]> gcc.gnu.org Git - gcc.git/blame - gcc/except.c
configure.in (sched_yield): Try librt first, then libposix4.
[gcc.git] / gcc / except.c
CommitLineData
12670d88 1/* Implements exception handling.
e7b9b18e 2 Copyright (C) 1989, 1992-1999 Free Software Foundation, Inc.
4956d07c
MS
3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
12670d88
RK
23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
956d6950 26 be transferred to any arbitrary code associated with a function call
12670d88
RK
27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
27a36778
MS
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
e9a25f70 48 approach, which is the default. -fno-sjlj-exceptions can be used to
27a36778
MS
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
12670d88
RK
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
2ed18e63
MS
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
956d6950 74 In the current implementation, cleanups are handled by allocating an
2ed18e63
MS
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
12670d88 89
ca55abae
JM
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
12670d88 92 __register_exceptions with the address of its local
ca55abae
JM
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
6d8ccdbb 100 __register_frame_info. On other targets, the information for each
d1485032 101 translation unit is registered from the file generated by collect2.
6d8ccdbb 102 __register_frame_info is defined in frame.c, and is responsible for
ca55abae
JM
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
12670d88 105
27a36778 106 The function __throw is actually responsible for doing the
ca55abae
JM
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
12670d88 109 per-object-file basis for each source file compiled with
38e01259 110 -fexceptions by the C++ frontend. Before __throw is invoked,
ca55abae
JM
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
12670d88 113
27a36778 114 __throw attempts to find the appropriate exception handler for the
12670d88 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
2ed18e63 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
ca55abae
JM
117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
12670d88
RK
131
132 Internal implementation details:
133
12670d88 134 To associate a user-defined handler with a block of statements, the
27a36778 135 function expand_start_try_stmts is used to mark the start of the
12670d88 136 block of statements with which the handler is to be associated
2ed18e63
MS
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
27a36778 140 A call to expand_start_all_catch marks the end of the try block,
2ed18e63
MS
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
27a36778 155 handler. expand_end_all_catch and expand_leftover_cleanups
2ed18e63
MS
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
27a36778 163 to the topmost entry's label via expand_goto will resume normal
2ed18e63
MS
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
27a36778
MS
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
12670d88
RK
172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
2ed18e63
MS
177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
27a36778 187 calling expand_eh_region_start to mark the start of the region,
2ed18e63
MS
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
12670d88
RK
196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
2ed18e63
MS
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
27a36778 210 and end_protect_partials. add_partial_entry creates the start of
2ed18e63
MS
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
27a36778 217 group of calls to add_partial_entry as the entries are queued
2ed18e63
MS
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
12670d88
RK
222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
2ed18e63
MS
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
12670d88
RK
229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
2ed18e63 234 can be safely optimized away (along with its exception handlers)
27a36778
MS
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
12670d88 246
ca55abae 247 Walking the stack:
12670d88 248
ca55abae
JM
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
12670d88 252
ca55abae 253 Unwinding the stack:
12670d88 254
ca55abae
JM
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
956d6950 282 should call __terminate.
ca55abae
JM
283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
2ed18e63
MS
289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
ca55abae
JM
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
12670d88 296
ca55abae
JM
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
12670d88 302
27a36778 303 On some platforms it is possible that neither __unwind_function
12670d88 304 nor inlined unwinders are available. For these platforms it is not
27a36778 305 possible to throw through a function call, and abort will be
2ed18e63
MS
306 invoked instead of performing the throw.
307
ca55abae
JM
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
2ed18e63
MS
320 Future directions:
321
27a36778 322 Currently __throw makes no differentiation between cleanups and
2ed18e63
MS
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
27a36778 333 A two-pass scheme could then be used by __throw to iterate
2ed18e63
MS
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
27a36778 343 __throw to be able to determine if a given user-defined
2ed18e63
MS
344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
27a36778 348 as to the types of exceptions accepted by each handler. __throw
2ed18e63
MS
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
27a36778 353 available, other than to place a breakpoint on __throw. While
2ed18e63
MS
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
27a36778 359 scheme by adding additional labels to __throw for appropriate
2ed18e63
MS
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
ca55abae
JM
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
27a36778
MS
369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
956d6950 380 table, and no calls to __register_exceptions. __sjthrow is used
27a36778
MS
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
4956d07c
MS
389
390
391#include "config.h"
ca55abae 392#include "defaults.h"
9a0d1e1b 393#include "eh-common.h"
670ee920 394#include "system.h"
4956d07c
MS
395#include "rtl.h"
396#include "tree.h"
397#include "flags.h"
398#include "except.h"
399#include "function.h"
400#include "insn-flags.h"
401#include "expr.h"
402#include "insn-codes.h"
403#include "regs.h"
404#include "hard-reg-set.h"
405#include "insn-config.h"
406#include "recog.h"
407#include "output.h"
10f0ad3d 408#include "toplev.h"
2b12ffe0 409#include "intl.h"
e6cfb550 410#include "obstack.h"
4956d07c 411
27a36778
MS
412/* One to use setjmp/longjmp method of generating code for exception
413 handling. */
414
d1485032 415int exceptions_via_longjmp = 2;
27a36778
MS
416
417/* One to enable asynchronous exception support. */
418
419int asynchronous_exceptions = 0;
420
421/* One to protect cleanup actions with a handler that calls
422 __terminate, zero otherwise. */
423
e701eb4d 424int protect_cleanup_actions_with_terminate;
27a36778 425
12670d88 426/* A list of labels used for exception handlers. Created by
4956d07c
MS
427 find_exception_handler_labels for the optimization passes. */
428
429rtx exception_handler_labels;
430
956d6950
JL
431/* Keeps track of the label used as the context of a throw to rethrow an
432 exception to the outer exception region. */
433
434struct label_node *outer_context_label_stack = NULL;
435
71038426
RH
436/* Pseudos used to hold exception return data in the interim between
437 __builtin_eh_return and the end of the function. */
438
439static rtx eh_return_context;
440static rtx eh_return_stack_adjust;
441static rtx eh_return_handler;
442
e6cfb550
AM
443/* This is used for targets which can call rethrow with an offset instead
444 of an address. This is subtracted from the rethrow label we are
445 interested in. */
446
447static rtx first_rethrow_symbol = NULL_RTX;
448static rtx final_rethrow = NULL_RTX;
449static rtx last_rethrow_symbol = NULL_RTX;
450
451
71038426
RH
452/* Prototypes for local functions. */
453
242c13b0
JL
454static void push_eh_entry PROTO((struct eh_stack *));
455static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
456static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
457static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
458static rtx call_get_eh_context PROTO((void));
459static void start_dynamic_cleanup PROTO((tree, tree));
460static void start_dynamic_handler PROTO((void));
e701eb4d 461static void expand_rethrow PROTO((rtx));
242c13b0
JL
462static void output_exception_table_entry PROTO((FILE *, int));
463static int can_throw PROTO((rtx));
464static rtx scan_region PROTO((rtx, int, int *));
71038426 465static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
242c13b0 466static void set_insn_eh_region PROTO((rtx *, int));
767f5b14 467#ifdef DONT_USE_BUILTIN_SETJMP
561592c5 468static void jumpif_rtx PROTO((rtx, rtx));
767f5b14 469#endif
561592c5 470
242c13b0 471rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
4956d07c
MS
472\f
473/* Various support routines to manipulate the various data structures
474 used by the exception handling code. */
475
e6cfb550
AM
476extern struct obstack permanent_obstack;
477
478/* Generate a SYMBOL_REF for rethrow to use */
479static rtx
480create_rethrow_ref (region_num)
481 int region_num;
482{
483 rtx def;
484 char *ptr;
485 char buf[60];
486
487 push_obstacks_nochange ();
488 end_temporary_allocation ();
489
490 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
491 ptr = (char *) obstack_copy0 (&permanent_obstack, buf, strlen (buf));
492 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
493 SYMBOL_REF_NEED_ADJUST (def) = 1;
494
495 pop_obstacks ();
496 return def;
497}
498
4956d07c
MS
499/* Push a label entry onto the given STACK. */
500
501void
502push_label_entry (stack, rlabel, tlabel)
503 struct label_node **stack;
504 rtx rlabel;
505 tree tlabel;
506{
507 struct label_node *newnode
508 = (struct label_node *) xmalloc (sizeof (struct label_node));
509
510 if (rlabel)
511 newnode->u.rlabel = rlabel;
512 else
513 newnode->u.tlabel = tlabel;
514 newnode->chain = *stack;
515 *stack = newnode;
516}
517
518/* Pop a label entry from the given STACK. */
519
520rtx
521pop_label_entry (stack)
522 struct label_node **stack;
523{
524 rtx label;
525 struct label_node *tempnode;
526
527 if (! *stack)
528 return NULL_RTX;
529
530 tempnode = *stack;
531 label = tempnode->u.rlabel;
532 *stack = (*stack)->chain;
533 free (tempnode);
534
535 return label;
536}
537
538/* Return the top element of the given STACK. */
539
540tree
541top_label_entry (stack)
542 struct label_node **stack;
543{
544 if (! *stack)
545 return NULL_TREE;
546
547 return (*stack)->u.tlabel;
548}
549
9a0d1e1b
AM
550/* get an exception label. These must be on the permanent obstack */
551
552rtx
553gen_exception_label ()
554{
555 rtx lab;
9a0d1e1b 556 lab = gen_label_rtx ();
9a0d1e1b
AM
557 return lab;
558}
559
478b0752 560/* Push a new eh_node entry onto STACK. */
4956d07c 561
478b0752 562static void
4956d07c
MS
563push_eh_entry (stack)
564 struct eh_stack *stack;
565{
566 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
567 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
568
e6cfb550 569 rtx rlab = gen_exception_label ();
4956d07c 570 entry->finalization = NULL_TREE;
9a0d1e1b 571 entry->label_used = 0;
e6cfb550 572 entry->exception_handler_label = rlab;
bf71cd2e 573 entry->false_label = NULL_RTX;
e6cfb550
AM
574 if (! flag_new_exceptions)
575 entry->outer_context = gen_label_rtx ();
576 else
577 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
578 entry->rethrow_label = entry->outer_context;
9a0d1e1b
AM
579
580 node->entry = entry;
581 node->chain = stack->top;
582 stack->top = node;
583}
4956d07c 584
9a0d1e1b
AM
585/* push an existing entry onto a stack. */
586static void
587push_entry (stack, entry)
588 struct eh_stack *stack;
589 struct eh_entry *entry;
590{
591 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
4956d07c
MS
592 node->entry = entry;
593 node->chain = stack->top;
594 stack->top = node;
4956d07c
MS
595}
596
597/* Pop an entry from the given STACK. */
598
599static struct eh_entry *
600pop_eh_entry (stack)
601 struct eh_stack *stack;
602{
603 struct eh_node *tempnode;
604 struct eh_entry *tempentry;
605
606 tempnode = stack->top;
607 tempentry = tempnode->entry;
608 stack->top = stack->top->chain;
609 free (tempnode);
610
611 return tempentry;
612}
613
614/* Enqueue an ENTRY onto the given QUEUE. */
615
616static void
617enqueue_eh_entry (queue, entry)
618 struct eh_queue *queue;
619 struct eh_entry *entry;
620{
621 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
622
623 node->entry = entry;
624 node->chain = NULL;
625
626 if (queue->head == NULL)
627 {
628 queue->head = node;
629 }
630 else
631 {
632 queue->tail->chain = node;
633 }
634 queue->tail = node;
635}
636
637/* Dequeue an entry from the given QUEUE. */
638
639static struct eh_entry *
640dequeue_eh_entry (queue)
641 struct eh_queue *queue;
642{
643 struct eh_node *tempnode;
644 struct eh_entry *tempentry;
645
646 if (queue->head == NULL)
647 return NULL;
648
649 tempnode = queue->head;
650 queue->head = queue->head->chain;
651
652 tempentry = tempnode->entry;
653 free (tempnode);
654
655 return tempentry;
656}
9a0d1e1b
AM
657
658static void
659receive_exception_label (handler_label)
660 rtx handler_label;
661{
662 emit_label (handler_label);
663
664#ifdef HAVE_exception_receiver
665 if (! exceptions_via_longjmp)
666 if (HAVE_exception_receiver)
667 emit_insn (gen_exception_receiver ());
668#endif
669
670#ifdef HAVE_nonlocal_goto_receiver
671 if (! exceptions_via_longjmp)
672 if (HAVE_nonlocal_goto_receiver)
673 emit_insn (gen_nonlocal_goto_receiver ());
674#endif
675}
676
677
678struct func_eh_entry
679{
680 int range_number; /* EH region number from EH NOTE insn's */
e6cfb550 681 rtx rethrow_label; /* Label for rethrow */
9a0d1e1b
AM
682 struct handler_info *handlers;
683};
684
685
686/* table of function eh regions */
687static struct func_eh_entry *function_eh_regions = NULL;
688static int num_func_eh_entries = 0;
689static int current_func_eh_entry = 0;
690
691#define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
692
693/* Add a new eh_entry for this function, and base it off of the information
e6cfb550
AM
694 in the EH_ENTRY parameter. A NULL parameter is invalid.
695 OUTER_CONTEXT is a label which is used for rethrowing. The number
9a0d1e1b
AM
696 returned is an number which uniquely identifies this exception range. */
697
e6cfb550
AM
698static int
699new_eh_region_entry (note_eh_region, rethrow)
9a0d1e1b 700 int note_eh_region;
e6cfb550 701 rtx rethrow;
9a0d1e1b
AM
702{
703 if (current_func_eh_entry == num_func_eh_entries)
704 {
705 if (num_func_eh_entries == 0)
706 {
707 function_eh_regions =
708 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
709 num_func_eh_entries = 50;
710 }
711 else
712 {
713 num_func_eh_entries = num_func_eh_entries * 3 / 2;
714 function_eh_regions = (struct func_eh_entry *)
715 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
716 }
717 }
718 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
e6cfb550
AM
719 if (rethrow == NULL_RTX)
720 function_eh_regions[current_func_eh_entry].rethrow_label =
721 create_rethrow_ref (note_eh_region);
722 else
723 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
9a0d1e1b
AM
724 function_eh_regions[current_func_eh_entry].handlers = NULL;
725
726 return current_func_eh_entry++;
727}
728
729/* Add new handler information to an exception range. The first parameter
730 specifies the range number (returned from new_eh_entry()). The second
731 parameter specifies the handler. By default the handler is inserted at
732 the end of the list. A handler list may contain only ONE NULL_TREE
733 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
734 is always output as the LAST handler in the exception table for a region. */
735
736void
737add_new_handler (region, newhandler)
738 int region;
739 struct handler_info *newhandler;
740{
741 struct handler_info *last;
742
743 newhandler->next = NULL;
744 last = function_eh_regions[region].handlers;
745 if (last == NULL)
746 function_eh_regions[region].handlers = newhandler;
747 else
748 {
9bbdf48e
JM
749 for ( ; ; last = last->next)
750 {
751 if (last->type_info == CATCH_ALL_TYPE)
752 pedwarn ("additional handler after ...");
753 if (last->next == NULL)
754 break;
755 }
d7e78529 756 last->next = newhandler;
9a0d1e1b
AM
757 }
758}
759
9f8e6243
AM
760/* Remove a handler label. The handler label is being deleted, so all
761 regions which reference this handler should have it removed from their
762 list of possible handlers. Any region which has the final handler
763 removed can be deleted. */
764
765void remove_handler (removing_label)
766 rtx removing_label;
767{
768 struct handler_info *handler, *last;
769 int x;
770 for (x = 0 ; x < current_func_eh_entry; ++x)
771 {
772 last = NULL;
773 handler = function_eh_regions[x].handlers;
774 for ( ; handler; last = handler, handler = handler->next)
775 if (handler->handler_label == removing_label)
776 {
777 if (last)
778 {
779 last->next = handler->next;
780 handler = last;
781 }
782 else
783 function_eh_regions[x].handlers = handler->next;
784 }
785 }
786}
787
9c606f69
AM
788/* This function will return a malloc'd pointer to an array of
789 void pointer representing the runtime match values that
790 currently exist in all regions. */
791
792int
4f70758f
KG
793find_all_handler_type_matches (array)
794 void ***array;
9c606f69
AM
795{
796 struct handler_info *handler, *last;
797 int x,y;
798 void *val;
799 void **ptr;
800 int max_ptr;
801 int n_ptr = 0;
802
803 *array = NULL;
804
805 if (!doing_eh (0) || ! flag_new_exceptions)
806 return 0;
807
808 max_ptr = 100;
809 ptr = (void **)malloc (max_ptr * sizeof (void *));
810
811 if (ptr == NULL)
812 return 0;
813
814 for (x = 0 ; x < current_func_eh_entry; x++)
815 {
816 last = NULL;
817 handler = function_eh_regions[x].handlers;
818 for ( ; handler; last = handler, handler = handler->next)
819 {
820 val = handler->type_info;
821 if (val != NULL && val != CATCH_ALL_TYPE)
822 {
823 /* See if this match value has already been found. */
824 for (y = 0; y < n_ptr; y++)
825 if (ptr[y] == val)
826 break;
827
828 /* If we break early, we already found this value. */
829 if (y < n_ptr)
830 continue;
831
832 /* Do we need to allocate more space? */
833 if (n_ptr >= max_ptr)
834 {
835 max_ptr += max_ptr / 2;
836 ptr = (void **)realloc (ptr, max_ptr * sizeof (void *));
837 if (ptr == NULL)
838 return 0;
839 }
840 ptr[n_ptr] = val;
841 n_ptr++;
842 }
843 }
844 }
845 *array = ptr;
846 return n_ptr;
847}
848
9a0d1e1b
AM
849/* Create a new handler structure initialized with the handler label and
850 typeinfo fields passed in. */
851
852struct handler_info *
853get_new_handler (handler, typeinfo)
854 rtx handler;
855 void *typeinfo;
856{
857 struct handler_info* ptr;
858 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
859 ptr->handler_label = handler;
0177de87 860 ptr->handler_number = CODE_LABEL_NUMBER (handler);
9a0d1e1b
AM
861 ptr->type_info = typeinfo;
862 ptr->next = NULL;
863
864 return ptr;
865}
866
867
868
869/* Find the index in function_eh_regions associated with a NOTE region. If
870 the region cannot be found, a -1 is returned. This should never happen! */
871
872int
873find_func_region (insn_region)
874 int insn_region;
875{
876 int x;
877 for (x = 0; x < current_func_eh_entry; x++)
878 if (function_eh_regions[x].range_number == insn_region)
879 return x;
880
881 return -1;
882}
883
884/* Get a pointer to the first handler in an exception region's list. */
885
886struct handler_info *
887get_first_handler (region)
888 int region;
889{
890 return function_eh_regions[find_func_region (region)].handlers;
891}
892
893/* Clean out the function_eh_region table and free all memory */
894
895static void
896clear_function_eh_region ()
897{
898 int x;
899 struct handler_info *ptr, *next;
900 for (x = 0; x < current_func_eh_entry; x++)
901 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
902 {
903 next = ptr->next;
904 free (ptr);
905 }
906 free (function_eh_regions);
907 num_func_eh_entries = 0;
908 current_func_eh_entry = 0;
909}
910
911/* Make a duplicate of an exception region by copying all the handlers
e6cfb550
AM
912 for an exception region. Return the new handler index. The final
913 parameter is a routine which maps old labels to new ones. */
9a0d1e1b
AM
914
915int
e6cfb550 916duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
9a0d1e1b 917 int old_note_eh_region, new_note_eh_region;
3b89e9d1 918 rtx (*map) PARAMS ((rtx));
9a0d1e1b
AM
919{
920 struct handler_info *ptr, *new_ptr;
921 int new_region, region;
922
923 region = find_func_region (old_note_eh_region);
924 if (region == -1)
e6cfb550
AM
925 fatal ("Cannot duplicate non-existant exception region.");
926
927 /* duplicate_eh_handlers may have been called during a symbol remap. */
928 new_region = find_func_region (new_note_eh_region);
929 if (new_region != -1)
930 return (new_region);
9a0d1e1b 931
e6cfb550 932 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
9a0d1e1b 933
9a0d1e1b
AM
934 ptr = function_eh_regions[region].handlers;
935
936 for ( ; ptr; ptr = ptr->next)
937 {
e6cfb550 938 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
9a0d1e1b
AM
939 add_new_handler (new_region, new_ptr);
940 }
941
942 return new_region;
943}
944
e6cfb550
AM
945
946/* Given a rethrow symbol, find the EH region number this is for. */
947int
948eh_region_from_symbol (sym)
949 rtx sym;
950{
951 int x;
952 if (sym == last_rethrow_symbol)
953 return 1;
954 for (x = 0; x < current_func_eh_entry; x++)
955 if (function_eh_regions[x].rethrow_label == sym)
956 return function_eh_regions[x].range_number;
957 return -1;
958}
959
960
961/* When inlining/unrolling, we have to map the symbols passed to
962 __rethrow as well. This performs the remap. If a symbol isn't foiund,
963 the original one is returned. This is not an efficient routine,
964 so don't call it on everything!! */
965rtx
966rethrow_symbol_map (sym, map)
967 rtx sym;
3b89e9d1 968 rtx (*map) PARAMS ((rtx));
e6cfb550
AM
969{
970 int x, y;
971 for (x = 0; x < current_func_eh_entry; x++)
972 if (function_eh_regions[x].rethrow_label == sym)
973 {
974 /* We've found the original region, now lets determine which region
975 this now maps to. */
976 rtx l1 = function_eh_regions[x].handlers->handler_label;
977 rtx l2 = map (l1);
978 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
979 x = find_func_region (y); /* Get the new permanent region */
980 if (x == -1) /* Hmm, Doesn't exist yet */
981 {
982 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
983 /* Since we're mapping it, it must be used. */
984 SYMBOL_REF_USED (function_eh_regions[x].rethrow_label) = 1;
985 }
986 return function_eh_regions[x].rethrow_label;
987 }
988 return sym;
989}
990
991int
992rethrow_used (region)
993 int region;
994{
995 if (flag_new_exceptions)
996 {
997 rtx lab = function_eh_regions[find_func_region (region)].rethrow_label;
998 return (SYMBOL_REF_USED (lab));
999 }
1000 return 0;
1001}
1002
4956d07c 1003\f
38e01259 1004/* Routine to see if exception handling is turned on.
4956d07c 1005 DO_WARN is non-zero if we want to inform the user that exception
12670d88
RK
1006 handling is turned off.
1007
1008 This is used to ensure that -fexceptions has been specified if the
abeeec2a 1009 compiler tries to use any exception-specific functions. */
4956d07c
MS
1010
1011int
1012doing_eh (do_warn)
1013 int do_warn;
1014{
1015 if (! flag_exceptions)
1016 {
1017 static int warned = 0;
1018 if (! warned && do_warn)
1019 {
1020 error ("exception handling disabled, use -fexceptions to enable");
1021 warned = 1;
1022 }
1023 return 0;
1024 }
1025 return 1;
1026}
1027
12670d88 1028/* Given a return address in ADDR, determine the address we should use
abeeec2a 1029 to find the corresponding EH region. */
4956d07c
MS
1030
1031rtx
1032eh_outer_context (addr)
1033 rtx addr;
1034{
1035 /* First mask out any unwanted bits. */
1036#ifdef MASK_RETURN_ADDR
ca55abae 1037 expand_and (addr, MASK_RETURN_ADDR, addr);
4956d07c
MS
1038#endif
1039
ca55abae
JM
1040 /* Then adjust to find the real return address. */
1041#if defined (RETURN_ADDR_OFFSET)
1042 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
4956d07c
MS
1043#endif
1044
1045 return addr;
1046}
1047
27a36778
MS
1048/* Start a new exception region for a region of code that has a
1049 cleanup action and push the HANDLER for the region onto
1050 protect_list. All of the regions created with add_partial_entry
1051 will be ended when end_protect_partials is invoked. */
12670d88
RK
1052
1053void
1054add_partial_entry (handler)
1055 tree handler;
1056{
1057 expand_eh_region_start ();
1058
abeeec2a 1059 /* Make sure the entry is on the correct obstack. */
12670d88
RK
1060 push_obstacks_nochange ();
1061 resume_temporary_allocation ();
27a36778
MS
1062
1063 /* Because this is a cleanup action, we may have to protect the handler
1064 with __terminate. */
1065 handler = protect_with_terminate (handler);
1066
12670d88
RK
1067 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1068 pop_obstacks ();
1069}
1070
100d81d4 1071/* Emit code to get EH context to current function. */
27a36778 1072
154bba13 1073static rtx
01eb7f9a 1074call_get_eh_context ()
27a36778 1075{
bb727b5a
JM
1076 static tree fn;
1077 tree expr;
1078
1079 if (fn == NULL_TREE)
1080 {
1081 tree fntype;
154bba13 1082 fn = get_identifier ("__get_eh_context");
bb727b5a
JM
1083 push_obstacks_nochange ();
1084 end_temporary_allocation ();
1085 fntype = build_pointer_type (build_pointer_type
1086 (build_pointer_type (void_type_node)));
1087 fntype = build_function_type (fntype, NULL_TREE);
1088 fn = build_decl (FUNCTION_DECL, fn, fntype);
1089 DECL_EXTERNAL (fn) = 1;
1090 TREE_PUBLIC (fn) = 1;
1091 DECL_ARTIFICIAL (fn) = 1;
1092 TREE_READONLY (fn) = 1;
1093 make_decl_rtl (fn, NULL_PTR, 1);
1094 assemble_external (fn);
1095 pop_obstacks ();
1096 }
1097
1098 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1099 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1100 expr, NULL_TREE, NULL_TREE);
1101 TREE_SIDE_EFFECTS (expr) = 1;
bb727b5a 1102
100d81d4 1103 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
154bba13
TT
1104}
1105
1106/* Get a reference to the EH context.
1107 We will only generate a register for the current function EH context here,
1108 and emit a USE insn to mark that this is a EH context register.
1109
1110 Later, emit_eh_context will emit needed call to __get_eh_context
1111 in libgcc2, and copy the value to the register we have generated. */
1112
1113rtx
01eb7f9a 1114get_eh_context ()
154bba13
TT
1115{
1116 if (current_function_ehc == 0)
1117 {
1118 rtx insn;
1119
1120 current_function_ehc = gen_reg_rtx (Pmode);
1121
38a448ca
RH
1122 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1123 current_function_ehc);
154bba13
TT
1124 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1125
1126 REG_NOTES (insn)
38a448ca
RH
1127 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1128 REG_NOTES (insn));
154bba13
TT
1129 }
1130 return current_function_ehc;
1131}
1132
154bba13
TT
1133/* Get a reference to the dynamic handler chain. It points to the
1134 pointer to the next element in the dynamic handler chain. It ends
1135 when there are no more elements in the dynamic handler chain, when
1136 the value is &top_elt from libgcc2.c. Immediately after the
1137 pointer, is an area suitable for setjmp/longjmp when
1138 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1139 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1140 isn't defined. */
1141
1142rtx
1143get_dynamic_handler_chain ()
1144{
1145 rtx ehc, dhc, result;
1146
01eb7f9a 1147 ehc = get_eh_context ();
3301dc51
AM
1148
1149 /* This is the offset of dynamic_handler_chain in the eh_context struct
1150 declared in eh-common.h. If its location is change, change this offset */
5816cb14 1151 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
154bba13
TT
1152
1153 result = copy_to_reg (dhc);
1154
1155 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1156 return gen_rtx_MEM (Pmode, result);
27a36778
MS
1157}
1158
1159/* Get a reference to the dynamic cleanup chain. It points to the
1160 pointer to the next element in the dynamic cleanup chain.
1161 Immediately after the pointer, are two Pmode variables, one for a
1162 pointer to a function that performs the cleanup action, and the
1163 second, the argument to pass to that function. */
1164
1165rtx
1166get_dynamic_cleanup_chain ()
1167{
154bba13 1168 rtx dhc, dcc, result;
27a36778
MS
1169
1170 dhc = get_dynamic_handler_chain ();
5816cb14 1171 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
27a36778 1172
154bba13 1173 result = copy_to_reg (dcc);
27a36778
MS
1174
1175 /* We don't want a copy of the dcc, but rather, the single dcc. */
38a448ca 1176 return gen_rtx_MEM (Pmode, result);
154bba13
TT
1177}
1178
767f5b14 1179#ifdef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1180/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1181 LABEL is an rtx of code CODE_LABEL, in this function. */
1182
561592c5 1183static void
27a36778
MS
1184jumpif_rtx (x, label)
1185 rtx x;
1186 rtx label;
1187{
1188 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1189}
767f5b14 1190#endif
27a36778
MS
1191
1192/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1193 We just need to create an element for the cleanup list, and push it
1194 into the chain.
1195
1196 A dynamic cleanup is a cleanup action implied by the presence of an
1197 element on the EH runtime dynamic cleanup stack that is to be
1198 performed when an exception is thrown. The cleanup action is
1199 performed by __sjthrow when an exception is thrown. Only certain
1200 actions can be optimized into dynamic cleanup actions. For the
1201 restrictions on what actions can be performed using this routine,
1202 see expand_eh_region_start_tree. */
1203
1204static void
1205start_dynamic_cleanup (func, arg)
1206 tree func;
1207 tree arg;
1208{
381127e8 1209 rtx dcc;
27a36778
MS
1210 rtx new_func, new_arg;
1211 rtx x, buf;
1212 int size;
1213
1214 /* We allocate enough room for a pointer to the function, and
1215 one argument. */
1216 size = 2;
1217
1218 /* XXX, FIXME: The stack space allocated this way is too long lived,
1219 but there is no allocation routine that allocates at the level of
1220 the last binding contour. */
1221 buf = assign_stack_local (BLKmode,
1222 GET_MODE_SIZE (Pmode)*(size+1),
1223 0);
1224
1225 buf = change_address (buf, Pmode, NULL_RTX);
1226
1227 /* Store dcc into the first word of the newly allocated buffer. */
1228
1229 dcc = get_dynamic_cleanup_chain ();
1230 emit_move_insn (buf, dcc);
1231
1232 /* Store func and arg into the cleanup list element. */
1233
38a448ca
RH
1234 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1235 GET_MODE_SIZE (Pmode)));
1236 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1237 GET_MODE_SIZE (Pmode)*2));
27a36778
MS
1238 x = expand_expr (func, new_func, Pmode, 0);
1239 if (x != new_func)
1240 emit_move_insn (new_func, x);
1241
1242 x = expand_expr (arg, new_arg, Pmode, 0);
1243 if (x != new_arg)
1244 emit_move_insn (new_arg, x);
1245
1246 /* Update the cleanup chain. */
1247
f654e526
RH
1248 x = force_operand (XEXP (buf, 0), dcc);
1249 if (x != dcc)
1250 emit_move_insn (dcc, x);
27a36778
MS
1251}
1252
1253/* Emit RTL to start a dynamic handler on the EH runtime dynamic
1254 handler stack. This should only be used by expand_eh_region_start
1255 or expand_eh_region_start_tree. */
1256
1257static void
1258start_dynamic_handler ()
1259{
1260 rtx dhc, dcc;
6e6a07d2 1261 rtx x, arg, buf;
27a36778
MS
1262 int size;
1263
6e6a07d2 1264#ifndef DONT_USE_BUILTIN_SETJMP
27a36778
MS
1265 /* The number of Pmode words for the setjmp buffer, when using the
1266 builtin setjmp/longjmp, see expand_builtin, case
1267 BUILT_IN_LONGJMP. */
1268 size = 5;
1269#else
1270#ifdef JMP_BUF_SIZE
1271 size = JMP_BUF_SIZE;
1272#else
1273 /* Should be large enough for most systems, if it is not,
1274 JMP_BUF_SIZE should be defined with the proper value. It will
1275 also tend to be larger than necessary for most systems, a more
1276 optimal port will define JMP_BUF_SIZE. */
1277 size = FIRST_PSEUDO_REGISTER+2;
1278#endif
1279#endif
1280 /* XXX, FIXME: The stack space allocated this way is too long lived,
1281 but there is no allocation routine that allocates at the level of
1282 the last binding contour. */
1283 arg = assign_stack_local (BLKmode,
1284 GET_MODE_SIZE (Pmode)*(size+1),
1285 0);
1286
1287 arg = change_address (arg, Pmode, NULL_RTX);
1288
1289 /* Store dhc into the first word of the newly allocated buffer. */
1290
1291 dhc = get_dynamic_handler_chain ();
38a448ca
RH
1292 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1293 GET_MODE_SIZE (Pmode)));
27a36778
MS
1294 emit_move_insn (arg, dhc);
1295
1296 /* Zero out the start of the cleanup chain. */
1297 emit_move_insn (dcc, const0_rtx);
1298
1299 /* The jmpbuf starts two words into the area allocated. */
6e6a07d2 1300 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
27a36778 1301
6e6a07d2 1302#ifdef DONT_USE_BUILTIN_SETJMP
27a36778 1303 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
6e6a07d2 1304 buf, Pmode);
6fd1c67b
RH
1305 /* If we come back here for a catch, transfer control to the handler. */
1306 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
6e6a07d2 1307#else
6fd1c67b
RH
1308 {
1309 /* A label to continue execution for the no exception case. */
1310 rtx noex = gen_label_rtx();
1311 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1312 ehstack.top->entry->exception_handler_label);
1313 emit_label (noex);
1314 }
6e6a07d2 1315#endif
27a36778 1316
27a36778
MS
1317 /* We are committed to this, so update the handler chain. */
1318
b68e8bdd 1319 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
27a36778
MS
1320}
1321
1322/* Start an exception handling region for the given cleanup action.
12670d88 1323 All instructions emitted after this point are considered to be part
27a36778
MS
1324 of the region until expand_eh_region_end is invoked. CLEANUP is
1325 the cleanup action to perform. The return value is true if the
1326 exception region was optimized away. If that case,
1327 expand_eh_region_end does not need to be called for this cleanup,
1328 nor should it be.
1329
1330 This routine notices one particular common case in C++ code
1331 generation, and optimizes it so as to not need the exception
1332 region. It works by creating a dynamic cleanup action, instead of
38e01259 1333 a using an exception region. */
27a36778
MS
1334
1335int
4c581243
MS
1336expand_eh_region_start_tree (decl, cleanup)
1337 tree decl;
27a36778
MS
1338 tree cleanup;
1339{
27a36778
MS
1340 /* This is the old code. */
1341 if (! doing_eh (0))
1342 return 0;
1343
1344 /* The optimization only applies to actions protected with
1345 terminate, and only applies if we are using the setjmp/longjmp
1346 codegen method. */
1347 if (exceptions_via_longjmp
1348 && protect_cleanup_actions_with_terminate)
1349 {
1350 tree func, arg;
1351 tree args;
1352
1353 /* Ignore any UNSAVE_EXPR. */
1354 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1355 cleanup = TREE_OPERAND (cleanup, 0);
1356
1357 /* Further, it only applies if the action is a call, if there
1358 are 2 arguments, and if the second argument is 2. */
1359
1360 if (TREE_CODE (cleanup) == CALL_EXPR
1361 && (args = TREE_OPERAND (cleanup, 1))
1362 && (func = TREE_OPERAND (cleanup, 0))
1363 && (arg = TREE_VALUE (args))
1364 && (args = TREE_CHAIN (args))
1365
1366 /* is the second argument 2? */
1367 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1368 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1369 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1370
1371 /* Make sure there are no other arguments. */
1372 && TREE_CHAIN (args) == NULL_TREE)
1373 {
1374 /* Arrange for returns and gotos to pop the entry we make on the
1375 dynamic cleanup stack. */
4c581243 1376 expand_dcc_cleanup (decl);
27a36778
MS
1377 start_dynamic_cleanup (func, arg);
1378 return 1;
1379 }
1380 }
1381
4c581243 1382 expand_eh_region_start_for_decl (decl);
9762d48d 1383 ehstack.top->entry->finalization = cleanup;
27a36778
MS
1384
1385 return 0;
1386}
1387
4c581243
MS
1388/* Just like expand_eh_region_start, except if a cleanup action is
1389 entered on the cleanup chain, the TREE_PURPOSE of the element put
1390 on the chain is DECL. DECL should be the associated VAR_DECL, if
1391 any, otherwise it should be NULL_TREE. */
4956d07c
MS
1392
1393void
4c581243
MS
1394expand_eh_region_start_for_decl (decl)
1395 tree decl;
4956d07c
MS
1396{
1397 rtx note;
1398
1399 /* This is the old code. */
1400 if (! doing_eh (0))
1401 return;
1402
e7b9b18e
JM
1403 /* We need a new block to record the start and end of the
1404 dynamic handler chain. We also want to prevent jumping into
1405 a try block. */
1406 expand_start_bindings (0);
27a36778 1407
e7b9b18e
JM
1408 /* But we don't need or want a new temporary level. */
1409 pop_temp_slots ();
27a36778 1410
e7b9b18e
JM
1411 /* Mark this block as created by expand_eh_region_start. This
1412 is so that we can pop the block with expand_end_bindings
1413 automatically. */
1414 mark_block_as_eh_region ();
27a36778 1415
e7b9b18e
JM
1416 if (exceptions_via_longjmp)
1417 {
27a36778
MS
1418 /* Arrange for returns and gotos to pop the entry we make on the
1419 dynamic handler stack. */
4c581243 1420 expand_dhc_cleanup (decl);
27a36778 1421 }
4956d07c 1422
478b0752 1423 push_eh_entry (&ehstack);
9ad8a5f0
MS
1424 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1425 NOTE_BLOCK_NUMBER (note)
1426 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
27a36778
MS
1427 if (exceptions_via_longjmp)
1428 start_dynamic_handler ();
4956d07c
MS
1429}
1430
4c581243
MS
1431/* Start an exception handling region. All instructions emitted after
1432 this point are considered to be part of the region until
1433 expand_eh_region_end is invoked. */
1434
1435void
1436expand_eh_region_start ()
1437{
1438 expand_eh_region_start_for_decl (NULL_TREE);
1439}
1440
27a36778
MS
1441/* End an exception handling region. The information about the region
1442 is found on the top of ehstack.
12670d88
RK
1443
1444 HANDLER is either the cleanup for the exception region, or if we're
1445 marking the end of a try block, HANDLER is integer_zero_node.
1446
27a36778 1447 HANDLER will be transformed to rtl when expand_leftover_cleanups
abeeec2a 1448 is invoked. */
4956d07c
MS
1449
1450void
1451expand_eh_region_end (handler)
1452 tree handler;
1453{
4956d07c 1454 struct eh_entry *entry;
9ad8a5f0 1455 rtx note;
e6cfb550 1456 int ret, r;
4956d07c
MS
1457
1458 if (! doing_eh (0))
1459 return;
1460
1461 entry = pop_eh_entry (&ehstack);
1462
9ad8a5f0 1463 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
e6cfb550 1464 ret = NOTE_BLOCK_NUMBER (note)
9ad8a5f0 1465 = CODE_LABEL_NUMBER (entry->exception_handler_label);
e6cfb550 1466 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
e701eb4d
JM
1467 /* We share outer_context between regions; only emit it once. */
1468 && INSN_UID (entry->outer_context) == 0)
27a36778 1469 {
478b0752 1470 rtx label;
4956d07c 1471
478b0752
MS
1472 label = gen_label_rtx ();
1473 emit_jump (label);
1474
1475 /* Emit a label marking the end of this exception region that
1476 is used for rethrowing into the outer context. */
1477 emit_label (entry->outer_context);
e701eb4d 1478 expand_internal_throw ();
4956d07c 1479
478b0752 1480 emit_label (label);
27a36778 1481 }
4956d07c
MS
1482
1483 entry->finalization = handler;
1484
9a0d1e1b 1485 /* create region entry in final exception table */
e6cfb550 1486 r = new_eh_region_entry (NOTE_BLOCK_NUMBER (note), entry->rethrow_label);
9a0d1e1b 1487
4956d07c
MS
1488 enqueue_eh_entry (&ehqueue, entry);
1489
e7b9b18e 1490 /* If we have already started ending the bindings, don't recurse. */
27a36778
MS
1491 if (is_eh_region ())
1492 {
1493 /* Because we don't need or want a new temporary level and
1494 because we didn't create one in expand_eh_region_start,
1495 create a fake one now to avoid removing one in
1496 expand_end_bindings. */
1497 push_temp_slots ();
1498
1499 mark_block_as_not_eh_region ();
1500
27a36778
MS
1501 expand_end_bindings (NULL_TREE, 0, 0);
1502 }
4956d07c
MS
1503}
1504
9762d48d
JM
1505/* End the EH region for a goto fixup. We only need them in the region-based
1506 EH scheme. */
1507
1508void
1509expand_fixup_region_start ()
1510{
1511 if (! doing_eh (0) || exceptions_via_longjmp)
1512 return;
1513
1514 expand_eh_region_start ();
1515}
1516
1517/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1518 expanded; to avoid running it twice if it throws, we look through the
1519 ehqueue for a matching region and rethrow from its outer_context. */
1520
1521void
1522expand_fixup_region_end (cleanup)
1523 tree cleanup;
1524{
9762d48d 1525 struct eh_node *node;
b37f006b 1526 int dont_issue;
9762d48d
JM
1527
1528 if (! doing_eh (0) || exceptions_via_longjmp)
1529 return;
1530
1531 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1532 node = node->chain;
1533 if (node == 0)
1534 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1535 node = node->chain;
1536 if (node == 0)
1537 abort ();
1538
b37f006b
AM
1539 /* If the outer context label has not been issued yet, we don't want
1540 to issue it as a part of this region, unless this is the
1541 correct region for the outer context. If we did, then the label for
1542 the outer context will be WITHIN the begin/end labels,
1543 and we could get an infinte loop when it tried to rethrow, or just
1544 generally incorrect execution following a throw. */
1545
1546 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1547 && (ehstack.top->entry != node->entry));
1548
e701eb4d 1549 ehstack.top->entry->outer_context = node->entry->outer_context;
9762d48d 1550
b37f006b
AM
1551 /* Since we are rethrowing to the OUTER region, we know we don't need
1552 a jump around sequence for this region, so we'll pretend the outer
1553 context label has been issued by setting INSN_UID to 1, then clearing
1554 it again afterwards. */
1555
1556 if (dont_issue)
1557 INSN_UID (node->entry->outer_context) = 1;
1558
e701eb4d
JM
1559 /* Just rethrow. size_zero_node is just a NOP. */
1560 expand_eh_region_end (size_zero_node);
b37f006b
AM
1561
1562 if (dont_issue)
1563 INSN_UID (node->entry->outer_context) = 0;
9762d48d
JM
1564}
1565
27a36778
MS
1566/* If we are using the setjmp/longjmp EH codegen method, we emit a
1567 call to __sjthrow.
1568
1569 Otherwise, we emit a call to __throw and note that we threw
1570 something, so we know we need to generate the necessary code for
1571 __throw.
12670d88
RK
1572
1573 Before invoking throw, the __eh_pc variable must have been set up
1574 to contain the PC being thrown from. This address is used by
27a36778 1575 __throw to determine which exception region (if any) is
abeeec2a 1576 responsible for handling the exception. */
4956d07c 1577
27a36778 1578void
4956d07c
MS
1579emit_throw ()
1580{
27a36778
MS
1581 if (exceptions_via_longjmp)
1582 {
1583 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1584 }
1585 else
1586 {
4956d07c 1587#ifdef JUMP_TO_THROW
27a36778 1588 emit_indirect_jump (throw_libfunc);
4956d07c 1589#else
27a36778 1590 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
4956d07c 1591#endif
27a36778 1592 }
4956d07c
MS
1593 emit_barrier ();
1594}
1595
e701eb4d
JM
1596/* Throw the current exception. If appropriate, this is done by jumping
1597 to the next handler. */
4956d07c
MS
1598
1599void
e701eb4d 1600expand_internal_throw ()
4956d07c 1601{
e701eb4d 1602 emit_throw ();
4956d07c
MS
1603}
1604
1605/* Called from expand_exception_blocks and expand_end_catch_block to
27a36778 1606 emit any pending handlers/cleanups queued from expand_eh_region_end. */
4956d07c
MS
1607
1608void
1609expand_leftover_cleanups ()
1610{
1611 struct eh_entry *entry;
1612
1613 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1614 {
1615 rtx prev;
1616
12670d88
RK
1617 /* A leftover try block. Shouldn't be one here. */
1618 if (entry->finalization == integer_zero_node)
1619 abort ();
1620
abeeec2a 1621 /* Output the label for the start of the exception handler. */
4956d07c 1622
9a0d1e1b 1623 receive_exception_label (entry->exception_handler_label);
f51430ed 1624
9a0d1e1b
AM
1625 /* register a handler for this cleanup region */
1626 add_new_handler (
1627 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1628 get_new_handler (entry->exception_handler_label, NULL));
05f5b2cd 1629
abeeec2a 1630 /* And now generate the insns for the handler. */
4956d07c
MS
1631 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1632
1633 prev = get_last_insn ();
27a36778 1634 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1635 /* Emit code to throw to the outer context if we fall off
1636 the end of the handler. */
1637 expand_rethrow (entry->outer_context);
4956d07c 1638
c7ae64f2 1639 do_pending_stack_adjust ();
4956d07c
MS
1640 free (entry);
1641 }
1642}
1643
abeeec2a 1644/* Called at the start of a block of try statements. */
12670d88
RK
1645void
1646expand_start_try_stmts ()
1647{
1648 if (! doing_eh (1))
1649 return;
1650
1651 expand_eh_region_start ();
1652}
1653
9a0d1e1b
AM
1654/* Called to begin a catch clause. The parameter is the object which
1655 will be passed to the runtime type check routine. */
1656void
0d3453df 1657start_catch_handler (rtime)
9a0d1e1b
AM
1658 tree rtime;
1659{
9a9deafc
AM
1660 rtx handler_label;
1661 int insn_region_num;
1662 int eh_region_entry;
1663
1664 if (! doing_eh (1))
1665 return;
1666
1667 handler_label = catchstack.top->entry->exception_handler_label;
1668 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1669 eh_region_entry = find_func_region (insn_region_num);
9a0d1e1b
AM
1670
1671 /* If we've already issued this label, pick a new one */
7ecb5d27 1672 if (catchstack.top->entry->label_used)
9a0d1e1b
AM
1673 handler_label = gen_exception_label ();
1674 else
1675 catchstack.top->entry->label_used = 1;
1676
1677 receive_exception_label (handler_label);
1678
1679 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
bf71cd2e
AM
1680
1681 if (flag_new_exceptions && ! exceptions_via_longjmp)
1682 return;
1683
1684 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1685 issue code to compare 'rtime' to the value in eh_info, via the
1686 matching function in eh_info. If its is false, we branch around
1687 the handler we are about to issue. */
1688
1689 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1690 {
1691 rtx call_rtx, rtime_address;
1692
1693 if (catchstack.top->entry->false_label != NULL_RTX)
7ac2148b 1694 fatal ("Compiler Bug: Never issued previous false_label");
bf71cd2e
AM
1695 catchstack.top->entry->false_label = gen_exception_label ();
1696
1697 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
30bf7f73
DT
1698#ifdef POINTERS_EXTEND_UNSIGNED
1699 rtime_address = convert_memory_address (Pmode, rtime_address);
1700#endif
bf71cd2e
AM
1701 rtime_address = force_reg (Pmode, rtime_address);
1702
1703 /* Now issue the call, and branch around handler if needed */
43566944
AM
1704 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1705 0, SImode, 1, rtime_address, Pmode);
bf71cd2e
AM
1706
1707 /* Did the function return true? */
c5d5d461
JL
1708 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1709 GET_MODE (call_rtx), 0, 0,
1710 catchstack.top->entry->false_label);
bf71cd2e
AM
1711 }
1712}
1713
1714/* Called to end a catch clause. If we aren't using the new exception
1715 model tabel mechanism, we need to issue the branch-around label
1716 for the end of the catch block. */
1717
1718void
1719end_catch_handler ()
1720{
e6cfb550 1721 if (! doing_eh (1))
bf71cd2e 1722 return;
e6cfb550
AM
1723
1724 if (flag_new_exceptions && ! exceptions_via_longjmp)
1725 {
1726 emit_barrier ();
1727 return;
1728 }
bf71cd2e
AM
1729
1730 /* A NULL label implies the catch clause was a catch all or cleanup */
1731 if (catchstack.top->entry->false_label == NULL_RTX)
1732 return;
1733
1734 emit_label (catchstack.top->entry->false_label);
1735 catchstack.top->entry->false_label = NULL_RTX;
9a0d1e1b
AM
1736}
1737
12670d88
RK
1738/* Generate RTL for the start of a group of catch clauses.
1739
1740 It is responsible for starting a new instruction sequence for the
1741 instructions in the catch block, and expanding the handlers for the
1742 internally-generated exception regions nested within the try block
abeeec2a 1743 corresponding to this catch block. */
4956d07c
MS
1744
1745void
1746expand_start_all_catch ()
1747{
1748 struct eh_entry *entry;
1749 tree label;
e701eb4d 1750 rtx outer_context;
4956d07c
MS
1751
1752 if (! doing_eh (1))
1753 return;
1754
e701eb4d 1755 outer_context = ehstack.top->entry->outer_context;
1418bb67 1756
abeeec2a 1757 /* End the try block. */
12670d88
RK
1758 expand_eh_region_end (integer_zero_node);
1759
4956d07c
MS
1760 emit_line_note (input_filename, lineno);
1761 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1762
12670d88 1763 /* The label for the exception handling block that we will save.
956d6950 1764 This is Lresume in the documentation. */
4956d07c
MS
1765 expand_label (label);
1766
12670d88 1767 /* Push the label that points to where normal flow is resumed onto
abeeec2a 1768 the top of the label stack. */
4956d07c
MS
1769 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1770
1771 /* Start a new sequence for all the catch blocks. We will add this
12670d88 1772 to the global sequence catch_clauses when we have completed all
4956d07c
MS
1773 the handlers in this handler-seq. */
1774 start_sequence ();
1775
9a0d1e1b
AM
1776 entry = dequeue_eh_entry (&ehqueue);
1777 for ( ; entry->finalization != integer_zero_node;
1778 entry = dequeue_eh_entry (&ehqueue))
4956d07c
MS
1779 {
1780 rtx prev;
1781
9a0d1e1b 1782 /* Emit the label for the cleanup handler for this region, and
12670d88
RK
1783 expand the code for the handler.
1784
1785 Note that a catch region is handled as a side-effect here;
1786 for a try block, entry->finalization will contain
1787 integer_zero_node, so no code will be generated in the
1788 expand_expr call below. But, the label for the handler will
1789 still be emitted, so any code emitted after this point will
abeeec2a 1790 end up being the handler. */
9a0d1e1b
AM
1791
1792 receive_exception_label (entry->exception_handler_label);
05f5b2cd 1793
9a0d1e1b
AM
1794 /* register a handler for this cleanup region */
1795 add_new_handler (
1796 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1797 get_new_handler (entry->exception_handler_label, NULL));
4956d07c 1798
9a0d1e1b 1799 /* And now generate the insns for the cleanup handler. */
27a36778
MS
1800 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1801
4956d07c 1802 prev = get_last_insn ();
12670d88 1803 if (prev == NULL || GET_CODE (prev) != BARRIER)
e701eb4d
JM
1804 /* Code to throw out to outer context when we fall off end
1805 of the handler. We can't do this here for catch blocks,
1806 so it's done in expand_end_all_catch instead. */
1807 expand_rethrow (entry->outer_context);
12670d88 1808
f45ebe47 1809 do_pending_stack_adjust ();
4956d07c
MS
1810 free (entry);
1811 }
e701eb4d 1812
9a0d1e1b
AM
1813 /* At this point, all the cleanups are done, and the ehqueue now has
1814 the current exception region at its head. We dequeue it, and put it
1815 on the catch stack. */
1816
1817 push_entry (&catchstack, entry);
1818
e701eb4d
JM
1819 /* If we are not doing setjmp/longjmp EH, because we are reordered
1820 out of line, we arrange to rethrow in the outer context. We need to
1821 do this because we are not physically within the region, if any, that
1822 logically contains this catch block. */
1823 if (! exceptions_via_longjmp)
1824 {
1825 expand_eh_region_start ();
1826 ehstack.top->entry->outer_context = outer_context;
1827 }
5816cb14 1828
4956d07c
MS
1829}
1830
12670d88
RK
1831/* Finish up the catch block. At this point all the insns for the
1832 catch clauses have already been generated, so we only have to add
1833 them to the catch_clauses list. We also want to make sure that if
1834 we fall off the end of the catch clauses that we rethrow to the
abeeec2a 1835 outer EH region. */
4956d07c
MS
1836
1837void
1838expand_end_all_catch ()
1839{
e6cfb550 1840 rtx new_catch_clause;
0d3453df 1841 struct eh_entry *entry;
4956d07c
MS
1842
1843 if (! doing_eh (1))
1844 return;
1845
0d3453df
AM
1846 /* Dequeue the current catch clause region. */
1847 entry = pop_eh_entry (&catchstack);
1848 free (entry);
1849
e701eb4d 1850 if (! exceptions_via_longjmp)
5dfa7520 1851 {
e6cfb550 1852 rtx outer_context = ehstack.top->entry->outer_context;
5dfa7520
JM
1853
1854 /* Finish the rethrow region. size_zero_node is just a NOP. */
1855 expand_eh_region_end (size_zero_node);
e6cfb550
AM
1856 /* New exceptions handling models will never have a fall through
1857 of a catch clause */
1858 if (!flag_new_exceptions)
1859 expand_rethrow (outer_context);
5dfa7520 1860 }
e6cfb550
AM
1861 else
1862 expand_rethrow (NULL_RTX);
5dfa7520 1863
e701eb4d
JM
1864 /* Code to throw out to outer context, if we fall off end of catch
1865 handlers. This is rethrow (Lresume, same id, same obj) in the
1866 documentation. We use Lresume because we know that it will throw
1867 to the correct context.
12670d88 1868
e701eb4d
JM
1869 In other words, if the catch handler doesn't exit or return, we
1870 do a "throw" (using the address of Lresume as the point being
1871 thrown from) so that the outer EH region can then try to process
1872 the exception. */
4956d07c
MS
1873
1874 /* Now we have the complete catch sequence. */
1875 new_catch_clause = get_insns ();
1876 end_sequence ();
1877
1878 /* This level of catch blocks is done, so set up the successful
1879 catch jump label for the next layer of catch blocks. */
1880 pop_label_entry (&caught_return_label_stack);
956d6950 1881 pop_label_entry (&outer_context_label_stack);
4956d07c
MS
1882
1883 /* Add the new sequence of catches to the main one for this function. */
1884 push_to_sequence (catch_clauses);
1885 emit_insns (new_catch_clause);
1886 catch_clauses = get_insns ();
1887 end_sequence ();
1888
1889 /* Here we fall through into the continuation code. */
1890}
1891
e701eb4d
JM
1892/* Rethrow from the outer context LABEL. */
1893
1894static void
1895expand_rethrow (label)
1896 rtx label;
1897{
1898 if (exceptions_via_longjmp)
1899 emit_throw ();
1900 else
e6cfb550
AM
1901 if (flag_new_exceptions)
1902 {
1903 rtx insn, val;
1904 if (label == NULL_RTX)
1905 label = last_rethrow_symbol;
1906 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
1907 SYMBOL_REF_USED (label) = 1;
e881bb1b
RH
1908
1909 /* Search backwards for the actual call insn. */
e6cfb550 1910 insn = get_last_insn ();
e881bb1b
RH
1911 while (GET_CODE (insn) != CALL_INSN)
1912 insn = PREV_INSN (insn);
1913 delete_insns_since (insn);
1914
e6cfb550 1915 /* Mark the label/symbol on the call. */
e881bb1b 1916 val = GEN_INT (eh_region_from_symbol (label));
e6cfb550 1917 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, val,
e881bb1b 1918 REG_NOTES (insn));
e6cfb550
AM
1919 emit_barrier ();
1920 }
1921 else
1922 emit_jump (label);
e701eb4d
JM
1923}
1924
12670d88 1925/* End all the pending exception regions on protect_list. The handlers
27a36778 1926 will be emitted when expand_leftover_cleanups is invoked. */
4956d07c
MS
1927
1928void
1929end_protect_partials ()
1930{
1931 while (protect_list)
1932 {
1933 expand_eh_region_end (TREE_VALUE (protect_list));
1934 protect_list = TREE_CHAIN (protect_list);
1935 }
1936}
27a36778
MS
1937
1938/* Arrange for __terminate to be called if there is an unhandled throw
1939 from within E. */
1940
1941tree
1942protect_with_terminate (e)
1943 tree e;
1944{
1945 /* We only need to do this when using setjmp/longjmp EH and the
1946 language requires it, as otherwise we protect all of the handlers
1947 at once, if we need to. */
1948 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1949 {
1950 tree handler, result;
1951
1952 /* All cleanups must be on the function_obstack. */
1953 push_obstacks_nochange ();
1954 resume_temporary_allocation ();
1955
1956 handler = make_node (RTL_EXPR);
1957 TREE_TYPE (handler) = void_type_node;
1958 RTL_EXPR_RTL (handler) = const0_rtx;
1959 TREE_SIDE_EFFECTS (handler) = 1;
1960 start_sequence_for_rtl_expr (handler);
1961
1962 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1963 emit_barrier ();
1964
1965 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1966 end_sequence ();
1967
1968 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1969 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1970 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1971 TREE_READONLY (result) = TREE_READONLY (e);
1972
1973 pop_obstacks ();
1974
1975 e = result;
1976 }
1977
1978 return e;
1979}
4956d07c
MS
1980\f
1981/* The exception table that we build that is used for looking up and
12670d88
RK
1982 dispatching exceptions, the current number of entries, and its
1983 maximum size before we have to extend it.
1984
1985 The number in eh_table is the code label number of the exception
27a36778
MS
1986 handler for the region. This is added by add_eh_table_entry and
1987 used by output_exception_table_entry. */
12670d88 1988
9a0d1e1b
AM
1989static int *eh_table = NULL;
1990static int eh_table_size = 0;
1991static int eh_table_max_size = 0;
4956d07c
MS
1992
1993/* Note the need for an exception table entry for region N. If we
12670d88
RK
1994 don't need to output an explicit exception table, avoid all of the
1995 extra work.
1996
1997 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
9a0d1e1b 1998 (Or NOTE_INSN_EH_REGION_END sometimes)
12670d88 1999 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
abeeec2a 2000 label number of the exception handler for the region. */
4956d07c
MS
2001
2002void
2003add_eh_table_entry (n)
2004 int n;
2005{
2006#ifndef OMIT_EH_TABLE
2007 if (eh_table_size >= eh_table_max_size)
2008 {
2009 if (eh_table)
2010 {
2011 eh_table_max_size += eh_table_max_size>>1;
2012
2013 if (eh_table_max_size < 0)
2014 abort ();
2015
ca55abae
JM
2016 eh_table = (int *) xrealloc (eh_table,
2017 eh_table_max_size * sizeof (int));
4956d07c
MS
2018 }
2019 else
2020 {
2021 eh_table_max_size = 252;
2022 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2023 }
2024 }
2025 eh_table[eh_table_size++] = n;
2026#endif
2027}
2028
12670d88
RK
2029/* Return a non-zero value if we need to output an exception table.
2030
2031 On some platforms, we don't have to output a table explicitly.
2032 This routine doesn't mean we don't have one. */
4956d07c
MS
2033
2034int
2035exception_table_p ()
2036{
2037 if (eh_table)
2038 return 1;
2039
2040 return 0;
2041}
2042
38e01259 2043/* Output the entry of the exception table corresponding to the
12670d88
RK
2044 exception region numbered N to file FILE.
2045
2046 N is the code label number corresponding to the handler of the
abeeec2a 2047 region. */
4956d07c
MS
2048
2049static void
2050output_exception_table_entry (file, n)
2051 FILE *file;
2052 int n;
2053{
2054 char buf[256];
2055 rtx sym;
e6cfb550
AM
2056 struct handler_info *handler = get_first_handler (n);
2057 int index = find_func_region (n);
2058 rtx rethrow;
2059
2060 /* form and emit the rethrow label, if needed */
2061 rethrow = function_eh_regions[index].rethrow_label;
2062 if (rethrow != NULL_RTX && !flag_new_exceptions)
2063 rethrow = NULL_RTX;
2064 if (rethrow != NULL_RTX && handler == NULL)
2065 if (! SYMBOL_REF_USED (rethrow))
2066 rethrow = NULL_RTX;
9a0d1e1b 2067
4956d07c 2068
e6cfb550 2069 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
9a0d1e1b 2070 {
e6cfb550
AM
2071 /* rethrow label should indicate the LAST entry for a region */
2072 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2073 {
2074 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2075 assemble_label(buf);
2076 rethrow = NULL_RTX;
2077 }
2078
9a0d1e1b
AM
2079 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2080 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2081 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
4956d07c 2082
9a0d1e1b
AM
2083 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2084 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2085 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2086
e6cfb550
AM
2087 if (handler == NULL)
2088 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2089 else
0177de87
AM
2090 {
2091 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2092 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2093 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2094 }
4956d07c 2095
a1622f83
AM
2096 if (flag_new_exceptions)
2097 {
e6cfb550 2098 if (handler == NULL || handler->type_info == NULL)
a1622f83
AM
2099 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2100 else
9c606f69
AM
2101 if (handler->type_info == CATCH_ALL_TYPE)
2102 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2103 POINTER_SIZE / BITS_PER_UNIT, 1);
2104 else
2105 output_constant ((tree)(handler->type_info),
9a0d1e1b 2106 POINTER_SIZE / BITS_PER_UNIT);
a1622f83 2107 }
9a0d1e1b 2108 putc ('\n', file); /* blank line */
bf71cd2e 2109 /* We only output the first label under the old scheme */
e6cfb550 2110 if (! flag_new_exceptions || handler == NULL)
bf71cd2e 2111 break;
9a0d1e1b 2112 }
4956d07c
MS
2113}
2114
abeeec2a 2115/* Output the exception table if we have and need one. */
4956d07c 2116
9a0d1e1b
AM
2117static short language_code = 0;
2118static short version_code = 0;
2119
2120/* This routine will set the language code for exceptions. */
804a4e13
KG
2121void
2122set_exception_lang_code (code)
2123 int code;
9a0d1e1b
AM
2124{
2125 language_code = code;
2126}
2127
2128/* This routine will set the language version code for exceptions. */
804a4e13
KG
2129void
2130set_exception_version_code (code)
2ec10ea9 2131 int code;
9a0d1e1b
AM
2132{
2133 version_code = code;
2134}
2135
9a0d1e1b 2136
4956d07c
MS
2137void
2138output_exception_table ()
2139{
2140 int i;
e6cfb550 2141 char buf[256];
4956d07c
MS
2142 extern FILE *asm_out_file;
2143
ca55abae 2144 if (! doing_eh (0) || ! eh_table)
4956d07c
MS
2145 return;
2146
2147 exception_section ();
2148
2149 /* Beginning marker for table. */
2150 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2151 assemble_label ("__EXCEPTION_TABLE__");
2152
a1622f83
AM
2153 if (flag_new_exceptions)
2154 {
2155 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2156 POINTER_SIZE / BITS_PER_UNIT, 1);
2157 assemble_integer (GEN_INT (language_code), 2 , 1);
2158 assemble_integer (GEN_INT (version_code), 2 , 1);
2159
2160 /* Add enough padding to make sure table aligns on a pointer boundry. */
2161 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2162 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2163 ;
2164 if (i != 0)
2165 assemble_integer (const0_rtx, i , 1);
e6cfb550
AM
2166
2167 /* Generate the label for offset calculations on rethrows */
2168 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2169 assemble_label(buf);
a1622f83 2170 }
9a0d1e1b 2171
4956d07c
MS
2172 for (i = 0; i < eh_table_size; ++i)
2173 output_exception_table_entry (asm_out_file, eh_table[i]);
2174
2175 free (eh_table);
9a0d1e1b 2176 clear_function_eh_region ();
4956d07c
MS
2177
2178 /* Ending marker for table. */
e6cfb550
AM
2179 /* Generate the label for end of table. */
2180 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2181 assemble_label(buf);
4956d07c 2182 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
a1622f83 2183
9a0d1e1b
AM
2184 /* for binary compatability, the old __throw checked the second
2185 position for a -1, so we should output at least 2 -1's */
a1622f83
AM
2186 if (! flag_new_exceptions)
2187 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2188
4956d07c
MS
2189 putc ('\n', asm_out_file); /* blank line */
2190}
4956d07c 2191\f
154bba13
TT
2192/* Emit code to get EH context.
2193
2194 We have to scan thru the code to find possible EH context registers.
2195 Inlined functions may use it too, and thus we'll have to be able
2196 to change them too.
2197
2198 This is done only if using exceptions_via_longjmp. */
2199
2200void
2201emit_eh_context ()
2202{
2203 rtx insn;
2204 rtx ehc = 0;
2205
2206 if (! doing_eh (0))
2207 return;
2208
2209 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2210 if (GET_CODE (insn) == INSN
2211 && GET_CODE (PATTERN (insn)) == USE)
2212 {
2213 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2214 if (reg)
2215 {
2216 rtx insns;
2217
100d81d4
JM
2218 start_sequence ();
2219
d9c92f32
JM
2220 /* If this is the first use insn, emit the call here. This
2221 will always be at the top of our function, because if
2222 expand_inline_function notices a REG_EH_CONTEXT note, it
2223 adds a use insn to this function as well. */
154bba13 2224 if (ehc == 0)
01eb7f9a 2225 ehc = call_get_eh_context ();
154bba13 2226
154bba13
TT
2227 emit_move_insn (XEXP (reg, 0), ehc);
2228 insns = get_insns ();
2229 end_sequence ();
2230
2231 emit_insns_before (insns, insn);
0fc1434b
AM
2232
2233 /* At -O0, we must make the context register stay alive so
2234 that the stupid.c register allocator doesn't get confused. */
2235 if (obey_regdecls != 0)
2236 {
2237 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2238 emit_insn_before (insns, get_last_insn ());
2239 }
154bba13
TT
2240 }
2241 }
2242}
2243
12670d88
RK
2244/* Scan the current insns and build a list of handler labels. The
2245 resulting list is placed in the global variable exception_handler_labels.
2246
2247 It is called after the last exception handling region is added to
2248 the current function (when the rtl is almost all built for the
2249 current function) and before the jump optimization pass. */
4956d07c
MS
2250
2251void
2252find_exception_handler_labels ()
2253{
2254 rtx insn;
4956d07c
MS
2255
2256 exception_handler_labels = NULL_RTX;
2257
2258 /* If we aren't doing exception handling, there isn't much to check. */
2259 if (! doing_eh (0))
2260 return;
2261
12670d88
RK
2262 /* For each start of a region, add its label to the list. */
2263
4956d07c
MS
2264 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2265 {
9a0d1e1b 2266 struct handler_info* ptr;
4956d07c
MS
2267 if (GET_CODE (insn) == NOTE
2268 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2269 {
9a0d1e1b
AM
2270 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
2271 for ( ; ptr; ptr = ptr->next)
2272 {
2273 /* make sure label isn't in the list already */
2274 rtx x;
2275 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2276 if (XEXP (x, 0) == ptr->handler_label)
2277 break;
2278 if (! x)
2279 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2280 ptr->handler_label, exception_handler_labels);
2281 }
4956d07c
MS
2282 }
2283 }
9a0d1e1b
AM
2284}
2285
2286/* Return a value of 1 if the parameter label number is an exception handler
2287 label. Return 0 otherwise. */
988cea7d 2288
9a0d1e1b
AM
2289int
2290is_exception_handler_label (lab)
2291 int lab;
2292{
2293 rtx x;
2294 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2295 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2296 return 1;
2297 return 0;
4956d07c
MS
2298}
2299
12670d88
RK
2300/* Perform sanity checking on the exception_handler_labels list.
2301
2302 Can be called after find_exception_handler_labels is called to
2303 build the list of exception handlers for the current function and
2304 before we finish processing the current function. */
4956d07c
MS
2305
2306void
2307check_exception_handler_labels ()
2308{
9a0d1e1b 2309 rtx insn, insn2;
4956d07c
MS
2310
2311 /* If we aren't doing exception handling, there isn't much to check. */
2312 if (! doing_eh (0))
2313 return;
2314
9a0d1e1b
AM
2315 /* Make sure there is no more than 1 copy of a label */
2316 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
4956d07c 2317 {
9a0d1e1b
AM
2318 int count = 0;
2319 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2320 if (XEXP (insn, 0) == XEXP (insn2, 0))
2321 count++;
2322 if (count != 1)
2323 warning ("Counted %d copies of EH region %d in list.\n", count,
2324 CODE_LABEL_NUMBER (insn));
4956d07c
MS
2325 }
2326
4956d07c
MS
2327}
2328\f
2329/* This group of functions initializes the exception handling data
2330 structures at the start of the compilation, initializes the data
12670d88 2331 structures at the start of a function, and saves and restores the
4956d07c
MS
2332 exception handling data structures for the start/end of a nested
2333 function. */
2334
2335/* Toplevel initialization for EH things. */
2336
2337void
2338init_eh ()
2339{
e6cfb550
AM
2340 first_rethrow_symbol = create_rethrow_ref (0);
2341 final_rethrow = gen_exception_label ();
2342 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
4956d07c
MS
2343}
2344
abeeec2a 2345/* Initialize the per-function EH information. */
4956d07c
MS
2346
2347void
2348init_eh_for_function ()
2349{
b384405b
BS
2350 current_function->eh = (struct eh_status *) xmalloc (sizeof (struct eh_status));
2351
4956d07c 2352 ehstack.top = 0;
9a0d1e1b 2353 catchstack.top = 0;
4956d07c
MS
2354 ehqueue.head = ehqueue.tail = 0;
2355 catch_clauses = NULL_RTX;
2356 false_label_stack = 0;
2357 caught_return_label_stack = 0;
2358 protect_list = NULL_TREE;
154bba13 2359 current_function_ehc = NULL_RTX;
71038426
RH
2360 eh_return_context = NULL_RTX;
2361 eh_return_stack_adjust = NULL_RTX;
2362 eh_return_handler = NULL_RTX;
2363 eh_return_stub_label = NULL_RTX;
4956d07c 2364}
4956d07c
MS
2365\f
2366/* This section is for the exception handling specific optimization
2367 pass. First are the internal routines, and then the main
2368 optimization pass. */
2369
2370/* Determine if the given INSN can throw an exception. */
2371
2372static int
2373can_throw (insn)
2374 rtx insn;
2375{
abeeec2a 2376 /* Calls can always potentially throw exceptions. */
4956d07c
MS
2377 if (GET_CODE (insn) == CALL_INSN)
2378 return 1;
2379
27a36778
MS
2380 if (asynchronous_exceptions)
2381 {
2382 /* If we wanted asynchronous exceptions, then everything but NOTEs
2383 and CODE_LABELs could throw. */
2384 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2385 return 1;
2386 }
4956d07c
MS
2387
2388 return 0;
2389}
2390
12670d88
RK
2391/* Scan a exception region looking for the matching end and then
2392 remove it if possible. INSN is the start of the region, N is the
2393 region number, and DELETE_OUTER is to note if anything in this
2394 region can throw.
2395
2396 Regions are removed if they cannot possibly catch an exception.
27a36778 2397 This is determined by invoking can_throw on each insn within the
12670d88
RK
2398 region; if can_throw returns true for any of the instructions, the
2399 region can catch an exception, since there is an insn within the
2400 region that is capable of throwing an exception.
2401
2402 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
27a36778 2403 calls abort if it can't find one.
12670d88
RK
2404
2405 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
abeeec2a 2406 correspond to the region number, or if DELETE_OUTER is NULL. */
4956d07c
MS
2407
2408static rtx
2409scan_region (insn, n, delete_outer)
2410 rtx insn;
2411 int n;
2412 int *delete_outer;
2413{
2414 rtx start = insn;
2415
2416 /* Assume we can delete the region. */
2417 int delete = 1;
2418
e6cfb550
AM
2419 int r = find_func_region (n);
2420 /* Can't delete something which is rethrown to. */
2421 if (SYMBOL_REF_USED((function_eh_regions[r].rethrow_label)))
2422 delete = 0;
2423
3a88cbd1
JL
2424 if (insn == NULL_RTX
2425 || GET_CODE (insn) != NOTE
2426 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2427 || NOTE_BLOCK_NUMBER (insn) != n
2428 || delete_outer == NULL)
2429 abort ();
12670d88 2430
4956d07c
MS
2431 insn = NEXT_INSN (insn);
2432
2433 /* Look for the matching end. */
2434 while (! (GET_CODE (insn) == NOTE
2435 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2436 {
2437 /* If anything can throw, we can't remove the region. */
2438 if (delete && can_throw (insn))
2439 {
2440 delete = 0;
2441 }
2442
2443 /* Watch out for and handle nested regions. */
2444 if (GET_CODE (insn) == NOTE
2445 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2446 {
2447 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2448 }
2449
2450 insn = NEXT_INSN (insn);
2451 }
2452
2453 /* The _BEG/_END NOTEs must match and nest. */
2454 if (NOTE_BLOCK_NUMBER (insn) != n)
2455 abort ();
2456
12670d88 2457 /* If anything in this exception region can throw, we can throw. */
4956d07c
MS
2458 if (! delete)
2459 *delete_outer = 0;
2460 else
2461 {
2462 /* Delete the start and end of the region. */
2463 delete_insn (start);
2464 delete_insn (insn);
2465
9a0d1e1b
AM
2466/* We no longer removed labels here, since flow will now remove any
2467 handler which cannot be called any more. */
2468
2469#if 0
4956d07c
MS
2470 /* Only do this part if we have built the exception handler
2471 labels. */
2472 if (exception_handler_labels)
2473 {
2474 rtx x, *prev = &exception_handler_labels;
2475
2476 /* Find it in the list of handlers. */
2477 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2478 {
2479 rtx label = XEXP (x, 0);
2480 if (CODE_LABEL_NUMBER (label) == n)
2481 {
2482 /* If we are the last reference to the handler,
2483 delete it. */
2484 if (--LABEL_NUSES (label) == 0)
2485 delete_insn (label);
2486
2487 if (optimize)
2488 {
2489 /* Remove it from the list of exception handler
2490 labels, if we are optimizing. If we are not, then
2491 leave it in the list, as we are not really going to
2492 remove the region. */
2493 *prev = XEXP (x, 1);
2494 XEXP (x, 1) = 0;
2495 XEXP (x, 0) = 0;
2496 }
2497
2498 break;
2499 }
2500 prev = &XEXP (x, 1);
2501 }
2502 }
9a0d1e1b 2503#endif
4956d07c
MS
2504 }
2505 return insn;
2506}
2507
2508/* Perform various interesting optimizations for exception handling
2509 code.
2510
12670d88
RK
2511 We look for empty exception regions and make them go (away). The
2512 jump optimization code will remove the handler if nothing else uses
abeeec2a 2513 it. */
4956d07c
MS
2514
2515void
2516exception_optimize ()
2517{
381127e8 2518 rtx insn;
4956d07c
MS
2519 int n;
2520
12670d88 2521 /* Remove empty regions. */
4956d07c
MS
2522 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2523 {
2524 if (GET_CODE (insn) == NOTE
2525 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2526 {
27a36778 2527 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
12670d88
RK
2528 insn, we will indirectly skip through all the insns
2529 inbetween. We are also guaranteed that the value of insn
27a36778 2530 returned will be valid, as otherwise scan_region won't
abeeec2a 2531 return. */
4956d07c
MS
2532 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2533 }
2534 }
2535}
ca55abae
JM
2536\f
2537/* Various hooks for the DWARF 2 __throw routine. */
2538
2539/* Do any necessary initialization to access arbitrary stack frames.
2540 On the SPARC, this means flushing the register windows. */
2541
2542void
2543expand_builtin_unwind_init ()
2544{
2545 /* Set this so all the registers get saved in our frame; we need to be
2546 able to copy the saved values for any registers from frames we unwind. */
2547 current_function_has_nonlocal_label = 1;
2548
2549#ifdef SETUP_FRAME_ADDRESSES
2550 SETUP_FRAME_ADDRESSES ();
2551#endif
2552}
2553
2554/* Given a value extracted from the return address register or stack slot,
2555 return the actual address encoded in that value. */
2556
2557rtx
2558expand_builtin_extract_return_addr (addr_tree)
2559 tree addr_tree;
2560{
2561 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2562 return eh_outer_context (addr);
2563}
2564
2565/* Given an actual address in addr_tree, do any necessary encoding
2566 and return the value to be stored in the return address register or
2567 stack slot so the epilogue will return to that address. */
2568
2569rtx
2570expand_builtin_frob_return_addr (addr_tree)
2571 tree addr_tree;
2572{
2573 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2574#ifdef RETURN_ADDR_OFFSET
2575 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2576#endif
2577 return addr;
2578}
2579
71038426
RH
2580/* Choose three registers for communication between the main body of
2581 __throw and the epilogue (or eh stub) and the exception handler.
2582 We must do this with hard registers because the epilogue itself
2583 will be generated after reload, at which point we may not reference
2584 pseudos at all.
ca55abae 2585
71038426
RH
2586 The first passes the exception context to the handler. For this
2587 we use the return value register for a void*.
ca55abae 2588
71038426
RH
2589 The second holds the stack pointer value to be restored. For
2590 this we use the static chain register if it exists and is different
2591 from the previous, otherwise some arbitrary call-clobbered register.
ca55abae 2592
71038426
RH
2593 The third holds the address of the handler itself. Here we use
2594 some arbitrary call-clobbered register. */
ca55abae
JM
2595
2596static void
71038426
RH
2597eh_regs (pcontext, psp, pra, outgoing)
2598 rtx *pcontext, *psp, *pra;
ca55abae
JM
2599 int outgoing;
2600{
71038426
RH
2601 rtx rcontext, rsp, rra;
2602 int i;
ca55abae
JM
2603
2604#ifdef FUNCTION_OUTGOING_VALUE
2605 if (outgoing)
71038426
RH
2606 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2607 current_function_decl);
ca55abae
JM
2608 else
2609#endif
71038426
RH
2610 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2611 current_function_decl);
ca55abae
JM
2612
2613#ifdef STATIC_CHAIN_REGNUM
2614 if (outgoing)
71038426 2615 rsp = static_chain_incoming_rtx;
ca55abae 2616 else
71038426
RH
2617 rsp = static_chain_rtx;
2618 if (REGNO (rsp) == REGNO (rcontext))
ca55abae 2619#endif /* STATIC_CHAIN_REGNUM */
71038426 2620 rsp = NULL_RTX;
ca55abae 2621
71038426 2622 if (rsp == NULL_RTX)
ca55abae 2623 {
ca55abae 2624 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
71038426
RH
2625 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2626 break;
2627 if (i == FIRST_PSEUDO_REGISTER)
2628 abort();
ca55abae 2629
71038426 2630 rsp = gen_rtx_REG (Pmode, i);
ca55abae
JM
2631 }
2632
71038426
RH
2633 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2634 if (call_used_regs[i] && ! fixed_regs[i]
2635 && i != REGNO (rcontext) && i != REGNO (rsp))
2636 break;
2637 if (i == FIRST_PSEUDO_REGISTER)
2638 abort();
2639
2640 rra = gen_rtx_REG (Pmode, i);
ca55abae 2641
71038426
RH
2642 *pcontext = rcontext;
2643 *psp = rsp;
2644 *pra = rra;
2645}
9a0d1e1b
AM
2646
2647/* Retrieve the register which contains the pointer to the eh_context
2648 structure set the __throw. */
2649
2650rtx
2651get_reg_for_handler ()
2652{
2653 rtx reg1;
2654 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2655 current_function_decl);
2656 return reg1;
2657}
2658
71038426
RH
2659/* Set up the epilogue with the magic bits we'll need to return to the
2660 exception handler. */
9a0d1e1b 2661
71038426
RH
2662void
2663expand_builtin_eh_return (context, stack, handler)
2664 tree context, stack, handler;
a1622f83 2665{
71038426
RH
2666 if (eh_return_context)
2667 error("Duplicate call to __builtin_eh_return");
a1622f83 2668
71038426
RH
2669 eh_return_context
2670 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2671 eh_return_stack_adjust
2672 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2673 eh_return_handler
2674 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
a1622f83
AM
2675}
2676
71038426
RH
2677void
2678expand_eh_return ()
ca55abae 2679{
71038426
RH
2680 rtx reg1, reg2, reg3;
2681 rtx stub_start, after_stub;
2682 rtx ra, tmp;
ca55abae 2683
71038426
RH
2684 if (!eh_return_context)
2685 return;
ca55abae 2686
2b12ffe0
RH
2687 current_function_cannot_inline = N_("function uses __builtin_eh_return");
2688
71038426 2689 eh_regs (&reg1, &reg2, &reg3, 1);
aefe40b1
DT
2690#ifdef POINTERS_EXTEND_UNSIGNED
2691 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2692 eh_return_stack_adjust =
2693 convert_memory_address (Pmode, eh_return_stack_adjust);
2694 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
2695#endif
71038426
RH
2696 emit_move_insn (reg1, eh_return_context);
2697 emit_move_insn (reg2, eh_return_stack_adjust);
2698 emit_move_insn (reg3, eh_return_handler);
9a0d1e1b 2699
71038426 2700 /* Talk directly to the target's epilogue code when possible. */
9a0d1e1b 2701
71038426
RH
2702#ifdef HAVE_eh_epilogue
2703 if (HAVE_eh_epilogue)
2704 {
2705 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2706 return;
2707 }
2708#endif
9a0d1e1b 2709
71038426 2710 /* Otherwise, use the same stub technique we had before. */
ca55abae 2711
71038426
RH
2712 eh_return_stub_label = stub_start = gen_label_rtx ();
2713 after_stub = gen_label_rtx ();
ca55abae 2714
71038426 2715 /* Set the return address to the stub label. */
ca55abae 2716
71038426
RH
2717 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2718 0, hard_frame_pointer_rtx);
2719 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2720 abort();
ca55abae 2721
71038426
RH
2722 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2723#ifdef RETURN_ADDR_OFFSET
2724 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2725#endif
2a55b8e8
JW
2726 tmp = force_operand (tmp, ra);
2727 if (tmp != ra)
2728 emit_move_insn (ra, tmp);
ca55abae 2729
71038426 2730 /* Indicate that the registers are in fact used. */
38a448ca
RH
2731 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2732 emit_insn (gen_rtx_USE (VOIDmode, reg2));
71038426
RH
2733 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2734 if (GET_CODE (ra) == REG)
2735 emit_insn (gen_rtx_USE (VOIDmode, ra));
77d33a84 2736
71038426
RH
2737 /* Generate the stub. */
2738
2739 emit_jump (after_stub);
2740 emit_label (stub_start);
2741
2742 eh_regs (&reg1, &reg2, &reg3, 0);
2743 adjust_stack (reg2);
2744 emit_indirect_jump (reg3);
2745
2746 emit_label (after_stub);
2747}
77d33a84
AM
2748\f
2749
2750/* This contains the code required to verify whether arbitrary instructions
2751 are in the same exception region. */
2752
2753static int *insn_eh_region = (int *)0;
2754static int maximum_uid;
2755
242c13b0
JL
2756static void
2757set_insn_eh_region (first, region_num)
77d33a84
AM
2758 rtx *first;
2759 int region_num;
2760{
2761 rtx insn;
2762 int rnum;
2763
2764 for (insn = *first; insn; insn = NEXT_INSN (insn))
2765 {
2766 if ((GET_CODE (insn) == NOTE) &&
2767 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2768 {
2769 rnum = NOTE_BLOCK_NUMBER (insn);
2770 insn_eh_region[INSN_UID (insn)] = rnum;
2771 insn = NEXT_INSN (insn);
2772 set_insn_eh_region (&insn, rnum);
2773 /* Upon return, insn points to the EH_REGION_END of nested region */
2774 continue;
2775 }
2776 insn_eh_region[INSN_UID (insn)] = region_num;
2777 if ((GET_CODE (insn) == NOTE) &&
2778 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2779 break;
2780 }
2781 *first = insn;
2782}
2783
2784/* Free the insn table, an make sure it cannot be used again. */
2785
9a0d1e1b
AM
2786void
2787free_insn_eh_region ()
77d33a84
AM
2788{
2789 if (!doing_eh (0))
2790 return;
2791
2792 if (insn_eh_region)
2793 {
2794 free (insn_eh_region);
2795 insn_eh_region = (int *)0;
2796 }
2797}
2798
2799/* Initialize the table. max_uid must be calculated and handed into
2800 this routine. If it is unavailable, passing a value of 0 will
2801 cause this routine to calculate it as well. */
2802
9a0d1e1b
AM
2803void
2804init_insn_eh_region (first, max_uid)
77d33a84
AM
2805 rtx first;
2806 int max_uid;
2807{
2808 rtx insn;
2809
2810 if (!doing_eh (0))
2811 return;
2812
2813 if (insn_eh_region)
2814 free_insn_eh_region();
2815
2816 if (max_uid == 0)
2817 for (insn = first; insn; insn = NEXT_INSN (insn))
2818 if (INSN_UID (insn) > max_uid) /* find largest UID */
2819 max_uid = INSN_UID (insn);
2820
2821 maximum_uid = max_uid;
2822 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2823 insn = first;
2824 set_insn_eh_region (&insn, 0);
2825}
2826
2827
2828/* Check whether 2 instructions are within the same region. */
2829
9a0d1e1b
AM
2830int
2831in_same_eh_region (insn1, insn2)
2832 rtx insn1, insn2;
77d33a84
AM
2833{
2834 int ret, uid1, uid2;
2835
2836 /* If no exceptions, instructions are always in same region. */
2837 if (!doing_eh (0))
2838 return 1;
2839
2840 /* If the table isn't allocated, assume the worst. */
2841 if (!insn_eh_region)
2842 return 0;
2843
2844 uid1 = INSN_UID (insn1);
2845 uid2 = INSN_UID (insn2);
2846
2847 /* if instructions have been allocated beyond the end, either
2848 the table is out of date, or this is a late addition, or
2849 something... Assume the worst. */
2850 if (uid1 > maximum_uid || uid2 > maximum_uid)
2851 return 0;
2852
2853 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2854 return ret;
2855}
2856
This page took 0.704628 seconds and 5 git commands to generate.