]> gcc.gnu.org Git - gcc.git/blame - gcc/dominance.c
tree-ssa-loop-ivopts.c (struct ivopts_data): New field important_candidates.
[gcc.git] / gcc / dominance.c
CommitLineData
f8032688 1/* Calculate (post)dominators in slightly super-linear time.
d9221e01 2 Copyright (C) 2000, 2003, 2004 Free Software Foundation, Inc.
f8032688 3 Contributed by Michael Matz (matz@ifh.de).
3a538a66 4
1322177d 5 This file is part of GCC.
3a538a66 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
f8032688
MM
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
f8032688
MM
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
f8032688
MM
21
22/* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
a1f300c0 31 The algorithm computes this dominator tree implicitly by computing for
f8032688
MM
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36#include "config.h"
37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
f8032688
MM
40#include "rtl.h"
41#include "hard-reg-set.h"
42#include "basic-block.h"
8a67e083 43#include "errors.h"
355be0dc 44#include "et-forest.h"
f8032688 45
d47cc544
SB
46/* Whether the dominators and the postdominators are available. */
47enum dom_state dom_computed[2];
f8032688
MM
48
49/* We name our nodes with integers, beginning with 1. Zero is reserved for
50 'undefined' or 'end of list'. The name of each node is given by the dfs
51 number of the corresponding basic block. Please note, that we include the
52 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
53 support multiple entry points. As it has no real basic block index we use
d55bc081 54 'last_basic_block' for that. Its dfs number is of course 1. */
f8032688
MM
55
56/* Type of Basic Block aka. TBB */
57typedef unsigned int TBB;
58
59/* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
63
64struct dom_info
65{
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
82
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representant
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
93
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
09da1532 98 /* If x is the DFS-index of a node which corresponds with a basic block,
f8032688
MM
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
103
26e0e410 104 /* This is the next free DFS number when creating the DFS tree. */
f8032688
MM
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
26e0e410
RH
108
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
f8032688
MM
112};
113
26e0e410 114static void init_dom_info (struct dom_info *, enum cdi_direction);
7080f735
AJ
115static void free_dom_info (struct dom_info *);
116static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
117 enum cdi_direction);
118static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
119static void compress (struct dom_info *, TBB);
120static TBB eval (struct dom_info *, TBB);
121static void link_roots (struct dom_info *, TBB, TBB);
122static void calc_idoms (struct dom_info *, enum cdi_direction);
d47cc544 123void debug_dominance_info (enum cdi_direction);
f8032688 124
6de9cd9a
DN
125/* Keeps track of the*/
126static unsigned n_bbs_in_dom_tree[2];
127
f8032688
MM
128/* Helper macro for allocating and initializing an array,
129 for aesthetic reasons. */
130#define init_ar(var, type, num, content) \
3a538a66
KH
131 do \
132 { \
133 unsigned int i = 1; /* Catch content == i. */ \
134 if (! (content)) \
703ad42b 135 (var) = xcalloc ((num), sizeof (type)); \
3a538a66
KH
136 else \
137 { \
703ad42b 138 (var) = xmalloc ((num) * sizeof (type)); \
3a538a66
KH
139 for (i = 0; i < num; i++) \
140 (var)[i] = (content); \
141 } \
142 } \
143 while (0)
f8032688
MM
144
145/* Allocate all needed memory in a pessimistic fashion (so we round up).
4912a07c 146 This initializes the contents of DI, which already must be allocated. */
f8032688
MM
147
148static void
26e0e410 149init_dom_info (struct dom_info *di, enum cdi_direction dir)
f8032688 150{
0b17ab2f 151 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
f8032688 152 EXIT_BLOCK. */
0b17ab2f 153 unsigned int num = n_basic_blocks + 1 + 1;
f8032688
MM
154 init_ar (di->dfs_parent, TBB, num, 0);
155 init_ar (di->path_min, TBB, num, i);
156 init_ar (di->key, TBB, num, i);
157 init_ar (di->dom, TBB, num, 0);
158
159 init_ar (di->bucket, TBB, num, 0);
160 init_ar (di->next_bucket, TBB, num, 0);
161
162 init_ar (di->set_chain, TBB, num, 0);
163 init_ar (di->set_size, unsigned int, num, 1);
164 init_ar (di->set_child, TBB, num, 0);
165
d55bc081 166 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
f8032688
MM
167 init_ar (di->dfs_to_bb, basic_block, num, 0);
168
169 di->dfsnum = 1;
170 di->nodes = 0;
26e0e410
RH
171
172 di->fake_exit_edge = dir ? BITMAP_XMALLOC () : NULL;
f8032688
MM
173}
174
175#undef init_ar
176
177/* Free all allocated memory in DI, but not DI itself. */
178
179static void
7080f735 180free_dom_info (struct dom_info *di)
f8032688
MM
181{
182 free (di->dfs_parent);
183 free (di->path_min);
184 free (di->key);
185 free (di->dom);
186 free (di->bucket);
187 free (di->next_bucket);
188 free (di->set_chain);
189 free (di->set_size);
190 free (di->set_child);
191 free (di->dfs_order);
192 free (di->dfs_to_bb);
26e0e410 193 BITMAP_XFREE (di->fake_exit_edge);
f8032688
MM
194}
195
196/* The nonrecursive variant of creating a DFS tree. DI is our working
197 structure, BB the starting basic block for this tree and REVERSE
198 is true, if predecessors should be visited instead of successors of a
199 node. After this is done all nodes reachable from BB were visited, have
200 assigned their dfs number and are linked together to form a tree. */
201
202static void
26e0e410
RH
203calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
204 enum cdi_direction reverse)
f8032688 205{
f8032688
MM
206 /* We call this _only_ if bb is not already visited. */
207 edge e;
208 TBB child_i, my_i = 0;
628f6a4e
BE
209 edge_iterator *stack;
210 edge_iterator ei, einext;
f8032688
MM
211 int sp;
212 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
213 problem). */
214 basic_block en_block;
215 /* Ending block. */
216 basic_block ex_block;
217
628f6a4e 218 stack = xmalloc ((n_basic_blocks + 3) * sizeof (edge_iterator));
f8032688
MM
219 sp = 0;
220
221 /* Initialize our border blocks, and the first edge. */
222 if (reverse)
223 {
628f6a4e 224 ei = ei_start (bb->preds);
f8032688
MM
225 en_block = EXIT_BLOCK_PTR;
226 ex_block = ENTRY_BLOCK_PTR;
227 }
228 else
229 {
628f6a4e 230 ei = ei_start (bb->succs);
f8032688
MM
231 en_block = ENTRY_BLOCK_PTR;
232 ex_block = EXIT_BLOCK_PTR;
233 }
234
235 /* When the stack is empty we break out of this loop. */
236 while (1)
237 {
238 basic_block bn;
239
240 /* This loop traverses edges e in depth first manner, and fills the
241 stack. */
628f6a4e 242 while (!ei_end_p (ei))
f8032688 243 {
628f6a4e 244 e = ei_edge (ei);
f8032688
MM
245
246 /* Deduce from E the current and the next block (BB and BN), and the
247 next edge. */
248 if (reverse)
249 {
250 bn = e->src;
251
252 /* If the next node BN is either already visited or a border
253 block the current edge is useless, and simply overwritten
254 with the next edge out of the current node. */
0b17ab2f 255 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 256 {
628f6a4e 257 ei_next (&ei);
f8032688
MM
258 continue;
259 }
260 bb = e->dest;
628f6a4e 261 einext = ei_start (bn->preds);
f8032688
MM
262 }
263 else
264 {
265 bn = e->dest;
0b17ab2f 266 if (bn == ex_block || di->dfs_order[bn->index])
f8032688 267 {
628f6a4e 268 ei_next (&ei);
f8032688
MM
269 continue;
270 }
271 bb = e->src;
628f6a4e 272 einext = ei_start (bn->succs);
f8032688
MM
273 }
274
ced3f397 275 gcc_assert (bn != en_block);
f8032688
MM
276
277 /* Fill the DFS tree info calculatable _before_ recursing. */
278 if (bb != en_block)
0b17ab2f 279 my_i = di->dfs_order[bb->index];
f8032688 280 else
d55bc081 281 my_i = di->dfs_order[last_basic_block];
0b17ab2f 282 child_i = di->dfs_order[bn->index] = di->dfsnum++;
f8032688
MM
283 di->dfs_to_bb[child_i] = bn;
284 di->dfs_parent[child_i] = my_i;
285
286 /* Save the current point in the CFG on the stack, and recurse. */
628f6a4e
BE
287 stack[sp++] = ei;
288 ei = einext;
f8032688
MM
289 }
290
291 if (!sp)
292 break;
628f6a4e 293 ei = stack[--sp];
f8032688
MM
294
295 /* OK. The edge-list was exhausted, meaning normally we would
296 end the recursion. After returning from the recursive call,
297 there were (may be) other statements which were run after a
298 child node was completely considered by DFS. Here is the
299 point to do it in the non-recursive variant.
300 E.g. The block just completed is in e->dest for forward DFS,
301 the block not yet completed (the parent of the one above)
302 in e->src. This could be used e.g. for computing the number of
303 descendants or the tree depth. */
628f6a4e 304 ei_next (&ei);
f8032688
MM
305 }
306 free (stack);
307}
308
309/* The main entry for calculating the DFS tree or forest. DI is our working
310 structure and REVERSE is true, if we are interested in the reverse flow
311 graph. In that case the result is not necessarily a tree but a forest,
312 because there may be nodes from which the EXIT_BLOCK is unreachable. */
313
314static void
7080f735 315calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
316{
317 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
318 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
d55bc081 319 di->dfs_order[last_basic_block] = di->dfsnum;
f8032688
MM
320 di->dfs_to_bb[di->dfsnum] = begin;
321 di->dfsnum++;
322
323 calc_dfs_tree_nonrec (di, begin, reverse);
324
325 if (reverse)
326 {
327 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
328 They are reverse-unreachable. In the dom-case we disallow such
26e0e410
RH
329 nodes, but in post-dom we have to deal with them.
330
331 There are two situations in which this occurs. First, noreturn
332 functions. Second, infinite loops. In the first case we need to
333 pretend that there is an edge to the exit block. In the second
334 case, we wind up with a forest. We need to process all noreturn
335 blocks before we know if we've got any infinite loops. */
336
e0082a72 337 basic_block b;
26e0e410
RH
338 bool saw_unconnected = false;
339
e0082a72 340 FOR_EACH_BB_REVERSE (b)
f8032688 341 {
628f6a4e 342 if (EDGE_COUNT (b->succs) > 0)
26e0e410
RH
343 {
344 if (di->dfs_order[b->index] == 0)
345 saw_unconnected = true;
346 continue;
347 }
348 bitmap_set_bit (di->fake_exit_edge, b->index);
0b17ab2f 349 di->dfs_order[b->index] = di->dfsnum;
f8032688 350 di->dfs_to_bb[di->dfsnum] = b;
26e0e410 351 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
f8032688
MM
352 di->dfsnum++;
353 calc_dfs_tree_nonrec (di, b, reverse);
354 }
26e0e410
RH
355
356 if (saw_unconnected)
357 {
358 FOR_EACH_BB_REVERSE (b)
359 {
360 if (di->dfs_order[b->index])
361 continue;
362 bitmap_set_bit (di->fake_exit_edge, b->index);
363 di->dfs_order[b->index] = di->dfsnum;
364 di->dfs_to_bb[di->dfsnum] = b;
365 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
366 di->dfsnum++;
367 calc_dfs_tree_nonrec (di, b, reverse);
368 }
369 }
f8032688
MM
370 }
371
372 di->nodes = di->dfsnum - 1;
373
374 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
ced3f397 375 gcc_assert (di->nodes == (unsigned int) n_basic_blocks + 1);
f8032688
MM
376}
377
378/* Compress the path from V to the root of its set and update path_min at the
379 same time. After compress(di, V) set_chain[V] is the root of the set V is
380 in and path_min[V] is the node with the smallest key[] value on the path
381 from V to that root. */
382
383static void
7080f735 384compress (struct dom_info *di, TBB v)
f8032688
MM
385{
386 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
387 greater than 5 even for huge graphs (I've not seen call depth > 4).
388 Also performance wise compress() ranges _far_ behind eval(). */
389 TBB parent = di->set_chain[v];
390 if (di->set_chain[parent])
391 {
392 compress (di, parent);
393 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
394 di->path_min[v] = di->path_min[parent];
395 di->set_chain[v] = di->set_chain[parent];
396 }
397}
398
399/* Compress the path from V to the set root of V if needed (when the root has
400 changed since the last call). Returns the node with the smallest key[]
401 value on the path from V to the root. */
402
403static inline TBB
7080f735 404eval (struct dom_info *di, TBB v)
f8032688
MM
405{
406 /* The representant of the set V is in, also called root (as the set
407 representation is a tree). */
408 TBB rep = di->set_chain[v];
409
410 /* V itself is the root. */
411 if (!rep)
412 return di->path_min[v];
413
414 /* Compress only if necessary. */
415 if (di->set_chain[rep])
416 {
417 compress (di, v);
418 rep = di->set_chain[v];
419 }
420
421 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
422 return di->path_min[v];
423 else
424 return di->path_min[rep];
425}
426
427/* This essentially merges the two sets of V and W, giving a single set with
428 the new root V. The internal representation of these disjoint sets is a
429 balanced tree. Currently link(V,W) is only used with V being the parent
430 of W. */
431
432static void
7080f735 433link_roots (struct dom_info *di, TBB v, TBB w)
f8032688
MM
434{
435 TBB s = w;
436
437 /* Rebalance the tree. */
438 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
439 {
440 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
441 >= 2 * di->set_size[di->set_child[s]])
442 {
443 di->set_chain[di->set_child[s]] = s;
444 di->set_child[s] = di->set_child[di->set_child[s]];
445 }
446 else
447 {
448 di->set_size[di->set_child[s]] = di->set_size[s];
449 s = di->set_chain[s] = di->set_child[s];
450 }
451 }
452
453 di->path_min[s] = di->path_min[w];
454 di->set_size[v] += di->set_size[w];
455 if (di->set_size[v] < 2 * di->set_size[w])
456 {
457 TBB tmp = s;
458 s = di->set_child[v];
459 di->set_child[v] = tmp;
460 }
461
462 /* Merge all subtrees. */
463 while (s)
464 {
465 di->set_chain[s] = v;
466 s = di->set_child[s];
467 }
468}
469
470/* This calculates the immediate dominators (or post-dominators if REVERSE is
471 true). DI is our working structure and should hold the DFS forest.
472 On return the immediate dominator to node V is in di->dom[V]. */
473
474static void
7080f735 475calc_idoms (struct dom_info *di, enum cdi_direction reverse)
f8032688
MM
476{
477 TBB v, w, k, par;
478 basic_block en_block;
628f6a4e
BE
479 edge_iterator ei, einext;
480
f8032688
MM
481 if (reverse)
482 en_block = EXIT_BLOCK_PTR;
483 else
484 en_block = ENTRY_BLOCK_PTR;
485
486 /* Go backwards in DFS order, to first look at the leafs. */
487 v = di->nodes;
488 while (v > 1)
489 {
490 basic_block bb = di->dfs_to_bb[v];
628f6a4e 491 edge e;
f8032688
MM
492
493 par = di->dfs_parent[v];
494 k = v;
628f6a4e
BE
495
496 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
497
f8032688 498 if (reverse)
26e0e410 499 {
26e0e410
RH
500 /* If this block has a fake edge to exit, process that first. */
501 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
502 {
628f6a4e
BE
503 einext = ei;
504 einext.index = 0;
26e0e410
RH
505 goto do_fake_exit_edge;
506 }
507 }
f8032688
MM
508
509 /* Search all direct predecessors for the smallest node with a path
510 to them. That way we have the smallest node with also a path to
511 us only over nodes behind us. In effect we search for our
512 semidominator. */
628f6a4e 513 while (!ei_end_p (ei))
f8032688
MM
514 {
515 TBB k1;
516 basic_block b;
517
628f6a4e
BE
518 e = ei_edge (ei);
519 b = (reverse) ? e->dest : e->src;
520 einext = ei;
521 ei_next (&einext);
522
f8032688 523 if (b == en_block)
26e0e410
RH
524 {
525 do_fake_exit_edge:
526 k1 = di->dfs_order[last_basic_block];
527 }
f8032688 528 else
0b17ab2f 529 k1 = di->dfs_order[b->index];
f8032688
MM
530
531 /* Call eval() only if really needed. If k1 is above V in DFS tree,
532 then we know, that eval(k1) == k1 and key[k1] == k1. */
533 if (k1 > v)
534 k1 = di->key[eval (di, k1)];
535 if (k1 < k)
536 k = k1;
628f6a4e
BE
537
538 ei = einext;
f8032688
MM
539 }
540
541 di->key[v] = k;
542 link_roots (di, par, v);
543 di->next_bucket[v] = di->bucket[k];
544 di->bucket[k] = v;
545
546 /* Transform semidominators into dominators. */
547 for (w = di->bucket[par]; w; w = di->next_bucket[w])
548 {
549 k = eval (di, w);
550 if (di->key[k] < di->key[w])
551 di->dom[w] = k;
552 else
553 di->dom[w] = par;
554 }
555 /* We don't need to cleanup next_bucket[]. */
556 di->bucket[par] = 0;
557 v--;
558 }
559
a1f300c0 560 /* Explicitly define the dominators. */
f8032688
MM
561 di->dom[1] = 0;
562 for (v = 2; v <= di->nodes; v++)
563 if (di->dom[v] != di->key[v])
564 di->dom[v] = di->dom[di->dom[v]];
565}
566
d47cc544
SB
567/* Assign dfs numbers starting from NUM to NODE and its sons. */
568
569static void
570assign_dfs_numbers (struct et_node *node, int *num)
571{
572 struct et_node *son;
573
574 node->dfs_num_in = (*num)++;
575
576 if (node->son)
577 {
578 assign_dfs_numbers (node->son, num);
579 for (son = node->son->right; son != node->son; son = son->right)
6de9cd9a 580 assign_dfs_numbers (son, num);
d47cc544 581 }
f8032688 582
d47cc544
SB
583 node->dfs_num_out = (*num)++;
584}
f8032688 585
5d3cc252 586/* Compute the data necessary for fast resolving of dominator queries in a
d47cc544 587 static dominator tree. */
f8032688 588
d47cc544
SB
589static void
590compute_dom_fast_query (enum cdi_direction dir)
591{
592 int num = 0;
593 basic_block bb;
594
ced3f397 595 gcc_assert (dom_computed[dir] >= DOM_NO_FAST_QUERY);
d47cc544
SB
596
597 if (dom_computed[dir] == DOM_OK)
598 return;
599
600 FOR_ALL_BB (bb)
601 {
602 if (!bb->dom[dir]->father)
6de9cd9a 603 assign_dfs_numbers (bb->dom[dir], &num);
d47cc544
SB
604 }
605
606 dom_computed[dir] = DOM_OK;
607}
608
609/* The main entry point into this module. DIR is set depending on whether
610 we want to compute dominators or postdominators. */
611
612void
613calculate_dominance_info (enum cdi_direction dir)
f8032688
MM
614{
615 struct dom_info di;
355be0dc
JH
616 basic_block b;
617
d47cc544
SB
618 if (dom_computed[dir] == DOM_OK)
619 return;
355be0dc 620
d47cc544
SB
621 if (dom_computed[dir] != DOM_NO_FAST_QUERY)
622 {
623 if (dom_computed[dir] != DOM_NONE)
6de9cd9a
DN
624 free_dominance_info (dir);
625
ced3f397 626 gcc_assert (!n_bbs_in_dom_tree[dir]);
f8032688 627
d47cc544
SB
628 FOR_ALL_BB (b)
629 {
630 b->dom[dir] = et_new_tree (b);
631 }
6de9cd9a 632 n_bbs_in_dom_tree[dir] = n_basic_blocks + 2;
f8032688 633
26e0e410 634 init_dom_info (&di, dir);
d47cc544
SB
635 calc_dfs_tree (&di, dir);
636 calc_idoms (&di, dir);
355be0dc 637
d47cc544
SB
638 FOR_EACH_BB (b)
639 {
640 TBB d = di.dom[di.dfs_order[b->index]];
641
642 if (di.dfs_to_bb[d])
643 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
644 }
e0082a72 645
d47cc544
SB
646 free_dom_info (&di);
647 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
648 }
649
d47cc544 650 compute_dom_fast_query (dir);
355be0dc
JH
651}
652
d47cc544 653/* Free dominance information for direction DIR. */
355be0dc 654void
d47cc544 655free_dominance_info (enum cdi_direction dir)
355be0dc
JH
656{
657 basic_block bb;
658
d47cc544
SB
659 if (!dom_computed[dir])
660 return;
661
662 FOR_ALL_BB (bb)
663 {
664 delete_from_dominance_info (dir, bb);
665 }
666
6de9cd9a 667 /* If there are any nodes left, something is wrong. */
ced3f397 668 gcc_assert (!n_bbs_in_dom_tree[dir]);
6de9cd9a 669
d47cc544 670 dom_computed[dir] = DOM_NONE;
355be0dc
JH
671}
672
673/* Return the immediate dominator of basic block BB. */
674basic_block
d47cc544 675get_immediate_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 676{
d47cc544
SB
677 struct et_node *node = bb->dom[dir];
678
ced3f397 679 gcc_assert (dom_computed[dir]);
d47cc544
SB
680
681 if (!node->father)
682 return NULL;
683
6de9cd9a 684 return node->father->data;
355be0dc
JH
685}
686
687/* Set the immediate dominator of the block possibly removing
688 existing edge. NULL can be used to remove any edge. */
689inline void
d47cc544
SB
690set_immediate_dominator (enum cdi_direction dir, basic_block bb,
691 basic_block dominated_by)
355be0dc 692{
d47cc544
SB
693 struct et_node *node = bb->dom[dir];
694
ced3f397 695 gcc_assert (dom_computed[dir]);
355be0dc 696
d47cc544 697 if (node->father)
355be0dc 698 {
d47cc544 699 if (node->father->data == dominated_by)
6de9cd9a 700 return;
d47cc544 701 et_split (node);
355be0dc 702 }
d47cc544
SB
703
704 if (dominated_by)
705 et_set_father (node, dominated_by->dom[dir]);
706
707 if (dom_computed[dir] == DOM_OK)
708 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
709}
710
5d3cc252 711/* Store all basic blocks immediately dominated by BB into BBS and return
d47cc544 712 their number. */
355be0dc 713int
d47cc544 714get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
355be0dc 715{
d47cc544
SB
716 int n;
717 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718
ced3f397 719 gcc_assert (dom_computed[dir]);
d47cc544
SB
720
721 if (!son)
722 {
723 *bbs = NULL;
724 return 0;
725 }
726
727 for (ason = son->right, n = 1; ason != son; ason = ason->right)
728 n++;
729
730 *bbs = xmalloc (n * sizeof (basic_block));
731 (*bbs)[0] = son->data;
732 for (ason = son->right, n = 1; ason != son; ason = ason->right)
733 (*bbs)[n++] = ason->data;
355be0dc 734
355be0dc
JH
735 return n;
736}
737
42759f1e
ZD
738/* Find all basic blocks that are immediately dominated (in direction DIR)
739 by some block between N_REGION ones stored in REGION, except for blocks
740 in the REGION itself. The found blocks are stored to DOMS and their number
741 is returned. */
742
743unsigned
744get_dominated_by_region (enum cdi_direction dir, basic_block *region,
745 unsigned n_region, basic_block *doms)
746{
747 unsigned n_doms = 0, i;
748 basic_block dom;
749
750 for (i = 0; i < n_region; i++)
751 region[i]->rbi->duplicated = 1;
752 for (i = 0; i < n_region; i++)
753 for (dom = first_dom_son (dir, region[i]);
754 dom;
755 dom = next_dom_son (dir, dom))
756 if (!dom->rbi->duplicated)
757 doms[n_doms++] = dom;
758 for (i = 0; i < n_region; i++)
759 region[i]->rbi->duplicated = 0;
760
761 return n_doms;
762}
763
355be0dc
JH
764/* Redirect all edges pointing to BB to TO. */
765void
d47cc544
SB
766redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
767 basic_block to)
355be0dc 768{
d47cc544
SB
769 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770
ced3f397 771 gcc_assert (dom_computed[dir]);
355be0dc 772
d47cc544
SB
773 if (!bb_node->son)
774 return;
775
776 while (bb_node->son)
355be0dc 777 {
d47cc544
SB
778 son = bb_node->son;
779
780 et_split (son);
781 et_set_father (son, to_node);
355be0dc 782 }
d47cc544
SB
783
784 if (dom_computed[dir] == DOM_OK)
785 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
786}
787
788/* Find first basic block in the tree dominating both BB1 and BB2. */
789basic_block
d47cc544 790nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
355be0dc 791{
ced3f397 792 gcc_assert (dom_computed[dir]);
d47cc544 793
355be0dc
JH
794 if (!bb1)
795 return bb2;
796 if (!bb2)
797 return bb1;
d47cc544
SB
798
799 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
355be0dc
JH
800}
801
802/* Return TRUE in case BB1 is dominated by BB2. */
803bool
d47cc544 804dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
6de9cd9a 805{
d47cc544
SB
806 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
807
ced3f397 808 gcc_assert (dom_computed[dir]);
d47cc544
SB
809
810 if (dom_computed[dir] == DOM_OK)
811 return (n1->dfs_num_in >= n2->dfs_num_in
6de9cd9a 812 && n1->dfs_num_out <= n2->dfs_num_out);
d47cc544
SB
813
814 return et_below (n1, n2);
355be0dc
JH
815}
816
817/* Verify invariants of dominator structure. */
818void
d47cc544 819verify_dominators (enum cdi_direction dir)
355be0dc
JH
820{
821 int err = 0;
822 basic_block bb;
823
ced3f397 824 gcc_assert (dom_computed[dir]);
d47cc544 825
355be0dc
JH
826 FOR_EACH_BB (bb)
827 {
828 basic_block dom_bb;
df485d80 829 basic_block imm_bb;
355be0dc 830
d47cc544 831 dom_bb = recount_dominator (dir, bb);
df485d80
FCE
832 imm_bb = get_immediate_dominator (dir, bb);
833 if (dom_bb != imm_bb)
f8032688 834 {
df485d80
FCE
835 if ((dom_bb == NULL) || (imm_bb == NULL))
836 error ("dominator of %d status unknown", bb->index);
08fb229e
FCE
837 else
838 error ("dominator of %d should be %d, not %d",
df485d80 839 bb->index, dom_bb->index, imm_bb->index);
355be0dc
JH
840 err = 1;
841 }
842 }
e7bd94cc
ZD
843
844 if (dir == CDI_DOMINATORS
845 && dom_computed[dir] >= DOM_NO_FAST_QUERY)
846 {
847 FOR_EACH_BB (bb)
848 {
849 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
850 {
851 error ("ENTRY does not dominate bb %d", bb->index);
852 err = 1;
853 }
854 }
855 }
856
ced3f397 857 gcc_assert (!err);
355be0dc
JH
858}
859
738ed977
ZD
860/* Determine immediate dominator (or postdominator, according to DIR) of BB,
861 assuming that dominators of other blocks are correct. We also use it to
862 recompute the dominators in a restricted area, by iterating it until it
71cc389b 863 reaches a fixed point. */
738ed977 864
355be0dc 865basic_block
d47cc544 866recount_dominator (enum cdi_direction dir, basic_block bb)
355be0dc 867{
738ed977
ZD
868 basic_block dom_bb = NULL;
869 edge e;
628f6a4e 870 edge_iterator ei;
355be0dc 871
ced3f397 872 gcc_assert (dom_computed[dir]);
d47cc544 873
738ed977
ZD
874 if (dir == CDI_DOMINATORS)
875 {
628f6a4e 876 FOR_EACH_EDGE (e, ei, bb->preds)
738ed977 877 {
e7bd94cc
ZD
878 /* Ignore the predecessors that either are not reachable from
879 the entry block, or whose dominator was not determined yet. */
880 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
881 continue;
882
738ed977
ZD
883 if (!dominated_by_p (dir, e->src, bb))
884 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
885 }
886 }
887 else
888 {
628f6a4e 889 FOR_EACH_EDGE (e, ei, bb->succs)
738ed977
ZD
890 {
891 if (!dominated_by_p (dir, e->dest, bb))
892 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
893 }
894 }
f8032688 895
738ed977 896 return dom_bb;
355be0dc
JH
897}
898
899/* Iteratively recount dominators of BBS. The change is supposed to be local
900 and not to grow further. */
901void
d47cc544 902iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
355be0dc
JH
903{
904 int i, changed = 1;
905 basic_block old_dom, new_dom;
906
ced3f397 907 gcc_assert (dom_computed[dir]);
d47cc544 908
e7bd94cc
ZD
909 for (i = 0; i < n; i++)
910 set_immediate_dominator (dir, bbs[i], NULL);
911
355be0dc
JH
912 while (changed)
913 {
914 changed = 0;
915 for (i = 0; i < n; i++)
916 {
d47cc544
SB
917 old_dom = get_immediate_dominator (dir, bbs[i]);
918 new_dom = recount_dominator (dir, bbs[i]);
355be0dc
JH
919 if (old_dom != new_dom)
920 {
921 changed = 1;
d47cc544 922 set_immediate_dominator (dir, bbs[i], new_dom);
355be0dc 923 }
f8032688
MM
924 }
925 }
e7bd94cc
ZD
926
927 for (i = 0; i < n; i++)
ced3f397 928 gcc_assert (get_immediate_dominator (dir, bbs[i]));
355be0dc 929}
f8032688 930
355be0dc 931void
d47cc544 932add_to_dominance_info (enum cdi_direction dir, basic_block bb)
355be0dc 933{
ced3f397
NS
934 gcc_assert (dom_computed[dir]);
935 gcc_assert (!bb->dom[dir]);
d47cc544 936
6de9cd9a
DN
937 n_bbs_in_dom_tree[dir]++;
938
d47cc544
SB
939 bb->dom[dir] = et_new_tree (bb);
940
941 if (dom_computed[dir] == DOM_OK)
942 dom_computed[dir] = DOM_NO_FAST_QUERY;
355be0dc
JH
943}
944
945void
d47cc544
SB
946delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
947{
ced3f397 948 gcc_assert (dom_computed[dir]);
d47cc544
SB
949
950 et_free_tree (bb->dom[dir]);
951 bb->dom[dir] = NULL;
6de9cd9a 952 n_bbs_in_dom_tree[dir]--;
d47cc544
SB
953
954 if (dom_computed[dir] == DOM_OK)
955 dom_computed[dir] = DOM_NO_FAST_QUERY;
956}
957
958/* Returns the first son of BB in the dominator or postdominator tree
959 as determined by DIR. */
960
961basic_block
962first_dom_son (enum cdi_direction dir, basic_block bb)
355be0dc 963{
d47cc544
SB
964 struct et_node *son = bb->dom[dir]->son;
965
966 return son ? son->data : NULL;
967}
968
969/* Returns the next dominance son after BB in the dominator or postdominator
970 tree as determined by DIR, or NULL if it was the last one. */
971
972basic_block
973next_dom_son (enum cdi_direction dir, basic_block bb)
974{
975 struct et_node *next = bb->dom[dir]->right;
976
977 return next->father->son == next ? NULL : next->data;
355be0dc
JH
978}
979
980void
d47cc544 981debug_dominance_info (enum cdi_direction dir)
355be0dc
JH
982{
983 basic_block bb, bb2;
984 FOR_EACH_BB (bb)
d47cc544 985 if ((bb2 = get_immediate_dominator (dir, bb)))
355be0dc 986 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
f8032688 987}
This page took 1.051946 seconds and 5 git commands to generate.