]> gcc.gnu.org Git - gcc.git/blame - gcc/dominance.c
re PR c++/25492 (friend class nested in derived class problem)
[gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
c8d3e15a 2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d 18 along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688 32 each block its immediate dominator. We use tree balancing and path
f3b569ca 33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
f8032688
MM
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
7932a3db 42#include "obstack.h"
f8032688 43#include "basic-block.h"
4c714dd4 44#include "toplev.h"
355be0dc 45#include "et-forest.h"
f8032688 46
d47cc544
SB
47/* Whether the dominators and the postdominators are available. */
48enum dom_state dom_computed[2];
f8032688
MM
49
50/* We name our nodes with integers, beginning with 1. Zero is reserved for
51 'undefined' or 'end of list'. The name of each node is given by the dfs
52 number of the corresponding basic block. Please note, that we include the
53 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
24bd1a0b 54 support multiple entry points. Its dfs number is of course 1. */
f8032688
MM
55
56/* Type of Basic Block aka. TBB */
57typedef unsigned int TBB;
58
59/* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
63
64struct dom_info
65{
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
82
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
93
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
09da1532 98 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
103
26e0e410 104 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
26e0e410
RH
108
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
f8032688
MM
112};
113
26e0e410 114static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735
AJ
115static void free_dom_info (struct dom_info *);
116static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119static void compress (struct dom_info *, TBB);
120static TBB eval (struct dom_info *, TBB);
121static void link_roots (struct dom_info *, TBB, TBB);
122static void calc_idoms (struct dom_info *, enum cdi_direction);
d47cc544 123void debug_dominance_info (enum cdi_direction);
f8032688 124
6de9cd9a
DN
125/* Keeps track of the*/
126static unsigned n_bbs_in_dom_tree[2];
127
f8032688
MM
128/* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130#define init_ar(var, type, num, content) \
3a538a66
KH
131 do \
132 { \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
703ad42b 135 (var) = xcalloc ((num), sizeof (type)); \
3a538a66
KH
136 else \
137 { \
703ad42b 138 (var) = xmalloc ((num) * sizeof (type)); \
3a538a66
KH
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
141 } \
142 } \
143 while (0)
f8032688
MM
144
145/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 146 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
147
148static void
26e0e410 149init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 150{
24bd1a0b 151 unsigned int num = n_basic_blocks;
f8032688
MM
152 init_ar (di->dfs_parent, TBB, num, 0);
153 init_ar (di->path_min, TBB, num, i);
154 init_ar (di->key, TBB, num, i);
155 init_ar (di->dom, TBB, num, 0);
156
157 init_ar (di->bucket, TBB, num, 0);
158 init_ar (di->next_bucket, TBB, num, 0);
159
160 init_ar (di->set_chain, TBB, num, 0);
161 init_ar (di->set_size, unsigned int, num, 1);
162 init_ar (di->set_child, TBB, num, 0);
163
d55bc081 164 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
165 init_ar (di->dfs_to_bb, basic_block, num, 0);
166
167 di->dfsnum = 1;
168 di->nodes = 0;
26e0e410 169
8bdbfff5 170 di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
f8032688
MM
171}
172
173#undef init_ar
174
175/* Free all allocated memory in DI, but not DI itself. */
176
177static void
7080f735 178free_dom_info (struct dom_info *di)
f8032688
MM
179{
180 free (di->dfs_parent);
181 free (di->path_min);
182 free (di->key);
183 free (di->dom);
184 free (di->bucket);
185 free (di->next_bucket);
186 free (di->set_chain);
187 free (di->set_size);
188 free (di->set_child);
189 free (di->dfs_order);
190 free (di->dfs_to_bb);
8bdbfff5 191 BITMAP_FREE (di->fake_exit_edge);
f8032688
MM
192}
193
194/* The nonrecursive variant of creating a DFS tree. DI is our working
195 structure, BB the starting basic block for this tree and REVERSE
196 is true, if predecessors should be visited instead of successors of a
197 node. After this is done all nodes reachable from BB were visited, have
198 assigned their dfs number and are linked together to form a tree. */
199
200static void
26e0e410
RH
201calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
202 enum cdi_direction reverse)
f8032688 203{
f8032688
MM
204 /* We call this _only_ if bb is not already visited. */
205 edge e;
206 TBB child_i, my_i = 0;
628f6a4e
BE
207 edge_iterator *stack;
208 edge_iterator ei, einext;
f8032688
MM
209 int sp;
210 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
211 problem). */
212 basic_block en_block;
213 /* Ending block. */
214 basic_block ex_block;
215
24bd1a0b 216 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
f8032688
MM
217 sp = 0;
218
219 /* Initialize our border blocks, and the first edge. */
220 if (reverse)
221 {
628f6a4e 222 ei = ei_start (bb->preds);
f8032688
MM
223 en_block = EXIT_BLOCK_PTR;
224 ex_block = ENTRY_BLOCK_PTR;
225 }
226 else
227 {
628f6a4e 228 ei = ei_start (bb->succs);
f8032688
MM
229 en_block = ENTRY_BLOCK_PTR;
230 ex_block = EXIT_BLOCK_PTR;
231 }
232
233 /* When the stack is empty we break out of this loop. */
234 while (1)
235 {
236 basic_block bn;
237
238 /* This loop traverses edges e in depth first manner, and fills the
239 stack. */
628f6a4e 240 while (!ei_end_p (ei))
f8032688 241 {
628f6a4e 242 e = ei_edge (ei);
f8032688
MM
243
244 /* Deduce from E the current and the next block (BB and BN), and the
245 next edge. */
246 if (reverse)
247 {
248 bn = e->src;
249
250 /* If the next node BN is either already visited or a border
251 block the current edge is useless, and simply overwritten
252 with the next edge out of the current node. */
0b17ab2f 253 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 254 {
628f6a4e 255 ei_next (&ei);
f8032688
MM
256 continue;
257 }
258 bb = e->dest;
628f6a4e 259 einext = ei_start (bn->preds);
f8032688
MM
260 }
261 else
262 {
263 bn = e->dest;
0b17ab2f 264 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 265 {
628f6a4e 266 ei_next (&ei);
f8032688
MM
267 continue;
268 }
269 bb = e->src;
628f6a4e 270 einext = ei_start (bn->succs);
f8032688
MM
271 }
272
ced3f397 273 gcc_assert (bn != en_block);
f8032688
MM
274
275 /* Fill the DFS tree info calculatable _before_ recursing. */
276 if (bb != en_block)
0b17ab2f 277 my_i = di->dfs_order[bb->index];
f8032688 278 else
d55bc081 279 my_i = di->dfs_order[last_basic_block];
0b17ab2f 280 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
281 di->dfs_to_bb[child_i] = bn;
282 di->dfs_parent[child_i] = my_i;
283
284 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
285 stack[sp++] = ei;
286 ei = einext;
f8032688
MM
287 }
288
289 if (!sp)
290 break;
628f6a4e 291 ei = stack[--sp];
f8032688
MM
292
293 /* OK. The edge-list was exhausted, meaning normally we would
294 end the recursion. After returning from the recursive call,
295 there were (may be) other statements which were run after a
296 child node was completely considered by DFS. Here is the
297 point to do it in the non-recursive variant.
298 E.g. The block just completed is in e->dest for forward DFS,
299 the block not yet completed (the parent of the one above)
300 in e->src. This could be used e.g. for computing the number of
301 descendants or the tree depth. */
628f6a4e 302 ei_next (&ei);
f8032688
MM
303 }
304 free (stack);
305}
306
307/* The main entry for calculating the DFS tree or forest. DI is our working
308 structure and REVERSE is true, if we are interested in the reverse flow
309 graph. In that case the result is not necessarily a tree but a forest,
310 because there may be nodes from which the EXIT_BLOCK is unreachable. */
311
312static void
7080f735 313calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
314{
315 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
316 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 317 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
318 di->dfs_to_bb[di->dfsnum] = begin;
319 di->dfsnum++;
320
321 calc_dfs_tree_nonrec (di, begin, reverse);
322
323 if (reverse)
324 {
325 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
326 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
327 nodes, but in post-dom we have to deal with them.
328
329 There are two situations in which this occurs. First, noreturn
330 functions. Second, infinite loops. In the first case we need to
331 pretend that there is an edge to the exit block. In the second
332 case, we wind up with a forest. We need to process all noreturn
333 blocks before we know if we've got any infinite loops. */
334
e0082a72 335 basic_block b;
26e0e410
RH
336 bool saw_unconnected = false;
337
e0082a72 338 FOR_EACH_BB_REVERSE (b)
f8032688 339 {
628f6a4e 340 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
341 {
342 if (di->dfs_order[b->index] == 0)
343 saw_unconnected = true;
344 continue;
345 }
346 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 347 di->dfs_order[b->index] = di->dfsnum;
f8032688 348 di->dfs_to_bb[di->dfsnum] = b;
26e0e410 349 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
f8032688
MM
350 di->dfsnum++;
351 calc_dfs_tree_nonrec (di, b, reverse);
352 }
26e0e410
RH
353
354 if (saw_unconnected)
355 {
356 FOR_EACH_BB_REVERSE (b)
357 {
358 if (di->dfs_order[b->index])
359 continue;
360 bitmap_set_bit (di->fake_exit_edge, b->index);
361 di->dfs_order[b->index] = di->dfsnum;
362 di->dfs_to_bb[di->dfsnum] = b;
363 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
364 di->dfsnum++;
365 calc_dfs_tree_nonrec (di, b, reverse);
366 }
367 }
f8032688
MM
368 }
369
370 di->nodes = di->dfsnum - 1;
371
24bd1a0b
DB
372 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
373 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
f8032688
MM
374}
375
376/* Compress the path from V to the root of its set and update path_min at the
377 same time. After compress(di, V) set_chain[V] is the root of the set V is
378 in and path_min[V] is the node with the smallest key[] value on the path
379 from V to that root. */
380
381static void
7080f735 382compress (struct dom_info *di, TBB v)
f8032688
MM
383{
384 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
385 greater than 5 even for huge graphs (I've not seen call depth > 4).
386 Also performance wise compress() ranges _far_ behind eval(). */
387 TBB parent = di->set_chain[v];
388 if (di->set_chain[parent])
389 {
390 compress (di, parent);
391 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
392 di->path_min[v] = di->path_min[parent];
393 di->set_chain[v] = di->set_chain[parent];
394 }
395}
396
397/* Compress the path from V to the set root of V if needed (when the root has
398 changed since the last call). Returns the node with the smallest key[]
399 value on the path from V to the root. */
400
401static inline TBB
7080f735 402eval (struct dom_info *di, TBB v)
f8032688
MM
403{
404 /* The representant of the set V is in, also called root (as the set
405 representation is a tree). */
406 TBB rep = di->set_chain[v];
407
408 /* V itself is the root. */
409 if (!rep)
410 return di->path_min[v];
411
412 /* Compress only if necessary. */
413 if (di->set_chain[rep])
414 {
415 compress (di, v);
416 rep = di->set_chain[v];
417 }
418
419 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
420 return di->path_min[v];
421 else
422 return di->path_min[rep];
423}
424
425/* This essentially merges the two sets of V and W, giving a single set with
426 the new root V. The internal representation of these disjoint sets is a
427 balanced tree. Currently link(V,W) is only used with V being the parent
428 of W. */
429
430static void
7080f735 431link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
432{
433 TBB s = w;
434
435 /* Rebalance the tree. */
436 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
437 {
438 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
439 >= 2 * di->set_size[di->set_child[s]])
440 {
441 di->set_chain[di->set_child[s]] = s;
442 di->set_child[s] = di->set_child[di->set_child[s]];
443 }
444 else
445 {
446 di->set_size[di->set_child[s]] = di->set_size[s];
447 s = di->set_chain[s] = di->set_child[s];
448 }
449 }
450
451 di->path_min[s] = di->path_min[w];
452 di->set_size[v] += di->set_size[w];
453 if (di->set_size[v] < 2 * di->set_size[w])
454 {
455 TBB tmp = s;
456 s = di->set_child[v];
457 di->set_child[v] = tmp;
458 }
459
460 /* Merge all subtrees. */
461 while (s)
462 {
463 di->set_chain[s] = v;
464 s = di->set_child[s];
465 }
466}
467
468/* This calculates the immediate dominators (or post-dominators if REVERSE is
469 true). DI is our working structure and should hold the DFS forest.
470 On return the immediate dominator to node V is in di->dom[V]. */
471
472static void
7080f735 473calc_idoms (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
474{
475 TBB v, w, k, par;
476 basic_block en_block;
628f6a4e
BE
477 edge_iterator ei, einext;
478
f8032688
MM
479 if (reverse)
480 en_block = EXIT_BLOCK_PTR;
481 else
482 en_block = ENTRY_BLOCK_PTR;
483
484 /* Go backwards in DFS order, to first look at the leafs. */
485 v = di->nodes;
486 while (v > 1)
487 {
488 basic_block bb = di->dfs_to_bb[v];
628f6a4e 489 edge e;
f8032688
MM
490
491 par = di->dfs_parent[v];
492 k = v;
628f6a4e
BE
493
494 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
495
f8032688 496 if (reverse)
26e0e410 497 {
26e0e410
RH
498 /* If this block has a fake edge to exit, process that first. */
499 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
500 {
628f6a4e
BE
501 einext = ei;
502 einext.index = 0;
26e0e410
RH
503 goto do_fake_exit_edge;
504 }
505 }
f8032688
MM
506
507 /* Search all direct predecessors for the smallest node with a path
508 to them. That way we have the smallest node with also a path to
509 us only over nodes behind us. In effect we search for our
510 semidominator. */
628f6a4e 511 while (!ei_end_p (ei))
f8032688
MM
512 {
513 TBB k1;
514 basic_block b;
515
628f6a4e
BE
516 e = ei_edge (ei);
517 b = (reverse) ? e->dest : e->src;
518 einext = ei;
519 ei_next (&einext);
520
f8032688 521 if (b == en_block)
26e0e410
RH
522 {
523 do_fake_exit_edge:
524 k1 = di->dfs_order[last_basic_block];
525 }
f8032688 526 else
0b17ab2f 527 k1 = di->dfs_order[b->index];
f8032688
MM
528
529 /* Call eval() only if really needed. If k1 is above V in DFS tree,
530 then we know, that eval(k1) == k1 and key[k1] == k1. */
531 if (k1 > v)
532 k1 = di->key[eval (di, k1)];
533 if (k1 < k)
534 k = k1;
628f6a4e
BE
535
536 ei = einext;
f8032688
MM
537 }
538
539 di->key[v] = k;
540 link_roots (di, par, v);
541 di->next_bucket[v] = di->bucket[k];
542 di->bucket[k] = v;
543
544 /* Transform semidominators into dominators. */
545 for (w = di->bucket[par]; w; w = di->next_bucket[w])
546 {
547 k = eval (di, w);
548 if (di->key[k] < di->key[w])
549 di->dom[w] = k;
550 else
551 di->dom[w] = par;
552 }
553 /* We don't need to cleanup next_bucket[]. */
554 di->bucket[par] = 0;
555 v--;
556 }
557
a1f300c0 558 /* Explicitly define the dominators. */
f8032688
MM
559 di->dom[1] = 0;
560 for (v = 2; v <= di->nodes; v++)
561 if (di->dom[v] != di->key[v])
562 di->dom[v] = di->dom[di->dom[v]];
563}
564
d47cc544
SB
565/* Assign dfs numbers starting from NUM to NODE and its sons. */
566
567static void
568assign_dfs_numbers (struct et_node *node, int *num)
569{
570 struct et_node *son;
571
572 node->dfs_num_in = (*num)++;
573
574 if (node->son)
575 {
576 assign_dfs_numbers (node->son, num);
577 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 578 assign_dfs_numbers (son, num);
d47cc544 579 }
f8032688 580
d47cc544
SB
581 node->dfs_num_out = (*num)++;
582}
f8032688 583
5d3cc252 584/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 585 static dominator tree. */
f8032688 586
d47cc544
SB
587static void
588compute_dom_fast_query (enum cdi_direction dir)
589{
590 int num = 0;
591 basic_block bb;
592
fce22de5 593 gcc_assert (dom_info_available_p (dir));
d47cc544
SB
594
595 if (dom_computed[dir] == DOM_OK)
596 return;
597
598 FOR_ALL_BB (bb)
599 {
600 if (!bb->dom[dir]->father)
6de9cd9a 601 assign_dfs_numbers (bb->dom[dir], &num);
d47cc544
SB
602 }
603
604 dom_computed[dir] = DOM_OK;
605}
606
607/* The main entry point into this module. DIR is set depending on whether
608 we want to compute dominators or postdominators. */
609
610void
611calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
612{
613 struct dom_info di;
355be0dc
JH
614 basic_block b;
615
d47cc544
SB
616 if (dom_computed[dir] == DOM_OK)
617 return;
355be0dc 618
fce22de5 619 if (!dom_info_available_p (dir))
d47cc544 620 {
ced3f397 621 gcc_assert (!n_bbs_in_dom_tree[dir]);
f8032688 622
d47cc544
SB
623 FOR_ALL_BB (b)
624 {
625 b->dom[dir] = et_new_tree (b);
626 }
24bd1a0b 627 n_bbs_in_dom_tree[dir] = n_basic_blocks;
f8032688 628
26e0e410 629 init_dom_info (&di, dir);
d47cc544
SB
630 calc_dfs_tree (&di, dir);
631 calc_idoms (&di, dir);
355be0dc 632
d47cc544
SB
633 FOR_EACH_BB (b)
634 {
635 TBB d = di.dom[di.dfs_order[b->index]];
636
637 if (di.dfs_to_bb[d])
638 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
639 }
e0082a72 640
d47cc544
SB
641 free_dom_info (&di);
642 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
643 }
644
d47cc544 645 compute_dom_fast_query (dir);
355be0dc
JH
646}
647
d47cc544 648/* Free dominance information for direction DIR. */
355be0dc 649void
d47cc544 650free_dominance_info (enum cdi_direction dir)
355be0dc
JH
651{
652 basic_block bb;
653
fce22de5 654 if (!dom_info_available_p (dir))
d47cc544
SB
655 return;
656
657 FOR_ALL_BB (bb)
658 {
bef87a34
KH
659 et_free_tree_force (bb->dom[dir]);
660 bb->dom[dir] = NULL;
d47cc544
SB
661 }
662
bef87a34 663 n_bbs_in_dom_tree[dir] = 0;
6de9cd9a 664
d47cc544 665 dom_computed[dir] = DOM_NONE;
355be0dc
JH
666}
667
668/* Return the immediate dominator of basic block BB. */
669basic_block
d47cc544 670get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 671{
d47cc544
SB
672 struct et_node *node = bb->dom[dir];
673
ced3f397 674 gcc_assert (dom_computed[dir]);
d47cc544
SB
675
676 if (!node->father)
677 return NULL;
678
6de9cd9a 679 return node->father->data;
355be0dc
JH
680}
681
682/* Set the immediate dominator of the block possibly removing
683 existing edge. NULL can be used to remove any edge. */
684inline void
d47cc544
SB
685set_immediate_dominator (enum cdi_direction dir, basic_block bb,
686 basic_block dominated_by)
355be0dc 687{
d47cc544
SB
688 struct et_node *node = bb->dom[dir];
689
ced3f397 690 gcc_assert (dom_computed[dir]);
355be0dc 691
d47cc544 692 if (node->father)
355be0dc 693 {
d47cc544 694 if (node->father->data == dominated_by)
6de9cd9a 695 return;
d47cc544 696 et_split (node);
355be0dc 697 }
d47cc544
SB
698
699 if (dominated_by)
700 et_set_father (node, dominated_by->dom[dir]);
701
702 if (dom_computed[dir] == DOM_OK)
703 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
704}
705
5d3cc252 706/* Store all basic blocks immediately dominated by BB into BBS and return
d47cc544 707 their number. */
355be0dc 708int
d47cc544 709get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
355be0dc 710{
d47cc544
SB
711 int n;
712 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
713
ced3f397 714 gcc_assert (dom_computed[dir]);
d47cc544
SB
715
716 if (!son)
717 {
718 *bbs = NULL;
719 return 0;
720 }
721
722 for (ason = son->right, n = 1; ason != son; ason = ason->right)
723 n++;
724
725 *bbs = xmalloc (n * sizeof (basic_block));
726 (*bbs)[0] = son->data;
727 for (ason = son->right, n = 1; ason != son; ason = ason->right)
728 (*bbs)[n++] = ason->data;
355be0dc 729
355be0dc
JH
730 return n;
731}
732
42759f1e
ZD
733/* Find all basic blocks that are immediately dominated (in direction DIR)
734 by some block between N_REGION ones stored in REGION, except for blocks
735 in the REGION itself. The found blocks are stored to DOMS and their number
736 is returned. */
737
738unsigned
739get_dominated_by_region (enum cdi_direction dir, basic_block *region,
740 unsigned n_region, basic_block *doms)
741{
742 unsigned n_doms = 0, i;
743 basic_block dom;
744
745 for (i = 0; i < n_region; i++)
6580ee77 746 region[i]->flags |= BB_DUPLICATED;
42759f1e
ZD
747 for (i = 0; i < n_region; i++)
748 for (dom = first_dom_son (dir, region[i]);
749 dom;
750 dom = next_dom_son (dir, dom))
6580ee77 751 if (!(dom->flags & BB_DUPLICATED))
42759f1e
ZD
752 doms[n_doms++] = dom;
753 for (i = 0; i < n_region; i++)
6580ee77 754 region[i]->flags &= ~BB_DUPLICATED;
42759f1e
ZD
755
756 return n_doms;
757}
758
355be0dc
JH
759/* Redirect all edges pointing to BB to TO. */
760void
d47cc544
SB
761redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
762 basic_block to)
355be0dc 763{
d47cc544
SB
764 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
765
ced3f397 766 gcc_assert (dom_computed[dir]);
355be0dc 767
d47cc544
SB
768 if (!bb_node->son)
769 return;
770
771 while (bb_node->son)
355be0dc 772 {
d47cc544
SB
773 son = bb_node->son;
774
775 et_split (son);
776 et_set_father (son, to_node);
355be0dc 777 }
d47cc544
SB
778
779 if (dom_computed[dir] == DOM_OK)
780 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
781}
782
783/* Find first basic block in the tree dominating both BB1 and BB2. */
784basic_block
d47cc544 785nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 786{
ced3f397 787 gcc_assert (dom_computed[dir]);
d47cc544 788
355be0dc
JH
789 if (!bb1)
790 return bb2;
791 if (!bb2)
792 return bb1;
d47cc544
SB
793
794 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
355be0dc
JH
795}
796
0bca51f0
DN
797
798/* Find the nearest common dominator for the basic blocks in BLOCKS,
799 using dominance direction DIR. */
800
801basic_block
802nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
803{
804 unsigned i, first;
805 bitmap_iterator bi;
806 basic_block dom;
807
808 first = bitmap_first_set_bit (blocks);
809 dom = BASIC_BLOCK (first);
810 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
811 if (dom != BASIC_BLOCK (i))
812 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
813
814 return dom;
815}
816
817
355be0dc
JH
818/* Return TRUE in case BB1 is dominated by BB2. */
819bool
d47cc544 820dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
6de9cd9a 821{
d47cc544
SB
822 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
823
ced3f397 824 gcc_assert (dom_computed[dir]);
d47cc544
SB
825
826 if (dom_computed[dir] == DOM_OK)
827 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 828 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
829
830 return et_below (n1, n2);
355be0dc
JH
831}
832
833/* Verify invariants of dominator structure. */
834void
d47cc544 835verify_dominators (enum cdi_direction dir)
355be0dc
JH
836{
837 int err = 0;
838 basic_block bb;
839
fce22de5 840 gcc_assert (dom_info_available_p (dir));
d47cc544 841
355be0dc
JH
842 FOR_EACH_BB (bb)
843 {
844 basic_block dom_bb;
df485d80 845 basic_block imm_bb;
355be0dc 846
d47cc544 847 dom_bb = recount_dominator (dir, bb);
df485d80
FCE
848 imm_bb = get_immediate_dominator (dir, bb);
849 if (dom_bb != imm_bb)
f8032688 850 {
df485d80
FCE
851 if ((dom_bb == NULL) || (imm_bb == NULL))
852 error ("dominator of %d status unknown", bb->index);
08fb229e
FCE
853 else
854 error ("dominator of %d should be %d, not %d",
df485d80 855 bb->index, dom_bb->index, imm_bb->index);
355be0dc
JH
856 err = 1;
857 }
858 }
e7bd94cc 859
fce22de5 860 if (dir == CDI_DOMINATORS)
e7bd94cc
ZD
861 {
862 FOR_EACH_BB (bb)
863 {
864 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
865 {
866 error ("ENTRY does not dominate bb %d", bb->index);
867 err = 1;
868 }
869 }
870 }
871
ced3f397 872 gcc_assert (!err);
355be0dc
JH
873}
874
738ed977
ZD
875/* Determine immediate dominator (or postdominator, according to DIR) of BB,
876 assuming that dominators of other blocks are correct. We also use it to
877 recompute the dominators in a restricted area, by iterating it until it
71cc389b 878 reaches a fixed point. */
738ed977 879
355be0dc 880basic_block
d47cc544 881recount_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 882{
738ed977
ZD
883 basic_block dom_bb = NULL;
884 edge e;
628f6a4e 885 edge_iterator ei;
355be0dc 886
ced3f397 887 gcc_assert (dom_computed[dir]);
d47cc544 888
738ed977
ZD
889 if (dir == CDI_DOMINATORS)
890 {
628f6a4e 891 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977 892 {
e7bd94cc
ZD
893 /* Ignore the predecessors that either are not reachable from
894 the entry block, or whose dominator was not determined yet. */
895 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
896 continue;
897
738ed977
ZD
898 if (!dominated_by_p (dir, e->src, bb))
899 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
900 }
901 }
902 else
903 {
628f6a4e 904 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
905 {
906 if (!dominated_by_p (dir, e->dest, bb))
907 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
908 }
909 }
f8032688 910
738ed977 911 return dom_bb;
355be0dc
JH
912}
913
914/* Iteratively recount dominators of BBS. The change is supposed to be local
915 and not to grow further. */
916void
d47cc544 917iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
355be0dc
JH
918{
919 int i, changed = 1;
920 basic_block old_dom, new_dom;
921
ced3f397 922 gcc_assert (dom_computed[dir]);
d47cc544 923
e7bd94cc
ZD
924 for (i = 0; i < n; i++)
925 set_immediate_dominator (dir, bbs[i], NULL);
926
355be0dc
JH
927 while (changed)
928 {
929 changed = 0;
930 for (i = 0; i < n; i++)
931 {
d47cc544
SB
932 old_dom = get_immediate_dominator (dir, bbs[i]);
933 new_dom = recount_dominator (dir, bbs[i]);
355be0dc
JH
934 if (old_dom != new_dom)
935 {
936 changed = 1;
d47cc544 937 set_immediate_dominator (dir, bbs[i], new_dom);
355be0dc 938 }
f8032688
MM
939 }
940 }
e7bd94cc
ZD
941
942 for (i = 0; i < n; i++)
ced3f397 943 gcc_assert (get_immediate_dominator (dir, bbs[i]));
355be0dc 944}
f8032688 945
355be0dc 946void
d47cc544 947add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 948{
ced3f397
NS
949 gcc_assert (dom_computed[dir]);
950 gcc_assert (!bb->dom[dir]);
d47cc544 951
6de9cd9a
DN
952 n_bbs_in_dom_tree[dir]++;
953
d47cc544
SB
954 bb->dom[dir] = et_new_tree (bb);
955
956 if (dom_computed[dir] == DOM_OK)
957 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
958}
959
960void
d47cc544
SB
961delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
962{
ced3f397 963 gcc_assert (dom_computed[dir]);
d47cc544
SB
964
965 et_free_tree (bb->dom[dir]);
966 bb->dom[dir] = NULL;
6de9cd9a 967 n_bbs_in_dom_tree[dir]--;
d47cc544
SB
968
969 if (dom_computed[dir] == DOM_OK)
970 dom_computed[dir] = DOM_NO_FAST_QUERY;
971}
972
973/* Returns the first son of BB in the dominator or postdominator tree
974 as determined by DIR. */
975
976basic_block
977first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 978{
d47cc544
SB
979 struct et_node *son = bb->dom[dir]->son;
980
981 return son ? son->data : NULL;
982}
983
984/* Returns the next dominance son after BB in the dominator or postdominator
985 tree as determined by DIR, or NULL if it was the last one. */
986
987basic_block
988next_dom_son (enum cdi_direction dir, basic_block bb)
989{
990 struct et_node *next = bb->dom[dir]->right;
991
992 return next->father->son == next ? NULL : next->data;
355be0dc
JH
993}
994
fce22de5
ZD
995/* Returns true if dominance information for direction DIR is available. */
996
997bool
998dom_info_available_p (enum cdi_direction dir)
999{
1000 return dom_computed[dir] != DOM_NONE;
1001}
1002
355be0dc 1003void
d47cc544 1004debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
1005{
1006 basic_block bb, bb2;
1007 FOR_EACH_BB (bb)
d47cc544 1008 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 1009 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 1010}
This page took 1.446395 seconds and 5 git commands to generate.