]> gcc.gnu.org Git - gcc.git/blame - gcc/dwarfout.c
dwarf2out.c (dw_cfi_oprnd_struct, [...]): Constify a char*.
[gcc.git] / gcc / dwarfout.c
CommitLineData
ed1817c6 1/* Output Dwarf format symbol table information from the GNU C compiler.
ef58a523
JL
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
461b77c8 4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
ed1817c6 5
340ccaab
TW
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
340ccaab
TW
22
23#include "config.h"
24
9a666dda 25#ifdef DWARF_DEBUGGING_INFO
670ee920 26#include "system.h"
340ccaab
TW
27#include "dwarf.h"
28#include "tree.h"
29#include "flags.h"
30#include "rtl.h"
7f7429ca 31#include "hard-reg-set.h"
340ccaab
TW
32#include "insn-config.h"
33#include "reload.h"
34#include "output.h"
9a631e8e 35#include "defaults.h"
76ead72b 36#include "dwarfout.h"
f103890b 37#include "toplev.h"
272df862 38#include "tm_p.h"
340ccaab 39
340ccaab 40#if defined(DWARF_TIMESTAMPS)
670ee920 41#if !defined(POSIX)
83d2b3b9 42extern time_t time PARAMS ((time_t *)); /* FIXME: use NEED_DECLARATION_TIME */
340ccaab
TW
43#endif /* !defined(POSIX) */
44#endif /* defined(DWARF_TIMESTAMPS) */
45
c85f7c16
JL
46/* We cannot use <assert.h> in GCC source, since that would include
47 GCC's assert.h, which may not be compatible with the host compiler. */
48#undef assert
49#ifdef NDEBUG
50# define assert(e)
51#else
52# define assert(e) do { if (! (e)) abort (); } while (0)
53#endif
54
340ccaab
TW
55/* IMPORTANT NOTE: Please see the file README.DWARF for important details
56 regarding the GNU implementation of Dwarf. */
57
58/* NOTE: In the comments in this file, many references are made to
59 so called "Debugging Information Entries". For the sake of brevity,
60 this term is abbreviated to `DIE' throughout the remainder of this
61 file. */
62
63/* Note that the implementation of C++ support herein is (as yet) unfinished.
64 If you want to try to complete it, more power to you. */
65
340ccaab
TW
66/* How to start an assembler comment. */
67#ifndef ASM_COMMENT_START
68#define ASM_COMMENT_START ";#"
69#endif
70
7f7429ca
RS
71/* How to print out a register name. */
72#ifndef PRINT_REG
73#define PRINT_REG(RTX, CODE, FILE) \
74 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
75#endif
76
340ccaab
TW
77/* Define a macro which returns non-zero for any tagged type which is
78 used (directly or indirectly) in the specification of either some
79 function's return type or some formal parameter of some function.
80 We use this macro when we are operating in "terse" mode to help us
81 know what tagged types have to be represented in Dwarf (even in
82 terse mode) and which ones don't.
83
84 A flag bit with this meaning really should be a part of the normal
85 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
86 for these nodes. For now, we have to just fake it. It it safe for
87 us to simply return zero for all complete tagged types (which will
88 get forced out anyway if they were used in the specification of some
89 formal or return type) and non-zero for all incomplete tagged types.
90*/
91
92#define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
93
a94dbf2c
JM
94/* Define a macro which returns non-zero for a TYPE_DECL which was
95 implicitly generated for a tagged type.
96
97 Note that unlike the gcc front end (which generates a NULL named
98 TYPE_DECL node for each complete tagged type, each array type, and
99 each function type node created) the g++ front end generates a
100 _named_ TYPE_DECL node for each tagged type node created.
101 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
102 generate a DW_TAG_typedef DIE for them. */
103#define TYPE_DECL_IS_STUB(decl) \
104 (DECL_NAME (decl) == NULL \
105 || (DECL_ARTIFICIAL (decl) \
106 && is_tagged_type (TREE_TYPE (decl)) \
107 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
108
340ccaab 109extern int flag_traditional;
340ccaab
TW
110
111/* Maximum size (in bytes) of an artificially generated label. */
112
113#define MAX_ARTIFICIAL_LABEL_BYTES 30
114\f
115/* Make sure we know the sizes of the various types dwarf can describe.
116 These are only defaults. If the sizes are different for your target,
117 you should override these values by defining the appropriate symbols
118 in your tm.h file. */
119
120#ifndef CHAR_TYPE_SIZE
121#define CHAR_TYPE_SIZE BITS_PER_UNIT
122#endif
123
124#ifndef SHORT_TYPE_SIZE
c294bd99 125#define SHORT_TYPE_SIZE (BITS_PER_UNIT * MIN ((UNITS_PER_WORD + 1) / 2, 2))
340ccaab
TW
126#endif
127
128#ifndef INT_TYPE_SIZE
129#define INT_TYPE_SIZE BITS_PER_WORD
130#endif
131
132#ifndef LONG_TYPE_SIZE
133#define LONG_TYPE_SIZE BITS_PER_WORD
134#endif
135
136#ifndef LONG_LONG_TYPE_SIZE
137#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
138#endif
139
140#ifndef WCHAR_TYPE_SIZE
141#define WCHAR_TYPE_SIZE INT_TYPE_SIZE
142#endif
143
144#ifndef WCHAR_UNSIGNED
145#define WCHAR_UNSIGNED 0
146#endif
147
148#ifndef FLOAT_TYPE_SIZE
149#define FLOAT_TYPE_SIZE BITS_PER_WORD
150#endif
151
152#ifndef DOUBLE_TYPE_SIZE
153#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
154#endif
155
156#ifndef LONG_DOUBLE_TYPE_SIZE
157#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
158#endif
159\f
160/* Structure to keep track of source filenames. */
161
162struct filename_entry {
163 unsigned number;
d3e3972c 164 const char * name;
340ccaab
TW
165};
166
167typedef struct filename_entry filename_entry;
168
0f41302f 169/* Pointer to an array of elements, each one having the structure above. */
340ccaab
TW
170
171static filename_entry *filename_table;
172
173/* Total number of entries in the table (i.e. array) pointed to by
174 `filename_table'. This is the *total* and includes both used and
175 unused slots. */
176
177static unsigned ft_entries_allocated;
178
179/* Number of entries in the filename_table which are actually in use. */
180
181static unsigned ft_entries;
182
183/* Size (in elements) of increments by which we may expand the filename
184 table. Actually, a single hunk of space of this size should be enough
185 for most typical programs. */
186
187#define FT_ENTRIES_INCREMENT 64
188
189/* Local pointer to the name of the main input file. Initialized in
190 dwarfout_init. */
191
d3e3972c 192static const char *primary_filename;
340ccaab
TW
193
194/* Pointer to the most recent filename for which we produced some line info. */
195
d3e3972c 196static const char *last_filename;
340ccaab 197
0f41302f 198/* Counter to generate unique names for DIEs. */
340ccaab
TW
199
200static unsigned next_unused_dienum = 1;
201
202/* Number of the DIE which is currently being generated. */
203
204static unsigned current_dienum;
205
206/* Number to use for the special "pubname" label on the next DIE which
207 represents a function or data object defined in this compilation
208 unit which has "extern" linkage. */
209
5e9defae 210static int next_pubname_number = 0;
340ccaab
TW
211
212#define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
213
214/* Pointer to a dynamically allocated list of pre-reserved and still
215 pending sibling DIE numbers. Note that this list will grow as needed. */
216
217static unsigned *pending_sibling_stack;
218
219/* Counter to keep track of the number of pre-reserved and still pending
220 sibling DIE numbers. */
221
222static unsigned pending_siblings;
223
224/* The currently allocated size of the above list (expressed in number of
225 list elements). */
226
227static unsigned pending_siblings_allocated;
228
229/* Size (in elements) of increments by which we may expand the pending
230 sibling stack. Actually, a single hunk of space of this size should
231 be enough for most typical programs. */
232
233#define PENDING_SIBLINGS_INCREMENT 64
234
235/* Non-zero if we are performing our file-scope finalization pass and if
6dc42e49 236 we should force out Dwarf descriptions of any and all file-scope
340ccaab
TW
237 tagged types which are still incomplete types. */
238
239static int finalizing = 0;
240
241/* A pointer to the base of a list of pending types which we haven't
242 generated DIEs for yet, but which we will have to come back to
243 later on. */
244
245static tree *pending_types_list;
246
247/* Number of elements currently allocated for the pending_types_list. */
248
249static unsigned pending_types_allocated;
250
251/* Number of elements of pending_types_list currently in use. */
252
253static unsigned pending_types;
254
255/* Size (in elements) of increments by which we may expand the pending
256 types list. Actually, a single hunk of space of this size should
257 be enough for most typical programs. */
258
259#define PENDING_TYPES_INCREMENT 64
260
75c613db
JM
261/* A pointer to the base of a list of incomplete types which might be
262 completed at some later time. */
263
264static tree *incomplete_types_list;
265
266/* Number of elements currently allocated for the incomplete_types_list. */
267static unsigned incomplete_types_allocated;
268
269/* Number of elements of incomplete_types_list currently in use. */
270static unsigned incomplete_types;
271
272/* Size (in elements) of increments by which we may expand the incomplete
273 types list. Actually, a single hunk of space of this size should
274 be enough for most typical programs. */
275#define INCOMPLETE_TYPES_INCREMENT 64
276
6dc42e49 277/* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
340ccaab
TW
278 This is used in a hack to help us get the DIEs describing types of
279 formal parameters to come *after* all of the DIEs describing the formal
280 parameters themselves. That's necessary in order to be compatible
6dc42e49 281 with what the brain-damaged svr4 SDB debugger requires. */
340ccaab
TW
282
283static tree fake_containing_scope;
284
285/* The number of the current function definition that we are generating
286 debugging information for. These numbers range from 1 up to the maximum
287 number of function definitions contained within the current compilation
288 unit. These numbers are used to create unique labels for various things
289 contained within various function definitions. */
290
291static unsigned current_funcdef_number = 1;
292
7f7429ca
RS
293/* A pointer to the ..._DECL node which we have most recently been working
294 on. We keep this around just in case something about it looks screwy
295 and we want to tell the user what the source coordinates for the actual
296 declaration are. */
297
298static tree dwarf_last_decl;
299
a94dbf2c
JM
300/* A flag indicating that we are emitting the member declarations of a
301 class, so member functions and variables should not be entirely emitted.
302 This is a kludge to avoid passing a second argument to output_*_die. */
303
304static int in_class;
305
340ccaab
TW
306/* Forward declarations for functions defined in this file. */
307
83d2b3b9
KG
308static const char *dwarf_tag_name PARAMS ((unsigned));
309static const char *dwarf_attr_name PARAMS ((unsigned));
310static const char *dwarf_stack_op_name PARAMS ((unsigned));
311static const char *dwarf_typemod_name PARAMS ((unsigned));
312static const char *dwarf_fmt_byte_name PARAMS ((unsigned));
313static const char *dwarf_fund_type_name PARAMS ((unsigned));
314static tree decl_ultimate_origin PARAMS ((tree));
315static tree block_ultimate_origin PARAMS ((tree));
316static tree decl_class_context PARAMS ((tree));
487a6e06 317#if 0
83d2b3b9
KG
318static void output_unsigned_leb128 PARAMS ((unsigned long));
319static void output_signed_leb128 PARAMS ((long));
487a6e06 320#endif
83d2b3b9
KG
321static int fundamental_type_code PARAMS ((tree));
322static tree root_type_1 PARAMS ((tree, int));
323static tree root_type PARAMS ((tree));
324static void write_modifier_bytes_1 PARAMS ((tree, int, int, int));
325static void write_modifier_bytes PARAMS ((tree, int, int));
326static inline int type_is_fundamental PARAMS ((tree));
327static void equate_decl_number_to_die_number PARAMS ((tree));
328static inline void equate_type_number_to_die_number PARAMS ((tree));
329static void output_reg_number PARAMS ((rtx));
330static void output_mem_loc_descriptor PARAMS ((rtx));
331static void output_loc_descriptor PARAMS ((rtx));
332static void output_bound_representation PARAMS ((tree, unsigned, int));
333static void output_enumeral_list PARAMS ((tree));
665f2503 334static inline HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
83d2b3b9 335static inline tree field_type PARAMS ((tree));
665f2503
RK
336static inline unsigned int simple_type_align_in_bits PARAMS ((tree));
337static inline unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
338static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
83d2b3b9
KG
339static inline void sibling_attribute PARAMS ((void));
340static void location_attribute PARAMS ((rtx));
341static void data_member_location_attribute PARAMS ((tree));
342static void const_value_attribute PARAMS ((rtx));
343static void location_or_const_value_attribute PARAMS ((tree));
344static inline void name_attribute PARAMS ((const char *));
345static inline void fund_type_attribute PARAMS ((unsigned));
346static void mod_fund_type_attribute PARAMS ((tree, int, int));
347static inline void user_def_type_attribute PARAMS ((tree));
348static void mod_u_d_type_attribute PARAMS ((tree, int, int));
5e9defae 349#ifdef USE_ORDERING_ATTRIBUTE
83d2b3b9 350static inline void ordering_attribute PARAMS ((unsigned));
5e9defae 351#endif /* defined(USE_ORDERING_ATTRIBUTE) */
83d2b3b9
KG
352static void subscript_data_attribute PARAMS ((tree));
353static void byte_size_attribute PARAMS ((tree));
354static inline void bit_offset_attribute PARAMS ((tree));
355static inline void bit_size_attribute PARAMS ((tree));
356static inline void element_list_attribute PARAMS ((tree));
357static inline void stmt_list_attribute PARAMS ((const char *));
358static inline void low_pc_attribute PARAMS ((const char *));
359static inline void high_pc_attribute PARAMS ((const char *));
360static inline void body_begin_attribute PARAMS ((const char *));
361static inline void body_end_attribute PARAMS ((const char *));
362static inline void language_attribute PARAMS ((unsigned));
363static inline void member_attribute PARAMS ((tree));
7a87758d 364#if 0
83d2b3b9 365static inline void string_length_attribute PARAMS ((tree));
7a87758d 366#endif
83d2b3b9
KG
367static inline void comp_dir_attribute PARAMS ((const char *));
368static inline void sf_names_attribute PARAMS ((const char *));
369static inline void src_info_attribute PARAMS ((const char *));
370static inline void mac_info_attribute PARAMS ((const char *));
371static inline void prototyped_attribute PARAMS ((tree));
372static inline void producer_attribute PARAMS ((const char *));
373static inline void inline_attribute PARAMS ((tree));
374static inline void containing_type_attribute PARAMS ((tree));
375static inline void abstract_origin_attribute PARAMS ((tree));
5e9defae 376#ifdef DWARF_DECL_COORDINATES
83d2b3b9 377static inline void src_coords_attribute PARAMS ((unsigned, unsigned));
5e9defae 378#endif /* defined(DWARF_DECL_COORDINATES) */
83d2b3b9
KG
379static inline void pure_or_virtual_attribute PARAMS ((tree));
380static void name_and_src_coords_attributes PARAMS ((tree));
381static void type_attribute PARAMS ((tree, int, int));
d3e3972c 382static const char *type_tag PARAMS ((tree));
83d2b3b9
KG
383static inline void dienum_push PARAMS ((void));
384static inline void dienum_pop PARAMS ((void));
385static inline tree member_declared_type PARAMS ((tree));
3cce094d 386static const char *function_start_label PARAMS ((tree));
83d2b3b9
KG
387static void output_array_type_die PARAMS ((void *));
388static void output_set_type_die PARAMS ((void *));
5e9defae 389#if 0
83d2b3b9 390static void output_entry_point_die PARAMS ((void *));
5e9defae 391#endif
83d2b3b9
KG
392static void output_inlined_enumeration_type_die PARAMS ((void *));
393static void output_inlined_structure_type_die PARAMS ((void *));
394static void output_inlined_union_type_die PARAMS ((void *));
395static void output_enumeration_type_die PARAMS ((void *));
396static void output_formal_parameter_die PARAMS ((void *));
397static void output_global_subroutine_die PARAMS ((void *));
398static void output_global_variable_die PARAMS ((void *));
399static void output_label_die PARAMS ((void *));
400static void output_lexical_block_die PARAMS ((void *));
401static void output_inlined_subroutine_die PARAMS ((void *));
402static void output_local_variable_die PARAMS ((void *));
403static void output_member_die PARAMS ((void *));
5e9defae 404#if 0
83d2b3b9
KG
405static void output_pointer_type_die PARAMS ((void *));
406static void output_reference_type_die PARAMS ((void *));
5e9defae 407#endif
83d2b3b9
KG
408static void output_ptr_to_mbr_type_die PARAMS ((void *));
409static void output_compile_unit_die PARAMS ((void *));
410static void output_string_type_die PARAMS ((void *));
411static void output_inheritance_die PARAMS ((void *));
412static void output_structure_type_die PARAMS ((void *));
413static void output_local_subroutine_die PARAMS ((void *));
414static void output_subroutine_type_die PARAMS ((void *));
415static void output_typedef_die PARAMS ((void *));
416static void output_union_type_die PARAMS ((void *));
417static void output_unspecified_parameters_die PARAMS ((void *));
418static void output_padded_null_die PARAMS ((void *));
419static void output_die PARAMS ((void (*)(void *), void *));
420static void end_sibling_chain PARAMS ((void));
421static void output_formal_types PARAMS ((tree));
422static void pend_type PARAMS ((tree));
423static int type_ok_for_scope PARAMS ((tree, tree));
424static void output_pending_types_for_scope PARAMS ((tree));
425static void output_type PARAMS ((tree, tree));
426static void output_tagged_type_instantiation PARAMS ((tree));
427static void output_block PARAMS ((tree, int));
428static void output_decls_for_scope PARAMS ((tree, int));
429static void output_decl PARAMS ((tree, tree));
430static void shuffle_filename_entry PARAMS ((filename_entry *));
431static void generate_new_sfname_entry PARAMS ((void));
432static unsigned lookup_filename PARAMS ((const char *));
433static void generate_srcinfo_entry PARAMS ((unsigned, unsigned));
434static void generate_macinfo_entry PARAMS ((const char *, const char *));
435static int is_pseudo_reg PARAMS ((rtx));
436static tree type_main_variant PARAMS ((tree));
437static int is_tagged_type PARAMS ((tree));
438static int is_redundant_typedef PARAMS ((tree));
439static void add_incomplete_type PARAMS ((tree));
440static void retry_incomplete_types PARAMS ((void));
340ccaab
TW
441\f
442/* Definitions of defaults for assembler-dependent names of various
443 pseudo-ops and section names.
444
445 Theses may be overridden in your tm.h file (if necessary) for your
446 particular assembler. The default values provided here correspond to
447 what is expected by "standard" AT&T System V.4 assemblers. */
448
449#ifndef FILE_ASM_OP
2e494f70 450#define FILE_ASM_OP ".file"
340ccaab
TW
451#endif
452#ifndef VERSION_ASM_OP
2e494f70 453#define VERSION_ASM_OP ".version"
340ccaab 454#endif
340ccaab 455#ifndef UNALIGNED_SHORT_ASM_OP
2e494f70 456#define UNALIGNED_SHORT_ASM_OP ".2byte"
340ccaab
TW
457#endif
458#ifndef UNALIGNED_INT_ASM_OP
2e494f70 459#define UNALIGNED_INT_ASM_OP ".4byte"
340ccaab 460#endif
9a631e8e
RS
461#ifndef ASM_BYTE_OP
462#define ASM_BYTE_OP ".byte"
463#endif
648ebe7b
RS
464#ifndef SET_ASM_OP
465#define SET_ASM_OP ".set"
340ccaab 466#endif
85595d1a
RS
467
468/* Pseudo-ops for pushing the current section onto the section stack (and
469 simultaneously changing to a new section) and for poping back to the
470 section we were in immediately before this one. Note that most svr4
471 assemblers only maintain a one level stack... you can push all the
472 sections you want, but you can only pop out one level. (The sparc
648ebe7b 473 svr4 assembler is an exception to this general rule.) That's
85595d1a
RS
474 OK because we only use at most one level of the section stack herein. */
475
476#ifndef PUSHSECTION_ASM_OP
9a631e8e 477#define PUSHSECTION_ASM_OP ".section"
85595d1a
RS
478#endif
479#ifndef POPSECTION_ASM_OP
9a631e8e 480#define POPSECTION_ASM_OP ".previous"
85595d1a
RS
481#endif
482
483/* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
484 to print the PUSHSECTION_ASM_OP and the section name. The default here
485 works for almost all svr4 assemblers, except for the sparc, where the
486 section name must be enclosed in double quotes. (See sparcv4.h.) */
487
488#ifndef PUSHSECTION_FORMAT
dfe8a5ac 489#define PUSHSECTION_FORMAT "\t%s\t%s\n"
85595d1a
RS
490#endif
491
492#ifndef DEBUG_SECTION
493#define DEBUG_SECTION ".debug"
494#endif
495#ifndef LINE_SECTION
496#define LINE_SECTION ".line"
497#endif
498#ifndef SFNAMES_SECTION
499#define SFNAMES_SECTION ".debug_sfnames"
500#endif
501#ifndef SRCINFO_SECTION
502#define SRCINFO_SECTION ".debug_srcinfo"
503#endif
504#ifndef MACINFO_SECTION
505#define MACINFO_SECTION ".debug_macinfo"
506#endif
507#ifndef PUBNAMES_SECTION
508#define PUBNAMES_SECTION ".debug_pubnames"
509#endif
510#ifndef ARANGES_SECTION
511#define ARANGES_SECTION ".debug_aranges"
512#endif
513#ifndef TEXT_SECTION
514#define TEXT_SECTION ".text"
515#endif
516#ifndef DATA_SECTION
517#define DATA_SECTION ".data"
518#endif
519#ifndef DATA1_SECTION
520#define DATA1_SECTION ".data1"
521#endif
522#ifndef RODATA_SECTION
523#define RODATA_SECTION ".rodata"
524#endif
525#ifndef RODATA1_SECTION
526#define RODATA1_SECTION ".rodata1"
527#endif
528#ifndef BSS_SECTION
529#define BSS_SECTION ".bss"
530#endif
340ccaab
TW
531\f
532/* Definitions of defaults for formats and names of various special
533 (artificial) labels which may be generated within this file (when
534 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
535
536 If necessary, these may be overridden from within your tm.h file,
9a631e8e
RS
537 but typically, you should never need to override these.
538
539 These labels have been hacked (temporarily) so that they all begin with
648ebe7b
RS
540 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
541 stock m88k/svr4 assembler, both of which need to see .L at the start of
542 a label in order to prevent that label from going into the linker symbol
543 table). When I get time, I'll have to fix this the right way so that we
544 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
545 but that will require a rather massive set of changes. For the moment,
546 the following definitions out to produce the right results for all svr4
547 and svr3 assemblers. -- rfg
9a631e8e 548*/
340ccaab
TW
549
550#ifndef TEXT_BEGIN_LABEL
e9a25f70 551#define TEXT_BEGIN_LABEL "*.L_text_b"
340ccaab
TW
552#endif
553#ifndef TEXT_END_LABEL
e9a25f70 554#define TEXT_END_LABEL "*.L_text_e"
340ccaab
TW
555#endif
556
557#ifndef DATA_BEGIN_LABEL
e9a25f70 558#define DATA_BEGIN_LABEL "*.L_data_b"
340ccaab
TW
559#endif
560#ifndef DATA_END_LABEL
e9a25f70 561#define DATA_END_LABEL "*.L_data_e"
340ccaab
TW
562#endif
563
564#ifndef DATA1_BEGIN_LABEL
e9a25f70 565#define DATA1_BEGIN_LABEL "*.L_data1_b"
340ccaab
TW
566#endif
567#ifndef DATA1_END_LABEL
e9a25f70 568#define DATA1_END_LABEL "*.L_data1_e"
340ccaab
TW
569#endif
570
571#ifndef RODATA_BEGIN_LABEL
e9a25f70 572#define RODATA_BEGIN_LABEL "*.L_rodata_b"
340ccaab
TW
573#endif
574#ifndef RODATA_END_LABEL
e9a25f70 575#define RODATA_END_LABEL "*.L_rodata_e"
340ccaab
TW
576#endif
577
578#ifndef RODATA1_BEGIN_LABEL
e9a25f70 579#define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
340ccaab
TW
580#endif
581#ifndef RODATA1_END_LABEL
e9a25f70 582#define RODATA1_END_LABEL "*.L_rodata1_e"
340ccaab
TW
583#endif
584
585#ifndef BSS_BEGIN_LABEL
e9a25f70 586#define BSS_BEGIN_LABEL "*.L_bss_b"
340ccaab
TW
587#endif
588#ifndef BSS_END_LABEL
e9a25f70 589#define BSS_END_LABEL "*.L_bss_e"
340ccaab
TW
590#endif
591
592#ifndef LINE_BEGIN_LABEL
e9a25f70 593#define LINE_BEGIN_LABEL "*.L_line_b"
340ccaab
TW
594#endif
595#ifndef LINE_LAST_ENTRY_LABEL
e9a25f70 596#define LINE_LAST_ENTRY_LABEL "*.L_line_last"
340ccaab
TW
597#endif
598#ifndef LINE_END_LABEL
e9a25f70 599#define LINE_END_LABEL "*.L_line_e"
340ccaab
TW
600#endif
601
602#ifndef DEBUG_BEGIN_LABEL
e9a25f70 603#define DEBUG_BEGIN_LABEL "*.L_debug_b"
340ccaab
TW
604#endif
605#ifndef SFNAMES_BEGIN_LABEL
e9a25f70 606#define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
340ccaab
TW
607#endif
608#ifndef SRCINFO_BEGIN_LABEL
e9a25f70 609#define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
340ccaab
TW
610#endif
611#ifndef MACINFO_BEGIN_LABEL
e9a25f70 612#define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
340ccaab
TW
613#endif
614
615#ifndef DIE_BEGIN_LABEL_FMT
e9a25f70 616#define DIE_BEGIN_LABEL_FMT "*.L_D%u"
340ccaab
TW
617#endif
618#ifndef DIE_END_LABEL_FMT
e9a25f70 619#define DIE_END_LABEL_FMT "*.L_D%u_e"
340ccaab
TW
620#endif
621#ifndef PUB_DIE_LABEL_FMT
e9a25f70 622#define PUB_DIE_LABEL_FMT "*.L_P%u"
340ccaab
TW
623#endif
624#ifndef INSN_LABEL_FMT
e9a25f70 625#define INSN_LABEL_FMT "*.L_I%u_%u"
340ccaab
TW
626#endif
627#ifndef BLOCK_BEGIN_LABEL_FMT
e9a25f70 628#define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
340ccaab
TW
629#endif
630#ifndef BLOCK_END_LABEL_FMT
e9a25f70 631#define BLOCK_END_LABEL_FMT "*.L_B%u_e"
340ccaab
TW
632#endif
633#ifndef SS_BEGIN_LABEL_FMT
e9a25f70 634#define SS_BEGIN_LABEL_FMT "*.L_s%u"
340ccaab
TW
635#endif
636#ifndef SS_END_LABEL_FMT
e9a25f70 637#define SS_END_LABEL_FMT "*.L_s%u_e"
340ccaab
TW
638#endif
639#ifndef EE_BEGIN_LABEL_FMT
e9a25f70 640#define EE_BEGIN_LABEL_FMT "*.L_e%u"
340ccaab
TW
641#endif
642#ifndef EE_END_LABEL_FMT
e9a25f70 643#define EE_END_LABEL_FMT "*.L_e%u_e"
340ccaab
TW
644#endif
645#ifndef MT_BEGIN_LABEL_FMT
e9a25f70 646#define MT_BEGIN_LABEL_FMT "*.L_t%u"
340ccaab
TW
647#endif
648#ifndef MT_END_LABEL_FMT
e9a25f70 649#define MT_END_LABEL_FMT "*.L_t%u_e"
340ccaab
TW
650#endif
651#ifndef LOC_BEGIN_LABEL_FMT
e9a25f70 652#define LOC_BEGIN_LABEL_FMT "*.L_l%u"
340ccaab
TW
653#endif
654#ifndef LOC_END_LABEL_FMT
e9a25f70 655#define LOC_END_LABEL_FMT "*.L_l%u_e"
340ccaab
TW
656#endif
657#ifndef BOUND_BEGIN_LABEL_FMT
e9a25f70 658#define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
340ccaab
TW
659#endif
660#ifndef BOUND_END_LABEL_FMT
e9a25f70 661#define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
340ccaab
TW
662#endif
663#ifndef DERIV_BEGIN_LABEL_FMT
e9a25f70 664#define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
340ccaab
TW
665#endif
666#ifndef DERIV_END_LABEL_FMT
e9a25f70 667#define DERIV_END_LABEL_FMT "*.L_d%u_e"
340ccaab
TW
668#endif
669#ifndef SL_BEGIN_LABEL_FMT
e9a25f70 670#define SL_BEGIN_LABEL_FMT "*.L_sl%u"
340ccaab
TW
671#endif
672#ifndef SL_END_LABEL_FMT
e9a25f70 673#define SL_END_LABEL_FMT "*.L_sl%u_e"
340ccaab 674#endif
2a819d04 675#ifndef BODY_BEGIN_LABEL_FMT
e9a25f70 676#define BODY_BEGIN_LABEL_FMT "*.L_b%u"
2a819d04
TW
677#endif
678#ifndef BODY_END_LABEL_FMT
e9a25f70 679#define BODY_END_LABEL_FMT "*.L_b%u_e"
2a819d04 680#endif
340ccaab 681#ifndef FUNC_END_LABEL_FMT
e9a25f70 682#define FUNC_END_LABEL_FMT "*.L_f%u_e"
340ccaab
TW
683#endif
684#ifndef TYPE_NAME_FMT
e9a25f70 685#define TYPE_NAME_FMT "*.L_T%u"
340ccaab 686#endif
04077c53 687#ifndef DECL_NAME_FMT
e9a25f70 688#define DECL_NAME_FMT "*.L_E%u"
04077c53 689#endif
340ccaab 690#ifndef LINE_CODE_LABEL_FMT
e9a25f70 691#define LINE_CODE_LABEL_FMT "*.L_LC%u"
340ccaab
TW
692#endif
693#ifndef SFNAMES_ENTRY_LABEL_FMT
e9a25f70 694#define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
340ccaab
TW
695#endif
696#ifndef LINE_ENTRY_LABEL_FMT
e9a25f70 697#define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
340ccaab
TW
698#endif
699\f
700/* Definitions of defaults for various types of primitive assembly language
701 output operations.
702
703 If necessary, these may be overridden from within your tm.h file,
609380f6 704 but typically, you shouldn't need to override these. */
85595d1a
RS
705
706#ifndef ASM_OUTPUT_PUSH_SECTION
707#define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
708 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
709#endif
710
711#ifndef ASM_OUTPUT_POP_SECTION
712#define ASM_OUTPUT_POP_SECTION(FILE) \
9a631e8e 713 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
85595d1a 714#endif
340ccaab 715
340ccaab
TW
716#ifndef ASM_OUTPUT_DWARF_DELTA2
717#define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
2e494f70 718 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
340ccaab
TW
719 assemble_name (FILE, LABEL1); \
720 fprintf (FILE, "-"); \
721 assemble_name (FILE, LABEL2); \
722 fprintf (FILE, "\n"); \
723 } while (0)
724#endif
725
726#ifndef ASM_OUTPUT_DWARF_DELTA4
727#define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
2e494f70 728 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
340ccaab
TW
729 assemble_name (FILE, LABEL1); \
730 fprintf (FILE, "-"); \
731 assemble_name (FILE, LABEL2); \
732 fprintf (FILE, "\n"); \
733 } while (0)
734#endif
735
736#ifndef ASM_OUTPUT_DWARF_TAG
737#define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
9a631e8e
RS
738 do { \
739 fprintf ((FILE), "\t%s\t0x%x", \
740 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
c773653b 741 if (flag_debug_asm) \
9a631e8e
RS
742 fprintf ((FILE), "\t%s %s", \
743 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
744 fputc ('\n', (FILE)); \
745 } while (0)
340ccaab
TW
746#endif
747
748#ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
9a631e8e
RS
749#define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
750 do { \
751 fprintf ((FILE), "\t%s\t0x%x", \
752 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
c773653b 753 if (flag_debug_asm) \
9a631e8e
RS
754 fprintf ((FILE), "\t%s %s", \
755 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
756 fputc ('\n', (FILE)); \
757 } while (0)
340ccaab
TW
758#endif
759
760#ifndef ASM_OUTPUT_DWARF_STACK_OP
761#define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
9a631e8e 762 do { \
648ebe7b 763 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
c773653b 764 if (flag_debug_asm) \
9a631e8e
RS
765 fprintf ((FILE), "\t%s %s", \
766 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
767 fputc ('\n', (FILE)); \
768 } while (0)
340ccaab
TW
769#endif
770
771#ifndef ASM_OUTPUT_DWARF_FUND_TYPE
772#define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
9a631e8e
RS
773 do { \
774 fprintf ((FILE), "\t%s\t0x%x", \
775 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
c773653b 776 if (flag_debug_asm) \
9a631e8e
RS
777 fprintf ((FILE), "\t%s %s", \
778 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
779 fputc ('\n', (FILE)); \
780 } while (0)
340ccaab
TW
781#endif
782
783#ifndef ASM_OUTPUT_DWARF_FMT_BYTE
784#define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
9a631e8e 785 do { \
648ebe7b 786 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
c773653b 787 if (flag_debug_asm) \
9a631e8e
RS
788 fprintf ((FILE), "\t%s %s", \
789 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
790 fputc ('\n', (FILE)); \
791 } while (0)
340ccaab
TW
792#endif
793
794#ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
795#define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
9a631e8e 796 do { \
648ebe7b 797 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
c773653b 798 if (flag_debug_asm) \
9a631e8e
RS
799 fprintf ((FILE), "\t%s %s", \
800 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
801 fputc ('\n', (FILE)); \
802 } while (0)
340ccaab
TW
803#endif
804\f
805#ifndef ASM_OUTPUT_DWARF_ADDR
806#define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
2e494f70 807 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
340ccaab
TW
808 assemble_name (FILE, LABEL); \
809 fprintf (FILE, "\n"); \
810 } while (0)
811#endif
812
813#ifndef ASM_OUTPUT_DWARF_ADDR_CONST
814#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
648ebe7b
RS
815 do { \
816 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
817 output_addr_const ((FILE), (RTX)); \
818 fputc ('\n', (FILE)); \
819 } while (0)
340ccaab
TW
820#endif
821
822#ifndef ASM_OUTPUT_DWARF_REF
823#define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
2e494f70 824 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
340ccaab
TW
825 assemble_name (FILE, LABEL); \
826 fprintf (FILE, "\n"); \
827 } while (0)
828#endif
829
830#ifndef ASM_OUTPUT_DWARF_DATA1
831#define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
648ebe7b 832 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
340ccaab
TW
833#endif
834
835#ifndef ASM_OUTPUT_DWARF_DATA2
836#define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
2e494f70 837 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
340ccaab
TW
838#endif
839
840#ifndef ASM_OUTPUT_DWARF_DATA4
841#define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
2e494f70 842 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
340ccaab
TW
843#endif
844
845#ifndef ASM_OUTPUT_DWARF_DATA8
846#define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
847 do { \
848 if (WORDS_BIG_ENDIAN) \
849 { \
2e494f70
RS
850 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
851 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
340ccaab
TW
852 } \
853 else \
854 { \
2e494f70
RS
855 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
856 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
340ccaab
TW
857 } \
858 } while (0)
859#endif
860
74153f8e
AM
861/* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
862 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
863 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
864 defined, we call it, then issue the line feed. If not, we supply a
865 default defintion of calling ASM_OUTPUT_ASCII */
866
340ccaab 867#ifndef ASM_OUTPUT_DWARF_STRING
74153f8e 868#define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
340ccaab 869 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
74153f8e
AM
870#else
871#define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
872 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
340ccaab 873#endif
74153f8e 874
340ccaab
TW
875\f
876/************************ general utility functions **************************/
877
24e75411 878inline static int
648ebe7b
RS
879is_pseudo_reg (rtl)
880 register rtx rtl;
881{
882 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
883 || ((GET_CODE (rtl) == SUBREG)
884 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
885}
886
24e75411 887inline static tree
69d6b01d
RS
888type_main_variant (type)
889 register tree type;
890{
891 type = TYPE_MAIN_VARIANT (type);
892
893 /* There really should be only one main variant among any group of variants
894 of a given type (and all of the MAIN_VARIANT values for all members of
895 the group should point to that one type) but sometimes the C front-end
896 messes this up for array types, so we work around that bug here. */
897
898 if (TREE_CODE (type) == ARRAY_TYPE)
899 {
900 while (type != TYPE_MAIN_VARIANT (type))
901 type = TYPE_MAIN_VARIANT (type);
902 }
903
904 return type;
905}
906
c7d6dca2
RS
907/* Return non-zero if the given type node represents a tagged type. */
908
24e75411 909inline static int
c7d6dca2
RS
910is_tagged_type (type)
911 register tree type;
912{
913 register enum tree_code code = TREE_CODE (type);
914
c1b98a95
RK
915 return (code == RECORD_TYPE || code == UNION_TYPE
916 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
c7d6dca2
RS
917}
918
a996cbd4 919static const char *
9a631e8e 920dwarf_tag_name (tag)
340ccaab
TW
921 register unsigned tag;
922{
923 switch (tag)
924 {
9a631e8e
RS
925 case TAG_padding: return "TAG_padding";
926 case TAG_array_type: return "TAG_array_type";
927 case TAG_class_type: return "TAG_class_type";
928 case TAG_entry_point: return "TAG_entry_point";
929 case TAG_enumeration_type: return "TAG_enumeration_type";
930 case TAG_formal_parameter: return "TAG_formal_parameter";
931 case TAG_global_subroutine: return "TAG_global_subroutine";
932 case TAG_global_variable: return "TAG_global_variable";
933 case TAG_label: return "TAG_label";
934 case TAG_lexical_block: return "TAG_lexical_block";
935 case TAG_local_variable: return "TAG_local_variable";
936 case TAG_member: return "TAG_member";
937 case TAG_pointer_type: return "TAG_pointer_type";
938 case TAG_reference_type: return "TAG_reference_type";
939 case TAG_compile_unit: return "TAG_compile_unit";
940 case TAG_string_type: return "TAG_string_type";
941 case TAG_structure_type: return "TAG_structure_type";
942 case TAG_subroutine: return "TAG_subroutine";
943 case TAG_subroutine_type: return "TAG_subroutine_type";
944 case TAG_typedef: return "TAG_typedef";
945 case TAG_union_type: return "TAG_union_type";
340ccaab 946 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
9a631e8e
RS
947 case TAG_variant: return "TAG_variant";
948 case TAG_common_block: return "TAG_common_block";
949 case TAG_common_inclusion: return "TAG_common_inclusion";
950 case TAG_inheritance: return "TAG_inheritance";
951 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
952 case TAG_module: return "TAG_module";
953 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
954 case TAG_set_type: return "TAG_set_type";
955 case TAG_subrange_type: return "TAG_subrange_type";
956 case TAG_with_stmt: return "TAG_with_stmt";
957
958 /* GNU extensions. */
959
960 case TAG_format_label: return "TAG_format_label";
961 case TAG_namelist: return "TAG_namelist";
962 case TAG_function_template: return "TAG_function_template";
963 case TAG_class_template: return "TAG_class_template";
964
04077c53 965 default: return "TAG_<unknown>";
340ccaab
TW
966 }
967}
968
a996cbd4 969static const char *
9a631e8e 970dwarf_attr_name (attr)
340ccaab
TW
971 register unsigned attr;
972{
973 switch (attr)
974 {
9a631e8e
RS
975 case AT_sibling: return "AT_sibling";
976 case AT_location: return "AT_location";
977 case AT_name: return "AT_name";
978 case AT_fund_type: return "AT_fund_type";
979 case AT_mod_fund_type: return "AT_mod_fund_type";
980 case AT_user_def_type: return "AT_user_def_type";
981 case AT_mod_u_d_type: return "AT_mod_u_d_type";
982 case AT_ordering: return "AT_ordering";
983 case AT_subscr_data: return "AT_subscr_data";
984 case AT_byte_size: return "AT_byte_size";
985 case AT_bit_offset: return "AT_bit_offset";
986 case AT_bit_size: return "AT_bit_size";
987 case AT_element_list: return "AT_element_list";
988 case AT_stmt_list: return "AT_stmt_list";
989 case AT_low_pc: return "AT_low_pc";
990 case AT_high_pc: return "AT_high_pc";
991 case AT_language: return "AT_language";
992 case AT_member: return "AT_member";
993 case AT_discr: return "AT_discr";
994 case AT_discr_value: return "AT_discr_value";
995 case AT_string_length: return "AT_string_length";
996 case AT_common_reference: return "AT_common_reference";
997 case AT_comp_dir: return "AT_comp_dir";
998 case AT_const_value_string: return "AT_const_value_string";
999 case AT_const_value_data2: return "AT_const_value_data2";
1000 case AT_const_value_data4: return "AT_const_value_data4";
1001 case AT_const_value_data8: return "AT_const_value_data8";
1002 case AT_const_value_block2: return "AT_const_value_block2";
340ccaab 1003 case AT_const_value_block4: return "AT_const_value_block4";
9a631e8e
RS
1004 case AT_containing_type: return "AT_containing_type";
1005 case AT_default_value_addr: return "AT_default_value_addr";
1006 case AT_default_value_data2: return "AT_default_value_data2";
1007 case AT_default_value_data4: return "AT_default_value_data4";
1008 case AT_default_value_data8: return "AT_default_value_data8";
1009 case AT_default_value_string: return "AT_default_value_string";
1010 case AT_friends: return "AT_friends";
1011 case AT_inline: return "AT_inline";
1012 case AT_is_optional: return "AT_is_optional";
1013 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1014 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1015 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1016 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1017 case AT_private: return "AT_private";
1018 case AT_producer: return "AT_producer";
1019 case AT_program: return "AT_program";
1020 case AT_protected: return "AT_protected";
1021 case AT_prototyped: return "AT_prototyped";
1022 case AT_public: return "AT_public";
1023 case AT_pure_virtual: return "AT_pure_virtual";
1024 case AT_return_addr: return "AT_return_addr";
04077c53 1025 case AT_abstract_origin: return "AT_abstract_origin";
9a631e8e
RS
1026 case AT_start_scope: return "AT_start_scope";
1027 case AT_stride_size: return "AT_stride_size";
1028 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1029 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1030 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1031 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1032 case AT_virtual: return "AT_virtual";
1033
1034 /* GNU extensions */
1035
1036 case AT_sf_names: return "AT_sf_names";
1037 case AT_src_info: return "AT_src_info";
1038 case AT_mac_info: return "AT_mac_info";
1039 case AT_src_coords: return "AT_src_coords";
2a819d04
TW
1040 case AT_body_begin: return "AT_body_begin";
1041 case AT_body_end: return "AT_body_end";
9a631e8e 1042
04077c53 1043 default: return "AT_<unknown>";
340ccaab
TW
1044 }
1045}
1046
a996cbd4 1047static const char *
9a631e8e 1048dwarf_stack_op_name (op)
340ccaab
TW
1049 register unsigned op;
1050{
1051 switch (op)
1052 {
1053 case OP_REG: return "OP_REG";
1054 case OP_BASEREG: return "OP_BASEREG";
1055 case OP_ADDR: return "OP_ADDR";
1056 case OP_CONST: return "OP_CONST";
1057 case OP_DEREF2: return "OP_DEREF2";
1058 case OP_DEREF4: return "OP_DEREF4";
1059 case OP_ADD: return "OP_ADD";
04077c53 1060 default: return "OP_<unknown>";
340ccaab
TW
1061 }
1062}
1063
a996cbd4 1064static const char *
9a631e8e 1065dwarf_typemod_name (mod)
340ccaab
TW
1066 register unsigned mod;
1067{
1068 switch (mod)
1069 {
1070 case MOD_pointer_to: return "MOD_pointer_to";
1071 case MOD_reference_to: return "MOD_reference_to";
1072 case MOD_const: return "MOD_const";
1073 case MOD_volatile: return "MOD_volatile";
04077c53 1074 default: return "MOD_<unknown>";
340ccaab
TW
1075 }
1076}
1077
a996cbd4 1078static const char *
9a631e8e 1079dwarf_fmt_byte_name (fmt)
340ccaab
TW
1080 register unsigned fmt;
1081{
1082 switch (fmt)
1083 {
1084 case FMT_FT_C_C: return "FMT_FT_C_C";
1085 case FMT_FT_C_X: return "FMT_FT_C_X";
1086 case FMT_FT_X_C: return "FMT_FT_X_C";
1087 case FMT_FT_X_X: return "FMT_FT_X_X";
1088 case FMT_UT_C_C: return "FMT_UT_C_C";
1089 case FMT_UT_C_X: return "FMT_UT_C_X";
1090 case FMT_UT_X_C: return "FMT_UT_X_C";
1091 case FMT_UT_X_X: return "FMT_UT_X_X";
1092 case FMT_ET: return "FMT_ET";
04077c53 1093 default: return "FMT_<unknown>";
340ccaab
TW
1094 }
1095}
461b77c8 1096
a996cbd4 1097static const char *
9a631e8e 1098dwarf_fund_type_name (ft)
340ccaab
TW
1099 register unsigned ft;
1100{
1101 switch (ft)
1102 {
1103 case FT_char: return "FT_char";
1104 case FT_signed_char: return "FT_signed_char";
1105 case FT_unsigned_char: return "FT_unsigned_char";
1106 case FT_short: return "FT_short";
1107 case FT_signed_short: return "FT_signed_short";
1108 case FT_unsigned_short: return "FT_unsigned_short";
1109 case FT_integer: return "FT_integer";
1110 case FT_signed_integer: return "FT_signed_integer";
1111 case FT_unsigned_integer: return "FT_unsigned_integer";
1112 case FT_long: return "FT_long";
1113 case FT_signed_long: return "FT_signed_long";
1114 case FT_unsigned_long: return "FT_unsigned_long";
1115 case FT_pointer: return "FT_pointer";
1116 case FT_float: return "FT_float";
1117 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1118 case FT_ext_prec_float: return "FT_ext_prec_float";
1119 case FT_complex: return "FT_complex";
1120 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1121 case FT_void: return "FT_void";
1122 case FT_boolean: return "FT_boolean";
9a631e8e
RS
1123 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1124 case FT_label: return "FT_label";
1125
1126 /* GNU extensions. */
1127
340ccaab
TW
1128 case FT_long_long: return "FT_long_long";
1129 case FT_signed_long_long: return "FT_signed_long_long";
1130 case FT_unsigned_long_long: return "FT_unsigned_long_long";
9a631e8e
RS
1131
1132 case FT_int8: return "FT_int8";
1133 case FT_signed_int8: return "FT_signed_int8";
1134 case FT_unsigned_int8: return "FT_unsigned_int8";
1135 case FT_int16: return "FT_int16";
1136 case FT_signed_int16: return "FT_signed_int16";
1137 case FT_unsigned_int16: return "FT_unsigned_int16";
1138 case FT_int32: return "FT_int32";
1139 case FT_signed_int32: return "FT_signed_int32";
1140 case FT_unsigned_int32: return "FT_unsigned_int32";
1141 case FT_int64: return "FT_int64";
1142 case FT_signed_int64: return "FT_signed_int64";
c21ee927 1143 case FT_unsigned_int64: return "FT_unsigned_int64";
9a631e8e
RS
1144
1145 case FT_real32: return "FT_real32";
1146 case FT_real64: return "FT_real64";
1147 case FT_real96: return "FT_real96";
1148 case FT_real128: return "FT_real128";
1149
cb712ad4 1150 default: return "FT_<unknown>";
340ccaab
TW
1151 }
1152}
cb712ad4
RS
1153
1154/* Determine the "ultimate origin" of a decl. The decl may be an
1155 inlined instance of an inlined instance of a decl which is local
1156 to an inline function, so we have to trace all of the way back
1157 through the origin chain to find out what sort of node actually
1158 served as the original seed for the given block. */
1159
1160static tree
1161decl_ultimate_origin (decl)
1162 register tree decl;
1163{
02e24c7a
MM
1164#ifdef ENABLE_CHECKING
1165 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1166 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1167 most distant ancestor, this should never happen. */
1168 abort ();
1169#endif
cb712ad4 1170
02e24c7a 1171 return DECL_ABSTRACT_ORIGIN (decl);
cb712ad4
RS
1172}
1173
ece0ca60
RS
1174/* Determine the "ultimate origin" of a block. The block may be an
1175 inlined instance of an inlined instance of a block which is local
1176 to an inline function, so we have to trace all of the way back
1177 through the origin chain to find out what sort of node actually
1178 served as the original seed for the given block. */
1179
1180static tree
1181block_ultimate_origin (block)
1182 register tree block;
1183{
1184 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1185
1186 if (immediate_origin == NULL)
1187 return NULL;
1188 else
1189 {
1190 register tree ret_val;
1191 register tree lookahead = immediate_origin;
1192
1193 do
1194 {
1195 ret_val = lookahead;
1196 lookahead = (TREE_CODE (ret_val) == BLOCK)
1197 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1198 : NULL;
1199 }
1200 while (lookahead != NULL && lookahead != ret_val);
1201 return ret_val;
1202 }
1203}
1204
a94dbf2c
JM
1205/* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1206 of a virtual function may refer to a base class, so we check the 'this'
1207 parameter. */
1208
1209static tree
1210decl_class_context (decl)
1211 tree decl;
1212{
1213 tree context = NULL_TREE;
1214 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1215 context = DECL_CONTEXT (decl);
1216 else
1217 context = TYPE_MAIN_VARIANT
1218 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1219
2f939d94 1220 if (context && !TYPE_P (context))
a94dbf2c
JM
1221 context = NULL_TREE;
1222
1223 return context;
1224}
1225
487a6e06 1226#if 0
cb712ad4
RS
1227static void
1228output_unsigned_leb128 (value)
1229 register unsigned long value;
1230{
1231 register unsigned long orig_value = value;
1232
1233 do
1234 {
1235 register unsigned byte = (value & 0x7f);
1236
1237 value >>= 7;
1238 if (value != 0) /* more bytes to follow */
1239 byte |= 0x80;
1240 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
c773653b 1241 if (flag_debug_asm && value == 0)
5e9defae 1242 fprintf (asm_out_file, "\t%s ULEB128 number - value = %lu",
cb712ad4
RS
1243 ASM_COMMENT_START, orig_value);
1244 fputc ('\n', asm_out_file);
1245 }
1246 while (value != 0);
1247}
1248
1249static void
1250output_signed_leb128 (value)
1251 register long value;
1252{
1253 register long orig_value = value;
1254 register int negative = (value < 0);
1255 register int more;
1256
1257 do
1258 {
1259 register unsigned byte = (value & 0x7f);
1260
1261 value >>= 7;
1262 if (negative)
1263 value |= 0xfe000000; /* manually sign extend */
1264 if (((value == 0) && ((byte & 0x40) == 0))
1265 || ((value == -1) && ((byte & 0x40) == 1)))
1266 more = 0;
1267 else
1268 {
1269 byte |= 0x80;
1270 more = 1;
1271 }
1272 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
c773653b 1273 if (flag_debug_asm && more == 0)
5e9defae 1274 fprintf (asm_out_file, "\t%s SLEB128 number - value = %ld",
cb712ad4
RS
1275 ASM_COMMENT_START, orig_value);
1276 fputc ('\n', asm_out_file);
1277 }
1278 while (more);
1279}
487a6e06 1280#endif
340ccaab
TW
1281\f
1282/**************** utility functions for attribute functions ******************/
1283
1284/* Given a pointer to a tree node for some type, return a Dwarf fundamental
1285 type code for the given type.
1286
1287 This routine must only be called for GCC type nodes that correspond to
1288 Dwarf fundamental types.
1289
1290 The current Dwarf draft specification calls for Dwarf fundamental types
1291 to accurately reflect the fact that a given type was either a "plain"
3f7cc57a 1292 integral type or an explicitly "signed" integral type. Unfortunately,
340ccaab
TW
1293 we can't always do this, because GCC may already have thrown away the
1294 information about the precise way in which the type was originally
1295 specified, as in:
1296
b083f44d 1297 typedef signed int my_type;
340ccaab 1298
b083f44d 1299 struct s { my_type f; };
340ccaab
TW
1300
1301 Since we may be stuck here without enought information to do exactly
1302 what is called for in the Dwarf draft specification, we do the best
1303 that we can under the circumstances and always use the "plain" integral
1304 fundamental type codes for int, short, and long types. That's probably
1305 good enough. The additional accuracy called for in the current DWARF
1306 draft specification is probably never even useful in practice. */
1307
1308static int
1309fundamental_type_code (type)
1310 register tree type;
1311{
1312 if (TREE_CODE (type) == ERROR_MARK)
1313 return 0;
1314
1315 switch (TREE_CODE (type))
1316 {
1317 case ERROR_MARK:
1318 return FT_void;
1319
1320 case VOID_TYPE:
1321 return FT_void;
1322
1323 case INTEGER_TYPE:
1324 /* Carefully distinguish all the standard types of C,
1325 without messing up if the language is not C.
1326 Note that we check only for the names that contain spaces;
1327 other names might occur by coincidence in other languages. */
1328 if (TYPE_NAME (type) != 0
1329 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1330 && DECL_NAME (TYPE_NAME (type)) != 0
1331 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1332 {
a996cbd4
KG
1333 const char *name =
1334 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
340ccaab
TW
1335
1336 if (!strcmp (name, "unsigned char"))
1337 return FT_unsigned_char;
1338 if (!strcmp (name, "signed char"))
1339 return FT_signed_char;
1340 if (!strcmp (name, "unsigned int"))
1341 return FT_unsigned_integer;
1342 if (!strcmp (name, "short int"))
1343 return FT_short;
1344 if (!strcmp (name, "short unsigned int"))
1345 return FT_unsigned_short;
1346 if (!strcmp (name, "long int"))
1347 return FT_long;
1348 if (!strcmp (name, "long unsigned int"))
1349 return FT_unsigned_long;
1350 if (!strcmp (name, "long long int"))
1351 return FT_long_long; /* Not grok'ed by svr4 SDB */
1352 if (!strcmp (name, "long long unsigned int"))
1353 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1354 }
1355
1356 /* Most integer types will be sorted out above, however, for the
1357 sake of special `array index' integer types, the following code
1358 is also provided. */
1359
1360 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1361 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1362
1363 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1364 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1365
1366 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1367 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1368
1369 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1370 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1371
1372 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1373 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1374
e139d296
AO
1375 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1376 if (TYPE_PRECISION (type) == 1)
1377 return FT_boolean;
1378
340ccaab
TW
1379 abort ();
1380
1381 case REAL_TYPE:
1382 /* Carefully distinguish all the standard types of C,
1383 without messing up if the language is not C. */
1384 if (TYPE_NAME (type) != 0
1385 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1386 && DECL_NAME (TYPE_NAME (type)) != 0
1387 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1388 {
a996cbd4
KG
1389 const char *name =
1390 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
340ccaab
TW
1391
1392 /* Note that here we can run afowl of a serious bug in "classic"
1393 svr4 SDB debuggers. They don't seem to understand the
1394 FT_ext_prec_float type (even though they should). */
1395
1396 if (!strcmp (name, "long double"))
1397 return FT_ext_prec_float;
1398 }
1399
1400 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
33368c84
R
1401 {
1402 /* On the SH, when compiling with -m3e or -m4-single-only, both
1403 float and double are 32 bits. But since the debugger doesn't
1404 know about the subtarget, it always thinks double is 64 bits.
1405 So we have to tell the debugger that the type is float to
1406 make the output of the 'print' command etc. readable. */
1407 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
f0da48d2 1408 return FT_float;
33368c84
R
1409 return FT_dbl_prec_float;
1410 }
340ccaab
TW
1411 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1412 return FT_float;
1413
1414 /* Note that here we can run afowl of a serious bug in "classic"
1415 svr4 SDB debuggers. They don't seem to understand the
1416 FT_ext_prec_float type (even though they should). */
1417
1418 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1419 return FT_ext_prec_float;
1420 abort ();
1421
1422 case COMPLEX_TYPE:
1423 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1424
1425 case CHAR_TYPE:
1426 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1427
1428 case BOOLEAN_TYPE:
1429 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1430
1431 default:
1432 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1433 }
1434 return 0;
1435}
1436\f
1437/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1438 the Dwarf "root" type for the given input type. The Dwarf "root" type
1439 of a given type is generally the same as the given type, except that if
1440 the given type is a pointer or reference type, then the root type of
1441 the given type is the root type of the "basis" type for the pointer or
1442 reference type. (This definition of the "root" type is recursive.)
1443 Also, the root type of a `const' qualified type or a `volatile'
1444 qualified type is the root type of the given type without the
1445 qualifiers. */
1446
1447static tree
b1357021 1448root_type_1 (type, count)
340ccaab 1449 register tree type;
b1357021 1450 register int count;
340ccaab 1451{
b1357021
JW
1452 /* Give up after searching 1000 levels, in case this is a recursive
1453 pointer type. Such types are possible in Ada, but it is not possible
1454 to represent them in DWARF1 debug info. */
1455 if (count > 1000)
340ccaab
TW
1456 return error_mark_node;
1457
1458 switch (TREE_CODE (type))
1459 {
1460 case ERROR_MARK:
1461 return error_mark_node;
1462
1463 case POINTER_TYPE:
1464 case REFERENCE_TYPE:
b1357021 1465 return root_type_1 (TREE_TYPE (type), count+1);
340ccaab
TW
1466
1467 default:
b1357021 1468 return type;
340ccaab
TW
1469 }
1470}
1471
b1357021
JW
1472static tree
1473root_type (type)
1474 register tree type;
1475{
1476 type = root_type_1 (type, 0);
1477 if (type != error_mark_node)
1478 type = type_main_variant (type);
1479 return type;
1480}
1481
340ccaab
TW
1482/* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1483 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1484
1485static void
b1357021 1486write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
340ccaab
TW
1487 register tree type;
1488 register int decl_const;
1489 register int decl_volatile;
b1357021 1490 register int count;
340ccaab
TW
1491{
1492 if (TREE_CODE (type) == ERROR_MARK)
1493 return;
1494
b1357021
JW
1495 /* Give up after searching 1000 levels, in case this is a recursive
1496 pointer type. Such types are possible in Ada, but it is not possible
1497 to represent them in DWARF1 debug info. */
1498 if (count > 1000)
1499 return;
1500
340ccaab
TW
1501 if (TYPE_READONLY (type) || decl_const)
1502 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1503 if (TYPE_VOLATILE (type) || decl_volatile)
1504 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1505 switch (TREE_CODE (type))
1506 {
1507 case POINTER_TYPE:
1508 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
b1357021 1509 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
340ccaab
TW
1510 return;
1511
1512 case REFERENCE_TYPE:
1513 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
b1357021 1514 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
340ccaab
TW
1515 return;
1516
1517 case ERROR_MARK:
1518 default:
1519 return;
1520 }
1521}
b1357021
JW
1522
1523static void
1524write_modifier_bytes (type, decl_const, decl_volatile)
1525 register tree type;
1526 register int decl_const;
1527 register int decl_volatile;
1528{
1529 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1530}
340ccaab
TW
1531\f
1532/* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1533 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1534
461b77c8 1535static inline int
340ccaab
TW
1536type_is_fundamental (type)
1537 register tree type;
1538{
1539 switch (TREE_CODE (type))
1540 {
1541 case ERROR_MARK:
1542 case VOID_TYPE:
1543 case INTEGER_TYPE:
1544 case REAL_TYPE:
1545 case COMPLEX_TYPE:
1546 case BOOLEAN_TYPE:
1547 case CHAR_TYPE:
1548 return 1;
1549
1550 case SET_TYPE:
1551 case ARRAY_TYPE:
1552 case RECORD_TYPE:
1553 case UNION_TYPE:
c1b98a95 1554 case QUAL_UNION_TYPE:
340ccaab
TW
1555 case ENUMERAL_TYPE:
1556 case FUNCTION_TYPE:
1557 case METHOD_TYPE:
1558 case POINTER_TYPE:
1559 case REFERENCE_TYPE:
340ccaab
TW
1560 case FILE_TYPE:
1561 case OFFSET_TYPE:
1562 case LANG_TYPE:
1563 return 0;
1564
1565 default:
1566 abort ();
1567 }
1568 return 0;
1569}
1570
04077c53
RS
1571/* Given a pointer to some ..._DECL tree node, generate an assembly language
1572 equate directive which will associate a symbolic name with the current DIE.
1573
1574 The name used is an artificial label generated from the DECL_UID number
1575 associated with the given decl node. The name it gets equated to is the
1576 symbolic label that we (previously) output at the start of the DIE that
1577 we are currently generating.
1578
1579 Calling this function while generating some "decl related" form of DIE
1580 makes it possible to later refer to the DIE which represents the given
1581 decl simply by re-generating the symbolic name from the ..._DECL node's
1582 UID number. */
1583
1584static void
1585equate_decl_number_to_die_number (decl)
1586 register tree decl;
1587{
1588 /* In the case where we are generating a DIE for some ..._DECL node
1589 which represents either some inline function declaration or some
1590 entity declared within an inline function declaration/definition,
1591 setup a symbolic name for the current DIE so that we have a name
1592 for this DIE that we can easily refer to later on within
1593 AT_abstract_origin attributes. */
1594
1595 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1596 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1597
1598 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1599 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1600 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1601}
1602
340ccaab 1603/* Given a pointer to some ..._TYPE tree node, generate an assembly language
04077c53 1604 equate directive which will associate a symbolic name with the current DIE.
340ccaab
TW
1605
1606 The name used is an artificial label generated from the TYPE_UID number
1607 associated with the given type node. The name it gets equated to is the
1608 symbolic label that we (previously) output at the start of the DIE that
1609 we are currently generating.
1610
1611 Calling this function while generating some "type related" form of DIE
1612 makes it easy to later refer to the DIE which represents the given type
1613 simply by re-generating the alternative name from the ..._TYPE node's
1614 UID number. */
1615
461b77c8 1616static inline void
340ccaab
TW
1617equate_type_number_to_die_number (type)
1618 register tree type;
1619{
1620 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1621 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1622
1623 /* We are generating a DIE to represent the main variant of this type
1624 (i.e the type without any const or volatile qualifiers) so in order
1625 to get the equate to come out right, we need to get the main variant
1626 itself here. */
1627
69d6b01d 1628 type = type_main_variant (type);
340ccaab
TW
1629
1630 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1631 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1632 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1633}
1634
7f7429ca
RS
1635static void
1636output_reg_number (rtl)
1637 register rtx rtl;
1638{
1639 register unsigned regno = REGNO (rtl);
1640
3073d01c 1641 if (regno >= DWARF_FRAME_REGISTERS)
7f7429ca
RS
1642 {
1643 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1644 regno);
1645 regno = 0;
1646 }
1647 fprintf (asm_out_file, "\t%s\t0x%x",
1648 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
c773653b 1649 if (flag_debug_asm)
7f7429ca
RS
1650 {
1651 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1652 PRINT_REG (rtl, 0, asm_out_file);
1653 }
1654 fputc ('\n', asm_out_file);
1655}
1656
340ccaab
TW
1657/* The following routine is a nice and simple transducer. It converts the
1658 RTL for a variable or parameter (resident in memory) into an equivalent
1659 Dwarf representation of a mechanism for getting the address of that same
1660 variable onto the top of a hypothetical "address evaluation" stack.
1661
1662 When creating memory location descriptors, we are effectively trans-
1663 forming the RTL for a memory-resident object into its Dwarf postfix
1664 expression equivalent. This routine just recursively descends an
1665 RTL tree, turning it into Dwarf postfix code as it goes. */
1666
1667static void
1668output_mem_loc_descriptor (rtl)
1669 register rtx rtl;
1670{
1671 /* Note that for a dynamically sized array, the location we will
1672 generate a description of here will be the lowest numbered location
1673 which is actually within the array. That's *not* necessarily the
1674 same as the zeroth element of the array. */
1675
1865dbb5
JM
1676#ifdef ASM_SIMPLIFY_DWARF_ADDR
1677 rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
1678#endif
1679
340ccaab
TW
1680 switch (GET_CODE (rtl))
1681 {
1682 case SUBREG:
1683
1684 /* The case of a subreg may arise when we have a local (register)
1685 variable or a formal (register) parameter which doesn't quite
1686 fill up an entire register. For now, just assume that it is
1687 legitimate to make the Dwarf info refer to the whole register
1688 which contains the given subreg. */
1689
1690 rtl = XEXP (rtl, 0);
1691 /* Drop thru. */
1692
1693 case REG:
1694
1695 /* Whenever a register number forms a part of the description of
1696 the method for calculating the (dynamic) address of a memory
52cdd5e5 1697 resident object, DWARF rules require the register number to
340ccaab
TW
1698 be referred to as a "base register". This distinction is not
1699 based in any way upon what category of register the hardware
1700 believes the given register belongs to. This is strictly
8c24a2ce 1701 DWARF terminology we're dealing with here.
28b039e3
RS
1702
1703 Note that in cases where the location of a memory-resident data
1704 object could be expressed as:
1705
1706 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1707
1708 the actual DWARF location descriptor that we generate may just
1709 be OP_BASEREG (basereg). This may look deceptively like the
1710 object in question was allocated to a register (rather than
1711 in memory) so DWARF consumers need to be aware of the subtle
52cdd5e5 1712 distinction between OP_REG and OP_BASEREG. */
340ccaab
TW
1713
1714 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
7f7429ca 1715 output_reg_number (rtl);
340ccaab
TW
1716 break;
1717
1718 case MEM:
1719 output_mem_loc_descriptor (XEXP (rtl, 0));
1720 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1721 break;
1722
1723 case CONST:
1724 case SYMBOL_REF:
1725 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1726 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1727 break;
1728
1729 case PLUS:
1730 output_mem_loc_descriptor (XEXP (rtl, 0));
1731 output_mem_loc_descriptor (XEXP (rtl, 1));
1732 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1733 break;
1734
1735 case CONST_INT:
1736 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1737 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1738 break;
1739
c21ee927
JW
1740 case MULT:
1741 /* If a pseudo-reg is optimized away, it is possible for it to
1742 be replaced with a MEM containing a multiply. Use a GNU extension
1743 to describe it. */
1744 output_mem_loc_descriptor (XEXP (rtl, 0));
1745 output_mem_loc_descriptor (XEXP (rtl, 1));
1746 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1747 break;
1748
340ccaab
TW
1749 default:
1750 abort ();
1751 }
1752}
1753
1754/* Output a proper Dwarf location descriptor for a variable or parameter
1755 which is either allocated in a register or in a memory location. For
1756 a register, we just generate an OP_REG and the register number. For a
1757 memory location we provide a Dwarf postfix expression describing how to
1758 generate the (dynamic) address of the object onto the address stack. */
1759
1760static void
1761output_loc_descriptor (rtl)
1762 register rtx rtl;
1763{
1764 switch (GET_CODE (rtl))
1765 {
1766 case SUBREG:
1767
1768 /* The case of a subreg may arise when we have a local (register)
1769 variable or a formal (register) parameter which doesn't quite
1770 fill up an entire register. For now, just assume that it is
1771 legitimate to make the Dwarf info refer to the whole register
1772 which contains the given subreg. */
1773
1774 rtl = XEXP (rtl, 0);
1775 /* Drop thru. */
1776
1777 case REG:
1778 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
7f7429ca 1779 output_reg_number (rtl);
340ccaab
TW
1780 break;
1781
1782 case MEM:
1783 output_mem_loc_descriptor (XEXP (rtl, 0));
1784 break;
1785
1786 default:
1787 abort (); /* Should never happen */
1788 }
1789}
1790
1791/* Given a tree node describing an array bound (either lower or upper)
1792 output a representation for that bound. */
1793
1794static void
1795output_bound_representation (bound, dim_num, u_or_l)
1796 register tree bound;
1797 register unsigned dim_num; /* For multi-dimensional arrays. */
1798 register char u_or_l; /* Designates upper or lower bound. */
1799{
1800 switch (TREE_CODE (bound))
1801 {
1802
56b3408d
RK
1803 case ERROR_MARK:
1804 return;
340ccaab
TW
1805
1806 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1807
56b3408d 1808 case INTEGER_CST:
665f2503
RK
1809 if (host_integerp (bound, 0))
1810 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, tree_low_cst (bound, 0));
56b3408d
RK
1811 break;
1812
1813 default:
340ccaab
TW
1814
1815 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
56b3408d
RK
1816 SAVE_EXPR nodes, in which case we can do something, or as
1817 an expression, which we cannot represent. */
1818 {
1819 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1820 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1821
1822 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1823 current_dienum, dim_num, u_or_l);
1824
1825 sprintf (end_label, BOUND_END_LABEL_FMT,
1826 current_dienum, dim_num, u_or_l);
1827
1828 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1829 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1830
1831 /* If optimization is turned on, the SAVE_EXPRs that describe
1832 how to access the upper bound values are essentially bogus.
1833 They only describe (at best) how to get at these values at
1834 the points in the generated code right after they have just
1835 been computed. Worse yet, in the typical case, the upper
1836 bound values will not even *be* computed in the optimized
1837 code, so these SAVE_EXPRs are entirely bogus.
1838
1839 In order to compensate for this fact, we check here to see
1840 if optimization is enabled, and if so, we effectively create
1841 an empty location description for the (unknown and unknowable)
1842 upper bound.
1843
1844 This should not cause too much trouble for existing (stupid?)
1845 debuggers because they have to deal with empty upper bounds
1846 location descriptions anyway in order to be able to deal with
1847 incomplete array types.
1848
1849 Of course an intelligent debugger (GDB?) should be able to
1850 comprehend that a missing upper bound specification in a
1851 array type used for a storage class `auto' local array variable
1852 indicates that the upper bound is both unknown (at compile-
1853 time) and unknowable (at run-time) due to optimization. */
1854
1855 if (! optimize)
1856 {
1857 while (TREE_CODE (bound) == NOP_EXPR
1858 || TREE_CODE (bound) == CONVERT_EXPR)
1859 bound = TREE_OPERAND (bound, 0);
340ccaab 1860
4513a33c 1861 if (TREE_CODE (bound) == SAVE_EXPR)
56b3408d 1862 output_loc_descriptor
1914f5da 1863 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
56b3408d 1864 }
340ccaab 1865
56b3408d
RK
1866 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1867 }
1868 break;
340ccaab 1869
340ccaab
TW
1870 }
1871}
1872
1873/* Recursive function to output a sequence of value/name pairs for
1874 enumeration constants in reversed order. This is called from
1875 enumeration_type_die. */
1876
1877static void
1878output_enumeral_list (link)
1879 register tree link;
1880{
1881 if (link)
1882 {
1883 output_enumeral_list (TREE_CHAIN (link));
665f2503
RK
1884
1885 if (host_integerp (TREE_VALUE (link), 0))
1886 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1887 tree_low_cst (TREE_VALUE (link), 0));
1888
74153f8e 1889 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab
TW
1890 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1891 }
1892}
1893
d4d4c5a8
RS
1894/* Given an unsigned value, round it up to the lowest multiple of `boundary'
1895 which is not less than the value itself. */
1896
665f2503 1897static inline HOST_WIDE_INT
d4d4c5a8 1898ceiling (value, boundary)
665f2503
RK
1899 register HOST_WIDE_INT value;
1900 register unsigned int boundary;
d4d4c5a8
RS
1901{
1902 return (((value + boundary - 1) / boundary) * boundary);
1903}
1904
1905/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1906 pointer to the declared type for the relevant field variable, or return
1907 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1908
461b77c8 1909static inline tree
d4d4c5a8
RS
1910field_type (decl)
1911 register tree decl;
1912{
1913 register tree type;
1914
1915 if (TREE_CODE (decl) == ERROR_MARK)
1916 return integer_type_node;
1917
1918 type = DECL_BIT_FIELD_TYPE (decl);
1919 if (type == NULL)
1920 type = TREE_TYPE (decl);
1921 return type;
1922}
1923
1924/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1925 node, return the alignment in bits for the type, or else return
1926 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1927
665f2503 1928static inline unsigned int
d4d4c5a8
RS
1929simple_type_align_in_bits (type)
1930 register tree type;
1931{
1932 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1933}
1934
1935/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1936 node, return the size in bits for the type if it is a constant, or
1937 else return the alignment for the type if the type's size is not
1938 constant, or else return BITS_PER_WORD if the type actually turns out
1939 to be an ERROR_MARK node. */
1940
665f2503 1941static inline unsigned HOST_WIDE_INT
d4d4c5a8
RS
1942simple_type_size_in_bits (type)
1943 register tree type;
1944{
1945 if (TREE_CODE (type) == ERROR_MARK)
1946 return BITS_PER_WORD;
1947 else
1948 {
1949 register tree type_size_tree = TYPE_SIZE (type);
1950
665f2503 1951 if (! host_integerp (type_size_tree, 1))
d4d4c5a8
RS
1952 return TYPE_ALIGN (type);
1953
665f2503 1954 return tree_low_cst (type_size_tree, 1);
d4d4c5a8
RS
1955 }
1956}
1957
1958/* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1959 return the byte offset of the lowest addressed byte of the "containing
1960 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1961 mine what that offset is, either because the argument turns out to be a
1962 pointer to an ERROR_MARK node, or because the offset is actually variable.
1963 (We can't handle the latter case just yet.) */
1964
665f2503 1965static HOST_WIDE_INT
d4d4c5a8
RS
1966field_byte_offset (decl)
1967 register tree decl;
1968{
665f2503
RK
1969 unsigned int type_align_in_bytes;
1970 unsigned int type_align_in_bits;
1971 unsigned HOST_WIDE_INT type_size_in_bits;
1972 HOST_WIDE_INT object_offset_in_align_units;
1973 HOST_WIDE_INT object_offset_in_bits;
1974 HOST_WIDE_INT object_offset_in_bytes;
1975 tree type;
1976 tree field_size_tree;
1977 HOST_WIDE_INT bitpos_int;
1978 HOST_WIDE_INT deepest_bitpos;
1979 unsigned HOST_WIDE_INT field_size_in_bits;
d4d4c5a8
RS
1980
1981 if (TREE_CODE (decl) == ERROR_MARK)
1982 return 0;
1983
1984 if (TREE_CODE (decl) != FIELD_DECL)
1985 abort ();
1986
1987 type = field_type (decl);
d4d4c5a8
RS
1988 field_size_tree = DECL_SIZE (decl);
1989
d0f89bfc
R
1990 /* If there was an error, the size could be zero. */
1991 if (! field_size_tree)
1992 {
1993 if (errorcount)
1994 return 0;
665f2503 1995
d0f89bfc
R
1996 abort ();
1997 }
1998
d4d4c5a8
RS
1999 /* We cannot yet cope with fields whose positions or sizes are variable,
2000 so for now, when we see such things, we simply return 0. Someday,
2001 we may be able to handle such cases, but it will be damn difficult. */
2002
665f2503
RK
2003 if (! host_integerp (bit_position (decl), 0)
2004 || ! host_integerp (field_size_tree, 1))
d4d4c5a8 2005 return 0;
d4d4c5a8 2006
665f2503
RK
2007 bitpos_int = int_bit_position (decl);
2008 field_size_in_bits = tree_low_cst (field_size_tree, 1);
d4d4c5a8
RS
2009
2010 type_size_in_bits = simple_type_size_in_bits (type);
d4d4c5a8
RS
2011 type_align_in_bits = simple_type_align_in_bits (type);
2012 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2013
2014 /* Note that the GCC front-end doesn't make any attempt to keep track
2015 of the starting bit offset (relative to the start of the containing
2016 structure type) of the hypothetical "containing object" for a bit-
2017 field. Thus, when computing the byte offset value for the start of
2018 the "containing object" of a bit-field, we must deduce this infor-
2019 mation on our own.
2020
2021 This can be rather tricky to do in some cases. For example, handling
2022 the following structure type definition when compiling for an i386/i486
2023 target (which only aligns long long's to 32-bit boundaries) can be very
2024 tricky:
2025
2026 struct S {
2027 int field1;
2028 long long field2:31;
2029 };
2030
2031 Fortunately, there is a simple rule-of-thumb which can be used in such
2032 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2033 the structure shown above. It decides to do this based upon one simple
2034 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2035 taining object" for each bit-field at the first (i.e. lowest addressed)
2036 legitimate alignment boundary (based upon the required minimum alignment
2037 for the declared type of the field) which it can possibly use, subject
2038 to the condition that there is still enough available space remaining
2039 in the containing object (when allocated at the selected point) to
8008b228 2040 fully accommodate all of the bits of the bit-field itself.
d4d4c5a8
RS
2041
2042 This simple rule makes it obvious why GCC allocates 8 bytes for each
2043 object of the structure type shown above. When looking for a place to
2044 allocate the "containing object" for `field2', the compiler simply tries
2045 to allocate a 64-bit "containing object" at each successive 32-bit
2046 boundary (starting at zero) until it finds a place to allocate that 64-
2047 bit field such that at least 31 contiguous (and previously unallocated)
2048 bits remain within that selected 64 bit field. (As it turns out, for
2049 the example above, the compiler finds that it is OK to allocate the
2050 "containing object" 64-bit field at bit-offset zero within the
2051 structure type.)
2052
2053 Here we attempt to work backwards from the limited set of facts we're
2054 given, and we try to deduce from those facts, where GCC must have
2055 believed that the containing object started (within the structure type).
2056
2057 The value we deduce is then used (by the callers of this routine) to
2058 generate AT_location and AT_bit_offset attributes for fields (both
665f2503 2059 bit-fields and, in the case of AT_location, regular fields as well). */
d4d4c5a8
RS
2060
2061 /* Figure out the bit-distance from the start of the structure to the
2062 "deepest" bit of the bit-field. */
2063 deepest_bitpos = bitpos_int + field_size_in_bits;
2064
2065 /* This is the tricky part. Use some fancy footwork to deduce where the
2066 lowest addressed bit of the containing object must be. */
2067 object_offset_in_bits
2068 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2069
2070 /* Compute the offset of the containing object in "alignment units". */
2071 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2072
2073 /* Compute the offset of the containing object in bytes. */
2074 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2075
d5042f7b
JW
2076 /* The above code assumes that the field does not cross an alignment
2077 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2078 or if the structure is packed. If this happens, then we get an object
2079 which starts after the bitfield, which means that the bit offset is
2080 negative. Gdb fails when given negative bit offsets. We avoid this
2081 by recomputing using the first bit of the bitfield. This will give
2082 us an object which does not completely contain the bitfield, but it
84d59453
JL
2083 will be aligned, and it will contain the first bit of the bitfield.
2084
2085 However, only do this for a BYTES_BIG_ENDIAN target. For a
2086 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2087 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2088 then we end up computing the object byte offset for the wrong word of the
2089 desired bitfield, which in turn causes the field offset to be negative
2090 in bit_offset_attribute. */
2091 if (BYTES_BIG_ENDIAN
2092 && object_offset_in_bits > bitpos_int)
d5042f7b
JW
2093 {
2094 deepest_bitpos = bitpos_int + 1;
2095 object_offset_in_bits
2096 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2097 object_offset_in_align_units = (object_offset_in_bits
2098 / type_align_in_bits);
2099 object_offset_in_bytes = (object_offset_in_align_units
2100 * type_align_in_bytes);
2101 }
2102
d4d4c5a8
RS
2103 return object_offset_in_bytes;
2104}
2105
340ccaab
TW
2106/****************************** attributes *********************************/
2107
2108/* The following routines are responsible for writing out the various types
2109 of Dwarf attributes (and any following data bytes associated with them).
2110 These routines are listed in order based on the numerical codes of their
2111 associated attributes. */
2112
2113/* Generate an AT_sibling attribute. */
2114
461b77c8 2115static inline void
340ccaab
TW
2116sibling_attribute ()
2117{
2118 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2119
2120 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2121 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2122 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2123}
2124
2125/* Output the form of location attributes suitable for whole variables and
2126 whole parameters. Note that the location attributes for struct fields
2127 are generated by the routine `data_member_location_attribute' below. */
2128
2129static void
2130location_attribute (rtl)
2131 register rtx rtl;
2132{
2133 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2134 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2135
2136 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2137 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2138 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2139 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2140 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2141
2142 /* Handle a special case. If we are about to output a location descriptor
2e494f70 2143 for a variable or parameter which has been optimized out of existence,
340ccaab 2144 don't do that. Instead we output a zero-length location descriptor
28b039e3
RS
2145 value as part of the location attribute.
2146
8008b228 2147 A variable which has been optimized out of existence will have a
28b039e3
RS
2148 DECL_RTL value which denotes a pseudo-reg.
2149
2150 Currently, in some rare cases, variables can have DECL_RTL values
2151 which look like (MEM (REG pseudo-reg#)). These cases are due to
2152 bugs elsewhere in the compiler. We treat such cases
8008b228 2153 as if the variable(s) in question had been optimized out of existence.
28b039e3
RS
2154
2155 Note that in all cases where we wish to express the fact that a
8008b228 2156 variable has been optimized out of existence, we do not simply
28b039e3
RS
2157 suppress the generation of the entire location attribute because
2158 the absence of a location attribute in certain kinds of DIEs is
2159 used to indicate something else entirely... i.e. that the DIE
9faa82d8 2160 represents an object declaration, but not a definition. So saith
28b039e3
RS
2161 the PLSIG.
2162 */
340ccaab 2163
28b039e3
RS
2164 if (! is_pseudo_reg (rtl)
2165 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
6a7a9f01 2166 output_loc_descriptor (rtl);
340ccaab
TW
2167
2168 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2169}
2170
2171/* Output the specialized form of location attribute used for data members
d4d4c5a8 2172 of struct and union types.
9a631e8e
RS
2173
2174 In the special case of a FIELD_DECL node which represents a bit-field,
2175 the "offset" part of this special location descriptor must indicate the
2176 distance in bytes from the lowest-addressed byte of the containing
2177 struct or union type to the lowest-addressed byte of the "containing
d4d4c5a8 2178 object" for the bit-field. (See the `field_byte_offset' function above.)
9a631e8e
RS
2179
2180 For any given bit-field, the "containing object" is a hypothetical
2181 object (of some integral or enum type) within which the given bit-field
2182 lives. The type of this hypothetical "containing object" is always the
d4d4c5a8
RS
2183 same as the declared type of the individual bit-field itself (for GCC
2184 anyway... the DWARF spec doesn't actually mandate this).
9a631e8e
RS
2185
2186 Note that it is the size (in bytes) of the hypothetical "containing
2187 object" which will be given in the AT_byte_size attribute for this
d4d4c5a8
RS
2188 bit-field. (See the `byte_size_attribute' function below.) It is
2189 also used when calculating the value of the AT_bit_offset attribute.
0f41302f 2190 (See the `bit_offset_attribute' function below.) */
9a631e8e 2191
340ccaab 2192static void
f37230f0
JM
2193data_member_location_attribute (t)
2194 register tree t;
340ccaab 2195{
f37230f0 2196 register unsigned object_offset_in_bytes;
340ccaab
TW
2197 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2198 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
9a631e8e 2199
f37230f0 2200 if (TREE_CODE (t) == TREE_VEC)
665f2503 2201 object_offset_in_bytes = tree_low_cst (BINFO_OFFSET (t), 0);
f37230f0
JM
2202 else
2203 object_offset_in_bytes = field_byte_offset (t);
2204
340ccaab
TW
2205 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2206 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2207 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2208 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2209 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2210 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
d4d4c5a8 2211 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
340ccaab
TW
2212 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2213 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2214}
2215
2216/* Output an AT_const_value attribute for a variable or a parameter which
2217 does not have a "location" either in memory or in a register. These
2218 things can arise in GNU C when a constant is passed as an actual
2219 parameter to an inlined function. They can also arise in C++ where
2220 declared constants do not necessarily get memory "homes". */
2221
2222static void
2223const_value_attribute (rtl)
2224 register rtx rtl;
2225{
2226 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2227 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2228
2229 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2230 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2231 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2232 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2233 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2234
2235 switch (GET_CODE (rtl))
2236 {
2237 case CONST_INT:
2238 /* Note that a CONST_INT rtx could represent either an integer or
2239 a floating-point constant. A CONST_INT is used whenever the
2240 constant will fit into a single word. In all such cases, the
2241 original mode of the constant value is wiped out, and the
2242 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2243 precise mode information for these constants, we always just
2244 output them using 4 bytes. */
2245
2246 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2247 break;
2248
2249 case CONST_DOUBLE:
2250 /* Note that a CONST_DOUBLE rtx could represent either an integer
2251 or a floating-point constant. A CONST_DOUBLE is used whenever
2252 the constant requires more than one word in order to be adequately
2253 represented. In all such cases, the original mode of the constant
2254 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2255 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2256
2257 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
665f2503
RK
2258 (unsigned int) CONST_DOUBLE_HIGH (rtl),
2259 (unsigned int) CONST_DOUBLE_LOW (rtl));
340ccaab
TW
2260 break;
2261
2262 case CONST_STRING:
74153f8e 2263 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
340ccaab
TW
2264 break;
2265
2266 case SYMBOL_REF:
2267 case LABEL_REF:
2268 case CONST:
2269 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2270 break;
2271
2272 case PLUS:
2273 /* In cases where an inlined instance of an inline function is passed
2274 the address of an `auto' variable (which is local to the caller)
2275 we can get a situation where the DECL_RTL of the artificial
2276 local variable (for the inlining) which acts as a stand-in for
2277 the corresponding formal parameter (of the inline function)
2278 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2279 This is not exactly a compile-time constant expression, but it
2280 isn't the address of the (artificial) local variable either.
2281 Rather, it represents the *value* which the artificial local
2282 variable always has during its lifetime. We currently have no
2283 way to represent such quasi-constant values in Dwarf, so for now
2284 we just punt and generate an AT_const_value attribute with form
2285 FORM_BLOCK4 and a length of zero. */
2286 break;
d4d4c5a8
RS
2287
2288 default:
2289 abort (); /* No other kinds of rtx should be possible here. */
340ccaab
TW
2290 }
2291
2292 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2293}
2294
2295/* Generate *either* an AT_location attribute or else an AT_const_value
2296 data attribute for a variable or a parameter. We generate the
2297 AT_const_value attribute only in those cases where the given
2298 variable or parameter does not have a true "location" either in
2299 memory or in a register. This can happen (for example) when a
2300 constant is passed as an actual argument in a call to an inline
2301 function. (It's possible that these things can crop up in other
2302 ways also.) Note that one type of constant value which can be
2303 passed into an inlined function is a constant pointer. This can
2304 happen for example if an actual argument in an inlined function
2305 call evaluates to a compile-time constant address. */
2306
2307static void
2308location_or_const_value_attribute (decl)
2309 register tree decl;
2310{
2311 register rtx rtl;
2312
2313 if (TREE_CODE (decl) == ERROR_MARK)
2314 return;
2315
2316 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
648ebe7b 2317 {
0e02aa7e
RK
2318 /* Should never happen. */
2319 abort ();
2320 return;
648ebe7b 2321 }
340ccaab 2322
0e02aa7e
RK
2323 /* Here we have to decide where we are going to say the parameter "lives"
2324 (as far as the debugger is concerned). We only have a couple of choices.
2325 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2326 normally indicates where the parameter lives during most of the activa-
2327 tion of the function. If optimization is enabled however, this could
2328 be either NULL or else a pseudo-reg. Both of those cases indicate that
2329 the parameter doesn't really live anywhere (as far as the code generation
2330 parts of GCC are concerned) during most of the function's activation.
2331 That will happen (for example) if the parameter is never referenced
2332 within the function.
2333
2334 We could just generate a location descriptor here for all non-NULL
2335 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2336 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2337 cases where DECL_RTL is NULL or is a pseudo-reg.
2338
2339 Note however that we can only get away with using DECL_INCOMING_RTL as
2340 a backup substitute for DECL_RTL in certain limited cases. In cases
2341 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2342 we can be sure that the parameter was passed using the same type as it
2343 is declared to have within the function, and that its DECL_INCOMING_RTL
2344 points us to a place where a value of that type is passed. In cases
2345 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2346 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2347 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2348 points us to a value of some type which is *different* from the type
2349 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2350 to generate a location attribute in such cases, the debugger would
2351 end up (for example) trying to fetch a `float' from a place which
2352 actually contains the first part of a `double'. That would lead to
2353 really incorrect and confusing output at debug-time, and we don't
2354 want that now do we?
2355
2356 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2357 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2358 couple of cute exceptions however. On little-endian machines we can
2359 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2360 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2361 an integral type which is smaller than TREE_TYPE(decl). These cases
2362 arise when (on a little-endian machine) a non-prototyped function has
2363 a parameter declared to be of type `short' or `char'. In such cases,
2364 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2365 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2366 passed `int' value. If the debugger then uses that address to fetch a
2367 `short' or a `char' (on a little-endian machine) the result will be the
2368 correct data, so we allow for such exceptional cases below.
2369
2370 Note that our goal here is to describe the place where the given formal
2371 parameter lives during most of the function's activation (i.e. between
2372 the end of the prologue and the start of the epilogue). We'll do that
2373 as best as we can. Note however that if the given formal parameter is
2374 modified sometime during the execution of the function, then a stack
2375 backtrace (at debug-time) will show the function as having been called
2376 with the *new* value rather than the value which was originally passed
2377 in. This happens rarely enough that it is not a major problem, but it
2378 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2379 may generate two additional attributes for any given TAG_formal_parameter
2380 DIE which will describe the "passed type" and the "passed location" for
2381 the given formal parameter in addition to the attributes we now generate
2382 to indicate the "declared type" and the "active location" for each
2383 parameter. This additional set of attributes could be used by debuggers
2384 for stack backtraces.
2385
2386 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2387 can be NULL also. This happens (for example) for inlined-instances of
2388 inline function formal parameters which are never referenced. This really
2389 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2390 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2391 these values for inlined instances of inline function parameters, so
956d6950 2392 when we see such cases, we are just out-of-luck for the time
0e02aa7e
RK
2393 being (until integrate.c gets fixed).
2394 */
2395
2396 /* Use DECL_RTL as the "location" unless we find something better. */
2397 rtl = DECL_RTL (decl);
2398
2399 if (TREE_CODE (decl) == PARM_DECL)
2400 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2401 {
2402 /* This decl represents a formal parameter which was optimized out. */
69d6b01d
RS
2403 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2404 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
0e02aa7e
RK
2405
2406 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2407 *all* cases where (rtl == NULL_RTX) just below. */
2408
2409 if (declared_type == passed_type)
2410 rtl = DECL_INCOMING_RTL (decl);
f76b9db2 2411 else if (! BYTES_BIG_ENDIAN)
0e02aa7e 2412 if (TREE_CODE (declared_type) == INTEGER_TYPE)
d0f062fb 2413 /* NMS WTF? */
0e02aa7e
RK
2414 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2415 rtl = DECL_INCOMING_RTL (decl);
0e02aa7e
RK
2416 }
2417
2418 if (rtl == NULL_RTX)
340ccaab
TW
2419 return;
2420
1914f5da 2421 rtl = eliminate_regs (rtl, 0, NULL_RTX);
6a7a9f01 2422#ifdef LEAF_REG_REMAP
54ff41b7 2423 if (current_function_uses_only_leaf_regs)
5f52dcfe 2424 leaf_renumber_regs_insn (rtl);
6a7a9f01
JM
2425#endif
2426
340ccaab
TW
2427 switch (GET_CODE (rtl))
2428 {
e9a25f70
JL
2429 case ADDRESSOF:
2430 /* The address of a variable that was optimized away; don't emit
2431 anything. */
2432 break;
2433
340ccaab
TW
2434 case CONST_INT:
2435 case CONST_DOUBLE:
2436 case CONST_STRING:
2437 case SYMBOL_REF:
2438 case LABEL_REF:
2439 case CONST:
2440 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2441 const_value_attribute (rtl);
2442 break;
2443
2444 case MEM:
2445 case REG:
2446 case SUBREG:
2447 location_attribute (rtl);
2448 break;
2449
7b1bcb49
JW
2450 case CONCAT:
2451 /* ??? CONCAT is used for complex variables, which may have the real
2452 part stored in one place and the imag part stored somewhere else.
2453 DWARF1 has no way to describe a variable that lives in two different
2454 places, so we just describe where the first part lives, and hope that
2455 the second part is stored after it. */
2456 location_attribute (XEXP (rtl, 0));
2457 break;
2458
340ccaab
TW
2459 default:
2460 abort (); /* Should never happen. */
2461 }
2462}
2463
2464/* Generate an AT_name attribute given some string value to be included as
9a631e8e 2465 the value of the attribute. */
340ccaab 2466
461b77c8 2467static inline void
340ccaab 2468name_attribute (name_string)
a996cbd4 2469 register const char *name_string;
340ccaab 2470{
75791cee
TW
2471 if (name_string && *name_string)
2472 {
2473 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
74153f8e 2474 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
75791cee 2475 }
340ccaab
TW
2476}
2477
461b77c8 2478static inline void
340ccaab
TW
2479fund_type_attribute (ft_code)
2480 register unsigned ft_code;
2481{
2482 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2483 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2484}
2485
2486static void
2487mod_fund_type_attribute (type, decl_const, decl_volatile)
2488 register tree type;
2489 register int decl_const;
2490 register int decl_volatile;
2491{
2492 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2493 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2494
2495 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2496 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2497 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2498 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2499 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2500 write_modifier_bytes (type, decl_const, decl_volatile);
2501 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2502 fundamental_type_code (root_type (type)));
2503 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2504}
2505
461b77c8 2506static inline void
340ccaab
TW
2507user_def_type_attribute (type)
2508 register tree type;
2509{
2510 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2511
2512 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2513 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2514 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2515}
2516
2517static void
2518mod_u_d_type_attribute (type, decl_const, decl_volatile)
2519 register tree type;
2520 register int decl_const;
2521 register int decl_volatile;
2522{
2523 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2524 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2525 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2526
2527 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2528 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2529 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2530 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2531 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2532 write_modifier_bytes (type, decl_const, decl_volatile);
2533 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2534 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2535 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2536}
2537
d4d4c5a8 2538#ifdef USE_ORDERING_ATTRIBUTE
461b77c8 2539static inline void
340ccaab
TW
2540ordering_attribute (ordering)
2541 register unsigned ordering;
2542{
2543 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2544 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2545}
d4d4c5a8 2546#endif /* defined(USE_ORDERING_ATTRIBUTE) */
340ccaab
TW
2547
2548/* Note that the block of subscript information for an array type also
2549 includes information about the element type of type given array type. */
2550
2551static void
2552subscript_data_attribute (type)
2553 register tree type;
2554{
2555 register unsigned dimension_number;
2556 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2557 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2558
2559 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2560 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2561 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2562 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2563 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2564
2565 /* The GNU compilers represent multidimensional array types as sequences
2566 of one dimensional array types whose element types are themselves array
2567 types. Here we squish that down, so that each multidimensional array
2568 type gets only one array_type DIE in the Dwarf debugging info. The
2569 draft Dwarf specification say that we are allowed to do this kind
2570 of compression in C (because there is no difference between an
2571 array or arrays and a multidimensional array in C) but for other
2572 source languages (e.g. Ada) we probably shouldn't do this. */
2573
2574 for (dimension_number = 0;
2575 TREE_CODE (type) == ARRAY_TYPE;
2576 type = TREE_TYPE (type), dimension_number++)
2577 {
2578 register tree domain = TYPE_DOMAIN (type);
2579
2580 /* Arrays come in three flavors. Unspecified bounds, fixed
2581 bounds, and (in GNU C only) variable bounds. Handle all
2582 three forms here. */
2583
2584 if (domain)
2585 {
2586 /* We have an array type with specified bounds. */
2587
2588 register tree lower = TYPE_MIN_VALUE (domain);
2589 register tree upper = TYPE_MAX_VALUE (domain);
2590
2591 /* Handle only fundamental types as index types for now. */
2592
2593 if (! type_is_fundamental (domain))
2594 abort ();
2595
0f41302f 2596 /* Output the representation format byte for this dimension. */
340ccaab
TW
2597
2598 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
e1ee5cdc
RH
2599 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2600 (upper && TREE_CODE (upper) == INTEGER_CST)));
340ccaab
TW
2601
2602 /* Output the index type for this dimension. */
2603
2604 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2605 fundamental_type_code (domain));
2606
2607 /* Output the representation for the lower bound. */
2608
2609 output_bound_representation (lower, dimension_number, 'l');
2610
2611 /* Output the representation for the upper bound. */
2612
2613 output_bound_representation (upper, dimension_number, 'u');
2614 }
2615 else
2616 {
2617 /* We have an array type with an unspecified length. For C and
2618 C++ we can assume that this really means that (a) the index
2619 type is an integral type, and (b) the lower bound is zero.
2620 Note that Dwarf defines the representation of an unspecified
2621 (upper) bound as being a zero-length location description. */
2622
2623 /* Output the array-bounds format byte. */
2624
2625 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2626
2627 /* Output the (assumed) index type. */
2628
2629 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2630
2631 /* Output the (assumed) lower bound (constant) value. */
2632
2633 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2634
2635 /* Output the (empty) location description for the upper bound. */
2636
2637 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2638 }
2639 }
2640
9faa82d8 2641 /* Output the prefix byte that says that the element type is coming up. */
340ccaab
TW
2642
2643 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2644
2645 /* Output a representation of the type of the elements of this array type. */
2646
2647 type_attribute (type, 0, 0);
2648
2649 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2650}
2651
2652static void
2653byte_size_attribute (tree_node)
2654 register tree tree_node;
2655{
2656 register unsigned size;
2657
2658 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2659 switch (TREE_CODE (tree_node))
2660 {
2661 case ERROR_MARK:
2662 size = 0;
2663 break;
2664
2665 case ENUMERAL_TYPE:
2666 case RECORD_TYPE:
2667 case UNION_TYPE:
c1b98a95 2668 case QUAL_UNION_TYPE:
fa405625 2669 case ARRAY_TYPE:
340ccaab
TW
2670 size = int_size_in_bytes (tree_node);
2671 break;
2672
2673 case FIELD_DECL:
9a631e8e 2674 /* For a data member of a struct or union, the AT_byte_size is
d4d4c5a8 2675 generally given as the number of bytes normally allocated for
9a631e8e
RS
2676 an object of the *declared* type of the member itself. This
2677 is true even for bit-fields. */
d4d4c5a8
RS
2678 size = simple_type_size_in_bits (field_type (tree_node))
2679 / BITS_PER_UNIT;
340ccaab
TW
2680 break;
2681
2682 default:
2683 abort ();
2684 }
9a631e8e
RS
2685
2686 /* Note that `size' might be -1 when we get to this point. If it
2687 is, that indicates that the byte size of the entity in question
2688 is variable. We have no good way of expressing this fact in Dwarf
2689 at the present time, so just let the -1 pass on through. */
2690
340ccaab
TW
2691 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2692}
2693
9a631e8e
RS
2694/* For a FIELD_DECL node which represents a bit-field, output an attribute
2695 which specifies the distance in bits from the highest order bit of the
2696 "containing object" for the bit-field to the highest order bit of the
2697 bit-field itself.
2698
2699 For any given bit-field, the "containing object" is a hypothetical
2700 object (of some integral or enum type) within which the given bit-field
2701 lives. The type of this hypothetical "containing object" is always the
2702 same as the declared type of the individual bit-field itself.
2703
d4d4c5a8
RS
2704 The determination of the exact location of the "containing object" for
2705 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2706 function (above).
2707
9a631e8e
RS
2708 Note that it is the size (in bytes) of the hypothetical "containing
2709 object" which will be given in the AT_byte_size attribute for this
461b77c8 2710 bit-field. (See `byte_size_attribute' above.) */
340ccaab 2711
461b77c8 2712static inline void
340ccaab
TW
2713bit_offset_attribute (decl)
2714 register tree decl;
2715{
665f2503
RK
2716 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
2717 tree type = DECL_BIT_FIELD_TYPE (decl);
2718 HOST_WIDE_INT bitpos_int;
2719 HOST_WIDE_INT highest_order_object_bit_offset;
2720 HOST_WIDE_INT highest_order_field_bit_offset;
2721 HOST_WIDE_INT bit_offset;
9a631e8e 2722
3a88cbd1
JL
2723 /* Must be a bit field. */
2724 if (!type
2725 || TREE_CODE (decl) != FIELD_DECL)
2726 abort ();
9a631e8e 2727
665f2503
RK
2728 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
2729 if we encounter such things, just return without generating any
2730 attribute whatsoever. */
9a631e8e 2731
665f2503
RK
2732 if (! host_integerp (bit_position (decl), 0)
2733 || ! host_integerp (DECL_SIZE (decl), 1))
9a631e8e 2734 return;
665f2503
RK
2735
2736 bitpos_int = int_bit_position (decl);
9a631e8e 2737
d4d4c5a8
RS
2738 /* Note that the bit offset is always the distance (in bits) from the
2739 highest-order bit of the "containing object" to the highest-order
2740 bit of the bit-field itself. Since the "high-order end" of any
2741 object or field is different on big-endian and little-endian machines,
2742 the computation below must take account of these differences. */
9a631e8e 2743
d4d4c5a8
RS
2744 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2745 highest_order_field_bit_offset = bitpos_int;
648ebe7b 2746
f76b9db2
ILT
2747 if (! BYTES_BIG_ENDIAN)
2748 {
665f2503 2749 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 1);
f76b9db2
ILT
2750 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2751 }
d4d4c5a8
RS
2752
2753 bit_offset =
f76b9db2
ILT
2754 (! BYTES_BIG_ENDIAN
2755 ? highest_order_object_bit_offset - highest_order_field_bit_offset
2756 : highest_order_field_bit_offset - highest_order_object_bit_offset);
340ccaab
TW
2757
2758 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
d4d4c5a8 2759 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
340ccaab
TW
2760}
2761
2762/* For a FIELD_DECL node which represents a bit field, output an attribute
2763 which specifies the length in bits of the given field. */
2764
461b77c8 2765static inline void
340ccaab
TW
2766bit_size_attribute (decl)
2767 register tree decl;
2768{
3a88cbd1
JL
2769 /* Must be a field and a bit field. */
2770 if (TREE_CODE (decl) != FIELD_DECL
2771 || ! DECL_BIT_FIELD_TYPE (decl))
2772 abort ();
340ccaab 2773
665f2503
RK
2774 if (host_integerp (DECL_SIZE (decl), 1))
2775 {
2776 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2777 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2778 tree_low_cst (DECL_SIZE (decl), 1));
2779 }
340ccaab
TW
2780}
2781
2782/* The following routine outputs the `element_list' attribute for enumeration
2783 type DIEs. The element_lits attribute includes the names and values of
2784 all of the enumeration constants associated with the given enumeration
2785 type. */
2786
461b77c8 2787static inline void
340ccaab
TW
2788element_list_attribute (element)
2789 register tree element;
2790{
2791 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2792 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2793
2794 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2795 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2796 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2797 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2798 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2799
2800 /* Here we output a list of value/name pairs for each enumeration constant
2801 defined for this enumeration type (as required), but we do it in REVERSE
2802 order. The order is the one required by the draft #5 Dwarf specification
2803 published by the UI/PLSIG. */
2804
2805 output_enumeral_list (element); /* Recursively output the whole list. */
2806
2807 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2808}
2809
2810/* Generate an AT_stmt_list attribute. These are normally present only in
2811 DIEs with a TAG_compile_unit tag. */
2812
461b77c8 2813static inline void
340ccaab 2814stmt_list_attribute (label)
a996cbd4 2815 register const char *label;
340ccaab
TW
2816{
2817 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2818 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2819 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2820}
2821
2822/* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2823 for a subroutine DIE. */
2824
461b77c8 2825static inline void
340ccaab 2826low_pc_attribute (asm_low_label)
a996cbd4 2827 register const char *asm_low_label;
340ccaab
TW
2828{
2829 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2830 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2831}
2832
2833/* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2834 subroutine DIE. */
2835
461b77c8 2836static inline void
340ccaab 2837high_pc_attribute (asm_high_label)
a996cbd4 2838 register const char *asm_high_label;
340ccaab
TW
2839{
2840 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2841 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2842}
2843
2a819d04
TW
2844/* Generate an AT_body_begin attribute for a subroutine DIE. */
2845
461b77c8 2846static inline void
2a819d04 2847body_begin_attribute (asm_begin_label)
a996cbd4 2848 register const char *asm_begin_label;
2a819d04
TW
2849{
2850 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2851 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2852}
2853
2854/* Generate an AT_body_end attribute for a subroutine DIE. */
2855
461b77c8 2856static inline void
2a819d04 2857body_end_attribute (asm_end_label)
a996cbd4 2858 register const char *asm_end_label;
2a819d04
TW
2859{
2860 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2861 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2862}
2863
340ccaab
TW
2864/* Generate an AT_language attribute given a LANG value. These attributes
2865 are used only within TAG_compile_unit DIEs. */
2866
461b77c8 2867static inline void
340ccaab
TW
2868language_attribute (language_code)
2869 register unsigned language_code;
2870{
2871 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2872 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2873}
2874
461b77c8 2875static inline void
340ccaab
TW
2876member_attribute (context)
2877 register tree context;
2878{
2879 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2880
2881 /* Generate this attribute only for members in C++. */
2882
c7d6dca2 2883 if (context != NULL && is_tagged_type (context))
340ccaab
TW
2884 {
2885 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2886 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2887 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2888 }
2889}
2890
7a87758d 2891#if 0
461b77c8 2892static inline void
340ccaab
TW
2893string_length_attribute (upper_bound)
2894 register tree upper_bound;
2895{
2896 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2897 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2898
2899 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2900 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2901 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2902 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2903 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2904 output_bound_representation (upper_bound, 0, 'u');
2905 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2906}
7a87758d 2907#endif
340ccaab 2908
461b77c8 2909static inline void
340ccaab 2910comp_dir_attribute (dirname)
a996cbd4 2911 register const char *dirname;
340ccaab
TW
2912{
2913 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
74153f8e 2914 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
340ccaab
TW
2915}
2916
461b77c8 2917static inline void
340ccaab 2918sf_names_attribute (sf_names_start_label)
a996cbd4 2919 register const char *sf_names_start_label;
340ccaab
TW
2920{
2921 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2922 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2923 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2924}
2925
461b77c8 2926static inline void
340ccaab 2927src_info_attribute (src_info_start_label)
a996cbd4 2928 register const char *src_info_start_label;
340ccaab
TW
2929{
2930 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2931 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2932 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2933}
2934
461b77c8 2935static inline void
340ccaab 2936mac_info_attribute (mac_info_start_label)
a996cbd4 2937 register const char *mac_info_start_label;
340ccaab
TW
2938{
2939 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2940 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2941 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2942}
2943
461b77c8 2944static inline void
340ccaab
TW
2945prototyped_attribute (func_type)
2946 register tree func_type;
2947{
2948 if ((strcmp (language_string, "GNU C") == 0)
2949 && (TYPE_ARG_TYPES (func_type) != NULL))
2950 {
2951 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
74153f8e 2952 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
340ccaab
TW
2953 }
2954}
2955
461b77c8 2956static inline void
340ccaab 2957producer_attribute (producer)
a996cbd4 2958 register const char *producer;
340ccaab
TW
2959{
2960 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
74153f8e 2961 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
340ccaab
TW
2962}
2963
461b77c8 2964static inline void
340ccaab
TW
2965inline_attribute (decl)
2966 register tree decl;
2967{
0924ddef 2968 if (DECL_INLINE (decl))
340ccaab
TW
2969 {
2970 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
74153f8e 2971 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
340ccaab
TW
2972 }
2973}
2974
461b77c8 2975static inline void
340ccaab
TW
2976containing_type_attribute (containing_type)
2977 register tree containing_type;
2978{
2979 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2980
2981 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
2982 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
2983 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2984}
2985
461b77c8 2986static inline void
04077c53
RS
2987abstract_origin_attribute (origin)
2988 register tree origin;
2989{
2990 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2991
2992 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
2993 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
2994 {
2995 case 'd':
2996 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
2997 break;
2998
2999 case 't':
3000 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3001 break;
3002
3003 default:
3004 abort (); /* Should never happen. */
3005
3006 }
3007 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3008}
3009
3010#ifdef DWARF_DECL_COORDINATES
461b77c8 3011static inline void
9a631e8e
RS
3012src_coords_attribute (src_fileno, src_lineno)
3013 register unsigned src_fileno;
3014 register unsigned src_lineno;
3015{
9a631e8e
RS
3016 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3017 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3018 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
9a631e8e 3019}
04077c53
RS
3020#endif /* defined(DWARF_DECL_COORDINATES) */
3021
461b77c8 3022static inline void
04077c53
RS
3023pure_or_virtual_attribute (func_decl)
3024 register tree func_decl;
3025{
3026 if (DECL_VIRTUAL_P (func_decl))
3027 {
ece0ca60 3028#if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
04077c53
RS
3029 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3030 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3031 else
ece0ca60 3032#endif
04077c53 3033 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
74153f8e 3034 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
04077c53
RS
3035 }
3036}
9a631e8e 3037
340ccaab
TW
3038/************************* end of attributes *****************************/
3039
3040/********************* utility routines for DIEs *************************/
3041
9a631e8e
RS
3042/* Output an AT_name attribute and an AT_src_coords attribute for the
3043 given decl, but only if it actually has a name. */
3044
d4d4c5a8 3045static void
9a631e8e
RS
3046name_and_src_coords_attributes (decl)
3047 register tree decl;
3048{
3049 register tree decl_name = DECL_NAME (decl);
3050
3051 if (decl_name && IDENTIFIER_POINTER (decl_name))
3052 {
3053 name_attribute (IDENTIFIER_POINTER (decl_name));
75791cee
TW
3054#ifdef DWARF_DECL_COORDINATES
3055 {
3056 register unsigned file_index;
3057
3058 /* This is annoying, but we have to pop out of the .debug section
3059 for a moment while we call `lookup_filename' because calling it
3060 may cause a temporary switch into the .debug_sfnames section and
38e01259 3061 most svr4 assemblers are not smart enough to be able to nest
75791cee
TW
3062 section switches to any depth greater than one. Note that we
3063 also can't skirt this issue by delaying all output to the
3064 .debug_sfnames section unit the end of compilation because that
3065 would cause us to have inter-section forward references and
3066 Fred Fish sez that m68k/svr4 assemblers botch those. */
3067
3068 ASM_OUTPUT_POP_SECTION (asm_out_file);
3069 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3070 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3071
3072 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3073 }
d4d4c5a8 3074#endif /* defined(DWARF_DECL_COORDINATES) */
9a631e8e
RS
3075 }
3076}
3077
340ccaab
TW
3078/* Many forms of DIEs contain a "type description" part. The following
3079 routine writes out these "type descriptor" parts. */
3080
3081static void
3082type_attribute (type, decl_const, decl_volatile)
3083 register tree type;
3084 register int decl_const;
3085 register int decl_volatile;
3086{
3087 register enum tree_code code = TREE_CODE (type);
3088 register int root_type_modified;
3089
f01ea0c6 3090 if (code == ERROR_MARK)
340ccaab
TW
3091 return;
3092
3093 /* Handle a special case. For functions whose return type is void,
3094 we generate *no* type attribute. (Note that no object may have
3095 type `void', so this only applies to function return types. */
3096
f01ea0c6 3097 if (code == VOID_TYPE)
340ccaab
TW
3098 return;
3099
f01ea0c6
RK
3100 /* If this is a subtype, find the underlying type. Eventually,
3101 this should write out the appropriate subtype info. */
3102 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3103 && TREE_TYPE (type) != 0)
3104 type = TREE_TYPE (type), code = TREE_CODE (type);
3105
340ccaab
TW
3106 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3107 || decl_const || decl_volatile
3108 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3109
3110 if (type_is_fundamental (root_type (type)))
5e9defae
KG
3111 {
3112 if (root_type_modified)
340ccaab 3113 mod_fund_type_attribute (type, decl_const, decl_volatile);
5e9defae 3114 else
340ccaab 3115 fund_type_attribute (fundamental_type_code (type));
5e9defae 3116 }
340ccaab 3117 else
5e9defae
KG
3118 {
3119 if (root_type_modified)
340ccaab 3120 mod_u_d_type_attribute (type, decl_const, decl_volatile);
5e9defae 3121 else
69d6b01d 3122 /* We have to get the type_main_variant here (and pass that to the
0591b9c6
RS
3123 `user_def_type_attribute' routine) because the ..._TYPE node we
3124 have might simply be a *copy* of some original type node (where
3125 the copy was created to help us keep track of typedef names)
3126 and that copy might have a different TYPE_UID from the original
3127 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3128 is labeling a given type DIE for future reference, it always and
3129 only creates labels for DIEs representing *main variants*, and it
3130 never even knows about non-main-variants.) */
69d6b01d 3131 user_def_type_attribute (type_main_variant (type));
5e9defae 3132 }
340ccaab
TW
3133}
3134
3135/* Given a tree pointer to a struct, class, union, or enum type node, return
3136 a pointer to the (string) tag name for the given type, or zero if the
3137 type was declared without a tag. */
3138
d3e3972c 3139static const char *
340ccaab
TW
3140type_tag (type)
3141 register tree type;
3142{
d3e3972c 3143 register const char *name = 0;
340ccaab
TW
3144
3145 if (TYPE_NAME (type) != 0)
3146 {
3147 register tree t = 0;
3148
3149 /* Find the IDENTIFIER_NODE for the type name. */
3150 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3151 t = TYPE_NAME (type);
340ccaab 3152
85f8926e
JM
3153 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3154 a TYPE_DECL node, regardless of whether or not a `typedef' was
3155 involved. */
a94dbf2c
JM
3156 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3157 && ! DECL_IGNORED_P (TYPE_NAME (type)))
340ccaab 3158 t = DECL_NAME (TYPE_NAME (type));
85f8926e 3159
340ccaab
TW
3160 /* Now get the name as a string, or invent one. */
3161 if (t != 0)
3162 name = IDENTIFIER_POINTER (t);
3163 }
3164
3165 return (name == 0 || *name == '\0') ? 0 : name;
3166}
3167
461b77c8 3168static inline void
340ccaab
TW
3169dienum_push ()
3170{
3171 /* Start by checking if the pending_sibling_stack needs to be expanded.
3172 If necessary, expand it. */
3173
3174 if (pending_siblings == pending_siblings_allocated)
3175 {
3176 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3177 pending_sibling_stack
3178 = (unsigned *) xrealloc (pending_sibling_stack,
3179 pending_siblings_allocated * sizeof(unsigned));
3180 }
3181
3182 pending_siblings++;
3183 NEXT_DIE_NUM = next_unused_dienum++;
3184}
3185
3186/* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3187 NEXT_DIE_NUM. */
3188
461b77c8 3189static inline void
340ccaab
TW
3190dienum_pop ()
3191{
3192 pending_siblings--;
3193}
3194
461b77c8 3195static inline tree
340ccaab
TW
3196member_declared_type (member)
3197 register tree member;
3198{
3199 return (DECL_BIT_FIELD_TYPE (member))
3200 ? DECL_BIT_FIELD_TYPE (member)
3201 : TREE_TYPE (member);
3202}
3203
692e06f5
RS
3204/* Get the function's label, as described by its RTL.
3205 This may be different from the DECL_NAME name used
3206 in the source file. */
3207
3cce094d 3208static const char *
692e06f5
RS
3209function_start_label (decl)
3210 register tree decl;
3211{
3212 rtx x;
3cce094d 3213 const char *fnname;
692e06f5
RS
3214
3215 x = DECL_RTL (decl);
3216 if (GET_CODE (x) != MEM)
3217 abort ();
3218 x = XEXP (x, 0);
3219 if (GET_CODE (x) != SYMBOL_REF)
3220 abort ();
3221 fnname = XSTR (x, 0);
3222 return fnname;
3223}
3224
3225
340ccaab
TW
3226/******************************* DIEs ************************************/
3227
3228/* Output routines for individual types of DIEs. */
3229
3230/* Note that every type of DIE (except a null DIE) gets a sibling. */
3231
3232static void
3233output_array_type_die (arg)
3234 register void *arg;
3235{
3236 register tree type = arg;
3237
3238 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3239 sibling_attribute ();
3240 equate_type_number_to_die_number (type);
3241 member_attribute (TYPE_CONTEXT (type));
3242
3243 /* I believe that we can default the array ordering. SDB will probably
3244 do the right things even if AT_ordering is not present. It's not
3245 even an issue until we start to get into multidimensional arrays
9a631e8e
RS
3246 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3247 dimensional arrays, then we'll have to put the AT_ordering attribute
3248 back in. (But if and when we find out that we need to put these in,
3249 we will only do so for multidimensional arrays. After all, we don't
3250 want to waste space in the .debug section now do we?) */
340ccaab 3251
d4d4c5a8 3252#ifdef USE_ORDERING_ATTRIBUTE
340ccaab 3253 ordering_attribute (ORD_row_major);
d4d4c5a8 3254#endif /* defined(USE_ORDERING_ATTRIBUTE) */
340ccaab
TW
3255
3256 subscript_data_attribute (type);
3257}
3258
3259static void
3260output_set_type_die (arg)
3261 register void *arg;
3262{
3263 register tree type = arg;
3264
3265 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3266 sibling_attribute ();
3267 equate_type_number_to_die_number (type);
3268 member_attribute (TYPE_CONTEXT (type));
3269 type_attribute (TREE_TYPE (type), 0, 0);
3270}
3271
3272#if 0
3273/* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
0f41302f 3274
340ccaab
TW
3275static void
3276output_entry_point_die (arg)
3277 register void *arg;
3278{
3279 register tree decl = arg;
d4d4c5a8 3280 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3281
3282 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3283 sibling_attribute ();
3284 dienum_push ();
d4d4c5a8
RS
3285 if (origin != NULL)
3286 abstract_origin_attribute (origin);
3287 else
3288 {
3289 name_and_src_coords_attributes (decl);
3290 member_attribute (DECL_CONTEXT (decl));
3291 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3292 }
3293 if (DECL_ABSTRACT (decl))
3294 equate_decl_number_to_die_number (decl);
3295 else
692e06f5 3296 low_pc_attribute (function_start_label (decl));
340ccaab
TW
3297}
3298#endif
3299
d4d4c5a8
RS
3300/* Output a DIE to represent an inlined instance of an enumeration type. */
3301
3302static void
3303output_inlined_enumeration_type_die (arg)
3304 register void *arg;
3305{
3306 register tree type = arg;
3307
3308 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3309 sibling_attribute ();
3a88cbd1
JL
3310 if (!TREE_ASM_WRITTEN (type))
3311 abort ();
d4d4c5a8
RS
3312 abstract_origin_attribute (type);
3313}
3314
3315/* Output a DIE to represent an inlined instance of a structure type. */
3316
3317static void
3318output_inlined_structure_type_die (arg)
3319 register void *arg;
3320{
3321 register tree type = arg;
3322
3323 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3324 sibling_attribute ();
3a88cbd1
JL
3325 if (!TREE_ASM_WRITTEN (type))
3326 abort ();
d4d4c5a8
RS
3327 abstract_origin_attribute (type);
3328}
3329
3330/* Output a DIE to represent an inlined instance of a union type. */
3331
3332static void
3333output_inlined_union_type_die (arg)
3334 register void *arg;
3335{
3336 register tree type = arg;
3337
3338 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3339 sibling_attribute ();
3a88cbd1
JL
3340 if (!TREE_ASM_WRITTEN (type))
3341 abort ();
d4d4c5a8
RS
3342 abstract_origin_attribute (type);
3343}
3344
340ccaab
TW
3345/* Output a DIE to represent an enumeration type. Note that these DIEs
3346 include all of the information about the enumeration values also.
3347 This information is encoded into the element_list attribute. */
3348
3349static void
3350output_enumeration_type_die (arg)
3351 register void *arg;
3352{
3353 register tree type = arg;
3354
3355 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3356 sibling_attribute ();
3357 equate_type_number_to_die_number (type);
3358 name_attribute (type_tag (type));
3359 member_attribute (TYPE_CONTEXT (type));
3360
3361 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3362 given enum type is incomplete, do not generate the AT_byte_size
3363 attribute or the AT_element_list attribute. */
3364
d0f062fb 3365 if (COMPLETE_TYPE_P (type))
340ccaab
TW
3366 {
3367 byte_size_attribute (type);
3368 element_list_attribute (TYPE_FIELDS (type));
3369 }
3370}
3371
3372/* Output a DIE to represent either a real live formal parameter decl or
3373 to represent just the type of some formal parameter position in some
3374 function type.
3375
3376 Note that this routine is a bit unusual because its argument may be
d4d4c5a8
RS
3377 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3378 represents an inlining of some PARM_DECL) or else some sort of a
3379 ..._TYPE node. If it's the former then this function is being called
3380 to output a DIE to represent a formal parameter object (or some inlining
3381 thereof). If it's the latter, then this function is only being called
3382 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3383 formal argument type of some subprogram type. */
340ccaab
TW
3384
3385static void
3386output_formal_parameter_die (arg)
3387 register void *arg;
3388{
d4d4c5a8 3389 register tree node = arg;
340ccaab
TW
3390
3391 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3392 sibling_attribute ();
d4d4c5a8
RS
3393
3394 switch (TREE_CODE_CLASS (TREE_CODE (node)))
340ccaab 3395 {
d4d4c5a8
RS
3396 case 'd': /* We were called with some kind of a ..._DECL node. */
3397 {
3398 register tree origin = decl_ultimate_origin (node);
3399
3400 if (origin != NULL)
3401 abstract_origin_attribute (origin);
3402 else
3403 {
3404 name_and_src_coords_attributes (node);
3405 type_attribute (TREE_TYPE (node),
3406 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3407 }
3408 if (DECL_ABSTRACT (node))
3409 equate_decl_number_to_die_number (node);
3410 else
3411 location_or_const_value_attribute (node);
3412 }
3413 break;
3414
3415 case 't': /* We were called with some kind of a ..._TYPE node. */
3416 type_attribute (node, 0, 0);
3417 break;
3418
3419 default:
3420 abort (); /* Should never happen. */
340ccaab 3421 }
340ccaab
TW
3422}
3423
3424/* Output a DIE to represent a declared function (either file-scope
3425 or block-local) which has "external linkage" (according to ANSI-C). */
3426
3427static void
3428output_global_subroutine_die (arg)
3429 register void *arg;
3430{
3431 register tree decl = arg;
d4d4c5a8 3432 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3433
3434 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3435 sibling_attribute ();
3436 dienum_push ();
d4d4c5a8
RS
3437 if (origin != NULL)
3438 abstract_origin_attribute (origin);
3439 else
340ccaab 3440 {
d4d4c5a8 3441 register tree type = TREE_TYPE (decl);
340ccaab 3442
d4d4c5a8
RS
3443 name_and_src_coords_attributes (decl);
3444 inline_attribute (decl);
3445 prototyped_attribute (type);
3446 member_attribute (DECL_CONTEXT (decl));
3447 type_attribute (TREE_TYPE (type), 0, 0);
3448 pure_or_virtual_attribute (decl);
3449 }
3450 if (DECL_ABSTRACT (decl))
3451 equate_decl_number_to_die_number (decl);
3452 else
3453 {
a94dbf2c
JM
3454 if (! DECL_EXTERNAL (decl) && ! in_class
3455 && decl == current_function_decl)
d4d4c5a8 3456 {
2a819d04 3457 char label[MAX_ARTIFICIAL_LABEL_BYTES];
d4d4c5a8 3458
692e06f5 3459 low_pc_attribute (function_start_label (decl));
2a819d04
TW
3460 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3461 high_pc_attribute (label);
a94dbf2c
JM
3462 if (use_gnu_debug_info_extensions)
3463 {
3464 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3465 body_begin_attribute (label);
3466 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3467 body_end_attribute (label);
3468 }
d4d4c5a8 3469 }
340ccaab
TW
3470 }
3471}
3472
3473/* Output a DIE to represent a declared data object (either file-scope
3474 or block-local) which has "external linkage" (according to ANSI-C). */
3475
3476static void
3477output_global_variable_die (arg)
3478 register void *arg;
3479{
3480 register tree decl = arg;
d4d4c5a8 3481 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3482
3483 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3484 sibling_attribute ();
d4d4c5a8
RS
3485 if (origin != NULL)
3486 abstract_origin_attribute (origin);
3487 else
340ccaab 3488 {
d4d4c5a8
RS
3489 name_and_src_coords_attributes (decl);
3490 member_attribute (DECL_CONTEXT (decl));
3491 type_attribute (TREE_TYPE (decl),
3492 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3493 }
3494 if (DECL_ABSTRACT (decl))
3495 equate_decl_number_to_die_number (decl);
3496 else
3497 {
a94dbf2c
JM
3498 if (! DECL_EXTERNAL (decl) && ! in_class
3499 && current_function_decl == decl_function_context (decl))
d4d4c5a8 3500 location_or_const_value_attribute (decl);
340ccaab
TW
3501 }
3502}
340ccaab
TW
3503
3504static void
3505output_label_die (arg)
3506 register void *arg;
3507{
3508 register tree decl = arg;
d4d4c5a8 3509 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3510
3511 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3512 sibling_attribute ();
d4d4c5a8
RS
3513 if (origin != NULL)
3514 abstract_origin_attribute (origin);
3515 else
3516 name_and_src_coords_attributes (decl);
3517 if (DECL_ABSTRACT (decl))
3518 equate_decl_number_to_die_number (decl);
3519 else
3520 {
3521 register rtx insn = DECL_RTL (decl);
340ccaab 3522
088e7160
NC
3523 /* Deleted labels are programmer specified labels which have been
3524 eliminated because of various optimisations. We still emit them
3525 here so that it is possible to put breakpoints on them. */
3526 if (GET_CODE (insn) == CODE_LABEL
3527 || ((GET_CODE (insn) == NOTE
3528 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
d4d4c5a8
RS
3529 {
3530 char label[MAX_ARTIFICIAL_LABEL_BYTES];
340ccaab 3531
d4d4c5a8
RS
3532 /* When optimization is enabled (via -O) some parts of the compiler
3533 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3534 represent source-level labels which were explicitly declared by
3535 the user. This really shouldn't be happening though, so catch
3536 it if it ever does happen. */
340ccaab 3537
d4d4c5a8
RS
3538 if (INSN_DELETED_P (insn))
3539 abort (); /* Should never happen. */
340ccaab 3540
d4d4c5a8
RS
3541 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3542 (unsigned) INSN_UID (insn));
3543 low_pc_attribute (label);
3544 }
340ccaab
TW
3545 }
3546}
3547
3548static void
3549output_lexical_block_die (arg)
3550 register void *arg;
3551{
3552 register tree stmt = arg;
340ccaab
TW
3553
3554 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3555 sibling_attribute ();
3556 dienum_push ();
d4d4c5a8
RS
3557 if (! BLOCK_ABSTRACT (stmt))
3558 {
3559 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3560 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3561
18c038b9 3562 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
d4d4c5a8 3563 low_pc_attribute (begin_label);
18c038b9 3564 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
d4d4c5a8
RS
3565 high_pc_attribute (end_label);
3566 }
340ccaab
TW
3567}
3568
3569static void
3570output_inlined_subroutine_die (arg)
3571 register void *arg;
3572{
3573 register tree stmt = arg;
340ccaab
TW
3574
3575 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3576 sibling_attribute ();
3577 dienum_push ();
d4d4c5a8
RS
3578 abstract_origin_attribute (block_ultimate_origin (stmt));
3579 if (! BLOCK_ABSTRACT (stmt))
3580 {
3581 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3582 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3583
18c038b9 3584 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
d4d4c5a8 3585 low_pc_attribute (begin_label);
18c038b9 3586 sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
d4d4c5a8
RS
3587 high_pc_attribute (end_label);
3588 }
340ccaab
TW
3589}
3590
3591/* Output a DIE to represent a declared data object (either file-scope
3592 or block-local) which has "internal linkage" (according to ANSI-C). */
3593
3594static void
3595output_local_variable_die (arg)
3596 register void *arg;
3597{
3598 register tree decl = arg;
d4d4c5a8 3599 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3600
3601 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3602 sibling_attribute ();
d4d4c5a8
RS
3603 if (origin != NULL)
3604 abstract_origin_attribute (origin);
3605 else
3606 {
3607 name_and_src_coords_attributes (decl);
3608 member_attribute (DECL_CONTEXT (decl));
3609 type_attribute (TREE_TYPE (decl),
3610 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3611 }
3612 if (DECL_ABSTRACT (decl))
3613 equate_decl_number_to_die_number (decl);
3614 else
3615 location_or_const_value_attribute (decl);
340ccaab
TW
3616}
3617
3618static void
3619output_member_die (arg)
3620 register void *arg;
3621{
3622 register tree decl = arg;
3623
3624 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3625 sibling_attribute ();
9a631e8e 3626 name_and_src_coords_attributes (decl);
340ccaab
TW
3627 member_attribute (DECL_CONTEXT (decl));
3628 type_attribute (member_declared_type (decl),
3629 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
0f41302f 3630 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
340ccaab
TW
3631 {
3632 byte_size_attribute (decl);
3633 bit_size_attribute (decl);
3634 bit_offset_attribute (decl);
3635 }
3636 data_member_location_attribute (decl);
3637}
3638
3639#if 0
d4d4c5a8
RS
3640/* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3641 modified types instead.
340ccaab 3642
0f41302f
MS
3643 We keep this code here just in case these types of DIEs may be
3644 needed to represent certain things in other languages (e.g. Pascal)
3645 someday. */
340ccaab
TW
3646
3647static void
3648output_pointer_type_die (arg)
3649 register void *arg;
3650{
3651 register tree type = arg;
3652
3653 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3654 sibling_attribute ();
3655 equate_type_number_to_die_number (type);
3656 member_attribute (TYPE_CONTEXT (type));
3657 type_attribute (TREE_TYPE (type), 0, 0);
3658}
3659
3660static void
3661output_reference_type_die (arg)
3662 register void *arg;
3663{
3664 register tree type = arg;
3665
3666 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3667 sibling_attribute ();
3668 equate_type_number_to_die_number (type);
3669 member_attribute (TYPE_CONTEXT (type));
3670 type_attribute (TREE_TYPE (type), 0, 0);
3671}
3672#endif
3673
d4d4c5a8 3674static void
340ccaab
TW
3675output_ptr_to_mbr_type_die (arg)
3676 register void *arg;
3677{
3678 register tree type = arg;
3679
3680 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3681 sibling_attribute ();
3682 equate_type_number_to_die_number (type);
3683 member_attribute (TYPE_CONTEXT (type));
3684 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3685 type_attribute (TREE_TYPE (type), 0, 0);
3686}
3687
3688static void
3689output_compile_unit_die (arg)
3690 register void *arg;
3691{
d3e3972c 3692 register const char *main_input_filename = arg;
340ccaab
TW
3693
3694 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3695 sibling_attribute ();
3696 dienum_push ();
3697 name_attribute (main_input_filename);
3698
3699 {
3700 char producer[250];
3701
3702 sprintf (producer, "%s %s", language_string, version_string);
3703 producer_attribute (producer);
3704 }
3705
3706 if (strcmp (language_string, "GNU C++") == 0)
3707 language_attribute (LANG_C_PLUS_PLUS);
77b83b95
RK
3708 else if (strcmp (language_string, "GNU Ada") == 0)
3709 language_attribute (LANG_ADA83);
439eb776
RK
3710 else if (strcmp (language_string, "GNU F77") == 0)
3711 language_attribute (LANG_FORTRAN77);
7532a0fb
RK
3712 else if (strcmp (language_string, "GNU Pascal") == 0)
3713 language_attribute (LANG_PASCAL83);
340ccaab
TW
3714 else if (flag_traditional)
3715 language_attribute (LANG_C);
3716 else
3717 language_attribute (LANG_C89);
3718 low_pc_attribute (TEXT_BEGIN_LABEL);
3719 high_pc_attribute (TEXT_END_LABEL);
3720 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3721 stmt_list_attribute (LINE_BEGIN_LABEL);
3722 last_filename = xstrdup (main_input_filename);
3723
3724 {
d3e3972c 3725 const char *wd = getpwd ();
2e494f70
RS
3726 if (wd)
3727 comp_dir_attribute (wd);
340ccaab
TW
3728 }
3729
a94dbf2c 3730 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
340ccaab
TW
3731 {
3732 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3733 src_info_attribute (SRCINFO_BEGIN_LABEL);
3734 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3735 mac_info_attribute (MACINFO_BEGIN_LABEL);
3736 }
3737}
3738
3739static void
3740output_string_type_die (arg)
3741 register void *arg;
3742{
3743 register tree type = arg;
3744
3745 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3746 sibling_attribute ();
874a8709 3747 equate_type_number_to_die_number (type);
340ccaab 3748 member_attribute (TYPE_CONTEXT (type));
874a8709
FF
3749 /* this is a fixed length string */
3750 byte_size_attribute (type);
340ccaab
TW
3751}
3752
f37230f0
JM
3753static void
3754output_inheritance_die (arg)
3755 register void *arg;
3756{
3757 register tree binfo = arg;
3758
3759 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3760 sibling_attribute ();
3761 type_attribute (BINFO_TYPE (binfo), 0, 0);
3762 data_member_location_attribute (binfo);
3763 if (TREE_VIA_VIRTUAL (binfo))
3764 {
3765 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
74153f8e 3766 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
f37230f0
JM
3767 }
3768 if (TREE_VIA_PUBLIC (binfo))
3769 {
3770 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
74153f8e 3771 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
f37230f0
JM
3772 }
3773 else if (TREE_VIA_PROTECTED (binfo))
3774 {
3775 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
74153f8e 3776 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
f37230f0
JM
3777 }
3778}
3779
340ccaab
TW
3780static void
3781output_structure_type_die (arg)
3782 register void *arg;
3783{
3784 register tree type = arg;
3785
3786 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3787 sibling_attribute ();
3788 equate_type_number_to_die_number (type);
3789 name_attribute (type_tag (type));
3790 member_attribute (TYPE_CONTEXT (type));
3791
3792 /* If this type has been completed, then give it a byte_size attribute
3793 and prepare to give a list of members. Otherwise, don't do either of
3794 these things. In the latter case, we will not be generating a list
3795 of members (since we don't have any idea what they might be for an
3796 incomplete type). */
3797
d0f062fb 3798 if (COMPLETE_TYPE_P (type))
340ccaab
TW
3799 {
3800 dienum_push ();
3801 byte_size_attribute (type);
3802 }
3803}
3804
3805/* Output a DIE to represent a declared function (either file-scope
3806 or block-local) which has "internal linkage" (according to ANSI-C). */
3807
3808static void
3809output_local_subroutine_die (arg)
3810 register void *arg;
3811{
3812 register tree decl = arg;
d4d4c5a8 3813 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3814
3815 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3816 sibling_attribute ();
3817 dienum_push ();
d4d4c5a8
RS
3818 if (origin != NULL)
3819 abstract_origin_attribute (origin);
3820 else
3821 {
3822 register tree type = TREE_TYPE (decl);
340ccaab 3823
d4d4c5a8
RS
3824 name_and_src_coords_attributes (decl);
3825 inline_attribute (decl);
3826 prototyped_attribute (type);
3827 member_attribute (DECL_CONTEXT (decl));
3828 type_attribute (TREE_TYPE (type), 0, 0);
3829 pure_or_virtual_attribute (decl);
3830 }
3831 if (DECL_ABSTRACT (decl))
3832 equate_decl_number_to_die_number (decl);
3833 else
340ccaab 3834 {
d4d4c5a8
RS
3835 /* Avoid getting screwed up in cases where a function was declared
3836 static but where no definition was ever given for it. */
3837
3838 if (TREE_ASM_WRITTEN (decl))
3839 {
2a819d04 3840 char label[MAX_ARTIFICIAL_LABEL_BYTES];
692e06f5 3841 low_pc_attribute (function_start_label (decl));
2a819d04
TW
3842 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3843 high_pc_attribute (label);
a94dbf2c
JM
3844 if (use_gnu_debug_info_extensions)
3845 {
3846 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3847 body_begin_attribute (label);
3848 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3849 body_end_attribute (label);
3850 }
d4d4c5a8 3851 }
340ccaab
TW
3852 }
3853}
3854
3855static void
3856output_subroutine_type_die (arg)
3857 register void *arg;
3858{
3859 register tree type = arg;
3860 register tree return_type = TREE_TYPE (type);
3861
3862 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3863 sibling_attribute ();
3864 dienum_push ();
3865 equate_type_number_to_die_number (type);
3866 prototyped_attribute (type);
3867 member_attribute (TYPE_CONTEXT (type));
3868 type_attribute (return_type, 0, 0);
3869}
3870
3871static void
3872output_typedef_die (arg)
3873 register void *arg;
3874{
3875 register tree decl = arg;
d4d4c5a8 3876 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3877
3878 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3879 sibling_attribute ();
d4d4c5a8
RS
3880 if (origin != NULL)
3881 abstract_origin_attribute (origin);
3882 else
3883 {
3884 name_and_src_coords_attributes (decl);
3885 member_attribute (DECL_CONTEXT (decl));
3886 type_attribute (TREE_TYPE (decl),
3887 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3888 }
3889 if (DECL_ABSTRACT (decl))
3890 equate_decl_number_to_die_number (decl);
340ccaab
TW
3891}
3892
3893static void
3894output_union_type_die (arg)
3895 register void *arg;
3896{
3897 register tree type = arg;
3898
3899 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3900 sibling_attribute ();
3901 equate_type_number_to_die_number (type);
3902 name_attribute (type_tag (type));
3903 member_attribute (TYPE_CONTEXT (type));
3904
3905 /* If this type has been completed, then give it a byte_size attribute
3906 and prepare to give a list of members. Otherwise, don't do either of
3907 these things. In the latter case, we will not be generating a list
3908 of members (since we don't have any idea what they might be for an
3909 incomplete type). */
3910
d0f062fb 3911 if (COMPLETE_TYPE_P (type))
340ccaab
TW
3912 {
3913 dienum_push ();
3914 byte_size_attribute (type);
3915 }
3916}
3917
3918/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3919 at the end of an (ANSI prototyped) formal parameters list. */
3920
3921static void
3922output_unspecified_parameters_die (arg)
3923 register void *arg;
3924{
3925 register tree decl_or_type = arg;
3926
3927 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3928 sibling_attribute ();
3929
3930 /* This kludge is here only for the sake of being compatible with what
3931 the USL CI5 C compiler does. The specification of Dwarf Version 1
3932 doesn't say that TAG_unspecified_parameters DIEs should contain any
3933 attributes other than the AT_sibling attribute, but they are certainly
3934 allowed to contain additional attributes, and the CI5 compiler
3935 generates AT_name, AT_fund_type, and AT_location attributes within
3936 TAG_unspecified_parameters DIEs which appear in the child lists for
3937 DIEs representing function definitions, so we do likewise here. */
3938
3939 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3940 {
3941 name_attribute ("...");
3942 fund_type_attribute (FT_pointer);
3943 /* location_attribute (?); */
3944 }
3945}
3946
3947static void
3948output_padded_null_die (arg)
487a6e06 3949 register void *arg ATTRIBUTE_UNUSED;
340ccaab
TW
3950{
3951 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3952}
3953
3954/*************************** end of DIEs *********************************/
3955
3956/* Generate some type of DIE. This routine generates the generic outer
3957 wrapper stuff which goes around all types of DIE's (regardless of their
3958 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3959 DIE-length word, followed by the guts of the DIE itself. After the guts
3960 of the DIE, there must always be a terminator label for the DIE. */
3961
3962static void
3963output_die (die_specific_output_function, param)
83d2b3b9 3964 register void (*die_specific_output_function) PARAMS ((void *));
340ccaab
TW
3965 register void *param;
3966{
3967 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3968 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3969
3970 current_dienum = NEXT_DIE_NUM;
3971 NEXT_DIE_NUM = next_unused_dienum;
3972
3973 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3974 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
3975
3976 /* Write a label which will act as the name for the start of this DIE. */
3977
3978 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3979
3980 /* Write the DIE-length word. */
3981
3982 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3983
3984 /* Fill in the guts of the DIE. */
3985
3986 next_unused_dienum++;
3987 die_specific_output_function (param);
3988
3989 /* Write a label which will act as the name for the end of this DIE. */
3990
3991 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3992}
3993
3994static void
3995end_sibling_chain ()
3996{
3997 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3998
3999 current_dienum = NEXT_DIE_NUM;
4000 NEXT_DIE_NUM = next_unused_dienum;
4001
4002 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4003
4004 /* Write a label which will act as the name for the start of this DIE. */
4005
4006 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4007
4008 /* Write the DIE-length word. */
4009
4010 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4011
4012 dienum_pop ();
4013}
4014\f
4015/* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4016 TAG_unspecified_parameters DIE) to represent the types of the formal
4017 parameters as specified in some function type specification (except
4018 for those which appear as part of a function *definition*).
4019
0f41302f
MS
4020 Note that we must be careful here to output all of the parameter
4021 DIEs *before* we output any DIEs needed to represent the types of
4022 the formal parameters. This keeps svr4 SDB happy because it
4023 (incorrectly) thinks that the first non-parameter DIE it sees ends
4024 the formal parameter list. */
340ccaab
TW
4025
4026static void
4027output_formal_types (function_or_method_type)
4028 register tree function_or_method_type;
4029{
4030 register tree link;
d4d4c5a8 4031 register tree formal_type = NULL;
340ccaab
TW
4032 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4033
2a851b5c
R
4034 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4035 get bogus recursion when outputting tagged types local to a
4036 function declaration. */
4037 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4038 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4039
340ccaab
TW
4040 /* In the case where we are generating a formal types list for a C++
4041 non-static member function type, skip over the first thing on the
4042 TYPE_ARG_TYPES list because it only represents the type of the
4043 hidden `this pointer'. The debugger should be able to figure
4044 out (without being explicitly told) that this non-static member
4045 function type takes a `this pointer' and should be able to figure
4046 what the type of that hidden parameter is from the AT_member
4047 attribute of the parent TAG_subroutine_type DIE. */
4048
4049 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4050 first_parm_type = TREE_CHAIN (first_parm_type);
4051
4052 /* Make our first pass over the list of formal parameter types and output
4053 a TAG_formal_parameter DIE for each one. */
4054
4055 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4056 {
4057 formal_type = TREE_VALUE (link);
4058 if (formal_type == void_type_node)
4059 break;
4060
4061 /* Output a (nameless) DIE to represent the formal parameter itself. */
4062
4063 output_die (output_formal_parameter_die, formal_type);
4064 }
4065
4066 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4067 DIE to the end of the parameter list. */
4068
4069 if (formal_type != void_type_node)
4070 output_die (output_unspecified_parameters_die, function_or_method_type);
4071
4072 /* Make our second (and final) pass over the list of formal parameter types
4073 and output DIEs to represent those types (as necessary). */
4074
4075 for (link = TYPE_ARG_TYPES (function_or_method_type);
4076 link;
4077 link = TREE_CHAIN (link))
4078 {
4079 formal_type = TREE_VALUE (link);
4080 if (formal_type == void_type_node)
4081 break;
4082
4083 output_type (formal_type, function_or_method_type);
4084 }
2a851b5c
R
4085
4086 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
340ccaab
TW
4087}
4088\f
4089/* Remember a type in the pending_types_list. */
4090
4091static void
4092pend_type (type)
4093 register tree type;
4094{
4095 if (pending_types == pending_types_allocated)
4096 {
4097 pending_types_allocated += PENDING_TYPES_INCREMENT;
4098 pending_types_list
4099 = (tree *) xrealloc (pending_types_list,
4100 sizeof (tree) * pending_types_allocated);
4101 }
4102 pending_types_list[pending_types++] = type;
4103
4104 /* Mark the pending type as having been output already (even though
4105 it hasn't been). This prevents the type from being added to the
4106 pending_types_list more than once. */
4107
4108 TREE_ASM_WRITTEN (type) = 1;
4109}
4110
4111/* Return non-zero if it is legitimate to output DIEs to represent a
4112 given type while we are generating the list of child DIEs for some
c7d6dca2 4113 DIE (e.g. a function or lexical block DIE) associated with a given scope.
340ccaab 4114
c7d6dca2
RS
4115 See the comments within the function for a description of when it is
4116 considered legitimate to output DIEs for various kinds of types.
340ccaab
TW
4117
4118 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4119 or it may point to a BLOCK node (for types local to a block), or to a
4120 FUNCTION_DECL node (for types local to the heading of some function
4121 definition), or to a FUNCTION_TYPE node (for types local to the
4122 prototyped parameter list of a function type specification), or to a
c1b98a95
RK
4123 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4124 (in the case of C++ nested types).
340ccaab
TW
4125
4126 The `scope' parameter should likewise be NULL or should point to a
4127 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
c1b98a95 4128 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
340ccaab
TW
4129
4130 This function is used only for deciding when to "pend" and when to
4131 "un-pend" types to/from the pending_types_list.
4132
4133 Note that we sometimes make use of this "type pending" feature in a
4134 rather twisted way to temporarily delay the production of DIEs for the
4135 types of formal parameters. (We do this just to make svr4 SDB happy.)
4136 It order to delay the production of DIEs representing types of formal
4137 parameters, callers of this function supply `fake_containing_scope' as
4138 the `scope' parameter to this function. Given that fake_containing_scope
c7d6dca2
RS
4139 is a tagged type which is *not* the containing scope for *any* other type,
4140 the desired effect is achieved, i.e. output of DIEs representing types
4141 is temporarily suspended, and any type DIEs which would have otherwise
4142 been output are instead placed onto the pending_types_list. Later on,
4143 we force these (temporarily pended) types to be output simply by calling
340ccaab 4144 `output_pending_types_for_scope' with an actual argument equal to the
461b77c8 4145 true scope of the types we temporarily pended. */
340ccaab 4146
461b77c8 4147static inline int
340ccaab
TW
4148type_ok_for_scope (type, scope)
4149 register tree type;
4150 register tree scope;
4151{
c7d6dca2
RS
4152 /* Tagged types (i.e. struct, union, and enum types) must always be
4153 output only in the scopes where they actually belong (or else the
4154 scoping of their own tag names and the scoping of their member
4155 names will be incorrect). Non-tagged-types on the other hand can
4156 generally be output anywhere, except that svr4 SDB really doesn't
4157 want to see them nested within struct or union types, so here we
4158 say it is always OK to immediately output any such a (non-tagged)
4159 type, so long as we are not within such a context. Note that the
4160 only kinds of non-tagged types which we will be dealing with here
4161 (for C and C++ anyway) will be array types and function types. */
4162
4163 return is_tagged_type (type)
a94dbf2c 4164 ? (TYPE_CONTEXT (type) == scope
2addbe1d
JM
4165 /* Ignore namespaces for the moment. */
4166 || (scope == NULL_TREE
4167 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
a94dbf2c
JM
4168 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4169 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
c7d6dca2 4170 : (scope == NULL_TREE || ! is_tagged_type (scope));
340ccaab
TW
4171}
4172
4173/* Output any pending types (from the pending_types list) which we can output
c7d6dca2 4174 now (taking into account the scope that we are working on now).
340ccaab
TW
4175
4176 For each type output, remove the given type from the pending_types_list
4177 *before* we try to output it.
4178
4179 Note that we have to process the list in beginning-to-end order,
4180 because the call made here to output_type may cause yet more types
4181 to be added to the end of the list, and we may have to output some
0f41302f 4182 of them too. */
340ccaab
TW
4183
4184static void
4185output_pending_types_for_scope (containing_scope)
4186 register tree containing_scope;
4187{
4188 register unsigned i;
4189
4190 for (i = 0; i < pending_types; )
4191 {
4192 register tree type = pending_types_list[i];
4193
4194 if (type_ok_for_scope (type, containing_scope))
4195 {
4196 register tree *mover;
4197 register tree *limit;
4198
4199 pending_types--;
4200 limit = &pending_types_list[pending_types];
4201 for (mover = &pending_types_list[i]; mover < limit; mover++)
4202 *mover = *(mover+1);
4203
4204 /* Un-mark the type as having been output already (because it
4205 hasn't been, really). Then call output_type to generate a
4206 Dwarf representation of it. */
4207
4208 TREE_ASM_WRITTEN (type) = 0;
4209 output_type (type, containing_scope);
4210
4211 /* Don't increment the loop counter in this case because we
4212 have shifted all of the subsequent pending types down one
4213 element in the pending_types_list array. */
4214 }
4215 else
4216 i++;
4217 }
4218}
4219
75c613db
JM
4220/* Remember a type in the incomplete_types_list. */
4221
4222static void
4223add_incomplete_type (type)
4224 tree type;
4225{
4226 if (incomplete_types == incomplete_types_allocated)
4227 {
4228 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4229 incomplete_types_list
4230 = (tree *) xrealloc (incomplete_types_list,
4231 sizeof (tree) * incomplete_types_allocated);
4232 }
4233
4234 incomplete_types_list[incomplete_types++] = type;
4235}
4236
4237/* Walk through the list of incomplete types again, trying once more to
4238 emit full debugging info for them. */
4239
4240static void
4241retry_incomplete_types ()
4242{
4243 register tree type;
4244
4245 finalizing = 1;
4246 while (incomplete_types)
4247 {
4248 --incomplete_types;
4249 type = incomplete_types_list[incomplete_types];
4250 output_type (type, NULL_TREE);
4251 }
4252}
4253
340ccaab
TW
4254static void
4255output_type (type, containing_scope)
4256 register tree type;
4257 register tree containing_scope;
4258{
4259 if (type == 0 || type == error_mark_node)
4260 return;
4261
4262 /* We are going to output a DIE to represent the unqualified version of
38e01259 4263 this type (i.e. without any const or volatile qualifiers) so get
340ccaab
TW
4264 the main variant (i.e. the unqualified version) of this type now. */
4265
69d6b01d 4266 type = type_main_variant (type);
340ccaab
TW
4267
4268 if (TREE_ASM_WRITTEN (type))
f45ebe47
JL
4269 {
4270 if (finalizing && AGGREGATE_TYPE_P (type))
4271 {
4272 register tree member;
4273
4274 /* Some of our nested types might not have been defined when we
4275 were written out before; force them out now. */
4276
4277 for (member = TYPE_FIELDS (type); member;
4278 member = TREE_CHAIN (member))
4279 if (TREE_CODE (member) == TYPE_DECL
4280 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4281 output_type (TREE_TYPE (member), containing_scope);
4282 }
4283 return;
4284 }
340ccaab 4285
a94dbf2c
JM
4286 /* If this is a nested type whose containing class hasn't been
4287 written out yet, writing it out will cover this one, too. */
4288
4289 if (TYPE_CONTEXT (type)
2f939d94 4290 && TYPE_P (TYPE_CONTEXT (type))
a94dbf2c
JM
4291 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4292 {
4293 output_type (TYPE_CONTEXT (type), containing_scope);
4294 return;
4295 }
4296
340ccaab
TW
4297 /* Don't generate any DIEs for this type now unless it is OK to do so
4298 (based upon what `type_ok_for_scope' tells us). */
4299
4300 if (! type_ok_for_scope (type, containing_scope))
4301 {
4302 pend_type (type);
4303 return;
4304 }
4305
4306 switch (TREE_CODE (type))
4307 {
4308 case ERROR_MARK:
4309 break;
4310
4311 case POINTER_TYPE:
4312 case REFERENCE_TYPE:
b1357021
JW
4313 /* Prevent infinite recursion in cases where this is a recursive
4314 type. Recursive types are possible in Ada. */
4315 TREE_ASM_WRITTEN (type) = 1;
340ccaab 4316 /* For these types, all that is required is that we output a DIE
e6d9804c 4317 (or a set of DIEs) to represent the "basis" type. */
340ccaab
TW
4318 output_type (TREE_TYPE (type), containing_scope);
4319 break;
4320
4321 case OFFSET_TYPE:
4322 /* This code is used for C++ pointer-to-data-member types. */
4323 /* Output a description of the relevant class type. */
4324 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4325 /* Output a description of the type of the object pointed to. */
4326 output_type (TREE_TYPE (type), containing_scope);
4327 /* Now output a DIE to represent this pointer-to-data-member type
4328 itself. */
4329 output_die (output_ptr_to_mbr_type_die, type);
4330 break;
4331
4332 case SET_TYPE:
f29a425b 4333 output_type (TYPE_DOMAIN (type), containing_scope);
340ccaab
TW
4334 output_die (output_set_type_die, type);
4335 break;
4336
4337 case FILE_TYPE:
4338 output_type (TREE_TYPE (type), containing_scope);
6dc42e49 4339 abort (); /* No way to represent these in Dwarf yet! */
340ccaab
TW
4340 break;
4341
340ccaab
TW
4342 case FUNCTION_TYPE:
4343 /* Force out return type (in case it wasn't forced out already). */
4344 output_type (TREE_TYPE (type), containing_scope);
4345 output_die (output_subroutine_type_die, type);
4346 output_formal_types (type);
4347 end_sibling_chain ();
4348 break;
4349
4350 case METHOD_TYPE:
4351 /* Force out return type (in case it wasn't forced out already). */
4352 output_type (TREE_TYPE (type), containing_scope);
4353 output_die (output_subroutine_type_die, type);
4354 output_formal_types (type);
4355 end_sibling_chain ();
4356 break;
4357
4042d440
PB
4358 case ARRAY_TYPE:
4359 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4360 {
4361 output_type (TREE_TYPE (type), containing_scope);
4362 output_die (output_string_type_die, type);
4363 }
4364 else
4365 {
4366 register tree element_type;
340ccaab 4367
4042d440
PB
4368 element_type = TREE_TYPE (type);
4369 while (TREE_CODE (element_type) == ARRAY_TYPE)
4370 element_type = TREE_TYPE (element_type);
340ccaab 4371
4042d440
PB
4372 output_type (element_type, containing_scope);
4373 output_die (output_array_type_die, type);
4374 }
340ccaab
TW
4375 break;
4376
4377 case ENUMERAL_TYPE:
4378 case RECORD_TYPE:
4379 case UNION_TYPE:
c1b98a95 4380 case QUAL_UNION_TYPE:
340ccaab
TW
4381
4382 /* For a non-file-scope tagged type, we can always go ahead and
4383 output a Dwarf description of this type right now, even if
4384 the type in question is still incomplete, because if this
4385 local type *was* ever completed anywhere within its scope,
4386 that complete definition would already have been attached to
c1b98a95
RK
4387 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4388 node by the time we reach this point. That's true because of the
4389 way the front-end does its processing of file-scope declarations (of
340ccaab
TW
4390 functions and class types) within which other types might be
4391 nested. The C and C++ front-ends always gobble up such "local
4392 scope" things en-mass before they try to output *any* debugging
4393 information for any of the stuff contained inside them and thus,
4394 we get the benefit here of what is (in effect) a pre-resolution
4395 of forward references to tagged types in local scopes.
4396
4397 Note however that for file-scope tagged types we cannot assume
4398 that such pre-resolution of forward references has taken place.
4399 A given file-scope tagged type may appear to be incomplete when
4400 we reach this point, but it may yet be given a full definition
4401 (at file-scope) later on during compilation. In order to avoid
4402 generating a premature (and possibly incorrect) set of Dwarf
4403 DIEs for such (as yet incomplete) file-scope tagged types, we
4404 generate nothing at all for as-yet incomplete file-scope tagged
4405 types here unless we are making our special "finalization" pass
4406 for file-scope things at the very end of compilation. At that
4407 time, we will certainly know as much about each file-scope tagged
4408 type as we are ever going to know, so at that point in time, we
4409 can safely generate correct Dwarf descriptions for these file-
a94dbf2c 4410 scope tagged types. */
340ccaab 4411
d0f062fb 4412 if (!COMPLETE_TYPE_P (type)
ff1ff056 4413 && (TYPE_CONTEXT (type) == NULL
6ff7fb95
JM
4414 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
4415 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
ff1ff056 4416 && !finalizing)
75c613db 4417 {
f19f17e0
JM
4418 /* We don't need to do this for function-local types. */
4419 if (! decl_function_context (TYPE_STUB_DECL (type)))
a30d4514 4420 add_incomplete_type (type);
75c613db
JM
4421 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4422 }
340ccaab
TW
4423
4424 /* Prevent infinite recursion in cases where the type of some
4425 member of this type is expressed in terms of this type itself. */
4426
4427 TREE_ASM_WRITTEN (type) = 1;
4428
4429 /* Output a DIE to represent the tagged type itself. */
4430
4431 switch (TREE_CODE (type))
4432 {
4433 case ENUMERAL_TYPE:
4434 output_die (output_enumeration_type_die, type);
4435 return; /* a special case -- nothing left to do so just return */
4436
4437 case RECORD_TYPE:
4438 output_die (output_structure_type_die, type);
4439 break;
4440
4441 case UNION_TYPE:
c1b98a95 4442 case QUAL_UNION_TYPE:
340ccaab
TW
4443 output_die (output_union_type_die, type);
4444 break;
d4d4c5a8
RS
4445
4446 default:
4447 abort (); /* Should never happen. */
340ccaab
TW
4448 }
4449
4450 /* If this is not an incomplete type, output descriptions of
4451 each of its members.
4452
4453 Note that as we output the DIEs necessary to represent the
4454 members of this record or union type, we will also be trying
4455 to output DIEs to represent the *types* of those members.
4456 However the `output_type' function (above) will specifically
4457 avoid generating type DIEs for member types *within* the list
4458 of member DIEs for this (containing) type execpt for those
4459 types (of members) which are explicitly marked as also being
4460 members of this (containing) type themselves. The g++ front-
4461 end can force any given type to be treated as a member of some
4462 other (containing) type by setting the TYPE_CONTEXT of the
4463 given (member) type to point to the TREE node representing the
4464 appropriate (containing) type.
4465 */
4466
d0f062fb 4467 if (COMPLETE_TYPE_P (type))
340ccaab 4468 {
f37230f0
JM
4469 /* First output info about the base classes. */
4470 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4471 {
4472 register tree bases = TYPE_BINFO_BASETYPES (type);
4473 register int n_bases = TREE_VEC_LENGTH (bases);
4474 register int i;
4475
4476 for (i = 0; i < n_bases; i++)
75c613db
JM
4477 {
4478 tree binfo = TREE_VEC_ELT (bases, i);
4479 output_type (BINFO_TYPE (binfo), containing_scope);
4480 output_die (output_inheritance_die, binfo);
4481 }
f37230f0
JM
4482 }
4483
a94dbf2c
JM
4484 ++in_class;
4485
9a631e8e
RS
4486 {
4487 register tree normal_member;
340ccaab 4488
f37230f0 4489 /* Now output info about the data members and type members. */
340ccaab 4490
9a631e8e
RS
4491 for (normal_member = TYPE_FIELDS (type);
4492 normal_member;
4493 normal_member = TREE_CHAIN (normal_member))
4494 output_decl (normal_member, type);
4495 }
340ccaab 4496
9a631e8e 4497 {
85f8926e 4498 register tree func_member;
9a631e8e
RS
4499
4500 /* Now output info about the function members (if any). */
4501
85f8926e
JM
4502 for (func_member = TYPE_METHODS (type);
4503 func_member;
4504 func_member = TREE_CHAIN (func_member))
4505 output_decl (func_member, type);
9a631e8e 4506 }
340ccaab 4507
a94dbf2c
JM
4508 --in_class;
4509
c1b98a95
RK
4510 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4511 scopes (at least in C++) so we must now output any nested
4512 pending types which are local just to this type. */
c7d6dca2
RS
4513
4514 output_pending_types_for_scope (type);
4515
340ccaab
TW
4516 end_sibling_chain (); /* Terminate member chain. */
4517 }
4518
4519 break;
4520
4521 case VOID_TYPE:
4522 case INTEGER_TYPE:
4523 case REAL_TYPE:
4524 case COMPLEX_TYPE:
4525 case BOOLEAN_TYPE:
4526 case CHAR_TYPE:
4527 break; /* No DIEs needed for fundamental types. */
4528
4529 case LANG_TYPE: /* No Dwarf representation currently defined. */
4530 break;
4531
4532 default:
4533 abort ();
4534 }
4535
4536 TREE_ASM_WRITTEN (type) = 1;
4537}
d4d4c5a8
RS
4538
4539static void
4540output_tagged_type_instantiation (type)
4541 register tree type;
4542{
4543 if (type == 0 || type == error_mark_node)
4544 return;
4545
4546 /* We are going to output a DIE to represent the unqualified version of
38e01259 4547 this type (i.e. without any const or volatile qualifiers) so make
d4d4c5a8
RS
4548 sure that we have the main variant (i.e. the unqualified version) of
4549 this type now. */
4550
3a88cbd1
JL
4551 if (type != type_main_variant (type))
4552 abort ();
d4d4c5a8 4553
3a88cbd1
JL
4554 if (!TREE_ASM_WRITTEN (type))
4555 abort ();
d4d4c5a8
RS
4556
4557 switch (TREE_CODE (type))
4558 {
4559 case ERROR_MARK:
4560 break;
4561
4562 case ENUMERAL_TYPE:
4563 output_die (output_inlined_enumeration_type_die, type);
4564 break;
4565
4566 case RECORD_TYPE:
4567 output_die (output_inlined_structure_type_die, type);
4568 break;
4569
4570 case UNION_TYPE:
c1b98a95 4571 case QUAL_UNION_TYPE:
d4d4c5a8
RS
4572 output_die (output_inlined_union_type_die, type);
4573 break;
4574
4575 default:
4576 abort (); /* Should never happen. */
4577 }
4578}
340ccaab
TW
4579\f
4580/* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4581 the things which are local to the given block. */
4582
4583static void
85f8926e 4584output_block (stmt, depth)
340ccaab 4585 register tree stmt;
85f8926e 4586 int depth;
340ccaab 4587{
ece0ca60
RS
4588 register int must_output_die = 0;
4589 register tree origin;
4590 register enum tree_code origin_code;
340ccaab
TW
4591
4592 /* Ignore blocks never really used to make RTL. */
4593
bad8ed14
JM
4594 if (! stmt || ! TREE_USED (stmt)
4595 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
340ccaab
TW
4596 return;
4597
ece0ca60
RS
4598 /* Determine the "ultimate origin" of this block. This block may be an
4599 inlined instance of an inlined instance of inline function, so we
4600 have to trace all of the way back through the origin chain to find
4601 out what sort of node actually served as the original seed for the
4602 creation of the current block. */
340ccaab 4603
ece0ca60
RS
4604 origin = block_ultimate_origin (stmt);
4605 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4606
4607 /* Determine if we need to output any Dwarf DIEs at all to represent this
4608 block. */
340ccaab 4609
ece0ca60
RS
4610 if (origin_code == FUNCTION_DECL)
4611 /* The outer scopes for inlinings *must* always be represented. We
4612 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4613 must_output_die = 1;
4614 else
4615 {
4616 /* In the case where the current block represents an inlining of the
4617 "body block" of an inline function, we must *NOT* output any DIE
4618 for this block because we have already output a DIE to represent
4619 the whole inlined function scope and the "body block" of any
4620 function doesn't really represent a different scope according to
4621 ANSI C rules. So we check here to make sure that this block does
4622 not represent a "body block inlining" before trying to set the
4623 `must_output_die' flag. */
4624
85f8926e 4625 if (! is_body_block (origin ? origin : stmt))
ece0ca60
RS
4626 {
4627 /* Determine if this block directly contains any "significant"
4628 local declarations which we will need to output DIEs for. */
4629
4630 if (debug_info_level > DINFO_LEVEL_TERSE)
4631 /* We are not in terse mode so *any* local declaration counts
4632 as being a "significant" one. */
4633 must_output_die = (BLOCK_VARS (stmt) != NULL);
4634 else
340ccaab 4635 {
ece0ca60
RS
4636 register tree decl;
4637
4638 /* We are in terse mode, so only local (nested) function
4639 definitions count as "significant" local declarations. */
4640
4641 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4642 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4643 {
4644 must_output_die = 1;
4645 break;
4646 }
340ccaab 4647 }
ece0ca60
RS
4648 }
4649 }
340ccaab
TW
4650
4651 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4652 DIE for any block which contains no significant local declarations
4653 at all. Rather, in such cases we just call `output_decls_for_scope'
4654 so that any needed Dwarf info for any sub-blocks will get properly
4655 generated. Note that in terse mode, our definition of what constitutes
4656 a "significant" local declaration gets restricted to include only
4657 inlined function instances and local (nested) function definitions. */
4658
85f8926e
JM
4659 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4660 /* We don't care about an abstract inlined subroutine. */;
4661 else if (must_output_die)
340ccaab 4662 {
ece0ca60
RS
4663 output_die ((origin_code == FUNCTION_DECL)
4664 ? output_inlined_subroutine_die
4665 : output_lexical_block_die,
340ccaab 4666 stmt);
85f8926e 4667 output_decls_for_scope (stmt, depth);
340ccaab
TW
4668 end_sibling_chain ();
4669 }
4670 else
85f8926e 4671 output_decls_for_scope (stmt, depth);
340ccaab
TW
4672}
4673
4674/* Output all of the decls declared within a given scope (also called
4675 a `binding contour') and (recursively) all of it's sub-blocks. */
4676
4677static void
85f8926e 4678output_decls_for_scope (stmt, depth)
340ccaab 4679 register tree stmt;
85f8926e 4680 int depth;
340ccaab
TW
4681{
4682 /* Ignore blocks never really used to make RTL. */
4683
4684 if (! stmt || ! TREE_USED (stmt))
4685 return;
4686
340ccaab
TW
4687 /* Output the DIEs to represent all of the data objects, functions,
4688 typedefs, and tagged types declared directly within this block
4689 but not within any nested sub-blocks. */
4690
4691 {
4692 register tree decl;
4693
4694 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4695 output_decl (decl, stmt);
4696 }
4697
4698 output_pending_types_for_scope (stmt);
4699
4700 /* Output the DIEs to represent all sub-blocks (and the items declared
4701 therein) of this block. */
4702
4703 {
4704 register tree subblocks;
4705
4706 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4707 subblocks;
4708 subblocks = BLOCK_CHAIN (subblocks))
85f8926e 4709 output_block (subblocks, depth + 1);
340ccaab
TW
4710 }
4711}
4712
a94dbf2c
JM
4713/* Is this a typedef we can avoid emitting? */
4714
24e75411 4715inline static int
a94dbf2c
JM
4716is_redundant_typedef (decl)
4717 register tree decl;
4718{
4719 if (TYPE_DECL_IS_STUB (decl))
4720 return 1;
4721 if (DECL_ARTIFICIAL (decl)
4722 && DECL_CONTEXT (decl)
4723 && is_tagged_type (DECL_CONTEXT (decl))
4724 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4725 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4726 /* Also ignore the artificial member typedef for the class name. */
4727 return 1;
4728 return 0;
4729}
4730
340ccaab
TW
4731/* Output Dwarf .debug information for a decl described by DECL. */
4732
4733static void
4734output_decl (decl, containing_scope)
4735 register tree decl;
4736 register tree containing_scope;
4737{
7f7429ca
RS
4738 /* Make a note of the decl node we are going to be working on. We may
4739 need to give the user the source coordinates of where it appeared in
4740 case we notice (later on) that something about it looks screwy. */
4741
4742 dwarf_last_decl = decl;
4743
8ac9cb56
RS
4744 if (TREE_CODE (decl) == ERROR_MARK)
4745 return;
4746
58add97a
JW
4747 /* If a structure is declared within an initialization, e.g. as the
4748 operand of a sizeof, then it will not have a name. We don't want
4749 to output a DIE for it, as the tree nodes are in the temporary obstack */
4750
4751 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4752 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4753 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4754 || (TYPE_FIELDS (TREE_TYPE (decl))
4755 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4756 return;
4757
fcd7f76b 4758 /* If this ..._DECL node is marked to be ignored, then ignore it. */
8ac9cb56 4759
fcd7f76b 4760 if (DECL_IGNORED_P (decl))
8ac9cb56
RS
4761 return;
4762
340ccaab
TW
4763 switch (TREE_CODE (decl))
4764 {
340ccaab
TW
4765 case CONST_DECL:
4766 /* The individual enumerators of an enum type get output when we
4767 output the Dwarf representation of the relevant enum type itself. */
4768 break;
4769
4770 case FUNCTION_DECL:
4771 /* If we are in terse mode, don't output any DIEs to represent
0020519f 4772 mere function declarations. Also, if we are conforming
648ebe7b 4773 to the DWARF version 1 specification, don't output DIEs for
0020519f 4774 mere function declarations. */
340ccaab 4775
0020519f 4776 if (DECL_INITIAL (decl) == NULL_TREE)
648ebe7b
RS
4777#if (DWARF_VERSION > 1)
4778 if (debug_info_level <= DINFO_LEVEL_TERSE)
4779#endif
4780 break;
340ccaab
TW
4781
4782 /* Before we describe the FUNCTION_DECL itself, make sure that we
4783 have described its return type. */
4784
4785 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4786
a94dbf2c
JM
4787 {
4788 /* And its containing type. */
4789 register tree origin = decl_class_context (decl);
4790 if (origin)
4791 output_type (origin, containing_scope);
4792 }
4793
1cfdcc15
JM
4794 /* If we're emitting an out-of-line copy of an inline function,
4795 set up to refer to the abstract instance emitted from
4796 note_deferral_of_defined_inline_function. */
4797 if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
4798 && ! (containing_scope && TYPE_P (containing_scope)))
4799 set_decl_origin_self (decl);
4800
340ccaab
TW
4801 /* If the following DIE will represent a function definition for a
4802 function with "extern" linkage, output a special "pubnames" DIE
4803 label just ahead of the actual DIE. A reference to this label
4804 was already generated in the .debug_pubnames section sub-entry
4805 for this function definition. */
4806
4807 if (TREE_PUBLIC (decl))
4808 {
4809 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4810
4811 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4812 ASM_OUTPUT_LABEL (asm_out_file, label);
4813 }
4814
4815 /* Now output a DIE to represent the function itself. */
4816
0924ddef 4817 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
340ccaab
TW
4818 ? output_global_subroutine_die
4819 : output_local_subroutine_die,
4820 decl);
4821
4822 /* Now output descriptions of the arguments for this function.
4823 This gets (unnecessarily?) complex because of the fact that
4824 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4825 cases where there was a trailing `...' at the end of the formal
4826 parameter list. In order to find out if there was a trailing
4827 ellipsis or not, we must instead look at the type associated
4828 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4829 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4830 ends with a void_type_node then there should *not* be an ellipsis
4831 at the end. */
4832
0020519f 4833 /* In the case where we are describing a mere function declaration, all
340ccaab
TW
4834 we need to do here (and all we *can* do here) is to describe
4835 the *types* of its formal parameters. */
4836
a94dbf2c 4837 if (decl != current_function_decl || in_class)
340ccaab
TW
4838 output_formal_types (TREE_TYPE (decl));
4839 else
4840 {
2c1c10ec
RK
4841 /* Generate DIEs to represent all known formal parameters */
4842
340ccaab 4843 register tree arg_decls = DECL_ARGUMENTS (decl);
2c1c10ec
RK
4844 register tree parm;
4845
4846 /* WARNING! Kludge zone ahead! Here we have a special
4847 hack for svr4 SDB compatibility. Instead of passing the
4848 current FUNCTION_DECL node as the second parameter (i.e.
4849 the `containing_scope' parameter) to `output_decl' (as
4850 we ought to) we instead pass a pointer to our own private
4851 fake_containing_scope node. That node is a RECORD_TYPE
4852 node which NO OTHER TYPE may ever actually be a member of.
4853
4854 This pointer will ultimately get passed into `output_type'
4855 as its `containing_scope' parameter. `Output_type' will
4856 then perform its part in the hack... i.e. it will pend
4857 the type of the formal parameter onto the pending_types
4858 list. Later on, when we are done generating the whole
4859 sequence of formal parameter DIEs for this function
4860 definition, we will un-pend all previously pended types
4861 of formal parameters for this function definition.
4862
4863 This whole kludge prevents any type DIEs from being
4864 mixed in with the formal parameter DIEs. That's good
4865 because svr4 SDB believes that the list of formal
4866 parameter DIEs for a function ends wherever the first
4867 non-formal-parameter DIE appears. Thus, we have to
4868 keep the formal parameter DIEs segregated. They must
4869 all appear (consecutively) at the start of the list of
4870 children for the DIE representing the function definition.
4871 Then (and only then) may we output any additional DIEs
4872 needed to represent the types of these formal parameters.
4873 */
340ccaab 4874
2c1c10ec
RK
4875 /*
4876 When generating DIEs, generate the unspecified_parameters
4877 DIE instead if we come across the arg "__builtin_va_alist"
4878 */
340ccaab 4879
2c1c10ec
RK
4880 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4881 if (TREE_CODE (parm) == PARM_DECL)
4882 {
4883 if (DECL_NAME(parm) &&
4884 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4885 "__builtin_va_alist") )
4886 output_die (output_unspecified_parameters_die, decl);
4887 else
4888 output_decl (parm, fake_containing_scope);
4889 }
340ccaab 4890
2c1c10ec
RK
4891 /*
4892 Now that we have finished generating all of the DIEs to
4893 represent the formal parameters themselves, force out
4894 any DIEs needed to represent their types. We do this
4895 simply by un-pending all previously pended types which
4896 can legitimately go into the chain of children DIEs for
4897 the current FUNCTION_DECL.
4898 */
340ccaab 4899
2c1c10ec 4900 output_pending_types_for_scope (decl);
340ccaab 4901
2c1c10ec
RK
4902 /*
4903 Decide whether we need a unspecified_parameters DIE at the end.
4904 There are 2 more cases to do this for:
4905 1) the ansi ... declaration - this is detectable when the end
4906 of the arg list is not a void_type_node
4907 2) an unprototyped function declaration (not a definition). This
4908 just means that we have no info about the parameters at all.
4909 */
340ccaab
TW
4910
4911 {
340ccaab
TW
4912 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4913
4914 if (fn_arg_types)
4915 {
0f41302f 4916 /* this is the prototyped case, check for ... */
2c1c10ec
RK
4917 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4918 output_die (output_unspecified_parameters_die, decl);
4919 }
4920 else
4921 {
9faa82d8 4922 /* this is unprototyped, check for undefined (just declaration) */
2c1c10ec
RK
4923 if (!DECL_INITIAL (decl))
4924 output_die (output_unspecified_parameters_die, decl);
4925 }
340ccaab 4926 }
340ccaab 4927
a94dbf2c
JM
4928 /* Output Dwarf info for all of the stuff within the body of the
4929 function (if it has one - it may be just a declaration). */
340ccaab 4930
340ccaab 4931 {
a94dbf2c
JM
4932 register tree outer_scope = DECL_INITIAL (decl);
4933
4934 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4935 {
4936 /* Note that here, `outer_scope' is a pointer to the outermost
4937 BLOCK node created to represent a function.
4938 This outermost BLOCK actually represents the outermost
4939 binding contour for the function, i.e. the contour in which
4940 the function's formal parameters and labels get declared.
4941
4942 Curiously, it appears that the front end doesn't actually
4943 put the PARM_DECL nodes for the current function onto the
4944 BLOCK_VARS list for this outer scope. (They are strung
4945 off of the DECL_ARGUMENTS list for the function instead.)
4946 The BLOCK_VARS list for the `outer_scope' does provide us
4947 with a list of the LABEL_DECL nodes for the function however,
4948 and we output DWARF info for those here.
4949
4950 Just within the `outer_scope' there will be a BLOCK node
4951 representing the function's outermost pair of curly braces,
4952 and any blocks used for the base and member initializers of
4953 a C++ constructor function. */
4954
4955 output_decls_for_scope (outer_scope, 0);
4956
4957 /* Finally, force out any pending types which are local to the
4958 outermost block of this function definition. These will
4959 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4960 node itself. */
4961
4962 output_pending_types_for_scope (decl);
4963 }
340ccaab 4964 }
a94dbf2c 4965 }
340ccaab
TW
4966
4967 /* Generate a terminator for the list of stuff `owned' by this
4968 function. */
4969
4970 end_sibling_chain ();
4971
4972 break;
4973
4974 case TYPE_DECL:
4975 /* If we are in terse mode, don't generate any DIEs to represent
4976 any actual typedefs. Note that even when we are in terse mode,
4977 we must still output DIEs to represent those tagged types which
4978 are used (directly or indirectly) in the specification of either
4979 a return type or a formal parameter type of some function. */
4980
4981 if (debug_info_level <= DINFO_LEVEL_TERSE)
a94dbf2c
JM
4982 if (! TYPE_DECL_IS_STUB (decl)
4983 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
340ccaab
TW
4984 return;
4985
a94dbf2c
JM
4986 /* In the special case of a TYPE_DECL node representing
4987 the declaration of some type tag, if the given TYPE_DECL is
d4d4c5a8
RS
4988 marked as having been instantiated from some other (original)
4989 TYPE_DECL node (e.g. one which was generated within the original
4990 definition of an inline function) we have to generate a special
4991 (abbreviated) TAG_structure_type, TAG_union_type, or
4992 TAG_enumeration-type DIE here. */
4993
a94dbf2c 4994 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
d4d4c5a8
RS
4995 {
4996 output_tagged_type_instantiation (TREE_TYPE (decl));
4997 return;
4998 }
4999
340ccaab
TW
5000 output_type (TREE_TYPE (decl), containing_scope);
5001
a94dbf2c 5002 if (! is_redundant_typedef (decl))
340ccaab
TW
5003 /* Output a DIE to represent the typedef itself. */
5004 output_die (output_typedef_die, decl);
5005 break;
5006
5007 case LABEL_DECL:
5008 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5009 output_die (output_label_die, decl);
5010 break;
5011
5012 case VAR_DECL:
648ebe7b
RS
5013 /* If we are conforming to the DWARF version 1 specification, don't
5014 generated any DIEs to represent mere external object declarations. */
5015
5016#if (DWARF_VERSION <= 1)
0924ddef 5017 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
648ebe7b
RS
5018 break;
5019#endif
5020
340ccaab
TW
5021 /* If we are in terse mode, don't generate any DIEs to represent
5022 any variable declarations or definitions. */
5023
5024 if (debug_info_level <= DINFO_LEVEL_TERSE)
5025 break;
5026
5027 /* Output any DIEs that are needed to specify the type of this data
5028 object. */
5029
5030 output_type (TREE_TYPE (decl), containing_scope);
5031
a94dbf2c
JM
5032 {
5033 /* And its containing type. */
5034 register tree origin = decl_class_context (decl);
5035 if (origin)
5036 output_type (origin, containing_scope);
5037 }
5038
340ccaab
TW
5039 /* If the following DIE will represent a data object definition for a
5040 data object with "extern" linkage, output a special "pubnames" DIE
5041 label just ahead of the actual DIE. A reference to this label
5042 was already generated in the .debug_pubnames section sub-entry
5043 for this data object definition. */
5044
d4d4c5a8 5045 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
340ccaab
TW
5046 {
5047 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5048
5049 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5050 ASM_OUTPUT_LABEL (asm_out_file, label);
5051 }
5052
d4d4c5a8
RS
5053 /* Now output the DIE to represent the data object itself. This gets
5054 complicated because of the possibility that the VAR_DECL really
5055 represents an inlined instance of a formal parameter for an inline
5056 function. */
5057
5058 {
83d2b3b9 5059 register void (*func) PARAMS ((void *));
d4d4c5a8 5060 register tree origin = decl_ultimate_origin (decl);
340ccaab 5061
d4d4c5a8
RS
5062 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5063 func = output_formal_parameter_die;
5064 else
5065 {
0924ddef 5066 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
d4d4c5a8
RS
5067 func = output_global_variable_die;
5068 else
5069 func = output_local_variable_die;
5070 }
5071 output_die (func, decl);
5072 }
340ccaab
TW
5073 break;
5074
5075 case FIELD_DECL:
5076 /* Ignore the nameless fields that are used to skip bits. */
5077 if (DECL_NAME (decl) != 0)
5078 {
5079 output_type (member_declared_type (decl), containing_scope);
5080 output_die (output_member_die, decl);
5081 }
5082 break;
5083
5084 case PARM_DECL:
5085 /* Force out the type of this formal, if it was not forced out yet.
5086 Note that here we can run afowl of a bug in "classic" svr4 SDB.
5087 It should be able to grok the presence of type DIEs within a list
5088 of TAG_formal_parameter DIEs, but it doesn't. */
5089
5090 output_type (TREE_TYPE (decl), containing_scope);
5091 output_die (output_formal_parameter_die, decl);
5092 break;
5093
1cfdcc15
JM
5094 case NAMESPACE_DECL:
5095 /* Ignore for now. */
5096 break;
5097
340ccaab
TW
5098 default:
5099 abort ();
5100 }
5101}
5102\f
5103void
5104dwarfout_file_scope_decl (decl, set_finalizing)
5105 register tree decl;
5106 register int set_finalizing;
5107{
8ac9cb56
RS
5108 if (TREE_CODE (decl) == ERROR_MARK)
5109 return;
5110
fcd7f76b 5111 /* If this ..._DECL node is marked to be ignored, then ignore it. */
8ac9cb56
RS
5112
5113 if (DECL_IGNORED_P (decl))
fcd7f76b 5114 return;
8ac9cb56 5115
340ccaab
TW
5116 switch (TREE_CODE (decl))
5117 {
5118 case FUNCTION_DECL:
5119
8ac9cb56
RS
5120 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5121 a builtin function. Explicit programmer-supplied declarations of
5122 these same functions should NOT be ignored however. */
340ccaab 5123
0924ddef 5124 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
340ccaab
TW
5125 return;
5126
0020519f
RK
5127 /* What we would really like to do here is to filter out all mere
5128 file-scope declarations of file-scope functions which are never
5129 referenced later within this translation unit (and keep all of
9faa82d8 5130 ones that *are* referenced later on) but we aren't clairvoyant,
0020519f
RK
5131 so we have no idea which functions will be referenced in the
5132 future (i.e. later on within the current translation unit).
5133 So here we just ignore all file-scope function declarations
5134 which are not also definitions. If and when the debugger needs
9faa82d8 5135 to know something about these functions, it wil have to hunt
0020519f
RK
5136 around and find the DWARF information associated with the
5137 *definition* of the function.
5138
5139 Note that we can't just check `DECL_EXTERNAL' to find out which
5140 FUNCTION_DECL nodes represent definitions and which ones represent
5141 mere declarations. We have to check `DECL_INITIAL' instead. That's
5142 because the C front-end supports some weird semantics for "extern
5143 inline" function definitions. These can get inlined within the
5144 current translation unit (an thus, we need to generate DWARF info
5145 for their abstract instances so that the DWARF info for the
5146 concrete inlined instances can have something to refer to) but
5147 the compiler never generates any out-of-lines instances of such
5148 things (despite the fact that they *are* definitions). The
5149 important point is that the C front-end marks these "extern inline"
85f8926e 5150 functions as DECL_EXTERNAL, but we need to generate DWARF for them
0020519f
RK
5151 anyway.
5152
5153 Note that the C++ front-end also plays some similar games for inline
5154 function definitions appearing within include files which also
5155 contain `#pragma interface' pragmas. */
5156
5157 if (DECL_INITIAL (decl) == NULL_TREE)
340ccaab
TW
5158 return;
5159
d4d4c5a8 5160 if (TREE_PUBLIC (decl)
0924ddef 5161 && ! DECL_EXTERNAL (decl)
d4d4c5a8 5162 && ! DECL_ABSTRACT (decl))
340ccaab
TW
5163 {
5164 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5165
5166 /* Output a .debug_pubnames entry for a public function
5167 defined in this compilation unit. */
5168
5169 fputc ('\n', asm_out_file);
85595d1a 5170 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab
TW
5171 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5172 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
74153f8e 5173 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab 5174 IDENTIFIER_POINTER (DECL_NAME (decl)));
85595d1a 5175 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5176 }
5177
5178 break;
5179
5180 case VAR_DECL:
5181
5182 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5183 object declaration and if the declaration was never even
5184 referenced from within this entire compilation unit. We
5185 suppress these DIEs in order to save space in the .debug section
5186 (by eliminating entries which are probably useless). Note that
5187 we must not suppress block-local extern declarations (whether
5188 used or not) because that would screw-up the debugger's name
5189 lookup mechanism and cause it to miss things which really ought
5190 to be in scope at a given point. */
5191
0924ddef 5192 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
340ccaab
TW
5193 return;
5194
6dc42e49 5195 if (TREE_PUBLIC (decl)
0924ddef 5196 && ! DECL_EXTERNAL (decl)
d4d4c5a8
RS
5197 && GET_CODE (DECL_RTL (decl)) == MEM
5198 && ! DECL_ABSTRACT (decl))
340ccaab
TW
5199 {
5200 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5201
5202 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5203 {
5204 /* Output a .debug_pubnames entry for a public variable
5205 defined in this compilation unit. */
5206
5207 fputc ('\n', asm_out_file);
85595d1a 5208 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab
TW
5209 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5210 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
74153f8e 5211 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab 5212 IDENTIFIER_POINTER (DECL_NAME (decl)));
85595d1a 5213 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5214 }
5215
5216 if (DECL_INITIAL (decl) == NULL)
5217 {
5218 /* Output a .debug_aranges entry for a public variable
6dc42e49 5219 which is tentatively defined in this compilation unit. */
340ccaab
TW
5220
5221 fputc ('\n', asm_out_file);
85595d1a 5222 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
340ccaab 5223 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
9a631e8e 5224 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
340ccaab
TW
5225 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5226 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
85595d1a 5227 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5228 }
5229 }
5230
5231 /* If we are in terse mode, don't generate any DIEs to represent
5232 any variable declarations or definitions. */
5233
5234 if (debug_info_level <= DINFO_LEVEL_TERSE)
5235 return;
5236
5237 break;
5238
5239 case TYPE_DECL:
e6d9804c
TW
5240 /* Don't bother trying to generate any DIEs to represent any of the
5241 normal built-in types for the language we are compiling, except
5242 in cases where the types in question are *not* DWARF fundamental
5243 types. We make an exception in the case of non-fundamental types
5244 for the sake of objective C (and perhaps C++) because the GNU
5245 front-ends for these languages may in fact create certain "built-in"
5246 types which are (for example) RECORD_TYPEs. In such cases, we
5247 really need to output these (non-fundamental) types because other
5248 DIEs may contain references to them. */
5249
af02da67
JW
5250 /* Also ignore language dependent types here, because they are probably
5251 also built-in types. If we didn't ignore them, then we would get
5252 references to undefined labels because output_type doesn't support
5253 them. So, for now, we need to ignore them to avoid assembler
5254 errors. */
5255
5256 /* ??? This code is different than the equivalent code in dwarf2out.c.
5257 The dwarf2out.c code is probably more correct. */
5258
e6d9804c 5259 if (DECL_SOURCE_LINE (decl) == 0
af02da67
JW
5260 && (type_is_fundamental (TREE_TYPE (decl))
5261 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
340ccaab
TW
5262 return;
5263
5264 /* If we are in terse mode, don't generate any DIEs to represent
5265 any actual typedefs. Note that even when we are in terse mode,
5266 we must still output DIEs to represent those tagged types which
5267 are used (directly or indirectly) in the specification of either
5268 a return type or a formal parameter type of some function. */
5269
5270 if (debug_info_level <= DINFO_LEVEL_TERSE)
d4ef15f2 5271 if (! TYPE_DECL_IS_STUB (decl)
340ccaab
TW
5272 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5273 return;
5274
5275 break;
5276
5277 default:
5278 return;
5279 }
5280
5281 fputc ('\n', asm_out_file);
85595d1a 5282 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
340ccaab 5283 finalizing = set_finalizing;
906c4e36 5284 output_decl (decl, NULL_TREE);
340ccaab
TW
5285
5286 /* NOTE: The call above to `output_decl' may have caused one or more
5287 file-scope named types (i.e. tagged types) to be placed onto the
5288 pending_types_list. We have to get those types off of that list
5289 at some point, and this is the perfect time to do it. If we didn't
5290 take them off now, they might still be on the list when cc1 finally
5291 exits. That might be OK if it weren't for the fact that when we put
5292 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5293 for these types, and that causes them never to be output unless
5294 `output_pending_types_for_scope' takes them off of the list and un-sets
5295 their TREE_ASM_WRITTEN flags. */
5296
906c4e36 5297 output_pending_types_for_scope (NULL_TREE);
340ccaab 5298
0a4be913
JW
5299 /* The above call should have totally emptied the pending_types_list
5300 if this is not a nested function or class. If this is a nested type,
5301 then the remaining pending_types will be emitted when the containing type
5302 is handled. */
5303
5304 if (! DECL_CONTEXT (decl))
5305 {
5306 if (pending_types != 0)
5307 abort ();
5308 }
340ccaab 5309
85595d1a 5310 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5311
5312 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5313 current_funcdef_number++;
5314}
5315\f
5316/* Output a marker (i.e. a label) for the beginning of the generated code
5317 for a lexical block. */
5318
5319void
5320dwarfout_begin_block (blocknum)
5321 register unsigned blocknum;
5322{
5323 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5324
4d1065ed 5325 function_section (current_function_decl);
340ccaab
TW
5326 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5327 ASM_OUTPUT_LABEL (asm_out_file, label);
5328}
5329
5330/* Output a marker (i.e. a label) for the end of the generated code
5331 for a lexical block. */
5332
5333void
5334dwarfout_end_block (blocknum)
5335 register unsigned blocknum;
5336{
5337 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5338
4d1065ed 5339 function_section (current_function_decl);
340ccaab
TW
5340 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5341 ASM_OUTPUT_LABEL (asm_out_file, label);
5342}
5343
5344/* Output a marker (i.e. a label) at a point in the assembly code which
5345 corresponds to a given source level label. */
5346
5347void
5348dwarfout_label (insn)
5349 register rtx insn;
5350{
5351 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5352 {
5353 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5354
4d1065ed 5355 function_section (current_function_decl);
340ccaab
TW
5356 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5357 (unsigned) INSN_UID (insn));
5358 ASM_OUTPUT_LABEL (asm_out_file, label);
5359 }
5360}
5361
2a819d04
TW
5362/* Output a marker (i.e. a label) for the point in the generated code where
5363 the real body of the function begins (after parameters have been moved
5364 to their home locations). */
5365
5366void
5367dwarfout_begin_function ()
5368{
5369 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5370
a94dbf2c
JM
5371 if (! use_gnu_debug_info_extensions)
5372 return;
4d1065ed 5373 function_section (current_function_decl);
2a819d04
TW
5374 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5375 ASM_OUTPUT_LABEL (asm_out_file, label);
5376}
5377
5378/* Output a marker (i.e. a label) for the point in the generated code where
5379 the real body of the function ends (just before the epilogue code). */
5380
5381void
5382dwarfout_end_function ()
5383{
5384 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5385
a94dbf2c
JM
5386 if (! use_gnu_debug_info_extensions)
5387 return;
4d1065ed 5388 function_section (current_function_decl);
2a819d04
TW
5389 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5390 ASM_OUTPUT_LABEL (asm_out_file, label);
5391}
5392
340ccaab
TW
5393/* Output a marker (i.e. a label) for the absolute end of the generated code
5394 for a function definition. This gets called *after* the epilogue code
5395 has been generated. */
5396
5397void
5398dwarfout_end_epilogue ()
5399{
5400 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5401
5402 /* Output a label to mark the endpoint of the code generated for this
5403 function. */
5404
5405 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5406 ASM_OUTPUT_LABEL (asm_out_file, label);
5407}
5408
5409static void
5410shuffle_filename_entry (new_zeroth)
5411 register filename_entry *new_zeroth;
5412{
5413 filename_entry temp_entry;
5414 register filename_entry *limit_p;
5415 register filename_entry *move_p;
5416
5417 if (new_zeroth == &filename_table[0])
5418 return;
5419
5420 temp_entry = *new_zeroth;
5421
5422 /* Shift entries up in the table to make room at [0]. */
5423
5424 limit_p = &filename_table[0];
5425 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5426 *move_p = *(move_p-1);
5427
5428 /* Install the found entry at [0]. */
5429
5430 filename_table[0] = temp_entry;
5431}
5432
5433/* Create a new (string) entry for the .debug_sfnames section. */
5434
5435static void
5436generate_new_sfname_entry ()
5437{
5438 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5439
5440 fputc ('\n', asm_out_file);
85595d1a 5441 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
340ccaab
TW
5442 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5443 ASM_OUTPUT_LABEL (asm_out_file, label);
74153f8e 5444 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab
TW
5445 filename_table[0].name
5446 ? filename_table[0].name
5447 : "");
85595d1a 5448 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5449}
5450
5451/* Lookup a filename (in the list of filenames that we know about here in
5452 dwarfout.c) and return its "index". The index of each (known) filename
5453 is just a unique number which is associated with only that one filename.
5454 We need such numbers for the sake of generating labels (in the
5455 .debug_sfnames section) and references to those unique labels (in the
5456 .debug_srcinfo and .debug_macinfo sections).
5457
5458 If the filename given as an argument is not found in our current list,
5459 add it to the list and assign it the next available unique index number.
5460
5461 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5462 one), we shuffle the filename found (or added) up to the zeroth entry of
5463 our list of filenames (which is always searched linearly). We do this so
5464 as to optimize the most common case for these filename lookups within
5465 dwarfout.c. The most common case by far is the case where we call
5466 lookup_filename to lookup the very same filename that we did a lookup
5467 on the last time we called lookup_filename. We make sure that this
5468 common case is fast because such cases will constitute 99.9% of the
5469 lookups we ever do (in practice).
5470
5471 If we add a new filename entry to our table, we go ahead and generate
5472 the corresponding entry in the .debug_sfnames section right away.
5473 Doing so allows us to avoid tickling an assembler bug (present in some
5474 m68k assemblers) which yields assembly-time errors in cases where the
5475 difference of two label addresses is taken and where the two labels
5476 are in a section *other* than the one where the difference is being
5477 calculated, and where at least one of the two symbol references is a
5478 forward reference. (This bug could be tickled by our .debug_srcinfo
5479 entries if we don't output their corresponding .debug_sfnames entries
461b77c8 5480 before them.) */
340ccaab
TW
5481
5482static unsigned
5483lookup_filename (file_name)
a996cbd4 5484 const char *file_name;
340ccaab
TW
5485{
5486 register filename_entry *search_p;
5487 register filename_entry *limit_p = &filename_table[ft_entries];
5488
5489 for (search_p = filename_table; search_p < limit_p; search_p++)
5490 if (!strcmp (file_name, search_p->name))
5491 {
5492 /* When we get here, we have found the filename that we were
5493 looking for in the filename_table. Now we want to make sure
5494 that it gets moved to the zero'th entry in the table (if it
5495 is not already there) so that subsequent attempts to find the
5496 same filename will find it as quickly as possible. */
5497
5498 shuffle_filename_entry (search_p);
5499 return filename_table[0].number;
5500 }
5501
5502 /* We come here whenever we have a new filename which is not registered
5503 in the current table. Here we add it to the table. */
5504
5505 /* Prepare to add a new table entry by making sure there is enough space
5506 in the table to do so. If not, expand the current table. */
5507
5508 if (ft_entries == ft_entries_allocated)
5509 {
5510 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5511 filename_table
5512 = (filename_entry *)
5513 xrealloc (filename_table,
5514 ft_entries_allocated * sizeof (filename_entry));
5515 }
5516
5517 /* Initially, add the new entry at the end of the filename table. */
5518
5519 filename_table[ft_entries].number = ft_entries;
5520 filename_table[ft_entries].name = xstrdup (file_name);
5521
5522 /* Shuffle the new entry into filename_table[0]. */
5523
5524 shuffle_filename_entry (&filename_table[ft_entries]);
5525
5526 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5527 generate_new_sfname_entry ();
5528
5529 ft_entries++;
5530 return filename_table[0].number;
5531}
5532
5533static void
5534generate_srcinfo_entry (line_entry_num, files_entry_num)
5535 unsigned line_entry_num;
5536 unsigned files_entry_num;
5537{
5538 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5539
5540 fputc ('\n', asm_out_file);
85595d1a 5541 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
340ccaab
TW
5542 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5543 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5544 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5545 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
85595d1a 5546 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5547}
5548
5549void
5550dwarfout_line (filename, line)
a996cbd4 5551 register const char *filename;
340ccaab
TW
5552 register unsigned line;
5553{
6619df07
JM
5554 if (debug_info_level >= DINFO_LEVEL_NORMAL
5555 /* We can't emit line number info for functions in separate sections,
5556 because the assembler can't subtract labels in different sections. */
5557 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
340ccaab
TW
5558 {
5559 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5560 static unsigned last_line_entry_num = 0;
5561 static unsigned prev_file_entry_num = (unsigned) -1;
a94dbf2c 5562 register unsigned this_file_entry_num;
340ccaab 5563
4d1065ed 5564 function_section (current_function_decl);
340ccaab
TW
5565 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5566 ASM_OUTPUT_LABEL (asm_out_file, label);
5567
5568 fputc ('\n', asm_out_file);
340ccaab 5569
a94dbf2c
JM
5570 if (use_gnu_debug_info_extensions)
5571 this_file_entry_num = lookup_filename (filename);
5572 else
5573 this_file_entry_num = (unsigned) -1;
5574
3800b162 5575 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
340ccaab
TW
5576 if (this_file_entry_num != prev_file_entry_num)
5577 {
5578 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5579
5580 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5581 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5582 }
5583
5584 {
a996cbd4 5585 register const char *tail = rindex (filename, '/');
340ccaab
TW
5586
5587 if (tail != NULL)
5588 filename = tail;
5589 }
5590
2e494f70 5591 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
340ccaab
TW
5592 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5593 filename, line);
5594 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5595 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
85595d1a 5596 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5597
5598 if (this_file_entry_num != prev_file_entry_num)
5599 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5600 prev_file_entry_num = this_file_entry_num;
5601 }
5602}
5603
5604/* Generate an entry in the .debug_macinfo section. */
5605
5606static void
5607generate_macinfo_entry (type_and_offset, string)
a996cbd4
KG
5608 register const char *type_and_offset;
5609 register const char *string;
340ccaab 5610{
a94dbf2c
JM
5611 if (! use_gnu_debug_info_extensions)
5612 return;
5613
340ccaab 5614 fputc ('\n', asm_out_file);
85595d1a 5615 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
2e494f70 5616 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
74153f8e 5617 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
85595d1a 5618 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5619}
5620
5621void
5622dwarfout_start_new_source_file (filename)
a996cbd4 5623 register const char *filename;
340ccaab
TW
5624{
5625 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5626 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5627
5628 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5629 sprintf (type_and_offset, "0x%08x+%s-%s",
e9a25f70
JL
5630 ((unsigned) MACINFO_start << 24),
5631 /* Hack: skip leading '*' . */
5632 (*label == '*') + label,
5633 (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
340ccaab
TW
5634 generate_macinfo_entry (type_and_offset, "");
5635}
5636
5637void
5638dwarfout_resume_previous_source_file (lineno)
5639 register unsigned lineno;
5640{
5641 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5642
5643 sprintf (type_and_offset, "0x%08x+%u",
5644 ((unsigned) MACINFO_resume << 24), lineno);
5645 generate_macinfo_entry (type_and_offset, "");
5646}
5647
5648/* Called from check_newline in c-parse.y. The `buffer' parameter
5649 contains the tail part of the directive line, i.e. the part which
5650 is past the initial whitespace, #, whitespace, directive-name,
5651 whitespace part. */
5652
5653void
5654dwarfout_define (lineno, buffer)
5655 register unsigned lineno;
a996cbd4 5656 register const char *buffer;
340ccaab
TW
5657{
5658 static int initialized = 0;
5659 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5660
5661 if (!initialized)
5662 {
5663 dwarfout_start_new_source_file (primary_filename);
5664 initialized = 1;
5665 }
5666 sprintf (type_and_offset, "0x%08x+%u",
5667 ((unsigned) MACINFO_define << 24), lineno);
5668 generate_macinfo_entry (type_and_offset, buffer);
5669}
5670
5671/* Called from check_newline in c-parse.y. The `buffer' parameter
5672 contains the tail part of the directive line, i.e. the part which
5673 is past the initial whitespace, #, whitespace, directive-name,
5674 whitespace part. */
5675
5676void
5677dwarfout_undef (lineno, buffer)
5678 register unsigned lineno;
a996cbd4 5679 register const char *buffer;
340ccaab
TW
5680{
5681 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5682
5683 sprintf (type_and_offset, "0x%08x+%u",
5684 ((unsigned) MACINFO_undef << 24), lineno);
5685 generate_macinfo_entry (type_and_offset, buffer);
5686}
5687
5688/* Set up for Dwarf output at the start of compilation. */
5689
5690void
5691dwarfout_init (asm_out_file, main_input_filename)
5692 register FILE *asm_out_file;
5693 register char *main_input_filename;
5694{
5695 /* Remember the name of the primary input file. */
5696
5697 primary_filename = main_input_filename;
5698
5699 /* Allocate the initial hunk of the pending_sibling_stack. */
5700
5701 pending_sibling_stack
5702 = (unsigned *)
5703 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5704 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5705 pending_siblings = 1;
5706
5707 /* Allocate the initial hunk of the filename_table. */
5708
5709 filename_table
5710 = (filename_entry *)
5711 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5712 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5713 ft_entries = 0;
5714
5715 /* Allocate the initial hunk of the pending_types_list. */
5716
5717 pending_types_list
5718 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5719 pending_types_allocated = PENDING_TYPES_INCREMENT;
5720 pending_types = 0;
5721
5722 /* Create an artificial RECORD_TYPE node which we can use in our hack
5723 to get the DIEs representing types of formal parameters to come out
5724 only *after* the DIEs for the formal parameters themselves. */
5725
5726 fake_containing_scope = make_node (RECORD_TYPE);
5727
5728 /* Output a starting label for the .text section. */
5729
5730 fputc ('\n', asm_out_file);
85595d1a 5731 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
340ccaab 5732 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
85595d1a 5733 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5734
5735 /* Output a starting label for the .data section. */
5736
5737 fputc ('\n', asm_out_file);
85595d1a 5738 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
340ccaab 5739 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
85595d1a 5740 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5741
13963720 5742#if 0 /* GNU C doesn't currently use .data1. */
340ccaab
TW
5743 /* Output a starting label for the .data1 section. */
5744
5745 fputc ('\n', asm_out_file);
85595d1a 5746 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
340ccaab 5747 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
85595d1a 5748 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5749#endif
340ccaab
TW
5750
5751 /* Output a starting label for the .rodata section. */
5752
5753 fputc ('\n', asm_out_file);
85595d1a 5754 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
340ccaab 5755 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
85595d1a 5756 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5757
13963720 5758#if 0 /* GNU C doesn't currently use .rodata1. */
340ccaab
TW
5759 /* Output a starting label for the .rodata1 section. */
5760
5761 fputc ('\n', asm_out_file);
85595d1a 5762 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
340ccaab 5763 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
85595d1a 5764 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5765#endif
340ccaab
TW
5766
5767 /* Output a starting label for the .bss section. */
5768
5769 fputc ('\n', asm_out_file);
85595d1a 5770 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
340ccaab 5771 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
85595d1a 5772 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5773
5774 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5775 {
a94dbf2c
JM
5776 if (use_gnu_debug_info_extensions)
5777 {
5778 /* Output a starting label and an initial (compilation directory)
5779 entry for the .debug_sfnames section. The starting label will be
5780 referenced by the initial entry in the .debug_srcinfo section. */
340ccaab 5781
a94dbf2c
JM
5782 fputc ('\n', asm_out_file);
5783 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5784 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5785 {
d3e3972c 5786 register const char *pwd = getpwd ();
a94dbf2c
JM
5787 register char *dirname;
5788
a94dbf2c
JM
5789 if (!pwd)
5790 pfatal_with_name ("getpwd");
ad85216e 5791 dirname = concat (pwd, "/", NULL);
74153f8e 5792 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
a94dbf2c
JM
5793 free (dirname);
5794 }
5795 ASM_OUTPUT_POP_SECTION (asm_out_file);
5796 }
340ccaab 5797
a94dbf2c
JM
5798 if (debug_info_level >= DINFO_LEVEL_VERBOSE
5799 && use_gnu_debug_info_extensions)
340ccaab
TW
5800 {
5801 /* Output a starting label for the .debug_macinfo section. This
5802 label will be referenced by the AT_mac_info attribute in the
5803 TAG_compile_unit DIE. */
5804
5805 fputc ('\n', asm_out_file);
85595d1a 5806 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
340ccaab 5807 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
85595d1a 5808 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5809 }
5810
5811 /* Generate the initial entry for the .line section. */
5812
5813 fputc ('\n', asm_out_file);
85595d1a 5814 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
340ccaab
TW
5815 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5816 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5817 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
85595d1a 5818 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5819
a94dbf2c
JM
5820 if (use_gnu_debug_info_extensions)
5821 {
5822 /* Generate the initial entry for the .debug_srcinfo section. */
5823
5824 fputc ('\n', asm_out_file);
5825 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5826 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5827 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5828 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5829 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5830 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
340ccaab 5831#ifdef DWARF_TIMESTAMPS
a94dbf2c 5832 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
340ccaab 5833#else
a94dbf2c 5834 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
340ccaab 5835#endif
a94dbf2c
JM
5836 ASM_OUTPUT_POP_SECTION (asm_out_file);
5837 }
340ccaab
TW
5838
5839 /* Generate the initial entry for the .debug_pubnames section. */
5840
5841 fputc ('\n', asm_out_file);
85595d1a 5842 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab 5843 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
85595d1a 5844 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5845
5846 /* Generate the initial entry for the .debug_aranges section. */
5847
5848 fputc ('\n', asm_out_file);
85595d1a 5849 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
340ccaab 5850 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
85595d1a 5851 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5852 }
5853
5854 /* Setup first DIE number == 1. */
5855 NEXT_DIE_NUM = next_unused_dienum++;
5856
5857 /* Generate the initial DIE for the .debug section. Note that the
5858 (string) value given in the AT_name attribute of the TAG_compile_unit
5859 DIE will (typically) be a relative pathname and that this pathname
5860 should be taken as being relative to the directory from which the
5861 compiler was invoked when the given (base) source file was compiled. */
5862
5863 fputc ('\n', asm_out_file);
85595d1a 5864 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
340ccaab
TW
5865 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5866 output_die (output_compile_unit_die, main_input_filename);
85595d1a 5867 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5868
5869 fputc ('\n', asm_out_file);
5870}
5871
5872/* Output stuff that dwarf requires at the end of every file. */
5873
5874void
5875dwarfout_finish ()
5876{
5877 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5878
75c613db
JM
5879 retry_incomplete_types ();
5880
340ccaab 5881 fputc ('\n', asm_out_file);
85595d1a 5882 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
340ccaab
TW
5883
5884 /* Mark the end of the chain of siblings which represent all file-scope
5885 declarations in this compilation unit. */
5886
5887 /* The (null) DIE which represents the terminator for the (sibling linked)
5888 list of file-scope items is *special*. Normally, we would just call
5889 end_sibling_chain at this point in order to output a word with the
5890 value `4' and that word would act as the terminator for the list of
5891 DIEs describing file-scope items. Unfortunately, if we were to simply
5892 do that, the label that would follow this DIE in the .debug section
5893 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5894 machines) to a 4 byte boundary.
5895
5896 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5897 the trick used is to insert extra (otherwise useless) padding bytes
6dc42e49 5898 into the (null) DIE that we know must precede the ..D2 label in the
340ccaab
TW
5899 .debug section. The amount of padding required can be anywhere between
5900 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5901 with the padding) would normally contain the value 4, but now it will
5902 also have to include the padding bytes, so it will instead have some
5903 value in the range 4..7.
5904
5905 Fortunately, the rules of Dwarf say that any DIE whose length word
5906 contains *any* value less than 8 should be treated as a null DIE, so
5907 this trick works out nicely. Clever, eh? Don't give me any credit
5908 (or blame). I didn't think of this scheme. I just conformed to it.
5909 */
5910
0f41302f 5911 output_die (output_padded_null_die, (void *) 0);
340ccaab
TW
5912 dienum_pop ();
5913
5914 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5915 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
85595d1a 5916 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5917
5918 /* Output a terminator label for the .text section. */
5919
5920 fputc ('\n', asm_out_file);
85595d1a 5921 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
340ccaab 5922 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
85595d1a 5923 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5924
5925 /* Output a terminator label for the .data section. */
5926
5927 fputc ('\n', asm_out_file);
85595d1a 5928 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
340ccaab 5929 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
85595d1a 5930 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5931
13963720 5932#if 0 /* GNU C doesn't currently use .data1. */
340ccaab
TW
5933 /* Output a terminator label for the .data1 section. */
5934
5935 fputc ('\n', asm_out_file);
85595d1a 5936 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
340ccaab 5937 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
85595d1a 5938 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5939#endif
340ccaab
TW
5940
5941 /* Output a terminator label for the .rodata section. */
5942
5943 fputc ('\n', asm_out_file);
85595d1a 5944 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
340ccaab 5945 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
85595d1a 5946 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5947
13963720 5948#if 0 /* GNU C doesn't currently use .rodata1. */
340ccaab
TW
5949 /* Output a terminator label for the .rodata1 section. */
5950
5951 fputc ('\n', asm_out_file);
85595d1a 5952 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
340ccaab 5953 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
85595d1a 5954 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5955#endif
340ccaab
TW
5956
5957 /* Output a terminator label for the .bss section. */
5958
5959 fputc ('\n', asm_out_file);
85595d1a 5960 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
340ccaab 5961 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
85595d1a 5962 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5963
5964 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5965 {
5966 /* Output a terminating entry for the .line section. */
5967
5968 fputc ('\n', asm_out_file);
85595d1a 5969 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
340ccaab
TW
5970 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
5971 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5972 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5973 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5974 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
85595d1a 5975 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5976
a94dbf2c
JM
5977 if (use_gnu_debug_info_extensions)
5978 {
5979 /* Output a terminating entry for the .debug_srcinfo section. */
5980
5981 fputc ('\n', asm_out_file);
5982 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5983 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
5984 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
5985 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5986 ASM_OUTPUT_POP_SECTION (asm_out_file);
5987 }
340ccaab
TW
5988
5989 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5990 {
5991 /* Output terminating entries for the .debug_macinfo section. */
5992
5993 dwarfout_resume_previous_source_file (0);
5994
5995 fputc ('\n', asm_out_file);
85595d1a 5996 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
340ccaab 5997 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
74153f8e 5998 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
85595d1a 5999 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
6000 }
6001
6002 /* Generate the terminating entry for the .debug_pubnames section. */
6003
6004 fputc ('\n', asm_out_file);
85595d1a 6005 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab 6006 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
74153f8e 6007 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
85595d1a 6008 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
6009
6010 /* Generate the terminating entries for the .debug_aranges section.
6011
6012 Note that we want to do this only *after* we have output the end
6013 labels (for the various program sections) which we are going to
6014 refer to here. This allows us to work around a bug in the m68k
6015 svr4 assembler. That assembler gives bogus assembly-time errors
6016 if (within any given section) you try to take the difference of
6017 two relocatable symbols, both of which are located within some
6018 other section, and if one (or both?) of the symbols involved is
6019 being forward-referenced. By generating the .debug_aranges
6020 entries at this late point in the assembly output, we skirt the
6021 issue simply by avoiding forward-references.
6022 */
6023
6024 fputc ('\n', asm_out_file);
85595d1a 6025 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
340ccaab
TW
6026
6027 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6028 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6029
6030 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6031 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6032
13963720 6033#if 0 /* GNU C doesn't currently use .data1. */
340ccaab
TW
6034 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6035 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6036 DATA1_BEGIN_LABEL);
13963720 6037#endif
340ccaab
TW
6038
6039 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6040 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6041 RODATA_BEGIN_LABEL);
6042
13963720 6043#if 0 /* GNU C doesn't currently use .rodata1. */
340ccaab
TW
6044 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6045 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6046 RODATA1_BEGIN_LABEL);
13963720 6047#endif
340ccaab
TW
6048
6049 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6050 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6051
6052 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6053 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6054
85595d1a 6055 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 6056 }
0a4be913
JW
6057
6058 /* There should not be any pending types left at the end. We need
6059 this now because it may not have been checked on the last call to
6060 dwarfout_file_scope_decl. */
6061 if (pending_types != 0)
6062 abort ();
340ccaab
TW
6063}
6064
9a666dda 6065#endif /* DWARF_DEBUGGING_INFO */
This page took 1.423566 seconds and 5 git commands to generate.