]> gcc.gnu.org Git - gcc.git/blame - gcc/dominance.c
[multiple changes]
[gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
fa10beec
RW
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008 Free
3 Software Foundation, Inc.
f8032688 4 Contributed by Michael Matz (matz@ifh.de).
3a538a66 5
1322177d 6 This file is part of GCC.
3a538a66 7
1322177d
LB
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
9dcd6f09 10 the Free Software Foundation; either version 3, or (at your option)
f8032688
MM
11 any later version.
12
1322177d
LB
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
f8032688
MM
17
18 You should have received a copy of the GNU General Public License
9dcd6f09
NC
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688 32 each block its immediate dominator. We use tree balancing and path
f3b569ca 33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
f8032688
MM
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
7932a3db 42#include "obstack.h"
f8032688 43#include "basic-block.h"
4c714dd4 44#include "toplev.h"
355be0dc 45#include "et-forest.h"
74c96e0c 46#include "timevar.h"
66f97d31
ZD
47#include "vecprim.h"
48#include "pointer-set.h"
49#include "graphds.h"
f8032688 50
f8032688
MM
51/* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
24bd1a0b 55 support multiple entry points. Its dfs number is of course 1. */
f8032688
MM
56
57/* Type of Basic Block aka. TBB */
58typedef unsigned int TBB;
59
60/* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
64
65struct dom_info
66{
67 /* The parent of a node in the DFS tree. */
68 TBB *dfs_parent;
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
71 semidominator. */
72 TBB *key;
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
75 TBB *path_min;
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
77 TBB *bucket;
78 /* And next_bucket[x] points to the next node. */
79 TBB *next_bucket;
80 /* After the algorithm is done, dom[x] contains the immediate dominator
81 of x. */
82 TBB *dom;
83
84 /* The following few fields implement the structures needed for disjoint
85 sets. */
fa10beec 86 /* set_chain[x] is the next node on the path from x to the representative
f8032688
MM
87 of the set containing x. If set_chain[x]==0 then x is a root. */
88 TBB *set_chain;
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
93 TBB *set_child;
94
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
98 TBB *dfs_order;
09da1532 99 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block *dfs_to_bb;
104
26e0e410 105 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
106 unsigned int dfsnum;
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
108 unsigned int nodes;
26e0e410
RH
109
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge;
f8032688
MM
113};
114
26e0e410 115static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735 116static void free_dom_info (struct dom_info *);
2b28c07a
JC
117static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
118static void calc_dfs_tree (struct dom_info *, bool);
7080f735
AJ
119static void compress (struct dom_info *, TBB);
120static TBB eval (struct dom_info *, TBB);
121static void link_roots (struct dom_info *, TBB, TBB);
2b28c07a 122static void calc_idoms (struct dom_info *, bool);
d47cc544 123void debug_dominance_info (enum cdi_direction);
1fc3998d 124void debug_dominance_tree (enum cdi_direction, basic_block);
f8032688
MM
125
126/* Helper macro for allocating and initializing an array,
127 for aesthetic reasons. */
128#define init_ar(var, type, num, content) \
3a538a66
KH
129 do \
130 { \
131 unsigned int i = 1; /* Catch content == i. */ \
132 if (! (content)) \
5ed6ace5 133 (var) = XCNEWVEC (type, num); \
3a538a66
KH
134 else \
135 { \
5ed6ace5 136 (var) = XNEWVEC (type, (num)); \
3a538a66
KH
137 for (i = 0; i < num; i++) \
138 (var)[i] = (content); \
139 } \
140 } \
141 while (0)
f8032688
MM
142
143/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 144 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
145
146static void
26e0e410 147init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 148{
6fb5fa3c 149 /* We need memory for n_basic_blocks nodes. */
24bd1a0b 150 unsigned int num = n_basic_blocks;
f8032688
MM
151 init_ar (di->dfs_parent, TBB, num, 0);
152 init_ar (di->path_min, TBB, num, i);
153 init_ar (di->key, TBB, num, i);
154 init_ar (di->dom, TBB, num, 0);
155
156 init_ar (di->bucket, TBB, num, 0);
157 init_ar (di->next_bucket, TBB, num, 0);
158
159 init_ar (di->set_chain, TBB, num, 0);
160 init_ar (di->set_size, unsigned int, num, 1);
161 init_ar (di->set_child, TBB, num, 0);
162
d55bc081 163 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
164 init_ar (di->dfs_to_bb, basic_block, num, 0);
165
166 di->dfsnum = 1;
167 di->nodes = 0;
26e0e410 168
2b28c07a
JC
169 switch (dir)
170 {
171 case CDI_DOMINATORS:
172 di->fake_exit_edge = NULL;
173 break;
174 case CDI_POST_DOMINATORS:
175 di->fake_exit_edge = BITMAP_ALLOC (NULL);
176 break;
177 default:
178 gcc_unreachable ();
179 break;
180 }
f8032688
MM
181}
182
183#undef init_ar
184
2b28c07a
JC
185/* Map dominance calculation type to array index used for various
186 dominance information arrays. This version is simple -- it will need
187 to be modified, obviously, if additional values are added to
188 cdi_direction. */
189
190static unsigned int
191dom_convert_dir_to_idx (enum cdi_direction dir)
192{
193 gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
194 return dir - 1;
195}
196
f8032688
MM
197/* Free all allocated memory in DI, but not DI itself. */
198
199static void
7080f735 200free_dom_info (struct dom_info *di)
f8032688
MM
201{
202 free (di->dfs_parent);
203 free (di->path_min);
204 free (di->key);
205 free (di->dom);
206 free (di->bucket);
207 free (di->next_bucket);
208 free (di->set_chain);
209 free (di->set_size);
210 free (di->set_child);
211 free (di->dfs_order);
212 free (di->dfs_to_bb);
8bdbfff5 213 BITMAP_FREE (di->fake_exit_edge);
f8032688
MM
214}
215
216/* The nonrecursive variant of creating a DFS tree. DI is our working
217 structure, BB the starting basic block for this tree and REVERSE
218 is true, if predecessors should be visited instead of successors of a
219 node. After this is done all nodes reachable from BB were visited, have
220 assigned their dfs number and are linked together to form a tree. */
221
222static void
2b28c07a 223calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
f8032688 224{
f8032688
MM
225 /* We call this _only_ if bb is not already visited. */
226 edge e;
227 TBB child_i, my_i = 0;
628f6a4e
BE
228 edge_iterator *stack;
229 edge_iterator ei, einext;
f8032688
MM
230 int sp;
231 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
232 problem). */
233 basic_block en_block;
234 /* Ending block. */
235 basic_block ex_block;
236
5ed6ace5 237 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
f8032688
MM
238 sp = 0;
239
240 /* Initialize our border blocks, and the first edge. */
241 if (reverse)
242 {
628f6a4e 243 ei = ei_start (bb->preds);
f8032688
MM
244 en_block = EXIT_BLOCK_PTR;
245 ex_block = ENTRY_BLOCK_PTR;
246 }
247 else
248 {
628f6a4e 249 ei = ei_start (bb->succs);
f8032688
MM
250 en_block = ENTRY_BLOCK_PTR;
251 ex_block = EXIT_BLOCK_PTR;
252 }
253
254 /* When the stack is empty we break out of this loop. */
255 while (1)
256 {
257 basic_block bn;
258
259 /* This loop traverses edges e in depth first manner, and fills the
260 stack. */
628f6a4e 261 while (!ei_end_p (ei))
f8032688 262 {
628f6a4e 263 e = ei_edge (ei);
f8032688
MM
264
265 /* Deduce from E the current and the next block (BB and BN), and the
266 next edge. */
267 if (reverse)
268 {
269 bn = e->src;
270
271 /* If the next node BN is either already visited or a border
272 block the current edge is useless, and simply overwritten
273 with the next edge out of the current node. */
0b17ab2f 274 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 275 {
628f6a4e 276 ei_next (&ei);
f8032688
MM
277 continue;
278 }
279 bb = e->dest;
628f6a4e 280 einext = ei_start (bn->preds);
f8032688
MM
281 }
282 else
283 {
284 bn = e->dest;
0b17ab2f 285 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 286 {
628f6a4e 287 ei_next (&ei);
f8032688
MM
288 continue;
289 }
290 bb = e->src;
628f6a4e 291 einext = ei_start (bn->succs);
f8032688
MM
292 }
293
ced3f397 294 gcc_assert (bn != en_block);
f8032688
MM
295
296 /* Fill the DFS tree info calculatable _before_ recursing. */
297 if (bb != en_block)
0b17ab2f 298 my_i = di->dfs_order[bb->index];
f8032688 299 else
d55bc081 300 my_i = di->dfs_order[last_basic_block];
0b17ab2f 301 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
302 di->dfs_to_bb[child_i] = bn;
303 di->dfs_parent[child_i] = my_i;
304
305 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
306 stack[sp++] = ei;
307 ei = einext;
f8032688
MM
308 }
309
310 if (!sp)
311 break;
628f6a4e 312 ei = stack[--sp];
f8032688
MM
313
314 /* OK. The edge-list was exhausted, meaning normally we would
315 end the recursion. After returning from the recursive call,
316 there were (may be) other statements which were run after a
317 child node was completely considered by DFS. Here is the
318 point to do it in the non-recursive variant.
319 E.g. The block just completed is in e->dest for forward DFS,
320 the block not yet completed (the parent of the one above)
321 in e->src. This could be used e.g. for computing the number of
322 descendants or the tree depth. */
628f6a4e 323 ei_next (&ei);
f8032688
MM
324 }
325 free (stack);
326}
327
328/* The main entry for calculating the DFS tree or forest. DI is our working
329 structure and REVERSE is true, if we are interested in the reverse flow
330 graph. In that case the result is not necessarily a tree but a forest,
331 because there may be nodes from which the EXIT_BLOCK is unreachable. */
332
333static void
2b28c07a 334calc_dfs_tree (struct dom_info *di, bool reverse)
f8032688
MM
335{
336 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
337 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 338 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
339 di->dfs_to_bb[di->dfsnum] = begin;
340 di->dfsnum++;
341
342 calc_dfs_tree_nonrec (di, begin, reverse);
343
344 if (reverse)
345 {
346 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
347 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
348 nodes, but in post-dom we have to deal with them.
349
350 There are two situations in which this occurs. First, noreturn
351 functions. Second, infinite loops. In the first case we need to
352 pretend that there is an edge to the exit block. In the second
353 case, we wind up with a forest. We need to process all noreturn
354 blocks before we know if we've got any infinite loops. */
355
e0082a72 356 basic_block b;
26e0e410
RH
357 bool saw_unconnected = false;
358
e0082a72 359 FOR_EACH_BB_REVERSE (b)
f8032688 360 {
628f6a4e 361 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
362 {
363 if (di->dfs_order[b->index] == 0)
364 saw_unconnected = true;
365 continue;
366 }
367 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 368 di->dfs_order[b->index] = di->dfsnum;
f8032688 369 di->dfs_to_bb[di->dfsnum] = b;
26e0e410 370 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
f8032688
MM
371 di->dfsnum++;
372 calc_dfs_tree_nonrec (di, b, reverse);
373 }
26e0e410
RH
374
375 if (saw_unconnected)
376 {
377 FOR_EACH_BB_REVERSE (b)
378 {
379 if (di->dfs_order[b->index])
380 continue;
381 bitmap_set_bit (di->fake_exit_edge, b->index);
382 di->dfs_order[b->index] = di->dfsnum;
383 di->dfs_to_bb[di->dfsnum] = b;
384 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
385 di->dfsnum++;
386 calc_dfs_tree_nonrec (di, b, reverse);
387 }
388 }
f8032688
MM
389 }
390
391 di->nodes = di->dfsnum - 1;
392
24bd1a0b
DB
393 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
394 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
f8032688
MM
395}
396
397/* Compress the path from V to the root of its set and update path_min at the
398 same time. After compress(di, V) set_chain[V] is the root of the set V is
399 in and path_min[V] is the node with the smallest key[] value on the path
400 from V to that root. */
401
402static void
7080f735 403compress (struct dom_info *di, TBB v)
f8032688
MM
404{
405 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
406 greater than 5 even for huge graphs (I've not seen call depth > 4).
407 Also performance wise compress() ranges _far_ behind eval(). */
408 TBB parent = di->set_chain[v];
409 if (di->set_chain[parent])
410 {
411 compress (di, parent);
412 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
413 di->path_min[v] = di->path_min[parent];
414 di->set_chain[v] = di->set_chain[parent];
415 }
416}
417
418/* Compress the path from V to the set root of V if needed (when the root has
419 changed since the last call). Returns the node with the smallest key[]
420 value on the path from V to the root. */
421
422static inline TBB
7080f735 423eval (struct dom_info *di, TBB v)
f8032688 424{
fa10beec 425 /* The representative of the set V is in, also called root (as the set
f8032688
MM
426 representation is a tree). */
427 TBB rep = di->set_chain[v];
428
429 /* V itself is the root. */
430 if (!rep)
431 return di->path_min[v];
432
433 /* Compress only if necessary. */
434 if (di->set_chain[rep])
435 {
436 compress (di, v);
437 rep = di->set_chain[v];
438 }
439
440 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
441 return di->path_min[v];
442 else
443 return di->path_min[rep];
444}
445
446/* This essentially merges the two sets of V and W, giving a single set with
447 the new root V. The internal representation of these disjoint sets is a
448 balanced tree. Currently link(V,W) is only used with V being the parent
449 of W. */
450
451static void
7080f735 452link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
453{
454 TBB s = w;
455
456 /* Rebalance the tree. */
457 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
458 {
459 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
460 >= 2 * di->set_size[di->set_child[s]])
461 {
462 di->set_chain[di->set_child[s]] = s;
463 di->set_child[s] = di->set_child[di->set_child[s]];
464 }
465 else
466 {
467 di->set_size[di->set_child[s]] = di->set_size[s];
468 s = di->set_chain[s] = di->set_child[s];
469 }
470 }
471
472 di->path_min[s] = di->path_min[w];
473 di->set_size[v] += di->set_size[w];
474 if (di->set_size[v] < 2 * di->set_size[w])
475 {
476 TBB tmp = s;
477 s = di->set_child[v];
478 di->set_child[v] = tmp;
479 }
480
481 /* Merge all subtrees. */
482 while (s)
483 {
484 di->set_chain[s] = v;
485 s = di->set_child[s];
486 }
487}
488
489/* This calculates the immediate dominators (or post-dominators if REVERSE is
490 true). DI is our working structure and should hold the DFS forest.
491 On return the immediate dominator to node V is in di->dom[V]. */
492
493static void
2b28c07a 494calc_idoms (struct dom_info *di, bool reverse)
f8032688
MM
495{
496 TBB v, w, k, par;
497 basic_block en_block;
628f6a4e
BE
498 edge_iterator ei, einext;
499
f8032688
MM
500 if (reverse)
501 en_block = EXIT_BLOCK_PTR;
502 else
503 en_block = ENTRY_BLOCK_PTR;
504
505 /* Go backwards in DFS order, to first look at the leafs. */
506 v = di->nodes;
507 while (v > 1)
508 {
509 basic_block bb = di->dfs_to_bb[v];
628f6a4e 510 edge e;
f8032688
MM
511
512 par = di->dfs_parent[v];
513 k = v;
628f6a4e
BE
514
515 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
516
f8032688 517 if (reverse)
26e0e410 518 {
26e0e410
RH
519 /* If this block has a fake edge to exit, process that first. */
520 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
521 {
628f6a4e
BE
522 einext = ei;
523 einext.index = 0;
26e0e410
RH
524 goto do_fake_exit_edge;
525 }
526 }
f8032688
MM
527
528 /* Search all direct predecessors for the smallest node with a path
529 to them. That way we have the smallest node with also a path to
530 us only over nodes behind us. In effect we search for our
531 semidominator. */
628f6a4e 532 while (!ei_end_p (ei))
f8032688
MM
533 {
534 TBB k1;
535 basic_block b;
536
628f6a4e
BE
537 e = ei_edge (ei);
538 b = (reverse) ? e->dest : e->src;
539 einext = ei;
540 ei_next (&einext);
541
f8032688 542 if (b == en_block)
26e0e410
RH
543 {
544 do_fake_exit_edge:
545 k1 = di->dfs_order[last_basic_block];
546 }
f8032688 547 else
0b17ab2f 548 k1 = di->dfs_order[b->index];
f8032688
MM
549
550 /* Call eval() only if really needed. If k1 is above V in DFS tree,
551 then we know, that eval(k1) == k1 and key[k1] == k1. */
552 if (k1 > v)
553 k1 = di->key[eval (di, k1)];
554 if (k1 < k)
555 k = k1;
628f6a4e
BE
556
557 ei = einext;
f8032688
MM
558 }
559
560 di->key[v] = k;
561 link_roots (di, par, v);
562 di->next_bucket[v] = di->bucket[k];
563 di->bucket[k] = v;
564
565 /* Transform semidominators into dominators. */
566 for (w = di->bucket[par]; w; w = di->next_bucket[w])
567 {
568 k = eval (di, w);
569 if (di->key[k] < di->key[w])
570 di->dom[w] = k;
571 else
572 di->dom[w] = par;
573 }
574 /* We don't need to cleanup next_bucket[]. */
575 di->bucket[par] = 0;
576 v--;
577 }
578
a1f300c0 579 /* Explicitly define the dominators. */
f8032688
MM
580 di->dom[1] = 0;
581 for (v = 2; v <= di->nodes; v++)
582 if (di->dom[v] != di->key[v])
583 di->dom[v] = di->dom[di->dom[v]];
584}
585
d47cc544
SB
586/* Assign dfs numbers starting from NUM to NODE and its sons. */
587
588static void
589assign_dfs_numbers (struct et_node *node, int *num)
590{
591 struct et_node *son;
592
593 node->dfs_num_in = (*num)++;
594
595 if (node->son)
596 {
597 assign_dfs_numbers (node->son, num);
598 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 599 assign_dfs_numbers (son, num);
d47cc544 600 }
f8032688 601
d47cc544
SB
602 node->dfs_num_out = (*num)++;
603}
f8032688 604
5d3cc252 605/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 606 static dominator tree. */
f8032688 607
d47cc544
SB
608static void
609compute_dom_fast_query (enum cdi_direction dir)
610{
611 int num = 0;
612 basic_block bb;
2b28c07a 613 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 614
fce22de5 615 gcc_assert (dom_info_available_p (dir));
d47cc544 616
2b28c07a 617 if (dom_computed[dir_index] == DOM_OK)
d47cc544
SB
618 return;
619
620 FOR_ALL_BB (bb)
621 {
2b28c07a
JC
622 if (!bb->dom[dir_index]->father)
623 assign_dfs_numbers (bb->dom[dir_index], &num);
d47cc544
SB
624 }
625
2b28c07a 626 dom_computed[dir_index] = DOM_OK;
d47cc544
SB
627}
628
629/* The main entry point into this module. DIR is set depending on whether
630 we want to compute dominators or postdominators. */
631
632void
633calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
634{
635 struct dom_info di;
355be0dc 636 basic_block b;
2b28c07a
JC
637 unsigned int dir_index = dom_convert_dir_to_idx (dir);
638 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 639
2b28c07a 640 if (dom_computed[dir_index] == DOM_OK)
d47cc544 641 return;
355be0dc 642
74c96e0c 643 timevar_push (TV_DOMINANCE);
fce22de5 644 if (!dom_info_available_p (dir))
d47cc544 645 {
2b28c07a 646 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
f8032688 647
d47cc544
SB
648 FOR_ALL_BB (b)
649 {
2b28c07a 650 b->dom[dir_index] = et_new_tree (b);
d47cc544 651 }
2b28c07a 652 n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
f8032688 653
26e0e410 654 init_dom_info (&di, dir);
2b28c07a
JC
655 calc_dfs_tree (&di, reverse);
656 calc_idoms (&di, reverse);
355be0dc 657
d47cc544
SB
658 FOR_EACH_BB (b)
659 {
660 TBB d = di.dom[di.dfs_order[b->index]];
661
662 if (di.dfs_to_bb[d])
2b28c07a 663 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
d47cc544 664 }
e0082a72 665
d47cc544 666 free_dom_info (&di);
2b28c07a 667 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
668 }
669
d47cc544 670 compute_dom_fast_query (dir);
74c96e0c
ZD
671
672 timevar_pop (TV_DOMINANCE);
355be0dc
JH
673}
674
d47cc544 675/* Free dominance information for direction DIR. */
355be0dc 676void
d47cc544 677free_dominance_info (enum cdi_direction dir)
355be0dc
JH
678{
679 basic_block bb;
2b28c07a 680 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 681
fce22de5 682 if (!dom_info_available_p (dir))
d47cc544
SB
683 return;
684
685 FOR_ALL_BB (bb)
686 {
2b28c07a
JC
687 et_free_tree_force (bb->dom[dir_index]);
688 bb->dom[dir_index] = NULL;
d47cc544 689 }
5a6ccafd 690 et_free_pools ();
d47cc544 691
2b28c07a 692 n_bbs_in_dom_tree[dir_index] = 0;
6de9cd9a 693
2b28c07a 694 dom_computed[dir_index] = DOM_NONE;
355be0dc
JH
695}
696
697/* Return the immediate dominator of basic block BB. */
698basic_block
d47cc544 699get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 700{
2b28c07a
JC
701 unsigned int dir_index = dom_convert_dir_to_idx (dir);
702 struct et_node *node = bb->dom[dir_index];
d47cc544 703
2b28c07a 704 gcc_assert (dom_computed[dir_index]);
d47cc544
SB
705
706 if (!node->father)
707 return NULL;
708
f883e0a7 709 return (basic_block) node->father->data;
355be0dc
JH
710}
711
712/* Set the immediate dominator of the block possibly removing
713 existing edge. NULL can be used to remove any edge. */
714inline void
d47cc544
SB
715set_immediate_dominator (enum cdi_direction dir, basic_block bb,
716 basic_block dominated_by)
355be0dc 717{
2b28c07a
JC
718 unsigned int dir_index = dom_convert_dir_to_idx (dir);
719 struct et_node *node = bb->dom[dir_index];
720
721 gcc_assert (dom_computed[dir_index]);
355be0dc 722
d47cc544 723 if (node->father)
355be0dc 724 {
d47cc544 725 if (node->father->data == dominated_by)
6de9cd9a 726 return;
d47cc544 727 et_split (node);
355be0dc 728 }
d47cc544
SB
729
730 if (dominated_by)
2b28c07a 731 et_set_father (node, dominated_by->dom[dir_index]);
d47cc544 732
2b28c07a
JC
733 if (dom_computed[dir_index] == DOM_OK)
734 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
735}
736
66f97d31
ZD
737/* Returns the list of basic blocks immediately dominated by BB, in the
738 direction DIR. */
739VEC (basic_block, heap) *
740get_dominated_by (enum cdi_direction dir, basic_block bb)
355be0dc 741{
d47cc544 742 int n;
66f97d31 743 unsigned int dir_index = dom_convert_dir_to_idx (dir);
2b28c07a 744 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
66f97d31
ZD
745 VEC (basic_block, heap) *bbs = NULL;
746
2b28c07a 747 gcc_assert (dom_computed[dir_index]);
d47cc544
SB
748
749 if (!son)
66f97d31 750 return NULL;
d47cc544 751
f883e0a7 752 VEC_safe_push (basic_block, heap, bbs, (basic_block) son->data);
d47cc544 753 for (ason = son->right, n = 1; ason != son; ason = ason->right)
f883e0a7 754 VEC_safe_push (basic_block, heap, bbs, (basic_block) ason->data);
355be0dc 755
66f97d31 756 return bbs;
355be0dc
JH
757}
758
66f97d31
ZD
759/* Returns the list of basic blocks that are immediately dominated (in
760 direction DIR) by some block between N_REGION ones stored in REGION,
761 except for blocks in the REGION itself. */
762
763VEC (basic_block, heap) *
42759f1e 764get_dominated_by_region (enum cdi_direction dir, basic_block *region,
66f97d31 765 unsigned n_region)
42759f1e 766{
66f97d31 767 unsigned i;
42759f1e 768 basic_block dom;
66f97d31 769 VEC (basic_block, heap) *doms = NULL;
42759f1e
ZD
770
771 for (i = 0; i < n_region; i++)
6580ee77 772 region[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
773 for (i = 0; i < n_region; i++)
774 for (dom = first_dom_son (dir, region[i]);
775 dom;
776 dom = next_dom_son (dir, dom))
6580ee77 777 if (!(dom->flags & BB_DUPLICATED))
66f97d31 778 VEC_safe_push (basic_block, heap, doms, dom);
42759f1e 779 for (i = 0; i < n_region; i++)
6580ee77 780 region[i]->flags &= ~BB_DUPLICATED;
42759f1e 781
66f97d31 782 return doms;
42759f1e
ZD
783}
784
355be0dc
JH
785/* Redirect all edges pointing to BB to TO. */
786void
d47cc544
SB
787redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
788 basic_block to)
355be0dc 789{
2b28c07a
JC
790 unsigned int dir_index = dom_convert_dir_to_idx (dir);
791 struct et_node *bb_node, *to_node, *son;
792
793 bb_node = bb->dom[dir_index];
794 to_node = to->dom[dir_index];
d47cc544 795
2b28c07a 796 gcc_assert (dom_computed[dir_index]);
355be0dc 797
d47cc544
SB
798 if (!bb_node->son)
799 return;
800
801 while (bb_node->son)
355be0dc 802 {
d47cc544
SB
803 son = bb_node->son;
804
805 et_split (son);
806 et_set_father (son, to_node);
355be0dc 807 }
d47cc544 808
2b28c07a
JC
809 if (dom_computed[dir_index] == DOM_OK)
810 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
811}
812
813/* Find first basic block in the tree dominating both BB1 and BB2. */
814basic_block
d47cc544 815nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 816{
2b28c07a
JC
817 unsigned int dir_index = dom_convert_dir_to_idx (dir);
818
819 gcc_assert (dom_computed[dir_index]);
d47cc544 820
355be0dc
JH
821 if (!bb1)
822 return bb2;
823 if (!bb2)
824 return bb1;
d47cc544 825
f883e0a7 826 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
355be0dc
JH
827}
828
0bca51f0
DN
829
830/* Find the nearest common dominator for the basic blocks in BLOCKS,
831 using dominance direction DIR. */
832
833basic_block
834nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
835{
836 unsigned i, first;
837 bitmap_iterator bi;
838 basic_block dom;
839
840 first = bitmap_first_set_bit (blocks);
841 dom = BASIC_BLOCK (first);
842 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
843 if (dom != BASIC_BLOCK (i))
844 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
845
846 return dom;
847}
848
b629276a
DB
849/* Given a dominator tree, we can determine whether one thing
850 dominates another in constant time by using two DFS numbers:
851
852 1. The number for when we visit a node on the way down the tree
853 2. The number for when we visit a node on the way back up the tree
854
855 You can view these as bounds for the range of dfs numbers the
856 nodes in the subtree of the dominator tree rooted at that node
857 will contain.
858
859 The dominator tree is always a simple acyclic tree, so there are
860 only three possible relations two nodes in the dominator tree have
861 to each other:
862
863 1. Node A is above Node B (and thus, Node A dominates node B)
864
865 A
866 |
867 C
868 / \
869 B D
870
871
872 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
873 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
874 because we must hit A in the dominator tree *before* B on the walk
875 down, and we will hit A *after* B on the walk back up
876
d8701f02 877 2. Node A is below node B (and thus, node B dominates node A)
b629276a
DB
878
879
880 B
881 |
882 A
883 / \
884 C D
885
886 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
887 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
888
889 This is because we must hit A in the dominator tree *after* B on
890 the walk down, and we will hit A *before* B on the walk back up
891
892 3. Node A and B are siblings (and thus, neither dominates the other)
893
894 C
895 |
896 D
897 / \
898 A B
899
900 In the above case, DFS_Number_In of A will *always* be <=
901 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
902 DFS_Number_Out of B. This is because we will always finish the dfs
903 walk of one of the subtrees before the other, and thus, the dfs
904 numbers for one subtree can't intersect with the range of dfs
905 numbers for the other subtree. If you swap A and B's position in
906 the dominator tree, the comparison changes direction, but the point
907 is that both comparisons will always go the same way if there is no
908 dominance relationship.
909
910 Thus, it is sufficient to write
911
912 A_Dominates_B (node A, node B)
913 {
914 return DFS_Number_In(A) <= DFS_Number_In(B)
915 && DFS_Number_Out (A) >= DFS_Number_Out(B);
916 }
917
918 A_Dominated_by_B (node A, node B)
919 {
920 return DFS_Number_In(A) >= DFS_Number_In(A)
921 && DFS_Number_Out (A) <= DFS_Number_Out(B);
922 } */
0bca51f0 923
355be0dc
JH
924/* Return TRUE in case BB1 is dominated by BB2. */
925bool
ed7a4b4b 926dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
6de9cd9a 927{
2b28c07a
JC
928 unsigned int dir_index = dom_convert_dir_to_idx (dir);
929 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
930
931 gcc_assert (dom_computed[dir_index]);
d47cc544 932
2b28c07a 933 if (dom_computed[dir_index] == DOM_OK)
d47cc544 934 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 935 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
936
937 return et_below (n1, n2);
355be0dc
JH
938}
939
f074ff6c
ZD
940/* Returns the entry dfs number for basic block BB, in the direction DIR. */
941
942unsigned
943bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
944{
2b28c07a
JC
945 unsigned int dir_index = dom_convert_dir_to_idx (dir);
946 struct et_node *n = bb->dom[dir_index];
f074ff6c 947
2b28c07a 948 gcc_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
949 return n->dfs_num_in;
950}
951
952/* Returns the exit dfs number for basic block BB, in the direction DIR. */
953
954unsigned
955bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
956{
2b28c07a
JC
957 unsigned int dir_index = dom_convert_dir_to_idx (dir);
958 struct et_node *n = bb->dom[dir_index];
f074ff6c 959
2b28c07a 960 gcc_assert (dom_computed[dir_index] == DOM_OK);
f074ff6c
ZD
961 return n->dfs_num_out;
962}
963
355be0dc
JH
964/* Verify invariants of dominator structure. */
965void
d47cc544 966verify_dominators (enum cdi_direction dir)
355be0dc
JH
967{
968 int err = 0;
1fc3998d
ZD
969 basic_block bb, imm_bb, imm_bb_correct;
970 struct dom_info di;
971 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
355be0dc 972
fce22de5 973 gcc_assert (dom_info_available_p (dir));
d47cc544 974
1fc3998d
ZD
975 init_dom_info (&di, dir);
976 calc_dfs_tree (&di, reverse);
977 calc_idoms (&di, reverse);
978
355be0dc
JH
979 FOR_EACH_BB (bb)
980 {
1fc3998d
ZD
981 imm_bb = get_immediate_dominator (dir, bb);
982 if (!imm_bb)
f8032688 983 {
66f97d31 984 error ("dominator of %d status unknown", bb->index);
355be0dc
JH
985 err = 1;
986 }
66f97d31 987
1fc3998d
ZD
988 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
989 if (imm_bb != imm_bb_correct)
e7bd94cc 990 {
66f97d31 991 error ("dominator of %d should be %d, not %d",
1fc3998d 992 bb->index, imm_bb_correct->index, imm_bb->index);
66f97d31 993 err = 1;
e7bd94cc
ZD
994 }
995 }
996
1fc3998d 997 free_dom_info (&di);
ced3f397 998 gcc_assert (!err);
355be0dc
JH
999}
1000
738ed977
ZD
1001/* Determine immediate dominator (or postdominator, according to DIR) of BB,
1002 assuming that dominators of other blocks are correct. We also use it to
1003 recompute the dominators in a restricted area, by iterating it until it
71cc389b 1004 reaches a fixed point. */
738ed977 1005
355be0dc 1006basic_block
66f97d31 1007recompute_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 1008{
2b28c07a 1009 unsigned int dir_index = dom_convert_dir_to_idx (dir);
738ed977
ZD
1010 basic_block dom_bb = NULL;
1011 edge e;
628f6a4e 1012 edge_iterator ei;
355be0dc 1013
2b28c07a 1014 gcc_assert (dom_computed[dir_index]);
d47cc544 1015
738ed977
ZD
1016 if (dir == CDI_DOMINATORS)
1017 {
628f6a4e 1018 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977
ZD
1019 {
1020 if (!dominated_by_p (dir, e->src, bb))
1021 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1022 }
1023 }
1024 else
1025 {
628f6a4e 1026 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
1027 {
1028 if (!dominated_by_p (dir, e->dest, bb))
1029 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1030 }
1031 }
f8032688 1032
738ed977 1033 return dom_bb;
355be0dc
JH
1034}
1035
66f97d31
ZD
1036/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1037 of BBS. We assume that all the immediate dominators except for those of the
1038 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1039 currently recorded immediate dominators of blocks in BBS really dominate the
1040 blocks. The basic blocks for that we determine the dominator are removed
1041 from BBS. */
1042
1043static void
1044prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
1045 bool conservative)
1046{
1047 unsigned i;
1048 bool single;
1049 basic_block bb, dom = NULL;
1050 edge_iterator ei;
1051 edge e;
1052
1053 for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
1054 {
1055 if (bb == ENTRY_BLOCK_PTR)
1056 goto succeed;
1057
1058 if (single_pred_p (bb))
1059 {
1060 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1061 goto succeed;
1062 }
1063
1064 if (!conservative)
1065 goto fail;
1066
1067 single = true;
1068 dom = NULL;
1069 FOR_EACH_EDGE (e, ei, bb->preds)
1070 {
1071 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1072 continue;
1073
1074 if (!dom)
1075 dom = e->src;
1076 else
1077 {
1078 single = false;
1079 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1080 }
1081 }
1082
1083 gcc_assert (dom != NULL);
1084 if (single
1085 || find_edge (dom, bb))
1086 {
1087 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1088 goto succeed;
1089 }
1090
1091fail:
1092 i++;
1093 continue;
1094
1095succeed:
1096 VEC_unordered_remove (basic_block, bbs, i);
1097 }
1098}
1099
1100/* Returns root of the dominance tree in the direction DIR that contains
1101 BB. */
1102
1103static basic_block
1104root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1105{
f883e0a7 1106 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
66f97d31
ZD
1107}
1108
1109/* See the comment in iterate_fix_dominators. Finds the immediate dominators
1110 for the sons of Y, found using the SON and BROTHER arrays representing
1111 the dominance tree of graph G. BBS maps the vertices of G to the basic
1112 blocks. */
1113
1114static void
1115determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
1116 int y, int *son, int *brother)
1117{
1118 bitmap gprime;
1119 int i, a, nc;
1120 VEC (int, heap) **sccs;
1121 basic_block bb, dom, ybb;
1122 unsigned si;
1123 edge e;
1124 edge_iterator ei;
1125
1126 if (son[y] == -1)
1127 return;
1128 if (y == (int) VEC_length (basic_block, bbs))
1129 ybb = ENTRY_BLOCK_PTR;
1130 else
1131 ybb = VEC_index (basic_block, bbs, y);
1132
1133 if (brother[son[y]] == -1)
1134 {
1135 /* Handle the common case Y has just one son specially. */
1136 bb = VEC_index (basic_block, bbs, son[y]);
1137 set_immediate_dominator (CDI_DOMINATORS, bb,
1138 recompute_dominator (CDI_DOMINATORS, bb));
1139 identify_vertices (g, y, son[y]);
1140 return;
1141 }
1142
1143 gprime = BITMAP_ALLOC (NULL);
1144 for (a = son[y]; a != -1; a = brother[a])
1145 bitmap_set_bit (gprime, a);
1146
1147 nc = graphds_scc (g, gprime);
1148 BITMAP_FREE (gprime);
1149
1150 sccs = XCNEWVEC (VEC (int, heap) *, nc);
1151 for (a = son[y]; a != -1; a = brother[a])
1152 VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
1153
1154 for (i = nc - 1; i >= 0; i--)
1155 {
1156 dom = NULL;
1157 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1158 {
1159 bb = VEC_index (basic_block, bbs, a);
1160 FOR_EACH_EDGE (e, ei, bb->preds)
1161 {
1162 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1163 continue;
1164
1165 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1166 }
1167 }
1168
1169 gcc_assert (dom != NULL);
1170 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1171 {
1172 bb = VEC_index (basic_block, bbs, a);
1173 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1174 }
1175 }
1176
1177 for (i = 0; i < nc; i++)
1178 VEC_free (int, heap, sccs[i]);
1179 free (sccs);
1180
1181 for (a = son[y]; a != -1; a = brother[a])
1182 identify_vertices (g, y, a);
1183}
1184
1185/* Recompute dominance information for basic blocks in the set BBS. The
1186 function assumes that the immediate dominators of all the other blocks
1187 in CFG are correct, and that there are no unreachable blocks.
1188
1189 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1190 a block of BBS in the current dominance tree dominate it. */
1191
355be0dc 1192void
66f97d31
ZD
1193iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
1194 bool conservative)
355be0dc 1195{
66f97d31
ZD
1196 unsigned i;
1197 basic_block bb, dom;
1198 struct graph *g;
1199 int n, y;
1200 size_t dom_i;
1201 edge e;
1202 edge_iterator ei;
1203 struct pointer_map_t *map;
1204 int *parent, *son, *brother;
2b28c07a 1205 unsigned int dir_index = dom_convert_dir_to_idx (dir);
355be0dc 1206
66f97d31
ZD
1207 /* We only support updating dominators. There are some problems with
1208 updating postdominators (need to add fake edges from infinite loops
1209 and noreturn functions), and since we do not currently use
1210 iterate_fix_dominators for postdominators, any attempt to handle these
1211 problems would be unused, untested, and almost surely buggy. We keep
1212 the DIR argument for consistency with the rest of the dominator analysis
1213 interface. */
1214 gcc_assert (dir == CDI_DOMINATORS);
2b28c07a 1215 gcc_assert (dom_computed[dir_index]);
d47cc544 1216
66f97d31
ZD
1217 /* The algorithm we use takes inspiration from the following papers, although
1218 the details are quite different from any of them:
1219
1220 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1221 Dominator Tree of a Reducible Flowgraph
1222 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1223 dominator trees
1224 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1225 Algorithm
1226
1227 First, we use the following heuristics to decrease the size of the BBS
1228 set:
1229 a) if BB has a single predecessor, then its immediate dominator is this
1230 predecessor
1231 additionally, if CONSERVATIVE is true:
1232 b) if all the predecessors of BB except for one (X) are dominated by BB,
1233 then X is the immediate dominator of BB
1234 c) if the nearest common ancestor of the predecessors of BB is X and
1235 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1236
1237 Then, we need to establish the dominance relation among the basic blocks
1238 in BBS. We split the dominance tree by removing the immediate dominator
0d52bcc1 1239 edges from BBS, creating a forest F. We form a graph G whose vertices
66f97d31 1240 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
0d52bcc1 1241 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
66f97d31
ZD
1242 whose root is X. We then determine dominance tree of G. Note that
1243 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1244 In this step, we can use arbitrary algorithm to determine dominators.
1245 We decided to prefer the algorithm [3] to the algorithm of
1246 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1247 10 during gcc bootstrap), and [3] should perform better in this case.
1248
1249 Finally, we need to determine the immediate dominators for the basic
1250 blocks of BBS. If the immediate dominator of X in G is Y, then
1251 the immediate dominator of X in CFG belongs to the tree of F rooted in
1252 Y. We process the dominator tree T of G recursively, starting from leaves.
1253 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1254 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1255 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1256 the following observations:
1257 (i) the immediate dominator of all blocks in a strongly connected
1258 component of G' is the same
1259 (ii) if X has no predecessors in G', then the immediate dominator of X
1260 is the nearest common ancestor of the predecessors of X in the
1261 subtree of F rooted in Y
1262 Therefore, it suffices to find the topological ordering of G', and
1263 process the nodes X_i in this order using the rules (i) and (ii).
1264 Then, we contract all the nodes X_i with Y in G, so that the further
1265 steps work correctly. */
1266
1267 if (!conservative)
1268 {
1269 /* Split the tree now. If the idoms of blocks in BBS are not
1270 conservatively correct, setting the dominators using the
1271 heuristics in prune_bbs_to_update_dominators could
1272 create cycles in the dominance "tree", and cause ICE. */
1273 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1274 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1275 }
1276
1277 prune_bbs_to_update_dominators (bbs, conservative);
1278 n = VEC_length (basic_block, bbs);
1279
1280 if (n == 0)
1281 return;
e7bd94cc 1282
66f97d31 1283 if (n == 1)
355be0dc 1284 {
66f97d31
ZD
1285 bb = VEC_index (basic_block, bbs, 0);
1286 set_immediate_dominator (CDI_DOMINATORS, bb,
1287 recompute_dominator (CDI_DOMINATORS, bb));
1288 return;
1289 }
1290
1291 /* Construct the graph G. */
1292 map = pointer_map_create ();
1293 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1294 {
1295 /* If the dominance tree is conservatively correct, split it now. */
1296 if (conservative)
1297 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1298 *pointer_map_insert (map, bb) = (void *) (size_t) i;
1299 }
1300 *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
1301
1302 g = new_graph (n + 1);
1303 for (y = 0; y < g->n_vertices; y++)
1304 g->vertices[y].data = BITMAP_ALLOC (NULL);
1305 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1306 {
1307 FOR_EACH_EDGE (e, ei, bb->preds)
355be0dc 1308 {
66f97d31
ZD
1309 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1310 if (dom == bb)
1311 continue;
1312
1313 dom_i = (size_t) *pointer_map_contains (map, dom);
1314
1315 /* Do not include parallel edges to G. */
f883e0a7 1316 if (bitmap_bit_p ((bitmap) g->vertices[dom_i].data, i))
66f97d31
ZD
1317 continue;
1318
f883e0a7 1319 bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i);
66f97d31 1320 add_edge (g, dom_i, i);
f8032688
MM
1321 }
1322 }
66f97d31
ZD
1323 for (y = 0; y < g->n_vertices; y++)
1324 BITMAP_FREE (g->vertices[y].data);
1325 pointer_map_destroy (map);
1326
1327 /* Find the dominator tree of G. */
1328 son = XNEWVEC (int, n + 1);
1329 brother = XNEWVEC (int, n + 1);
1330 parent = XNEWVEC (int, n + 1);
1331 graphds_domtree (g, n, parent, son, brother);
1332
1333 /* Finally, traverse the tree and find the immediate dominators. */
1334 for (y = n; son[y] != -1; y = son[y])
1335 continue;
1336 while (y != -1)
1337 {
1338 determine_dominators_for_sons (g, bbs, y, son, brother);
1339
1340 if (brother[y] != -1)
1341 {
1342 y = brother[y];
1343 while (son[y] != -1)
1344 y = son[y];
1345 }
1346 else
1347 y = parent[y];
1348 }
1349
1350 free (son);
1351 free (brother);
1352 free (parent);
e7bd94cc 1353
66f97d31 1354 free_graph (g);
355be0dc 1355}
f8032688 1356
355be0dc 1357void
d47cc544 1358add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 1359{
2b28c07a
JC
1360 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1361
1362 gcc_assert (dom_computed[dir_index]);
1363 gcc_assert (!bb->dom[dir_index]);
d47cc544 1364
2b28c07a 1365 n_bbs_in_dom_tree[dir_index]++;
6de9cd9a 1366
2b28c07a 1367 bb->dom[dir_index] = et_new_tree (bb);
d47cc544 1368
2b28c07a
JC
1369 if (dom_computed[dir_index] == DOM_OK)
1370 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
355be0dc
JH
1371}
1372
1373void
d47cc544
SB
1374delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1375{
2b28c07a 1376 unsigned int dir_index = dom_convert_dir_to_idx (dir);
d47cc544 1377
2b28c07a 1378 gcc_assert (dom_computed[dir_index]);
d47cc544 1379
2b28c07a
JC
1380 et_free_tree (bb->dom[dir_index]);
1381 bb->dom[dir_index] = NULL;
1382 n_bbs_in_dom_tree[dir_index]--;
1383
1384 if (dom_computed[dir_index] == DOM_OK)
1385 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
d47cc544
SB
1386}
1387
1388/* Returns the first son of BB in the dominator or postdominator tree
1389 as determined by DIR. */
1390
1391basic_block
1392first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 1393{
2b28c07a
JC
1394 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1395 struct et_node *son = bb->dom[dir_index]->son;
d47cc544 1396
f883e0a7 1397 return (basic_block) (son ? son->data : NULL);
d47cc544
SB
1398}
1399
1400/* Returns the next dominance son after BB in the dominator or postdominator
1401 tree as determined by DIR, or NULL if it was the last one. */
1402
1403basic_block
1404next_dom_son (enum cdi_direction dir, basic_block bb)
1405{
2b28c07a
JC
1406 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1407 struct et_node *next = bb->dom[dir_index]->right;
d47cc544 1408
f883e0a7 1409 return (basic_block) (next->father->son == next ? NULL : next->data);
355be0dc
JH
1410}
1411
2b28c07a
JC
1412/* Return dominance availability for dominance info DIR. */
1413
1414enum dom_state
1415dom_info_state (enum cdi_direction dir)
1416{
1417 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1418
1419 return dom_computed[dir_index];
1420}
1421
1422/* Set the dominance availability for dominance info DIR to NEW_STATE. */
1423
1424void
1425set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1426{
1427 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1428
1429 dom_computed[dir_index] = new_state;
1430}
1431
fce22de5
ZD
1432/* Returns true if dominance information for direction DIR is available. */
1433
1434bool
1435dom_info_available_p (enum cdi_direction dir)
1436{
2b28c07a
JC
1437 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1438
1439 return dom_computed[dir_index] != DOM_NONE;
fce22de5
ZD
1440}
1441
355be0dc 1442void
d47cc544 1443debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
1444{
1445 basic_block bb, bb2;
1446 FOR_EACH_BB (bb)
d47cc544 1447 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 1448 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 1449}
1fc3998d
ZD
1450
1451/* Prints to stderr representation of the dominance tree (for direction DIR)
cea618ac 1452 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1fc3998d
ZD
1453 the first line of the output is not indented. */
1454
1455static void
1456debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1457 unsigned indent, bool indent_first)
1458{
1459 basic_block son;
1460 unsigned i;
1461 bool first = true;
1462
1463 if (indent_first)
1464 for (i = 0; i < indent; i++)
1465 fprintf (stderr, "\t");
1466 fprintf (stderr, "%d\t", root->index);
1467
1468 for (son = first_dom_son (dir, root);
1469 son;
1470 son = next_dom_son (dir, son))
1471 {
1472 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1473 first = false;
1474 }
1475
1476 if (first)
1477 fprintf (stderr, "\n");
1478}
1479
1480/* Prints to stderr representation of the dominance tree (for direction DIR)
1481 rooted in ROOT. */
1482
1483void
1484debug_dominance_tree (enum cdi_direction dir, basic_block root)
1485{
1486 debug_dominance_tree_1 (dir, root, 0, false);
1487}
This page took 2.30915 seconds and 5 git commands to generate.