]> gcc.gnu.org Git - gcc.git/blame - gcc/emit-rtl.c
rtl.h (MEM_COPY_ATTRIBUTES): Also copy RTX_UNCHANGING_P and MEM_ALIAS_SET.
[gcc.git] / gcc / emit-rtl.c
CommitLineData
23b2ce53 1/* Emit RTL for the GNU C-Compiler expander.
ef58a523
JL
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
23b2ce53
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
670ee920 39#include "system.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
ca695ac9 53#include "obstack.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
ca695ac9 57
1d445e9e
ILT
58/* Commonly used modes. */
59
0f41302f
MS
60enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
61enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 62enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 63enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 64
23b2ce53
RS
65
66/* This is *not* reset after each function. It gives each CODE_LABEL
67 in the entire compilation a unique label number. */
68
69static int label_num = 1;
70
23b2ce53
RS
71/* Highest label number in current function.
72 Zero means use the value of label_num instead.
73 This is nonzero only when belatedly compiling an inline function. */
74
75static int last_label_num;
76
77/* Value label_num had when set_new_first_and_last_label_number was called.
78 If label_num has not changed since then, last_label_num is valid. */
79
80static int base_label_num;
81
82/* Nonzero means do not generate NOTEs for source line numbers. */
83
84static int no_line_numbers;
85
86/* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these except perhaps the floating-point CONST_DOUBLEs
89 are unique; no other rtx-object will be equal to any of these. */
90
5da077de 91rtx global_rtl[GR_MAX];
23b2ce53
RS
92
93/* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx. */
96
97rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
98
68d75312
JC
99rtx const_true_rtx;
100
23b2ce53
RS
101REAL_VALUE_TYPE dconst0;
102REAL_VALUE_TYPE dconst1;
103REAL_VALUE_TYPE dconst2;
104REAL_VALUE_TYPE dconstm1;
105
106/* All references to the following fixed hard registers go through
107 these unique rtl objects. On machines where the frame-pointer and
108 arg-pointer are the same register, they use the same unique object.
109
110 After register allocation, other rtl objects which used to be pseudo-regs
111 may be clobbered to refer to the frame-pointer register.
112 But references that were originally to the frame-pointer can be
113 distinguished from the others because they contain frame_pointer_rtx.
114
ac6f08b0
DE
115 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
116 tricky: until register elimination has taken place hard_frame_pointer_rtx
117 should be used if it is being set, and frame_pointer_rtx otherwise. After
118 register elimination hard_frame_pointer_rtx should always be used.
119 On machines where the two registers are same (most) then these are the
120 same.
121
23b2ce53
RS
122 In an inline procedure, the stack and frame pointer rtxs may not be
123 used for anything else. */
23b2ce53
RS
124rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
125rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
126rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
127rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
128rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
129
a4417a86
JW
130/* This is used to implement __builtin_return_address for some machines.
131 See for instance the MIPS port. */
132rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
133
23b2ce53
RS
134/* We make one copy of (const_int C) where C is in
135 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
136 to save space during the compilation and simplify comparisons of
137 integers. */
138
5da077de 139rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 140
c13e8210
MM
141/* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
143
144static htab_t const_int_htab;
145
23b2ce53
RS
146/* start_sequence and gen_sequence can make a lot of rtx expressions which are
147 shortly thrown away. We use two mechanisms to prevent this waste:
148
a3770a81
RH
149 For sizes up to 5 elements, we keep a SEQUENCE and its associated
150 rtvec for use by gen_sequence. One entry for each size is
151 sufficient because most cases are calls to gen_sequence followed by
152 immediately emitting the SEQUENCE. Reuse is safe since emitting a
153 sequence is destructive on the insn in it anyway and hence can't be
154 redone.
23b2ce53
RS
155
156 We do not bother to save this cached data over nested function calls.
157 Instead, we just reinitialize them. */
158
159#define SEQUENCE_RESULT_SIZE 5
160
23b2ce53
RS
161static rtx sequence_result[SEQUENCE_RESULT_SIZE];
162
0f41302f 163/* During RTL generation, we also keep a list of free INSN rtl codes. */
43127294
RK
164static rtx free_insn;
165
01d939e8
BS
166#define first_insn (cfun->emit->x_first_insn)
167#define last_insn (cfun->emit->x_last_insn)
168#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
169#define last_linenum (cfun->emit->x_last_linenum)
170#define last_filename (cfun->emit->x_last_filename)
171#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 172
da43a810
BS
173/* This is where the pointer to the obstack being used for RTL is stored. */
174extern struct obstack *rtl_obstack;
175
711d877c
KG
176static rtx make_jump_insn_raw PARAMS ((rtx));
177static rtx make_call_insn_raw PARAMS ((rtx));
178static rtx find_line_note PARAMS ((rtx));
179static void mark_sequence_stack PARAMS ((struct sequence_stack *));
d1b81779 180static void unshare_all_rtl_1 PARAMS ((rtx));
c13e8210
MM
181static hashval_t const_int_htab_hash PARAMS ((const void *));
182static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184static int rtx_htab_mark_1 PARAMS ((void **, void *));
185static void rtx_htab_mark PARAMS ((void *));
186
ca695ac9 187\f
c13e8210
MM
188/* Returns a hash code for X (which is a really a CONST_INT). */
189
190static hashval_t
191const_int_htab_hash (x)
192 const void *x;
193{
e77d72cb 194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
c13e8210
MM
195}
196
197/* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
200
201static int
202const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
205{
e77d72cb 206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
c13e8210
MM
207}
208
209/* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
211
212static int
213rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
216{
217 ggc_mark_rtx (*x);
218 return 1;
219}
220
221/* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
223
224static void
225rtx_htab_mark (htab)
226 void *htab;
227{
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
229}
230
c5c76735
JL
231/* There are some RTL codes that require special attention; the generation
232 functions do the raw handling. If you add to this list, modify
233 special_rtx in gengenrtl.c as well. */
234
3b80f6ca
RH
235rtx
236gen_rtx_CONST_INT (mode, arg)
c13e8210 237 enum machine_mode mode ATTRIBUTE_UNUSED;
3b80f6ca
RH
238 HOST_WIDE_INT arg;
239{
c13e8210
MM
240 void **slot;
241
3b80f6ca 242 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 243 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
244
245#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
246 if (const_true_rtx && arg == STORE_FLAG_VALUE)
247 return const_true_rtx;
248#endif
249
c13e8210 250 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
251 slot = htab_find_slot_with_hash (const_int_htab, &arg,
252 (hashval_t) arg, INSERT);
29105cea 253 if (*slot == 0)
8dd2076d
MM
254 {
255 if (!ggc_p)
256 {
257 push_obstacks_nochange ();
258 end_temporary_allocation ();
29105cea
RK
259 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
260 pop_obstacks ();
8dd2076d 261 }
29105cea
RK
262 else
263 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
8dd2076d 264 }
c13e8210
MM
265
266 return (rtx) *slot;
3b80f6ca
RH
267}
268
29105cea 269/* CONST_DOUBLEs needs special handling because their length is known
0133b7d9 270 only at run-time. */
29105cea 271
0133b7d9
RH
272rtx
273gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
274 enum machine_mode mode;
275 rtx arg0;
276 HOST_WIDE_INT arg1, arg2;
277{
278 rtx r = rtx_alloc (CONST_DOUBLE);
2454beaf
RH
279 int i;
280
0133b7d9
RH
281 PUT_MODE (r, mode);
282 XEXP (r, 0) = arg0;
ef178af3 283 X0EXP (r, 1) = NULL_RTX;
2454beaf
RH
284 XWINT (r, 2) = arg1;
285 XWINT (r, 3) = arg2;
286
287 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
288 XWINT (r, i) = 0;
289
0133b7d9
RH
290 return r;
291}
292
3b80f6ca
RH
293rtx
294gen_rtx_REG (mode, regno)
295 enum machine_mode mode;
296 int regno;
297{
298 /* In case the MD file explicitly references the frame pointer, have
299 all such references point to the same frame pointer. This is
300 used during frame pointer elimination to distinguish the explicit
301 references to these registers from pseudos that happened to be
302 assigned to them.
303
304 If we have eliminated the frame pointer or arg pointer, we will
305 be using it as a normal register, for example as a spill
306 register. In such cases, we might be accessing it in a mode that
307 is not Pmode and therefore cannot use the pre-allocated rtx.
308
309 Also don't do this when we are making new REGs in reload, since
310 we don't want to get confused with the real pointers. */
311
312 if (mode == Pmode && !reload_in_progress)
313 {
bcb33994 314 if (regno == FRAME_POINTER_REGNUM)
3b80f6ca
RH
315 return frame_pointer_rtx;
316#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
bcb33994 317 if (regno == HARD_FRAME_POINTER_REGNUM)
3b80f6ca
RH
318 return hard_frame_pointer_rtx;
319#endif
320#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 321 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
322 return arg_pointer_rtx;
323#endif
324#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 325 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
326 return return_address_pointer_rtx;
327#endif
bcb33994 328 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
329 return stack_pointer_rtx;
330 }
331
332 return gen_rtx_raw_REG (mode, regno);
333}
334
41472af8
MM
335rtx
336gen_rtx_MEM (mode, addr)
337 enum machine_mode mode;
338 rtx addr;
339{
340 rtx rt = gen_rtx_raw_MEM (mode, addr);
341
342 /* This field is not cleared by the mere allocation of the rtx, so
343 we clear it here. */
344 MEM_ALIAS_SET (rt) = 0;
345
346 return rt;
347}
c5c76735 348\f
23b2ce53
RS
349/* rtx gen_rtx (code, mode, [element1, ..., elementn])
350**
351** This routine generates an RTX of the size specified by
352** <code>, which is an RTX code. The RTX structure is initialized
353** from the arguments <element1> through <elementn>, which are
354** interpreted according to the specific RTX type's format. The
355** special machine mode associated with the rtx (if any) is specified
356** in <mode>.
357**
1632afca 358** gen_rtx can be invoked in a way which resembles the lisp-like
23b2ce53
RS
359** rtx it will generate. For example, the following rtx structure:
360**
361** (plus:QI (mem:QI (reg:SI 1))
362** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
363**
364** ...would be generated by the following C code:
365**
366** gen_rtx (PLUS, QImode,
367** gen_rtx (MEM, QImode,
368** gen_rtx (REG, SImode, 1)),
369** gen_rtx (MEM, QImode,
370** gen_rtx (PLUS, SImode,
371** gen_rtx (REG, SImode, 2),
372** gen_rtx (REG, SImode, 3)))),
373*/
374
375/*VARARGS2*/
376rtx
711d877c 377gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
23b2ce53 378{
5148a72b 379#ifndef ANSI_PROTOTYPES
23b2ce53
RS
380 enum rtx_code code;
381 enum machine_mode mode;
4f90e4a0
RK
382#endif
383 va_list p;
23b2ce53 384 register int i; /* Array indices... */
6f7d635c 385 register const char *fmt; /* Current rtx's format... */
23b2ce53
RS
386 register rtx rt_val; /* RTX to return to caller... */
387
4f90e4a0
RK
388 VA_START (p, mode);
389
5148a72b 390#ifndef ANSI_PROTOTYPES
23b2ce53
RS
391 code = va_arg (p, enum rtx_code);
392 mode = va_arg (p, enum machine_mode);
4f90e4a0 393#endif
23b2ce53 394
0133b7d9 395 switch (code)
23b2ce53 396 {
0133b7d9
RH
397 case CONST_INT:
398 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
399 break;
400
401 case CONST_DOUBLE:
402 {
403 rtx arg0 = va_arg (p, rtx);
404 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
405 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
406 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
407 }
408 break;
409
410 case REG:
411 rt_val = gen_rtx_REG (mode, va_arg (p, int));
412 break;
413
414 case MEM:
415 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
416 break;
417
418 default:
23b2ce53
RS
419 rt_val = rtx_alloc (code); /* Allocate the storage space. */
420 rt_val->mode = mode; /* Store the machine mode... */
421
422 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
423 for (i = 0; i < GET_RTX_LENGTH (code); i++)
424 {
425 switch (*fmt++)
426 {
427 case '0': /* Unused field. */
428 break;
429
430 case 'i': /* An integer? */
431 XINT (rt_val, i) = va_arg (p, int);
432 break;
433
906c4e36
RK
434 case 'w': /* A wide integer? */
435 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
436 break;
437
23b2ce53
RS
438 case 's': /* A string? */
439 XSTR (rt_val, i) = va_arg (p, char *);
440 break;
441
442 case 'e': /* An expression? */
443 case 'u': /* An insn? Same except when printing. */
444 XEXP (rt_val, i) = va_arg (p, rtx);
445 break;
446
447 case 'E': /* An RTX vector? */
448 XVEC (rt_val, i) = va_arg (p, rtvec);
449 break;
450
0dfa1860
MM
451 case 'b': /* A bitmap? */
452 XBITMAP (rt_val, i) = va_arg (p, bitmap);
453 break;
454
455 case 't': /* A tree? */
456 XTREE (rt_val, i) = va_arg (p, tree);
457 break;
458
23b2ce53 459 default:
1632afca 460 abort ();
23b2ce53
RS
461 }
462 }
0133b7d9 463 break;
23b2ce53 464 }
0133b7d9 465
23b2ce53 466 va_end (p);
0133b7d9 467 return rt_val;
23b2ce53
RS
468}
469
470/* gen_rtvec (n, [rt1, ..., rtn])
471**
472** This routine creates an rtvec and stores within it the
473** pointers to rtx's which are its arguments.
474*/
475
476/*VARARGS1*/
477rtvec
711d877c 478gen_rtvec VPARAMS ((int n, ...))
23b2ce53 479{
5148a72b 480#ifndef ANSI_PROTOTYPES
4f90e4a0
RK
481 int n;
482#endif
483 int i;
23b2ce53
RS
484 va_list p;
485 rtx *vector;
486
4f90e4a0
RK
487 VA_START (p, n);
488
5148a72b 489#ifndef ANSI_PROTOTYPES
23b2ce53 490 n = va_arg (p, int);
4f90e4a0 491#endif
23b2ce53
RS
492
493 if (n == 0)
494 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
495
496 vector = (rtx *) alloca (n * sizeof (rtx));
4f90e4a0 497
23b2ce53
RS
498 for (i = 0; i < n; i++)
499 vector[i] = va_arg (p, rtx);
500 va_end (p);
501
502 return gen_rtvec_v (n, vector);
503}
504
505rtvec
506gen_rtvec_v (n, argp)
507 int n;
508 rtx *argp;
509{
510 register int i;
511 register rtvec rt_val;
512
513 if (n == 0)
514 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
515
516 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
517
518 for (i = 0; i < n; i++)
8f985ec4 519 rt_val->elem[i] = *argp++;
23b2ce53
RS
520
521 return rt_val;
522}
ba444f92 523
23b2ce53
RS
524\f
525/* Generate a REG rtx for a new pseudo register of mode MODE.
526 This pseudo is assigned the next sequential register number. */
527
528rtx
529gen_reg_rtx (mode)
530 enum machine_mode mode;
531{
01d939e8 532 struct function *f = cfun;
23b2ce53
RS
533 register rtx val;
534
f1db3576
JL
535 /* Don't let anything called after initial flow analysis create new
536 registers. */
537 if (no_new_pseudos)
23b2ce53
RS
538 abort ();
539
fc84e8a8
RS
540 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
541 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
542 {
543 /* For complex modes, don't make a single pseudo.
544 Instead, make a CONCAT of two pseudos.
545 This allows noncontiguous allocation of the real and imaginary parts,
546 which makes much better code. Besides, allocating DCmode
547 pseudos overstrains reload on some machines like the 386. */
548 rtx realpart, imagpart;
549 int size = GET_MODE_UNIT_SIZE (mode);
550 enum machine_mode partmode
551 = mode_for_size (size * BITS_PER_UNIT,
552 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
553 ? MODE_FLOAT : MODE_INT),
554 0);
555
556 realpart = gen_reg_rtx (partmode);
557 imagpart = gen_reg_rtx (partmode);
3b80f6ca 558 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
559 }
560
23b2ce53
RS
561 /* Make sure regno_pointer_flag and regno_reg_rtx are large
562 enough to have an element for this pseudo reg number. */
563
49ad7cfa 564 if (reg_rtx_no == f->emit->regno_pointer_flag_length)
23b2ce53 565 {
49ad7cfa 566 int old_size = f->emit->regno_pointer_flag_length;
23b2ce53 567 rtx *new1;
e2ecd91c
BS
568 char *new;
569 new = xrealloc (f->emit->regno_pointer_flag, old_size * 2);
49ad7cfa
BS
570 memset (new + old_size, 0, old_size);
571 f->emit->regno_pointer_flag = new;
572
e2ecd91c 573 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa
BS
574 memset (new + old_size, 0, old_size);
575 f->emit->regno_pointer_align = new;
576
e2ecd91c
BS
577 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
578 old_size * 2 * sizeof (rtx));
49ad7cfa 579 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
580 regno_reg_rtx = new1;
581
49ad7cfa 582 f->emit->regno_pointer_flag_length = old_size * 2;
23b2ce53
RS
583 }
584
3b80f6ca 585 val = gen_rtx_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
586 regno_reg_rtx[reg_rtx_no++] = val;
587 return val;
588}
589
754fdcca
RK
590/* Identify REG (which may be a CONCAT) as a user register. */
591
592void
593mark_user_reg (reg)
594 rtx reg;
595{
596 if (GET_CODE (reg) == CONCAT)
597 {
598 REG_USERVAR_P (XEXP (reg, 0)) = 1;
599 REG_USERVAR_P (XEXP (reg, 1)) = 1;
600 }
601 else if (GET_CODE (reg) == REG)
602 REG_USERVAR_P (reg) = 1;
603 else
604 abort ();
605}
606
86fe05e0
RK
607/* Identify REG as a probable pointer register and show its alignment
608 as ALIGN, if nonzero. */
23b2ce53
RS
609
610void
86fe05e0 611mark_reg_pointer (reg, align)
23b2ce53 612 rtx reg;
86fe05e0 613 int align;
23b2ce53 614{
00995e78
RE
615 if (! REGNO_POINTER_FLAG (REGNO (reg)))
616 {
617 REGNO_POINTER_FLAG (REGNO (reg)) = 1;
86fe05e0 618
00995e78
RE
619 if (align)
620 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
621 }
622 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
623 /* We can no-longer be sure just how aligned this pointer is */
86fe05e0 624 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
625}
626
627/* Return 1 plus largest pseudo reg number used in the current function. */
628
629int
630max_reg_num ()
631{
632 return reg_rtx_no;
633}
634
635/* Return 1 + the largest label number used so far in the current function. */
636
637int
638max_label_num ()
639{
640 if (last_label_num && label_num == base_label_num)
641 return last_label_num;
642 return label_num;
643}
644
645/* Return first label number used in this function (if any were used). */
646
647int
648get_first_label_num ()
649{
650 return first_label_num;
651}
652\f
653/* Return a value representing some low-order bits of X, where the number
654 of low-order bits is given by MODE. Note that no conversion is done
655 between floating-point and fixed-point values, rather, the bit
656 representation is returned.
657
658 This function handles the cases in common between gen_lowpart, below,
659 and two variants in cse.c and combine.c. These are the cases that can
660 be safely handled at all points in the compilation.
661
662 If this is not a case we can handle, return 0. */
663
664rtx
665gen_lowpart_common (mode, x)
666 enum machine_mode mode;
667 register rtx x;
668{
669 int word = 0;
670
671 if (GET_MODE (x) == mode)
672 return x;
673
674 /* MODE must occupy no more words than the mode of X. */
675 if (GET_MODE (x) != VOIDmode
676 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
677 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
678 / UNITS_PER_WORD)))
679 return 0;
680
681 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
682 word = ((GET_MODE_SIZE (GET_MODE (x))
683 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
684 / UNITS_PER_WORD);
685
686 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
687 && (GET_MODE_CLASS (mode) == MODE_INT
688 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
689 {
690 /* If we are getting the low-order part of something that has been
691 sign- or zero-extended, we can either just use the object being
692 extended or make a narrower extension. If we want an even smaller
693 piece than the size of the object being extended, call ourselves
694 recursively.
695
696 This case is used mostly by combine and cse. */
697
698 if (GET_MODE (XEXP (x, 0)) == mode)
699 return XEXP (x, 0);
700 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
701 return gen_lowpart_common (mode, XEXP (x, 0));
702 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3b80f6ca 703 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53
RS
704 }
705 else if (GET_CODE (x) == SUBREG
706 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
707 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
708 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
709 ? SUBREG_REG (x)
3b80f6ca 710 : gen_rtx_SUBREG (mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
23b2ce53
RS
711 else if (GET_CODE (x) == REG)
712 {
4901a643
RH
713 /* Let the backend decide how many registers to skip. This is needed
714 in particular for Sparc64 where fp regs are smaller than a word. */
715 /* ??? Note that subregs are now ambiguous, in that those against
716 pseudos are sized by the Word Size, while those against hard
717 regs are sized by the underlying register size. Better would be
718 to always interpret the subreg offset parameter as bytes or bits. */
719
720 if (WORDS_BIG_ENDIAN && REGNO (x) < FIRST_PSEUDO_REGISTER)
721 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
722 - HARD_REGNO_NREGS (REGNO (x), mode));
723
23b2ce53 724 /* If the register is not valid for MODE, return 0. If we don't
674d5d8b
RK
725 do this, there is no way to fix up the resulting REG later.
726 But we do do this if the current REG is not valid for its
727 mode. This latter is a kludge, but is required due to the
728 way that parameters are passed on some machines, most
729 notably Sparc. */
23b2ce53 730 if (REGNO (x) < FIRST_PSEUDO_REGISTER
674d5d8b
RK
731 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
732 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
23b2ce53
RS
733 return 0;
734 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
735 /* integrate.c can't handle parts of a return value register. */
736 && (! REG_FUNCTION_VALUE_P (x)
cb00f51a 737 || ! rtx_equal_function_value_matters)
aff48bca
JL
738#ifdef CLASS_CANNOT_CHANGE_SIZE
739 && ! (GET_MODE_SIZE (mode) != GET_MODE_SIZE (GET_MODE (x))
740 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
741 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
742 && (TEST_HARD_REG_BIT
743 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
744 REGNO (x))))
745#endif
cb00f51a
RK
746 /* We want to keep the stack, frame, and arg pointers
747 special. */
65e8fe02 748 && x != frame_pointer_rtx
cb00f51a 749#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
65e8fe02 750 && x != arg_pointer_rtx
cb00f51a 751#endif
65e8fe02 752 && x != stack_pointer_rtx)
3b80f6ca 753 return gen_rtx_REG (mode, REGNO (x) + word);
23b2ce53 754 else
3b80f6ca 755 return gen_rtx_SUBREG (mode, x, word);
23b2ce53 756 }
23b2ce53
RS
757 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
758 from the low-order part of the constant. */
83e9c679
RK
759 else if ((GET_MODE_CLASS (mode) == MODE_INT
760 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
761 && GET_MODE (x) == VOIDmode
23b2ce53 762 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1a5b457d
RK
763 {
764 /* If MODE is twice the host word size, X is already the desired
765 representation. Otherwise, if MODE is wider than a word, we can't
766 do this. If MODE is exactly a word, return just one CONST_INT.
767 If MODE is smaller than a word, clear the bits that don't belong
768 in our mode, unless they and our sign bit are all one. So we get
769 either a reasonable negative value or a reasonable unsigned value
770 for this mode. */
771
a8dd0e73 772 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1a5b457d 773 return x;
906c4e36 774 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1a5b457d 775 return 0;
906c4e36 776 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1a5b457d 777 return (GET_CODE (x) == CONST_INT ? x
906c4e36 778 : GEN_INT (CONST_DOUBLE_LOW (x)));
1a5b457d
RK
779 else
780 {
27eef9ce 781 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1a5b457d 782 int width = GET_MODE_BITSIZE (mode);
906c4e36
RK
783 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
784 : CONST_DOUBLE_LOW (x));
1a5b457d 785
27eef9ce
JC
786 /* Sign extend to HOST_WIDE_INT. */
787 val = val << (HOST_BITS_PER_WIDE_INT - width) >> (HOST_BITS_PER_WIDE_INT - width);
1a5b457d
RK
788
789 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
906c4e36 790 : GEN_INT (val));
1a5b457d
RK
791 }
792 }
23b2ce53 793
8aada4ad
RK
794 /* If X is an integral constant but we want it in floating-point, it
795 must be the case that we have a union of an integer and a floating-point
796 value. If the machine-parameters allow it, simulate that union here
d6020413
RK
797 and return the result. The two-word and single-word cases are
798 different. */
8aada4ad 799
b3bf132d 800 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 801 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 802 || flag_pretend_float)
8aada4ad 803 && GET_MODE_CLASS (mode) == MODE_FLOAT
d6020413
RK
804 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
805 && GET_CODE (x) == CONST_INT
906c4e36 806 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
b6a524cb
RS
807#ifdef REAL_ARITHMETIC
808 {
809 REAL_VALUE_TYPE r;
810 HOST_WIDE_INT i;
811
812 i = INTVAL (x);
813 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
53596fba 814 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
b6a524cb
RS
815 }
816#else
d6020413 817 {
906c4e36 818 union {HOST_WIDE_INT i; float d; } u;
d6020413
RK
819
820 u.i = INTVAL (x);
53596fba 821 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
d6020413 822 }
b6a524cb 823#endif
d6020413 824 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 825 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
d6020413
RK
826 || flag_pretend_float)
827 && GET_MODE_CLASS (mode) == MODE_FLOAT
828 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
8aada4ad
RK
829 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
830 && GET_MODE (x) == VOIDmode
906c4e36
RK
831 && (sizeof (double) * HOST_BITS_PER_CHAR
832 == 2 * HOST_BITS_PER_WIDE_INT))
b6a524cb
RS
833#ifdef REAL_ARITHMETIC
834 {
835 REAL_VALUE_TYPE r;
836 HOST_WIDE_INT i[2];
837 HOST_WIDE_INT low, high;
838
839 if (GET_CODE (x) == CONST_INT)
840 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
841 else
842 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
843
8698cce3 844 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
0f41302f 845 target machine. */
8698cce3
RK
846 if (WORDS_BIG_ENDIAN)
847 i[0] = high, i[1] = low;
848 else
849 i[0] = low, i[1] = high;
b6a524cb
RS
850
851 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
53596fba 852 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
b6a524cb
RS
853 }
854#else
8aada4ad 855 {
906c4e36
RK
856 union {HOST_WIDE_INT i[2]; double d; } u;
857 HOST_WIDE_INT low, high;
8aada4ad
RK
858
859 if (GET_CODE (x) == CONST_INT)
906c4e36 860 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
8aada4ad
RK
861 else
862 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
863
864#ifdef HOST_WORDS_BIG_ENDIAN
865 u.i[0] = high, u.i[1] = low;
866#else
867 u.i[0] = low, u.i[1] = high;
868#endif
869
53596fba 870 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
8aada4ad 871 }
b6a524cb 872#endif
a6a503ed
JW
873
874 /* We need an extra case for machines where HOST_BITS_PER_WIDE_INT is the
4926b75a
JL
875 same as sizeof (double) or when sizeof (float) is larger than the
876 size of a word on the target machine. */
a6a503ed 877#ifdef REAL_ARITHMETIC
4926b75a 878 else if (mode == SFmode && GET_CODE (x) == CONST_INT)
a6a503ed
JW
879 {
880 REAL_VALUE_TYPE r;
881 HOST_WIDE_INT i;
882
883 i = INTVAL (x);
884 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
885 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
886 }
8fc4af0f
JJ
887 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
888 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
889 || flag_pretend_float)
890 && GET_MODE_CLASS (mode) == MODE_FLOAT
891 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
892 && GET_CODE (x) == CONST_INT
893 && (sizeof (double) * HOST_BITS_PER_CHAR
894 == HOST_BITS_PER_WIDE_INT))
895 {
896 REAL_VALUE_TYPE r;
897 HOST_WIDE_INT i;
898
899 i = INTVAL (x);
900 r = REAL_VALUE_FROM_TARGET_DOUBLE (&i);
901 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
902 }
a6a503ed
JW
903#endif
904
b3bf132d
RK
905 /* Similarly, if this is converting a floating-point value into a
906 single-word integer. Only do this is the host and target parameters are
907 compatible. */
908
909 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 910 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 911 || flag_pretend_float)
83e9c679
RK
912 && (GET_MODE_CLASS (mode) == MODE_INT
913 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
b3bf132d
RK
914 && GET_CODE (x) == CONST_DOUBLE
915 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
916 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
a80586cc 917 return operand_subword (x, word, 0, GET_MODE (x));
b3bf132d 918
8aada4ad
RK
919 /* Similarly, if this is converting a floating-point value into a
920 two-word integer, we can do this one word at a time and make an
921 integer. Only do this is the host and target parameters are
922 compatible. */
923
b3bf132d 924 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 925 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 926 || flag_pretend_float)
83e9c679 927 && (GET_MODE_CLASS (mode) == MODE_INT
f5a2fb25 928 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
8aada4ad
RK
929 && GET_CODE (x) == CONST_DOUBLE
930 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
931 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
932 {
a80586cc
RK
933 rtx lowpart
934 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
935 rtx highpart
936 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
8aada4ad
RK
937
938 if (lowpart && GET_CODE (lowpart) == CONST_INT
939 && highpart && GET_CODE (highpart) == CONST_INT)
940 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
941 }
942
23b2ce53
RS
943 /* Otherwise, we can't do this. */
944 return 0;
945}
946\f
280194b0
RS
947/* Return the real part (which has mode MODE) of a complex value X.
948 This always comes at the low address in memory. */
949
950rtx
951gen_realpart (mode, x)
952 enum machine_mode mode;
953 register rtx x;
954{
dc139c90
RK
955 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
956 return XEXP (x, 0);
40c0c3cf
JL
957 else if (WORDS_BIG_ENDIAN
958 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
959 && REG_P (x)
960 && REGNO (x) < FIRST_PSEUDO_REGISTER)
961 fatal ("Unable to access real part of complex value in a hard register on this target");
dc139c90 962 else if (WORDS_BIG_ENDIAN)
280194b0
RS
963 return gen_highpart (mode, x);
964 else
965 return gen_lowpart (mode, x);
966}
967
968/* Return the imaginary part (which has mode MODE) of a complex value X.
969 This always comes at the high address in memory. */
970
971rtx
972gen_imagpart (mode, x)
973 enum machine_mode mode;
974 register rtx x;
975{
dc139c90
RK
976 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
977 return XEXP (x, 1);
978 else if (WORDS_BIG_ENDIAN)
280194b0 979 return gen_lowpart (mode, x);
40c0c3cf
JL
980 else if (!WORDS_BIG_ENDIAN
981 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
982 && REG_P (x)
983 && REGNO (x) < FIRST_PSEUDO_REGISTER)
984 fatal ("Unable to access imaginary part of complex value in a hard register on this target");
280194b0
RS
985 else
986 return gen_highpart (mode, x);
987}
81284a6a
JW
988
989/* Return 1 iff X, assumed to be a SUBREG,
990 refers to the real part of the complex value in its containing reg.
991 Complex values are always stored with the real part in the first word,
992 regardless of WORDS_BIG_ENDIAN. */
993
994int
995subreg_realpart_p (x)
996 rtx x;
997{
998 if (GET_CODE (x) != SUBREG)
999 abort ();
1000
770ae6cc
RK
1001 return ((unsigned int) SUBREG_WORD (x) * UNITS_PER_WORD
1002 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
81284a6a 1003}
280194b0 1004\f
23b2ce53
RS
1005/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1006 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1007 least-significant part of X.
1008 MODE specifies how big a part of X to return;
1009 it usually should not be larger than a word.
1010 If X is a MEM whose address is a QUEUED, the value may be so also. */
1011
1012rtx
1013gen_lowpart (mode, x)
1014 enum machine_mode mode;
1015 register rtx x;
1016{
1017 rtx result = gen_lowpart_common (mode, x);
1018
1019 if (result)
1020 return result;
ea8262b0
RK
1021 else if (GET_CODE (x) == REG)
1022 {
1023 /* Must be a hard reg that's not valid in MODE. */
1024 result = gen_lowpart_common (mode, copy_to_reg (x));
1025 if (result == 0)
1026 abort ();
72c3833b 1027 return result;
ea8262b0 1028 }
23b2ce53
RS
1029 else if (GET_CODE (x) == MEM)
1030 {
1031 /* The only additional case we can do is MEM. */
1032 register int offset = 0;
1033 if (WORDS_BIG_ENDIAN)
1034 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1035 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1036
1037 if (BYTES_BIG_ENDIAN)
1038 /* Adjust the address so that the address-after-the-data
1039 is unchanged. */
1040 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1041 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1042
1043 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1044 }
e9a25f70
JL
1045 else if (GET_CODE (x) == ADDRESSOF)
1046 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
23b2ce53
RS
1047 else
1048 abort ();
1049}
1050
ccba022b
RS
1051/* Like `gen_lowpart', but refer to the most significant part.
1052 This is used to access the imaginary part of a complex number. */
1053
1054rtx
1055gen_highpart (mode, x)
1056 enum machine_mode mode;
1057 register rtx x;
1058{
1059 /* This case loses if X is a subreg. To catch bugs early,
1060 complain if an invalid MODE is used even in other cases. */
1061 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
1062 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1063 abort ();
1064 if (GET_CODE (x) == CONST_DOUBLE
1632afca 1065#if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
ccba022b
RS
1066 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1067#endif
1068 )
3b80f6ca 1069 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
ccba022b 1070 else if (GET_CODE (x) == CONST_INT)
27eef9ce
JC
1071 {
1072 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1073 return const0_rtx;
1074 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1075 }
ccba022b
RS
1076 else if (GET_CODE (x) == MEM)
1077 {
1078 register int offset = 0;
8698cce3
RK
1079 if (! WORDS_BIG_ENDIAN)
1080 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1081 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1082
1083 if (! BYTES_BIG_ENDIAN
1084 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
ccba022b
RS
1085 offset -= (GET_MODE_SIZE (mode)
1086 - MIN (UNITS_PER_WORD,
1087 GET_MODE_SIZE (GET_MODE (x))));
8698cce3 1088
ccba022b
RS
1089 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1090 }
1091 else if (GET_CODE (x) == SUBREG)
1092 {
1093 /* The only time this should occur is when we are looking at a
1094 multi-word item with a SUBREG whose mode is the same as that of the
1095 item. It isn't clear what we would do if it wasn't. */
1096 if (SUBREG_WORD (x) != 0)
1097 abort ();
1098 return gen_highpart (mode, SUBREG_REG (x));
1099 }
1100 else if (GET_CODE (x) == REG)
1101 {
6cca74ab 1102 int word;
ccba022b 1103
4901a643
RH
1104 /* Let the backend decide how many registers to skip. This is needed
1105 in particular for sparc64 where fp regs are smaller than a word. */
1106 /* ??? Note that subregs are now ambiguous, in that those against
6cca74ab 1107 pseudos are sized by the word size, while those against hard
4901a643
RH
1108 regs are sized by the underlying register size. Better would be
1109 to always interpret the subreg offset parameter as bytes or bits. */
1110
6cca74ab
GM
1111 if (WORDS_BIG_ENDIAN)
1112 word = 0;
1113 else if (REGNO (x) < FIRST_PSEUDO_REGISTER)
4901a643
RH
1114 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
1115 - HARD_REGNO_NREGS (REGNO (x), mode));
6cca74ab
GM
1116 else
1117 word = ((GET_MODE_SIZE (GET_MODE (x))
1118 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1119 / UNITS_PER_WORD);
3e4a14ef 1120
cb00f51a 1121 if (REGNO (x) < FIRST_PSEUDO_REGISTER
0f41302f 1122 /* integrate.c can't handle parts of a return value register. */
4badc528
RS
1123 && (! REG_FUNCTION_VALUE_P (x)
1124 || ! rtx_equal_function_value_matters)
cb00f51a 1125 /* We want to keep the stack, frame, and arg pointers special. */
65e8fe02 1126 && x != frame_pointer_rtx
cb00f51a 1127#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
65e8fe02 1128 && x != arg_pointer_rtx
cb00f51a 1129#endif
65e8fe02 1130 && x != stack_pointer_rtx)
3b80f6ca 1131 return gen_rtx_REG (mode, REGNO (x) + word);
ccba022b 1132 else
3b80f6ca 1133 return gen_rtx_SUBREG (mode, x, word);
ccba022b
RS
1134 }
1135 else
1136 abort ();
1137}
1138
23b2ce53
RS
1139/* Return 1 iff X, assumed to be a SUBREG,
1140 refers to the least significant part of its containing reg.
1141 If X is not a SUBREG, always return 1 (it is its own low part!). */
1142
1143int
1144subreg_lowpart_p (x)
1145 rtx x;
1146{
1147 if (GET_CODE (x) != SUBREG)
1148 return 1;
a3a03040
RK
1149 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1150 return 0;
23b2ce53
RS
1151
1152 if (WORDS_BIG_ENDIAN
1153 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1154 return (SUBREG_WORD (x)
1155 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1156 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1157 / UNITS_PER_WORD));
1158
1159 return SUBREG_WORD (x) == 0;
1160}
1161\f
1162/* Return subword I of operand OP.
1163 The word number, I, is interpreted as the word number starting at the
1164 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1165 otherwise it is the high-order word.
1166
1167 If we cannot extract the required word, we return zero. Otherwise, an
1168 rtx corresponding to the requested word will be returned.
1169
1170 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1171 reload has completed, a valid address will always be returned. After
1172 reload, if a valid address cannot be returned, we return zero.
1173
1174 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1175 it is the responsibility of the caller.
1176
1177 MODE is the mode of OP in case it is a CONST_INT. */
1178
1179rtx
1180operand_subword (op, i, validate_address, mode)
1181 rtx op;
770ae6cc 1182 unsigned int i;
23b2ce53
RS
1183 int validate_address;
1184 enum machine_mode mode;
1185{
906c4e36
RK
1186 HOST_WIDE_INT val;
1187 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
23b2ce53
RS
1188
1189 if (mode == VOIDmode)
1190 mode = GET_MODE (op);
1191
1192 if (mode == VOIDmode)
1193 abort ();
1194
0003feb2 1195 /* If OP is narrower than a word, fail. */
23b2ce53 1196 if (mode != BLKmode
0003feb2 1197 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
23b2ce53 1198 return 0;
0003feb2
VM
1199
1200 /* If we want a word outside OP, return zero. */
1201 if (mode != BLKmode
1202 && (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1203 return const0_rtx;
23b2ce53
RS
1204
1205 /* If OP is already an integer word, return it. */
1206 if (GET_MODE_CLASS (mode) == MODE_INT
1207 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1208 return op;
1209
1210 /* If OP is a REG or SUBREG, we can handle it very simply. */
1211 if (GET_CODE (op) == REG)
1212 {
227d6ce0
JL
1213 /* ??? There is a potential problem with this code. It does not
1214 properly handle extractions of a subword from a hard register
1215 that is larger than word_mode. Presumably the check for
1216 HARD_REGNO_MODE_OK catches these most of these cases. */
1217
1218 /* If OP is a hard register, but OP + I is not a hard register,
1219 then extracting a subword is impossible.
1220
1221 For example, consider if OP is the last hard register and it is
1222 larger than word_mode. If we wanted word N (for N > 0) because a
1223 part of that hard register was known to contain a useful value,
1224 then OP + I would refer to a pseudo, not the hard register we
1225 actually wanted. */
1226 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1227 && REGNO (op) + i >= FIRST_PSEUDO_REGISTER)
1228 return 0;
1229
1230 /* If the register is not valid for MODE, return 0. Note we
1231 have to check both OP and OP + I since they may refer to
1232 different parts of the register file.
1233
1234 Consider if OP refers to the last 96bit FP register and we want
1235 subword 3 because that subword is known to contain a value we
1236 needed. */
23b2ce53 1237 if (REGNO (op) < FIRST_PSEUDO_REGISTER
227d6ce0
JL
1238 && (! HARD_REGNO_MODE_OK (REGNO (op), word_mode)
1239 || ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode)))
23b2ce53
RS
1240 return 0;
1241 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1242 || (REG_FUNCTION_VALUE_P (op)
cb00f51a
RK
1243 && rtx_equal_function_value_matters)
1244 /* We want to keep the stack, frame, and arg pointers
1245 special. */
65e8fe02 1246 || op == frame_pointer_rtx
cb00f51a 1247#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
65e8fe02 1248 || op == arg_pointer_rtx
cb00f51a 1249#endif
65e8fe02 1250 || op == stack_pointer_rtx)
3b80f6ca 1251 return gen_rtx_SUBREG (word_mode, op, i);
23b2ce53 1252 else
3b80f6ca 1253 return gen_rtx_REG (word_mode, REGNO (op) + i);
23b2ce53
RS
1254 }
1255 else if (GET_CODE (op) == SUBREG)
3b80f6ca 1256 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
fc84e8a8
RS
1257 else if (GET_CODE (op) == CONCAT)
1258 {
770ae6cc
RK
1259 unsigned int partwords
1260 = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1261
fc84e8a8
RS
1262 if (i < partwords)
1263 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1264 return operand_subword (XEXP (op, 1), i - partwords,
1265 validate_address, mode);
1266 }
23b2ce53
RS
1267
1268 /* Form a new MEM at the requested address. */
1269 if (GET_CODE (op) == MEM)
1270 {
1271 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1272 rtx new;
1273
1274 if (validate_address)
1275 {
1276 if (reload_completed)
1277 {
1278 if (! strict_memory_address_p (word_mode, addr))
1279 return 0;
1280 }
1281 else
1282 addr = memory_address (word_mode, addr);
1283 }
1284
3b80f6ca 1285 new = gen_rtx_MEM (word_mode, addr);
c6df88cb 1286 MEM_COPY_ATTRIBUTES (new, op);
23b2ce53
RS
1287 return new;
1288 }
1289
1290 /* The only remaining cases are when OP is a constant. If the host and
1291 target floating formats are the same, handling two-word floating
7677ffa4 1292 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
9847c2f6
RK
1293 are defined as returning one or two 32 bit values, respectively,
1294 and not values of BITS_PER_WORD bits. */
1632afca 1295#ifdef REAL_ARITHMETIC
5495cc55
RH
1296 /* The output is some bits, the width of the target machine's word.
1297 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1298 host can't. */
9847c2f6 1299 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1632afca 1300 && GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1301 && GET_MODE_BITSIZE (mode) == 64
1632afca
RS
1302 && GET_CODE (op) == CONST_DOUBLE)
1303 {
9847c2f6 1304 long k[2];
1632afca
RS
1305 REAL_VALUE_TYPE rv;
1306
1307 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1308 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
7677ffa4 1309
9847c2f6 1310 /* We handle 32-bit and >= 64-bit words here. Note that the order in
7677ffa4 1311 which the words are written depends on the word endianness.
7677ffa4 1312 ??? This is a potential portability problem and should
7cae975e
RH
1313 be fixed at some point.
1314
1315 We must excercise caution with the sign bit. By definition there
1316 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1317 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1318 So we explicitly mask and sign-extend as necessary. */
9847c2f6 1319 if (BITS_PER_WORD == 32)
7cae975e
RH
1320 {
1321 val = k[i];
1322 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1323 return GEN_INT (val);
1324 }
1325#if HOST_BITS_PER_WIDE_INT >= 64
9847c2f6 1326 else if (BITS_PER_WORD >= 64 && i == 0)
7cae975e
RH
1327 {
1328 val = k[! WORDS_BIG_ENDIAN];
1329 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1330 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1331 return GEN_INT (val);
1332 }
9847c2f6 1333#endif
47b34d40
JW
1334 else if (BITS_PER_WORD == 16)
1335 {
7cae975e
RH
1336 val = k[i >> 1];
1337 if ((i & 1) == !WORDS_BIG_ENDIAN)
1338 val >>= 16;
1339 val &= 0xffff;
1340 return GEN_INT (val);
47b34d40 1341 }
7677ffa4
RK
1342 else
1343 abort ();
1632afca 1344 }
a5559dbc
RE
1345 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1346 && GET_MODE_CLASS (mode) == MODE_FLOAT
1347 && GET_MODE_BITSIZE (mode) > 64
1348 && GET_CODE (op) == CONST_DOUBLE)
5495cc55
RH
1349 {
1350 long k[4];
1351 REAL_VALUE_TYPE rv;
a5559dbc 1352
5495cc55
RH
1353 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1354 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
a5559dbc 1355
5495cc55
RH
1356 if (BITS_PER_WORD == 32)
1357 {
1358 val = k[i];
1359 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1360 return GEN_INT (val);
1361 }
1362#if HOST_BITS_PER_WIDE_INT >= 64
1363 else if (BITS_PER_WORD >= 64 && i <= 1)
1364 {
1365 val = k[i*2 + ! WORDS_BIG_ENDIAN];
1366 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1367 val |= (HOST_WIDE_INT) k[i*2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1368 return GEN_INT (val);
1369 }
1370#endif
1371 else
1372 abort ();
1373 }
1632afca 1374#else /* no REAL_ARITHMETIC */
23b2ce53 1375 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1376 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53
RS
1377 || flag_pretend_float)
1378 && GET_MODE_CLASS (mode) == MODE_FLOAT
1379 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1380 && GET_CODE (op) == CONST_DOUBLE)
7529ac93
CH
1381 {
1382 /* The constant is stored in the host's word-ordering,
1383 but we want to access it in the target's word-ordering. Some
1384 compilers don't like a conditional inside macro args, so we have two
1385 copies of the return. */
2fe02d7e 1386#ifdef HOST_WORDS_BIG_ENDIAN
7529ac93
CH
1387 return GEN_INT (i == WORDS_BIG_ENDIAN
1388 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1389#else
7529ac93
CH
1390 return GEN_INT (i != WORDS_BIG_ENDIAN
1391 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1392#endif
7529ac93 1393 }
1632afca 1394#endif /* no REAL_ARITHMETIC */
23b2ce53
RS
1395
1396 /* Single word float is a little harder, since single- and double-word
1397 values often do not have the same high-order bits. We have already
1398 verified that we want the only defined word of the single-word value. */
1632afca 1399#ifdef REAL_ARITHMETIC
9847c2f6 1400 if (GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1401 && GET_MODE_BITSIZE (mode) == 32
1632afca
RS
1402 && GET_CODE (op) == CONST_DOUBLE)
1403 {
9847c2f6 1404 long l;
1632afca
RS
1405 REAL_VALUE_TYPE rv;
1406
1407 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1408 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
aa2ae679 1409
7cae975e
RH
1410 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1411 val = l;
1412 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
b5a3eb84 1413
aa2ae679
JL
1414 if (BITS_PER_WORD == 16)
1415 {
7cae975e
RH
1416 if ((i & 1) == !WORDS_BIG_ENDIAN)
1417 val >>= 16;
1418 val &= 0xffff;
aa2ae679 1419 }
7cae975e
RH
1420
1421 return GEN_INT (val);
1632afca
RS
1422 }
1423#else
23b2ce53 1424 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1425 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53 1426 || flag_pretend_float)
e01a2cec 1427 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
23b2ce53
RS
1428 && GET_MODE_CLASS (mode) == MODE_FLOAT
1429 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1430 && GET_CODE (op) == CONST_DOUBLE)
1431 {
1432 double d;
906c4e36 1433 union {float f; HOST_WIDE_INT i; } u;
23b2ce53
RS
1434
1435 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1436
1437 u.f = d;
906c4e36 1438 return GEN_INT (u.i);
23b2ce53 1439 }
e01a2cec
RK
1440 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1441 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1442 || flag_pretend_float)
1443 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1444 && GET_MODE_CLASS (mode) == MODE_FLOAT
1445 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1446 && GET_CODE (op) == CONST_DOUBLE)
1447 {
1448 double d;
1449 union {double d; HOST_WIDE_INT i; } u;
1450
1451 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1452
1453 u.d = d;
1454 return GEN_INT (u.i);
1455 }
1632afca 1456#endif /* no REAL_ARITHMETIC */
23b2ce53
RS
1457
1458 /* The only remaining cases that we can handle are integers.
1459 Convert to proper endianness now since these cases need it.
1460 At this point, i == 0 means the low-order word.
1461
2d4f57f8
RK
1462 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1463 in general. However, if OP is (const_int 0), we can just return
1464 it for any word. */
1465
1466 if (op == const0_rtx)
1467 return op;
23b2ce53
RS
1468
1469 if (GET_MODE_CLASS (mode) != MODE_INT
2d4f57f8 1470 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
0cf214a0 1471 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
23b2ce53
RS
1472 return 0;
1473
1474 if (WORDS_BIG_ENDIAN)
1475 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1476
1477 /* Find out which word on the host machine this value is in and get
1478 it from the constant. */
1479 val = (i / size_ratio == 0
1480 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1481 : (GET_CODE (op) == CONST_INT
1482 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1483
3f518020 1484 /* Get the value we want into the low bits of val. */
906c4e36 1485 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
3f518020
JL
1486 val = ((val >> ((i % size_ratio) * BITS_PER_WORD)));
1487
7e4ce834 1488 val = trunc_int_for_mode (val, word_mode);
23b2ce53 1489
906c4e36 1490 return GEN_INT (val);
23b2ce53
RS
1491}
1492
1493/* Similar to `operand_subword', but never return 0. If we can't extract
1494 the required subword, put OP into a register and try again. If that fails,
1495 abort. We always validate the address in this case. It is not valid
1496 to call this function after reload; it is mostly meant for RTL
1497 generation.
1498
1499 MODE is the mode of OP, in case it is CONST_INT. */
1500
1501rtx
1502operand_subword_force (op, i, mode)
1503 rtx op;
770ae6cc 1504 unsigned int i;
23b2ce53
RS
1505 enum machine_mode mode;
1506{
1507 rtx result = operand_subword (op, i, 1, mode);
1508
1509 if (result)
1510 return result;
1511
1512 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1513 {
1514 /* If this is a register which can not be accessed by words, copy it
1515 to a pseudo register. */
1516 if (GET_CODE (op) == REG)
1517 op = copy_to_reg (op);
1518 else
1519 op = force_reg (mode, op);
1520 }
23b2ce53
RS
1521
1522 result = operand_subword (op, i, 1, mode);
1523 if (result == 0)
1524 abort ();
1525
1526 return result;
1527}
1528\f
1529/* Given a compare instruction, swap the operands.
1530 A test instruction is changed into a compare of 0 against the operand. */
1531
1532void
1533reverse_comparison (insn)
1534 rtx insn;
1535{
1536 rtx body = PATTERN (insn);
1537 rtx comp;
1538
1539 if (GET_CODE (body) == SET)
1540 comp = SET_SRC (body);
1541 else
1542 comp = SET_SRC (XVECEXP (body, 0, 0));
1543
1544 if (GET_CODE (comp) == COMPARE)
1545 {
1546 rtx op0 = XEXP (comp, 0);
1547 rtx op1 = XEXP (comp, 1);
1548 XEXP (comp, 0) = op1;
1549 XEXP (comp, 1) = op0;
1550 }
1551 else
1552 {
c5c76735
JL
1553 rtx new = gen_rtx_COMPARE (VOIDmode,
1554 CONST0_RTX (GET_MODE (comp)), comp);
23b2ce53
RS
1555 if (GET_CODE (body) == SET)
1556 SET_SRC (body) = new;
1557 else
1558 SET_SRC (XVECEXP (body, 0, 0)) = new;
1559 }
1560}
1561\f
1562/* Return a memory reference like MEMREF, but with its mode changed
1563 to MODE and its address changed to ADDR.
1564 (VOIDmode means don't change the mode.
1565 NULL for ADDR means don't change the address.) */
1566
1567rtx
1568change_address (memref, mode, addr)
1569 rtx memref;
1570 enum machine_mode mode;
1571 rtx addr;
1572{
1573 rtx new;
1574
1575 if (GET_CODE (memref) != MEM)
1576 abort ();
1577 if (mode == VOIDmode)
1578 mode = GET_MODE (memref);
1579 if (addr == 0)
1580 addr = XEXP (memref, 0);
1581
1582 /* If reload is in progress or has completed, ADDR must be valid.
1583 Otherwise, we can call memory_address to make it valid. */
1584 if (reload_completed || reload_in_progress)
1585 {
1586 if (! memory_address_p (mode, addr))
1587 abort ();
1588 }
1589 else
1590 addr = memory_address (mode, addr);
1591
9b04c6a8
RK
1592 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1593 return memref;
1594
3b80f6ca 1595 new = gen_rtx_MEM (mode, addr);
c6df88cb 1596 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
1597 return new;
1598}
1599\f
1600/* Return a newly created CODE_LABEL rtx with a unique label number. */
1601
1602rtx
1603gen_label_rtx ()
1604{
ca695ac9
JB
1605 register rtx label;
1606
b93a436e 1607 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
8cd0faaf 1608 NULL_RTX, label_num++, NULL_PTR, NULL_PTR);
ca695ac9 1609
23b2ce53 1610 LABEL_NUSES (label) = 0;
8cd0faaf 1611 LABEL_ALTERNATE_NAME (label) = NULL;
23b2ce53
RS
1612 return label;
1613}
1614\f
1615/* For procedure integration. */
1616
23b2ce53 1617/* Install new pointers to the first and last insns in the chain.
86fe05e0 1618 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
1619 Used for an inline-procedure after copying the insn chain. */
1620
1621void
1622set_new_first_and_last_insn (first, last)
1623 rtx first, last;
1624{
86fe05e0
RK
1625 rtx insn;
1626
23b2ce53
RS
1627 first_insn = first;
1628 last_insn = last;
86fe05e0
RK
1629 cur_insn_uid = 0;
1630
1631 for (insn = first; insn; insn = NEXT_INSN (insn))
1632 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1633
1634 cur_insn_uid++;
23b2ce53
RS
1635}
1636
1637/* Set the range of label numbers found in the current function.
1638 This is used when belatedly compiling an inline function. */
1639
1640void
1641set_new_first_and_last_label_num (first, last)
1642 int first, last;
1643{
1644 base_label_num = label_num;
1645 first_label_num = first;
1646 last_label_num = last;
1647}
49ad7cfa
BS
1648
1649/* Set the last label number found in the current function.
1650 This is used when belatedly compiling an inline function. */
23b2ce53
RS
1651
1652void
49ad7cfa
BS
1653set_new_last_label_num (last)
1654 int last;
23b2ce53 1655{
49ad7cfa
BS
1656 base_label_num = label_num;
1657 last_label_num = last;
23b2ce53 1658}
49ad7cfa 1659\f
23b2ce53
RS
1660/* Restore all variables describing the current status from the structure *P.
1661 This is used after a nested function. */
1662
1663void
1664restore_emit_status (p)
272df862 1665 struct function *p ATTRIBUTE_UNUSED;
23b2ce53 1666{
457a2d9c 1667 last_label_num = 0;
49ad7cfa 1668 clear_emit_caches ();
23b2ce53 1669}
e2ecd91c 1670
21cd906e 1671/* Clear out all parts of the state in F that can safely be discarded
e2ecd91c 1672 after the function has been compiled, to let garbage collection
0a8a198c 1673 reclaim the memory. */
21cd906e 1674
e2ecd91c 1675void
0a8a198c 1676free_emit_status (f)
e2ecd91c
BS
1677 struct function *f;
1678{
1679 free (f->emit->x_regno_reg_rtx);
1680 free (f->emit->regno_pointer_flag);
1681 free (f->emit->regno_pointer_align);
fa51b01b
RH
1682 free (f->emit);
1683 f->emit = NULL;
e2ecd91c 1684}
23b2ce53 1685\f
d1b81779
GK
1686/* Go through all the RTL insn bodies and copy any invalid shared
1687 structure. This routine should only be called once. */
23b2ce53
RS
1688
1689void
d1b81779
GK
1690unshare_all_rtl (fndecl, insn)
1691 tree fndecl;
1692 rtx insn;
23b2ce53 1693{
d1b81779 1694 tree decl;
23b2ce53 1695
d1b81779
GK
1696 /* Make sure that virtual parameters are not shared. */
1697 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
c13e8210 1698 copy_rtx_if_shared (DECL_RTL (decl));
d1b81779
GK
1699
1700 /* Unshare just about everything else. */
1701 unshare_all_rtl_1 (insn);
1702
23b2ce53
RS
1703 /* Make sure the addresses of stack slots found outside the insn chain
1704 (such as, in DECL_RTL of a variable) are not shared
1705 with the insn chain.
1706
1707 This special care is necessary when the stack slot MEM does not
1708 actually appear in the insn chain. If it does appear, its address
1709 is unshared from all else at that point. */
23b2ce53
RS
1710 copy_rtx_if_shared (stack_slot_list);
1711}
1712
d1b81779
GK
1713/* Go through all the RTL insn bodies and copy any invalid shared
1714 structure, again. This is a fairly expensive thing to do so it
1715 should be done sparingly. */
1716
1717void
1718unshare_all_rtl_again (insn)
1719 rtx insn;
1720{
1721 rtx p;
624c87aa
RE
1722 tree decl;
1723
d1b81779
GK
1724 for (p = insn; p; p = NEXT_INSN (p))
1725 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
1726 {
1727 reset_used_flags (PATTERN (p));
1728 reset_used_flags (REG_NOTES (p));
1729 reset_used_flags (LOG_LINKS (p));
1730 }
624c87aa
RE
1731
1732 /* Make sure that virtual parameters are not shared. */
1733 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1734 reset_used_flags (DECL_RTL (decl));
1735
1736 reset_used_flags (stack_slot_list);
1737
1738 unshare_all_rtl (cfun->decl, insn);
d1b81779
GK
1739}
1740
1741/* Go through all the RTL insn bodies and copy any invalid shared structure.
1742 Assumes the mark bits are cleared at entry. */
1743
1744static void
1745unshare_all_rtl_1 (insn)
1746 rtx insn;
1747{
1748 for (; insn; insn = NEXT_INSN (insn))
1749 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1750 {
1751 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1752 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1753 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1754 }
1755}
1756
23b2ce53
RS
1757/* Mark ORIG as in use, and return a copy of it if it was already in use.
1758 Recursively does the same for subexpressions. */
1759
1760rtx
1761copy_rtx_if_shared (orig)
1762 rtx orig;
1763{
1764 register rtx x = orig;
1765 register int i;
1766 register enum rtx_code code;
6f7d635c 1767 register const char *format_ptr;
23b2ce53
RS
1768 int copied = 0;
1769
1770 if (x == 0)
1771 return 0;
1772
1773 code = GET_CODE (x);
1774
1775 /* These types may be freely shared. */
1776
1777 switch (code)
1778 {
1779 case REG:
1780 case QUEUED:
1781 case CONST_INT:
1782 case CONST_DOUBLE:
1783 case SYMBOL_REF:
1784 case CODE_LABEL:
1785 case PC:
1786 case CC0:
1787 case SCRATCH:
0f41302f 1788 /* SCRATCH must be shared because they represent distinct values. */
23b2ce53
RS
1789 return x;
1790
b851ea09
RK
1791 case CONST:
1792 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1793 a LABEL_REF, it isn't sharable. */
1794 if (GET_CODE (XEXP (x, 0)) == PLUS
1795 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1796 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1797 return x;
1798 break;
1799
23b2ce53
RS
1800 case INSN:
1801 case JUMP_INSN:
1802 case CALL_INSN:
1803 case NOTE:
23b2ce53
RS
1804 case BARRIER:
1805 /* The chain of insns is not being copied. */
1806 return x;
1807
1808 case MEM:
83512665
JL
1809 /* A MEM is allowed to be shared if its address is constant.
1810
1811 We used to allow sharing of MEMs which referenced
1812 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1813 that can lose. instantiate_virtual_regs will not unshare
1814 the MEMs, and combine may change the structure of the address
1815 because it looks safe and profitable in one context, but
1816 in some other context it creates unrecognizable RTL. */
1817 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
23b2ce53
RS
1818 return x;
1819
e9a25f70
JL
1820 break;
1821
1822 default:
1823 break;
23b2ce53
RS
1824 }
1825
1826 /* This rtx may not be shared. If it has already been seen,
1827 replace it with a copy of itself. */
1828
1829 if (x->used)
1830 {
1831 register rtx copy;
1832
1833 copy = rtx_alloc (code);
4c9a05bc
RK
1834 bcopy ((char *) x, (char *) copy,
1835 (sizeof (*copy) - sizeof (copy->fld)
1836 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
23b2ce53
RS
1837 x = copy;
1838 copied = 1;
1839 }
1840 x->used = 1;
1841
1842 /* Now scan the subexpressions recursively.
1843 We can store any replaced subexpressions directly into X
1844 since we know X is not shared! Any vectors in X
1845 must be copied if X was copied. */
1846
1847 format_ptr = GET_RTX_FORMAT (code);
1848
1849 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1850 {
1851 switch (*format_ptr++)
1852 {
1853 case 'e':
1854 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1855 break;
1856
1857 case 'E':
1858 if (XVEC (x, i) != NULL)
1859 {
1860 register int j;
f0722107 1861 int len = XVECLEN (x, i);
23b2ce53 1862
f0722107 1863 if (copied && len > 0)
8f985ec4 1864 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
f0722107
RS
1865 for (j = 0; j < len; j++)
1866 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
23b2ce53
RS
1867 }
1868 break;
1869 }
1870 }
1871 return x;
1872}
1873
1874/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1875 to look for shared sub-parts. */
1876
1877void
1878reset_used_flags (x)
1879 rtx x;
1880{
1881 register int i, j;
1882 register enum rtx_code code;
6f7d635c 1883 register const char *format_ptr;
23b2ce53
RS
1884
1885 if (x == 0)
1886 return;
1887
1888 code = GET_CODE (x);
1889
9faa82d8 1890 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
1891 for them. */
1892
1893 switch (code)
1894 {
1895 case REG:
1896 case QUEUED:
1897 case CONST_INT:
1898 case CONST_DOUBLE:
1899 case SYMBOL_REF:
1900 case CODE_LABEL:
1901 case PC:
1902 case CC0:
1903 return;
1904
1905 case INSN:
1906 case JUMP_INSN:
1907 case CALL_INSN:
1908 case NOTE:
1909 case LABEL_REF:
1910 case BARRIER:
1911 /* The chain of insns is not being copied. */
1912 return;
e9a25f70
JL
1913
1914 default:
1915 break;
23b2ce53
RS
1916 }
1917
1918 x->used = 0;
1919
1920 format_ptr = GET_RTX_FORMAT (code);
1921 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1922 {
1923 switch (*format_ptr++)
1924 {
1925 case 'e':
1926 reset_used_flags (XEXP (x, i));
1927 break;
1928
1929 case 'E':
1930 for (j = 0; j < XVECLEN (x, i); j++)
1931 reset_used_flags (XVECEXP (x, i, j));
1932 break;
1933 }
1934 }
1935}
1936\f
1937/* Copy X if necessary so that it won't be altered by changes in OTHER.
1938 Return X or the rtx for the pseudo reg the value of X was copied into.
1939 OTHER must be valid as a SET_DEST. */
1940
1941rtx
1942make_safe_from (x, other)
1943 rtx x, other;
1944{
1945 while (1)
1946 switch (GET_CODE (other))
1947 {
1948 case SUBREG:
1949 other = SUBREG_REG (other);
1950 break;
1951 case STRICT_LOW_PART:
1952 case SIGN_EXTEND:
1953 case ZERO_EXTEND:
1954 other = XEXP (other, 0);
1955 break;
1956 default:
1957 goto done;
1958 }
1959 done:
1960 if ((GET_CODE (other) == MEM
1961 && ! CONSTANT_P (x)
1962 && GET_CODE (x) != REG
1963 && GET_CODE (x) != SUBREG)
1964 || (GET_CODE (other) == REG
1965 && (REGNO (other) < FIRST_PSEUDO_REGISTER
1966 || reg_mentioned_p (other, x))))
1967 {
1968 rtx temp = gen_reg_rtx (GET_MODE (x));
1969 emit_move_insn (temp, x);
1970 return temp;
1971 }
1972 return x;
1973}
1974\f
1975/* Emission of insns (adding them to the doubly-linked list). */
1976
1977/* Return the first insn of the current sequence or current function. */
1978
1979rtx
1980get_insns ()
1981{
1982 return first_insn;
1983}
1984
1985/* Return the last insn emitted in current sequence or current function. */
1986
1987rtx
1988get_last_insn ()
1989{
1990 return last_insn;
1991}
1992
1993/* Specify a new insn as the last in the chain. */
1994
1995void
1996set_last_insn (insn)
1997 rtx insn;
1998{
1999 if (NEXT_INSN (insn) != 0)
2000 abort ();
2001 last_insn = insn;
2002}
2003
2004/* Return the last insn emitted, even if it is in a sequence now pushed. */
2005
2006rtx
2007get_last_insn_anywhere ()
2008{
2009 struct sequence_stack *stack;
2010 if (last_insn)
2011 return last_insn;
49ad7cfa 2012 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2013 if (stack->last != 0)
2014 return stack->last;
2015 return 0;
2016}
2017
2018/* Return a number larger than any instruction's uid in this function. */
2019
2020int
2021get_max_uid ()
2022{
2023 return cur_insn_uid;
2024}
aeeeda03 2025
673b5311
MM
2026/* Renumber instructions so that no instruction UIDs are wasted. */
2027
aeeeda03 2028void
673b5311
MM
2029renumber_insns (stream)
2030 FILE *stream;
aeeeda03
MM
2031{
2032 rtx insn;
aeeeda03 2033
673b5311
MM
2034 /* If we're not supposed to renumber instructions, don't. */
2035 if (!flag_renumber_insns)
2036 return;
2037
aeeeda03
MM
2038 /* If there aren't that many instructions, then it's not really
2039 worth renumbering them. */
673b5311 2040 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
aeeeda03
MM
2041 return;
2042
2043 cur_insn_uid = 1;
2044
2045 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
673b5311
MM
2046 {
2047 if (stream)
2048 fprintf (stream, "Renumbering insn %d to %d\n",
2049 INSN_UID (insn), cur_insn_uid);
2050 INSN_UID (insn) = cur_insn_uid++;
2051 }
aeeeda03 2052}
23b2ce53
RS
2053\f
2054/* Return the next insn. If it is a SEQUENCE, return the first insn
2055 of the sequence. */
2056
2057rtx
2058next_insn (insn)
2059 rtx insn;
2060{
2061 if (insn)
2062 {
2063 insn = NEXT_INSN (insn);
2064 if (insn && GET_CODE (insn) == INSN
2065 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2066 insn = XVECEXP (PATTERN (insn), 0, 0);
2067 }
2068
2069 return insn;
2070}
2071
2072/* Return the previous insn. If it is a SEQUENCE, return the last insn
2073 of the sequence. */
2074
2075rtx
2076previous_insn (insn)
2077 rtx insn;
2078{
2079 if (insn)
2080 {
2081 insn = PREV_INSN (insn);
2082 if (insn && GET_CODE (insn) == INSN
2083 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2084 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2085 }
2086
2087 return insn;
2088}
2089
2090/* Return the next insn after INSN that is not a NOTE. This routine does not
2091 look inside SEQUENCEs. */
2092
2093rtx
2094next_nonnote_insn (insn)
2095 rtx insn;
2096{
2097 while (insn)
2098 {
2099 insn = NEXT_INSN (insn);
2100 if (insn == 0 || GET_CODE (insn) != NOTE)
2101 break;
2102 }
2103
2104 return insn;
2105}
2106
2107/* Return the previous insn before INSN that is not a NOTE. This routine does
2108 not look inside SEQUENCEs. */
2109
2110rtx
2111prev_nonnote_insn (insn)
2112 rtx insn;
2113{
2114 while (insn)
2115 {
2116 insn = PREV_INSN (insn);
2117 if (insn == 0 || GET_CODE (insn) != NOTE)
2118 break;
2119 }
2120
2121 return insn;
2122}
2123
2124/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2125 or 0, if there is none. This routine does not look inside
0f41302f 2126 SEQUENCEs. */
23b2ce53
RS
2127
2128rtx
2129next_real_insn (insn)
2130 rtx insn;
2131{
2132 while (insn)
2133 {
2134 insn = NEXT_INSN (insn);
2135 if (insn == 0 || GET_CODE (insn) == INSN
2136 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2137 break;
2138 }
2139
2140 return insn;
2141}
2142
2143/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2144 or 0, if there is none. This routine does not look inside
2145 SEQUENCEs. */
2146
2147rtx
2148prev_real_insn (insn)
2149 rtx insn;
2150{
2151 while (insn)
2152 {
2153 insn = PREV_INSN (insn);
2154 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2155 || GET_CODE (insn) == JUMP_INSN)
2156 break;
2157 }
2158
2159 return insn;
2160}
2161
2162/* Find the next insn after INSN that really does something. This routine
2163 does not look inside SEQUENCEs. Until reload has completed, this is the
2164 same as next_real_insn. */
2165
69732dcb
RH
2166int
2167active_insn_p (insn)
2168 rtx insn;
2169{
2170 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2171 || (GET_CODE (insn) == INSN
2172 && (! reload_completed
2173 || (GET_CODE (PATTERN (insn)) != USE
2174 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2175}
2176
23b2ce53
RS
2177rtx
2178next_active_insn (insn)
2179 rtx insn;
2180{
2181 while (insn)
2182 {
2183 insn = NEXT_INSN (insn);
69732dcb 2184 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2185 break;
2186 }
2187
2188 return insn;
2189}
2190
2191/* Find the last insn before INSN that really does something. This routine
2192 does not look inside SEQUENCEs. Until reload has completed, this is the
2193 same as prev_real_insn. */
2194
2195rtx
2196prev_active_insn (insn)
2197 rtx insn;
2198{
2199 while (insn)
2200 {
2201 insn = PREV_INSN (insn);
69732dcb 2202 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2203 break;
2204 }
2205
2206 return insn;
2207}
2208
2209/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2210
2211rtx
2212next_label (insn)
2213 rtx insn;
2214{
2215 while (insn)
2216 {
2217 insn = NEXT_INSN (insn);
2218 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2219 break;
2220 }
2221
2222 return insn;
2223}
2224
2225/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2226
2227rtx
2228prev_label (insn)
2229 rtx insn;
2230{
2231 while (insn)
2232 {
2233 insn = PREV_INSN (insn);
2234 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2235 break;
2236 }
2237
2238 return insn;
2239}
2240\f
2241#ifdef HAVE_cc0
c572e5ba
JVA
2242/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2243 and REG_CC_USER notes so we can find it. */
2244
2245void
2246link_cc0_insns (insn)
2247 rtx insn;
2248{
2249 rtx user = next_nonnote_insn (insn);
2250
2251 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2252 user = XVECEXP (PATTERN (user), 0, 0);
2253
c5c76735
JL
2254 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2255 REG_NOTES (user));
3b80f6ca 2256 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
2257}
2258
23b2ce53
RS
2259/* Return the next insn that uses CC0 after INSN, which is assumed to
2260 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2261 applied to the result of this function should yield INSN).
2262
2263 Normally, this is simply the next insn. However, if a REG_CC_USER note
2264 is present, it contains the insn that uses CC0.
2265
2266 Return 0 if we can't find the insn. */
2267
2268rtx
2269next_cc0_user (insn)
2270 rtx insn;
2271{
906c4e36 2272 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
2273
2274 if (note)
2275 return XEXP (note, 0);
2276
2277 insn = next_nonnote_insn (insn);
2278 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2279 insn = XVECEXP (PATTERN (insn), 0, 0);
2280
2281 if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2282 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2283 return insn;
2284
2285 return 0;
2286}
2287
2288/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2289 note, it is the previous insn. */
2290
2291rtx
2292prev_cc0_setter (insn)
2293 rtx insn;
2294{
906c4e36 2295 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
2296
2297 if (note)
2298 return XEXP (note, 0);
2299
2300 insn = prev_nonnote_insn (insn);
2301 if (! sets_cc0_p (PATTERN (insn)))
2302 abort ();
2303
2304 return insn;
2305}
2306#endif
2307\f
2308/* Try splitting insns that can be split for better scheduling.
2309 PAT is the pattern which might split.
2310 TRIAL is the insn providing PAT.
11147ebe 2311 LAST is non-zero if we should return the last insn of the sequence produced.
23b2ce53
RS
2312
2313 If this routine succeeds in splitting, it returns the first or last
11147ebe 2314 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
2315 returns TRIAL. If the insn to be returned can be split, it will be. */
2316
2317rtx
11147ebe 2318try_split (pat, trial, last)
23b2ce53 2319 rtx pat, trial;
11147ebe 2320 int last;
23b2ce53
RS
2321{
2322 rtx before = PREV_INSN (trial);
2323 rtx after = NEXT_INSN (trial);
2324 rtx seq = split_insns (pat, trial);
2325 int has_barrier = 0;
2326 rtx tem;
2327
2328 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2329 We may need to handle this specially. */
2330 if (after && GET_CODE (after) == BARRIER)
2331 {
2332 has_barrier = 1;
2333 after = NEXT_INSN (after);
2334 }
2335
2336 if (seq)
2337 {
2338 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2339 The latter case will normally arise only when being done so that
2340 it, in turn, will be split (SFmode on the 29k is an example). */
2341 if (GET_CODE (seq) == SEQUENCE)
2342 {
4b5e8abe
CP
2343 int i;
2344
2345 /* Avoid infinite loop if any insn of the result matches
2346 the original pattern. */
2347 for (i = 0; i < XVECLEN (seq, 0); i++)
2348 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2349 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2350 return trial;
2351
23b2ce53
RS
2352 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2353 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2354 increment the usage count so we don't delete the label. */
23b2ce53
RS
2355
2356 if (GET_CODE (trial) == JUMP_INSN)
2357 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2358 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2359 {
2360 JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
2361
2362 if (JUMP_LABEL (trial))
2363 LABEL_NUSES (JUMP_LABEL (trial))++;
2364 }
2365
2366 tem = emit_insn_after (seq, before);
2367
2368 delete_insn (trial);
2369 if (has_barrier)
2370 emit_barrier_after (tem);
11147ebe
RK
2371
2372 /* Recursively call try_split for each new insn created; by the
2373 time control returns here that insn will be fully split, so
2374 set LAST and continue from the insn after the one returned.
f4a3cd05 2375 We can't use next_active_insn here since AFTER may be a note.
23886015 2376 Ignore deleted insns, which can be occur if not optimizing. */
11147ebe
RK
2377 for (tem = NEXT_INSN (before); tem != after;
2378 tem = NEXT_INSN (tem))
23886015
RH
2379 if (! INSN_DELETED_P (tem)
2380 && GET_RTX_CLASS (GET_CODE (tem)) == 'i')
f4a3cd05 2381 tem = try_split (PATTERN (tem), tem, 1);
23b2ce53
RS
2382 }
2383 /* Avoid infinite loop if the result matches the original pattern. */
2384 else if (rtx_equal_p (seq, pat))
2385 return trial;
2386 else
2387 {
2388 PATTERN (trial) = seq;
2389 INSN_CODE (trial) = -1;
11147ebe 2390 try_split (seq, trial, last);
23b2ce53
RS
2391 }
2392
11147ebe
RK
2393 /* Return either the first or the last insn, depending on which was
2394 requested. */
ba52f355
CP
2395 return last
2396 ? (after ? prev_active_insn (after) : last_insn)
2397 : next_active_insn (before);
23b2ce53
RS
2398 }
2399
2400 return trial;
2401}
2402\f
2403/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 2404 Store PATTERN in the pattern slots. */
23b2ce53
RS
2405
2406rtx
4b1f5e8c 2407make_insn_raw (pattern)
23b2ce53 2408 rtx pattern;
23b2ce53
RS
2409{
2410 register rtx insn;
2411
43127294 2412 /* If in RTL generation phase, see if FREE_INSN can be used. */
a3770a81 2413 if (!ggc_p && free_insn != 0 && rtx_equal_function_value_matters)
43127294
RK
2414 {
2415 insn = free_insn;
2416 free_insn = NEXT_INSN (free_insn);
2417 PUT_CODE (insn, INSN);
2418 }
2419 else
2420 insn = rtx_alloc (INSN);
23b2ce53 2421
43127294 2422 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2423 PATTERN (insn) = pattern;
2424 INSN_CODE (insn) = -1;
1632afca
RS
2425 LOG_LINKS (insn) = NULL;
2426 REG_NOTES (insn) = NULL;
23b2ce53 2427
47984720
NC
2428#ifdef ENABLE_RTL_CHECKING
2429 if (insn
2430 && GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2431 && (returnjump_p (insn)
2432 || (GET_CODE (insn) == SET
2433 && SET_DEST (insn) == pc_rtx)))
2434 {
2435 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2436 debug_rtx (insn);
2437 }
2438#endif
2439
23b2ce53
RS
2440 return insn;
2441}
2442
2443/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2444
2445static rtx
4b1f5e8c 2446make_jump_insn_raw (pattern)
23b2ce53 2447 rtx pattern;
23b2ce53
RS
2448{
2449 register rtx insn;
2450
4b1f5e8c 2451 insn = rtx_alloc (JUMP_INSN);
1632afca 2452 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2453
2454 PATTERN (insn) = pattern;
2455 INSN_CODE (insn) = -1;
1632afca
RS
2456 LOG_LINKS (insn) = NULL;
2457 REG_NOTES (insn) = NULL;
2458 JUMP_LABEL (insn) = NULL;
23b2ce53
RS
2459
2460 return insn;
2461}
aff507f4
RK
2462
2463/* Like `make_insn' but make a CALL_INSN instead of an insn. */
2464
2465static rtx
2466make_call_insn_raw (pattern)
2467 rtx pattern;
2468{
2469 register rtx insn;
2470
2471 insn = rtx_alloc (CALL_INSN);
2472 INSN_UID (insn) = cur_insn_uid++;
2473
2474 PATTERN (insn) = pattern;
2475 INSN_CODE (insn) = -1;
2476 LOG_LINKS (insn) = NULL;
2477 REG_NOTES (insn) = NULL;
2478 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2479
2480 return insn;
2481}
23b2ce53
RS
2482\f
2483/* Add INSN to the end of the doubly-linked list.
2484 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2485
2486void
2487add_insn (insn)
2488 register rtx insn;
2489{
2490 PREV_INSN (insn) = last_insn;
2491 NEXT_INSN (insn) = 0;
2492
2493 if (NULL != last_insn)
2494 NEXT_INSN (last_insn) = insn;
2495
2496 if (NULL == first_insn)
2497 first_insn = insn;
2498
2499 last_insn = insn;
2500}
2501
a0ae8e8d
RK
2502/* Add INSN into the doubly-linked list after insn AFTER. This and
2503 the next should be the only functions called to insert an insn once
ba213285 2504 delay slots have been filled since only they know how to update a
a0ae8e8d 2505 SEQUENCE. */
23b2ce53
RS
2506
2507void
2508add_insn_after (insn, after)
2509 rtx insn, after;
2510{
2511 rtx next = NEXT_INSN (after);
2512
6782074d 2513 if (optimize && INSN_DELETED_P (after))
ba213285
RK
2514 abort ();
2515
23b2ce53
RS
2516 NEXT_INSN (insn) = next;
2517 PREV_INSN (insn) = after;
2518
2519 if (next)
2520 {
2521 PREV_INSN (next) = insn;
2522 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2523 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2524 }
2525 else if (last_insn == after)
2526 last_insn = insn;
2527 else
2528 {
49ad7cfa 2529 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
2530 /* Scan all pending sequences too. */
2531 for (; stack; stack = stack->next)
2532 if (after == stack->last)
fef0509b
RK
2533 {
2534 stack->last = insn;
2535 break;
2536 }
a0ae8e8d
RK
2537
2538 if (stack == 0)
2539 abort ();
23b2ce53
RS
2540 }
2541
2542 NEXT_INSN (after) = insn;
2543 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2544 {
2545 rtx sequence = PATTERN (after);
2546 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2547 }
2548}
2549
a0ae8e8d
RK
2550/* Add INSN into the doubly-linked list before insn BEFORE. This and
2551 the previous should be the only functions called to insert an insn once
ba213285 2552 delay slots have been filled since only they know how to update a
a0ae8e8d
RK
2553 SEQUENCE. */
2554
2555void
2556add_insn_before (insn, before)
2557 rtx insn, before;
2558{
2559 rtx prev = PREV_INSN (before);
2560
6782074d 2561 if (optimize && INSN_DELETED_P (before))
ba213285
RK
2562 abort ();
2563
a0ae8e8d
RK
2564 PREV_INSN (insn) = prev;
2565 NEXT_INSN (insn) = before;
2566
2567 if (prev)
2568 {
2569 NEXT_INSN (prev) = insn;
2570 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2571 {
2572 rtx sequence = PATTERN (prev);
2573 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2574 }
2575 }
2576 else if (first_insn == before)
2577 first_insn = insn;
2578 else
2579 {
49ad7cfa 2580 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
2581 /* Scan all pending sequences too. */
2582 for (; stack; stack = stack->next)
2583 if (before == stack->first)
fef0509b
RK
2584 {
2585 stack->first = insn;
2586 break;
2587 }
a0ae8e8d
RK
2588
2589 if (stack == 0)
2590 abort ();
2591 }
2592
2593 PREV_INSN (before) = insn;
2594 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2595 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2596}
2597
89e99eea
DB
2598/* Remove an insn from its doubly-linked list. This function knows how
2599 to handle sequences. */
2600void
2601remove_insn (insn)
2602 rtx insn;
2603{
2604 rtx next = NEXT_INSN (insn);
2605 rtx prev = PREV_INSN (insn);
2606 if (prev)
2607 {
2608 NEXT_INSN (prev) = next;
2609 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2610 {
2611 rtx sequence = PATTERN (prev);
2612 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2613 }
2614 }
2615 else if (first_insn == insn)
2616 first_insn = next;
2617 else
2618 {
49ad7cfa 2619 struct sequence_stack *stack = seq_stack;
89e99eea
DB
2620 /* Scan all pending sequences too. */
2621 for (; stack; stack = stack->next)
2622 if (insn == stack->first)
2623 {
2624 stack->first = next;
2625 break;
2626 }
2627
2628 if (stack == 0)
2629 abort ();
2630 }
2631
2632 if (next)
2633 {
2634 PREV_INSN (next) = prev;
2635 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2636 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2637 }
2638 else if (last_insn == insn)
2639 last_insn = prev;
2640 else
2641 {
49ad7cfa 2642 struct sequence_stack *stack = seq_stack;
89e99eea
DB
2643 /* Scan all pending sequences too. */
2644 for (; stack; stack = stack->next)
2645 if (insn == stack->last)
2646 {
2647 stack->last = prev;
2648 break;
2649 }
2650
2651 if (stack == 0)
2652 abort ();
2653 }
2654}
2655
23b2ce53
RS
2656/* Delete all insns made since FROM.
2657 FROM becomes the new last instruction. */
2658
2659void
2660delete_insns_since (from)
2661 rtx from;
2662{
2663 if (from == 0)
2664 first_insn = 0;
2665 else
2666 NEXT_INSN (from) = 0;
2667 last_insn = from;
2668}
2669
5dab5552
MS
2670/* This function is deprecated, please use sequences instead.
2671
2672 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
2673 The insns to be moved are those between FROM and TO.
2674 They are moved to a new position after the insn AFTER.
2675 AFTER must not be FROM or TO or any insn in between.
2676
2677 This function does not know about SEQUENCEs and hence should not be
2678 called after delay-slot filling has been done. */
2679
2680void
2681reorder_insns (from, to, after)
2682 rtx from, to, after;
2683{
2684 /* Splice this bunch out of where it is now. */
2685 if (PREV_INSN (from))
2686 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2687 if (NEXT_INSN (to))
2688 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2689 if (last_insn == to)
2690 last_insn = PREV_INSN (from);
2691 if (first_insn == from)
2692 first_insn = NEXT_INSN (to);
2693
2694 /* Make the new neighbors point to it and it to them. */
2695 if (NEXT_INSN (after))
2696 PREV_INSN (NEXT_INSN (after)) = to;
2697
2698 NEXT_INSN (to) = NEXT_INSN (after);
2699 PREV_INSN (from) = after;
2700 NEXT_INSN (after) = from;
2701 if (after == last_insn)
2702 last_insn = to;
2703}
2704
2705/* Return the line note insn preceding INSN. */
2706
2707static rtx
2708find_line_note (insn)
2709 rtx insn;
2710{
2711 if (no_line_numbers)
2712 return 0;
2713
2714 for (; insn; insn = PREV_INSN (insn))
2715 if (GET_CODE (insn) == NOTE
2716 && NOTE_LINE_NUMBER (insn) >= 0)
2717 break;
2718
2719 return insn;
2720}
2721
2722/* Like reorder_insns, but inserts line notes to preserve the line numbers
2723 of the moved insns when debugging. This may insert a note between AFTER
2724 and FROM, and another one after TO. */
2725
2726void
2727reorder_insns_with_line_notes (from, to, after)
2728 rtx from, to, after;
2729{
2730 rtx from_line = find_line_note (from);
2731 rtx after_line = find_line_note (after);
2732
2733 reorder_insns (from, to, after);
2734
2735 if (from_line == after_line)
2736 return;
2737
2738 if (from_line)
2739 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2740 NOTE_LINE_NUMBER (from_line),
2741 after);
2742 if (after_line)
2743 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2744 NOTE_LINE_NUMBER (after_line),
2745 to);
2746}
aeeeda03 2747
64b59a80 2748/* Remove unnecessary notes from the instruction stream. */
aeeeda03
MM
2749
2750void
64b59a80 2751remove_unnecessary_notes ()
aeeeda03
MM
2752{
2753 rtx insn;
2754 rtx next;
aeeeda03 2755
116eebd6
MM
2756 /* We must not remove the first instruction in the function because
2757 the compiler depends on the first instruction being a note. */
aeeeda03
MM
2758 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
2759 {
2760 /* Remember what's next. */
2761 next = NEXT_INSN (insn);
2762
2763 /* We're only interested in notes. */
2764 if (GET_CODE (insn) != NOTE)
2765 continue;
2766
116eebd6
MM
2767 /* By now, all notes indicating lexical blocks should have
2768 NOTE_BLOCK filled in. */
2769 if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2770 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2771 && NOTE_BLOCK (insn) == NULL_TREE)
2772 abort ();
2773
2774 /* Remove NOTE_INSN_DELETED notes. */
aeeeda03
MM
2775 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2776 remove_insn (insn);
18c038b9
MM
2777 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2778 {
2779 /* Scan back to see if there are any non-note instructions
2780 between INSN and the beginning of this block. If not,
2781 then there is no PC range in the generated code that will
2782 actually be in this block, so there's no point in
2783 remembering the existence of the block. */
2784 rtx prev;
2785
2786 for (prev = PREV_INSN (insn); prev; prev = PREV_INSN (prev))
2787 {
2788 /* This block contains a real instruction. Note that we
2789 don't include labels; if the only thing in the block
2790 is a label, then there are still no PC values that
2791 lie within the block. */
2792 if (GET_RTX_CLASS (GET_CODE (prev)) == 'i')
2793 break;
2794
2795 /* We're only interested in NOTEs. */
2796 if (GET_CODE (prev) != NOTE)
2797 continue;
2798
2799 if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_BEG)
2800 {
2801 /* If the BLOCKs referred to by these notes don't
2802 match, then something is wrong with our BLOCK
2803 nesting structure. */
2804 if (NOTE_BLOCK (prev) != NOTE_BLOCK (insn))
2805 abort ();
fcd7f76b 2806
64b59a80 2807 if (debug_ignore_block (NOTE_BLOCK (insn)))
deb5e280 2808 {
deb5e280
JM
2809 remove_insn (prev);
2810 remove_insn (insn);
2811 }
18c038b9
MM
2812 break;
2813 }
2814 else if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_END)
2815 /* There's a nested block. We need to leave the
2816 current block in place since otherwise the debugger
2817 wouldn't be able to show symbols from our block in
2818 the nested block. */
2819 break;
2820 }
2821 }
aeeeda03
MM
2822 }
2823}
2824
23b2ce53
RS
2825\f
2826/* Emit an insn of given code and pattern
2827 at a specified place within the doubly-linked list. */
2828
2829/* Make an instruction with body PATTERN
2830 and output it before the instruction BEFORE. */
2831
2832rtx
2833emit_insn_before (pattern, before)
2834 register rtx pattern, before;
2835{
2836 register rtx insn = before;
2837
2838 if (GET_CODE (pattern) == SEQUENCE)
2839 {
2840 register int i;
2841
2842 for (i = 0; i < XVECLEN (pattern, 0); i++)
2843 {
2844 insn = XVECEXP (pattern, 0, i);
a0ae8e8d 2845 add_insn_before (insn, before);
23b2ce53 2846 }
a3770a81 2847 if (!ggc_p && XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
23b2ce53
RS
2848 sequence_result[XVECLEN (pattern, 0)] = pattern;
2849 }
2850 else
2851 {
4b1f5e8c 2852 insn = make_insn_raw (pattern);
a0ae8e8d 2853 add_insn_before (insn, before);
23b2ce53
RS
2854 }
2855
2856 return insn;
2857}
2858
a05924f9
JH
2859/* Similar to emit_insn_before, but update basic block boundaries as well. */
2860
2861rtx
2862emit_block_insn_before (pattern, before, block)
2863 rtx pattern, before;
2864 basic_block block;
2865{
2866 rtx prev = PREV_INSN (before);
2867 rtx r = emit_insn_before (pattern, before);
2868 if (block && block->head == before)
2869 block->head = NEXT_INSN (prev);
2870 return r;
2871}
2872
23b2ce53
RS
2873/* Make an instruction with body PATTERN and code JUMP_INSN
2874 and output it before the instruction BEFORE. */
2875
2876rtx
2877emit_jump_insn_before (pattern, before)
2878 register rtx pattern, before;
2879{
2880 register rtx insn;
2881
2882 if (GET_CODE (pattern) == SEQUENCE)
2883 insn = emit_insn_before (pattern, before);
2884 else
2885 {
85cf32bc 2886 insn = make_jump_insn_raw (pattern);
a0ae8e8d 2887 add_insn_before (insn, before);
23b2ce53
RS
2888 }
2889
2890 return insn;
2891}
2892
2893/* Make an instruction with body PATTERN and code CALL_INSN
2894 and output it before the instruction BEFORE. */
2895
2896rtx
2897emit_call_insn_before (pattern, before)
2898 register rtx pattern, before;
2899{
aff507f4
RK
2900 register rtx insn;
2901
2902 if (GET_CODE (pattern) == SEQUENCE)
2903 insn = emit_insn_before (pattern, before);
2904 else
2905 {
2906 insn = make_call_insn_raw (pattern);
a0ae8e8d 2907 add_insn_before (insn, before);
aff507f4
RK
2908 PUT_CODE (insn, CALL_INSN);
2909 }
2910
23b2ce53
RS
2911 return insn;
2912}
2913
2914/* Make an insn of code BARRIER
e881bb1b 2915 and output it before the insn BEFORE. */
23b2ce53
RS
2916
2917rtx
2918emit_barrier_before (before)
2919 register rtx before;
2920{
2921 register rtx insn = rtx_alloc (BARRIER);
2922
2923 INSN_UID (insn) = cur_insn_uid++;
2924
a0ae8e8d 2925 add_insn_before (insn, before);
23b2ce53
RS
2926 return insn;
2927}
2928
e881bb1b
RH
2929/* Emit the label LABEL before the insn BEFORE. */
2930
2931rtx
2932emit_label_before (label, before)
2933 rtx label, before;
2934{
2935 /* This can be called twice for the same label as a result of the
2936 confusion that follows a syntax error! So make it harmless. */
2937 if (INSN_UID (label) == 0)
2938 {
2939 INSN_UID (label) = cur_insn_uid++;
2940 add_insn_before (label, before);
2941 }
2942
2943 return label;
2944}
2945
23b2ce53
RS
2946/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
2947
2948rtx
2949emit_note_before (subtype, before)
2950 int subtype;
2951 rtx before;
2952{
2953 register rtx note = rtx_alloc (NOTE);
2954 INSN_UID (note) = cur_insn_uid++;
2955 NOTE_SOURCE_FILE (note) = 0;
2956 NOTE_LINE_NUMBER (note) = subtype;
2957
a0ae8e8d 2958 add_insn_before (note, before);
23b2ce53
RS
2959 return note;
2960}
2961\f
2962/* Make an insn of code INSN with body PATTERN
2963 and output it after the insn AFTER. */
2964
2965rtx
2966emit_insn_after (pattern, after)
2967 register rtx pattern, after;
2968{
2969 register rtx insn = after;
2970
2971 if (GET_CODE (pattern) == SEQUENCE)
2972 {
2973 register int i;
2974
2975 for (i = 0; i < XVECLEN (pattern, 0); i++)
2976 {
2977 insn = XVECEXP (pattern, 0, i);
2978 add_insn_after (insn, after);
2979 after = insn;
2980 }
a3770a81 2981 if (!ggc_p && XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
23b2ce53
RS
2982 sequence_result[XVECLEN (pattern, 0)] = pattern;
2983 }
2984 else
2985 {
4b1f5e8c 2986 insn = make_insn_raw (pattern);
23b2ce53
RS
2987 add_insn_after (insn, after);
2988 }
2989
2990 return insn;
2991}
2992
255680cf
RK
2993/* Similar to emit_insn_after, except that line notes are to be inserted so
2994 as to act as if this insn were at FROM. */
2995
2996void
2997emit_insn_after_with_line_notes (pattern, after, from)
2998 rtx pattern, after, from;
2999{
3000 rtx from_line = find_line_note (from);
3001 rtx after_line = find_line_note (after);
3002 rtx insn = emit_insn_after (pattern, after);
3003
3004 if (from_line)
3005 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3006 NOTE_LINE_NUMBER (from_line),
3007 after);
3008
3009 if (after_line)
3010 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3011 NOTE_LINE_NUMBER (after_line),
3012 insn);
3013}
3014
a05924f9
JH
3015/* Similar to emit_insn_after, but update basic block boundaries as well. */
3016
3017rtx
3018emit_block_insn_after (pattern, after, block)
3019 rtx pattern, after;
3020 basic_block block;
3021{
3022 rtx r = emit_insn_after (pattern, after);
3023 if (block && block->end == after)
3024 block->end = r;
3025 return r;
3026}
3027
23b2ce53
RS
3028/* Make an insn of code JUMP_INSN with body PATTERN
3029 and output it after the insn AFTER. */
3030
3031rtx
3032emit_jump_insn_after (pattern, after)
3033 register rtx pattern, after;
3034{
3035 register rtx insn;
3036
3037 if (GET_CODE (pattern) == SEQUENCE)
3038 insn = emit_insn_after (pattern, after);
3039 else
3040 {
85cf32bc 3041 insn = make_jump_insn_raw (pattern);
23b2ce53
RS
3042 add_insn_after (insn, after);
3043 }
3044
3045 return insn;
3046}
3047
3048/* Make an insn of code BARRIER
3049 and output it after the insn AFTER. */
3050
3051rtx
3052emit_barrier_after (after)
3053 register rtx after;
3054{
3055 register rtx insn = rtx_alloc (BARRIER);
3056
3057 INSN_UID (insn) = cur_insn_uid++;
3058
3059 add_insn_after (insn, after);
3060 return insn;
3061}
3062
3063/* Emit the label LABEL after the insn AFTER. */
3064
3065rtx
3066emit_label_after (label, after)
3067 rtx label, after;
3068{
3069 /* This can be called twice for the same label
3070 as a result of the confusion that follows a syntax error!
3071 So make it harmless. */
3072 if (INSN_UID (label) == 0)
3073 {
3074 INSN_UID (label) = cur_insn_uid++;
3075 add_insn_after (label, after);
3076 }
3077
3078 return label;
3079}
3080
3081/* Emit a note of subtype SUBTYPE after the insn AFTER. */
3082
3083rtx
3084emit_note_after (subtype, after)
3085 int subtype;
3086 rtx after;
3087{
3088 register rtx note = rtx_alloc (NOTE);
3089 INSN_UID (note) = cur_insn_uid++;
3090 NOTE_SOURCE_FILE (note) = 0;
3091 NOTE_LINE_NUMBER (note) = subtype;
3092 add_insn_after (note, after);
3093 return note;
3094}
3095
3096/* Emit a line note for FILE and LINE after the insn AFTER. */
3097
3098rtx
3099emit_line_note_after (file, line, after)
3cce094d 3100 const char *file;
23b2ce53
RS
3101 int line;
3102 rtx after;
3103{
3104 register rtx note;
3105
3106 if (no_line_numbers && line > 0)
3107 {
3108 cur_insn_uid++;
3109 return 0;
3110 }
3111
3112 note = rtx_alloc (NOTE);
3113 INSN_UID (note) = cur_insn_uid++;
3114 NOTE_SOURCE_FILE (note) = file;
3115 NOTE_LINE_NUMBER (note) = line;
3116 add_insn_after (note, after);
3117 return note;
3118}
3119\f
3120/* Make an insn of code INSN with pattern PATTERN
3121 and add it to the end of the doubly-linked list.
3122 If PATTERN is a SEQUENCE, take the elements of it
3123 and emit an insn for each element.
3124
3125 Returns the last insn emitted. */
3126
3127rtx
3128emit_insn (pattern)
3129 rtx pattern;
3130{
3131 rtx insn = last_insn;
3132
3133 if (GET_CODE (pattern) == SEQUENCE)
3134 {
3135 register int i;
3136
3137 for (i = 0; i < XVECLEN (pattern, 0); i++)
3138 {
3139 insn = XVECEXP (pattern, 0, i);
3140 add_insn (insn);
3141 }
a3770a81 3142 if (!ggc_p && XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
23b2ce53
RS
3143 sequence_result[XVECLEN (pattern, 0)] = pattern;
3144 }
3145 else
3146 {
4b1f5e8c 3147 insn = make_insn_raw (pattern);
23b2ce53
RS
3148 add_insn (insn);
3149 }
3150
3151 return insn;
3152}
3153
3154/* Emit the insns in a chain starting with INSN.
3155 Return the last insn emitted. */
3156
3157rtx
3158emit_insns (insn)
3159 rtx insn;
3160{
3161 rtx last = 0;
3162
3163 while (insn)
3164 {
3165 rtx next = NEXT_INSN (insn);
3166 add_insn (insn);
3167 last = insn;
3168 insn = next;
3169 }
3170
3171 return last;
3172}
3173
3174/* Emit the insns in a chain starting with INSN and place them in front of
3175 the insn BEFORE. Return the last insn emitted. */
3176
3177rtx
3178emit_insns_before (insn, before)
3179 rtx insn;
3180 rtx before;
3181{
3182 rtx last = 0;
3183
3184 while (insn)
3185 {
3186 rtx next = NEXT_INSN (insn);
a0ae8e8d 3187 add_insn_before (insn, before);
23b2ce53
RS
3188 last = insn;
3189 insn = next;
3190 }
3191
3192 return last;
3193}
3194
e0a5c5eb
RS
3195/* Emit the insns in a chain starting with FIRST and place them in back of
3196 the insn AFTER. Return the last insn emitted. */
3197
3198rtx
3199emit_insns_after (first, after)
3200 register rtx first;
3201 register rtx after;
3202{
3203 register rtx last;
3204 register rtx after_after;
3205
3206 if (!after)
3207 abort ();
3208
3209 if (!first)
3210 return first;
3211
3212 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3213 continue;
3214
3215 after_after = NEXT_INSN (after);
3216
3217 NEXT_INSN (after) = first;
3218 PREV_INSN (first) = after;
3219 NEXT_INSN (last) = after_after;
3220 if (after_after)
3221 PREV_INSN (after_after) = last;
3222
c4d990db
RS
3223 if (after == last_insn)
3224 last_insn = last;
e0a5c5eb
RS
3225 return last;
3226}
3227
23b2ce53
RS
3228/* Make an insn of code JUMP_INSN with pattern PATTERN
3229 and add it to the end of the doubly-linked list. */
3230
3231rtx
3232emit_jump_insn (pattern)
3233 rtx pattern;
3234{
3235 if (GET_CODE (pattern) == SEQUENCE)
3236 return emit_insn (pattern);
3237 else
3238 {
85cf32bc 3239 register rtx insn = make_jump_insn_raw (pattern);
23b2ce53
RS
3240 add_insn (insn);
3241 return insn;
3242 }
3243}
3244
3245/* Make an insn of code CALL_INSN with pattern PATTERN
3246 and add it to the end of the doubly-linked list. */
3247
3248rtx
3249emit_call_insn (pattern)
3250 rtx pattern;
3251{
3252 if (GET_CODE (pattern) == SEQUENCE)
3253 return emit_insn (pattern);
3254 else
3255 {
aff507f4 3256 register rtx insn = make_call_insn_raw (pattern);
23b2ce53
RS
3257 add_insn (insn);
3258 PUT_CODE (insn, CALL_INSN);
3259 return insn;
3260 }
3261}
3262
3263/* Add the label LABEL to the end of the doubly-linked list. */
3264
3265rtx
3266emit_label (label)
3267 rtx label;
3268{
3269 /* This can be called twice for the same label
3270 as a result of the confusion that follows a syntax error!
3271 So make it harmless. */
3272 if (INSN_UID (label) == 0)
3273 {
3274 INSN_UID (label) = cur_insn_uid++;
3275 add_insn (label);
3276 }
3277 return label;
3278}
3279
3280/* Make an insn of code BARRIER
3281 and add it to the end of the doubly-linked list. */
3282
3283rtx
3284emit_barrier ()
3285{
3286 register rtx barrier = rtx_alloc (BARRIER);
3287 INSN_UID (barrier) = cur_insn_uid++;
3288 add_insn (barrier);
3289 return barrier;
3290}
3291
3292/* Make an insn of code NOTE
3293 with data-fields specified by FILE and LINE
3294 and add it to the end of the doubly-linked list,
3295 but only if line-numbers are desired for debugging info. */
3296
3297rtx
3298emit_line_note (file, line)
3cce094d 3299 const char *file;
23b2ce53
RS
3300 int line;
3301{
3f1d071b 3302 set_file_and_line_for_stmt (file, line);
23b2ce53
RS
3303
3304#if 0
3305 if (no_line_numbers)
3306 return 0;
3307#endif
3308
3309 return emit_note (file, line);
3310}
3311
3312/* Make an insn of code NOTE
3313 with data-fields specified by FILE and LINE
3314 and add it to the end of the doubly-linked list.
3315 If it is a line-number NOTE, omit it if it matches the previous one. */
3316
3317rtx
3318emit_note (file, line)
3cce094d 3319 const char *file;
23b2ce53
RS
3320 int line;
3321{
3322 register rtx note;
3323
3324 if (line > 0)
3325 {
3326 if (file && last_filename && !strcmp (file, last_filename)
3327 && line == last_linenum)
3328 return 0;
3329 last_filename = file;
3330 last_linenum = line;
3331 }
3332
3333 if (no_line_numbers && line > 0)
3334 {
3335 cur_insn_uid++;
3336 return 0;
3337 }
3338
3339 note = rtx_alloc (NOTE);
3340 INSN_UID (note) = cur_insn_uid++;
3341 NOTE_SOURCE_FILE (note) = file;
3342 NOTE_LINE_NUMBER (note) = line;
3343 add_insn (note);
3344 return note;
3345}
3346
fe77a034 3347/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
23b2ce53
RS
3348
3349rtx
3350emit_line_note_force (file, line)
3cce094d 3351 const char *file;
23b2ce53
RS
3352 int line;
3353{
3354 last_linenum = -1;
3355 return emit_line_note (file, line);
3356}
3357
3358/* Cause next statement to emit a line note even if the line number
3359 has not changed. This is used at the beginning of a function. */
3360
3361void
3362force_next_line_note ()
3363{
3364 last_linenum = -1;
3365}
87b47c85
AM
3366
3367/* Place a note of KIND on insn INSN with DATUM as the datum. If a
3368 note of this type already exists, remove it first. */
3369
3370void
3371set_unique_reg_note (insn, kind, datum)
3372 rtx insn;
3373 enum reg_note kind;
3374 rtx datum;
3375{
3376 rtx note = find_reg_note (insn, kind, NULL_RTX);
3377
3378 /* First remove the note if there already is one. */
3379 if (note)
3380 remove_note (insn, note);
3381
3382 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3383}
23b2ce53
RS
3384\f
3385/* Return an indication of which type of insn should have X as a body.
3386 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3387
3388enum rtx_code
3389classify_insn (x)
3390 rtx x;
3391{
3392 if (GET_CODE (x) == CODE_LABEL)
3393 return CODE_LABEL;
3394 if (GET_CODE (x) == CALL)
3395 return CALL_INSN;
3396 if (GET_CODE (x) == RETURN)
3397 return JUMP_INSN;
3398 if (GET_CODE (x) == SET)
3399 {
3400 if (SET_DEST (x) == pc_rtx)
3401 return JUMP_INSN;
3402 else if (GET_CODE (SET_SRC (x)) == CALL)
3403 return CALL_INSN;
3404 else
3405 return INSN;
3406 }
3407 if (GET_CODE (x) == PARALLEL)
3408 {
3409 register int j;
3410 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3411 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3412 return CALL_INSN;
3413 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3414 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3415 return JUMP_INSN;
3416 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3417 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3418 return CALL_INSN;
3419 }
3420 return INSN;
3421}
3422
3423/* Emit the rtl pattern X as an appropriate kind of insn.
3424 If X is a label, it is simply added into the insn chain. */
3425
3426rtx
3427emit (x)
3428 rtx x;
3429{
3430 enum rtx_code code = classify_insn (x);
3431
3432 if (code == CODE_LABEL)
3433 return emit_label (x);
3434 else if (code == INSN)
3435 return emit_insn (x);
3436 else if (code == JUMP_INSN)
3437 {
3438 register rtx insn = emit_jump_insn (x);
3439 if (simplejump_p (insn) || GET_CODE (x) == RETURN)
3440 return emit_barrier ();
3441 return insn;
3442 }
3443 else if (code == CALL_INSN)
3444 return emit_call_insn (x);
3445 else
3446 abort ();
3447}
3448\f
5c7a310f
MM
3449/* Begin emitting insns to a sequence which can be packaged in an
3450 RTL_EXPR. If this sequence will contain something that might cause
3451 the compiler to pop arguments to function calls (because those
3452 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3453 details), use do_pending_stack_adjust before calling this function.
3454 That will ensure that the deferred pops are not accidentally
3455 emitted in the middel of this sequence. */
23b2ce53
RS
3456
3457void
3458start_sequence ()
3459{
3460 struct sequence_stack *tem;
3461
a3770a81 3462 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
23b2ce53 3463
49ad7cfa 3464 tem->next = seq_stack;
23b2ce53
RS
3465 tem->first = first_insn;
3466 tem->last = last_insn;
591ccf92 3467 tem->sequence_rtl_expr = seq_rtl_expr;
23b2ce53 3468
49ad7cfa 3469 seq_stack = tem;
23b2ce53
RS
3470
3471 first_insn = 0;
3472 last_insn = 0;
3473}
3474
591ccf92
MM
3475/* Similarly, but indicate that this sequence will be placed in T, an
3476 RTL_EXPR. See the documentation for start_sequence for more
3477 information about how to use this function. */
3478
3479void
3480start_sequence_for_rtl_expr (t)
3481 tree t;
3482{
3483 start_sequence ();
3484
3485 seq_rtl_expr = t;
3486}
3487
5c7a310f
MM
3488/* Set up the insn chain starting with FIRST as the current sequence,
3489 saving the previously current one. See the documentation for
3490 start_sequence for more information about how to use this function. */
23b2ce53
RS
3491
3492void
3493push_to_sequence (first)
3494 rtx first;
3495{
3496 rtx last;
3497
3498 start_sequence ();
3499
3500 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3501
3502 first_insn = first;
3503 last_insn = last;
3504}
3505
c14f7160
ML
3506/* Set up the insn chain from a chain stort in FIRST to LAST. */
3507
3508void
3509push_to_full_sequence (first, last)
3510 rtx first, last;
3511{
3512 start_sequence ();
3513 first_insn = first;
3514 last_insn = last;
3515 /* We really should have the end of the insn chain here. */
3516 if (last && NEXT_INSN (last))
3517 abort ();
3518}
3519
f15ae3a1
TW
3520/* Set up the outer-level insn chain
3521 as the current sequence, saving the previously current one. */
3522
3523void
3524push_topmost_sequence ()
3525{
aefdd5ab 3526 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
3527
3528 start_sequence ();
3529
49ad7cfa 3530 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
3531 top = stack;
3532
3533 first_insn = top->first;
3534 last_insn = top->last;
591ccf92 3535 seq_rtl_expr = top->sequence_rtl_expr;
f15ae3a1
TW
3536}
3537
3538/* After emitting to the outer-level insn chain, update the outer-level
3539 insn chain, and restore the previous saved state. */
3540
3541void
3542pop_topmost_sequence ()
3543{
aefdd5ab 3544 struct sequence_stack *stack, *top = NULL;
f15ae3a1 3545
49ad7cfa 3546 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
3547 top = stack;
3548
3549 top->first = first_insn;
3550 top->last = last_insn;
591ccf92 3551 /* ??? Why don't we save seq_rtl_expr here? */
f15ae3a1
TW
3552
3553 end_sequence ();
3554}
3555
23b2ce53
RS
3556/* After emitting to a sequence, restore previous saved state.
3557
5c7a310f
MM
3558 To get the contents of the sequence just made, you must call
3559 `gen_sequence' *before* calling here.
3560
3561 If the compiler might have deferred popping arguments while
3562 generating this sequence, and this sequence will not be immediately
3563 inserted into the instruction stream, use do_pending_stack_adjust
3564 before calling gen_sequence. That will ensure that the deferred
3565 pops are inserted into this sequence, and not into some random
3566 location in the instruction stream. See INHIBIT_DEFER_POP for more
3567 information about deferred popping of arguments. */
23b2ce53
RS
3568
3569void
3570end_sequence ()
3571{
49ad7cfa 3572 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
3573
3574 first_insn = tem->first;
3575 last_insn = tem->last;
591ccf92 3576 seq_rtl_expr = tem->sequence_rtl_expr;
49ad7cfa 3577 seq_stack = tem->next;
23b2ce53 3578
a3770a81 3579 free (tem);
23b2ce53
RS
3580}
3581
c14f7160
ML
3582/* This works like end_sequence, but records the old sequence in FIRST
3583 and LAST. */
3584
3585void
3586end_full_sequence (first, last)
3587 rtx *first, *last;
3588{
3589 *first = first_insn;
3590 *last = last_insn;
3591 end_sequence();
3592}
3593
23b2ce53
RS
3594/* Return 1 if currently emitting into a sequence. */
3595
3596int
3597in_sequence_p ()
3598{
49ad7cfa 3599 return seq_stack != 0;
23b2ce53
RS
3600}
3601
3602/* Generate a SEQUENCE rtx containing the insns already emitted
3603 to the current sequence.
3604
3605 This is how the gen_... function from a DEFINE_EXPAND
3606 constructs the SEQUENCE that it returns. */
3607
3608rtx
3609gen_sequence ()
3610{
3611 rtx result;
3612 rtx tem;
23b2ce53
RS
3613 int i;
3614 int len;
3615
3616 /* Count the insns in the chain. */
3617 len = 0;
3618 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3619 len++;
3620
ee265800 3621 /* If only one insn, return it rather than a SEQUENCE.
23b2ce53 3622 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
ee265800
AH
3623 the case of an empty list.)
3624 We only return the pattern of an insn if its code is INSN and it
3625 has no notes. This ensures that no information gets lost. */
23b2ce53 3626 if (len == 1
ca55abae 3627 && ! RTX_FRAME_RELATED_P (first_insn)
ee265800
AH
3628 && GET_CODE (first_insn) == INSN
3629 /* Don't throw away any reg notes. */
3630 && REG_NOTES (first_insn) == 0)
43127294 3631 {
a3770a81
RH
3632 if (!ggc_p)
3633 {
3634 NEXT_INSN (first_insn) = free_insn;
3635 free_insn = first_insn;
3636 }
43127294
RK
3637 return PATTERN (first_insn);
3638 }
23b2ce53
RS
3639
3640 /* Put them in a vector. See if we already have a SEQUENCE of the
3641 appropriate length around. */
a3770a81
RH
3642 if (!ggc_p && len < SEQUENCE_RESULT_SIZE
3643 && (result = sequence_result[len]) != 0)
23b2ce53
RS
3644 sequence_result[len] = 0;
3645 else
3646 {
9faa82d8
RK
3647 /* Ensure that this rtl goes in saveable_obstack, since we may
3648 cache it. */
d508ebba
JW
3649 push_obstacks_nochange ();
3650 rtl_in_saveable_obstack ();
3b80f6ca 3651 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
d508ebba 3652 pop_obstacks ();
23b2ce53
RS
3653 }
3654
3655 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3656 XVECEXP (result, 0, i) = tem;
3657
3658 return result;
3659}
3660\f
59ec66dc
MM
3661/* Put the various virtual registers into REGNO_REG_RTX. */
3662
3663void
49ad7cfa
BS
3664init_virtual_regs (es)
3665 struct emit_status *es;
59ec66dc 3666{
49ad7cfa
BS
3667 rtx *ptr = es->x_regno_reg_rtx;
3668 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3669 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3670 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3671 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3672 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3673}
3674
3675void
3676clear_emit_caches ()
3677{
3678 int i;
3679
3680 /* Clear the start_sequence/gen_sequence cache. */
49ad7cfa
BS
3681 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3682 sequence_result[i] = 0;
3683 free_insn = 0;
59ec66dc 3684}
da43a810
BS
3685\f
3686/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3687static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3688static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3689static int copy_insn_n_scratches;
3690
3691/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3692 copied an ASM_OPERANDS.
3693 In that case, it is the original input-operand vector. */
3694static rtvec orig_asm_operands_vector;
3695
3696/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3697 copied an ASM_OPERANDS.
3698 In that case, it is the copied input-operand vector. */
3699static rtvec copy_asm_operands_vector;
3700
3701/* Likewise for the constraints vector. */
3702static rtvec orig_asm_constraints_vector;
3703static rtvec copy_asm_constraints_vector;
3704
3705/* Recursively create a new copy of an rtx for copy_insn.
3706 This function differs from copy_rtx in that it handles SCRATCHes and
3707 ASM_OPERANDs properly.
3708 Normally, this function is not used directly; use copy_insn as front end.
3709 However, you could first copy an insn pattern with copy_insn and then use
3710 this function afterwards to properly copy any REG_NOTEs containing
3711 SCRATCHes. */
3712
3713rtx
3714copy_insn_1 (orig)
3715 register rtx orig;
3716{
3717 register rtx copy;
3718 register int i, j;
3719 register RTX_CODE code;
4724334a 3720 register const char *format_ptr;
da43a810
BS
3721
3722 code = GET_CODE (orig);
3723
3724 switch (code)
3725 {
3726 case REG:
3727 case QUEUED:
3728 case CONST_INT:
3729 case CONST_DOUBLE:
3730 case SYMBOL_REF:
3731 case CODE_LABEL:
3732 case PC:
3733 case CC0:
3734 case ADDRESSOF:
3735 return orig;
3736
3737 case SCRATCH:
3738 for (i = 0; i < copy_insn_n_scratches; i++)
3739 if (copy_insn_scratch_in[i] == orig)
3740 return copy_insn_scratch_out[i];
3741 break;
3742
3743 case CONST:
3744 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3745 a LABEL_REF, it isn't sharable. */
3746 if (GET_CODE (XEXP (orig, 0)) == PLUS
3747 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
3748 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
3749 return orig;
3750 break;
3751
3752 /* A MEM with a constant address is not sharable. The problem is that
3753 the constant address may need to be reloaded. If the mem is shared,
3754 then reloading one copy of this mem will cause all copies to appear
3755 to have been reloaded. */
3756
3757 default:
3758 break;
3759 }
3760
3761 copy = rtx_alloc (code);
3762
3763 /* Copy the various flags, and other information. We assume that
3764 all fields need copying, and then clear the fields that should
3765 not be copied. That is the sensible default behavior, and forces
3766 us to explicitly document why we are *not* copying a flag. */
3767 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
3768
3769 /* We do not copy the USED flag, which is used as a mark bit during
3770 walks over the RTL. */
3771 copy->used = 0;
3772
3773 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3774 if (GET_RTX_CLASS (code) == 'i')
3775 {
3776 copy->jump = 0;
3777 copy->call = 0;
3778 copy->frame_related = 0;
3779 }
3780
3781 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
3782
3783 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
3784 {
e63db8f6 3785 copy->fld[i] = orig->fld[i];
da43a810
BS
3786 switch (*format_ptr++)
3787 {
3788 case 'e':
da43a810
BS
3789 if (XEXP (orig, i) != NULL)
3790 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
3791 break;
3792
da43a810
BS
3793 case 'E':
3794 case 'V':
da43a810
BS
3795 if (XVEC (orig, i) == orig_asm_constraints_vector)
3796 XVEC (copy, i) = copy_asm_constraints_vector;
3797 else if (XVEC (orig, i) == orig_asm_operands_vector)
3798 XVEC (copy, i) = copy_asm_operands_vector;
3799 else if (XVEC (orig, i) != NULL)
3800 {
3801 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
3802 for (j = 0; j < XVECLEN (copy, i); j++)
3803 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
3804 }
3805 break;
3806
3807 case 'b':
3808 {
3809 bitmap new_bits = BITMAP_OBSTACK_ALLOC (rtl_obstack);
3810 bitmap_copy (new_bits, XBITMAP (orig, i));
3811 XBITMAP (copy, i) = new_bits;
3812 break;
3813 }
3814
3815 case 't':
da43a810 3816 case 'w':
da43a810 3817 case 'i':
da43a810
BS
3818 case 's':
3819 case 'S':
e63db8f6
BS
3820 case 'u':
3821 case '0':
3822 /* These are left unchanged. */
da43a810
BS
3823 break;
3824
3825 default:
3826 abort ();
3827 }
3828 }
3829
3830 if (code == SCRATCH)
3831 {
3832 i = copy_insn_n_scratches++;
3833 if (i >= MAX_RECOG_OPERANDS)
3834 abort ();
3835 copy_insn_scratch_in[i] = orig;
3836 copy_insn_scratch_out[i] = copy;
3837 }
3838 else if (code == ASM_OPERANDS)
3839 {
3840 orig_asm_operands_vector = XVEC (orig, 3);
3841 copy_asm_operands_vector = XVEC (copy, 3);
3842 orig_asm_constraints_vector = XVEC (orig, 4);
3843 copy_asm_constraints_vector = XVEC (copy, 4);
3844 }
3845
3846 return copy;
3847}
3848
3849/* Create a new copy of an rtx.
3850 This function differs from copy_rtx in that it handles SCRATCHes and
3851 ASM_OPERANDs properly.
3852 INSN doesn't really have to be a full INSN; it could be just the
3853 pattern. */
3854rtx
3855copy_insn (insn)
3856 rtx insn;
3857{
3858 copy_insn_n_scratches = 0;
3859 orig_asm_operands_vector = 0;
3860 orig_asm_constraints_vector = 0;
3861 copy_asm_operands_vector = 0;
3862 copy_asm_constraints_vector = 0;
3863 return copy_insn_1 (insn);
3864}
59ec66dc 3865
23b2ce53
RS
3866/* Initialize data structures and variables in this file
3867 before generating rtl for each function. */
3868
3869void
3870init_emit ()
3871{
01d939e8 3872 struct function *f = cfun;
23b2ce53 3873
49ad7cfa 3874 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
23b2ce53
RS
3875 first_insn = NULL;
3876 last_insn = NULL;
591ccf92 3877 seq_rtl_expr = NULL;
23b2ce53
RS
3878 cur_insn_uid = 1;
3879 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3880 last_linenum = 0;
3881 last_filename = 0;
3882 first_label_num = label_num;
3883 last_label_num = 0;
49ad7cfa 3884 seq_stack = NULL;
23b2ce53 3885
49ad7cfa 3886 clear_emit_caches ();
23b2ce53
RS
3887
3888 /* Init the tables that describe all the pseudo regs. */
3889
49ad7cfa 3890 f->emit->regno_pointer_flag_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 3891
49ad7cfa 3892 f->emit->regno_pointer_flag
a3770a81 3893 = (char *) xcalloc (f->emit->regno_pointer_flag_length, sizeof (char));
23b2ce53 3894
49ad7cfa 3895 f->emit->regno_pointer_align
a3770a81
RH
3896 = (char *) xcalloc (f->emit->regno_pointer_flag_length,
3897 sizeof (char));
86fe05e0 3898
23b2ce53 3899 regno_reg_rtx
a3770a81
RH
3900 = (rtx *) xcalloc (f->emit->regno_pointer_flag_length * sizeof (rtx),
3901 sizeof (rtx));
23b2ce53
RS
3902
3903 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 3904 init_virtual_regs (f->emit);
740ab4a2
RK
3905
3906 /* Indicate that the virtual registers and stack locations are
3907 all pointers. */
3908 REGNO_POINTER_FLAG (STACK_POINTER_REGNUM) = 1;
3909 REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM) = 1;
15c9248c 3910 REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM) = 1;
740ab4a2
RK
3911 REGNO_POINTER_FLAG (ARG_POINTER_REGNUM) = 1;
3912
3913 REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM) = 1;
3914 REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM) = 1;
3915 REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM) = 1;
3916 REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM) = 1;
71038426 3917 REGNO_POINTER_FLAG (VIRTUAL_CFA_REGNUM) = 1;
5e82e7bd 3918
86fe05e0 3919#ifdef STACK_BOUNDARY
bdb429a5
RK
3920 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
3921 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3922 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3923 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
3924
3925 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
3926 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
3927 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
3928 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
3929 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
3930#endif
3931
5e82e7bd
JVA
3932#ifdef INIT_EXPANDERS
3933 INIT_EXPANDERS;
3934#endif
23b2ce53
RS
3935}
3936
87ff9c8e
RH
3937/* Mark SS for GC. */
3938
3939static void
3940mark_sequence_stack (ss)
3941 struct sequence_stack *ss;
3942{
3943 while (ss)
3944 {
3945 ggc_mark_rtx (ss->first);
591ccf92 3946 ggc_mark_tree (ss->sequence_rtl_expr);
87ff9c8e
RH
3947 ss = ss->next;
3948 }
3949}
3950
3951/* Mark ES for GC. */
3952
3953void
fa51b01b 3954mark_emit_status (es)
87ff9c8e
RH
3955 struct emit_status *es;
3956{
3957 rtx *r;
3958 int i;
3959
3960 if (es == 0)
3961 return;
3962
3963 for (i = es->regno_pointer_flag_length, r = es->x_regno_reg_rtx;
3964 i > 0; --i, ++r)
3965 ggc_mark_rtx (*r);
3966
3967 mark_sequence_stack (es->sequence_stack);
591ccf92 3968 ggc_mark_tree (es->sequence_rtl_expr);
87ff9c8e
RH
3969 ggc_mark_rtx (es->x_first_insn);
3970}
3971
23b2ce53
RS
3972/* Create some permanent unique rtl objects shared between all functions.
3973 LINE_NUMBERS is nonzero if line numbers are to be generated. */
3974
3975void
3976init_emit_once (line_numbers)
3977 int line_numbers;
3978{
3979 int i;
3980 enum machine_mode mode;
9ec36da5 3981 enum machine_mode double_mode;
23b2ce53
RS
3982
3983 no_line_numbers = ! line_numbers;
3984
43fa6302
AS
3985 /* Compute the word and byte modes. */
3986
3987 byte_mode = VOIDmode;
3988 word_mode = VOIDmode;
3989 double_mode = VOIDmode;
3990
3991 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
3992 mode = GET_MODE_WIDER_MODE (mode))
3993 {
3994 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
3995 && byte_mode == VOIDmode)
3996 byte_mode = mode;
3997
3998 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
3999 && word_mode == VOIDmode)
4000 word_mode = mode;
4001 }
4002
4003#ifndef DOUBLE_TYPE_SIZE
4004#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
4005#endif
4006
4007 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4008 mode = GET_MODE_WIDER_MODE (mode))
4009 {
4010 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4011 && double_mode == VOIDmode)
4012 double_mode = mode;
4013 }
4014
4015 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4016
5da077de
AS
4017 /* Assign register numbers to the globally defined register rtx.
4018 This must be done at runtime because the register number field
4019 is in a union and some compilers can't initialize unions. */
4020
4021 pc_rtx = gen_rtx (PC, VOIDmode);
4022 cc0_rtx = gen_rtx (CC0, VOIDmode);
4023 stack_pointer_rtx = gen_rtx_raw_REG (Pmode, STACK_POINTER_REGNUM);
4024 frame_pointer_rtx = gen_rtx_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4025 if (hard_frame_pointer_rtx == 0)
4026 hard_frame_pointer_rtx = gen_rtx_raw_REG (Pmode,
4027 HARD_FRAME_POINTER_REGNUM);
4028 if (arg_pointer_rtx == 0)
4029 arg_pointer_rtx = gen_rtx_raw_REG (Pmode, ARG_POINTER_REGNUM);
4030 virtual_incoming_args_rtx =
4031 gen_rtx_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4032 virtual_stack_vars_rtx =
4033 gen_rtx_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4034 virtual_stack_dynamic_rtx =
4035 gen_rtx_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4036 virtual_outgoing_args_rtx =
4037 gen_rtx_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4038 virtual_cfa_rtx = gen_rtx_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4039
4040 /* These rtx must be roots if GC is enabled. */
4041 if (ggc_p)
4042 ggc_add_rtx_root (global_rtl, GR_MAX);
4043
5da077de
AS
4044#ifdef INIT_EXPANDERS
4045 /* This is to initialize save_machine_status and restore_machine_status before
4046 the first call to push_function_context_to. This is needed by the Chill
4047 front end which calls push_function_context_to before the first cal to
4048 init_function_start. */
4049 INIT_EXPANDERS;
4050#endif
4051
23b2ce53
RS
4052 /* Create the unique rtx's for certain rtx codes and operand values. */
4053
c5c76735
JL
4054 /* Don't use gen_rtx here since gen_rtx in this case
4055 tries to use these variables. */
23b2ce53 4056 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5da077de
AS
4057 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4058 gen_rtx_raw_CONST_INT (VOIDmode, i);
4059 if (ggc_p)
4060 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
23b2ce53 4061
68d75312
JC
4062 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4063 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 4064 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 4065 else
3b80f6ca 4066 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 4067
9ec36da5
JL
4068 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4069 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4070 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4071 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
23b2ce53
RS
4072
4073 for (i = 0; i <= 2; i++)
4074 {
4075 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4076 mode = GET_MODE_WIDER_MODE (mode))
4077 {
4078 rtx tem = rtx_alloc (CONST_DOUBLE);
4079 union real_extract u;
4080
4c9a05bc 4081 bzero ((char *) &u, sizeof u); /* Zero any holes in a structure. */
23b2ce53
RS
4082 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4083
4c9a05bc 4084 bcopy ((char *) &u, (char *) &CONST_DOUBLE_LOW (tem), sizeof u);
23b2ce53
RS
4085 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4086 PUT_MODE (tem, mode);
4087
4088 const_tiny_rtx[i][(int) mode] = tem;
4089 }
4090
906c4e36 4091 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53
RS
4092
4093 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4094 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 4095 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
4096
4097 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4098 mode != VOIDmode;
4099 mode = GET_MODE_WIDER_MODE (mode))
4100 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
4101 }
4102
aea87e88
RH
4103 for (mode = CCmode; mode < MAX_MACHINE_MODE; ++mode)
4104 if (GET_MODE_CLASS (mode) == MODE_CC)
4105 const_tiny_rtx[0][(int) mode] = const0_rtx;
23b2ce53 4106
d7db6646 4107 ggc_add_rtx_root (&const_tiny_rtx[0][0], sizeof(const_tiny_rtx)/sizeof(rtx));
21cd906e 4108 ggc_add_rtx_root (&const_true_rtx, 1);
a7e1e2ac
AO
4109
4110#ifdef RETURN_ADDRESS_POINTER_REGNUM
4111 return_address_pointer_rtx
4112 = gen_rtx_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4113#endif
4114
4115#ifdef STRUCT_VALUE
4116 struct_value_rtx = STRUCT_VALUE;
4117#else
4118 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4119#endif
4120
4121#ifdef STRUCT_VALUE_INCOMING
4122 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4123#else
4124#ifdef STRUCT_VALUE_INCOMING_REGNUM
4125 struct_value_incoming_rtx
4126 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4127#else
4128 struct_value_incoming_rtx = struct_value_rtx;
4129#endif
4130#endif
4131
4132#ifdef STATIC_CHAIN_REGNUM
4133 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4134
4135#ifdef STATIC_CHAIN_INCOMING_REGNUM
4136 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4137 static_chain_incoming_rtx
4138 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4139 else
4140#endif
4141 static_chain_incoming_rtx = static_chain_rtx;
4142#endif
4143
4144#ifdef STATIC_CHAIN
4145 static_chain_rtx = STATIC_CHAIN;
4146
4147#ifdef STATIC_CHAIN_INCOMING
4148 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4149#else
4150 static_chain_incoming_rtx = static_chain_rtx;
4151#endif
4152#endif
4153
4154#ifdef PIC_OFFSET_TABLE_REGNUM
4155 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4156#endif
4157
d7db6646
RH
4158 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4159 ggc_add_rtx_root (&struct_value_rtx, 1);
4160 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4161 ggc_add_rtx_root (&static_chain_rtx, 1);
4162 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4163 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
c13e8210
MM
4164
4165 /* Initialize the CONST_INT hash table. */
29105cea
RK
4166 const_int_htab = htab_create (37, const_int_htab_hash,
4167 const_int_htab_eq, NULL);
c13e8210
MM
4168 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4169 rtx_htab_mark);
23b2ce53 4170}
a11759a3
JR
4171\f
4172/* Query and clear/ restore no_line_numbers. This is used by the
4173 switch / case handling in stmt.c to give proper line numbers in
4174 warnings about unreachable code. */
4175
4176int
4177force_line_numbers ()
4178{
4179 int old = no_line_numbers;
4180
4181 no_line_numbers = 0;
4182 if (old)
4183 force_next_line_note ();
4184 return old;
4185}
4186
4187void
4188restore_line_number_status (old_value)
4189 int old_value;
4190{
4191 no_line_numbers = old_value;
4192}
This page took 1.28992 seconds and 5 git commands to generate.