]> gcc.gnu.org Git - gcc.git/blame - gcc/dwarfout.c
c-parse.in (language_string): Constify.
[gcc.git] / gcc / dwarfout.c
CommitLineData
ed1817c6 1/* Output Dwarf format symbol table information from the GNU C compiler.
88ed5bb5 2 Copyright (C) 1992, 1993, 95-98, 1999 Free Software Foundation, Inc.
461b77c8 3 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
ed1817c6 4
340ccaab
TW
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
340ccaab
TW
21
22#include "config.h"
23
9a666dda 24#ifdef DWARF_DEBUGGING_INFO
670ee920 25#include "system.h"
340ccaab
TW
26#include "dwarf.h"
27#include "tree.h"
28#include "flags.h"
29#include "rtl.h"
7f7429ca 30#include "hard-reg-set.h"
340ccaab
TW
31#include "insn-config.h"
32#include "reload.h"
33#include "output.h"
9a631e8e 34#include "defaults.h"
76ead72b 35#include "dwarfout.h"
f103890b 36#include "toplev.h"
340ccaab 37
340ccaab 38#if defined(DWARF_TIMESTAMPS)
670ee920
KG
39#if !defined(POSIX)
40extern time_t time PROTO ((time_t *)); /* FIXME: use NEED_DECLARATION_TIME */
340ccaab
TW
41#endif /* !defined(POSIX) */
42#endif /* defined(DWARF_TIMESTAMPS) */
43
c85f7c16
JL
44/* We cannot use <assert.h> in GCC source, since that would include
45 GCC's assert.h, which may not be compatible with the host compiler. */
46#undef assert
47#ifdef NDEBUG
48# define assert(e)
49#else
50# define assert(e) do { if (! (e)) abort (); } while (0)
51#endif
52
340ccaab
TW
53/* IMPORTANT NOTE: Please see the file README.DWARF for important details
54 regarding the GNU implementation of Dwarf. */
55
56/* NOTE: In the comments in this file, many references are made to
57 so called "Debugging Information Entries". For the sake of brevity,
58 this term is abbreviated to `DIE' throughout the remainder of this
59 file. */
60
61/* Note that the implementation of C++ support herein is (as yet) unfinished.
62 If you want to try to complete it, more power to you. */
63
340ccaab
TW
64/* How to start an assembler comment. */
65#ifndef ASM_COMMENT_START
66#define ASM_COMMENT_START ";#"
67#endif
68
7f7429ca
RS
69/* How to print out a register name. */
70#ifndef PRINT_REG
71#define PRINT_REG(RTX, CODE, FILE) \
72 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
73#endif
74
340ccaab
TW
75/* Define a macro which returns non-zero for any tagged type which is
76 used (directly or indirectly) in the specification of either some
77 function's return type or some formal parameter of some function.
78 We use this macro when we are operating in "terse" mode to help us
79 know what tagged types have to be represented in Dwarf (even in
80 terse mode) and which ones don't.
81
82 A flag bit with this meaning really should be a part of the normal
83 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
84 for these nodes. For now, we have to just fake it. It it safe for
85 us to simply return zero for all complete tagged types (which will
86 get forced out anyway if they were used in the specification of some
87 formal or return type) and non-zero for all incomplete tagged types.
88*/
89
90#define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
91
a94dbf2c
JM
92/* Define a macro which returns non-zero for a TYPE_DECL which was
93 implicitly generated for a tagged type.
94
95 Note that unlike the gcc front end (which generates a NULL named
96 TYPE_DECL node for each complete tagged type, each array type, and
97 each function type node created) the g++ front end generates a
98 _named_ TYPE_DECL node for each tagged type node created.
99 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
100 generate a DW_TAG_typedef DIE for them. */
101#define TYPE_DECL_IS_STUB(decl) \
102 (DECL_NAME (decl) == NULL \
103 || (DECL_ARTIFICIAL (decl) \
104 && is_tagged_type (TREE_TYPE (decl)) \
105 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
106
340ccaab
TW
107extern int flag_traditional;
108extern char *version_string;
340ccaab
TW
109
110/* Maximum size (in bytes) of an artificially generated label. */
111
112#define MAX_ARTIFICIAL_LABEL_BYTES 30
113\f
114/* Make sure we know the sizes of the various types dwarf can describe.
115 These are only defaults. If the sizes are different for your target,
116 you should override these values by defining the appropriate symbols
117 in your tm.h file. */
118
119#ifndef CHAR_TYPE_SIZE
120#define CHAR_TYPE_SIZE BITS_PER_UNIT
121#endif
122
123#ifndef SHORT_TYPE_SIZE
124#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
125#endif
126
127#ifndef INT_TYPE_SIZE
128#define INT_TYPE_SIZE BITS_PER_WORD
129#endif
130
131#ifndef LONG_TYPE_SIZE
132#define LONG_TYPE_SIZE BITS_PER_WORD
133#endif
134
135#ifndef LONG_LONG_TYPE_SIZE
136#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
137#endif
138
139#ifndef WCHAR_TYPE_SIZE
140#define WCHAR_TYPE_SIZE INT_TYPE_SIZE
141#endif
142
143#ifndef WCHAR_UNSIGNED
144#define WCHAR_UNSIGNED 0
145#endif
146
147#ifndef FLOAT_TYPE_SIZE
148#define FLOAT_TYPE_SIZE BITS_PER_WORD
149#endif
150
151#ifndef DOUBLE_TYPE_SIZE
152#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
153#endif
154
155#ifndef LONG_DOUBLE_TYPE_SIZE
156#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
157#endif
158\f
159/* Structure to keep track of source filenames. */
160
161struct filename_entry {
162 unsigned number;
163 char * name;
164};
165
166typedef struct filename_entry filename_entry;
167
0f41302f 168/* Pointer to an array of elements, each one having the structure above. */
340ccaab
TW
169
170static filename_entry *filename_table;
171
172/* Total number of entries in the table (i.e. array) pointed to by
173 `filename_table'. This is the *total* and includes both used and
174 unused slots. */
175
176static unsigned ft_entries_allocated;
177
178/* Number of entries in the filename_table which are actually in use. */
179
180static unsigned ft_entries;
181
182/* Size (in elements) of increments by which we may expand the filename
183 table. Actually, a single hunk of space of this size should be enough
184 for most typical programs. */
185
186#define FT_ENTRIES_INCREMENT 64
187
188/* Local pointer to the name of the main input file. Initialized in
189 dwarfout_init. */
190
191static char *primary_filename;
192
193/* Pointer to the most recent filename for which we produced some line info. */
194
195static char *last_filename;
196
197/* For Dwarf output, we must assign lexical-blocks id numbers
198 in the order in which their beginnings are encountered.
199 We output Dwarf debugging info that refers to the beginnings
200 and ends of the ranges of code for each lexical block with
201 assembler labels ..Bn and ..Bn.e, where n is the block number.
202 The labels themselves are generated in final.c, which assigns
203 numbers to the blocks in the same way. */
204
205static unsigned next_block_number = 2;
206
0f41302f 207/* Counter to generate unique names for DIEs. */
340ccaab
TW
208
209static unsigned next_unused_dienum = 1;
210
211/* Number of the DIE which is currently being generated. */
212
213static unsigned current_dienum;
214
215/* Number to use for the special "pubname" label on the next DIE which
216 represents a function or data object defined in this compilation
217 unit which has "extern" linkage. */
218
5e9defae 219static int next_pubname_number = 0;
340ccaab
TW
220
221#define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
222
223/* Pointer to a dynamically allocated list of pre-reserved and still
224 pending sibling DIE numbers. Note that this list will grow as needed. */
225
226static unsigned *pending_sibling_stack;
227
228/* Counter to keep track of the number of pre-reserved and still pending
229 sibling DIE numbers. */
230
231static unsigned pending_siblings;
232
233/* The currently allocated size of the above list (expressed in number of
234 list elements). */
235
236static unsigned pending_siblings_allocated;
237
238/* Size (in elements) of increments by which we may expand the pending
239 sibling stack. Actually, a single hunk of space of this size should
240 be enough for most typical programs. */
241
242#define PENDING_SIBLINGS_INCREMENT 64
243
244/* Non-zero if we are performing our file-scope finalization pass and if
6dc42e49 245 we should force out Dwarf descriptions of any and all file-scope
340ccaab
TW
246 tagged types which are still incomplete types. */
247
248static int finalizing = 0;
249
250/* A pointer to the base of a list of pending types which we haven't
251 generated DIEs for yet, but which we will have to come back to
252 later on. */
253
254static tree *pending_types_list;
255
256/* Number of elements currently allocated for the pending_types_list. */
257
258static unsigned pending_types_allocated;
259
260/* Number of elements of pending_types_list currently in use. */
261
262static unsigned pending_types;
263
264/* Size (in elements) of increments by which we may expand the pending
265 types list. Actually, a single hunk of space of this size should
266 be enough for most typical programs. */
267
268#define PENDING_TYPES_INCREMENT 64
269
75c613db
JM
270/* A pointer to the base of a list of incomplete types which might be
271 completed at some later time. */
272
273static tree *incomplete_types_list;
274
275/* Number of elements currently allocated for the incomplete_types_list. */
276static unsigned incomplete_types_allocated;
277
278/* Number of elements of incomplete_types_list currently in use. */
279static unsigned incomplete_types;
280
281/* Size (in elements) of increments by which we may expand the incomplete
282 types list. Actually, a single hunk of space of this size should
283 be enough for most typical programs. */
284#define INCOMPLETE_TYPES_INCREMENT 64
285
6dc42e49 286/* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
340ccaab
TW
287 This is used in a hack to help us get the DIEs describing types of
288 formal parameters to come *after* all of the DIEs describing the formal
289 parameters themselves. That's necessary in order to be compatible
6dc42e49 290 with what the brain-damaged svr4 SDB debugger requires. */
340ccaab
TW
291
292static tree fake_containing_scope;
293
294/* The number of the current function definition that we are generating
295 debugging information for. These numbers range from 1 up to the maximum
296 number of function definitions contained within the current compilation
297 unit. These numbers are used to create unique labels for various things
298 contained within various function definitions. */
299
300static unsigned current_funcdef_number = 1;
301
7f7429ca
RS
302/* A pointer to the ..._DECL node which we have most recently been working
303 on. We keep this around just in case something about it looks screwy
304 and we want to tell the user what the source coordinates for the actual
305 declaration are. */
306
307static tree dwarf_last_decl;
308
a94dbf2c
JM
309/* A flag indicating that we are emitting the member declarations of a
310 class, so member functions and variables should not be entirely emitted.
311 This is a kludge to avoid passing a second argument to output_*_die. */
312
313static int in_class;
314
340ccaab
TW
315/* Forward declarations for functions defined in this file. */
316
461b77c8
RK
317static char *dwarf_tag_name PROTO((unsigned));
318static char *dwarf_attr_name PROTO((unsigned));
319static char *dwarf_stack_op_name PROTO((unsigned));
320static char *dwarf_typemod_name PROTO((unsigned));
321static char *dwarf_fmt_byte_name PROTO((unsigned));
322static char *dwarf_fund_type_name PROTO((unsigned));
323static tree decl_ultimate_origin PROTO((tree));
324static tree block_ultimate_origin PROTO((tree));
242c13b0 325static tree decl_class_context PROTO((tree));
487a6e06 326#if 0
461b77c8
RK
327static void output_unsigned_leb128 PROTO((unsigned long));
328static void output_signed_leb128 PROTO((long));
487a6e06 329#endif
461b77c8
RK
330static inline int is_body_block PROTO((tree));
331static int fundamental_type_code PROTO((tree));
b1357021 332static tree root_type_1 PROTO((tree, int));
461b77c8 333static tree root_type PROTO((tree));
b1357021 334static void write_modifier_bytes_1 PROTO((tree, int, int, int));
461b77c8
RK
335static void write_modifier_bytes PROTO((tree, int, int));
336static inline int type_is_fundamental PROTO((tree));
337static void equate_decl_number_to_die_number PROTO((tree));
338static inline void equate_type_number_to_die_number PROTO((tree));
339static void output_reg_number PROTO((rtx));
340static void output_mem_loc_descriptor PROTO((rtx));
341static void output_loc_descriptor PROTO((rtx));
17bbe96f 342static void output_bound_representation PROTO((tree, unsigned, int));
461b77c8
RK
343static void output_enumeral_list PROTO((tree));
344static inline unsigned ceiling PROTO((unsigned, unsigned));
345static inline tree field_type PROTO((tree));
346static inline unsigned simple_type_align_in_bits PROTO((tree));
347static inline unsigned simple_type_size_in_bits PROTO((tree));
348static unsigned field_byte_offset PROTO((tree));
349static inline void sibling_attribute PROTO((void));
350static void location_attribute PROTO((rtx));
351static void data_member_location_attribute PROTO((tree));
352static void const_value_attribute PROTO((rtx));
353static void location_or_const_value_attribute PROTO((tree));
354static inline void name_attribute PROTO((char *));
355static inline void fund_type_attribute PROTO((unsigned));
356static void mod_fund_type_attribute PROTO((tree, int, int));
357static inline void user_def_type_attribute PROTO((tree));
358static void mod_u_d_type_attribute PROTO((tree, int, int));
5e9defae 359#ifdef USE_ORDERING_ATTRIBUTE
461b77c8 360static inline void ordering_attribute PROTO((unsigned));
5e9defae 361#endif /* defined(USE_ORDERING_ATTRIBUTE) */
461b77c8
RK
362static void subscript_data_attribute PROTO((tree));
363static void byte_size_attribute PROTO((tree));
364static inline void bit_offset_attribute PROTO((tree));
365static inline void bit_size_attribute PROTO((tree));
366static inline void element_list_attribute PROTO((tree));
367static inline void stmt_list_attribute PROTO((char *));
368static inline void low_pc_attribute PROTO((char *));
369static inline void high_pc_attribute PROTO((char *));
370static inline void body_begin_attribute PROTO((char *));
371static inline void body_end_attribute PROTO((char *));
956d6950 372static inline void language_attribute PROTO((unsigned));
461b77c8 373static inline void member_attribute PROTO((tree));
7a87758d 374#if 0
461b77c8 375static inline void string_length_attribute PROTO((tree));
7a87758d 376#endif
461b77c8
RK
377static inline void comp_dir_attribute PROTO((char *));
378static inline void sf_names_attribute PROTO((char *));
379static inline void src_info_attribute PROTO((char *));
380static inline void mac_info_attribute PROTO((char *));
381static inline void prototyped_attribute PROTO((tree));
382static inline void producer_attribute PROTO((char *));
383static inline void inline_attribute PROTO((tree));
384static inline void containing_type_attribute PROTO((tree));
385static inline void abstract_origin_attribute PROTO((tree));
5e9defae 386#ifdef DWARF_DECL_COORDINATES
461b77c8 387static inline void src_coords_attribute PROTO((unsigned, unsigned));
5e9defae 388#endif /* defined(DWARF_DECL_COORDINATES) */
461b77c8
RK
389static inline void pure_or_virtual_attribute PROTO((tree));
390static void name_and_src_coords_attributes PROTO((tree));
391static void type_attribute PROTO((tree, int, int));
392static char *type_tag PROTO((tree));
393static inline void dienum_push PROTO((void));
394static inline void dienum_pop PROTO((void));
395static inline tree member_declared_type PROTO((tree));
396static char *function_start_label PROTO((tree));
397static void output_array_type_die PROTO((void *));
398static void output_set_type_die PROTO((void *));
5e9defae 399#if 0
461b77c8 400static void output_entry_point_die PROTO((void *));
5e9defae 401#endif
461b77c8
RK
402static void output_inlined_enumeration_type_die PROTO((void *));
403static void output_inlined_structure_type_die PROTO((void *));
404static void output_inlined_union_type_die PROTO((void *));
405static void output_enumeration_type_die PROTO((void *));
406static void output_formal_parameter_die PROTO((void *));
407static void output_global_subroutine_die PROTO((void *));
408static void output_global_variable_die PROTO((void *));
409static void output_label_die PROTO((void *));
410static void output_lexical_block_die PROTO((void *));
411static void output_inlined_subroutine_die PROTO((void *));
412static void output_local_variable_die PROTO((void *));
413static void output_member_die PROTO((void *));
5e9defae 414#if 0
461b77c8
RK
415static void output_pointer_type_die PROTO((void *));
416static void output_reference_type_die PROTO((void *));
5e9defae 417#endif
461b77c8
RK
418static void output_ptr_to_mbr_type_die PROTO((void *));
419static void output_compile_unit_die PROTO((void *));
420static void output_string_type_die PROTO((void *));
242c13b0 421static void output_inheritance_die PROTO((void *));
461b77c8
RK
422static void output_structure_type_die PROTO((void *));
423static void output_local_subroutine_die PROTO((void *));
424static void output_subroutine_type_die PROTO((void *));
425static void output_typedef_die PROTO((void *));
426static void output_union_type_die PROTO((void *));
427static void output_unspecified_parameters_die PROTO((void *));
428static void output_padded_null_die PROTO((void *));
487a6e06 429static void output_die PROTO((void (*) PROTO((void *)), void *));
461b77c8
RK
430static void end_sibling_chain PROTO((void));
431static void output_formal_types PROTO((tree));
432static void pend_type PROTO((tree));
242c13b0 433static int type_ok_for_scope PROTO((tree, tree));
461b77c8
RK
434static void output_pending_types_for_scope PROTO((tree));
435static void output_type PROTO((tree, tree));
436static void output_tagged_type_instantiation PROTO((tree));
85f8926e
JM
437static void output_block PROTO((tree, int));
438static void output_decls_for_scope PROTO((tree, int));
461b77c8
RK
439static void output_decl PROTO((tree, tree));
440static void shuffle_filename_entry PROTO((filename_entry *));
956d6950 441static void generate_new_sfname_entry PROTO((void));
461b77c8
RK
442static unsigned lookup_filename PROTO((char *));
443static void generate_srcinfo_entry PROTO((unsigned, unsigned));
444static void generate_macinfo_entry PROTO((char *, char *));
24e75411
JL
445static int is_pseudo_reg PROTO((rtx));
446static tree type_main_variant PROTO((tree));
447static int is_tagged_type PROTO((tree));
448static int is_redundant_typedef PROTO((tree));
340ccaab
TW
449\f
450/* Definitions of defaults for assembler-dependent names of various
451 pseudo-ops and section names.
452
453 Theses may be overridden in your tm.h file (if necessary) for your
454 particular assembler. The default values provided here correspond to
455 what is expected by "standard" AT&T System V.4 assemblers. */
456
457#ifndef FILE_ASM_OP
2e494f70 458#define FILE_ASM_OP ".file"
340ccaab
TW
459#endif
460#ifndef VERSION_ASM_OP
2e494f70 461#define VERSION_ASM_OP ".version"
340ccaab 462#endif
340ccaab 463#ifndef UNALIGNED_SHORT_ASM_OP
2e494f70 464#define UNALIGNED_SHORT_ASM_OP ".2byte"
340ccaab
TW
465#endif
466#ifndef UNALIGNED_INT_ASM_OP
2e494f70 467#define UNALIGNED_INT_ASM_OP ".4byte"
340ccaab 468#endif
9a631e8e
RS
469#ifndef ASM_BYTE_OP
470#define ASM_BYTE_OP ".byte"
471#endif
648ebe7b
RS
472#ifndef SET_ASM_OP
473#define SET_ASM_OP ".set"
340ccaab 474#endif
85595d1a
RS
475
476/* Pseudo-ops for pushing the current section onto the section stack (and
477 simultaneously changing to a new section) and for poping back to the
478 section we were in immediately before this one. Note that most svr4
479 assemblers only maintain a one level stack... you can push all the
480 sections you want, but you can only pop out one level. (The sparc
648ebe7b 481 svr4 assembler is an exception to this general rule.) That's
85595d1a
RS
482 OK because we only use at most one level of the section stack herein. */
483
484#ifndef PUSHSECTION_ASM_OP
9a631e8e 485#define PUSHSECTION_ASM_OP ".section"
85595d1a
RS
486#endif
487#ifndef POPSECTION_ASM_OP
9a631e8e 488#define POPSECTION_ASM_OP ".previous"
85595d1a
RS
489#endif
490
491/* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
492 to print the PUSHSECTION_ASM_OP and the section name. The default here
493 works for almost all svr4 assemblers, except for the sparc, where the
494 section name must be enclosed in double quotes. (See sparcv4.h.) */
495
496#ifndef PUSHSECTION_FORMAT
dfe8a5ac 497#define PUSHSECTION_FORMAT "\t%s\t%s\n"
85595d1a
RS
498#endif
499
500#ifndef DEBUG_SECTION
501#define DEBUG_SECTION ".debug"
502#endif
503#ifndef LINE_SECTION
504#define LINE_SECTION ".line"
505#endif
506#ifndef SFNAMES_SECTION
507#define SFNAMES_SECTION ".debug_sfnames"
508#endif
509#ifndef SRCINFO_SECTION
510#define SRCINFO_SECTION ".debug_srcinfo"
511#endif
512#ifndef MACINFO_SECTION
513#define MACINFO_SECTION ".debug_macinfo"
514#endif
515#ifndef PUBNAMES_SECTION
516#define PUBNAMES_SECTION ".debug_pubnames"
517#endif
518#ifndef ARANGES_SECTION
519#define ARANGES_SECTION ".debug_aranges"
520#endif
521#ifndef TEXT_SECTION
522#define TEXT_SECTION ".text"
523#endif
524#ifndef DATA_SECTION
525#define DATA_SECTION ".data"
526#endif
527#ifndef DATA1_SECTION
528#define DATA1_SECTION ".data1"
529#endif
530#ifndef RODATA_SECTION
531#define RODATA_SECTION ".rodata"
532#endif
533#ifndef RODATA1_SECTION
534#define RODATA1_SECTION ".rodata1"
535#endif
536#ifndef BSS_SECTION
537#define BSS_SECTION ".bss"
538#endif
340ccaab
TW
539\f
540/* Definitions of defaults for formats and names of various special
541 (artificial) labels which may be generated within this file (when
542 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
543
544 If necessary, these may be overridden from within your tm.h file,
9a631e8e
RS
545 but typically, you should never need to override these.
546
547 These labels have been hacked (temporarily) so that they all begin with
648ebe7b
RS
548 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
549 stock m88k/svr4 assembler, both of which need to see .L at the start of
550 a label in order to prevent that label from going into the linker symbol
551 table). When I get time, I'll have to fix this the right way so that we
552 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
553 but that will require a rather massive set of changes. For the moment,
554 the following definitions out to produce the right results for all svr4
555 and svr3 assemblers. -- rfg
9a631e8e 556*/
340ccaab
TW
557
558#ifndef TEXT_BEGIN_LABEL
e9a25f70 559#define TEXT_BEGIN_LABEL "*.L_text_b"
340ccaab
TW
560#endif
561#ifndef TEXT_END_LABEL
e9a25f70 562#define TEXT_END_LABEL "*.L_text_e"
340ccaab
TW
563#endif
564
565#ifndef DATA_BEGIN_LABEL
e9a25f70 566#define DATA_BEGIN_LABEL "*.L_data_b"
340ccaab
TW
567#endif
568#ifndef DATA_END_LABEL
e9a25f70 569#define DATA_END_LABEL "*.L_data_e"
340ccaab
TW
570#endif
571
572#ifndef DATA1_BEGIN_LABEL
e9a25f70 573#define DATA1_BEGIN_LABEL "*.L_data1_b"
340ccaab
TW
574#endif
575#ifndef DATA1_END_LABEL
e9a25f70 576#define DATA1_END_LABEL "*.L_data1_e"
340ccaab
TW
577#endif
578
579#ifndef RODATA_BEGIN_LABEL
e9a25f70 580#define RODATA_BEGIN_LABEL "*.L_rodata_b"
340ccaab
TW
581#endif
582#ifndef RODATA_END_LABEL
e9a25f70 583#define RODATA_END_LABEL "*.L_rodata_e"
340ccaab
TW
584#endif
585
586#ifndef RODATA1_BEGIN_LABEL
e9a25f70 587#define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
340ccaab
TW
588#endif
589#ifndef RODATA1_END_LABEL
e9a25f70 590#define RODATA1_END_LABEL "*.L_rodata1_e"
340ccaab
TW
591#endif
592
593#ifndef BSS_BEGIN_LABEL
e9a25f70 594#define BSS_BEGIN_LABEL "*.L_bss_b"
340ccaab
TW
595#endif
596#ifndef BSS_END_LABEL
e9a25f70 597#define BSS_END_LABEL "*.L_bss_e"
340ccaab
TW
598#endif
599
600#ifndef LINE_BEGIN_LABEL
e9a25f70 601#define LINE_BEGIN_LABEL "*.L_line_b"
340ccaab
TW
602#endif
603#ifndef LINE_LAST_ENTRY_LABEL
e9a25f70 604#define LINE_LAST_ENTRY_LABEL "*.L_line_last"
340ccaab
TW
605#endif
606#ifndef LINE_END_LABEL
e9a25f70 607#define LINE_END_LABEL "*.L_line_e"
340ccaab
TW
608#endif
609
610#ifndef DEBUG_BEGIN_LABEL
e9a25f70 611#define DEBUG_BEGIN_LABEL "*.L_debug_b"
340ccaab
TW
612#endif
613#ifndef SFNAMES_BEGIN_LABEL
e9a25f70 614#define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
340ccaab
TW
615#endif
616#ifndef SRCINFO_BEGIN_LABEL
e9a25f70 617#define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
340ccaab
TW
618#endif
619#ifndef MACINFO_BEGIN_LABEL
e9a25f70 620#define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
340ccaab
TW
621#endif
622
623#ifndef DIE_BEGIN_LABEL_FMT
e9a25f70 624#define DIE_BEGIN_LABEL_FMT "*.L_D%u"
340ccaab
TW
625#endif
626#ifndef DIE_END_LABEL_FMT
e9a25f70 627#define DIE_END_LABEL_FMT "*.L_D%u_e"
340ccaab
TW
628#endif
629#ifndef PUB_DIE_LABEL_FMT
e9a25f70 630#define PUB_DIE_LABEL_FMT "*.L_P%u"
340ccaab
TW
631#endif
632#ifndef INSN_LABEL_FMT
e9a25f70 633#define INSN_LABEL_FMT "*.L_I%u_%u"
340ccaab
TW
634#endif
635#ifndef BLOCK_BEGIN_LABEL_FMT
e9a25f70 636#define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
340ccaab
TW
637#endif
638#ifndef BLOCK_END_LABEL_FMT
e9a25f70 639#define BLOCK_END_LABEL_FMT "*.L_B%u_e"
340ccaab
TW
640#endif
641#ifndef SS_BEGIN_LABEL_FMT
e9a25f70 642#define SS_BEGIN_LABEL_FMT "*.L_s%u"
340ccaab
TW
643#endif
644#ifndef SS_END_LABEL_FMT
e9a25f70 645#define SS_END_LABEL_FMT "*.L_s%u_e"
340ccaab
TW
646#endif
647#ifndef EE_BEGIN_LABEL_FMT
e9a25f70 648#define EE_BEGIN_LABEL_FMT "*.L_e%u"
340ccaab
TW
649#endif
650#ifndef EE_END_LABEL_FMT
e9a25f70 651#define EE_END_LABEL_FMT "*.L_e%u_e"
340ccaab
TW
652#endif
653#ifndef MT_BEGIN_LABEL_FMT
e9a25f70 654#define MT_BEGIN_LABEL_FMT "*.L_t%u"
340ccaab
TW
655#endif
656#ifndef MT_END_LABEL_FMT
e9a25f70 657#define MT_END_LABEL_FMT "*.L_t%u_e"
340ccaab
TW
658#endif
659#ifndef LOC_BEGIN_LABEL_FMT
e9a25f70 660#define LOC_BEGIN_LABEL_FMT "*.L_l%u"
340ccaab
TW
661#endif
662#ifndef LOC_END_LABEL_FMT
e9a25f70 663#define LOC_END_LABEL_FMT "*.L_l%u_e"
340ccaab
TW
664#endif
665#ifndef BOUND_BEGIN_LABEL_FMT
e9a25f70 666#define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
340ccaab
TW
667#endif
668#ifndef BOUND_END_LABEL_FMT
e9a25f70 669#define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
340ccaab
TW
670#endif
671#ifndef DERIV_BEGIN_LABEL_FMT
e9a25f70 672#define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
340ccaab
TW
673#endif
674#ifndef DERIV_END_LABEL_FMT
e9a25f70 675#define DERIV_END_LABEL_FMT "*.L_d%u_e"
340ccaab
TW
676#endif
677#ifndef SL_BEGIN_LABEL_FMT
e9a25f70 678#define SL_BEGIN_LABEL_FMT "*.L_sl%u"
340ccaab
TW
679#endif
680#ifndef SL_END_LABEL_FMT
e9a25f70 681#define SL_END_LABEL_FMT "*.L_sl%u_e"
340ccaab 682#endif
2a819d04 683#ifndef BODY_BEGIN_LABEL_FMT
e9a25f70 684#define BODY_BEGIN_LABEL_FMT "*.L_b%u"
2a819d04
TW
685#endif
686#ifndef BODY_END_LABEL_FMT
e9a25f70 687#define BODY_END_LABEL_FMT "*.L_b%u_e"
2a819d04 688#endif
340ccaab 689#ifndef FUNC_END_LABEL_FMT
e9a25f70 690#define FUNC_END_LABEL_FMT "*.L_f%u_e"
340ccaab
TW
691#endif
692#ifndef TYPE_NAME_FMT
e9a25f70 693#define TYPE_NAME_FMT "*.L_T%u"
340ccaab 694#endif
04077c53 695#ifndef DECL_NAME_FMT
e9a25f70 696#define DECL_NAME_FMT "*.L_E%u"
04077c53 697#endif
340ccaab 698#ifndef LINE_CODE_LABEL_FMT
e9a25f70 699#define LINE_CODE_LABEL_FMT "*.L_LC%u"
340ccaab
TW
700#endif
701#ifndef SFNAMES_ENTRY_LABEL_FMT
e9a25f70 702#define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
340ccaab
TW
703#endif
704#ifndef LINE_ENTRY_LABEL_FMT
e9a25f70 705#define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
340ccaab
TW
706#endif
707\f
708/* Definitions of defaults for various types of primitive assembly language
709 output operations.
710
711 If necessary, these may be overridden from within your tm.h file,
609380f6 712 but typically, you shouldn't need to override these. */
85595d1a
RS
713
714#ifndef ASM_OUTPUT_PUSH_SECTION
715#define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
716 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
717#endif
718
719#ifndef ASM_OUTPUT_POP_SECTION
720#define ASM_OUTPUT_POP_SECTION(FILE) \
9a631e8e 721 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
85595d1a 722#endif
340ccaab 723
340ccaab
TW
724#ifndef ASM_OUTPUT_DWARF_DELTA2
725#define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
2e494f70 726 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
340ccaab
TW
727 assemble_name (FILE, LABEL1); \
728 fprintf (FILE, "-"); \
729 assemble_name (FILE, LABEL2); \
730 fprintf (FILE, "\n"); \
731 } while (0)
732#endif
733
734#ifndef ASM_OUTPUT_DWARF_DELTA4
735#define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
2e494f70 736 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
340ccaab
TW
737 assemble_name (FILE, LABEL1); \
738 fprintf (FILE, "-"); \
739 assemble_name (FILE, LABEL2); \
740 fprintf (FILE, "\n"); \
741 } while (0)
742#endif
743
744#ifndef ASM_OUTPUT_DWARF_TAG
745#define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
9a631e8e
RS
746 do { \
747 fprintf ((FILE), "\t%s\t0x%x", \
748 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
c773653b 749 if (flag_debug_asm) \
9a631e8e
RS
750 fprintf ((FILE), "\t%s %s", \
751 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
752 fputc ('\n', (FILE)); \
753 } while (0)
340ccaab
TW
754#endif
755
756#ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
9a631e8e
RS
757#define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
758 do { \
759 fprintf ((FILE), "\t%s\t0x%x", \
760 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
c773653b 761 if (flag_debug_asm) \
9a631e8e
RS
762 fprintf ((FILE), "\t%s %s", \
763 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
764 fputc ('\n', (FILE)); \
765 } while (0)
340ccaab
TW
766#endif
767
768#ifndef ASM_OUTPUT_DWARF_STACK_OP
769#define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
9a631e8e 770 do { \
648ebe7b 771 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
c773653b 772 if (flag_debug_asm) \
9a631e8e
RS
773 fprintf ((FILE), "\t%s %s", \
774 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
775 fputc ('\n', (FILE)); \
776 } while (0)
340ccaab
TW
777#endif
778
779#ifndef ASM_OUTPUT_DWARF_FUND_TYPE
780#define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
9a631e8e
RS
781 do { \
782 fprintf ((FILE), "\t%s\t0x%x", \
783 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
c773653b 784 if (flag_debug_asm) \
9a631e8e
RS
785 fprintf ((FILE), "\t%s %s", \
786 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
787 fputc ('\n', (FILE)); \
788 } while (0)
340ccaab
TW
789#endif
790
791#ifndef ASM_OUTPUT_DWARF_FMT_BYTE
792#define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
9a631e8e 793 do { \
648ebe7b 794 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
c773653b 795 if (flag_debug_asm) \
9a631e8e
RS
796 fprintf ((FILE), "\t%s %s", \
797 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
798 fputc ('\n', (FILE)); \
799 } while (0)
340ccaab
TW
800#endif
801
802#ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
803#define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
9a631e8e 804 do { \
648ebe7b 805 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
c773653b 806 if (flag_debug_asm) \
9a631e8e
RS
807 fprintf ((FILE), "\t%s %s", \
808 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
809 fputc ('\n', (FILE)); \
810 } while (0)
340ccaab
TW
811#endif
812\f
813#ifndef ASM_OUTPUT_DWARF_ADDR
814#define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
2e494f70 815 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
340ccaab
TW
816 assemble_name (FILE, LABEL); \
817 fprintf (FILE, "\n"); \
818 } while (0)
819#endif
820
821#ifndef ASM_OUTPUT_DWARF_ADDR_CONST
822#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
648ebe7b
RS
823 do { \
824 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
825 output_addr_const ((FILE), (RTX)); \
826 fputc ('\n', (FILE)); \
827 } while (0)
340ccaab
TW
828#endif
829
830#ifndef ASM_OUTPUT_DWARF_REF
831#define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
2e494f70 832 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
340ccaab
TW
833 assemble_name (FILE, LABEL); \
834 fprintf (FILE, "\n"); \
835 } while (0)
836#endif
837
838#ifndef ASM_OUTPUT_DWARF_DATA1
839#define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
648ebe7b 840 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
340ccaab
TW
841#endif
842
843#ifndef ASM_OUTPUT_DWARF_DATA2
844#define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
2e494f70 845 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
340ccaab
TW
846#endif
847
848#ifndef ASM_OUTPUT_DWARF_DATA4
849#define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
2e494f70 850 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
340ccaab
TW
851#endif
852
853#ifndef ASM_OUTPUT_DWARF_DATA8
854#define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
855 do { \
856 if (WORDS_BIG_ENDIAN) \
857 { \
2e494f70
RS
858 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
859 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
340ccaab
TW
860 } \
861 else \
862 { \
2e494f70
RS
863 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
864 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
340ccaab
TW
865 } \
866 } while (0)
867#endif
868
74153f8e
AM
869/* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
870 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
871 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
872 defined, we call it, then issue the line feed. If not, we supply a
873 default defintion of calling ASM_OUTPUT_ASCII */
874
340ccaab 875#ifndef ASM_OUTPUT_DWARF_STRING
74153f8e 876#define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
340ccaab 877 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
74153f8e
AM
878#else
879#define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
880 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
340ccaab 881#endif
74153f8e 882
340ccaab
TW
883\f
884/************************ general utility functions **************************/
885
24e75411 886inline static int
648ebe7b
RS
887is_pseudo_reg (rtl)
888 register rtx rtl;
889{
890 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
891 || ((GET_CODE (rtl) == SUBREG)
892 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
893}
894
24e75411 895inline static tree
69d6b01d
RS
896type_main_variant (type)
897 register tree type;
898{
899 type = TYPE_MAIN_VARIANT (type);
900
901 /* There really should be only one main variant among any group of variants
902 of a given type (and all of the MAIN_VARIANT values for all members of
903 the group should point to that one type) but sometimes the C front-end
904 messes this up for array types, so we work around that bug here. */
905
906 if (TREE_CODE (type) == ARRAY_TYPE)
907 {
908 while (type != TYPE_MAIN_VARIANT (type))
909 type = TYPE_MAIN_VARIANT (type);
910 }
911
912 return type;
913}
914
c7d6dca2
RS
915/* Return non-zero if the given type node represents a tagged type. */
916
24e75411 917inline static int
c7d6dca2
RS
918is_tagged_type (type)
919 register tree type;
920{
921 register enum tree_code code = TREE_CODE (type);
922
c1b98a95
RK
923 return (code == RECORD_TYPE || code == UNION_TYPE
924 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
c7d6dca2
RS
925}
926
340ccaab 927static char *
9a631e8e 928dwarf_tag_name (tag)
340ccaab
TW
929 register unsigned tag;
930{
931 switch (tag)
932 {
9a631e8e
RS
933 case TAG_padding: return "TAG_padding";
934 case TAG_array_type: return "TAG_array_type";
935 case TAG_class_type: return "TAG_class_type";
936 case TAG_entry_point: return "TAG_entry_point";
937 case TAG_enumeration_type: return "TAG_enumeration_type";
938 case TAG_formal_parameter: return "TAG_formal_parameter";
939 case TAG_global_subroutine: return "TAG_global_subroutine";
940 case TAG_global_variable: return "TAG_global_variable";
941 case TAG_label: return "TAG_label";
942 case TAG_lexical_block: return "TAG_lexical_block";
943 case TAG_local_variable: return "TAG_local_variable";
944 case TAG_member: return "TAG_member";
945 case TAG_pointer_type: return "TAG_pointer_type";
946 case TAG_reference_type: return "TAG_reference_type";
947 case TAG_compile_unit: return "TAG_compile_unit";
948 case TAG_string_type: return "TAG_string_type";
949 case TAG_structure_type: return "TAG_structure_type";
950 case TAG_subroutine: return "TAG_subroutine";
951 case TAG_subroutine_type: return "TAG_subroutine_type";
952 case TAG_typedef: return "TAG_typedef";
953 case TAG_union_type: return "TAG_union_type";
340ccaab 954 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
9a631e8e
RS
955 case TAG_variant: return "TAG_variant";
956 case TAG_common_block: return "TAG_common_block";
957 case TAG_common_inclusion: return "TAG_common_inclusion";
958 case TAG_inheritance: return "TAG_inheritance";
959 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
960 case TAG_module: return "TAG_module";
961 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
962 case TAG_set_type: return "TAG_set_type";
963 case TAG_subrange_type: return "TAG_subrange_type";
964 case TAG_with_stmt: return "TAG_with_stmt";
965
966 /* GNU extensions. */
967
968 case TAG_format_label: return "TAG_format_label";
969 case TAG_namelist: return "TAG_namelist";
970 case TAG_function_template: return "TAG_function_template";
971 case TAG_class_template: return "TAG_class_template";
972
04077c53 973 default: return "TAG_<unknown>";
340ccaab
TW
974 }
975}
976
977static char *
9a631e8e 978dwarf_attr_name (attr)
340ccaab
TW
979 register unsigned attr;
980{
981 switch (attr)
982 {
9a631e8e
RS
983 case AT_sibling: return "AT_sibling";
984 case AT_location: return "AT_location";
985 case AT_name: return "AT_name";
986 case AT_fund_type: return "AT_fund_type";
987 case AT_mod_fund_type: return "AT_mod_fund_type";
988 case AT_user_def_type: return "AT_user_def_type";
989 case AT_mod_u_d_type: return "AT_mod_u_d_type";
990 case AT_ordering: return "AT_ordering";
991 case AT_subscr_data: return "AT_subscr_data";
992 case AT_byte_size: return "AT_byte_size";
993 case AT_bit_offset: return "AT_bit_offset";
994 case AT_bit_size: return "AT_bit_size";
995 case AT_element_list: return "AT_element_list";
996 case AT_stmt_list: return "AT_stmt_list";
997 case AT_low_pc: return "AT_low_pc";
998 case AT_high_pc: return "AT_high_pc";
999 case AT_language: return "AT_language";
1000 case AT_member: return "AT_member";
1001 case AT_discr: return "AT_discr";
1002 case AT_discr_value: return "AT_discr_value";
1003 case AT_string_length: return "AT_string_length";
1004 case AT_common_reference: return "AT_common_reference";
1005 case AT_comp_dir: return "AT_comp_dir";
1006 case AT_const_value_string: return "AT_const_value_string";
1007 case AT_const_value_data2: return "AT_const_value_data2";
1008 case AT_const_value_data4: return "AT_const_value_data4";
1009 case AT_const_value_data8: return "AT_const_value_data8";
1010 case AT_const_value_block2: return "AT_const_value_block2";
340ccaab 1011 case AT_const_value_block4: return "AT_const_value_block4";
9a631e8e
RS
1012 case AT_containing_type: return "AT_containing_type";
1013 case AT_default_value_addr: return "AT_default_value_addr";
1014 case AT_default_value_data2: return "AT_default_value_data2";
1015 case AT_default_value_data4: return "AT_default_value_data4";
1016 case AT_default_value_data8: return "AT_default_value_data8";
1017 case AT_default_value_string: return "AT_default_value_string";
1018 case AT_friends: return "AT_friends";
1019 case AT_inline: return "AT_inline";
1020 case AT_is_optional: return "AT_is_optional";
1021 case AT_lower_bound_ref: return "AT_lower_bound_ref";
1022 case AT_lower_bound_data2: return "AT_lower_bound_data2";
1023 case AT_lower_bound_data4: return "AT_lower_bound_data4";
1024 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1025 case AT_private: return "AT_private";
1026 case AT_producer: return "AT_producer";
1027 case AT_program: return "AT_program";
1028 case AT_protected: return "AT_protected";
1029 case AT_prototyped: return "AT_prototyped";
1030 case AT_public: return "AT_public";
1031 case AT_pure_virtual: return "AT_pure_virtual";
1032 case AT_return_addr: return "AT_return_addr";
04077c53 1033 case AT_abstract_origin: return "AT_abstract_origin";
9a631e8e
RS
1034 case AT_start_scope: return "AT_start_scope";
1035 case AT_stride_size: return "AT_stride_size";
1036 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1037 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1038 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1039 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1040 case AT_virtual: return "AT_virtual";
1041
1042 /* GNU extensions */
1043
1044 case AT_sf_names: return "AT_sf_names";
1045 case AT_src_info: return "AT_src_info";
1046 case AT_mac_info: return "AT_mac_info";
1047 case AT_src_coords: return "AT_src_coords";
2a819d04
TW
1048 case AT_body_begin: return "AT_body_begin";
1049 case AT_body_end: return "AT_body_end";
9a631e8e 1050
04077c53 1051 default: return "AT_<unknown>";
340ccaab
TW
1052 }
1053}
1054
1055static char *
9a631e8e 1056dwarf_stack_op_name (op)
340ccaab
TW
1057 register unsigned op;
1058{
1059 switch (op)
1060 {
1061 case OP_REG: return "OP_REG";
1062 case OP_BASEREG: return "OP_BASEREG";
1063 case OP_ADDR: return "OP_ADDR";
1064 case OP_CONST: return "OP_CONST";
1065 case OP_DEREF2: return "OP_DEREF2";
1066 case OP_DEREF4: return "OP_DEREF4";
1067 case OP_ADD: return "OP_ADD";
04077c53 1068 default: return "OP_<unknown>";
340ccaab
TW
1069 }
1070}
1071
1072static char *
9a631e8e 1073dwarf_typemod_name (mod)
340ccaab
TW
1074 register unsigned mod;
1075{
1076 switch (mod)
1077 {
1078 case MOD_pointer_to: return "MOD_pointer_to";
1079 case MOD_reference_to: return "MOD_reference_to";
1080 case MOD_const: return "MOD_const";
1081 case MOD_volatile: return "MOD_volatile";
04077c53 1082 default: return "MOD_<unknown>";
340ccaab
TW
1083 }
1084}
1085
1086static char *
9a631e8e 1087dwarf_fmt_byte_name (fmt)
340ccaab
TW
1088 register unsigned fmt;
1089{
1090 switch (fmt)
1091 {
1092 case FMT_FT_C_C: return "FMT_FT_C_C";
1093 case FMT_FT_C_X: return "FMT_FT_C_X";
1094 case FMT_FT_X_C: return "FMT_FT_X_C";
1095 case FMT_FT_X_X: return "FMT_FT_X_X";
1096 case FMT_UT_C_C: return "FMT_UT_C_C";
1097 case FMT_UT_C_X: return "FMT_UT_C_X";
1098 case FMT_UT_X_C: return "FMT_UT_X_C";
1099 case FMT_UT_X_X: return "FMT_UT_X_X";
1100 case FMT_ET: return "FMT_ET";
04077c53 1101 default: return "FMT_<unknown>";
340ccaab
TW
1102 }
1103}
461b77c8 1104
340ccaab 1105static char *
9a631e8e 1106dwarf_fund_type_name (ft)
340ccaab
TW
1107 register unsigned ft;
1108{
1109 switch (ft)
1110 {
1111 case FT_char: return "FT_char";
1112 case FT_signed_char: return "FT_signed_char";
1113 case FT_unsigned_char: return "FT_unsigned_char";
1114 case FT_short: return "FT_short";
1115 case FT_signed_short: return "FT_signed_short";
1116 case FT_unsigned_short: return "FT_unsigned_short";
1117 case FT_integer: return "FT_integer";
1118 case FT_signed_integer: return "FT_signed_integer";
1119 case FT_unsigned_integer: return "FT_unsigned_integer";
1120 case FT_long: return "FT_long";
1121 case FT_signed_long: return "FT_signed_long";
1122 case FT_unsigned_long: return "FT_unsigned_long";
1123 case FT_pointer: return "FT_pointer";
1124 case FT_float: return "FT_float";
1125 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1126 case FT_ext_prec_float: return "FT_ext_prec_float";
1127 case FT_complex: return "FT_complex";
1128 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1129 case FT_void: return "FT_void";
1130 case FT_boolean: return "FT_boolean";
9a631e8e
RS
1131 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1132 case FT_label: return "FT_label";
1133
1134 /* GNU extensions. */
1135
340ccaab
TW
1136 case FT_long_long: return "FT_long_long";
1137 case FT_signed_long_long: return "FT_signed_long_long";
1138 case FT_unsigned_long_long: return "FT_unsigned_long_long";
9a631e8e
RS
1139
1140 case FT_int8: return "FT_int8";
1141 case FT_signed_int8: return "FT_signed_int8";
1142 case FT_unsigned_int8: return "FT_unsigned_int8";
1143 case FT_int16: return "FT_int16";
1144 case FT_signed_int16: return "FT_signed_int16";
1145 case FT_unsigned_int16: return "FT_unsigned_int16";
1146 case FT_int32: return "FT_int32";
1147 case FT_signed_int32: return "FT_signed_int32";
1148 case FT_unsigned_int32: return "FT_unsigned_int32";
1149 case FT_int64: return "FT_int64";
1150 case FT_signed_int64: return "FT_signed_int64";
c21ee927 1151 case FT_unsigned_int64: return "FT_unsigned_int64";
9a631e8e
RS
1152
1153 case FT_real32: return "FT_real32";
1154 case FT_real64: return "FT_real64";
1155 case FT_real96: return "FT_real96";
1156 case FT_real128: return "FT_real128";
1157
cb712ad4 1158 default: return "FT_<unknown>";
340ccaab
TW
1159 }
1160}
cb712ad4
RS
1161
1162/* Determine the "ultimate origin" of a decl. The decl may be an
1163 inlined instance of an inlined instance of a decl which is local
1164 to an inline function, so we have to trace all of the way back
1165 through the origin chain to find out what sort of node actually
1166 served as the original seed for the given block. */
1167
1168static tree
1169decl_ultimate_origin (decl)
1170 register tree decl;
1171{
02e24c7a
MM
1172#ifdef ENABLE_CHECKING
1173 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1174 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1175 most distant ancestor, this should never happen. */
1176 abort ();
1177#endif
cb712ad4 1178
02e24c7a 1179 return DECL_ABSTRACT_ORIGIN (decl);
cb712ad4
RS
1180}
1181
ece0ca60
RS
1182/* Determine the "ultimate origin" of a block. The block may be an
1183 inlined instance of an inlined instance of a block which is local
1184 to an inline function, so we have to trace all of the way back
1185 through the origin chain to find out what sort of node actually
1186 served as the original seed for the given block. */
1187
1188static tree
1189block_ultimate_origin (block)
1190 register tree block;
1191{
1192 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1193
1194 if (immediate_origin == NULL)
1195 return NULL;
1196 else
1197 {
1198 register tree ret_val;
1199 register tree lookahead = immediate_origin;
1200
1201 do
1202 {
1203 ret_val = lookahead;
1204 lookahead = (TREE_CODE (ret_val) == BLOCK)
1205 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1206 : NULL;
1207 }
1208 while (lookahead != NULL && lookahead != ret_val);
1209 return ret_val;
1210 }
1211}
1212
a94dbf2c
JM
1213/* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1214 of a virtual function may refer to a base class, so we check the 'this'
1215 parameter. */
1216
1217static tree
1218decl_class_context (decl)
1219 tree decl;
1220{
1221 tree context = NULL_TREE;
1222 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1223 context = DECL_CONTEXT (decl);
1224 else
1225 context = TYPE_MAIN_VARIANT
1226 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1227
1228 if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
1229 context = NULL_TREE;
1230
1231 return context;
1232}
1233
487a6e06 1234#if 0
cb712ad4
RS
1235static void
1236output_unsigned_leb128 (value)
1237 register unsigned long value;
1238{
1239 register unsigned long orig_value = value;
1240
1241 do
1242 {
1243 register unsigned byte = (value & 0x7f);
1244
1245 value >>= 7;
1246 if (value != 0) /* more bytes to follow */
1247 byte |= 0x80;
1248 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
c773653b 1249 if (flag_debug_asm && value == 0)
5e9defae 1250 fprintf (asm_out_file, "\t%s ULEB128 number - value = %lu",
cb712ad4
RS
1251 ASM_COMMENT_START, orig_value);
1252 fputc ('\n', asm_out_file);
1253 }
1254 while (value != 0);
1255}
1256
1257static void
1258output_signed_leb128 (value)
1259 register long value;
1260{
1261 register long orig_value = value;
1262 register int negative = (value < 0);
1263 register int more;
1264
1265 do
1266 {
1267 register unsigned byte = (value & 0x7f);
1268
1269 value >>= 7;
1270 if (negative)
1271 value |= 0xfe000000; /* manually sign extend */
1272 if (((value == 0) && ((byte & 0x40) == 0))
1273 || ((value == -1) && ((byte & 0x40) == 1)))
1274 more = 0;
1275 else
1276 {
1277 byte |= 0x80;
1278 more = 1;
1279 }
1280 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
c773653b 1281 if (flag_debug_asm && more == 0)
5e9defae 1282 fprintf (asm_out_file, "\t%s SLEB128 number - value = %ld",
cb712ad4
RS
1283 ASM_COMMENT_START, orig_value);
1284 fputc ('\n', asm_out_file);
1285 }
1286 while (more);
1287}
487a6e06 1288#endif
340ccaab
TW
1289\f
1290/**************** utility functions for attribute functions ******************/
1291
04077c53 1292/* Given a pointer to a BLOCK node return non-zero if (and only if) the
3abacf02
RS
1293 node in question represents the outermost pair of curly braces (i.e.
1294 the "body block") of a function or method.
1295
1296 For any BLOCK node representing a "body block" of a function or method,
1297 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1298 which represents the outermost (function) scope for the function or
1299 method (i.e. the one which includes the formal parameters). The
1300 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1301 FUNCTION_DECL node.
04077c53
RS
1302*/
1303
461b77c8 1304static inline int
04077c53
RS
1305is_body_block (stmt)
1306 register tree stmt;
1307{
3abacf02
RS
1308 if (TREE_CODE (stmt) == BLOCK)
1309 {
1310 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1311
1312 if (TREE_CODE (parent) == BLOCK)
1313 {
1314 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
04077c53 1315
3abacf02
RS
1316 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1317 return 1;
1318 }
1319 }
1320 return 0;
04077c53
RS
1321}
1322
340ccaab
TW
1323/* Given a pointer to a tree node for some type, return a Dwarf fundamental
1324 type code for the given type.
1325
1326 This routine must only be called for GCC type nodes that correspond to
1327 Dwarf fundamental types.
1328
1329 The current Dwarf draft specification calls for Dwarf fundamental types
1330 to accurately reflect the fact that a given type was either a "plain"
3f7cc57a 1331 integral type or an explicitly "signed" integral type. Unfortunately,
340ccaab
TW
1332 we can't always do this, because GCC may already have thrown away the
1333 information about the precise way in which the type was originally
1334 specified, as in:
1335
b083f44d 1336 typedef signed int my_type;
340ccaab 1337
b083f44d 1338 struct s { my_type f; };
340ccaab
TW
1339
1340 Since we may be stuck here without enought information to do exactly
1341 what is called for in the Dwarf draft specification, we do the best
1342 that we can under the circumstances and always use the "plain" integral
1343 fundamental type codes for int, short, and long types. That's probably
1344 good enough. The additional accuracy called for in the current DWARF
1345 draft specification is probably never even useful in practice. */
1346
1347static int
1348fundamental_type_code (type)
1349 register tree type;
1350{
1351 if (TREE_CODE (type) == ERROR_MARK)
1352 return 0;
1353
1354 switch (TREE_CODE (type))
1355 {
1356 case ERROR_MARK:
1357 return FT_void;
1358
1359 case VOID_TYPE:
1360 return FT_void;
1361
1362 case INTEGER_TYPE:
1363 /* Carefully distinguish all the standard types of C,
1364 without messing up if the language is not C.
1365 Note that we check only for the names that contain spaces;
1366 other names might occur by coincidence in other languages. */
1367 if (TYPE_NAME (type) != 0
1368 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1369 && DECL_NAME (TYPE_NAME (type)) != 0
1370 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1371 {
1372 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1373
1374 if (!strcmp (name, "unsigned char"))
1375 return FT_unsigned_char;
1376 if (!strcmp (name, "signed char"))
1377 return FT_signed_char;
1378 if (!strcmp (name, "unsigned int"))
1379 return FT_unsigned_integer;
1380 if (!strcmp (name, "short int"))
1381 return FT_short;
1382 if (!strcmp (name, "short unsigned int"))
1383 return FT_unsigned_short;
1384 if (!strcmp (name, "long int"))
1385 return FT_long;
1386 if (!strcmp (name, "long unsigned int"))
1387 return FT_unsigned_long;
1388 if (!strcmp (name, "long long int"))
1389 return FT_long_long; /* Not grok'ed by svr4 SDB */
1390 if (!strcmp (name, "long long unsigned int"))
1391 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1392 }
1393
1394 /* Most integer types will be sorted out above, however, for the
1395 sake of special `array index' integer types, the following code
1396 is also provided. */
1397
1398 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1399 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1400
1401 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1402 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1403
1404 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1405 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1406
1407 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1408 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1409
1410 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1411 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1412
e139d296
AO
1413 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1414 if (TYPE_PRECISION (type) == 1)
1415 return FT_boolean;
1416
340ccaab
TW
1417 abort ();
1418
1419 case REAL_TYPE:
1420 /* Carefully distinguish all the standard types of C,
1421 without messing up if the language is not C. */
1422 if (TYPE_NAME (type) != 0
1423 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1424 && DECL_NAME (TYPE_NAME (type)) != 0
1425 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1426 {
1427 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1428
1429 /* Note that here we can run afowl of a serious bug in "classic"
1430 svr4 SDB debuggers. They don't seem to understand the
1431 FT_ext_prec_float type (even though they should). */
1432
1433 if (!strcmp (name, "long double"))
1434 return FT_ext_prec_float;
1435 }
1436
1437 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
33368c84
R
1438 {
1439 /* On the SH, when compiling with -m3e or -m4-single-only, both
1440 float and double are 32 bits. But since the debugger doesn't
1441 know about the subtarget, it always thinks double is 64 bits.
1442 So we have to tell the debugger that the type is float to
1443 make the output of the 'print' command etc. readable. */
1444 if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
f0da48d2 1445 return FT_float;
33368c84
R
1446 return FT_dbl_prec_float;
1447 }
340ccaab
TW
1448 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1449 return FT_float;
1450
1451 /* Note that here we can run afowl of a serious bug in "classic"
1452 svr4 SDB debuggers. They don't seem to understand the
1453 FT_ext_prec_float type (even though they should). */
1454
1455 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1456 return FT_ext_prec_float;
1457 abort ();
1458
1459 case COMPLEX_TYPE:
1460 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1461
1462 case CHAR_TYPE:
1463 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1464
1465 case BOOLEAN_TYPE:
1466 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1467
1468 default:
1469 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1470 }
1471 return 0;
1472}
1473\f
1474/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1475 the Dwarf "root" type for the given input type. The Dwarf "root" type
1476 of a given type is generally the same as the given type, except that if
1477 the given type is a pointer or reference type, then the root type of
1478 the given type is the root type of the "basis" type for the pointer or
1479 reference type. (This definition of the "root" type is recursive.)
1480 Also, the root type of a `const' qualified type or a `volatile'
1481 qualified type is the root type of the given type without the
1482 qualifiers. */
1483
1484static tree
b1357021 1485root_type_1 (type, count)
340ccaab 1486 register tree type;
b1357021 1487 register int count;
340ccaab 1488{
b1357021
JW
1489 /* Give up after searching 1000 levels, in case this is a recursive
1490 pointer type. Such types are possible in Ada, but it is not possible
1491 to represent them in DWARF1 debug info. */
1492 if (count > 1000)
340ccaab
TW
1493 return error_mark_node;
1494
1495 switch (TREE_CODE (type))
1496 {
1497 case ERROR_MARK:
1498 return error_mark_node;
1499
1500 case POINTER_TYPE:
1501 case REFERENCE_TYPE:
b1357021 1502 return root_type_1 (TREE_TYPE (type), count+1);
340ccaab
TW
1503
1504 default:
b1357021 1505 return type;
340ccaab
TW
1506 }
1507}
1508
b1357021
JW
1509static tree
1510root_type (type)
1511 register tree type;
1512{
1513 type = root_type_1 (type, 0);
1514 if (type != error_mark_node)
1515 type = type_main_variant (type);
1516 return type;
1517}
1518
340ccaab
TW
1519/* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1520 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1521
1522static void
b1357021 1523write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
340ccaab
TW
1524 register tree type;
1525 register int decl_const;
1526 register int decl_volatile;
b1357021 1527 register int count;
340ccaab
TW
1528{
1529 if (TREE_CODE (type) == ERROR_MARK)
1530 return;
1531
b1357021
JW
1532 /* Give up after searching 1000 levels, in case this is a recursive
1533 pointer type. Such types are possible in Ada, but it is not possible
1534 to represent them in DWARF1 debug info. */
1535 if (count > 1000)
1536 return;
1537
340ccaab
TW
1538 if (TYPE_READONLY (type) || decl_const)
1539 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1540 if (TYPE_VOLATILE (type) || decl_volatile)
1541 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1542 switch (TREE_CODE (type))
1543 {
1544 case POINTER_TYPE:
1545 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
b1357021 1546 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
340ccaab
TW
1547 return;
1548
1549 case REFERENCE_TYPE:
1550 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
b1357021 1551 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
340ccaab
TW
1552 return;
1553
1554 case ERROR_MARK:
1555 default:
1556 return;
1557 }
1558}
b1357021
JW
1559
1560static void
1561write_modifier_bytes (type, decl_const, decl_volatile)
1562 register tree type;
1563 register int decl_const;
1564 register int decl_volatile;
1565{
1566 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1567}
340ccaab
TW
1568\f
1569/* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1570 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1571
461b77c8 1572static inline int
340ccaab
TW
1573type_is_fundamental (type)
1574 register tree type;
1575{
1576 switch (TREE_CODE (type))
1577 {
1578 case ERROR_MARK:
1579 case VOID_TYPE:
1580 case INTEGER_TYPE:
1581 case REAL_TYPE:
1582 case COMPLEX_TYPE:
1583 case BOOLEAN_TYPE:
1584 case CHAR_TYPE:
1585 return 1;
1586
1587 case SET_TYPE:
1588 case ARRAY_TYPE:
1589 case RECORD_TYPE:
1590 case UNION_TYPE:
c1b98a95 1591 case QUAL_UNION_TYPE:
340ccaab
TW
1592 case ENUMERAL_TYPE:
1593 case FUNCTION_TYPE:
1594 case METHOD_TYPE:
1595 case POINTER_TYPE:
1596 case REFERENCE_TYPE:
340ccaab
TW
1597 case FILE_TYPE:
1598 case OFFSET_TYPE:
1599 case LANG_TYPE:
1600 return 0;
1601
1602 default:
1603 abort ();
1604 }
1605 return 0;
1606}
1607
04077c53
RS
1608/* Given a pointer to some ..._DECL tree node, generate an assembly language
1609 equate directive which will associate a symbolic name with the current DIE.
1610
1611 The name used is an artificial label generated from the DECL_UID number
1612 associated with the given decl node. The name it gets equated to is the
1613 symbolic label that we (previously) output at the start of the DIE that
1614 we are currently generating.
1615
1616 Calling this function while generating some "decl related" form of DIE
1617 makes it possible to later refer to the DIE which represents the given
1618 decl simply by re-generating the symbolic name from the ..._DECL node's
1619 UID number. */
1620
1621static void
1622equate_decl_number_to_die_number (decl)
1623 register tree decl;
1624{
1625 /* In the case where we are generating a DIE for some ..._DECL node
1626 which represents either some inline function declaration or some
1627 entity declared within an inline function declaration/definition,
1628 setup a symbolic name for the current DIE so that we have a name
1629 for this DIE that we can easily refer to later on within
1630 AT_abstract_origin attributes. */
1631
1632 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1633 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1634
1635 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1636 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1637 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1638}
1639
340ccaab 1640/* Given a pointer to some ..._TYPE tree node, generate an assembly language
04077c53 1641 equate directive which will associate a symbolic name with the current DIE.
340ccaab
TW
1642
1643 The name used is an artificial label generated from the TYPE_UID number
1644 associated with the given type node. The name it gets equated to is the
1645 symbolic label that we (previously) output at the start of the DIE that
1646 we are currently generating.
1647
1648 Calling this function while generating some "type related" form of DIE
1649 makes it easy to later refer to the DIE which represents the given type
1650 simply by re-generating the alternative name from the ..._TYPE node's
1651 UID number. */
1652
461b77c8 1653static inline void
340ccaab
TW
1654equate_type_number_to_die_number (type)
1655 register tree type;
1656{
1657 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1658 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1659
1660 /* We are generating a DIE to represent the main variant of this type
1661 (i.e the type without any const or volatile qualifiers) so in order
1662 to get the equate to come out right, we need to get the main variant
1663 itself here. */
1664
69d6b01d 1665 type = type_main_variant (type);
340ccaab
TW
1666
1667 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1668 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1669 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1670}
1671
7f7429ca
RS
1672static void
1673output_reg_number (rtl)
1674 register rtx rtl;
1675{
1676 register unsigned regno = REGNO (rtl);
1677
1678 if (regno >= FIRST_PSEUDO_REGISTER)
1679 {
1680 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1681 regno);
1682 regno = 0;
1683 }
1684 fprintf (asm_out_file, "\t%s\t0x%x",
1685 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
c773653b 1686 if (flag_debug_asm)
7f7429ca
RS
1687 {
1688 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1689 PRINT_REG (rtl, 0, asm_out_file);
1690 }
1691 fputc ('\n', asm_out_file);
1692}
1693
340ccaab
TW
1694/* The following routine is a nice and simple transducer. It converts the
1695 RTL for a variable or parameter (resident in memory) into an equivalent
1696 Dwarf representation of a mechanism for getting the address of that same
1697 variable onto the top of a hypothetical "address evaluation" stack.
1698
1699 When creating memory location descriptors, we are effectively trans-
1700 forming the RTL for a memory-resident object into its Dwarf postfix
1701 expression equivalent. This routine just recursively descends an
1702 RTL tree, turning it into Dwarf postfix code as it goes. */
1703
1704static void
1705output_mem_loc_descriptor (rtl)
1706 register rtx rtl;
1707{
1708 /* Note that for a dynamically sized array, the location we will
1709 generate a description of here will be the lowest numbered location
1710 which is actually within the array. That's *not* necessarily the
1711 same as the zeroth element of the array. */
1712
1713 switch (GET_CODE (rtl))
1714 {
1715 case SUBREG:
1716
1717 /* The case of a subreg may arise when we have a local (register)
1718 variable or a formal (register) parameter which doesn't quite
1719 fill up an entire register. For now, just assume that it is
1720 legitimate to make the Dwarf info refer to the whole register
1721 which contains the given subreg. */
1722
1723 rtl = XEXP (rtl, 0);
1724 /* Drop thru. */
1725
1726 case REG:
1727
1728 /* Whenever a register number forms a part of the description of
1729 the method for calculating the (dynamic) address of a memory
52cdd5e5 1730 resident object, DWARF rules require the register number to
340ccaab
TW
1731 be referred to as a "base register". This distinction is not
1732 based in any way upon what category of register the hardware
1733 believes the given register belongs to. This is strictly
8c24a2ce 1734 DWARF terminology we're dealing with here.
28b039e3
RS
1735
1736 Note that in cases where the location of a memory-resident data
1737 object could be expressed as:
1738
1739 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1740
1741 the actual DWARF location descriptor that we generate may just
1742 be OP_BASEREG (basereg). This may look deceptively like the
1743 object in question was allocated to a register (rather than
1744 in memory) so DWARF consumers need to be aware of the subtle
52cdd5e5 1745 distinction between OP_REG and OP_BASEREG. */
340ccaab
TW
1746
1747 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
7f7429ca 1748 output_reg_number (rtl);
340ccaab
TW
1749 break;
1750
1751 case MEM:
1752 output_mem_loc_descriptor (XEXP (rtl, 0));
1753 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1754 break;
1755
1756 case CONST:
1757 case SYMBOL_REF:
1758 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1759 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1760 break;
1761
1762 case PLUS:
1763 output_mem_loc_descriptor (XEXP (rtl, 0));
1764 output_mem_loc_descriptor (XEXP (rtl, 1));
1765 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1766 break;
1767
1768 case CONST_INT:
1769 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1770 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1771 break;
1772
c21ee927
JW
1773 case MULT:
1774 /* If a pseudo-reg is optimized away, it is possible for it to
1775 be replaced with a MEM containing a multiply. Use a GNU extension
1776 to describe it. */
1777 output_mem_loc_descriptor (XEXP (rtl, 0));
1778 output_mem_loc_descriptor (XEXP (rtl, 1));
1779 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1780 break;
1781
340ccaab
TW
1782 default:
1783 abort ();
1784 }
1785}
1786
1787/* Output a proper Dwarf location descriptor for a variable or parameter
1788 which is either allocated in a register or in a memory location. For
1789 a register, we just generate an OP_REG and the register number. For a
1790 memory location we provide a Dwarf postfix expression describing how to
1791 generate the (dynamic) address of the object onto the address stack. */
1792
1793static void
1794output_loc_descriptor (rtl)
1795 register rtx rtl;
1796{
1797 switch (GET_CODE (rtl))
1798 {
1799 case SUBREG:
1800
1801 /* The case of a subreg may arise when we have a local (register)
1802 variable or a formal (register) parameter which doesn't quite
1803 fill up an entire register. For now, just assume that it is
1804 legitimate to make the Dwarf info refer to the whole register
1805 which contains the given subreg. */
1806
1807 rtl = XEXP (rtl, 0);
1808 /* Drop thru. */
1809
1810 case REG:
1811 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
7f7429ca 1812 output_reg_number (rtl);
340ccaab
TW
1813 break;
1814
1815 case MEM:
1816 output_mem_loc_descriptor (XEXP (rtl, 0));
1817 break;
1818
1819 default:
1820 abort (); /* Should never happen */
1821 }
1822}
1823
1824/* Given a tree node describing an array bound (either lower or upper)
1825 output a representation for that bound. */
1826
1827static void
1828output_bound_representation (bound, dim_num, u_or_l)
1829 register tree bound;
1830 register unsigned dim_num; /* For multi-dimensional arrays. */
1831 register char u_or_l; /* Designates upper or lower bound. */
1832{
1833 switch (TREE_CODE (bound))
1834 {
1835
56b3408d
RK
1836 case ERROR_MARK:
1837 return;
340ccaab
TW
1838
1839 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1840
56b3408d
RK
1841 case INTEGER_CST:
1842 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1843 (unsigned) TREE_INT_CST_LOW (bound));
1844 break;
1845
1846 default:
340ccaab
TW
1847
1848 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
56b3408d
RK
1849 SAVE_EXPR nodes, in which case we can do something, or as
1850 an expression, which we cannot represent. */
1851 {
1852 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1853 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1854
1855 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1856 current_dienum, dim_num, u_or_l);
1857
1858 sprintf (end_label, BOUND_END_LABEL_FMT,
1859 current_dienum, dim_num, u_or_l);
1860
1861 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1862 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1863
1864 /* If optimization is turned on, the SAVE_EXPRs that describe
1865 how to access the upper bound values are essentially bogus.
1866 They only describe (at best) how to get at these values at
1867 the points in the generated code right after they have just
1868 been computed. Worse yet, in the typical case, the upper
1869 bound values will not even *be* computed in the optimized
1870 code, so these SAVE_EXPRs are entirely bogus.
1871
1872 In order to compensate for this fact, we check here to see
1873 if optimization is enabled, and if so, we effectively create
1874 an empty location description for the (unknown and unknowable)
1875 upper bound.
1876
1877 This should not cause too much trouble for existing (stupid?)
1878 debuggers because they have to deal with empty upper bounds
1879 location descriptions anyway in order to be able to deal with
1880 incomplete array types.
1881
1882 Of course an intelligent debugger (GDB?) should be able to
1883 comprehend that a missing upper bound specification in a
1884 array type used for a storage class `auto' local array variable
1885 indicates that the upper bound is both unknown (at compile-
1886 time) and unknowable (at run-time) due to optimization. */
1887
1888 if (! optimize)
1889 {
1890 while (TREE_CODE (bound) == NOP_EXPR
1891 || TREE_CODE (bound) == CONVERT_EXPR)
1892 bound = TREE_OPERAND (bound, 0);
340ccaab 1893
4513a33c 1894 if (TREE_CODE (bound) == SAVE_EXPR)
56b3408d 1895 output_loc_descriptor
1914f5da 1896 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
56b3408d 1897 }
340ccaab 1898
56b3408d
RK
1899 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1900 }
1901 break;
340ccaab 1902
340ccaab
TW
1903 }
1904}
1905
1906/* Recursive function to output a sequence of value/name pairs for
1907 enumeration constants in reversed order. This is called from
1908 enumeration_type_die. */
1909
1910static void
1911output_enumeral_list (link)
1912 register tree link;
1913{
1914 if (link)
1915 {
1916 output_enumeral_list (TREE_CHAIN (link));
1917 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1918 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
74153f8e 1919 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab
TW
1920 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1921 }
1922}
1923
d4d4c5a8
RS
1924/* Given an unsigned value, round it up to the lowest multiple of `boundary'
1925 which is not less than the value itself. */
1926
461b77c8 1927static inline unsigned
d4d4c5a8
RS
1928ceiling (value, boundary)
1929 register unsigned value;
1930 register unsigned boundary;
1931{
1932 return (((value + boundary - 1) / boundary) * boundary);
1933}
1934
1935/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1936 pointer to the declared type for the relevant field variable, or return
1937 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1938
461b77c8 1939static inline tree
d4d4c5a8
RS
1940field_type (decl)
1941 register tree decl;
1942{
1943 register tree type;
1944
1945 if (TREE_CODE (decl) == ERROR_MARK)
1946 return integer_type_node;
1947
1948 type = DECL_BIT_FIELD_TYPE (decl);
1949 if (type == NULL)
1950 type = TREE_TYPE (decl);
1951 return type;
1952}
1953
1954/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1955 node, return the alignment in bits for the type, or else return
1956 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1957
461b77c8 1958static inline unsigned
d4d4c5a8
RS
1959simple_type_align_in_bits (type)
1960 register tree type;
1961{
1962 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1963}
1964
1965/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1966 node, return the size in bits for the type if it is a constant, or
1967 else return the alignment for the type if the type's size is not
1968 constant, or else return BITS_PER_WORD if the type actually turns out
1969 to be an ERROR_MARK node. */
1970
461b77c8 1971static inline unsigned
d4d4c5a8
RS
1972simple_type_size_in_bits (type)
1973 register tree type;
1974{
1975 if (TREE_CODE (type) == ERROR_MARK)
1976 return BITS_PER_WORD;
1977 else
1978 {
1979 register tree type_size_tree = TYPE_SIZE (type);
1980
1981 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1982 return TYPE_ALIGN (type);
1983
1984 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1985 }
1986}
1987
1988/* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1989 return the byte offset of the lowest addressed byte of the "containing
1990 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1991 mine what that offset is, either because the argument turns out to be a
1992 pointer to an ERROR_MARK node, or because the offset is actually variable.
1993 (We can't handle the latter case just yet.) */
1994
1995static unsigned
1996field_byte_offset (decl)
1997 register tree decl;
1998{
1999 register unsigned type_align_in_bytes;
2000 register unsigned type_align_in_bits;
2001 register unsigned type_size_in_bits;
2002 register unsigned object_offset_in_align_units;
2003 register unsigned object_offset_in_bits;
2004 register unsigned object_offset_in_bytes;
2005 register tree type;
2006 register tree bitpos_tree;
2007 register tree field_size_tree;
2008 register unsigned bitpos_int;
2009 register unsigned deepest_bitpos;
2010 register unsigned field_size_in_bits;
2011
2012 if (TREE_CODE (decl) == ERROR_MARK)
2013 return 0;
2014
2015 if (TREE_CODE (decl) != FIELD_DECL)
2016 abort ();
2017
2018 type = field_type (decl);
2019
2020 bitpos_tree = DECL_FIELD_BITPOS (decl);
2021 field_size_tree = DECL_SIZE (decl);
2022
2023 /* We cannot yet cope with fields whose positions or sizes are variable,
2024 so for now, when we see such things, we simply return 0. Someday,
2025 we may be able to handle such cases, but it will be damn difficult. */
2026
2027 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2028 return 0;
2029 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2030
2031 if (TREE_CODE (field_size_tree) != INTEGER_CST)
2032 return 0;
2033 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
2034
2035 type_size_in_bits = simple_type_size_in_bits (type);
2036
2037 type_align_in_bits = simple_type_align_in_bits (type);
2038 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2039
2040 /* Note that the GCC front-end doesn't make any attempt to keep track
2041 of the starting bit offset (relative to the start of the containing
2042 structure type) of the hypothetical "containing object" for a bit-
2043 field. Thus, when computing the byte offset value for the start of
2044 the "containing object" of a bit-field, we must deduce this infor-
2045 mation on our own.
2046
2047 This can be rather tricky to do in some cases. For example, handling
2048 the following structure type definition when compiling for an i386/i486
2049 target (which only aligns long long's to 32-bit boundaries) can be very
2050 tricky:
2051
2052 struct S {
2053 int field1;
2054 long long field2:31;
2055 };
2056
2057 Fortunately, there is a simple rule-of-thumb which can be used in such
2058 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2059 the structure shown above. It decides to do this based upon one simple
2060 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2061 taining object" for each bit-field at the first (i.e. lowest addressed)
2062 legitimate alignment boundary (based upon the required minimum alignment
2063 for the declared type of the field) which it can possibly use, subject
2064 to the condition that there is still enough available space remaining
2065 in the containing object (when allocated at the selected point) to
8008b228 2066 fully accommodate all of the bits of the bit-field itself.
d4d4c5a8
RS
2067
2068 This simple rule makes it obvious why GCC allocates 8 bytes for each
2069 object of the structure type shown above. When looking for a place to
2070 allocate the "containing object" for `field2', the compiler simply tries
2071 to allocate a 64-bit "containing object" at each successive 32-bit
2072 boundary (starting at zero) until it finds a place to allocate that 64-
2073 bit field such that at least 31 contiguous (and previously unallocated)
2074 bits remain within that selected 64 bit field. (As it turns out, for
2075 the example above, the compiler finds that it is OK to allocate the
2076 "containing object" 64-bit field at bit-offset zero within the
2077 structure type.)
2078
2079 Here we attempt to work backwards from the limited set of facts we're
2080 given, and we try to deduce from those facts, where GCC must have
2081 believed that the containing object started (within the structure type).
2082
2083 The value we deduce is then used (by the callers of this routine) to
2084 generate AT_location and AT_bit_offset attributes for fields (both
2085 bit-fields and, in the case of AT_location, regular fields as well).
2086 */
2087
2088 /* Figure out the bit-distance from the start of the structure to the
2089 "deepest" bit of the bit-field. */
2090 deepest_bitpos = bitpos_int + field_size_in_bits;
2091
2092 /* This is the tricky part. Use some fancy footwork to deduce where the
2093 lowest addressed bit of the containing object must be. */
2094 object_offset_in_bits
2095 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2096
2097 /* Compute the offset of the containing object in "alignment units". */
2098 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2099
2100 /* Compute the offset of the containing object in bytes. */
2101 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2102
d5042f7b
JW
2103 /* The above code assumes that the field does not cross an alignment
2104 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2105 or if the structure is packed. If this happens, then we get an object
2106 which starts after the bitfield, which means that the bit offset is
2107 negative. Gdb fails when given negative bit offsets. We avoid this
2108 by recomputing using the first bit of the bitfield. This will give
2109 us an object which does not completely contain the bitfield, but it
84d59453
JL
2110 will be aligned, and it will contain the first bit of the bitfield.
2111
2112 However, only do this for a BYTES_BIG_ENDIAN target. For a
2113 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2114 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2115 then we end up computing the object byte offset for the wrong word of the
2116 desired bitfield, which in turn causes the field offset to be negative
2117 in bit_offset_attribute. */
2118 if (BYTES_BIG_ENDIAN
2119 && object_offset_in_bits > bitpos_int)
d5042f7b
JW
2120 {
2121 deepest_bitpos = bitpos_int + 1;
2122 object_offset_in_bits
2123 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2124 object_offset_in_align_units = (object_offset_in_bits
2125 / type_align_in_bits);
2126 object_offset_in_bytes = (object_offset_in_align_units
2127 * type_align_in_bytes);
2128 }
2129
d4d4c5a8
RS
2130 return object_offset_in_bytes;
2131}
2132
340ccaab
TW
2133/****************************** attributes *********************************/
2134
2135/* The following routines are responsible for writing out the various types
2136 of Dwarf attributes (and any following data bytes associated with them).
2137 These routines are listed in order based on the numerical codes of their
2138 associated attributes. */
2139
2140/* Generate an AT_sibling attribute. */
2141
461b77c8 2142static inline void
340ccaab
TW
2143sibling_attribute ()
2144{
2145 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2146
2147 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2148 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2149 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2150}
2151
2152/* Output the form of location attributes suitable for whole variables and
2153 whole parameters. Note that the location attributes for struct fields
2154 are generated by the routine `data_member_location_attribute' below. */
2155
2156static void
2157location_attribute (rtl)
2158 register rtx rtl;
2159{
2160 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2161 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2162
2163 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2164 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2165 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2166 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2167 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2168
2169 /* Handle a special case. If we are about to output a location descriptor
2e494f70 2170 for a variable or parameter which has been optimized out of existence,
340ccaab 2171 don't do that. Instead we output a zero-length location descriptor
28b039e3
RS
2172 value as part of the location attribute.
2173
8008b228 2174 A variable which has been optimized out of existence will have a
28b039e3
RS
2175 DECL_RTL value which denotes a pseudo-reg.
2176
2177 Currently, in some rare cases, variables can have DECL_RTL values
2178 which look like (MEM (REG pseudo-reg#)). These cases are due to
2179 bugs elsewhere in the compiler. We treat such cases
8008b228 2180 as if the variable(s) in question had been optimized out of existence.
28b039e3
RS
2181
2182 Note that in all cases where we wish to express the fact that a
8008b228 2183 variable has been optimized out of existence, we do not simply
28b039e3
RS
2184 suppress the generation of the entire location attribute because
2185 the absence of a location attribute in certain kinds of DIEs is
2186 used to indicate something else entirely... i.e. that the DIE
9faa82d8 2187 represents an object declaration, but not a definition. So saith
28b039e3
RS
2188 the PLSIG.
2189 */
340ccaab 2190
28b039e3
RS
2191 if (! is_pseudo_reg (rtl)
2192 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
6a7a9f01 2193 output_loc_descriptor (rtl);
340ccaab
TW
2194
2195 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2196}
2197
2198/* Output the specialized form of location attribute used for data members
d4d4c5a8 2199 of struct and union types.
9a631e8e
RS
2200
2201 In the special case of a FIELD_DECL node which represents a bit-field,
2202 the "offset" part of this special location descriptor must indicate the
2203 distance in bytes from the lowest-addressed byte of the containing
2204 struct or union type to the lowest-addressed byte of the "containing
d4d4c5a8 2205 object" for the bit-field. (See the `field_byte_offset' function above.)
9a631e8e
RS
2206
2207 For any given bit-field, the "containing object" is a hypothetical
2208 object (of some integral or enum type) within which the given bit-field
2209 lives. The type of this hypothetical "containing object" is always the
d4d4c5a8
RS
2210 same as the declared type of the individual bit-field itself (for GCC
2211 anyway... the DWARF spec doesn't actually mandate this).
9a631e8e
RS
2212
2213 Note that it is the size (in bytes) of the hypothetical "containing
2214 object" which will be given in the AT_byte_size attribute for this
d4d4c5a8
RS
2215 bit-field. (See the `byte_size_attribute' function below.) It is
2216 also used when calculating the value of the AT_bit_offset attribute.
0f41302f 2217 (See the `bit_offset_attribute' function below.) */
9a631e8e 2218
340ccaab 2219static void
f37230f0
JM
2220data_member_location_attribute (t)
2221 register tree t;
340ccaab 2222{
f37230f0 2223 register unsigned object_offset_in_bytes;
340ccaab
TW
2224 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2225 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
9a631e8e 2226
f37230f0
JM
2227 if (TREE_CODE (t) == TREE_VEC)
2228 object_offset_in_bytes = TREE_INT_CST_LOW (BINFO_OFFSET (t));
2229 else
2230 object_offset_in_bytes = field_byte_offset (t);
2231
340ccaab
TW
2232 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2233 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2234 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2235 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2236 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2237 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
d4d4c5a8 2238 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
340ccaab
TW
2239 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2240 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2241}
2242
2243/* Output an AT_const_value attribute for a variable or a parameter which
2244 does not have a "location" either in memory or in a register. These
2245 things can arise in GNU C when a constant is passed as an actual
2246 parameter to an inlined function. They can also arise in C++ where
2247 declared constants do not necessarily get memory "homes". */
2248
2249static void
2250const_value_attribute (rtl)
2251 register rtx rtl;
2252{
2253 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2254 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2255
2256 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2257 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2258 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2259 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2260 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2261
2262 switch (GET_CODE (rtl))
2263 {
2264 case CONST_INT:
2265 /* Note that a CONST_INT rtx could represent either an integer or
2266 a floating-point constant. A CONST_INT is used whenever the
2267 constant will fit into a single word. In all such cases, the
2268 original mode of the constant value is wiped out, and the
2269 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2270 precise mode information for these constants, we always just
2271 output them using 4 bytes. */
2272
2273 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2274 break;
2275
2276 case CONST_DOUBLE:
2277 /* Note that a CONST_DOUBLE rtx could represent either an integer
2278 or a floating-point constant. A CONST_DOUBLE is used whenever
2279 the constant requires more than one word in order to be adequately
2280 represented. In all such cases, the original mode of the constant
2281 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2282 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2283
2284 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
906c4e36
RK
2285 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2286 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
340ccaab
TW
2287 break;
2288
2289 case CONST_STRING:
74153f8e 2290 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
340ccaab
TW
2291 break;
2292
2293 case SYMBOL_REF:
2294 case LABEL_REF:
2295 case CONST:
2296 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2297 break;
2298
2299 case PLUS:
2300 /* In cases where an inlined instance of an inline function is passed
2301 the address of an `auto' variable (which is local to the caller)
2302 we can get a situation where the DECL_RTL of the artificial
2303 local variable (for the inlining) which acts as a stand-in for
2304 the corresponding formal parameter (of the inline function)
2305 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2306 This is not exactly a compile-time constant expression, but it
2307 isn't the address of the (artificial) local variable either.
2308 Rather, it represents the *value* which the artificial local
2309 variable always has during its lifetime. We currently have no
2310 way to represent such quasi-constant values in Dwarf, so for now
2311 we just punt and generate an AT_const_value attribute with form
2312 FORM_BLOCK4 and a length of zero. */
2313 break;
d4d4c5a8
RS
2314
2315 default:
2316 abort (); /* No other kinds of rtx should be possible here. */
340ccaab
TW
2317 }
2318
2319 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2320}
2321
2322/* Generate *either* an AT_location attribute or else an AT_const_value
2323 data attribute for a variable or a parameter. We generate the
2324 AT_const_value attribute only in those cases where the given
2325 variable or parameter does not have a true "location" either in
2326 memory or in a register. This can happen (for example) when a
2327 constant is passed as an actual argument in a call to an inline
2328 function. (It's possible that these things can crop up in other
2329 ways also.) Note that one type of constant value which can be
2330 passed into an inlined function is a constant pointer. This can
2331 happen for example if an actual argument in an inlined function
2332 call evaluates to a compile-time constant address. */
2333
2334static void
2335location_or_const_value_attribute (decl)
2336 register tree decl;
2337{
2338 register rtx rtl;
2339
2340 if (TREE_CODE (decl) == ERROR_MARK)
2341 return;
2342
2343 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
648ebe7b 2344 {
0e02aa7e
RK
2345 /* Should never happen. */
2346 abort ();
2347 return;
648ebe7b 2348 }
340ccaab 2349
0e02aa7e
RK
2350 /* Here we have to decide where we are going to say the parameter "lives"
2351 (as far as the debugger is concerned). We only have a couple of choices.
2352 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2353 normally indicates where the parameter lives during most of the activa-
2354 tion of the function. If optimization is enabled however, this could
2355 be either NULL or else a pseudo-reg. Both of those cases indicate that
2356 the parameter doesn't really live anywhere (as far as the code generation
2357 parts of GCC are concerned) during most of the function's activation.
2358 That will happen (for example) if the parameter is never referenced
2359 within the function.
2360
2361 We could just generate a location descriptor here for all non-NULL
2362 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2363 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2364 cases where DECL_RTL is NULL or is a pseudo-reg.
2365
2366 Note however that we can only get away with using DECL_INCOMING_RTL as
2367 a backup substitute for DECL_RTL in certain limited cases. In cases
2368 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2369 we can be sure that the parameter was passed using the same type as it
2370 is declared to have within the function, and that its DECL_INCOMING_RTL
2371 points us to a place where a value of that type is passed. In cases
2372 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2373 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2374 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2375 points us to a value of some type which is *different* from the type
2376 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2377 to generate a location attribute in such cases, the debugger would
2378 end up (for example) trying to fetch a `float' from a place which
2379 actually contains the first part of a `double'. That would lead to
2380 really incorrect and confusing output at debug-time, and we don't
2381 want that now do we?
2382
2383 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2384 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2385 couple of cute exceptions however. On little-endian machines we can
2386 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2387 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2388 an integral type which is smaller than TREE_TYPE(decl). These cases
2389 arise when (on a little-endian machine) a non-prototyped function has
2390 a parameter declared to be of type `short' or `char'. In such cases,
2391 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2392 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2393 passed `int' value. If the debugger then uses that address to fetch a
2394 `short' or a `char' (on a little-endian machine) the result will be the
2395 correct data, so we allow for such exceptional cases below.
2396
2397 Note that our goal here is to describe the place where the given formal
2398 parameter lives during most of the function's activation (i.e. between
2399 the end of the prologue and the start of the epilogue). We'll do that
2400 as best as we can. Note however that if the given formal parameter is
2401 modified sometime during the execution of the function, then a stack
2402 backtrace (at debug-time) will show the function as having been called
2403 with the *new* value rather than the value which was originally passed
2404 in. This happens rarely enough that it is not a major problem, but it
2405 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2406 may generate two additional attributes for any given TAG_formal_parameter
2407 DIE which will describe the "passed type" and the "passed location" for
2408 the given formal parameter in addition to the attributes we now generate
2409 to indicate the "declared type" and the "active location" for each
2410 parameter. This additional set of attributes could be used by debuggers
2411 for stack backtraces.
2412
2413 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2414 can be NULL also. This happens (for example) for inlined-instances of
2415 inline function formal parameters which are never referenced. This really
2416 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2417 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2418 these values for inlined instances of inline function parameters, so
956d6950 2419 when we see such cases, we are just out-of-luck for the time
0e02aa7e
RK
2420 being (until integrate.c gets fixed).
2421 */
2422
2423 /* Use DECL_RTL as the "location" unless we find something better. */
2424 rtl = DECL_RTL (decl);
2425
2426 if (TREE_CODE (decl) == PARM_DECL)
2427 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2428 {
2429 /* This decl represents a formal parameter which was optimized out. */
69d6b01d
RS
2430 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2431 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
0e02aa7e
RK
2432
2433 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2434 *all* cases where (rtl == NULL_RTX) just below. */
2435
2436 if (declared_type == passed_type)
2437 rtl = DECL_INCOMING_RTL (decl);
f76b9db2 2438 else if (! BYTES_BIG_ENDIAN)
0e02aa7e
RK
2439 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2440 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2441 rtl = DECL_INCOMING_RTL (decl);
0e02aa7e
RK
2442 }
2443
2444 if (rtl == NULL_RTX)
340ccaab
TW
2445 return;
2446
1914f5da 2447 rtl = eliminate_regs (rtl, 0, NULL_RTX);
6a7a9f01 2448#ifdef LEAF_REG_REMAP
54ff41b7 2449 if (current_function_uses_only_leaf_regs)
5f52dcfe 2450 leaf_renumber_regs_insn (rtl);
6a7a9f01
JM
2451#endif
2452
340ccaab
TW
2453 switch (GET_CODE (rtl))
2454 {
e9a25f70
JL
2455 case ADDRESSOF:
2456 /* The address of a variable that was optimized away; don't emit
2457 anything. */
2458 break;
2459
340ccaab
TW
2460 case CONST_INT:
2461 case CONST_DOUBLE:
2462 case CONST_STRING:
2463 case SYMBOL_REF:
2464 case LABEL_REF:
2465 case CONST:
2466 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2467 const_value_attribute (rtl);
2468 break;
2469
2470 case MEM:
2471 case REG:
2472 case SUBREG:
2473 location_attribute (rtl);
2474 break;
2475
7b1bcb49
JW
2476 case CONCAT:
2477 /* ??? CONCAT is used for complex variables, which may have the real
2478 part stored in one place and the imag part stored somewhere else.
2479 DWARF1 has no way to describe a variable that lives in two different
2480 places, so we just describe where the first part lives, and hope that
2481 the second part is stored after it. */
2482 location_attribute (XEXP (rtl, 0));
2483 break;
2484
340ccaab
TW
2485 default:
2486 abort (); /* Should never happen. */
2487 }
2488}
2489
2490/* Generate an AT_name attribute given some string value to be included as
9a631e8e 2491 the value of the attribute. */
340ccaab 2492
461b77c8 2493static inline void
340ccaab
TW
2494name_attribute (name_string)
2495 register char *name_string;
2496{
75791cee
TW
2497 if (name_string && *name_string)
2498 {
2499 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
74153f8e 2500 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
75791cee 2501 }
340ccaab
TW
2502}
2503
461b77c8 2504static inline void
340ccaab
TW
2505fund_type_attribute (ft_code)
2506 register unsigned ft_code;
2507{
2508 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2509 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2510}
2511
2512static void
2513mod_fund_type_attribute (type, decl_const, decl_volatile)
2514 register tree type;
2515 register int decl_const;
2516 register int decl_volatile;
2517{
2518 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2519 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2520
2521 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2522 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2523 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2524 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2525 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2526 write_modifier_bytes (type, decl_const, decl_volatile);
2527 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2528 fundamental_type_code (root_type (type)));
2529 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2530}
2531
461b77c8 2532static inline void
340ccaab
TW
2533user_def_type_attribute (type)
2534 register tree type;
2535{
2536 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2537
2538 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2539 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2540 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2541}
2542
2543static void
2544mod_u_d_type_attribute (type, decl_const, decl_volatile)
2545 register tree type;
2546 register int decl_const;
2547 register int decl_volatile;
2548{
2549 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2550 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2551 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2552
2553 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2554 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2555 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2556 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2557 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2558 write_modifier_bytes (type, decl_const, decl_volatile);
2559 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2560 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2561 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2562}
2563
d4d4c5a8 2564#ifdef USE_ORDERING_ATTRIBUTE
461b77c8 2565static inline void
340ccaab
TW
2566ordering_attribute (ordering)
2567 register unsigned ordering;
2568{
2569 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2570 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2571}
d4d4c5a8 2572#endif /* defined(USE_ORDERING_ATTRIBUTE) */
340ccaab
TW
2573
2574/* Note that the block of subscript information for an array type also
2575 includes information about the element type of type given array type. */
2576
2577static void
2578subscript_data_attribute (type)
2579 register tree type;
2580{
2581 register unsigned dimension_number;
2582 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2583 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2584
2585 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2586 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2587 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2588 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2589 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2590
2591 /* The GNU compilers represent multidimensional array types as sequences
2592 of one dimensional array types whose element types are themselves array
2593 types. Here we squish that down, so that each multidimensional array
2594 type gets only one array_type DIE in the Dwarf debugging info. The
2595 draft Dwarf specification say that we are allowed to do this kind
2596 of compression in C (because there is no difference between an
2597 array or arrays and a multidimensional array in C) but for other
2598 source languages (e.g. Ada) we probably shouldn't do this. */
2599
2600 for (dimension_number = 0;
2601 TREE_CODE (type) == ARRAY_TYPE;
2602 type = TREE_TYPE (type), dimension_number++)
2603 {
2604 register tree domain = TYPE_DOMAIN (type);
2605
2606 /* Arrays come in three flavors. Unspecified bounds, fixed
2607 bounds, and (in GNU C only) variable bounds. Handle all
2608 three forms here. */
2609
2610 if (domain)
2611 {
2612 /* We have an array type with specified bounds. */
2613
2614 register tree lower = TYPE_MIN_VALUE (domain);
2615 register tree upper = TYPE_MAX_VALUE (domain);
2616
2617 /* Handle only fundamental types as index types for now. */
2618
2619 if (! type_is_fundamental (domain))
2620 abort ();
2621
0f41302f 2622 /* Output the representation format byte for this dimension. */
340ccaab
TW
2623
2624 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
e1ee5cdc
RH
2625 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2626 (upper && TREE_CODE (upper) == INTEGER_CST)));
340ccaab
TW
2627
2628 /* Output the index type for this dimension. */
2629
2630 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2631 fundamental_type_code (domain));
2632
2633 /* Output the representation for the lower bound. */
2634
2635 output_bound_representation (lower, dimension_number, 'l');
2636
2637 /* Output the representation for the upper bound. */
2638
2639 output_bound_representation (upper, dimension_number, 'u');
2640 }
2641 else
2642 {
2643 /* We have an array type with an unspecified length. For C and
2644 C++ we can assume that this really means that (a) the index
2645 type is an integral type, and (b) the lower bound is zero.
2646 Note that Dwarf defines the representation of an unspecified
2647 (upper) bound as being a zero-length location description. */
2648
2649 /* Output the array-bounds format byte. */
2650
2651 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2652
2653 /* Output the (assumed) index type. */
2654
2655 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2656
2657 /* Output the (assumed) lower bound (constant) value. */
2658
2659 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2660
2661 /* Output the (empty) location description for the upper bound. */
2662
2663 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2664 }
2665 }
2666
9faa82d8 2667 /* Output the prefix byte that says that the element type is coming up. */
340ccaab
TW
2668
2669 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2670
2671 /* Output a representation of the type of the elements of this array type. */
2672
2673 type_attribute (type, 0, 0);
2674
2675 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2676}
2677
2678static void
2679byte_size_attribute (tree_node)
2680 register tree tree_node;
2681{
2682 register unsigned size;
2683
2684 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2685 switch (TREE_CODE (tree_node))
2686 {
2687 case ERROR_MARK:
2688 size = 0;
2689 break;
2690
2691 case ENUMERAL_TYPE:
2692 case RECORD_TYPE:
2693 case UNION_TYPE:
c1b98a95 2694 case QUAL_UNION_TYPE:
fa405625 2695 case ARRAY_TYPE:
340ccaab
TW
2696 size = int_size_in_bytes (tree_node);
2697 break;
2698
2699 case FIELD_DECL:
9a631e8e 2700 /* For a data member of a struct or union, the AT_byte_size is
d4d4c5a8 2701 generally given as the number of bytes normally allocated for
9a631e8e
RS
2702 an object of the *declared* type of the member itself. This
2703 is true even for bit-fields. */
d4d4c5a8
RS
2704 size = simple_type_size_in_bits (field_type (tree_node))
2705 / BITS_PER_UNIT;
340ccaab
TW
2706 break;
2707
2708 default:
2709 abort ();
2710 }
9a631e8e
RS
2711
2712 /* Note that `size' might be -1 when we get to this point. If it
2713 is, that indicates that the byte size of the entity in question
2714 is variable. We have no good way of expressing this fact in Dwarf
2715 at the present time, so just let the -1 pass on through. */
2716
340ccaab
TW
2717 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2718}
2719
9a631e8e
RS
2720/* For a FIELD_DECL node which represents a bit-field, output an attribute
2721 which specifies the distance in bits from the highest order bit of the
2722 "containing object" for the bit-field to the highest order bit of the
2723 bit-field itself.
2724
2725 For any given bit-field, the "containing object" is a hypothetical
2726 object (of some integral or enum type) within which the given bit-field
2727 lives. The type of this hypothetical "containing object" is always the
2728 same as the declared type of the individual bit-field itself.
2729
d4d4c5a8
RS
2730 The determination of the exact location of the "containing object" for
2731 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2732 function (above).
2733
9a631e8e
RS
2734 Note that it is the size (in bytes) of the hypothetical "containing
2735 object" which will be given in the AT_byte_size attribute for this
461b77c8 2736 bit-field. (See `byte_size_attribute' above.) */
340ccaab 2737
461b77c8 2738static inline void
340ccaab
TW
2739bit_offset_attribute (decl)
2740 register tree decl;
2741{
d4d4c5a8 2742 register unsigned object_offset_in_bytes = field_byte_offset (decl);
9a631e8e 2743 register tree type = DECL_BIT_FIELD_TYPE (decl);
9a631e8e 2744 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
648ebe7b 2745 register unsigned bitpos_int;
d4d4c5a8
RS
2746 register unsigned highest_order_object_bit_offset;
2747 register unsigned highest_order_field_bit_offset;
2748 register unsigned bit_offset;
9a631e8e 2749
3a88cbd1
JL
2750 /* Must be a bit field. */
2751 if (!type
2752 || TREE_CODE (decl) != FIELD_DECL)
2753 abort ();
9a631e8e 2754
d4d4c5a8
RS
2755 /* We can't yet handle bit-fields whose offsets are variable, so if we
2756 encounter such things, just return without generating any attribute
2757 whatsoever. */
9a631e8e 2758
648ebe7b 2759 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
9a631e8e 2760 return;
648ebe7b 2761 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
9a631e8e 2762
d4d4c5a8
RS
2763 /* Note that the bit offset is always the distance (in bits) from the
2764 highest-order bit of the "containing object" to the highest-order
2765 bit of the bit-field itself. Since the "high-order end" of any
2766 object or field is different on big-endian and little-endian machines,
2767 the computation below must take account of these differences. */
9a631e8e 2768
d4d4c5a8
RS
2769 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2770 highest_order_field_bit_offset = bitpos_int;
648ebe7b 2771
f76b9db2
ILT
2772 if (! BYTES_BIG_ENDIAN)
2773 {
2774 highest_order_field_bit_offset
2775 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
9a631e8e 2776
f76b9db2
ILT
2777 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2778 }
d4d4c5a8
RS
2779
2780 bit_offset =
f76b9db2
ILT
2781 (! BYTES_BIG_ENDIAN
2782 ? highest_order_object_bit_offset - highest_order_field_bit_offset
2783 : highest_order_field_bit_offset - highest_order_object_bit_offset);
340ccaab
TW
2784
2785 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
d4d4c5a8 2786 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
340ccaab
TW
2787}
2788
2789/* For a FIELD_DECL node which represents a bit field, output an attribute
2790 which specifies the length in bits of the given field. */
2791
461b77c8 2792static inline void
340ccaab
TW
2793bit_size_attribute (decl)
2794 register tree decl;
2795{
3a88cbd1
JL
2796 /* Must be a field and a bit field. */
2797 if (TREE_CODE (decl) != FIELD_DECL
2798 || ! DECL_BIT_FIELD_TYPE (decl))
2799 abort ();
340ccaab
TW
2800
2801 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2802 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2803 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2804}
2805
2806/* The following routine outputs the `element_list' attribute for enumeration
2807 type DIEs. The element_lits attribute includes the names and values of
2808 all of the enumeration constants associated with the given enumeration
2809 type. */
2810
461b77c8 2811static inline void
340ccaab
TW
2812element_list_attribute (element)
2813 register tree element;
2814{
2815 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2816 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2817
2818 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2819 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2820 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2821 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2822 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2823
2824 /* Here we output a list of value/name pairs for each enumeration constant
2825 defined for this enumeration type (as required), but we do it in REVERSE
2826 order. The order is the one required by the draft #5 Dwarf specification
2827 published by the UI/PLSIG. */
2828
2829 output_enumeral_list (element); /* Recursively output the whole list. */
2830
2831 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2832}
2833
2834/* Generate an AT_stmt_list attribute. These are normally present only in
2835 DIEs with a TAG_compile_unit tag. */
2836
461b77c8 2837static inline void
340ccaab
TW
2838stmt_list_attribute (label)
2839 register char *label;
2840{
2841 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2842 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2843 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2844}
2845
2846/* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2847 for a subroutine DIE. */
2848
461b77c8 2849static inline void
340ccaab
TW
2850low_pc_attribute (asm_low_label)
2851 register char *asm_low_label;
2852{
2853 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2854 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2855}
2856
2857/* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2858 subroutine DIE. */
2859
461b77c8 2860static inline void
340ccaab
TW
2861high_pc_attribute (asm_high_label)
2862 register char *asm_high_label;
2863{
2864 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2865 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2866}
2867
2a819d04
TW
2868/* Generate an AT_body_begin attribute for a subroutine DIE. */
2869
461b77c8 2870static inline void
2a819d04
TW
2871body_begin_attribute (asm_begin_label)
2872 register char *asm_begin_label;
2873{
2874 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2875 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2876}
2877
2878/* Generate an AT_body_end attribute for a subroutine DIE. */
2879
461b77c8 2880static inline void
2a819d04
TW
2881body_end_attribute (asm_end_label)
2882 register char *asm_end_label;
2883{
2884 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2885 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2886}
2887
340ccaab
TW
2888/* Generate an AT_language attribute given a LANG value. These attributes
2889 are used only within TAG_compile_unit DIEs. */
2890
461b77c8 2891static inline void
340ccaab
TW
2892language_attribute (language_code)
2893 register unsigned language_code;
2894{
2895 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2896 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2897}
2898
461b77c8 2899static inline void
340ccaab
TW
2900member_attribute (context)
2901 register tree context;
2902{
2903 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2904
2905 /* Generate this attribute only for members in C++. */
2906
c7d6dca2 2907 if (context != NULL && is_tagged_type (context))
340ccaab
TW
2908 {
2909 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2910 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2911 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2912 }
2913}
2914
7a87758d 2915#if 0
461b77c8 2916static inline void
340ccaab
TW
2917string_length_attribute (upper_bound)
2918 register tree upper_bound;
2919{
2920 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2921 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2922
2923 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2924 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2925 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2926 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2927 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2928 output_bound_representation (upper_bound, 0, 'u');
2929 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2930}
7a87758d 2931#endif
340ccaab 2932
461b77c8 2933static inline void
340ccaab
TW
2934comp_dir_attribute (dirname)
2935 register char *dirname;
2936{
2937 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
74153f8e 2938 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
340ccaab
TW
2939}
2940
461b77c8 2941static inline void
340ccaab
TW
2942sf_names_attribute (sf_names_start_label)
2943 register char *sf_names_start_label;
2944{
2945 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2946 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2947 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2948}
2949
461b77c8 2950static inline void
340ccaab
TW
2951src_info_attribute (src_info_start_label)
2952 register char *src_info_start_label;
2953{
2954 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2955 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2956 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2957}
2958
461b77c8 2959static inline void
340ccaab
TW
2960mac_info_attribute (mac_info_start_label)
2961 register char *mac_info_start_label;
2962{
2963 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2964 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2965 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2966}
2967
461b77c8 2968static inline void
340ccaab
TW
2969prototyped_attribute (func_type)
2970 register tree func_type;
2971{
2972 if ((strcmp (language_string, "GNU C") == 0)
2973 && (TYPE_ARG_TYPES (func_type) != NULL))
2974 {
2975 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
74153f8e 2976 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
340ccaab
TW
2977 }
2978}
2979
461b77c8 2980static inline void
340ccaab
TW
2981producer_attribute (producer)
2982 register char *producer;
2983{
2984 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
74153f8e 2985 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
340ccaab
TW
2986}
2987
461b77c8 2988static inline void
340ccaab
TW
2989inline_attribute (decl)
2990 register tree decl;
2991{
0924ddef 2992 if (DECL_INLINE (decl))
340ccaab
TW
2993 {
2994 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
74153f8e 2995 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
340ccaab
TW
2996 }
2997}
2998
461b77c8 2999static inline void
340ccaab
TW
3000containing_type_attribute (containing_type)
3001 register tree containing_type;
3002{
3003 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3004
3005 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3006 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3007 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3008}
3009
461b77c8 3010static inline void
04077c53
RS
3011abstract_origin_attribute (origin)
3012 register tree origin;
3013{
3014 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3015
3016 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3017 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3018 {
3019 case 'd':
3020 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3021 break;
3022
3023 case 't':
3024 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3025 break;
3026
3027 default:
3028 abort (); /* Should never happen. */
3029
3030 }
3031 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3032}
3033
3034#ifdef DWARF_DECL_COORDINATES
461b77c8 3035static inline void
9a631e8e
RS
3036src_coords_attribute (src_fileno, src_lineno)
3037 register unsigned src_fileno;
3038 register unsigned src_lineno;
3039{
9a631e8e
RS
3040 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3041 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3042 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
9a631e8e 3043}
04077c53
RS
3044#endif /* defined(DWARF_DECL_COORDINATES) */
3045
461b77c8 3046static inline void
04077c53
RS
3047pure_or_virtual_attribute (func_decl)
3048 register tree func_decl;
3049{
3050 if (DECL_VIRTUAL_P (func_decl))
3051 {
ece0ca60 3052#if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
04077c53
RS
3053 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3054 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3055 else
ece0ca60 3056#endif
04077c53 3057 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
74153f8e 3058 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
04077c53
RS
3059 }
3060}
9a631e8e 3061
340ccaab
TW
3062/************************* end of attributes *****************************/
3063
3064/********************* utility routines for DIEs *************************/
3065
9a631e8e
RS
3066/* Output an AT_name attribute and an AT_src_coords attribute for the
3067 given decl, but only if it actually has a name. */
3068
d4d4c5a8 3069static void
9a631e8e
RS
3070name_and_src_coords_attributes (decl)
3071 register tree decl;
3072{
3073 register tree decl_name = DECL_NAME (decl);
3074
3075 if (decl_name && IDENTIFIER_POINTER (decl_name))
3076 {
3077 name_attribute (IDENTIFIER_POINTER (decl_name));
75791cee
TW
3078#ifdef DWARF_DECL_COORDINATES
3079 {
3080 register unsigned file_index;
3081
3082 /* This is annoying, but we have to pop out of the .debug section
3083 for a moment while we call `lookup_filename' because calling it
3084 may cause a temporary switch into the .debug_sfnames section and
38e01259 3085 most svr4 assemblers are not smart enough to be able to nest
75791cee
TW
3086 section switches to any depth greater than one. Note that we
3087 also can't skirt this issue by delaying all output to the
3088 .debug_sfnames section unit the end of compilation because that
3089 would cause us to have inter-section forward references and
3090 Fred Fish sez that m68k/svr4 assemblers botch those. */
3091
3092 ASM_OUTPUT_POP_SECTION (asm_out_file);
3093 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3094 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3095
3096 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3097 }
d4d4c5a8 3098#endif /* defined(DWARF_DECL_COORDINATES) */
9a631e8e
RS
3099 }
3100}
3101
340ccaab
TW
3102/* Many forms of DIEs contain a "type description" part. The following
3103 routine writes out these "type descriptor" parts. */
3104
3105static void
3106type_attribute (type, decl_const, decl_volatile)
3107 register tree type;
3108 register int decl_const;
3109 register int decl_volatile;
3110{
3111 register enum tree_code code = TREE_CODE (type);
3112 register int root_type_modified;
3113
f01ea0c6 3114 if (code == ERROR_MARK)
340ccaab
TW
3115 return;
3116
3117 /* Handle a special case. For functions whose return type is void,
3118 we generate *no* type attribute. (Note that no object may have
3119 type `void', so this only applies to function return types. */
3120
f01ea0c6 3121 if (code == VOID_TYPE)
340ccaab
TW
3122 return;
3123
f01ea0c6
RK
3124 /* If this is a subtype, find the underlying type. Eventually,
3125 this should write out the appropriate subtype info. */
3126 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3127 && TREE_TYPE (type) != 0)
3128 type = TREE_TYPE (type), code = TREE_CODE (type);
3129
340ccaab
TW
3130 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3131 || decl_const || decl_volatile
3132 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3133
3134 if (type_is_fundamental (root_type (type)))
5e9defae
KG
3135 {
3136 if (root_type_modified)
340ccaab 3137 mod_fund_type_attribute (type, decl_const, decl_volatile);
5e9defae 3138 else
340ccaab 3139 fund_type_attribute (fundamental_type_code (type));
5e9defae 3140 }
340ccaab 3141 else
5e9defae
KG
3142 {
3143 if (root_type_modified)
340ccaab 3144 mod_u_d_type_attribute (type, decl_const, decl_volatile);
5e9defae 3145 else
69d6b01d 3146 /* We have to get the type_main_variant here (and pass that to the
0591b9c6
RS
3147 `user_def_type_attribute' routine) because the ..._TYPE node we
3148 have might simply be a *copy* of some original type node (where
3149 the copy was created to help us keep track of typedef names)
3150 and that copy might have a different TYPE_UID from the original
3151 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3152 is labeling a given type DIE for future reference, it always and
3153 only creates labels for DIEs representing *main variants*, and it
3154 never even knows about non-main-variants.) */
69d6b01d 3155 user_def_type_attribute (type_main_variant (type));
5e9defae 3156 }
340ccaab
TW
3157}
3158
3159/* Given a tree pointer to a struct, class, union, or enum type node, return
3160 a pointer to the (string) tag name for the given type, or zero if the
3161 type was declared without a tag. */
3162
3163static char *
3164type_tag (type)
3165 register tree type;
3166{
3167 register char *name = 0;
3168
3169 if (TYPE_NAME (type) != 0)
3170 {
3171 register tree t = 0;
3172
3173 /* Find the IDENTIFIER_NODE for the type name. */
3174 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3175 t = TYPE_NAME (type);
340ccaab 3176
85f8926e
JM
3177 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3178 a TYPE_DECL node, regardless of whether or not a `typedef' was
3179 involved. */
a94dbf2c
JM
3180 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3181 && ! DECL_IGNORED_P (TYPE_NAME (type)))
340ccaab 3182 t = DECL_NAME (TYPE_NAME (type));
85f8926e 3183
340ccaab
TW
3184 /* Now get the name as a string, or invent one. */
3185 if (t != 0)
3186 name = IDENTIFIER_POINTER (t);
3187 }
3188
3189 return (name == 0 || *name == '\0') ? 0 : name;
3190}
3191
461b77c8 3192static inline void
340ccaab
TW
3193dienum_push ()
3194{
3195 /* Start by checking if the pending_sibling_stack needs to be expanded.
3196 If necessary, expand it. */
3197
3198 if (pending_siblings == pending_siblings_allocated)
3199 {
3200 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3201 pending_sibling_stack
3202 = (unsigned *) xrealloc (pending_sibling_stack,
3203 pending_siblings_allocated * sizeof(unsigned));
3204 }
3205
3206 pending_siblings++;
3207 NEXT_DIE_NUM = next_unused_dienum++;
3208}
3209
3210/* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3211 NEXT_DIE_NUM. */
3212
461b77c8 3213static inline void
340ccaab
TW
3214dienum_pop ()
3215{
3216 pending_siblings--;
3217}
3218
461b77c8 3219static inline tree
340ccaab
TW
3220member_declared_type (member)
3221 register tree member;
3222{
3223 return (DECL_BIT_FIELD_TYPE (member))
3224 ? DECL_BIT_FIELD_TYPE (member)
3225 : TREE_TYPE (member);
3226}
3227
692e06f5
RS
3228/* Get the function's label, as described by its RTL.
3229 This may be different from the DECL_NAME name used
3230 in the source file. */
3231
3232static char *
3233function_start_label (decl)
3234 register tree decl;
3235{
3236 rtx x;
3237 char *fnname;
3238
3239 x = DECL_RTL (decl);
3240 if (GET_CODE (x) != MEM)
3241 abort ();
3242 x = XEXP (x, 0);
3243 if (GET_CODE (x) != SYMBOL_REF)
3244 abort ();
3245 fnname = XSTR (x, 0);
3246 return fnname;
3247}
3248
3249
340ccaab
TW
3250/******************************* DIEs ************************************/
3251
3252/* Output routines for individual types of DIEs. */
3253
3254/* Note that every type of DIE (except a null DIE) gets a sibling. */
3255
3256static void
3257output_array_type_die (arg)
3258 register void *arg;
3259{
3260 register tree type = arg;
3261
3262 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3263 sibling_attribute ();
3264 equate_type_number_to_die_number (type);
3265 member_attribute (TYPE_CONTEXT (type));
3266
3267 /* I believe that we can default the array ordering. SDB will probably
3268 do the right things even if AT_ordering is not present. It's not
3269 even an issue until we start to get into multidimensional arrays
9a631e8e
RS
3270 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3271 dimensional arrays, then we'll have to put the AT_ordering attribute
3272 back in. (But if and when we find out that we need to put these in,
3273 we will only do so for multidimensional arrays. After all, we don't
3274 want to waste space in the .debug section now do we?) */
340ccaab 3275
d4d4c5a8 3276#ifdef USE_ORDERING_ATTRIBUTE
340ccaab 3277 ordering_attribute (ORD_row_major);
d4d4c5a8 3278#endif /* defined(USE_ORDERING_ATTRIBUTE) */
340ccaab
TW
3279
3280 subscript_data_attribute (type);
3281}
3282
3283static void
3284output_set_type_die (arg)
3285 register void *arg;
3286{
3287 register tree type = arg;
3288
3289 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3290 sibling_attribute ();
3291 equate_type_number_to_die_number (type);
3292 member_attribute (TYPE_CONTEXT (type));
3293 type_attribute (TREE_TYPE (type), 0, 0);
3294}
3295
3296#if 0
3297/* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
0f41302f 3298
340ccaab
TW
3299static void
3300output_entry_point_die (arg)
3301 register void *arg;
3302{
3303 register tree decl = arg;
d4d4c5a8 3304 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3305
3306 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3307 sibling_attribute ();
3308 dienum_push ();
d4d4c5a8
RS
3309 if (origin != NULL)
3310 abstract_origin_attribute (origin);
3311 else
3312 {
3313 name_and_src_coords_attributes (decl);
3314 member_attribute (DECL_CONTEXT (decl));
3315 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3316 }
3317 if (DECL_ABSTRACT (decl))
3318 equate_decl_number_to_die_number (decl);
3319 else
692e06f5 3320 low_pc_attribute (function_start_label (decl));
340ccaab
TW
3321}
3322#endif
3323
d4d4c5a8
RS
3324/* Output a DIE to represent an inlined instance of an enumeration type. */
3325
3326static void
3327output_inlined_enumeration_type_die (arg)
3328 register void *arg;
3329{
3330 register tree type = arg;
3331
3332 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3333 sibling_attribute ();
3a88cbd1
JL
3334 if (!TREE_ASM_WRITTEN (type))
3335 abort ();
d4d4c5a8
RS
3336 abstract_origin_attribute (type);
3337}
3338
3339/* Output a DIE to represent an inlined instance of a structure type. */
3340
3341static void
3342output_inlined_structure_type_die (arg)
3343 register void *arg;
3344{
3345 register tree type = arg;
3346
3347 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3348 sibling_attribute ();
3a88cbd1
JL
3349 if (!TREE_ASM_WRITTEN (type))
3350 abort ();
d4d4c5a8
RS
3351 abstract_origin_attribute (type);
3352}
3353
3354/* Output a DIE to represent an inlined instance of a union type. */
3355
3356static void
3357output_inlined_union_type_die (arg)
3358 register void *arg;
3359{
3360 register tree type = arg;
3361
3362 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3363 sibling_attribute ();
3a88cbd1
JL
3364 if (!TREE_ASM_WRITTEN (type))
3365 abort ();
d4d4c5a8
RS
3366 abstract_origin_attribute (type);
3367}
3368
340ccaab
TW
3369/* Output a DIE to represent an enumeration type. Note that these DIEs
3370 include all of the information about the enumeration values also.
3371 This information is encoded into the element_list attribute. */
3372
3373static void
3374output_enumeration_type_die (arg)
3375 register void *arg;
3376{
3377 register tree type = arg;
3378
3379 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3380 sibling_attribute ();
3381 equate_type_number_to_die_number (type);
3382 name_attribute (type_tag (type));
3383 member_attribute (TYPE_CONTEXT (type));
3384
3385 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3386 given enum type is incomplete, do not generate the AT_byte_size
3387 attribute or the AT_element_list attribute. */
3388
3389 if (TYPE_SIZE (type))
3390 {
3391 byte_size_attribute (type);
3392 element_list_attribute (TYPE_FIELDS (type));
3393 }
3394}
3395
3396/* Output a DIE to represent either a real live formal parameter decl or
3397 to represent just the type of some formal parameter position in some
3398 function type.
3399
3400 Note that this routine is a bit unusual because its argument may be
d4d4c5a8
RS
3401 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3402 represents an inlining of some PARM_DECL) or else some sort of a
3403 ..._TYPE node. If it's the former then this function is being called
3404 to output a DIE to represent a formal parameter object (or some inlining
3405 thereof). If it's the latter, then this function is only being called
3406 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3407 formal argument type of some subprogram type. */
340ccaab
TW
3408
3409static void
3410output_formal_parameter_die (arg)
3411 register void *arg;
3412{
d4d4c5a8 3413 register tree node = arg;
340ccaab
TW
3414
3415 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3416 sibling_attribute ();
d4d4c5a8
RS
3417
3418 switch (TREE_CODE_CLASS (TREE_CODE (node)))
340ccaab 3419 {
d4d4c5a8
RS
3420 case 'd': /* We were called with some kind of a ..._DECL node. */
3421 {
3422 register tree origin = decl_ultimate_origin (node);
3423
3424 if (origin != NULL)
3425 abstract_origin_attribute (origin);
3426 else
3427 {
3428 name_and_src_coords_attributes (node);
3429 type_attribute (TREE_TYPE (node),
3430 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3431 }
3432 if (DECL_ABSTRACT (node))
3433 equate_decl_number_to_die_number (node);
3434 else
3435 location_or_const_value_attribute (node);
3436 }
3437 break;
3438
3439 case 't': /* We were called with some kind of a ..._TYPE node. */
3440 type_attribute (node, 0, 0);
3441 break;
3442
3443 default:
3444 abort (); /* Should never happen. */
340ccaab 3445 }
340ccaab
TW
3446}
3447
3448/* Output a DIE to represent a declared function (either file-scope
3449 or block-local) which has "external linkage" (according to ANSI-C). */
3450
3451static void
3452output_global_subroutine_die (arg)
3453 register void *arg;
3454{
3455 register tree decl = arg;
d4d4c5a8 3456 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3457
3458 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3459 sibling_attribute ();
3460 dienum_push ();
d4d4c5a8
RS
3461 if (origin != NULL)
3462 abstract_origin_attribute (origin);
3463 else
340ccaab 3464 {
d4d4c5a8 3465 register tree type = TREE_TYPE (decl);
340ccaab 3466
d4d4c5a8
RS
3467 name_and_src_coords_attributes (decl);
3468 inline_attribute (decl);
3469 prototyped_attribute (type);
3470 member_attribute (DECL_CONTEXT (decl));
3471 type_attribute (TREE_TYPE (type), 0, 0);
3472 pure_or_virtual_attribute (decl);
3473 }
3474 if (DECL_ABSTRACT (decl))
3475 equate_decl_number_to_die_number (decl);
3476 else
3477 {
a94dbf2c
JM
3478 if (! DECL_EXTERNAL (decl) && ! in_class
3479 && decl == current_function_decl)
d4d4c5a8 3480 {
2a819d04 3481 char label[MAX_ARTIFICIAL_LABEL_BYTES];
d4d4c5a8 3482
692e06f5 3483 low_pc_attribute (function_start_label (decl));
2a819d04
TW
3484 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3485 high_pc_attribute (label);
a94dbf2c
JM
3486 if (use_gnu_debug_info_extensions)
3487 {
3488 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3489 body_begin_attribute (label);
3490 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3491 body_end_attribute (label);
3492 }
d4d4c5a8 3493 }
340ccaab
TW
3494 }
3495}
3496
3497/* Output a DIE to represent a declared data object (either file-scope
3498 or block-local) which has "external linkage" (according to ANSI-C). */
3499
3500static void
3501output_global_variable_die (arg)
3502 register void *arg;
3503{
3504 register tree decl = arg;
d4d4c5a8 3505 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3506
3507 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3508 sibling_attribute ();
d4d4c5a8
RS
3509 if (origin != NULL)
3510 abstract_origin_attribute (origin);
3511 else
340ccaab 3512 {
d4d4c5a8
RS
3513 name_and_src_coords_attributes (decl);
3514 member_attribute (DECL_CONTEXT (decl));
3515 type_attribute (TREE_TYPE (decl),
3516 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3517 }
3518 if (DECL_ABSTRACT (decl))
3519 equate_decl_number_to_die_number (decl);
3520 else
3521 {
a94dbf2c
JM
3522 if (! DECL_EXTERNAL (decl) && ! in_class
3523 && current_function_decl == decl_function_context (decl))
d4d4c5a8 3524 location_or_const_value_attribute (decl);
340ccaab
TW
3525 }
3526}
340ccaab
TW
3527
3528static void
3529output_label_die (arg)
3530 register void *arg;
3531{
3532 register tree decl = arg;
d4d4c5a8 3533 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3534
3535 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3536 sibling_attribute ();
d4d4c5a8
RS
3537 if (origin != NULL)
3538 abstract_origin_attribute (origin);
3539 else
3540 name_and_src_coords_attributes (decl);
3541 if (DECL_ABSTRACT (decl))
3542 equate_decl_number_to_die_number (decl);
3543 else
3544 {
3545 register rtx insn = DECL_RTL (decl);
340ccaab 3546
088e7160
NC
3547 /* Deleted labels are programmer specified labels which have been
3548 eliminated because of various optimisations. We still emit them
3549 here so that it is possible to put breakpoints on them. */
3550 if (GET_CODE (insn) == CODE_LABEL
3551 || ((GET_CODE (insn) == NOTE
3552 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
d4d4c5a8
RS
3553 {
3554 char label[MAX_ARTIFICIAL_LABEL_BYTES];
340ccaab 3555
d4d4c5a8
RS
3556 /* When optimization is enabled (via -O) some parts of the compiler
3557 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3558 represent source-level labels which were explicitly declared by
3559 the user. This really shouldn't be happening though, so catch
3560 it if it ever does happen. */
340ccaab 3561
d4d4c5a8
RS
3562 if (INSN_DELETED_P (insn))
3563 abort (); /* Should never happen. */
340ccaab 3564
d4d4c5a8
RS
3565 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3566 (unsigned) INSN_UID (insn));
3567 low_pc_attribute (label);
3568 }
340ccaab
TW
3569 }
3570}
3571
3572static void
3573output_lexical_block_die (arg)
3574 register void *arg;
3575{
3576 register tree stmt = arg;
340ccaab
TW
3577
3578 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3579 sibling_attribute ();
3580 dienum_push ();
d4d4c5a8
RS
3581 if (! BLOCK_ABSTRACT (stmt))
3582 {
3583 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3584 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3585
3586 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3587 low_pc_attribute (begin_label);
3588 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3589 high_pc_attribute (end_label);
3590 }
340ccaab
TW
3591}
3592
3593static void
3594output_inlined_subroutine_die (arg)
3595 register void *arg;
3596{
3597 register tree stmt = arg;
340ccaab
TW
3598
3599 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3600 sibling_attribute ();
3601 dienum_push ();
d4d4c5a8
RS
3602 abstract_origin_attribute (block_ultimate_origin (stmt));
3603 if (! BLOCK_ABSTRACT (stmt))
3604 {
3605 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3606 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3607
3608 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3609 low_pc_attribute (begin_label);
3610 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3611 high_pc_attribute (end_label);
3612 }
340ccaab
TW
3613}
3614
3615/* Output a DIE to represent a declared data object (either file-scope
3616 or block-local) which has "internal linkage" (according to ANSI-C). */
3617
3618static void
3619output_local_variable_die (arg)
3620 register void *arg;
3621{
3622 register tree decl = arg;
d4d4c5a8 3623 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3624
3625 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3626 sibling_attribute ();
d4d4c5a8
RS
3627 if (origin != NULL)
3628 abstract_origin_attribute (origin);
3629 else
3630 {
3631 name_and_src_coords_attributes (decl);
3632 member_attribute (DECL_CONTEXT (decl));
3633 type_attribute (TREE_TYPE (decl),
3634 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3635 }
3636 if (DECL_ABSTRACT (decl))
3637 equate_decl_number_to_die_number (decl);
3638 else
3639 location_or_const_value_attribute (decl);
340ccaab
TW
3640}
3641
3642static void
3643output_member_die (arg)
3644 register void *arg;
3645{
3646 register tree decl = arg;
3647
3648 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3649 sibling_attribute ();
9a631e8e 3650 name_and_src_coords_attributes (decl);
340ccaab
TW
3651 member_attribute (DECL_CONTEXT (decl));
3652 type_attribute (member_declared_type (decl),
3653 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
0f41302f 3654 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
340ccaab
TW
3655 {
3656 byte_size_attribute (decl);
3657 bit_size_attribute (decl);
3658 bit_offset_attribute (decl);
3659 }
3660 data_member_location_attribute (decl);
3661}
3662
3663#if 0
d4d4c5a8
RS
3664/* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3665 modified types instead.
340ccaab 3666
0f41302f
MS
3667 We keep this code here just in case these types of DIEs may be
3668 needed to represent certain things in other languages (e.g. Pascal)
3669 someday. */
340ccaab
TW
3670
3671static void
3672output_pointer_type_die (arg)
3673 register void *arg;
3674{
3675 register tree type = arg;
3676
3677 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3678 sibling_attribute ();
3679 equate_type_number_to_die_number (type);
3680 member_attribute (TYPE_CONTEXT (type));
3681 type_attribute (TREE_TYPE (type), 0, 0);
3682}
3683
3684static void
3685output_reference_type_die (arg)
3686 register void *arg;
3687{
3688 register tree type = arg;
3689
3690 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3691 sibling_attribute ();
3692 equate_type_number_to_die_number (type);
3693 member_attribute (TYPE_CONTEXT (type));
3694 type_attribute (TREE_TYPE (type), 0, 0);
3695}
3696#endif
3697
d4d4c5a8 3698static void
340ccaab
TW
3699output_ptr_to_mbr_type_die (arg)
3700 register void *arg;
3701{
3702 register tree type = arg;
3703
3704 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3705 sibling_attribute ();
3706 equate_type_number_to_die_number (type);
3707 member_attribute (TYPE_CONTEXT (type));
3708 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3709 type_attribute (TREE_TYPE (type), 0, 0);
3710}
3711
3712static void
3713output_compile_unit_die (arg)
3714 register void *arg;
3715{
3716 register char *main_input_filename = arg;
3717
3718 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3719 sibling_attribute ();
3720 dienum_push ();
3721 name_attribute (main_input_filename);
3722
3723 {
3724 char producer[250];
3725
3726 sprintf (producer, "%s %s", language_string, version_string);
3727 producer_attribute (producer);
3728 }
3729
3730 if (strcmp (language_string, "GNU C++") == 0)
3731 language_attribute (LANG_C_PLUS_PLUS);
77b83b95
RK
3732 else if (strcmp (language_string, "GNU Ada") == 0)
3733 language_attribute (LANG_ADA83);
439eb776
RK
3734 else if (strcmp (language_string, "GNU F77") == 0)
3735 language_attribute (LANG_FORTRAN77);
7532a0fb
RK
3736 else if (strcmp (language_string, "GNU Pascal") == 0)
3737 language_attribute (LANG_PASCAL83);
340ccaab
TW
3738 else if (flag_traditional)
3739 language_attribute (LANG_C);
3740 else
3741 language_attribute (LANG_C89);
3742 low_pc_attribute (TEXT_BEGIN_LABEL);
3743 high_pc_attribute (TEXT_END_LABEL);
3744 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3745 stmt_list_attribute (LINE_BEGIN_LABEL);
3746 last_filename = xstrdup (main_input_filename);
3747
3748 {
2e494f70
RS
3749 char *wd = getpwd ();
3750 if (wd)
3751 comp_dir_attribute (wd);
340ccaab
TW
3752 }
3753
a94dbf2c 3754 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
340ccaab
TW
3755 {
3756 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3757 src_info_attribute (SRCINFO_BEGIN_LABEL);
3758 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3759 mac_info_attribute (MACINFO_BEGIN_LABEL);
3760 }
3761}
3762
3763static void
3764output_string_type_die (arg)
3765 register void *arg;
3766{
3767 register tree type = arg;
3768
3769 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3770 sibling_attribute ();
874a8709 3771 equate_type_number_to_die_number (type);
340ccaab 3772 member_attribute (TYPE_CONTEXT (type));
874a8709
FF
3773 /* this is a fixed length string */
3774 byte_size_attribute (type);
340ccaab
TW
3775}
3776
f37230f0
JM
3777static void
3778output_inheritance_die (arg)
3779 register void *arg;
3780{
3781 register tree binfo = arg;
3782
3783 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3784 sibling_attribute ();
3785 type_attribute (BINFO_TYPE (binfo), 0, 0);
3786 data_member_location_attribute (binfo);
3787 if (TREE_VIA_VIRTUAL (binfo))
3788 {
3789 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
74153f8e 3790 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
f37230f0
JM
3791 }
3792 if (TREE_VIA_PUBLIC (binfo))
3793 {
3794 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
74153f8e 3795 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
f37230f0
JM
3796 }
3797 else if (TREE_VIA_PROTECTED (binfo))
3798 {
3799 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
74153f8e 3800 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
f37230f0
JM
3801 }
3802}
3803
340ccaab
TW
3804static void
3805output_structure_type_die (arg)
3806 register void *arg;
3807{
3808 register tree type = arg;
3809
3810 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3811 sibling_attribute ();
3812 equate_type_number_to_die_number (type);
3813 name_attribute (type_tag (type));
3814 member_attribute (TYPE_CONTEXT (type));
3815
3816 /* If this type has been completed, then give it a byte_size attribute
3817 and prepare to give a list of members. Otherwise, don't do either of
3818 these things. In the latter case, we will not be generating a list
3819 of members (since we don't have any idea what they might be for an
3820 incomplete type). */
3821
3822 if (TYPE_SIZE (type))
3823 {
3824 dienum_push ();
3825 byte_size_attribute (type);
3826 }
3827}
3828
3829/* Output a DIE to represent a declared function (either file-scope
3830 or block-local) which has "internal linkage" (according to ANSI-C). */
3831
3832static void
3833output_local_subroutine_die (arg)
3834 register void *arg;
3835{
3836 register tree decl = arg;
d4d4c5a8 3837 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3838
3839 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3840 sibling_attribute ();
3841 dienum_push ();
d4d4c5a8
RS
3842 if (origin != NULL)
3843 abstract_origin_attribute (origin);
3844 else
3845 {
3846 register tree type = TREE_TYPE (decl);
340ccaab 3847
d4d4c5a8
RS
3848 name_and_src_coords_attributes (decl);
3849 inline_attribute (decl);
3850 prototyped_attribute (type);
3851 member_attribute (DECL_CONTEXT (decl));
3852 type_attribute (TREE_TYPE (type), 0, 0);
3853 pure_or_virtual_attribute (decl);
3854 }
3855 if (DECL_ABSTRACT (decl))
3856 equate_decl_number_to_die_number (decl);
3857 else
340ccaab 3858 {
d4d4c5a8
RS
3859 /* Avoid getting screwed up in cases where a function was declared
3860 static but where no definition was ever given for it. */
3861
3862 if (TREE_ASM_WRITTEN (decl))
3863 {
2a819d04 3864 char label[MAX_ARTIFICIAL_LABEL_BYTES];
692e06f5 3865 low_pc_attribute (function_start_label (decl));
2a819d04
TW
3866 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3867 high_pc_attribute (label);
a94dbf2c
JM
3868 if (use_gnu_debug_info_extensions)
3869 {
3870 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3871 body_begin_attribute (label);
3872 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3873 body_end_attribute (label);
3874 }
d4d4c5a8 3875 }
340ccaab
TW
3876 }
3877}
3878
3879static void
3880output_subroutine_type_die (arg)
3881 register void *arg;
3882{
3883 register tree type = arg;
3884 register tree return_type = TREE_TYPE (type);
3885
3886 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3887 sibling_attribute ();
3888 dienum_push ();
3889 equate_type_number_to_die_number (type);
3890 prototyped_attribute (type);
3891 member_attribute (TYPE_CONTEXT (type));
3892 type_attribute (return_type, 0, 0);
3893}
3894
3895static void
3896output_typedef_die (arg)
3897 register void *arg;
3898{
3899 register tree decl = arg;
d4d4c5a8 3900 register tree origin = decl_ultimate_origin (decl);
340ccaab
TW
3901
3902 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3903 sibling_attribute ();
d4d4c5a8
RS
3904 if (origin != NULL)
3905 abstract_origin_attribute (origin);
3906 else
3907 {
3908 name_and_src_coords_attributes (decl);
3909 member_attribute (DECL_CONTEXT (decl));
3910 type_attribute (TREE_TYPE (decl),
3911 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3912 }
3913 if (DECL_ABSTRACT (decl))
3914 equate_decl_number_to_die_number (decl);
340ccaab
TW
3915}
3916
3917static void
3918output_union_type_die (arg)
3919 register void *arg;
3920{
3921 register tree type = arg;
3922
3923 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3924 sibling_attribute ();
3925 equate_type_number_to_die_number (type);
3926 name_attribute (type_tag (type));
3927 member_attribute (TYPE_CONTEXT (type));
3928
3929 /* If this type has been completed, then give it a byte_size attribute
3930 and prepare to give a list of members. Otherwise, don't do either of
3931 these things. In the latter case, we will not be generating a list
3932 of members (since we don't have any idea what they might be for an
3933 incomplete type). */
3934
3935 if (TYPE_SIZE (type))
3936 {
3937 dienum_push ();
3938 byte_size_attribute (type);
3939 }
3940}
3941
3942/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3943 at the end of an (ANSI prototyped) formal parameters list. */
3944
3945static void
3946output_unspecified_parameters_die (arg)
3947 register void *arg;
3948{
3949 register tree decl_or_type = arg;
3950
3951 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3952 sibling_attribute ();
3953
3954 /* This kludge is here only for the sake of being compatible with what
3955 the USL CI5 C compiler does. The specification of Dwarf Version 1
3956 doesn't say that TAG_unspecified_parameters DIEs should contain any
3957 attributes other than the AT_sibling attribute, but they are certainly
3958 allowed to contain additional attributes, and the CI5 compiler
3959 generates AT_name, AT_fund_type, and AT_location attributes within
3960 TAG_unspecified_parameters DIEs which appear in the child lists for
3961 DIEs representing function definitions, so we do likewise here. */
3962
3963 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3964 {
3965 name_attribute ("...");
3966 fund_type_attribute (FT_pointer);
3967 /* location_attribute (?); */
3968 }
3969}
3970
3971static void
3972output_padded_null_die (arg)
487a6e06 3973 register void *arg ATTRIBUTE_UNUSED;
340ccaab
TW
3974{
3975 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3976}
3977
3978/*************************** end of DIEs *********************************/
3979
3980/* Generate some type of DIE. This routine generates the generic outer
3981 wrapper stuff which goes around all types of DIE's (regardless of their
3982 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3983 DIE-length word, followed by the guts of the DIE itself. After the guts
3984 of the DIE, there must always be a terminator label for the DIE. */
3985
3986static void
3987output_die (die_specific_output_function, param)
487a6e06 3988 register void (*die_specific_output_function) PROTO ((void *));
340ccaab
TW
3989 register void *param;
3990{
3991 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3992 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3993
3994 current_dienum = NEXT_DIE_NUM;
3995 NEXT_DIE_NUM = next_unused_dienum;
3996
3997 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3998 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
3999
4000 /* Write a label which will act as the name for the start of this DIE. */
4001
4002 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4003
4004 /* Write the DIE-length word. */
4005
4006 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4007
4008 /* Fill in the guts of the DIE. */
4009
4010 next_unused_dienum++;
4011 die_specific_output_function (param);
4012
4013 /* Write a label which will act as the name for the end of this DIE. */
4014
4015 ASM_OUTPUT_LABEL (asm_out_file, end_label);
4016}
4017
4018static void
4019end_sibling_chain ()
4020{
4021 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4022
4023 current_dienum = NEXT_DIE_NUM;
4024 NEXT_DIE_NUM = next_unused_dienum;
4025
4026 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4027
4028 /* Write a label which will act as the name for the start of this DIE. */
4029
4030 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4031
4032 /* Write the DIE-length word. */
4033
4034 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4035
4036 dienum_pop ();
4037}
4038\f
4039/* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4040 TAG_unspecified_parameters DIE) to represent the types of the formal
4041 parameters as specified in some function type specification (except
4042 for those which appear as part of a function *definition*).
4043
0f41302f
MS
4044 Note that we must be careful here to output all of the parameter
4045 DIEs *before* we output any DIEs needed to represent the types of
4046 the formal parameters. This keeps svr4 SDB happy because it
4047 (incorrectly) thinks that the first non-parameter DIE it sees ends
4048 the formal parameter list. */
340ccaab
TW
4049
4050static void
4051output_formal_types (function_or_method_type)
4052 register tree function_or_method_type;
4053{
4054 register tree link;
d4d4c5a8 4055 register tree formal_type = NULL;
340ccaab
TW
4056 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4057
2a851b5c
R
4058 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4059 get bogus recursion when outputting tagged types local to a
4060 function declaration. */
4061 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4062 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4063
340ccaab
TW
4064 /* In the case where we are generating a formal types list for a C++
4065 non-static member function type, skip over the first thing on the
4066 TYPE_ARG_TYPES list because it only represents the type of the
4067 hidden `this pointer'. The debugger should be able to figure
4068 out (without being explicitly told) that this non-static member
4069 function type takes a `this pointer' and should be able to figure
4070 what the type of that hidden parameter is from the AT_member
4071 attribute of the parent TAG_subroutine_type DIE. */
4072
4073 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4074 first_parm_type = TREE_CHAIN (first_parm_type);
4075
4076 /* Make our first pass over the list of formal parameter types and output
4077 a TAG_formal_parameter DIE for each one. */
4078
4079 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4080 {
4081 formal_type = TREE_VALUE (link);
4082 if (formal_type == void_type_node)
4083 break;
4084
4085 /* Output a (nameless) DIE to represent the formal parameter itself. */
4086
4087 output_die (output_formal_parameter_die, formal_type);
4088 }
4089
4090 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4091 DIE to the end of the parameter list. */
4092
4093 if (formal_type != void_type_node)
4094 output_die (output_unspecified_parameters_die, function_or_method_type);
4095
4096 /* Make our second (and final) pass over the list of formal parameter types
4097 and output DIEs to represent those types (as necessary). */
4098
4099 for (link = TYPE_ARG_TYPES (function_or_method_type);
4100 link;
4101 link = TREE_CHAIN (link))
4102 {
4103 formal_type = TREE_VALUE (link);
4104 if (formal_type == void_type_node)
4105 break;
4106
4107 output_type (formal_type, function_or_method_type);
4108 }
2a851b5c
R
4109
4110 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
340ccaab
TW
4111}
4112\f
4113/* Remember a type in the pending_types_list. */
4114
4115static void
4116pend_type (type)
4117 register tree type;
4118{
4119 if (pending_types == pending_types_allocated)
4120 {
4121 pending_types_allocated += PENDING_TYPES_INCREMENT;
4122 pending_types_list
4123 = (tree *) xrealloc (pending_types_list,
4124 sizeof (tree) * pending_types_allocated);
4125 }
4126 pending_types_list[pending_types++] = type;
4127
4128 /* Mark the pending type as having been output already (even though
4129 it hasn't been). This prevents the type from being added to the
4130 pending_types_list more than once. */
4131
4132 TREE_ASM_WRITTEN (type) = 1;
4133}
4134
4135/* Return non-zero if it is legitimate to output DIEs to represent a
4136 given type while we are generating the list of child DIEs for some
c7d6dca2 4137 DIE (e.g. a function or lexical block DIE) associated with a given scope.
340ccaab 4138
c7d6dca2
RS
4139 See the comments within the function for a description of when it is
4140 considered legitimate to output DIEs for various kinds of types.
340ccaab
TW
4141
4142 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4143 or it may point to a BLOCK node (for types local to a block), or to a
4144 FUNCTION_DECL node (for types local to the heading of some function
4145 definition), or to a FUNCTION_TYPE node (for types local to the
4146 prototyped parameter list of a function type specification), or to a
c1b98a95
RK
4147 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4148 (in the case of C++ nested types).
340ccaab
TW
4149
4150 The `scope' parameter should likewise be NULL or should point to a
4151 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
c1b98a95 4152 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
340ccaab
TW
4153
4154 This function is used only for deciding when to "pend" and when to
4155 "un-pend" types to/from the pending_types_list.
4156
4157 Note that we sometimes make use of this "type pending" feature in a
4158 rather twisted way to temporarily delay the production of DIEs for the
4159 types of formal parameters. (We do this just to make svr4 SDB happy.)
4160 It order to delay the production of DIEs representing types of formal
4161 parameters, callers of this function supply `fake_containing_scope' as
4162 the `scope' parameter to this function. Given that fake_containing_scope
c7d6dca2
RS
4163 is a tagged type which is *not* the containing scope for *any* other type,
4164 the desired effect is achieved, i.e. output of DIEs representing types
4165 is temporarily suspended, and any type DIEs which would have otherwise
4166 been output are instead placed onto the pending_types_list. Later on,
4167 we force these (temporarily pended) types to be output simply by calling
340ccaab 4168 `output_pending_types_for_scope' with an actual argument equal to the
461b77c8 4169 true scope of the types we temporarily pended. */
340ccaab 4170
461b77c8 4171static inline int
340ccaab
TW
4172type_ok_for_scope (type, scope)
4173 register tree type;
4174 register tree scope;
4175{
c7d6dca2
RS
4176 /* Tagged types (i.e. struct, union, and enum types) must always be
4177 output only in the scopes where they actually belong (or else the
4178 scoping of their own tag names and the scoping of their member
4179 names will be incorrect). Non-tagged-types on the other hand can
4180 generally be output anywhere, except that svr4 SDB really doesn't
4181 want to see them nested within struct or union types, so here we
4182 say it is always OK to immediately output any such a (non-tagged)
4183 type, so long as we are not within such a context. Note that the
4184 only kinds of non-tagged types which we will be dealing with here
4185 (for C and C++ anyway) will be array types and function types. */
4186
4187 return is_tagged_type (type)
a94dbf2c 4188 ? (TYPE_CONTEXT (type) == scope
2addbe1d
JM
4189 /* Ignore namespaces for the moment. */
4190 || (scope == NULL_TREE
4191 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
a94dbf2c
JM
4192 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4193 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
c7d6dca2 4194 : (scope == NULL_TREE || ! is_tagged_type (scope));
340ccaab
TW
4195}
4196
4197/* Output any pending types (from the pending_types list) which we can output
c7d6dca2 4198 now (taking into account the scope that we are working on now).
340ccaab
TW
4199
4200 For each type output, remove the given type from the pending_types_list
4201 *before* we try to output it.
4202
4203 Note that we have to process the list in beginning-to-end order,
4204 because the call made here to output_type may cause yet more types
4205 to be added to the end of the list, and we may have to output some
0f41302f 4206 of them too. */
340ccaab
TW
4207
4208static void
4209output_pending_types_for_scope (containing_scope)
4210 register tree containing_scope;
4211{
4212 register unsigned i;
4213
4214 for (i = 0; i < pending_types; )
4215 {
4216 register tree type = pending_types_list[i];
4217
4218 if (type_ok_for_scope (type, containing_scope))
4219 {
4220 register tree *mover;
4221 register tree *limit;
4222
4223 pending_types--;
4224 limit = &pending_types_list[pending_types];
4225 for (mover = &pending_types_list[i]; mover < limit; mover++)
4226 *mover = *(mover+1);
4227
4228 /* Un-mark the type as having been output already (because it
4229 hasn't been, really). Then call output_type to generate a
4230 Dwarf representation of it. */
4231
4232 TREE_ASM_WRITTEN (type) = 0;
4233 output_type (type, containing_scope);
4234
4235 /* Don't increment the loop counter in this case because we
4236 have shifted all of the subsequent pending types down one
4237 element in the pending_types_list array. */
4238 }
4239 else
4240 i++;
4241 }
4242}
4243
75c613db
JM
4244/* Remember a type in the incomplete_types_list. */
4245
4246static void
4247add_incomplete_type (type)
4248 tree type;
4249{
4250 if (incomplete_types == incomplete_types_allocated)
4251 {
4252 incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4253 incomplete_types_list
4254 = (tree *) xrealloc (incomplete_types_list,
4255 sizeof (tree) * incomplete_types_allocated);
4256 }
4257
4258 incomplete_types_list[incomplete_types++] = type;
4259}
4260
4261/* Walk through the list of incomplete types again, trying once more to
4262 emit full debugging info for them. */
4263
4264static void
4265retry_incomplete_types ()
4266{
4267 register tree type;
4268
4269 finalizing = 1;
4270 while (incomplete_types)
4271 {
4272 --incomplete_types;
4273 type = incomplete_types_list[incomplete_types];
4274 output_type (type, NULL_TREE);
4275 }
4276}
4277
340ccaab
TW
4278static void
4279output_type (type, containing_scope)
4280 register tree type;
4281 register tree containing_scope;
4282{
4283 if (type == 0 || type == error_mark_node)
4284 return;
4285
4286 /* We are going to output a DIE to represent the unqualified version of
38e01259 4287 this type (i.e. without any const or volatile qualifiers) so get
340ccaab
TW
4288 the main variant (i.e. the unqualified version) of this type now. */
4289
69d6b01d 4290 type = type_main_variant (type);
340ccaab
TW
4291
4292 if (TREE_ASM_WRITTEN (type))
f45ebe47
JL
4293 {
4294 if (finalizing && AGGREGATE_TYPE_P (type))
4295 {
4296 register tree member;
4297
4298 /* Some of our nested types might not have been defined when we
4299 were written out before; force them out now. */
4300
4301 for (member = TYPE_FIELDS (type); member;
4302 member = TREE_CHAIN (member))
4303 if (TREE_CODE (member) == TYPE_DECL
4304 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4305 output_type (TREE_TYPE (member), containing_scope);
4306 }
4307 return;
4308 }
340ccaab 4309
a94dbf2c
JM
4310 /* If this is a nested type whose containing class hasn't been
4311 written out yet, writing it out will cover this one, too. */
4312
4313 if (TYPE_CONTEXT (type)
4314 && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4315 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4316 {
4317 output_type (TYPE_CONTEXT (type), containing_scope);
4318 return;
4319 }
4320
340ccaab
TW
4321 /* Don't generate any DIEs for this type now unless it is OK to do so
4322 (based upon what `type_ok_for_scope' tells us). */
4323
4324 if (! type_ok_for_scope (type, containing_scope))
4325 {
4326 pend_type (type);
4327 return;
4328 }
4329
4330 switch (TREE_CODE (type))
4331 {
4332 case ERROR_MARK:
4333 break;
4334
4335 case POINTER_TYPE:
4336 case REFERENCE_TYPE:
b1357021
JW
4337 /* Prevent infinite recursion in cases where this is a recursive
4338 type. Recursive types are possible in Ada. */
4339 TREE_ASM_WRITTEN (type) = 1;
340ccaab 4340 /* For these types, all that is required is that we output a DIE
e6d9804c 4341 (or a set of DIEs) to represent the "basis" type. */
340ccaab
TW
4342 output_type (TREE_TYPE (type), containing_scope);
4343 break;
4344
4345 case OFFSET_TYPE:
4346 /* This code is used for C++ pointer-to-data-member types. */
4347 /* Output a description of the relevant class type. */
4348 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4349 /* Output a description of the type of the object pointed to. */
4350 output_type (TREE_TYPE (type), containing_scope);
4351 /* Now output a DIE to represent this pointer-to-data-member type
4352 itself. */
4353 output_die (output_ptr_to_mbr_type_die, type);
4354 break;
4355
4356 case SET_TYPE:
f29a425b 4357 output_type (TYPE_DOMAIN (type), containing_scope);
340ccaab
TW
4358 output_die (output_set_type_die, type);
4359 break;
4360
4361 case FILE_TYPE:
4362 output_type (TREE_TYPE (type), containing_scope);
6dc42e49 4363 abort (); /* No way to represent these in Dwarf yet! */
340ccaab
TW
4364 break;
4365
340ccaab
TW
4366 case FUNCTION_TYPE:
4367 /* Force out return type (in case it wasn't forced out already). */
4368 output_type (TREE_TYPE (type), containing_scope);
4369 output_die (output_subroutine_type_die, type);
4370 output_formal_types (type);
4371 end_sibling_chain ();
4372 break;
4373
4374 case METHOD_TYPE:
4375 /* Force out return type (in case it wasn't forced out already). */
4376 output_type (TREE_TYPE (type), containing_scope);
4377 output_die (output_subroutine_type_die, type);
4378 output_formal_types (type);
4379 end_sibling_chain ();
4380 break;
4381
4042d440
PB
4382 case ARRAY_TYPE:
4383 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4384 {
4385 output_type (TREE_TYPE (type), containing_scope);
4386 output_die (output_string_type_die, type);
4387 }
4388 else
4389 {
4390 register tree element_type;
340ccaab 4391
4042d440
PB
4392 element_type = TREE_TYPE (type);
4393 while (TREE_CODE (element_type) == ARRAY_TYPE)
4394 element_type = TREE_TYPE (element_type);
340ccaab 4395
4042d440
PB
4396 output_type (element_type, containing_scope);
4397 output_die (output_array_type_die, type);
4398 }
340ccaab
TW
4399 break;
4400
4401 case ENUMERAL_TYPE:
4402 case RECORD_TYPE:
4403 case UNION_TYPE:
c1b98a95 4404 case QUAL_UNION_TYPE:
340ccaab
TW
4405
4406 /* For a non-file-scope tagged type, we can always go ahead and
4407 output a Dwarf description of this type right now, even if
4408 the type in question is still incomplete, because if this
4409 local type *was* ever completed anywhere within its scope,
4410 that complete definition would already have been attached to
c1b98a95
RK
4411 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4412 node by the time we reach this point. That's true because of the
4413 way the front-end does its processing of file-scope declarations (of
340ccaab
TW
4414 functions and class types) within which other types might be
4415 nested. The C and C++ front-ends always gobble up such "local
4416 scope" things en-mass before they try to output *any* debugging
4417 information for any of the stuff contained inside them and thus,
4418 we get the benefit here of what is (in effect) a pre-resolution
4419 of forward references to tagged types in local scopes.
4420
4421 Note however that for file-scope tagged types we cannot assume
4422 that such pre-resolution of forward references has taken place.
4423 A given file-scope tagged type may appear to be incomplete when
4424 we reach this point, but it may yet be given a full definition
4425 (at file-scope) later on during compilation. In order to avoid
4426 generating a premature (and possibly incorrect) set of Dwarf
4427 DIEs for such (as yet incomplete) file-scope tagged types, we
4428 generate nothing at all for as-yet incomplete file-scope tagged
4429 types here unless we are making our special "finalization" pass
4430 for file-scope things at the very end of compilation. At that
4431 time, we will certainly know as much about each file-scope tagged
4432 type as we are ever going to know, so at that point in time, we
4433 can safely generate correct Dwarf descriptions for these file-
a94dbf2c 4434 scope tagged types. */
340ccaab 4435
ff1ff056
JW
4436 if (TYPE_SIZE (type) == 0
4437 && (TYPE_CONTEXT (type) == NULL
2a851b5c
R
4438 || (TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4439 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_TYPE
4440 && TREE_CODE (TYPE_CONTEXT (type)) != METHOD_TYPE))
ff1ff056 4441 && !finalizing)
75c613db 4442 {
a30d4514
JM
4443 /* We can't do this for function-local types, and we don't need
4444 to. */
4445 if (TREE_PERMANENT (type))
4446 add_incomplete_type (type);
75c613db
JM
4447 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4448 }
340ccaab
TW
4449
4450 /* Prevent infinite recursion in cases where the type of some
4451 member of this type is expressed in terms of this type itself. */
4452
4453 TREE_ASM_WRITTEN (type) = 1;
4454
4455 /* Output a DIE to represent the tagged type itself. */
4456
4457 switch (TREE_CODE (type))
4458 {
4459 case ENUMERAL_TYPE:
4460 output_die (output_enumeration_type_die, type);
4461 return; /* a special case -- nothing left to do so just return */
4462
4463 case RECORD_TYPE:
4464 output_die (output_structure_type_die, type);
4465 break;
4466
4467 case UNION_TYPE:
c1b98a95 4468 case QUAL_UNION_TYPE:
340ccaab
TW
4469 output_die (output_union_type_die, type);
4470 break;
d4d4c5a8
RS
4471
4472 default:
4473 abort (); /* Should never happen. */
340ccaab
TW
4474 }
4475
4476 /* If this is not an incomplete type, output descriptions of
4477 each of its members.
4478
4479 Note that as we output the DIEs necessary to represent the
4480 members of this record or union type, we will also be trying
4481 to output DIEs to represent the *types* of those members.
4482 However the `output_type' function (above) will specifically
4483 avoid generating type DIEs for member types *within* the list
4484 of member DIEs for this (containing) type execpt for those
4485 types (of members) which are explicitly marked as also being
4486 members of this (containing) type themselves. The g++ front-
4487 end can force any given type to be treated as a member of some
4488 other (containing) type by setting the TYPE_CONTEXT of the
4489 given (member) type to point to the TREE node representing the
4490 appropriate (containing) type.
4491 */
4492
4493 if (TYPE_SIZE (type))
4494 {
f37230f0
JM
4495 /* First output info about the base classes. */
4496 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4497 {
4498 register tree bases = TYPE_BINFO_BASETYPES (type);
4499 register int n_bases = TREE_VEC_LENGTH (bases);
4500 register int i;
4501
4502 for (i = 0; i < n_bases; i++)
75c613db
JM
4503 {
4504 tree binfo = TREE_VEC_ELT (bases, i);
4505 output_type (BINFO_TYPE (binfo), containing_scope);
4506 output_die (output_inheritance_die, binfo);
4507 }
f37230f0
JM
4508 }
4509
a94dbf2c
JM
4510 ++in_class;
4511
9a631e8e
RS
4512 {
4513 register tree normal_member;
340ccaab 4514
f37230f0 4515 /* Now output info about the data members and type members. */
340ccaab 4516
9a631e8e
RS
4517 for (normal_member = TYPE_FIELDS (type);
4518 normal_member;
4519 normal_member = TREE_CHAIN (normal_member))
4520 output_decl (normal_member, type);
4521 }
340ccaab 4522
9a631e8e 4523 {
85f8926e 4524 register tree func_member;
9a631e8e
RS
4525
4526 /* Now output info about the function members (if any). */
4527
85f8926e
JM
4528 for (func_member = TYPE_METHODS (type);
4529 func_member;
4530 func_member = TREE_CHAIN (func_member))
4531 output_decl (func_member, type);
9a631e8e 4532 }
340ccaab 4533
a94dbf2c
JM
4534 --in_class;
4535
c1b98a95
RK
4536 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4537 scopes (at least in C++) so we must now output any nested
4538 pending types which are local just to this type. */
c7d6dca2
RS
4539
4540 output_pending_types_for_scope (type);
4541
340ccaab
TW
4542 end_sibling_chain (); /* Terminate member chain. */
4543 }
4544
4545 break;
4546
4547 case VOID_TYPE:
4548 case INTEGER_TYPE:
4549 case REAL_TYPE:
4550 case COMPLEX_TYPE:
4551 case BOOLEAN_TYPE:
4552 case CHAR_TYPE:
4553 break; /* No DIEs needed for fundamental types. */
4554
4555 case LANG_TYPE: /* No Dwarf representation currently defined. */
4556 break;
4557
4558 default:
4559 abort ();
4560 }
4561
4562 TREE_ASM_WRITTEN (type) = 1;
4563}
d4d4c5a8
RS
4564
4565static void
4566output_tagged_type_instantiation (type)
4567 register tree type;
4568{
4569 if (type == 0 || type == error_mark_node)
4570 return;
4571
4572 /* We are going to output a DIE to represent the unqualified version of
38e01259 4573 this type (i.e. without any const or volatile qualifiers) so make
d4d4c5a8
RS
4574 sure that we have the main variant (i.e. the unqualified version) of
4575 this type now. */
4576
3a88cbd1
JL
4577 if (type != type_main_variant (type))
4578 abort ();
d4d4c5a8 4579
3a88cbd1
JL
4580 if (!TREE_ASM_WRITTEN (type))
4581 abort ();
d4d4c5a8
RS
4582
4583 switch (TREE_CODE (type))
4584 {
4585 case ERROR_MARK:
4586 break;
4587
4588 case ENUMERAL_TYPE:
4589 output_die (output_inlined_enumeration_type_die, type);
4590 break;
4591
4592 case RECORD_TYPE:
4593 output_die (output_inlined_structure_type_die, type);
4594 break;
4595
4596 case UNION_TYPE:
c1b98a95 4597 case QUAL_UNION_TYPE:
d4d4c5a8
RS
4598 output_die (output_inlined_union_type_die, type);
4599 break;
4600
4601 default:
4602 abort (); /* Should never happen. */
4603 }
4604}
340ccaab
TW
4605\f
4606/* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4607 the things which are local to the given block. */
4608
4609static void
85f8926e 4610output_block (stmt, depth)
340ccaab 4611 register tree stmt;
85f8926e 4612 int depth;
340ccaab 4613{
ece0ca60
RS
4614 register int must_output_die = 0;
4615 register tree origin;
4616 register enum tree_code origin_code;
340ccaab
TW
4617
4618 /* Ignore blocks never really used to make RTL. */
4619
4620 if (! stmt || ! TREE_USED (stmt))
4621 return;
4622
ece0ca60
RS
4623 /* Determine the "ultimate origin" of this block. This block may be an
4624 inlined instance of an inlined instance of inline function, so we
4625 have to trace all of the way back through the origin chain to find
4626 out what sort of node actually served as the original seed for the
4627 creation of the current block. */
340ccaab 4628
ece0ca60
RS
4629 origin = block_ultimate_origin (stmt);
4630 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4631
4632 /* Determine if we need to output any Dwarf DIEs at all to represent this
4633 block. */
340ccaab 4634
ece0ca60
RS
4635 if (origin_code == FUNCTION_DECL)
4636 /* The outer scopes for inlinings *must* always be represented. We
4637 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4638 must_output_die = 1;
4639 else
4640 {
4641 /* In the case where the current block represents an inlining of the
4642 "body block" of an inline function, we must *NOT* output any DIE
4643 for this block because we have already output a DIE to represent
4644 the whole inlined function scope and the "body block" of any
4645 function doesn't really represent a different scope according to
4646 ANSI C rules. So we check here to make sure that this block does
4647 not represent a "body block inlining" before trying to set the
4648 `must_output_die' flag. */
4649
85f8926e 4650 if (! is_body_block (origin ? origin : stmt))
ece0ca60
RS
4651 {
4652 /* Determine if this block directly contains any "significant"
4653 local declarations which we will need to output DIEs for. */
4654
4655 if (debug_info_level > DINFO_LEVEL_TERSE)
4656 /* We are not in terse mode so *any* local declaration counts
4657 as being a "significant" one. */
4658 must_output_die = (BLOCK_VARS (stmt) != NULL);
4659 else
340ccaab 4660 {
ece0ca60
RS
4661 register tree decl;
4662
4663 /* We are in terse mode, so only local (nested) function
4664 definitions count as "significant" local declarations. */
4665
4666 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4667 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4668 {
4669 must_output_die = 1;
4670 break;
4671 }
340ccaab 4672 }
ece0ca60
RS
4673 }
4674 }
340ccaab
TW
4675
4676 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4677 DIE for any block which contains no significant local declarations
4678 at all. Rather, in such cases we just call `output_decls_for_scope'
4679 so that any needed Dwarf info for any sub-blocks will get properly
4680 generated. Note that in terse mode, our definition of what constitutes
4681 a "significant" local declaration gets restricted to include only
4682 inlined function instances and local (nested) function definitions. */
4683
85f8926e
JM
4684 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4685 /* We don't care about an abstract inlined subroutine. */;
4686 else if (must_output_die)
340ccaab 4687 {
ece0ca60
RS
4688 output_die ((origin_code == FUNCTION_DECL)
4689 ? output_inlined_subroutine_die
4690 : output_lexical_block_die,
340ccaab 4691 stmt);
85f8926e 4692 output_decls_for_scope (stmt, depth);
340ccaab
TW
4693 end_sibling_chain ();
4694 }
4695 else
85f8926e 4696 output_decls_for_scope (stmt, depth);
340ccaab
TW
4697}
4698
4699/* Output all of the decls declared within a given scope (also called
4700 a `binding contour') and (recursively) all of it's sub-blocks. */
4701
4702static void
85f8926e 4703output_decls_for_scope (stmt, depth)
340ccaab 4704 register tree stmt;
85f8926e 4705 int depth;
340ccaab
TW
4706{
4707 /* Ignore blocks never really used to make RTL. */
4708
4709 if (! stmt || ! TREE_USED (stmt))
4710 return;
4711
85f8926e 4712 if (! BLOCK_ABSTRACT (stmt) && depth > 0)
ece0ca60 4713 next_block_number++;
340ccaab
TW
4714
4715 /* Output the DIEs to represent all of the data objects, functions,
4716 typedefs, and tagged types declared directly within this block
4717 but not within any nested sub-blocks. */
4718
4719 {
4720 register tree decl;
4721
4722 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4723 output_decl (decl, stmt);
4724 }
4725
4726 output_pending_types_for_scope (stmt);
4727
4728 /* Output the DIEs to represent all sub-blocks (and the items declared
4729 therein) of this block. */
4730
4731 {
4732 register tree subblocks;
4733
4734 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4735 subblocks;
4736 subblocks = BLOCK_CHAIN (subblocks))
85f8926e 4737 output_block (subblocks, depth + 1);
340ccaab
TW
4738 }
4739}
4740
a94dbf2c
JM
4741/* Is this a typedef we can avoid emitting? */
4742
24e75411 4743inline static int
a94dbf2c
JM
4744is_redundant_typedef (decl)
4745 register tree decl;
4746{
4747 if (TYPE_DECL_IS_STUB (decl))
4748 return 1;
4749 if (DECL_ARTIFICIAL (decl)
4750 && DECL_CONTEXT (decl)
4751 && is_tagged_type (DECL_CONTEXT (decl))
4752 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4753 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4754 /* Also ignore the artificial member typedef for the class name. */
4755 return 1;
4756 return 0;
4757}
4758
340ccaab
TW
4759/* Output Dwarf .debug information for a decl described by DECL. */
4760
4761static void
4762output_decl (decl, containing_scope)
4763 register tree decl;
4764 register tree containing_scope;
4765{
7f7429ca
RS
4766 /* Make a note of the decl node we are going to be working on. We may
4767 need to give the user the source coordinates of where it appeared in
4768 case we notice (later on) that something about it looks screwy. */
4769
4770 dwarf_last_decl = decl;
4771
8ac9cb56
RS
4772 if (TREE_CODE (decl) == ERROR_MARK)
4773 return;
4774
58add97a
JW
4775 /* If a structure is declared within an initialization, e.g. as the
4776 operand of a sizeof, then it will not have a name. We don't want
4777 to output a DIE for it, as the tree nodes are in the temporary obstack */
4778
4779 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4780 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4781 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4782 || (TYPE_FIELDS (TREE_TYPE (decl))
4783 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4784 return;
4785
8ac9cb56
RS
4786 /* If this ..._DECL node is marked to be ignored, then ignore it.
4787 But don't ignore a function definition, since that would screw
4788 up our count of blocks, and that it turn will completely screw up the
38e01259 4789 labels we will reference in subsequent AT_low_pc and AT_high_pc
8ac9cb56
RS
4790 attributes (for subsequent blocks). */
4791
4792 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4793 return;
4794
340ccaab
TW
4795 switch (TREE_CODE (decl))
4796 {
340ccaab
TW
4797 case CONST_DECL:
4798 /* The individual enumerators of an enum type get output when we
4799 output the Dwarf representation of the relevant enum type itself. */
4800 break;
4801
4802 case FUNCTION_DECL:
4803 /* If we are in terse mode, don't output any DIEs to represent
0020519f 4804 mere function declarations. Also, if we are conforming
648ebe7b 4805 to the DWARF version 1 specification, don't output DIEs for
0020519f 4806 mere function declarations. */
340ccaab 4807
0020519f 4808 if (DECL_INITIAL (decl) == NULL_TREE)
648ebe7b
RS
4809#if (DWARF_VERSION > 1)
4810 if (debug_info_level <= DINFO_LEVEL_TERSE)
4811#endif
4812 break;
340ccaab
TW
4813
4814 /* Before we describe the FUNCTION_DECL itself, make sure that we
4815 have described its return type. */
4816
4817 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4818
a94dbf2c
JM
4819 {
4820 /* And its containing type. */
4821 register tree origin = decl_class_context (decl);
4822 if (origin)
4823 output_type (origin, containing_scope);
4824 }
4825
340ccaab
TW
4826 /* If the following DIE will represent a function definition for a
4827 function with "extern" linkage, output a special "pubnames" DIE
4828 label just ahead of the actual DIE. A reference to this label
4829 was already generated in the .debug_pubnames section sub-entry
4830 for this function definition. */
4831
4832 if (TREE_PUBLIC (decl))
4833 {
4834 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4835
4836 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4837 ASM_OUTPUT_LABEL (asm_out_file, label);
4838 }
4839
4840 /* Now output a DIE to represent the function itself. */
4841
0924ddef 4842 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
340ccaab
TW
4843 ? output_global_subroutine_die
4844 : output_local_subroutine_die,
4845 decl);
4846
4847 /* Now output descriptions of the arguments for this function.
4848 This gets (unnecessarily?) complex because of the fact that
4849 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4850 cases where there was a trailing `...' at the end of the formal
4851 parameter list. In order to find out if there was a trailing
4852 ellipsis or not, we must instead look at the type associated
4853 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4854 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4855 ends with a void_type_node then there should *not* be an ellipsis
4856 at the end. */
4857
0020519f 4858 /* In the case where we are describing a mere function declaration, all
340ccaab
TW
4859 we need to do here (and all we *can* do here) is to describe
4860 the *types* of its formal parameters. */
4861
a94dbf2c 4862 if (decl != current_function_decl || in_class)
340ccaab
TW
4863 output_formal_types (TREE_TYPE (decl));
4864 else
4865 {
2c1c10ec
RK
4866 /* Generate DIEs to represent all known formal parameters */
4867
340ccaab 4868 register tree arg_decls = DECL_ARGUMENTS (decl);
2c1c10ec
RK
4869 register tree parm;
4870
4871 /* WARNING! Kludge zone ahead! Here we have a special
4872 hack for svr4 SDB compatibility. Instead of passing the
4873 current FUNCTION_DECL node as the second parameter (i.e.
4874 the `containing_scope' parameter) to `output_decl' (as
4875 we ought to) we instead pass a pointer to our own private
4876 fake_containing_scope node. That node is a RECORD_TYPE
4877 node which NO OTHER TYPE may ever actually be a member of.
4878
4879 This pointer will ultimately get passed into `output_type'
4880 as its `containing_scope' parameter. `Output_type' will
4881 then perform its part in the hack... i.e. it will pend
4882 the type of the formal parameter onto the pending_types
4883 list. Later on, when we are done generating the whole
4884 sequence of formal parameter DIEs for this function
4885 definition, we will un-pend all previously pended types
4886 of formal parameters for this function definition.
4887
4888 This whole kludge prevents any type DIEs from being
4889 mixed in with the formal parameter DIEs. That's good
4890 because svr4 SDB believes that the list of formal
4891 parameter DIEs for a function ends wherever the first
4892 non-formal-parameter DIE appears. Thus, we have to
4893 keep the formal parameter DIEs segregated. They must
4894 all appear (consecutively) at the start of the list of
4895 children for the DIE representing the function definition.
4896 Then (and only then) may we output any additional DIEs
4897 needed to represent the types of these formal parameters.
4898 */
340ccaab 4899
2c1c10ec
RK
4900 /*
4901 When generating DIEs, generate the unspecified_parameters
4902 DIE instead if we come across the arg "__builtin_va_alist"
4903 */
340ccaab 4904
2c1c10ec
RK
4905 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4906 if (TREE_CODE (parm) == PARM_DECL)
4907 {
4908 if (DECL_NAME(parm) &&
4909 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4910 "__builtin_va_alist") )
4911 output_die (output_unspecified_parameters_die, decl);
4912 else
4913 output_decl (parm, fake_containing_scope);
4914 }
340ccaab 4915
2c1c10ec
RK
4916 /*
4917 Now that we have finished generating all of the DIEs to
4918 represent the formal parameters themselves, force out
4919 any DIEs needed to represent their types. We do this
4920 simply by un-pending all previously pended types which
4921 can legitimately go into the chain of children DIEs for
4922 the current FUNCTION_DECL.
4923 */
340ccaab 4924
2c1c10ec 4925 output_pending_types_for_scope (decl);
340ccaab 4926
2c1c10ec
RK
4927 /*
4928 Decide whether we need a unspecified_parameters DIE at the end.
4929 There are 2 more cases to do this for:
4930 1) the ansi ... declaration - this is detectable when the end
4931 of the arg list is not a void_type_node
4932 2) an unprototyped function declaration (not a definition). This
4933 just means that we have no info about the parameters at all.
4934 */
340ccaab
TW
4935
4936 {
340ccaab
TW
4937 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4938
4939 if (fn_arg_types)
4940 {
0f41302f 4941 /* this is the prototyped case, check for ... */
2c1c10ec
RK
4942 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4943 output_die (output_unspecified_parameters_die, decl);
4944 }
4945 else
4946 {
9faa82d8 4947 /* this is unprototyped, check for undefined (just declaration) */
2c1c10ec
RK
4948 if (!DECL_INITIAL (decl))
4949 output_die (output_unspecified_parameters_die, decl);
4950 }
340ccaab 4951 }
340ccaab 4952
a94dbf2c
JM
4953 /* Output Dwarf info for all of the stuff within the body of the
4954 function (if it has one - it may be just a declaration). */
340ccaab 4955
340ccaab 4956 {
a94dbf2c
JM
4957 register tree outer_scope = DECL_INITIAL (decl);
4958
4959 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4960 {
4961 /* Note that here, `outer_scope' is a pointer to the outermost
4962 BLOCK node created to represent a function.
4963 This outermost BLOCK actually represents the outermost
4964 binding contour for the function, i.e. the contour in which
4965 the function's formal parameters and labels get declared.
4966
4967 Curiously, it appears that the front end doesn't actually
4968 put the PARM_DECL nodes for the current function onto the
4969 BLOCK_VARS list for this outer scope. (They are strung
4970 off of the DECL_ARGUMENTS list for the function instead.)
4971 The BLOCK_VARS list for the `outer_scope' does provide us
4972 with a list of the LABEL_DECL nodes for the function however,
4973 and we output DWARF info for those here.
4974
4975 Just within the `outer_scope' there will be a BLOCK node
4976 representing the function's outermost pair of curly braces,
4977 and any blocks used for the base and member initializers of
4978 a C++ constructor function. */
4979
4980 output_decls_for_scope (outer_scope, 0);
4981
4982 /* Finally, force out any pending types which are local to the
4983 outermost block of this function definition. These will
4984 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4985 node itself. */
4986
4987 output_pending_types_for_scope (decl);
4988 }
340ccaab 4989 }
a94dbf2c 4990 }
340ccaab
TW
4991
4992 /* Generate a terminator for the list of stuff `owned' by this
4993 function. */
4994
4995 end_sibling_chain ();
4996
4997 break;
4998
4999 case TYPE_DECL:
5000 /* If we are in terse mode, don't generate any DIEs to represent
5001 any actual typedefs. Note that even when we are in terse mode,
5002 we must still output DIEs to represent those tagged types which
5003 are used (directly or indirectly) in the specification of either
5004 a return type or a formal parameter type of some function. */
5005
5006 if (debug_info_level <= DINFO_LEVEL_TERSE)
a94dbf2c
JM
5007 if (! TYPE_DECL_IS_STUB (decl)
5008 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
340ccaab
TW
5009 return;
5010
a94dbf2c
JM
5011 /* In the special case of a TYPE_DECL node representing
5012 the declaration of some type tag, if the given TYPE_DECL is
d4d4c5a8
RS
5013 marked as having been instantiated from some other (original)
5014 TYPE_DECL node (e.g. one which was generated within the original
5015 definition of an inline function) we have to generate a special
5016 (abbreviated) TAG_structure_type, TAG_union_type, or
5017 TAG_enumeration-type DIE here. */
5018
a94dbf2c 5019 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
d4d4c5a8
RS
5020 {
5021 output_tagged_type_instantiation (TREE_TYPE (decl));
5022 return;
5023 }
5024
340ccaab
TW
5025 output_type (TREE_TYPE (decl), containing_scope);
5026
a94dbf2c 5027 if (! is_redundant_typedef (decl))
340ccaab
TW
5028 /* Output a DIE to represent the typedef itself. */
5029 output_die (output_typedef_die, decl);
5030 break;
5031
5032 case LABEL_DECL:
5033 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5034 output_die (output_label_die, decl);
5035 break;
5036
5037 case VAR_DECL:
648ebe7b
RS
5038 /* If we are conforming to the DWARF version 1 specification, don't
5039 generated any DIEs to represent mere external object declarations. */
5040
5041#if (DWARF_VERSION <= 1)
0924ddef 5042 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
648ebe7b
RS
5043 break;
5044#endif
5045
340ccaab
TW
5046 /* If we are in terse mode, don't generate any DIEs to represent
5047 any variable declarations or definitions. */
5048
5049 if (debug_info_level <= DINFO_LEVEL_TERSE)
5050 break;
5051
5052 /* Output any DIEs that are needed to specify the type of this data
5053 object. */
5054
5055 output_type (TREE_TYPE (decl), containing_scope);
5056
a94dbf2c
JM
5057 {
5058 /* And its containing type. */
5059 register tree origin = decl_class_context (decl);
5060 if (origin)
5061 output_type (origin, containing_scope);
5062 }
5063
340ccaab
TW
5064 /* If the following DIE will represent a data object definition for a
5065 data object with "extern" linkage, output a special "pubnames" DIE
5066 label just ahead of the actual DIE. A reference to this label
5067 was already generated in the .debug_pubnames section sub-entry
5068 for this data object definition. */
5069
d4d4c5a8 5070 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
340ccaab
TW
5071 {
5072 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5073
5074 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5075 ASM_OUTPUT_LABEL (asm_out_file, label);
5076 }
5077
d4d4c5a8
RS
5078 /* Now output the DIE to represent the data object itself. This gets
5079 complicated because of the possibility that the VAR_DECL really
5080 represents an inlined instance of a formal parameter for an inline
5081 function. */
5082
5083 {
24e75411 5084 register void (*func) PROTO((void *));
d4d4c5a8 5085 register tree origin = decl_ultimate_origin (decl);
340ccaab 5086
d4d4c5a8
RS
5087 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5088 func = output_formal_parameter_die;
5089 else
5090 {
0924ddef 5091 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
d4d4c5a8
RS
5092 func = output_global_variable_die;
5093 else
5094 func = output_local_variable_die;
5095 }
5096 output_die (func, decl);
5097 }
340ccaab
TW
5098 break;
5099
5100 case FIELD_DECL:
5101 /* Ignore the nameless fields that are used to skip bits. */
5102 if (DECL_NAME (decl) != 0)
5103 {
5104 output_type (member_declared_type (decl), containing_scope);
5105 output_die (output_member_die, decl);
5106 }
5107 break;
5108
5109 case PARM_DECL:
5110 /* Force out the type of this formal, if it was not forced out yet.
5111 Note that here we can run afowl of a bug in "classic" svr4 SDB.
5112 It should be able to grok the presence of type DIEs within a list
5113 of TAG_formal_parameter DIEs, but it doesn't. */
5114
5115 output_type (TREE_TYPE (decl), containing_scope);
5116 output_die (output_formal_parameter_die, decl);
5117 break;
5118
5119 default:
5120 abort ();
5121 }
5122}
5123\f
5124void
5125dwarfout_file_scope_decl (decl, set_finalizing)
5126 register tree decl;
5127 register int set_finalizing;
5128{
8ac9cb56
RS
5129 if (TREE_CODE (decl) == ERROR_MARK)
5130 return;
5131
5132 /* If this ..._DECL node is marked to be ignored, then ignore it. We
5133 gotta hope that the node in question doesn't represent a function
5134 definition. If it does, then totally ignoring it is bound to screw
5135 up our count of blocks, and that it turn will completely screw up the
38e01259 5136 labels we will reference in subsequent AT_low_pc and AT_high_pc
8ac9cb56
RS
5137 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
5138 don't carry their own sequence numbers with them!) */
5139
5140 if (DECL_IGNORED_P (decl))
5141 {
5142 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5143 abort ();
5144 return;
5145 }
5146
340ccaab
TW
5147 switch (TREE_CODE (decl))
5148 {
5149 case FUNCTION_DECL:
5150
8ac9cb56
RS
5151 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5152 a builtin function. Explicit programmer-supplied declarations of
5153 these same functions should NOT be ignored however. */
340ccaab 5154
0924ddef 5155 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
340ccaab
TW
5156 return;
5157
0020519f
RK
5158 /* What we would really like to do here is to filter out all mere
5159 file-scope declarations of file-scope functions which are never
5160 referenced later within this translation unit (and keep all of
9faa82d8 5161 ones that *are* referenced later on) but we aren't clairvoyant,
0020519f
RK
5162 so we have no idea which functions will be referenced in the
5163 future (i.e. later on within the current translation unit).
5164 So here we just ignore all file-scope function declarations
5165 which are not also definitions. If and when the debugger needs
9faa82d8 5166 to know something about these functions, it wil have to hunt
0020519f
RK
5167 around and find the DWARF information associated with the
5168 *definition* of the function.
5169
5170 Note that we can't just check `DECL_EXTERNAL' to find out which
5171 FUNCTION_DECL nodes represent definitions and which ones represent
5172 mere declarations. We have to check `DECL_INITIAL' instead. That's
5173 because the C front-end supports some weird semantics for "extern
5174 inline" function definitions. These can get inlined within the
5175 current translation unit (an thus, we need to generate DWARF info
5176 for their abstract instances so that the DWARF info for the
5177 concrete inlined instances can have something to refer to) but
5178 the compiler never generates any out-of-lines instances of such
5179 things (despite the fact that they *are* definitions). The
5180 important point is that the C front-end marks these "extern inline"
85f8926e 5181 functions as DECL_EXTERNAL, but we need to generate DWARF for them
0020519f
RK
5182 anyway.
5183
5184 Note that the C++ front-end also plays some similar games for inline
5185 function definitions appearing within include files which also
5186 contain `#pragma interface' pragmas. */
5187
5188 if (DECL_INITIAL (decl) == NULL_TREE)
340ccaab
TW
5189 return;
5190
d4d4c5a8 5191 if (TREE_PUBLIC (decl)
0924ddef 5192 && ! DECL_EXTERNAL (decl)
d4d4c5a8 5193 && ! DECL_ABSTRACT (decl))
340ccaab
TW
5194 {
5195 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5196
5197 /* Output a .debug_pubnames entry for a public function
5198 defined in this compilation unit. */
5199
5200 fputc ('\n', asm_out_file);
85595d1a 5201 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab
TW
5202 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5203 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
74153f8e 5204 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab 5205 IDENTIFIER_POINTER (DECL_NAME (decl)));
85595d1a 5206 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5207 }
5208
5209 break;
5210
5211 case VAR_DECL:
5212
5213 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5214 object declaration and if the declaration was never even
5215 referenced from within this entire compilation unit. We
5216 suppress these DIEs in order to save space in the .debug section
5217 (by eliminating entries which are probably useless). Note that
5218 we must not suppress block-local extern declarations (whether
5219 used or not) because that would screw-up the debugger's name
5220 lookup mechanism and cause it to miss things which really ought
5221 to be in scope at a given point. */
5222
0924ddef 5223 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
340ccaab
TW
5224 return;
5225
6dc42e49 5226 if (TREE_PUBLIC (decl)
0924ddef 5227 && ! DECL_EXTERNAL (decl)
d4d4c5a8
RS
5228 && GET_CODE (DECL_RTL (decl)) == MEM
5229 && ! DECL_ABSTRACT (decl))
340ccaab
TW
5230 {
5231 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5232
5233 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5234 {
5235 /* Output a .debug_pubnames entry for a public variable
5236 defined in this compilation unit. */
5237
5238 fputc ('\n', asm_out_file);
85595d1a 5239 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab
TW
5240 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5241 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
74153f8e 5242 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab 5243 IDENTIFIER_POINTER (DECL_NAME (decl)));
85595d1a 5244 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5245 }
5246
5247 if (DECL_INITIAL (decl) == NULL)
5248 {
5249 /* Output a .debug_aranges entry for a public variable
6dc42e49 5250 which is tentatively defined in this compilation unit. */
340ccaab
TW
5251
5252 fputc ('\n', asm_out_file);
85595d1a 5253 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
340ccaab 5254 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
9a631e8e 5255 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
340ccaab
TW
5256 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5257 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
85595d1a 5258 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5259 }
5260 }
5261
5262 /* If we are in terse mode, don't generate any DIEs to represent
5263 any variable declarations or definitions. */
5264
5265 if (debug_info_level <= DINFO_LEVEL_TERSE)
5266 return;
5267
5268 break;
5269
5270 case TYPE_DECL:
e6d9804c
TW
5271 /* Don't bother trying to generate any DIEs to represent any of the
5272 normal built-in types for the language we are compiling, except
5273 in cases where the types in question are *not* DWARF fundamental
5274 types. We make an exception in the case of non-fundamental types
5275 for the sake of objective C (and perhaps C++) because the GNU
5276 front-ends for these languages may in fact create certain "built-in"
5277 types which are (for example) RECORD_TYPEs. In such cases, we
5278 really need to output these (non-fundamental) types because other
5279 DIEs may contain references to them. */
5280
af02da67
JW
5281 /* Also ignore language dependent types here, because they are probably
5282 also built-in types. If we didn't ignore them, then we would get
5283 references to undefined labels because output_type doesn't support
5284 them. So, for now, we need to ignore them to avoid assembler
5285 errors. */
5286
5287 /* ??? This code is different than the equivalent code in dwarf2out.c.
5288 The dwarf2out.c code is probably more correct. */
5289
e6d9804c 5290 if (DECL_SOURCE_LINE (decl) == 0
af02da67
JW
5291 && (type_is_fundamental (TREE_TYPE (decl))
5292 || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
340ccaab
TW
5293 return;
5294
5295 /* If we are in terse mode, don't generate any DIEs to represent
5296 any actual typedefs. Note that even when we are in terse mode,
5297 we must still output DIEs to represent those tagged types which
5298 are used (directly or indirectly) in the specification of either
5299 a return type or a formal parameter type of some function. */
5300
5301 if (debug_info_level <= DINFO_LEVEL_TERSE)
d4ef15f2 5302 if (! TYPE_DECL_IS_STUB (decl)
340ccaab
TW
5303 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5304 return;
5305
5306 break;
5307
5308 default:
5309 return;
5310 }
5311
5312 fputc ('\n', asm_out_file);
85595d1a 5313 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
340ccaab 5314 finalizing = set_finalizing;
906c4e36 5315 output_decl (decl, NULL_TREE);
340ccaab
TW
5316
5317 /* NOTE: The call above to `output_decl' may have caused one or more
5318 file-scope named types (i.e. tagged types) to be placed onto the
5319 pending_types_list. We have to get those types off of that list
5320 at some point, and this is the perfect time to do it. If we didn't
5321 take them off now, they might still be on the list when cc1 finally
5322 exits. That might be OK if it weren't for the fact that when we put
5323 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5324 for these types, and that causes them never to be output unless
5325 `output_pending_types_for_scope' takes them off of the list and un-sets
5326 their TREE_ASM_WRITTEN flags. */
5327
906c4e36 5328 output_pending_types_for_scope (NULL_TREE);
340ccaab 5329
0a4be913
JW
5330 /* The above call should have totally emptied the pending_types_list
5331 if this is not a nested function or class. If this is a nested type,
5332 then the remaining pending_types will be emitted when the containing type
5333 is handled. */
5334
5335 if (! DECL_CONTEXT (decl))
5336 {
5337 if (pending_types != 0)
5338 abort ();
5339 }
340ccaab 5340
85595d1a 5341 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5342
5343 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5344 current_funcdef_number++;
5345}
5346\f
5347/* Output a marker (i.e. a label) for the beginning of the generated code
5348 for a lexical block. */
5349
5350void
5351dwarfout_begin_block (blocknum)
5352 register unsigned blocknum;
5353{
5354 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5355
4d1065ed 5356 function_section (current_function_decl);
340ccaab
TW
5357 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5358 ASM_OUTPUT_LABEL (asm_out_file, label);
5359}
5360
5361/* Output a marker (i.e. a label) for the end of the generated code
5362 for a lexical block. */
5363
5364void
5365dwarfout_end_block (blocknum)
5366 register unsigned blocknum;
5367{
5368 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5369
4d1065ed 5370 function_section (current_function_decl);
340ccaab
TW
5371 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5372 ASM_OUTPUT_LABEL (asm_out_file, label);
5373}
5374
5375/* Output a marker (i.e. a label) at a point in the assembly code which
5376 corresponds to a given source level label. */
5377
5378void
5379dwarfout_label (insn)
5380 register rtx insn;
5381{
5382 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5383 {
5384 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5385
4d1065ed 5386 function_section (current_function_decl);
340ccaab
TW
5387 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5388 (unsigned) INSN_UID (insn));
5389 ASM_OUTPUT_LABEL (asm_out_file, label);
5390 }
5391}
5392
2a819d04
TW
5393/* Output a marker (i.e. a label) for the point in the generated code where
5394 the real body of the function begins (after parameters have been moved
5395 to their home locations). */
5396
5397void
5398dwarfout_begin_function ()
5399{
5400 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5401
a94dbf2c
JM
5402 if (! use_gnu_debug_info_extensions)
5403 return;
4d1065ed 5404 function_section (current_function_decl);
2a819d04
TW
5405 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5406 ASM_OUTPUT_LABEL (asm_out_file, label);
5407}
5408
5409/* Output a marker (i.e. a label) for the point in the generated code where
5410 the real body of the function ends (just before the epilogue code). */
5411
5412void
5413dwarfout_end_function ()
5414{
5415 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5416
a94dbf2c
JM
5417 if (! use_gnu_debug_info_extensions)
5418 return;
4d1065ed 5419 function_section (current_function_decl);
2a819d04
TW
5420 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5421 ASM_OUTPUT_LABEL (asm_out_file, label);
5422}
5423
340ccaab
TW
5424/* Output a marker (i.e. a label) for the absolute end of the generated code
5425 for a function definition. This gets called *after* the epilogue code
5426 has been generated. */
5427
5428void
5429dwarfout_end_epilogue ()
5430{
5431 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5432
5433 /* Output a label to mark the endpoint of the code generated for this
5434 function. */
5435
5436 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5437 ASM_OUTPUT_LABEL (asm_out_file, label);
5438}
5439
5440static void
5441shuffle_filename_entry (new_zeroth)
5442 register filename_entry *new_zeroth;
5443{
5444 filename_entry temp_entry;
5445 register filename_entry *limit_p;
5446 register filename_entry *move_p;
5447
5448 if (new_zeroth == &filename_table[0])
5449 return;
5450
5451 temp_entry = *new_zeroth;
5452
5453 /* Shift entries up in the table to make room at [0]. */
5454
5455 limit_p = &filename_table[0];
5456 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5457 *move_p = *(move_p-1);
5458
5459 /* Install the found entry at [0]. */
5460
5461 filename_table[0] = temp_entry;
5462}
5463
5464/* Create a new (string) entry for the .debug_sfnames section. */
5465
5466static void
5467generate_new_sfname_entry ()
5468{
5469 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5470
5471 fputc ('\n', asm_out_file);
85595d1a 5472 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
340ccaab
TW
5473 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5474 ASM_OUTPUT_LABEL (asm_out_file, label);
74153f8e 5475 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
340ccaab
TW
5476 filename_table[0].name
5477 ? filename_table[0].name
5478 : "");
85595d1a 5479 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5480}
5481
5482/* Lookup a filename (in the list of filenames that we know about here in
5483 dwarfout.c) and return its "index". The index of each (known) filename
5484 is just a unique number which is associated with only that one filename.
5485 We need such numbers for the sake of generating labels (in the
5486 .debug_sfnames section) and references to those unique labels (in the
5487 .debug_srcinfo and .debug_macinfo sections).
5488
5489 If the filename given as an argument is not found in our current list,
5490 add it to the list and assign it the next available unique index number.
5491
5492 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5493 one), we shuffle the filename found (or added) up to the zeroth entry of
5494 our list of filenames (which is always searched linearly). We do this so
5495 as to optimize the most common case for these filename lookups within
5496 dwarfout.c. The most common case by far is the case where we call
5497 lookup_filename to lookup the very same filename that we did a lookup
5498 on the last time we called lookup_filename. We make sure that this
5499 common case is fast because such cases will constitute 99.9% of the
5500 lookups we ever do (in practice).
5501
5502 If we add a new filename entry to our table, we go ahead and generate
5503 the corresponding entry in the .debug_sfnames section right away.
5504 Doing so allows us to avoid tickling an assembler bug (present in some
5505 m68k assemblers) which yields assembly-time errors in cases where the
5506 difference of two label addresses is taken and where the two labels
5507 are in a section *other* than the one where the difference is being
5508 calculated, and where at least one of the two symbol references is a
5509 forward reference. (This bug could be tickled by our .debug_srcinfo
5510 entries if we don't output their corresponding .debug_sfnames entries
461b77c8 5511 before them.) */
340ccaab
TW
5512
5513static unsigned
5514lookup_filename (file_name)
5515 char *file_name;
5516{
5517 register filename_entry *search_p;
5518 register filename_entry *limit_p = &filename_table[ft_entries];
5519
5520 for (search_p = filename_table; search_p < limit_p; search_p++)
5521 if (!strcmp (file_name, search_p->name))
5522 {
5523 /* When we get here, we have found the filename that we were
5524 looking for in the filename_table. Now we want to make sure
5525 that it gets moved to the zero'th entry in the table (if it
5526 is not already there) so that subsequent attempts to find the
5527 same filename will find it as quickly as possible. */
5528
5529 shuffle_filename_entry (search_p);
5530 return filename_table[0].number;
5531 }
5532
5533 /* We come here whenever we have a new filename which is not registered
5534 in the current table. Here we add it to the table. */
5535
5536 /* Prepare to add a new table entry by making sure there is enough space
5537 in the table to do so. If not, expand the current table. */
5538
5539 if (ft_entries == ft_entries_allocated)
5540 {
5541 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5542 filename_table
5543 = (filename_entry *)
5544 xrealloc (filename_table,
5545 ft_entries_allocated * sizeof (filename_entry));
5546 }
5547
5548 /* Initially, add the new entry at the end of the filename table. */
5549
5550 filename_table[ft_entries].number = ft_entries;
5551 filename_table[ft_entries].name = xstrdup (file_name);
5552
5553 /* Shuffle the new entry into filename_table[0]. */
5554
5555 shuffle_filename_entry (&filename_table[ft_entries]);
5556
5557 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5558 generate_new_sfname_entry ();
5559
5560 ft_entries++;
5561 return filename_table[0].number;
5562}
5563
5564static void
5565generate_srcinfo_entry (line_entry_num, files_entry_num)
5566 unsigned line_entry_num;
5567 unsigned files_entry_num;
5568{
5569 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5570
5571 fputc ('\n', asm_out_file);
85595d1a 5572 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
340ccaab
TW
5573 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5574 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5575 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5576 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
85595d1a 5577 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5578}
5579
5580void
5581dwarfout_line (filename, line)
5582 register char *filename;
5583 register unsigned line;
5584{
6619df07
JM
5585 if (debug_info_level >= DINFO_LEVEL_NORMAL
5586 /* We can't emit line number info for functions in separate sections,
5587 because the assembler can't subtract labels in different sections. */
5588 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
340ccaab
TW
5589 {
5590 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5591 static unsigned last_line_entry_num = 0;
5592 static unsigned prev_file_entry_num = (unsigned) -1;
a94dbf2c 5593 register unsigned this_file_entry_num;
340ccaab 5594
4d1065ed 5595 function_section (current_function_decl);
340ccaab
TW
5596 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5597 ASM_OUTPUT_LABEL (asm_out_file, label);
5598
5599 fputc ('\n', asm_out_file);
340ccaab 5600
a94dbf2c
JM
5601 if (use_gnu_debug_info_extensions)
5602 this_file_entry_num = lookup_filename (filename);
5603 else
5604 this_file_entry_num = (unsigned) -1;
5605
3800b162 5606 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
340ccaab
TW
5607 if (this_file_entry_num != prev_file_entry_num)
5608 {
5609 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5610
5611 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5612 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5613 }
5614
5615 {
3f7cc57a 5616 register char *tail = rindex (filename, '/');
340ccaab
TW
5617
5618 if (tail != NULL)
5619 filename = tail;
5620 }
5621
2e494f70 5622 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
340ccaab
TW
5623 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5624 filename, line);
5625 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5626 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
85595d1a 5627 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5628
5629 if (this_file_entry_num != prev_file_entry_num)
5630 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5631 prev_file_entry_num = this_file_entry_num;
5632 }
5633}
5634
5635/* Generate an entry in the .debug_macinfo section. */
5636
5637static void
5638generate_macinfo_entry (type_and_offset, string)
5639 register char *type_and_offset;
5640 register char *string;
5641{
a94dbf2c
JM
5642 if (! use_gnu_debug_info_extensions)
5643 return;
5644
340ccaab 5645 fputc ('\n', asm_out_file);
85595d1a 5646 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
2e494f70 5647 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
74153f8e 5648 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
85595d1a 5649 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5650}
5651
5652void
5653dwarfout_start_new_source_file (filename)
5654 register char *filename;
5655{
5656 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5657 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5658
5659 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5660 sprintf (type_and_offset, "0x%08x+%s-%s",
e9a25f70
JL
5661 ((unsigned) MACINFO_start << 24),
5662 /* Hack: skip leading '*' . */
5663 (*label == '*') + label,
5664 (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
340ccaab
TW
5665 generate_macinfo_entry (type_and_offset, "");
5666}
5667
5668void
5669dwarfout_resume_previous_source_file (lineno)
5670 register unsigned lineno;
5671{
5672 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5673
5674 sprintf (type_and_offset, "0x%08x+%u",
5675 ((unsigned) MACINFO_resume << 24), lineno);
5676 generate_macinfo_entry (type_and_offset, "");
5677}
5678
5679/* Called from check_newline in c-parse.y. The `buffer' parameter
5680 contains the tail part of the directive line, i.e. the part which
5681 is past the initial whitespace, #, whitespace, directive-name,
5682 whitespace part. */
5683
5684void
5685dwarfout_define (lineno, buffer)
5686 register unsigned lineno;
5687 register char *buffer;
5688{
5689 static int initialized = 0;
5690 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5691
5692 if (!initialized)
5693 {
5694 dwarfout_start_new_source_file (primary_filename);
5695 initialized = 1;
5696 }
5697 sprintf (type_and_offset, "0x%08x+%u",
5698 ((unsigned) MACINFO_define << 24), lineno);
5699 generate_macinfo_entry (type_and_offset, buffer);
5700}
5701
5702/* Called from check_newline in c-parse.y. The `buffer' parameter
5703 contains the tail part of the directive line, i.e. the part which
5704 is past the initial whitespace, #, whitespace, directive-name,
5705 whitespace part. */
5706
5707void
5708dwarfout_undef (lineno, buffer)
5709 register unsigned lineno;
5710 register char *buffer;
5711{
5712 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5713
5714 sprintf (type_and_offset, "0x%08x+%u",
5715 ((unsigned) MACINFO_undef << 24), lineno);
5716 generate_macinfo_entry (type_and_offset, buffer);
5717}
5718
5719/* Set up for Dwarf output at the start of compilation. */
5720
5721void
5722dwarfout_init (asm_out_file, main_input_filename)
5723 register FILE *asm_out_file;
5724 register char *main_input_filename;
5725{
5726 /* Remember the name of the primary input file. */
5727
5728 primary_filename = main_input_filename;
5729
5730 /* Allocate the initial hunk of the pending_sibling_stack. */
5731
5732 pending_sibling_stack
5733 = (unsigned *)
5734 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5735 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5736 pending_siblings = 1;
5737
5738 /* Allocate the initial hunk of the filename_table. */
5739
5740 filename_table
5741 = (filename_entry *)
5742 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5743 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5744 ft_entries = 0;
5745
5746 /* Allocate the initial hunk of the pending_types_list. */
5747
5748 pending_types_list
5749 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5750 pending_types_allocated = PENDING_TYPES_INCREMENT;
5751 pending_types = 0;
5752
5753 /* Create an artificial RECORD_TYPE node which we can use in our hack
5754 to get the DIEs representing types of formal parameters to come out
5755 only *after* the DIEs for the formal parameters themselves. */
5756
5757 fake_containing_scope = make_node (RECORD_TYPE);
5758
5759 /* Output a starting label for the .text section. */
5760
5761 fputc ('\n', asm_out_file);
85595d1a 5762 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
340ccaab 5763 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
85595d1a 5764 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5765
5766 /* Output a starting label for the .data section. */
5767
5768 fputc ('\n', asm_out_file);
85595d1a 5769 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
340ccaab 5770 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
85595d1a 5771 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5772
13963720 5773#if 0 /* GNU C doesn't currently use .data1. */
340ccaab
TW
5774 /* Output a starting label for the .data1 section. */
5775
5776 fputc ('\n', asm_out_file);
85595d1a 5777 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
340ccaab 5778 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
85595d1a 5779 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5780#endif
340ccaab
TW
5781
5782 /* Output a starting label for the .rodata section. */
5783
5784 fputc ('\n', asm_out_file);
85595d1a 5785 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
340ccaab 5786 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
85595d1a 5787 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5788
13963720 5789#if 0 /* GNU C doesn't currently use .rodata1. */
340ccaab
TW
5790 /* Output a starting label for the .rodata1 section. */
5791
5792 fputc ('\n', asm_out_file);
85595d1a 5793 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
340ccaab 5794 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
85595d1a 5795 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5796#endif
340ccaab
TW
5797
5798 /* Output a starting label for the .bss section. */
5799
5800 fputc ('\n', asm_out_file);
85595d1a 5801 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
340ccaab 5802 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
85595d1a 5803 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5804
5805 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5806 {
a94dbf2c
JM
5807 if (use_gnu_debug_info_extensions)
5808 {
5809 /* Output a starting label and an initial (compilation directory)
5810 entry for the .debug_sfnames section. The starting label will be
5811 referenced by the initial entry in the .debug_srcinfo section. */
340ccaab 5812
a94dbf2c
JM
5813 fputc ('\n', asm_out_file);
5814 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5815 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5816 {
5817 register char *pwd;
5818 register unsigned len;
5819 register char *dirname;
5820
5821 pwd = getpwd ();
5822 if (!pwd)
5823 pfatal_with_name ("getpwd");
5824 len = strlen (pwd);
5825 dirname = (char *) xmalloc (len + 2);
340ccaab 5826
a94dbf2c
JM
5827 strcpy (dirname, pwd);
5828 strcpy (dirname + len, "/");
74153f8e 5829 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
a94dbf2c
JM
5830 free (dirname);
5831 }
5832 ASM_OUTPUT_POP_SECTION (asm_out_file);
5833 }
340ccaab 5834
a94dbf2c
JM
5835 if (debug_info_level >= DINFO_LEVEL_VERBOSE
5836 && use_gnu_debug_info_extensions)
340ccaab
TW
5837 {
5838 /* Output a starting label for the .debug_macinfo section. This
5839 label will be referenced by the AT_mac_info attribute in the
5840 TAG_compile_unit DIE. */
5841
5842 fputc ('\n', asm_out_file);
85595d1a 5843 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
340ccaab 5844 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
85595d1a 5845 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5846 }
5847
5848 /* Generate the initial entry for the .line section. */
5849
5850 fputc ('\n', asm_out_file);
85595d1a 5851 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
340ccaab
TW
5852 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5853 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5854 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
85595d1a 5855 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5856
a94dbf2c
JM
5857 if (use_gnu_debug_info_extensions)
5858 {
5859 /* Generate the initial entry for the .debug_srcinfo section. */
5860
5861 fputc ('\n', asm_out_file);
5862 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5863 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5864 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5865 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5866 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5867 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
340ccaab 5868#ifdef DWARF_TIMESTAMPS
a94dbf2c 5869 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
340ccaab 5870#else
a94dbf2c 5871 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
340ccaab 5872#endif
a94dbf2c
JM
5873 ASM_OUTPUT_POP_SECTION (asm_out_file);
5874 }
340ccaab
TW
5875
5876 /* Generate the initial entry for the .debug_pubnames section. */
5877
5878 fputc ('\n', asm_out_file);
85595d1a 5879 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab 5880 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
85595d1a 5881 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5882
5883 /* Generate the initial entry for the .debug_aranges section. */
5884
5885 fputc ('\n', asm_out_file);
85595d1a 5886 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
340ccaab 5887 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
85595d1a 5888 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5889 }
5890
5891 /* Setup first DIE number == 1. */
5892 NEXT_DIE_NUM = next_unused_dienum++;
5893
5894 /* Generate the initial DIE for the .debug section. Note that the
5895 (string) value given in the AT_name attribute of the TAG_compile_unit
5896 DIE will (typically) be a relative pathname and that this pathname
5897 should be taken as being relative to the directory from which the
5898 compiler was invoked when the given (base) source file was compiled. */
5899
5900 fputc ('\n', asm_out_file);
85595d1a 5901 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
340ccaab
TW
5902 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5903 output_die (output_compile_unit_die, main_input_filename);
85595d1a 5904 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5905
5906 fputc ('\n', asm_out_file);
5907}
5908
5909/* Output stuff that dwarf requires at the end of every file. */
5910
5911void
5912dwarfout_finish ()
5913{
5914 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5915
75c613db
JM
5916 retry_incomplete_types ();
5917
340ccaab 5918 fputc ('\n', asm_out_file);
85595d1a 5919 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
340ccaab
TW
5920
5921 /* Mark the end of the chain of siblings which represent all file-scope
5922 declarations in this compilation unit. */
5923
5924 /* The (null) DIE which represents the terminator for the (sibling linked)
5925 list of file-scope items is *special*. Normally, we would just call
5926 end_sibling_chain at this point in order to output a word with the
5927 value `4' and that word would act as the terminator for the list of
5928 DIEs describing file-scope items. Unfortunately, if we were to simply
5929 do that, the label that would follow this DIE in the .debug section
5930 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5931 machines) to a 4 byte boundary.
5932
5933 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5934 the trick used is to insert extra (otherwise useless) padding bytes
6dc42e49 5935 into the (null) DIE that we know must precede the ..D2 label in the
340ccaab
TW
5936 .debug section. The amount of padding required can be anywhere between
5937 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5938 with the padding) would normally contain the value 4, but now it will
5939 also have to include the padding bytes, so it will instead have some
5940 value in the range 4..7.
5941
5942 Fortunately, the rules of Dwarf say that any DIE whose length word
5943 contains *any* value less than 8 should be treated as a null DIE, so
5944 this trick works out nicely. Clever, eh? Don't give me any credit
5945 (or blame). I didn't think of this scheme. I just conformed to it.
5946 */
5947
0f41302f 5948 output_die (output_padded_null_die, (void *) 0);
340ccaab
TW
5949 dienum_pop ();
5950
5951 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5952 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
85595d1a 5953 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5954
5955 /* Output a terminator label for the .text section. */
5956
5957 fputc ('\n', asm_out_file);
85595d1a 5958 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
340ccaab 5959 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
85595d1a 5960 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
5961
5962 /* Output a terminator label for the .data section. */
5963
5964 fputc ('\n', asm_out_file);
85595d1a 5965 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
340ccaab 5966 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
85595d1a 5967 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5968
13963720 5969#if 0 /* GNU C doesn't currently use .data1. */
340ccaab
TW
5970 /* Output a terminator label for the .data1 section. */
5971
5972 fputc ('\n', asm_out_file);
85595d1a 5973 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
340ccaab 5974 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
85595d1a 5975 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5976#endif
340ccaab
TW
5977
5978 /* Output a terminator label for the .rodata section. */
5979
5980 fputc ('\n', asm_out_file);
85595d1a 5981 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
340ccaab 5982 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
85595d1a 5983 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 5984
13963720 5985#if 0 /* GNU C doesn't currently use .rodata1. */
340ccaab
TW
5986 /* Output a terminator label for the .rodata1 section. */
5987
5988 fputc ('\n', asm_out_file);
85595d1a 5989 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
340ccaab 5990 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
85595d1a 5991 ASM_OUTPUT_POP_SECTION (asm_out_file);
13963720 5992#endif
340ccaab
TW
5993
5994 /* Output a terminator label for the .bss section. */
5995
5996 fputc ('\n', asm_out_file);
85595d1a 5997 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
340ccaab 5998 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
85595d1a 5999 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
6000
6001 if (debug_info_level >= DINFO_LEVEL_NORMAL)
6002 {
6003 /* Output a terminating entry for the .line section. */
6004
6005 fputc ('\n', asm_out_file);
85595d1a 6006 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
340ccaab
TW
6007 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6008 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6009 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6010 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6011 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
85595d1a 6012 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 6013
a94dbf2c
JM
6014 if (use_gnu_debug_info_extensions)
6015 {
6016 /* Output a terminating entry for the .debug_srcinfo section. */
6017
6018 fputc ('\n', asm_out_file);
6019 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
6020 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6021 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6022 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6023 ASM_OUTPUT_POP_SECTION (asm_out_file);
6024 }
340ccaab
TW
6025
6026 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6027 {
6028 /* Output terminating entries for the .debug_macinfo section. */
6029
6030 dwarfout_resume_previous_source_file (0);
6031
6032 fputc ('\n', asm_out_file);
85595d1a 6033 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
340ccaab 6034 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
74153f8e 6035 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
85595d1a 6036 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
6037 }
6038
6039 /* Generate the terminating entry for the .debug_pubnames section. */
6040
6041 fputc ('\n', asm_out_file);
85595d1a 6042 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
340ccaab 6043 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
74153f8e 6044 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
85595d1a 6045 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab
TW
6046
6047 /* Generate the terminating entries for the .debug_aranges section.
6048
6049 Note that we want to do this only *after* we have output the end
6050 labels (for the various program sections) which we are going to
6051 refer to here. This allows us to work around a bug in the m68k
6052 svr4 assembler. That assembler gives bogus assembly-time errors
6053 if (within any given section) you try to take the difference of
6054 two relocatable symbols, both of which are located within some
6055 other section, and if one (or both?) of the symbols involved is
6056 being forward-referenced. By generating the .debug_aranges
6057 entries at this late point in the assembly output, we skirt the
6058 issue simply by avoiding forward-references.
6059 */
6060
6061 fputc ('\n', asm_out_file);
85595d1a 6062 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
340ccaab
TW
6063
6064 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6065 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6066
6067 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6068 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6069
13963720 6070#if 0 /* GNU C doesn't currently use .data1. */
340ccaab
TW
6071 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6072 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6073 DATA1_BEGIN_LABEL);
13963720 6074#endif
340ccaab
TW
6075
6076 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6077 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6078 RODATA_BEGIN_LABEL);
6079
13963720 6080#if 0 /* GNU C doesn't currently use .rodata1. */
340ccaab
TW
6081 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6082 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6083 RODATA1_BEGIN_LABEL);
13963720 6084#endif
340ccaab
TW
6085
6086 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6087 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6088
6089 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6090 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6091
85595d1a 6092 ASM_OUTPUT_POP_SECTION (asm_out_file);
340ccaab 6093 }
0a4be913
JW
6094
6095 /* There should not be any pending types left at the end. We need
6096 this now because it may not have been checked on the last call to
6097 dwarfout_file_scope_decl. */
6098 if (pending_types != 0)
6099 abort ();
340ccaab
TW
6100}
6101
9a666dda 6102#endif /* DWARF_DEBUGGING_INFO */
This page took 1.319034 seconds and 5 git commands to generate.