);
9ad8a5f0 1471 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
bf43101e 1472 NOTE_EH_HANDLER (note)
9ad8a5f0 1473 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
27a36778
MS
1474 if (exceptions_via_longjmp)
1475 start_dynamic_handler ();
4956d07c
MS
1476}
1477
4c581243
MS
1478/* Start an exception handling region. All instructions emitted after
1479 this point are considered to be part of the region until
1480 expand_eh_region_end is invoked. */
1481
1482void
1483expand_eh_region_start ()
1484{
1485 expand_eh_region_start_for_decl (NULL_TREE);
1486}
1487
27a36778
MS
1488/* End an exception handling region. The information about the region
1489 is found on the top of ehstack.
12670d88
RK
1490
1491 HANDLER is either the cleanup for the exception region, or if we're
1492 marking the end of a try block, HANDLER is integer_zero_node.
1493
27a36778 1494 HANDLER will be transformed to rtl when expand_leftover_cleanups
abeeec2a 1495 is invoked. */
4956d07c
MS
1496
1497void
1498expand_eh_region_end (handler)
1499 tree handler;
1500{
4956d07c 1501 struct eh_entry *entry;
1e4ceb6f 1502 struct eh_node *node;
9ad8a5f0 1503 rtx note;
e6cfb550 1504 int ret, r;
4956d07c
MS
1505
1506 if (! doing_eh (0))
1507 return;
1508
1509 entry = pop_eh_entry (&ehstack);
1510
9ad8a5f0 1511 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
bf43101e 1512 ret = NOTE_EH_HANDLER (note)
9ad8a5f0 1513 = CODE_LABEL_NUMBER (entry->exception_handler_label);
e6cfb550 1514 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
e701eb4d
JM
1515 /* We share outer_context between regions; only emit it once. */
1516 && INSN_UID (entry->outer_context) == 0)
27a36778 1517 {
478b0752 1518 rtx label;
4956d07c 1519
478b0752
MS
1520 label = gen_label_rtx ();
1521 emit_jump (label);
1522
1523 /* Emit a label marking the end of this exception region that
1524 is used for rethrowing into the outer context. */
1525 emit_label (entry->outer_context);
e701eb4d 1526 expand_internal_throw ();
4956d07c 1527
478b0752 1528 emit_label (label);
27a36778 1529 }
4956d07c
MS
1530
1531 entry->finalization = handler;
1532
9a0d1e1b 1533 /* create region entry in final exception table */
bf43101e 1534 r = new_eh_region_entry (NOTE_EH_HANDLER (note), entry->rethrow_label);
9a0d1e1b 1535
f54a7f6f 1536 enqueue_eh_entry (ehqueue, entry);
4956d07c 1537
e7b9b18e 1538 /* If we have already started ending the bindings, don't recurse. */
27a36778
MS
1539 if (is_eh_region ())
1540 {
1541 /* Because we don't need or want a new temporary level and
1542 because we didn't create one in expand_eh_region_start,
1543 create a fake one now to avoid removing one in
1544 expand_end_bindings. */
1545 push_temp_slots ();
1546
1547 mark_block_as_not_eh_region ();
1548
27a36778
MS
1549 expand_end_bindings (NULL_TREE, 0, 0);
1550 }
1e4ceb6f
MM
1551
1552 /* Go through the goto handlers in the queue, emitting their
1553 handlers if we now have enough information to do so. */
f54a7f6f 1554 for (node = ehqueue->head; node; node = node->chain)
1e4ceb6f
MM
1555 if (node->entry->goto_entry_p
1556 && node->entry->outer_context == entry->rethrow_label)
1557 emit_cleanup_handler (node->entry);
1558
1559 /* We can't emit handlers for goto entries until their scopes are
1560 complete because we don't know where they need to rethrow to,
1561 yet. */
1562 if (entry->finalization != integer_zero_node
1563 && (!entry->goto_entry_p
1564 || find_func_region_from_symbol (entry->outer_context) != -1))
1565 emit_cleanup_handler (entry);
4956d07c
MS
1566}
1567
9762d48d
JM
1568/* End the EH region for a goto fixup. We only need them in the region-based
1569 EH scheme. */
1570
1571void
1572expand_fixup_region_start ()
1573{
1574 if (! doing_eh (0) || exceptions_via_longjmp)
1575 return;
1576
1577 expand_eh_region_start ();
1e4ceb6f
MM
1578 /* Mark this entry as the entry for a goto. */
1579 ehstack.top->entry->goto_entry_p = 1;
9762d48d
JM
1580}
1581
1582/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1583 expanded; to avoid running it twice if it throws, we look through the
1584 ehqueue for a matching region and rethrow from its outer_context. */
1585
1586void
1587expand_fixup_region_end (cleanup)
1588 tree cleanup;
1589{
9762d48d 1590 struct eh_node *node;
b37f006b 1591 int dont_issue;
9762d48d
JM
1592
1593 if (! doing_eh (0) || exceptions_via_longjmp)
1594 return;
1595
1596 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1597 node = node->chain;
1598 if (node == 0)
f54a7f6f 1599 for (node = ehqueue->head; node && node->entry->finalization != cleanup; )
9762d48d
JM
1600 node = node->chain;
1601 if (node == 0)
1602 abort ();
1603
b37f006b
AM
1604 /* If the outer context label has not been issued yet, we don't want
1605 to issue it as a part of this region, unless this is the
1606 correct region for the outer context. If we did, then the label for
1607 the outer context will be WITHIN the begin/end labels,
1608 and we could get an infinte loop when it tried to rethrow, or just
1609 generally incorrect execution following a throw. */
1610
2598e85a
JL
1611 if (flag_new_exceptions)
1612 dont_issue = 0;
1613 else
1614 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1615 && (ehstack.top->entry != node->entry));
b37f006b 1616
e701eb4d 1617 ehstack.top->entry->outer_context = node->entry->outer_context;
9762d48d 1618
b37f006b
AM
1619 /* Since we are rethrowing to the OUTER region, we know we don't need
1620 a jump around sequence for this region, so we'll pretend the outer
1621 context label has been issued by setting INSN_UID to 1, then clearing
1622 it again afterwards. */
1623
1624 if (dont_issue)
1625 INSN_UID (node->entry->outer_context) = 1;
1626
e701eb4d
JM
1627 /* Just rethrow. size_zero_node is just a NOP. */
1628 expand_eh_region_end (size_zero_node);
b37f006b
AM
1629
1630 if (dont_issue)
1631 INSN_UID (node->entry->outer_context) = 0;
9762d48d
JM
1632}
1633
27a36778
MS
1634/* If we are using the setjmp/longjmp EH codegen method, we emit a
1635 call to __sjthrow.
1636
1637 Otherwise, we emit a call to __throw and note that we threw
1638 something, so we know we need to generate the necessary code for
1639 __throw.
12670d88
RK
1640
1641 Before invoking throw, the __eh_pc variable must have been set up
1642 to contain the PC being thrown from. This address is used by
27a36778 1643 __throw to determine which exception region (if any) is
abeeec2a 1644 responsible for handling the exception. */
4956d07c 1645
27a36778 1646void
4956d07c
MS
1647emit_throw ()
1648{
27a36778
MS
1649 if (exceptions_via_longjmp)
1650 {
1651 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1652 }
1653 else
1654 {
4956d07c 1655#ifdef JUMP_TO_THROW
27a36778 1656 emit_indirect_jump (throw_libfunc);
4956d07c 1657#else
27a36778 1658 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
4956d07c 1659#endif
27a36778 1660 }
4956d07c
MS
1661 emit_barrier ();
1662}
1663
e701eb4d
JM
1664/* Throw the current exception. If appropriate, this is done by jumping
1665 to the next handler. */
4956d07c
MS
1666
1667void
e701eb4d 1668expand_internal_throw ()
4956d07c 1669{
e701eb4d 1670 emit_throw ();
4956d07c
MS
1671}
1672
1673/* Called from expand_exception_blocks and expand_end_catch_block to
27a36778 1674 emit any pending handlers/cleanups queued from expand_eh_region_end. */
4956d07c
MS
1675
1676void
1677expand_leftover_cleanups ()
1678{
1679 struct eh_entry *entry;
1680
f54a7f6f 1681 for (entry = dequeue_eh_entry (ehqueue);
1e4ceb6f 1682 entry;
f54a7f6f 1683 entry = dequeue_eh_entry (ehqueue))
4956d07c 1684 {
76fc91c7 1685 /* A leftover try block. Shouldn't be one here. */
12670d88
RK
1686 if (entry->finalization == integer_zero_node)
1687 abort ();
1688
4956d07c
MS
1689 free (entry);
1690 }
1691}
1692
abeeec2a 1693/* Called at the start of a block of try statements. */
12670d88
RK
1694void
1695expand_start_try_stmts ()
1696{
1697 if (! doing_eh (1))
1698 return;
1699
1700 expand_eh_region_start ();
1701}
1702
9a0d1e1b
AM
1703/* Called to begin a catch clause. The parameter is the object which
1704 will be passed to the runtime type check routine. */
1705void
0d3453df 1706start_catch_handler (rtime)
9a0d1e1b
AM
1707 tree rtime;
1708{
9a9deafc
AM
1709 rtx handler_label;
1710 int insn_region_num;
1711 int eh_region_entry;
1712
1713 if (! doing_eh (1))
1714 return;
1715
1716 handler_label = catchstack.top->entry->exception_handler_label;
1717 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1718 eh_region_entry = find_func_region (insn_region_num);
9a0d1e1b
AM
1719
1720 /* If we've already issued this label, pick a new one */
7ecb5d27 1721 if (catchstack.top->entry->label_used)
9a0d1e1b
AM
1722 handler_label = gen_exception_label ();
1723 else
1724 catchstack.top->entry->label_used = 1;
1725
1726 receive_exception_label (handler_label);
1727
1728 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
bf71cd2e
AM
1729
1730 if (flag_new_exceptions && ! exceptions_via_longjmp)
1731 return;
1732
1733 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1734 issue code to compare 'rtime' to the value in eh_info, via the
1735 matching function in eh_info. If its is false, we branch around
1736 the handler we are about to issue. */
1737
1738 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1739 {
1740 rtx call_rtx, rtime_address;
1741
1742 if (catchstack.top->entry->false_label != NULL_RTX)
987009bf
ZW
1743 {
1744 error ("Never issued previous false_label");
1745 abort ();
1746 }
bf71cd2e
AM
1747 catchstack.top->entry->false_label = gen_exception_label ();
1748
1749 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
30bf7f73
DT
1750#ifdef POINTERS_EXTEND_UNSIGNED
1751 rtime_address = convert_memory_address (Pmode, rtime_address);
1752#endif
bf71cd2e
AM
1753 rtime_address = force_reg (Pmode, rtime_address);
1754
1755 /* Now issue the call, and branch around handler if needed */
43566944
AM
1756 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1757 0, SImode, 1, rtime_address, Pmode);
bf71cd2e
AM
1758
1759 /* Did the function return true? */
c5d5d461
JL
1760 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1761 GET_MODE (call_rtx), 0, 0,
1762 catchstack.top->entry->false_label);
bf71cd2e
AM
1763 }
1764}
1765
1766/* Called to end a catch clause. If we aren't using the new exception
1767 model tabel mechanism, we need to issue the branch-around label
1768 for the end of the catch block. */
1769
1770void
1771end_catch_handler ()
1772{
e6cfb550 1773 if (! doing_eh (1))
bf71cd2e 1774 return;
e6cfb550
AM
1775
1776 if (flag_new_exceptions && ! exceptions_via_longjmp)
1777 {
1778 emit_barrier ();
1779 return;
1780 }
bf71cd2e
AM
1781
1782 /* A NULL label implies the catch clause was a catch all or cleanup */
1783 if (catchstack.top->entry->false_label == NULL_RTX)
1784 return;
1785
1786 emit_label (catchstack.top->entry->false_label);
1787 catchstack.top->entry->false_label = NULL_RTX;
9a0d1e1b
AM
1788}
1789
f54a7f6f
MM
1790/* Save away the current ehqueue. */
1791
1792void
1793push_ehqueue ()
1794{
1795 struct eh_queue *q;
dd1bd863 1796 q = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
f54a7f6f
MM
1797 q->next = ehqueue;
1798 ehqueue = q;
1799}
1800
1801/* Restore a previously pushed ehqueue. */
1802
1803void
1804pop_ehqueue ()
1805{
1806 struct eh_queue *q;
1807 expand_leftover_cleanups ();
1808 q = ehqueue->next;
1809 free (ehqueue);
1810 ehqueue = q;
1811}
1812
1e4ceb6f
MM
1813/* Emit the handler specified by ENTRY. */
1814
1815static void
1816emit_cleanup_handler (entry)
1817 struct eh_entry *entry;
1818{
1819 rtx prev;
1820 rtx handler_insns;
76fc91c7
MM
1821
1822 /* Since the cleanup could itself contain try-catch blocks, we
1823 squirrel away the current queue and replace it when we are done
1824 with this function. */
f54a7f6f 1825 push_ehqueue ();
1e4ceb6f
MM
1826
1827 /* Put these handler instructions in a sequence. */
1828 do_pending_stack_adjust ();
1829 start_sequence ();
1830
1831 /* Emit the label for the cleanup handler for this region, and
1832 expand the code for the handler.
1833
1834 Note that a catch region is handled as a side-effect here; for a
1835 try block, entry->finalization will contain integer_zero_node, so
1836 no code will be generated in the expand_expr call below. But, the
1837 label for the handler will still be emitted, so any code emitted
1838 after this point will end up being the handler. */
1839
1840 receive_exception_label (entry->exception_handler_label);
1841
1842 /* register a handler for this cleanup region */
1843 add_new_handler (find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1844 get_new_handler (entry->exception_handler_label, NULL));
1845
1846 /* And now generate the insns for the cleanup handler. */
1847 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1848
1849 prev = get_last_insn ();
1850 if (prev == NULL || GET_CODE (prev) != BARRIER)
1851 /* Code to throw out to outer context when we fall off end of the
1852 handler. We can't do this here for catch blocks, so it's done
1853 in expand_end_all_catch instead. */
1854 expand_rethrow (entry->outer_context);
1855
1856 /* Finish this sequence. */
1857 do_pending_stack_adjust ();
1858 handler_insns = get_insns ();
1859 end_sequence ();
1860
1861 /* And add it to the CATCH_CLAUSES. */
1862 push_to_sequence (catch_clauses);
1863 emit_insns (handler_insns);
1864 catch_clauses = get_insns ();
1865 end_sequence ();
76fc91c7
MM
1866
1867 /* Now we've left the handler. */
f54a7f6f 1868 pop_ehqueue ();
1e4ceb6f
MM
1869}
1870
12670d88
RK
1871/* Generate RTL for the start of a group of catch clauses.
1872
1873 It is responsible for starting a new instruction sequence for the
1874 instructions in the catch block, and expanding the handlers for the
1875 internally-generated exception regions nested within the try block
abeeec2a 1876 corresponding to this catch block. */
4956d07c
MS
1877
1878void
1879expand_start_all_catch ()
1880{
1881 struct eh_entry *entry;
1882 tree label;
e701eb4d 1883 rtx outer_context;
4956d07c
MS
1884
1885 if (! doing_eh (1))
1886 return;
1887
e701eb4d 1888 outer_context = ehstack.top->entry->outer_context;
1418bb67 1889
abeeec2a 1890 /* End the try block. */
12670d88
RK
1891 expand_eh_region_end (integer_zero_node);
1892
4956d07c
MS
1893 emit_line_note (input_filename, lineno);
1894 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1895
12670d88 1896 /* The label for the exception handling block that we will save.
956d6950 1897 This is Lresume in the documentation. */
4956d07c
MS
1898 expand_label (label);
1899
12670d88 1900 /* Push the label that points to where normal flow is resumed onto
abeeec2a 1901 the top of the label stack. */
4956d07c
MS
1902 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1903
1904 /* Start a new sequence for all the catch blocks. We will add this
12670d88 1905 to the global sequence catch_clauses when we have completed all
4956d07c
MS
1906 the handlers in this handler-seq. */
1907 start_sequence ();
1908
76fc91c7
MM
1909 /* Throw away entries in the queue that we won't need anymore. We
1910 need entries for regions that have ended but to which there might
1911 still be gotos pending. */
f54a7f6f 1912 for (entry = dequeue_eh_entry (ehqueue);
1e4ceb6f 1913 entry->finalization != integer_zero_node;
f54a7f6f 1914 entry = dequeue_eh_entry (ehqueue))
1e4ceb6f 1915 free (entry);
e701eb4d 1916
9a0d1e1b
AM
1917 /* At this point, all the cleanups are done, and the ehqueue now has
1918 the current exception region at its head. We dequeue it, and put it
1919 on the catch stack. */
1e4ceb6f 1920 push_entry (&catchstack, entry);
9a0d1e1b 1921
e701eb4d
JM
1922 /* If we are not doing setjmp/longjmp EH, because we are reordered
1923 out of line, we arrange to rethrow in the outer context. We need to
1924 do this because we are not physically within the region, if any, that
1925 logically contains this catch block. */
1926 if (! exceptions_via_longjmp)
1927 {
1928 expand_eh_region_start ();
1929 ehstack.top->entry->outer_context = outer_context;
1930 }
5816cb14 1931
4956d07c
MS
1932}
1933
12670d88
RK
1934/* Finish up the catch block. At this point all the insns for the
1935 catch clauses have already been generated, so we only have to add
1936 them to the catch_clauses list. We also want to make sure that if
1937 we fall off the end of the catch clauses that we rethrow to the
abeeec2a 1938 outer EH region. */
4956d07c
MS
1939
1940void
1941expand_end_all_catch ()
1942{
e6cfb550 1943 rtx new_catch_clause;
0d3453df 1944 struct eh_entry *entry;
4956d07c
MS
1945
1946 if (! doing_eh (1))
1947 return;
1948
0d3453df
AM
1949 /* Dequeue the current catch clause region. */
1950 entry = pop_eh_entry (&catchstack);
1951 free (entry);
1952
e701eb4d 1953 if (! exceptions_via_longjmp)
5dfa7520 1954 {
e6cfb550 1955 rtx outer_context = ehstack.top->entry->outer_context;
5dfa7520
JM
1956
1957 /* Finish the rethrow region. size_zero_node is just a NOP. */
1958 expand_eh_region_end (size_zero_node);
e6cfb550
AM
1959 /* New exceptions handling models will never have a fall through
1960 of a catch clause */
1961 if (!flag_new_exceptions)
1962 expand_rethrow (outer_context);
5dfa7520 1963 }
e6cfb550
AM
1964 else
1965 expand_rethrow (NULL_RTX);
5dfa7520 1966
e701eb4d
JM
1967 /* Code to throw out to outer context, if we fall off end of catch
1968 handlers. This is rethrow (Lresume, same id, same obj) in the
1969 documentation. We use Lresume because we know that it will throw
1970 to the correct context.
12670d88 1971
e701eb4d
JM
1972 In other words, if the catch handler doesn't exit or return, we
1973 do a "throw" (using the address of Lresume as the point being
1974 thrown from) so that the outer EH region can then try to process
1975 the exception. */
4956d07c
MS
1976
1977 /* Now we have the complete catch sequence. */
1978 new_catch_clause = get_insns ();
1979 end_sequence ();
1980
1981 /* This level of catch blocks is done, so set up the successful
1982 catch jump label for the next layer of catch blocks. */
1983 pop_label_entry (&caught_return_label_stack);
956d6950 1984 pop_label_entry (&outer_context_label_stack);
4956d07c
MS
1985
1986 /* Add the new sequence of catches to the main one for this function. */
1987 push_to_sequence (catch_clauses);
1988 emit_insns (new_catch_clause);
1989 catch_clauses = get_insns ();
1990 end_sequence ();
1991
1992 /* Here we fall through into the continuation code. */
1993}
1994
e701eb4d
JM
1995/* Rethrow from the outer context LABEL. */
1996
1997static void
1998expand_rethrow (label)
1999 rtx label;
2000{
2001 if (exceptions_via_longjmp)
2002 emit_throw ();
2003 else
e6cfb550
AM
2004 if (flag_new_exceptions)
2005 {
e2bef702 2006 rtx insn;
1ef1bf06
AM
2007 int region;
2008 if (label == NULL_RTX)
2009 label = last_rethrow_symbol;
2010 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
2011 region = find_func_region (eh_region_from_symbol (label));
1e4ceb6f
MM
2012 /* If the region is -1, it doesn't exist yet. We should be
2013 trying to rethrow there yet. */
2014 if (region == -1)
2015 abort ();
1ef1bf06 2016 function_eh_regions[region].rethrow_ref = 1;
e881bb1b
RH
2017
2018 /* Search backwards for the actual call insn. */
1ef1bf06 2019 insn = get_last_insn ();
e881bb1b
RH
2020 while (GET_CODE (insn) != CALL_INSN)
2021 insn = PREV_INSN (insn);
2022 delete_insns_since (insn);
1ef1bf06
AM
2023
2024 /* Mark the label/symbol on the call. */
2025 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
e881bb1b 2026 REG_NOTES (insn));
1ef1bf06 2027 emit_barrier ();
e6cfb550
AM
2028 }
2029 else
2030 emit_jump (label);
e701eb4d
JM
2031}
2032
76fc91c7
MM
2033/* Begin a region that will contain entries created with
2034 add_partial_entry. */
2035
2036void
2037begin_protect_partials ()
2038{
2039 /* Put the entry on the function obstack. */
2040 push_obstacks_nochange ();
2041 resume_temporary_allocation ();
2042
2043 /* Push room for a new list. */
2044 protect_list = tree_cons (NULL_TREE, NULL_TREE, protect_list);
2045
2046 /* We're done with the function obstack now. */
2047 pop_obstacks ();
2048}
2049
12670d88 2050/* End all the pending exception regions on protect_list. The handlers
27a36778 2051 will be emitted when expand_leftover_cleanups is invoked. */
4956d07c
MS
2052
2053void
2054end_protect_partials ()
2055{
76fc91c7
MM
2056 tree t;
2057
2058 /* For backwards compatibility, we allow callers to omit the call to
2059 begin_protect_partials for the outermost region. So,
2060 PROTECT_LIST may be NULL. */
2061 if (!protect_list)
2062 return;
2063
2064 /* End all the exception regions. */
2065 for (t = TREE_VALUE (protect_list); t; t = TREE_CHAIN (t))
2066 expand_eh_region_end (TREE_VALUE (t));
2067
2068 /* Pop the topmost entry. */
2069 protect_list = TREE_CHAIN (protect_list);
2070
4956d07c 2071}
27a36778
MS
2072
2073/* Arrange for __terminate to be called if there is an unhandled throw
2074 from within E. */
2075
2076tree
2077protect_with_terminate (e)
2078 tree e;
2079{
2080 /* We only need to do this when using setjmp/longjmp EH and the
2081 language requires it, as otherwise we protect all of the handlers
2082 at once, if we need to. */
2083 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2084 {
2085 tree handler, result;
2086
2087 /* All cleanups must be on the function_obstack. */
2088 push_obstacks_nochange ();
2089 resume_temporary_allocation ();
2090
2091 handler = make_node (RTL_EXPR);
2092 TREE_TYPE (handler) = void_type_node;
2093 RTL_EXPR_RTL (handler) = const0_rtx;
2094 TREE_SIDE_EFFECTS (handler) = 1;
2095 start_sequence_for_rtl_expr (handler);
2096
2097 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2098 emit_barrier ();
2099
2100 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2101 end_sequence ();
2102
2103 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2104 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2105 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2106 TREE_READONLY (result) = TREE_READONLY (e);
2107
2108 pop_obstacks ();
2109
2110 e = result;
2111 }
2112
2113 return e;
2114}
4956d07c
MS
2115\f
2116/* The exception table that we build that is used for looking up and
12670d88
RK
2117 dispatching exceptions, the current number of entries, and its
2118 maximum size before we have to extend it.
2119
2120 The number in eh_table is the code label number of the exception
27a36778
MS
2121 handler for the region. This is added by add_eh_table_entry and
2122 used by output_exception_table_entry. */
12670d88 2123
9a0d1e1b
AM
2124static int *eh_table = NULL;
2125static int eh_table_size = 0;
2126static int eh_table_max_size = 0;
4956d07c
MS
2127
2128/* Note the need for an exception table entry for region N. If we
12670d88
RK
2129 don't need to output an explicit exception table, avoid all of the
2130 extra work.
2131
2132 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
9a0d1e1b 2133 (Or NOTE_INSN_EH_REGION_END sometimes)
bf43101e 2134 N is the NOTE_EH_HANDLER of the note, which comes from the code
abeeec2a 2135 label number of the exception handler for the region. */
4956d07c
MS
2136
2137void
2138add_eh_table_entry (n)
2139 int n;
2140{
2141#ifndef OMIT_EH_TABLE
2142 if (eh_table_size >= eh_table_max_size)
2143 {
2144 if (eh_table)
2145 {
2146 eh_table_max_size += eh_table_max_size>>1;
2147
2148 if (eh_table_max_size < 0)
2149 abort ();
2150
ca55abae
JM
2151 eh_table = (int *) xrealloc (eh_table,
2152 eh_table_max_size * sizeof (int));
4956d07c
MS
2153 }
2154 else
2155 {
2156 eh_table_max_size = 252;
2157 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2158 }
2159 }
2160 eh_table[eh_table_size++] = n;
2161#endif
2162}
2163
12670d88
RK
2164/* Return a non-zero value if we need to output an exception table.
2165
2166 On some platforms, we don't have to output a table explicitly.
2167 This routine doesn't mean we don't have one. */
4956d07c
MS
2168
2169int
2170exception_table_p ()
2171{
2172 if (eh_table)
2173 return 1;
2174
2175 return 0;
2176}
2177
38e01259 2178/* Output the entry of the exception table corresponding to the
12670d88
RK
2179 exception region numbered N to file FILE.
2180
2181 N is the code label number corresponding to the handler of the
abeeec2a 2182 region. */
4956d07c
MS
2183
2184static void
2185output_exception_table_entry (file, n)
2186 FILE *file;
2187 int n;
2188{
2189 char buf[256];
2190 rtx sym;
e6cfb550
AM
2191 struct handler_info *handler = get_first_handler (n);
2192 int index = find_func_region (n);
2193 rtx rethrow;
2194
2195 /* form and emit the rethrow label, if needed */
2196 rethrow = function_eh_regions[index].rethrow_label;
2197 if (rethrow != NULL_RTX && !flag_new_exceptions)
2198 rethrow = NULL_RTX;
2199 if (rethrow != NULL_RTX && handler == NULL)
1ef1bf06 2200 if (! function_eh_regions[index].rethrow_ref)
e6cfb550 2201 rethrow = NULL_RTX;
9a0d1e1b 2202
4956d07c 2203
e6cfb550 2204 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
9a0d1e1b 2205 {
e6cfb550
AM
2206 /* rethrow label should indicate the LAST entry for a region */
2207 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2208 {
2209 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2210 assemble_label(buf);
2211 rethrow = NULL_RTX;
2212 }
2213
9a0d1e1b
AM
2214 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2215 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2216 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 2217
9a0d1e1b
AM
2218 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2219 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2220 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2221
e6cfb550
AM
2222 if (handler == NULL)
2223 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2224 else
0177de87
AM
2225 {
2226 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2227 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2228 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2229 }
4956d07c 2230
a1622f83
AM
2231 if (flag_new_exceptions)
2232 {
e6cfb550 2233 if (handler == NULL || handler->type_info == NULL)
a1622f83
AM
2234 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2235 else
9c606f69
AM
2236 if (handler->type_info == CATCH_ALL_TYPE)
2237 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2238 POINTER_SIZE / BITS_PER_UNIT, 1);
2239 else
2240 output_constant ((tree)(handler->type_info),
9a0d1e1b 2241 POINTER_SIZE / BITS_PER_UNIT);
a1622f83 2242 }
9a0d1e1b 2243 putc ('\n', file); /* blank line */
bf71cd2e 2244 /* We only output the first label under the old scheme */
e6cfb550 2245 if (! flag_new_exceptions || handler == NULL)
bf71cd2e 2246 break;
9a0d1e1b 2247 }
4956d07c
MS
2248}
2249
abeeec2a 2250/* Output the exception table if we have and need one. */
4956d07c 2251
9a0d1e1b
AM
2252static short language_code = 0;
2253static short version_code = 0;
2254
2255/* This routine will set the language code for exceptions. */
804a4e13
KG
2256void
2257set_exception_lang_code (code)
2258 int code;
9a0d1e1b
AM
2259{
2260 language_code = code;
2261}
2262
2263/* This routine will set the language version code for exceptions. */
804a4e13
KG
2264void
2265set_exception_version_code (code)
2ec10ea9 2266 int code;
9a0d1e1b
AM
2267{
2268 version_code = code;
2269}
2270
9a0d1e1b 2271
4956d07c
MS
2272void
2273output_exception_table ()
2274{
2275 int i;
e6cfb550 2276 char buf[256];
4956d07c
MS
2277 extern FILE *asm_out_file;
2278
ca55abae 2279 if (! doing_eh (0) || ! eh_table)
4956d07c
MS
2280 return;
2281
2282 exception_section ();
2283
2284 /* Beginning marker for table. */
2285 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2286 assemble_label ("__EXCEPTION_TABLE__");
2287
a1622f83
AM
2288 if (flag_new_exceptions)
2289 {
2290 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2291 POINTER_SIZE / BITS_PER_UNIT, 1);
2292 assemble_integer (GEN_INT (language_code), 2 , 1);
2293 assemble_integer (GEN_INT (version_code), 2 , 1);
2294
2295 /* Add enough padding to make sure table aligns on a pointer boundry. */
2296 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2297 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2298 ;
2299 if (i != 0)
2300 assemble_integer (const0_rtx, i , 1);
e6cfb550
AM
2301
2302 /* Generate the label for offset calculations on rethrows */
2303 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2304 assemble_label(buf);
a1622f83 2305 }
9a0d1e1b 2306
4956d07c
MS
2307 for (i = 0; i < eh_table_size; ++i)
2308 output_exception_table_entry (asm_out_file, eh_table[i]);
2309
2310 free (eh_table);
9a0d1e1b 2311 clear_function_eh_region ();
4956d07c
MS
2312
2313 /* Ending marker for table. */
e6cfb550
AM
2314 /* Generate the label for end of table. */
2315 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2316 assemble_label(buf);
4956d07c 2317 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
a1622f83 2318
9a0d1e1b
AM
2319 /* for binary compatability, the old __throw checked the second
2320 position for a -1, so we should output at least 2 -1's */
a1622f83
AM
2321 if (! flag_new_exceptions)
2322 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2323
4956d07c
MS
2324 putc ('\n', asm_out_file); /* blank line */
2325}
4956d07c 2326\f
154bba13
TT
2327/* Emit code to get EH context.
2328
2329 We have to scan thru the code to find possible EH context registers.
2330 Inlined functions may use it too, and thus we'll have to be able
2331 to change them too.
2332
2333 This is done only if using exceptions_via_longjmp. */
2334
2335void
2336emit_eh_context ()
2337{
2338 rtx insn;
2339 rtx ehc = 0;
2340
2341 if (! doing_eh (0))
2342 return;
2343
2344 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2345 if (GET_CODE (insn) == INSN
2346 && GET_CODE (PATTERN (insn)) == USE)
2347 {
2348 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2349 if (reg)
2350 {
2351 rtx insns;
2352
100d81d4
JM
2353 start_sequence ();
2354
d9c92f32
JM
2355 /* If this is the first use insn, emit the call here. This
2356 will always be at the top of our function, because if
2357 expand_inline_function notices a REG_EH_CONTEXT note, it
2358 adds a use insn to this function as well. */
154bba13 2359 if (ehc == 0)
01eb7f9a 2360 ehc = call_get_eh_context ();
154bba13 2361
154bba13
TT
2362 emit_move_insn (XEXP (reg, 0), ehc);
2363 insns = get_insns ();
2364 end_sequence ();
2365
2366 emit_insns_before (insns, insn);
0fc1434b
AM
2367
2368 /* At -O0, we must make the context register stay alive so
2369 that the stupid.c register allocator doesn't get confused. */
2370 if (obey_regdecls != 0)
2371 {
2372 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2373 emit_insn_before (insns, get_last_insn ());
2374 }
154bba13
TT
2375 }
2376 }
2377}
2378
12670d88
RK
2379/* Scan the current insns and build a list of handler labels. The
2380 resulting list is placed in the global variable exception_handler_labels.
2381
2382 It is called after the last exception handling region is added to
2383 the current function (when the rtl is almost all built for the
2384 current function) and before the jump optimization pass. */
4956d07c
MS
2385
2386void
2387find_exception_handler_labels ()
2388{
2389 rtx insn;
4956d07c
MS
2390
2391 exception_handler_labels = NULL_RTX;
2392
2393 /* If we aren't doing exception handling, there isn't much to check. */
2394 if (! doing_eh (0))
2395 return;
2396
12670d88
RK
2397 /* For each start of a region, add its label to the list. */
2398
4956d07c
MS
2399 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2400 {
9a0d1e1b 2401 struct handler_info* ptr;
4956d07c
MS
2402 if (GET_CODE (insn) == NOTE
2403 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2404 {
bf43101e 2405 ptr = get_first_handler (NOTE_EH_HANDLER (insn));
9a0d1e1b
AM
2406 for ( ; ptr; ptr = ptr->next)
2407 {
2408 /* make sure label isn't in the list already */
2409 rtx x;
2410 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2411 if (XEXP (x, 0) == ptr->handler_label)
2412 break;
2413 if (! x)
2414 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2415 ptr->handler_label, exception_handler_labels);
2416 }
4956d07c
MS
2417 }
2418 }
9a0d1e1b
AM
2419}
2420
2421/* Return a value of 1 if the parameter label number is an exception handler
2422 label. Return 0 otherwise. */
988cea7d 2423
9a0d1e1b
AM
2424int
2425is_exception_handler_label (lab)
2426 int lab;
2427{
2428 rtx x;
2429 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2430 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2431 return 1;
2432 return 0;
4956d07c
MS
2433}
2434
12670d88
RK
2435/* Perform sanity checking on the exception_handler_labels list.
2436
2437 Can be called after find_exception_handler_labels is called to
2438 build the list of exception handlers for the current function and
2439 before we finish processing the current function. */
4956d07c
MS
2440
2441void
2442check_exception_handler_labels ()
2443{
9a0d1e1b 2444 rtx insn, insn2;
4956d07c
MS
2445
2446 /* If we aren't doing exception handling, there isn't much to check. */
2447 if (! doing_eh (0))
2448 return;
2449
9a0d1e1b
AM
2450 /* Make sure there is no more than 1 copy of a label */
2451 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
4956d07c 2452 {
9a0d1e1b
AM
2453 int count = 0;
2454 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2455 if (XEXP (insn, 0) == XEXP (insn2, 0))
2456 count++;
2457 if (count != 1)
2458 warning ("Counted %d copies of EH region %d in list.\n", count,
2459 CODE_LABEL_NUMBER (insn));
4956d07c
MS
2460 }
2461
4956d07c 2462}
87ff9c8e
RH
2463
2464/* Mark the children of NODE for GC. */
2465
2466static void
2467mark_eh_node (node)
2468 struct eh_node *node;
2469{
2470 while (node)
2471 {
2472 if (node->entry)
2473 {
2474 ggc_mark_rtx (node->entry->outer_context);
2475 ggc_mark_rtx (node->entry->exception_handler_label);
2476 ggc_mark_tree (node->entry->finalization);
21cd906e
MM
2477 ggc_mark_rtx (node->entry->false_label);
2478 ggc_mark_rtx (node->entry->rethrow_label);
87ff9c8e
RH
2479 }
2480 node = node ->chain;
2481 }
2482}
2483
2484/* Mark S for GC. */
2485
2486static void
2487mark_eh_stack (s)
2488 struct eh_stack *s;
2489{
2490 if (s)
2491 mark_eh_node (s->top);
2492}
2493
2494/* Mark Q for GC. */
2495
2496static void
2497mark_eh_queue (q)
2498 struct eh_queue *q;
2499{
f54a7f6f
MM
2500 while (q)
2501 {
2502 mark_eh_node (q->head);
2503 q = q->next;
2504 }
87ff9c8e
RH
2505}
2506
2507/* Mark NODE for GC. A label_node contains a union containing either
2508 a tree or an rtx. This label_node will contain a tree. */
2509
2510static void
2511mark_tree_label_node (node)
2512 struct label_node *node;
2513{
2514 while (node)
2515 {
2516 ggc_mark_tree (node->u.tlabel);
2517 node = node->chain;
2518 }
2519}
2520
2521/* Mark EH for GC. */
2522
2523void
fa51b01b 2524mark_eh_status (eh)
87ff9c8e
RH
2525 struct eh_status *eh;
2526{
fa51b01b
RH
2527 if (eh == 0)
2528 return;
2529
87ff9c8e 2530 mark_eh_stack (&eh->x_ehstack);
afe3d090 2531 mark_eh_stack (&eh->x_catchstack);
f54a7f6f 2532 mark_eh_queue (eh->x_ehqueue);
87ff9c8e
RH
2533 ggc_mark_rtx (eh->x_catch_clauses);
2534
2535 lang_mark_false_label_stack (eh->x_false_label_stack);
2536 mark_tree_label_node (eh->x_caught_return_label_stack);
2537
2538 ggc_mark_tree (eh->x_protect_list);
2539 ggc_mark_rtx (eh->ehc);
afe3d090 2540 ggc_mark_rtx (eh->x_eh_return_stub_label);
87ff9c8e
RH
2541}
2542
21cd906e
MM
2543/* Mark ARG (which is really a struct func_eh_entry**) for GC. */
2544
2545static void
2546mark_func_eh_entry (arg)
2547 void *arg;
2548{
2549 struct func_eh_entry *fee;
2550 struct handler_info *h;
2551 int i;
2552
2553 fee = *((struct func_eh_entry **) arg);
2554
2555 for (i = 0; i < current_func_eh_entry; ++i)
2556 {
2557 ggc_mark_rtx (fee->rethrow_label);
2558 for (h = fee->handlers; h; h = h->next)
2559 {
2560 ggc_mark_rtx (h->handler_label);
2561 if (h->type_info != CATCH_ALL_TYPE)
2562 ggc_mark_tree ((tree) h->type_info);
2563 }
2564
2565 /* Skip to the next entry in the array. */
2566 ++fee;
2567 }
2568}
2569
4956d07c
MS
2570/* This group of functions initializes the exception handling data
2571 structures at the start of the compilation, initializes the data
12670d88 2572 structures at the start of a function, and saves and restores the
4956d07c
MS
2573 exception handling data structures for the start/end of a nested
2574 function. */
2575
2576/* Toplevel initialization for EH things. */
2577
2578void
2579init_eh ()
2580{
e6cfb550
AM
2581 first_rethrow_symbol = create_rethrow_ref (0);
2582 final_rethrow = gen_exception_label ();
2583 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
4956d07c 2584
21cd906e
MM
2585 ggc_add_rtx_root (&exception_handler_labels, 1);
2586 ggc_add_rtx_root (&eh_return_context, 1);
2587 ggc_add_rtx_root (&eh_return_stack_adjust, 1);
2588 ggc_add_rtx_root (&eh_return_handler, 1);
2589 ggc_add_rtx_root (&first_rethrow_symbol, 1);
2590 ggc_add_rtx_root (&final_rethrow, 1);
2591 ggc_add_rtx_root (&last_rethrow_symbol, 1);
2592 ggc_add_root (&function_eh_regions, 1, sizeof (function_eh_regions),
2593 mark_func_eh_entry);
2594}
2595
abeeec2a 2596/* Initialize the per-function EH information. */
4956d07c
MS
2597
2598void
2599init_eh_for_function ()
2600{
01d939e8 2601 cfun->eh = (struct eh_status *) xcalloc (1, sizeof (struct eh_status));
f54a7f6f 2602 ehqueue = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
82d26ad0
MM
2603 eh_return_context = NULL_RTX;
2604 eh_return_stack_adjust = NULL_RTX;
2605 eh_return_handler = NULL_RTX;
4956d07c 2606}
fa51b01b
RH
2607
2608void
2609free_eh_status (f)
2610 struct function *f;
2611{
f54a7f6f 2612 free (f->eh->x_ehqueue);
fa51b01b
RH
2613 free (f->eh);
2614 f->eh = NULL;
2615}
4956d07c
MS
2616\f
2617/* This section is for the exception handling specific optimization
2618 pass. First are the internal routines, and then the main
2619 optimization pass. */
2620
2621/* Determine if the given INSN can throw an exception. */
2622
2623static int
2624can_throw (insn)
2625 rtx insn;
2626{
1ef1bf06
AM
2627 /* Calls can always potentially throw exceptions, unless they have
2628 a REG_EH_REGION note with a value of 0 or less. */
4956d07c 2629 if (GET_CODE (insn) == CALL_INSN)
1ef1bf06
AM
2630 {
2631 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2632 if (!note || XINT (XEXP (note, 0), 0) > 0)
2633 return 1;
2634 }
4956d07c 2635
27a36778
MS
2636 if (asynchronous_exceptions)
2637 {
2638 /* If we wanted asynchronous exceptions, then everything but NOTEs
2639 and CODE_LABELs could throw. */
2640 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2641 return 1;
2642 }
4956d07c
MS
2643
2644 return 0;
2645}
2646
12670d88
RK
2647/* Scan a exception region looking for the matching end and then
2648 remove it if possible. INSN is the start of the region, N is the
2649 region number, and DELETE_OUTER is to note if anything in this
2650 region can throw.
2651
2652 Regions are removed if they cannot possibly catch an exception.
27a36778 2653 This is determined by invoking can_throw on each insn within the
12670d88
RK
2654 region; if can_throw returns true for any of the instructions, the
2655 region can catch an exception, since there is an insn within the
2656 region that is capable of throwing an exception.
2657
2658 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
27a36778 2659 calls abort if it can't find one.
12670d88
RK
2660
2661 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
abeeec2a 2662 correspond to the region number, or if DELETE_OUTER is NULL. */
4956d07c
MS
2663
2664static rtx
2665scan_region (insn, n, delete_outer)
2666 rtx insn;
2667 int n;
2668 int *delete_outer;
2669{
2670 rtx start = insn;
2671
2672 /* Assume we can delete the region. */
2673 int delete = 1;
2674
e6cfb550 2675 /* Can't delete something which is rethrown to. */
1ef1bf06 2676 if (rethrow_used (n))
e6cfb550
AM
2677 delete = 0;
2678
3a88cbd1
JL
2679 if (insn == NULL_RTX
2680 || GET_CODE (insn) != NOTE
2681 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
bf43101e 2682 || NOTE_EH_HANDLER (insn) != n
3a88cbd1
JL
2683 || delete_outer == NULL)
2684 abort ();
12670d88 2685
4956d07c
MS
2686 insn = NEXT_INSN (insn);
2687
2688 /* Look for the matching end. */
2689 while (! (GET_CODE (insn) == NOTE
2690 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2691 {
2692 /* If anything can throw, we can't remove the region. */
2693 if (delete && can_throw (insn))
2694 {
2695 delete = 0;
2696 }
2697
2698 /* Watch out for and handle nested regions. */
2699 if (GET_CODE (insn) == NOTE
2700 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2701 {
bf43101e 2702 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &delete);
4956d07c
MS
2703 }
2704
2705 insn = NEXT_INSN (insn);
2706 }
2707
2708 /* The _BEG/_END NOTEs must match and nest. */
bf43101e 2709 if (NOTE_EH_HANDLER (insn) != n)
4956d07c
MS
2710 abort ();
2711
12670d88 2712 /* If anything in this exception region can throw, we can throw. */
4956d07c
MS
2713 if (! delete)
2714 *delete_outer = 0;
2715 else
2716 {
2717 /* Delete the start and end of the region. */
2718 delete_insn (start);
2719 delete_insn (insn);
2720
9a0d1e1b
AM
2721/* We no longer removed labels here, since flow will now remove any
2722 handler which cannot be called any more. */
2723
2724#if 0
4956d07c
MS
2725 /* Only do this part if we have built the exception handler
2726 labels. */
2727 if (exception_handler_labels)
2728 {
2729 rtx x, *prev = &exception_handler_labels;
2730
2731 /* Find it in the list of handlers. */
2732 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2733 {
2734 rtx label = XEXP (x, 0);
2735 if (CODE_LABEL_NUMBER (label) == n)
2736 {
2737 /* If we are the last reference to the handler,
2738 delete it. */
2739 if (--LABEL_NUSES (label) == 0)
2740 delete_insn (label);
2741
2742 if (optimize)
2743 {
2744 /* Remove it from the list of exception handler
2745 labels, if we are optimizing. If we are not, then
2746 leave it in the list, as we are not really going to
2747 remove the region. */
2748 *prev = XEXP (x, 1);
2749 XEXP (x, 1) = 0;
2750 XEXP (x, 0) = 0;
2751 }
2752
2753 break;
2754 }
2755 prev = &XEXP (x, 1);
2756 }
2757 }
9a0d1e1b 2758#endif
4956d07c
MS
2759 }
2760 return insn;
2761}
2762
2763/* Perform various interesting optimizations for exception handling
2764 code.
2765
12670d88
RK
2766 We look for empty exception regions and make them go (away). The
2767 jump optimization code will remove the handler if nothing else uses
abeeec2a 2768 it. */
4956d07c
MS
2769
2770void
2771exception_optimize ()
2772{
381127e8 2773 rtx insn;
4956d07c
MS
2774 int n;
2775
12670d88 2776 /* Remove empty regions. */
4956d07c
MS
2777 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2778 {
2779 if (GET_CODE (insn) == NOTE
2780 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2781 {
27a36778 2782 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
12670d88
RK
2783 insn, we will indirectly skip through all the insns
2784 inbetween. We are also guaranteed that the value of insn
27a36778 2785 returned will be valid, as otherwise scan_region won't
abeeec2a 2786 return. */
bf43101e 2787 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &n);
4956d07c
MS
2788 }
2789 }
2790}
1ef1bf06
AM
2791
2792/* This function determines whether any of the exception regions in the
2793 current function are targets of a rethrow or not, and set the
2794 reference flag according. */
2795void
2796update_rethrow_references ()
2797{
2798 rtx insn;
2799 int x, region;
2800 int *saw_region, *saw_rethrow;
2801
2802 if (!flag_new_exceptions)
2803 return;
2804
4da896b2
MM
2805 saw_region = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2806 saw_rethrow = (int *) xcalloc (current_func_eh_entry, sizeof (int));
1ef1bf06
AM
2807
2808 /* Determine what regions exist, and whether there are any rethrows
2809 to those regions or not. */
2810 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2811 if (GET_CODE (insn) == CALL_INSN)
2812 {
2813 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2814 if (note)
2815 {
2816 region = eh_region_from_symbol (XEXP (note, 0));
2817 region = find_func_region (region);
2818 saw_rethrow[region] = 1;
2819 }
2820 }
2821 else
2822 if (GET_CODE (insn) == NOTE)
2823 {
2824 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2825 {
bf43101e 2826 region = find_func_region (NOTE_EH_HANDLER (insn));
1ef1bf06
AM
2827 saw_region[region] = 1;
2828 }
2829 }
2830
2831 /* For any regions we did see, set the referenced flag. */
2832 for (x = 0; x < current_func_eh_entry; x++)
2833 if (saw_region[x])
2834 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
4da896b2
MM
2835
2836 /* Clean up. */
2837 free (saw_region);
2838 free (saw_rethrow);
1ef1bf06 2839}
ca55abae
JM
2840\f
2841/* Various hooks for the DWARF 2 __throw routine. */
2842
2843/* Do any necessary initialization to access arbitrary stack frames.
2844 On the SPARC, this means flushing the register windows. */
2845
2846void
2847expand_builtin_unwind_init ()
2848{
2849 /* Set this so all the registers get saved in our frame; we need to be
2850 able to copy the saved values for any registers from frames we unwind. */
2851 current_function_has_nonlocal_label = 1;
2852
2853#ifdef SETUP_FRAME_ADDRESSES
2854 SETUP_FRAME_ADDRESSES ();
2855#endif
2856}
2857
2858/* Given a value extracted from the return address register or stack slot,
2859 return the actual address encoded in that value. */
2860
2861rtx
2862expand_builtin_extract_return_addr (addr_tree)
2863 tree addr_tree;
2864{
2865 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2866 return eh_outer_context (addr);
2867}
2868
2869/* Given an actual address in addr_tree, do any necessary encoding
2870 and return the value to be stored in the return address register or
2871 stack slot so the epilogue will return to that address. */
2872
2873rtx
2874expand_builtin_frob_return_addr (addr_tree)
2875 tree addr_tree;
2876{
2877 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2878#ifdef RETURN_ADDR_OFFSET
2879 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2880#endif
2881 return addr;
2882}
2883
71038426
RH
2884/* Choose three registers for communication between the main body of
2885 __throw and the epilogue (or eh stub) and the exception handler.
2886 We must do this with hard registers because the epilogue itself
2887 will be generated after reload, at which point we may not reference
2888 pseudos at all.
ca55abae 2889
71038426
RH
2890 The first passes the exception context to the handler. For this
2891 we use the return value register for a void*.
ca55abae 2892
71038426
RH
2893 The second holds the stack pointer value to be restored. For
2894 this we use the static chain register if it exists and is different
2895 from the previous, otherwise some arbitrary call-clobbered register.
ca55abae 2896
71038426
RH
2897 The third holds the address of the handler itself. Here we use
2898 some arbitrary call-clobbered register. */
ca55abae
JM
2899
2900static void
71038426
RH
2901eh_regs (pcontext, psp, pra, outgoing)
2902 rtx *pcontext, *psp, *pra;
ca55abae
JM
2903 int outgoing;
2904{
71038426
RH
2905 rtx rcontext, rsp, rra;
2906 int i;
ca55abae
JM
2907
2908#ifdef FUNCTION_OUTGOING_VALUE
2909 if (outgoing)
71038426
RH
2910 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2911 current_function_decl);
ca55abae
JM
2912 else
2913#endif
71038426
RH
2914 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2915 current_function_decl);
ca55abae
JM
2916
2917#ifdef STATIC_CHAIN_REGNUM
2918 if (outgoing)
71038426 2919 rsp = static_chain_incoming_rtx;
ca55abae 2920 else
71038426
RH
2921 rsp = static_chain_rtx;
2922 if (REGNO (rsp) == REGNO (rcontext))
ca55abae 2923#endif /* STATIC_CHAIN_REGNUM */
71038426 2924 rsp = NULL_RTX;
ca55abae 2925
71038426 2926 if (rsp == NULL_RTX)
ca55abae 2927 {
ca55abae 2928 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
71038426
RH
2929 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2930 break;
2931 if (i == FIRST_PSEUDO_REGISTER)
2932 abort();
ca55abae 2933
71038426 2934 rsp = gen_rtx_REG (Pmode, i);
ca55abae
JM
2935 }
2936
71038426
RH
2937 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2938 if (call_used_regs[i] && ! fixed_regs[i]
2939 && i != REGNO (rcontext) && i != REGNO (rsp))
2940 break;
2941 if (i == FIRST_PSEUDO_REGISTER)
2942 abort();
2943
2944 rra = gen_rtx_REG (Pmode, i);
ca55abae 2945
71038426
RH
2946 *pcontext = rcontext;
2947 *psp = rsp;
2948 *pra = rra;
2949}
9a0d1e1b
AM
2950
2951/* Retrieve the register which contains the pointer to the eh_context
2952 structure set the __throw. */
2953
ca3075bd 2954#if 0
9a0d1e1b
AM
2955rtx
2956get_reg_for_handler ()
2957{
2958 rtx reg1;
2959 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2960 current_function_decl);
2961 return reg1;
2962}
ca3075bd 2963#endif
9a0d1e1b 2964
71038426
RH
2965/* Set up the epilogue with the magic bits we'll need to return to the
2966 exception handler. */
9a0d1e1b 2967
71038426
RH
2968void
2969expand_builtin_eh_return (context, stack, handler)
2970 tree context, stack, handler;
a1622f83 2971{
71038426
RH
2972 if (eh_return_context)
2973 error("Duplicate call to __builtin_eh_return");
a1622f83 2974
71038426
RH
2975 eh_return_context
2976 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2977 eh_return_stack_adjust
2978 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2979 eh_return_handler
2980 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
a1622f83
AM
2981}
2982
71038426
RH
2983void
2984expand_eh_return ()
ca55abae 2985{
71038426
RH
2986 rtx reg1, reg2, reg3;
2987 rtx stub_start, after_stub;
2988 rtx ra, tmp;
ca55abae 2989
71038426
RH
2990 if (!eh_return_context)
2991 return;
ca55abae 2992
2b12ffe0
RH
2993 current_function_cannot_inline = N_("function uses __builtin_eh_return");
2994
71038426 2995 eh_regs (&reg1, &reg2, &reg3, 1);
aefe40b1
DT
2996#ifdef POINTERS_EXTEND_UNSIGNED
2997 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2998 eh_return_stack_adjust =
2999 convert_memory_address (Pmode, eh_return_stack_adjust);
3000 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
3001#endif
71038426
RH
3002 emit_move_insn (reg1, eh_return_context);
3003 emit_move_insn (reg2, eh_return_stack_adjust);
3004 emit_move_insn (reg3, eh_return_handler);
9a0d1e1b 3005
71038426 3006 /* Talk directly to the target's epilogue code when possible. */
9a0d1e1b 3007
71038426
RH
3008#ifdef HAVE_eh_epilogue
3009 if (HAVE_eh_epilogue)
3010 {
3011 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
3012 return;
3013 }
3014#endif
9a0d1e1b 3015
71038426 3016 /* Otherwise, use the same stub technique we had before. */
ca55abae 3017
71038426
RH
3018 eh_return_stub_label = stub_start = gen_label_rtx ();
3019 after_stub = gen_label_rtx ();
ca55abae 3020
71038426 3021 /* Set the return address to the stub label. */
ca55abae 3022
71038426
RH
3023 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
3024 0, hard_frame_pointer_rtx);
3025 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
3026 abort();
ca55abae 3027
71038426
RH
3028 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
3029#ifdef RETURN_ADDR_OFFSET
3030 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
3031#endif
2a55b8e8
JW
3032 tmp = force_operand (tmp, ra);
3033 if (tmp != ra)
3034 emit_move_insn (ra, tmp);
ca55abae 3035
71038426 3036 /* Indicate that the registers are in fact used. */
38a448ca
RH
3037 emit_insn (gen_rtx_USE (VOIDmode, reg1));
3038 emit_insn (gen_rtx_USE (VOIDmode, reg2));
71038426
RH
3039 emit_insn (gen_rtx_USE (VOIDmode, reg3));
3040 if (GET_CODE (ra) == REG)
3041 emit_insn (gen_rtx_USE (VOIDmode, ra));
77d33a84 3042
71038426
RH
3043 /* Generate the stub. */
3044
3045 emit_jump (after_stub);
3046 emit_label (stub_start);
3047
3048 eh_regs (&reg1, &reg2, &reg3, 0);
3049 adjust_stack (reg2);
3050 emit_indirect_jump (reg3);
3051
3052 emit_label (after_stub);
3053}
77d33a84
AM
3054\f
3055
3056/* This contains the code required to verify whether arbitrary instructions
3057 are in the same exception region. */
3058
3059static int *insn_eh_region = (int *)0;
3060static int maximum_uid;
3061
242c13b0
JL
3062static void
3063set_insn_eh_region (first, region_num)
77d33a84
AM
3064 rtx *first;
3065 int region_num;
3066{
3067 rtx insn;
3068 int rnum;
3069
3070 for (insn = *first; insn; insn = NEXT_INSN (insn))
3071 {
bf43101e
MM
3072 if ((GET_CODE (insn) == NOTE)
3073 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
77d33a84 3074 {
bf43101e 3075 rnum = NOTE_EH_HANDLER (insn);
77d33a84
AM
3076 insn_eh_region[INSN_UID (insn)] = rnum;
3077 insn = NEXT_INSN (insn);
3078 set_insn_eh_region (&insn, rnum);
3079 /* Upon return, insn points to the EH_REGION_END of nested region */
3080 continue;
3081 }
3082 insn_eh_region[INSN_UID (insn)] = region_num;
3083 if ((GET_CODE (insn) == NOTE) &&
3084 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
3085 break;
3086 }
3087 *first = insn;
3088}
3089
3090/* Free the insn table, an make sure it cannot be used again. */
3091
9a0d1e1b
AM
3092void
3093free_insn_eh_region ()
77d33a84
AM
3094{
3095 if (!doing_eh (0))
3096 return;
3097
3098 if (insn_eh_region)
3099 {
3100 free (insn_eh_region);
3101 insn_eh_region = (int *)0;
3102 }
3103}
3104
3105/* Initialize the table. max_uid must be calculated and handed into
3106 this routine. If it is unavailable, passing a value of 0 will
3107 cause this routine to calculate it as well. */
3108
9a0d1e1b
AM
3109void
3110init_insn_eh_region (first, max_uid)
77d33a84
AM
3111 rtx first;
3112 int max_uid;
3113{
3114 rtx insn;
3115
3116 if (!doing_eh (0))
3117 return;
3118
3119 if (insn_eh_region)
3120 free_insn_eh_region();
3121
3122 if (max_uid == 0)
3123 for (insn = first; insn; insn = NEXT_INSN (insn))
3124 if (INSN_UID (insn) > max_uid) /* find largest UID */
3125 max_uid = INSN_UID (insn);
3126
3127 maximum_uid = max_uid;
ad85216e 3128 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
77d33a84
AM
3129 insn = first;
3130 set_insn_eh_region (&insn, 0);
3131}
3132
3133
3134/* Check whether 2 instructions are within the same region. */
3135
9a0d1e1b
AM
3136int
3137in_same_eh_region (insn1, insn2)
3138 rtx insn1, insn2;
77d33a84
AM
3139{
3140 int ret, uid1, uid2;
3141
3142 /* If no exceptions, instructions are always in same region. */
3143 if (!doing_eh (0))
3144 return 1;
3145
3146 /* If the table isn't allocated, assume the worst. */
3147 if (!insn_eh_region)
3148 return 0;
3149
3150 uid1 = INSN_UID (insn1);
3151 uid2 = INSN_UID (insn2);
3152
3153 /* if instructions have been allocated beyond the end, either
3154 the table is out of date, or this is a late addition, or
3155 something... Assume the worst. */
3156 if (uid1 > maximum_uid || uid2 > maximum_uid)
3157 return 0;
3158
3159 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
3160 return ret;
3161}
1ef1bf06
AM
3162\f
3163
3164/* This function will initialize the handler list for a specified block.
3165 It may recursively call itself if the outer block hasn't been processed
3166 yet. At some point in the future we can trim out handlers which we
3167 know cannot be called. (ie, if a block has an INT type handler,
3168 control will never be passed to an outer INT type handler). */
3169static void
3170process_nestinfo (block, info, nested_eh_region)
3171 int block;
3172 eh_nesting_info *info;
3173 int *nested_eh_region;
3174{
3175 handler_info *ptr, *last_ptr = NULL;
3176 int x, y, count = 0;
3177 int extra = 0;
ca3075bd 3178 handler_info **extra_handlers = 0;
1ef1bf06
AM
3179 int index = info->region_index[block];
3180
3181 /* If we've already processed this block, simply return. */
3182 if (info->num_handlers[index] > 0)
3183 return;
3184
3185 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3186 count++;
3187
3188 /* pick up any information from the next outer region. It will already
3189 contain a summary of itself and all outer regions to it. */
3190
3191 if (nested_eh_region [block] != 0)
3192 {
3193 int nested_index = info->region_index[nested_eh_region[block]];
3194 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3195 extra = info->num_handlers[nested_index];
3196 extra_handlers = info->handlers[nested_index];
3197 info->outer_index[index] = nested_index;
3198 }
3199
3200 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3201 won't use the outer ones since we know control will not go past the
3202 catch-all or cleanup. */
3203
3204 if (last_ptr != NULL && (last_ptr->type_info == NULL
3205 || last_ptr->type_info == CATCH_ALL_TYPE))
3206 extra = 0;
3207
3208 info->num_handlers[index] = count + extra;
ad85216e 3209 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
1ef1bf06
AM
3210 * sizeof (handler_info **));
3211
3212 /* First put all our handlers into the list. */
3213 ptr = get_first_handler (block);
3214 for (x = 0; x < count; x++)
3215 {
3216 info->handlers[index][x] = ptr;
3217 ptr = ptr->next;
3218 }
3219
3220 /* Now add all the outer region handlers, if they aren't they same as
3221 one of the types in the current block. We won't worry about
3222 derived types yet, we'll just look for the exact type. */
3223 for (y =0, x = 0; x < extra ; x++)
3224 {
3225 int i, ok;
3226 ok = 1;
3227 /* Check to see if we have a type duplication. */
3228 for (i = 0; i < count; i++)
3229 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3230 {
3231 ok = 0;
3232 /* Record one less handler. */
3233 (info->num_handlers[index])--;
3234 break;
3235 }
3236 if (ok)
3237 {
3238 info->handlers[index][y + count] = extra_handlers[x];
3239 y++;
3240 }
3241 }
3242}
3243
3244/* This function will allocate and initialize an eh_nesting_info structure.
3245 It returns a pointer to the completed data structure. If there are
3246 no exception regions, a NULL value is returned. */
3247eh_nesting_info *
3248init_eh_nesting_info ()
3249{
3250 int *nested_eh_region;
3251 int region_count = 0;
3252 rtx eh_note = NULL_RTX;
3253 eh_nesting_info *info;
3254 rtx insn;
3255 int x;
3256
ad85216e
KG
3257 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3258 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
4da896b2 3259 nested_eh_region = (int *) xcalloc (max_label_num () + 1, sizeof (int));
77d33a84 3260
1ef1bf06
AM
3261 /* Create the nested_eh_region list. If indexed with a block number, it
3262 returns the block number of the next outermost region, if any.
3263 We can count the number of regions and initialize the region_index
3264 vector at the same time. */
3265 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3266 {
3267 if (GET_CODE (insn) == NOTE)
3268 {
3269 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3270 {
bf43101e 3271 int block = NOTE_EH_HANDLER (insn);
1ef1bf06
AM
3272 region_count++;
3273 info->region_index[block] = region_count;
3274 if (eh_note)
3275 nested_eh_region [block] =
bf43101e 3276 NOTE_EH_HANDLER (XEXP (eh_note, 0));
1ef1bf06
AM
3277 else
3278 nested_eh_region [block] = 0;
3279 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3280 }
3281 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3282 eh_note = XEXP (eh_note, 1);
3283 }
3284 }
3285
3286 /* If there are no regions, wrap it up now. */
3287 if (region_count == 0)
3288 {
3289 free (info->region_index);
3290 free (info);
4da896b2 3291 free (nested_eh_region);
1ef1bf06
AM
3292 return NULL;
3293 }
3294
3295 region_count++;
ad85216e
KG
3296 info->handlers = (handler_info ***) xcalloc (region_count,
3297 sizeof (handler_info ***));
3298 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3299 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
1ef1bf06
AM
3300
3301 /* Now initialize the handler lists for all exception blocks. */
3302 for (x = 0; x <= max_label_num (); x++)
3303 {
3304 if (info->region_index[x] != 0)
3305 process_nestinfo (x, info, nested_eh_region);
3306 }
3307 info->region_count = region_count;
4da896b2
MM
3308
3309 /* Clean up. */
3310 free (nested_eh_region);
3311
1ef1bf06
AM
3312 return info;
3313}
3314
3315
3316/* This function is used to retreive the vector of handlers which
3317 can be reached by a given insn in a given exception region.
3318 BLOCK is the exception block the insn is in.
3319 INFO is the eh_nesting_info structure.
3320 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3321 it may contain reg notes which modify its throwing behavior, and
3322 these will be obeyed. If NULL_RTX is passed, then we simply return the
3323 handlers for block.
3324 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3325 Upon return, this will have the handlers which can be reached by block.
3326 This function returns the number of elements in the handlers vector. */
3327int
3328reachable_handlers (block, info, insn, handlers)
3329 int block;
3330 eh_nesting_info *info;
3331 rtx insn ;
3332 handler_info ***handlers;
3333{
3334 int index = 0;
3335 *handlers = NULL;
3336
3337 if (info == NULL)
3338 return 0;
3339 if (block > 0)
3340 index = info->region_index[block];
3341
3342 if (insn && GET_CODE (insn) == CALL_INSN)
3343 {
3344 /* RETHROWs specify a region number from which we are going to rethrow.
3345 This means we wont pass control to handlers in the specified
3346 region, but rather any region OUTSIDE the specified region.
3347 We accomplish this by setting block to the outer_index of the
3348 specified region. */
3349 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3350 if (note)
3351 {
3352 index = eh_region_from_symbol (XEXP (note, 0));
3353 index = info->region_index[index];
3354 if (index)
3355 index = info->outer_index[index];
3356 }
3357 else
3358 {
3359 /* If there is no rethrow, we look for a REG_EH_REGION, and
3360 we'll throw from that block. A value of 0 or less
3361 indicates that this insn cannot throw. */
3362 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3363 if (note)
3364 {
3365 int b = XINT (XEXP (note, 0), 0);
3366 if (b <= 0)
3367 index = 0;
3368 else
3369 index = info->region_index[b];
3370 }
3371 }
3372 }
3373 /* If we reach this point, and index is 0, there is no throw. */
3374 if (index == 0)
3375 return 0;
3376
3377 *handlers = info->handlers[index];
3378 return info->num_handlers[index];
3379}
3380
3381
3382/* This function will free all memory associated with the eh_nesting info. */
3383
3384void
3385free_eh_nesting_info (info)
3386 eh_nesting_info *info;
3387{
3388 int x;
3389 if (info != NULL)
3390 {
3391 if (info->region_index)
3392 free (info->region_index);
3393 if (info->num_handlers)
3394 free (info->num_handlers);
3395 if (info->outer_index)
3396 free (info->outer_index);
3397 if (info->handlers)
3398 {
3399 for (x = 0; x < info->region_count; x++)
3400 if (info->handlers[x])
3401 free (info->handlers[x]);
3402 free (info->handlers);
3403 }
5faf03ae 3404 free (info);
1ef1bf06
AM
3405 }
3406}
This page took 1.882819 seconds and 5 git commands to generate.