]> gcc.gnu.org Git - gcc.git/blame - gcc/doc/extend.texi
re PR target/52624 (missing __builtin_bswap16)
[gcc.git] / gcc / doc / extend.texi
CommitLineData
8d8da227 1@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
770da00a 2@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
66647d44 3@c Free Software Foundation, Inc.
9a8ce21f 4
c1f7febf
RK
5@c This is part of the GCC manual.
6@c For copying conditions, see the file gcc.texi.
7
8@node C Extensions
9@chapter Extensions to the C Language Family
10@cindex extensions, C language
11@cindex C language extensions
12
84330467 13@opindex pedantic
161d7b59 14GNU C provides several language features not found in ISO standard C@.
f0523f02 15(The @option{-pedantic} option directs GCC to print a warning message if
c1f7febf
RK
16any of these features is used.) To test for the availability of these
17features in conditional compilation, check for a predefined macro
161d7b59 18@code{__GNUC__}, which is always defined under GCC@.
c1f7febf 19
161d7b59 20These extensions are available in C and Objective-C@. Most of them are
c1f7febf
RK
21also available in C++. @xref{C++ Extensions,,Extensions to the
22C++ Language}, for extensions that apply @emph{only} to C++.
23
7e1542b9
MLI
24Some features that are in ISO C99 but not C90 or C++ are also, as
25extensions, accepted by GCC in C90 mode and in C++.
5490d604 26
c1f7febf
RK
27@menu
28* Statement Exprs:: Putting statements and declarations inside expressions.
14e33ee8 29* Local Labels:: Labels local to a block.
c1f7febf
RK
30* Labels as Values:: Getting pointers to labels, and computed gotos.
31* Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
6ccde948 32* Constructing Calls:: Dispatching a call to another function.
c1f7febf 33* Typeof:: @code{typeof}: referring to the type of an expression.
c1f7febf 34* Conditionals:: Omitting the middle operand of a @samp{?:} expression.
6ccde948 35* Long Long:: Double-word integers---@code{long long int}.
a6766312 36* __int128:: 128-bit integers---@code{__int128}.
c1f7febf 37* Complex:: Data types for complex numbers.
c77cd3d1 38* Floating Types:: Additional Floating Types.
0fd8c3ad 39* Half-Precision:: Half-Precision Floating Point.
ff2ce160 40* Decimal Float:: Decimal Floating Types.
6f4d7222 41* Hex Floats:: Hexadecimal floating-point constants.
0f996086 42* Fixed-Point:: Fixed-Point Types.
09e881c9 43* Named Address Spaces::Named address spaces.
c1f7febf
RK
44* Zero Length:: Zero-length arrays.
45* Variable Length:: Arrays whose length is computed at run time.
ba05abd3 46* Empty Structures:: Structures with no members.
6ccde948 47* Variadic Macros:: Macros with a variable number of arguments.
ccd96f0a 48* Escaped Newlines:: Slightly looser rules for escaped newlines.
c1f7febf
RK
49* Subscripting:: Any array can be subscripted, even if not an lvalue.
50* Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
51* Initializers:: Non-constant initializers.
4b404517 52* Compound Literals:: Compound literals give structures, unions
6ccde948
RW
53 or arrays as values.
54* Designated Inits:: Labeling elements of initializers.
c1f7febf 55* Cast to Union:: Casting to union type from any member of the union.
6ccde948
RW
56* Case Ranges:: `case 1 ... 9' and such.
57* Mixed Declarations:: Mixing declarations and code.
c1f7febf 58* Function Attributes:: Declaring that functions have no side effects,
6ccde948 59 or that they can never return.
2c5e91d2 60* Attribute Syntax:: Formal syntax for attributes.
c1f7febf
RK
61* Function Prototypes:: Prototype declarations and old-style definitions.
62* C++ Comments:: C++ comments are recognized.
63* Dollar Signs:: Dollar sign is allowed in identifiers.
64* Character Escapes:: @samp{\e} stands for the character @key{ESC}.
6ccde948
RW
65* Variable Attributes:: Specifying attributes of variables.
66* Type Attributes:: Specifying attributes of types.
c1f7febf
RK
67* Alignment:: Inquiring about the alignment of a type or variable.
68* Inline:: Defining inline functions (as fast as macros).
8f0fe813 69* Volatiles:: What constitutes an access to a volatile object.
c1f7febf 70* Extended Asm:: Assembler instructions with C expressions as operands.
6ccde948 71 (With them you can define ``built-in'' functions.)
c1f7febf
RK
72* Constraints:: Constraints for asm operands
73* Asm Labels:: Specifying the assembler name to use for a C symbol.
74* Explicit Reg Vars:: Defining variables residing in specified registers.
75* Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
76* Incomplete Enums:: @code{enum foo;}, with details to follow.
6ccde948
RW
77* Function Names:: Printable strings which are the name of the current
78 function.
c1f7febf 79* Return Address:: Getting the return or frame address of a function.
1255c85c 80* Vector Extensions:: Using vector instructions through built-in functions.
7a3ea201 81* Offsetof:: Special syntax for implementing @code{offsetof}.
86951993
AM
82* __sync Builtins:: Legacy built-in functions for atomic memory access.
83* __atomic Builtins:: Atomic built-in functions with memory model.
10a0d495
JJ
84* Object Size Checking:: Built-in functions for limited buffer overflow
85 checking.
c5c76735 86* Other Builtins:: Other built-in functions.
0975678f 87* Target Builtins:: Built-in functions specific to particular targets.
a2bec818 88* Target Format Checks:: Format checks specific to particular targets.
0168a849 89* Pragmas:: Pragmas accepted by GCC.
b11cc610 90* Unnamed Fields:: Unnamed struct/union fields within structs/unions.
3d78f2e9 91* Thread-Local:: Per-thread variables.
f7fd775f 92* Binary constants:: Binary constants using the @samp{0b} prefix.
c1f7febf 93@end menu
c1f7febf
RK
94
95@node Statement Exprs
96@section Statements and Declarations in Expressions
97@cindex statements inside expressions
98@cindex declarations inside expressions
99@cindex expressions containing statements
100@cindex macros, statements in expressions
101
102@c the above section title wrapped and causes an underfull hbox.. i
103@c changed it from "within" to "in". --mew 4feb93
c1f7febf 104A compound statement enclosed in parentheses may appear as an expression
161d7b59 105in GNU C@. This allows you to use loops, switches, and local variables
c1f7febf
RK
106within an expression.
107
108Recall that a compound statement is a sequence of statements surrounded
109by braces; in this construct, parentheses go around the braces. For
110example:
111
3ab51846 112@smallexample
c1f7febf
RK
113(@{ int y = foo (); int z;
114 if (y > 0) z = y;
115 else z = - y;
116 z; @})
3ab51846 117@end smallexample
c1f7febf
RK
118
119@noindent
120is a valid (though slightly more complex than necessary) expression
121for the absolute value of @code{foo ()}.
122
123The last thing in the compound statement should be an expression
124followed by a semicolon; the value of this subexpression serves as the
125value of the entire construct. (If you use some other kind of statement
126last within the braces, the construct has type @code{void}, and thus
127effectively no value.)
128
129This feature is especially useful in making macro definitions ``safe'' (so
130that they evaluate each operand exactly once). For example, the
131``maximum'' function is commonly defined as a macro in standard C as
132follows:
133
3ab51846 134@smallexample
c1f7febf 135#define max(a,b) ((a) > (b) ? (a) : (b))
3ab51846 136@end smallexample
c1f7febf
RK
137
138@noindent
139@cindex side effects, macro argument
140But this definition computes either @var{a} or @var{b} twice, with bad
141results if the operand has side effects. In GNU C, if you know the
962e6e00 142type of the operands (here taken as @code{int}), you can define
c1f7febf
RK
143the macro safely as follows:
144
3ab51846 145@smallexample
c1f7febf
RK
146#define maxint(a,b) \
147 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
3ab51846 148@end smallexample
c1f7febf
RK
149
150Embedded statements are not allowed in constant expressions, such as
c771326b 151the value of an enumeration constant, the width of a bit-field, or
c1f7febf
RK
152the initial value of a static variable.
153
154If you don't know the type of the operand, you can still do this, but you
95f79357 155must use @code{typeof} (@pxref{Typeof}).
c1f7febf 156
a5bcc582
NS
157In G++, the result value of a statement expression undergoes array and
158function pointer decay, and is returned by value to the enclosing
8a36672b 159expression. For instance, if @code{A} is a class, then
b98e139b 160
a5bcc582
NS
161@smallexample
162 A a;
b98e139b 163
a5bcc582
NS
164 (@{a;@}).Foo ()
165@end smallexample
b98e139b
MM
166
167@noindent
a5bcc582
NS
168will construct a temporary @code{A} object to hold the result of the
169statement expression, and that will be used to invoke @code{Foo}.
170Therefore the @code{this} pointer observed by @code{Foo} will not be the
171address of @code{a}.
172
173Any temporaries created within a statement within a statement expression
174will be destroyed at the statement's end. This makes statement
175expressions inside macros slightly different from function calls. In
176the latter case temporaries introduced during argument evaluation will
177be destroyed at the end of the statement that includes the function
178call. In the statement expression case they will be destroyed during
179the statement expression. For instance,
b98e139b 180
a5bcc582
NS
181@smallexample
182#define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
183template<typename T> T function(T a) @{ T b = a; return b + 3; @}
184
185void foo ()
186@{
187 macro (X ());
188 function (X ());
189@}
190@end smallexample
b98e139b
MM
191
192@noindent
a5bcc582
NS
193will have different places where temporaries are destroyed. For the
194@code{macro} case, the temporary @code{X} will be destroyed just after
195the initialization of @code{b}. In the @code{function} case that
196temporary will be destroyed when the function returns.
b98e139b
MM
197
198These considerations mean that it is probably a bad idea to use
199statement-expressions of this form in header files that are designed to
54e1d3a6
MM
200work with C++. (Note that some versions of the GNU C Library contained
201header files using statement-expression that lead to precisely this
202bug.)
b98e139b 203
16ef3acc
JM
204Jumping into a statement expression with @code{goto} or using a
205@code{switch} statement outside the statement expression with a
206@code{case} or @code{default} label inside the statement expression is
207not permitted. Jumping into a statement expression with a computed
208@code{goto} (@pxref{Labels as Values}) yields undefined behavior.
209Jumping out of a statement expression is permitted, but if the
210statement expression is part of a larger expression then it is
211unspecified which other subexpressions of that expression have been
212evaluated except where the language definition requires certain
213subexpressions to be evaluated before or after the statement
214expression. In any case, as with a function call the evaluation of a
215statement expression is not interleaved with the evaluation of other
216parts of the containing expression. For example,
217
218@smallexample
219 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
220@end smallexample
221
222@noindent
223will call @code{foo} and @code{bar1} and will not call @code{baz} but
224may or may not call @code{bar2}. If @code{bar2} is called, it will be
225called after @code{foo} and before @code{bar1}
226
c1f7febf
RK
227@node Local Labels
228@section Locally Declared Labels
229@cindex local labels
230@cindex macros, local labels
231
14e33ee8 232GCC allows you to declare @dfn{local labels} in any nested block
8a36672b 233scope. A local label is just like an ordinary label, but you can
14e33ee8 234only reference it (with a @code{goto} statement, or by taking its
daf2f129 235address) within the block in which it was declared.
c1f7febf
RK
236
237A local label declaration looks like this:
238
3ab51846 239@smallexample
c1f7febf 240__label__ @var{label};
3ab51846 241@end smallexample
c1f7febf
RK
242
243@noindent
244or
245
3ab51846 246@smallexample
0d893a63 247__label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
3ab51846 248@end smallexample
c1f7febf 249
14e33ee8
ZW
250Local label declarations must come at the beginning of the block,
251before any ordinary declarations or statements.
c1f7febf
RK
252
253The label declaration defines the label @emph{name}, but does not define
254the label itself. You must do this in the usual way, with
255@code{@var{label}:}, within the statements of the statement expression.
256
14e33ee8
ZW
257The local label feature is useful for complex macros. If a macro
258contains nested loops, a @code{goto} can be useful for breaking out of
259them. However, an ordinary label whose scope is the whole function
260cannot be used: if the macro can be expanded several times in one
261function, the label will be multiply defined in that function. A
262local label avoids this problem. For example:
263
3ab51846 264@smallexample
14e33ee8
ZW
265#define SEARCH(value, array, target) \
266do @{ \
267 __label__ found; \
268 typeof (target) _SEARCH_target = (target); \
269 typeof (*(array)) *_SEARCH_array = (array); \
270 int i, j; \
271 int value; \
272 for (i = 0; i < max; i++) \
273 for (j = 0; j < max; j++) \
274 if (_SEARCH_array[i][j] == _SEARCH_target) \
275 @{ (value) = i; goto found; @} \
276 (value) = -1; \
277 found:; \
278@} while (0)
3ab51846 279@end smallexample
14e33ee8
ZW
280
281This could also be written using a statement-expression:
c1f7febf 282
3ab51846 283@smallexample
c1f7febf 284#define SEARCH(array, target) \
310668e8 285(@{ \
c1f7febf
RK
286 __label__ found; \
287 typeof (target) _SEARCH_target = (target); \
288 typeof (*(array)) *_SEARCH_array = (array); \
289 int i, j; \
290 int value; \
291 for (i = 0; i < max; i++) \
292 for (j = 0; j < max; j++) \
293 if (_SEARCH_array[i][j] == _SEARCH_target) \
310668e8 294 @{ value = i; goto found; @} \
c1f7febf
RK
295 value = -1; \
296 found: \
297 value; \
298@})
3ab51846 299@end smallexample
c1f7febf 300
14e33ee8
ZW
301Local label declarations also make the labels they declare visible to
302nested functions, if there are any. @xref{Nested Functions}, for details.
303
c1f7febf
RK
304@node Labels as Values
305@section Labels as Values
306@cindex labels as values
307@cindex computed gotos
308@cindex goto with computed label
309@cindex address of a label
310
311You can get the address of a label defined in the current function
312(or a containing function) with the unary operator @samp{&&}. The
313value has type @code{void *}. This value is a constant and can be used
314wherever a constant of that type is valid. For example:
315
3ab51846 316@smallexample
c1f7febf 317void *ptr;
0d893a63 318/* @r{@dots{}} */
c1f7febf 319ptr = &&foo;
3ab51846 320@end smallexample
c1f7febf
RK
321
322To use these values, you need to be able to jump to one. This is done
323with the computed goto statement@footnote{The analogous feature in
324Fortran is called an assigned goto, but that name seems inappropriate in
325C, where one can do more than simply store label addresses in label
326variables.}, @code{goto *@var{exp};}. For example,
327
3ab51846 328@smallexample
c1f7febf 329goto *ptr;
3ab51846 330@end smallexample
c1f7febf
RK
331
332@noindent
333Any expression of type @code{void *} is allowed.
334
335One way of using these constants is in initializing a static array that
336will serve as a jump table:
337
3ab51846 338@smallexample
c1f7febf 339static void *array[] = @{ &&foo, &&bar, &&hack @};
3ab51846 340@end smallexample
c1f7febf
RK
341
342Then you can select a label with indexing, like this:
343
3ab51846 344@smallexample
c1f7febf 345goto *array[i];
3ab51846 346@end smallexample
c1f7febf
RK
347
348@noindent
349Note that this does not check whether the subscript is in bounds---array
350indexing in C never does that.
351
352Such an array of label values serves a purpose much like that of the
353@code{switch} statement. The @code{switch} statement is cleaner, so
354use that rather than an array unless the problem does not fit a
355@code{switch} statement very well.
356
357Another use of label values is in an interpreter for threaded code.
358The labels within the interpreter function can be stored in the
359threaded code for super-fast dispatching.
360
02f52e19 361You may not use this mechanism to jump to code in a different function.
47620e09 362If you do that, totally unpredictable things will happen. The best way to
c1f7febf
RK
363avoid this is to store the label address only in automatic variables and
364never pass it as an argument.
365
47620e09
RH
366An alternate way to write the above example is
367
3ab51846 368@smallexample
310668e8
JM
369static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
370 &&hack - &&foo @};
47620e09 371goto *(&&foo + array[i]);
3ab51846 372@end smallexample
47620e09
RH
373
374@noindent
375This is more friendly to code living in shared libraries, as it reduces
376the number of dynamic relocations that are needed, and by consequence,
377allows the data to be read-only.
378
86631ea3
MJ
379The @code{&&foo} expressions for the same label might have different
380values if the containing function is inlined or cloned. If a program
381relies on them being always the same,
382@code{__attribute__((__noinline__,__noclone__))} should be used to
383prevent inlining and cloning. If @code{&&foo} is used in a static
384variable initializer, inlining and cloning is forbidden.
2092ee7d 385
c1f7febf
RK
386@node Nested Functions
387@section Nested Functions
388@cindex nested functions
389@cindex downward funargs
390@cindex thunks
391
392A @dfn{nested function} is a function defined inside another function.
393(Nested functions are not supported for GNU C++.) The nested function's
394name is local to the block where it is defined. For example, here we
395define a nested function named @code{square}, and call it twice:
396
3ab51846 397@smallexample
c1f7febf
RK
398@group
399foo (double a, double b)
400@{
401 double square (double z) @{ return z * z; @}
402
403 return square (a) + square (b);
404@}
405@end group
3ab51846 406@end smallexample
c1f7febf
RK
407
408The nested function can access all the variables of the containing
409function that are visible at the point of its definition. This is
410called @dfn{lexical scoping}. For example, here we show a nested
411function which uses an inherited variable named @code{offset}:
412
3ab51846 413@smallexample
aee96fe9 414@group
c1f7febf
RK
415bar (int *array, int offset, int size)
416@{
417 int access (int *array, int index)
418 @{ return array[index + offset]; @}
419 int i;
0d893a63 420 /* @r{@dots{}} */
c1f7febf 421 for (i = 0; i < size; i++)
0d893a63 422 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
c1f7febf 423@}
aee96fe9 424@end group
3ab51846 425@end smallexample
c1f7febf
RK
426
427Nested function definitions are permitted within functions in the places
475b6e22
JM
428where variable definitions are allowed; that is, in any block, mixed
429with the other declarations and statements in the block.
c1f7febf
RK
430
431It is possible to call the nested function from outside the scope of its
432name by storing its address or passing the address to another function:
433
3ab51846 434@smallexample
c1f7febf
RK
435hack (int *array, int size)
436@{
437 void store (int index, int value)
438 @{ array[index] = value; @}
439
440 intermediate (store, size);
441@}
3ab51846 442@end smallexample
c1f7febf
RK
443
444Here, the function @code{intermediate} receives the address of
445@code{store} as an argument. If @code{intermediate} calls @code{store},
446the arguments given to @code{store} are used to store into @code{array}.
447But this technique works only so long as the containing function
448(@code{hack}, in this example) does not exit.
449
450If you try to call the nested function through its address after the
451containing function has exited, all hell will break loose. If you try
452to call it after a containing scope level has exited, and if it refers
453to some of the variables that are no longer in scope, you may be lucky,
454but it's not wise to take the risk. If, however, the nested function
455does not refer to anything that has gone out of scope, you should be
456safe.
457
9c34dbbf 458GCC implements taking the address of a nested function using a technique
ff2ce160 459called @dfn{trampolines}. This technique was described in
63a26b78
SL
460@cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
461C++ Conference Proceedings, October 17-21, 1988).
c1f7febf
RK
462
463A nested function can jump to a label inherited from a containing
464function, provided the label was explicitly declared in the containing
465function (@pxref{Local Labels}). Such a jump returns instantly to the
466containing function, exiting the nested function which did the
467@code{goto} and any intermediate functions as well. Here is an example:
468
3ab51846 469@smallexample
c1f7febf
RK
470@group
471bar (int *array, int offset, int size)
472@{
473 __label__ failure;
474 int access (int *array, int index)
475 @{
476 if (index > size)
477 goto failure;
478 return array[index + offset];
479 @}
480 int i;
0d893a63 481 /* @r{@dots{}} */
c1f7febf 482 for (i = 0; i < size; i++)
0d893a63
MK
483 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
484 /* @r{@dots{}} */
c1f7febf
RK
485 return 0;
486
487 /* @r{Control comes here from @code{access}
488 if it detects an error.} */
489 failure:
490 return -1;
491@}
492@end group
3ab51846 493@end smallexample
c1f7febf 494
28697267
DJ
495A nested function always has no linkage. Declaring one with
496@code{extern} or @code{static} is erroneous. If you need to declare the nested function
c1f7febf
RK
497before its definition, use @code{auto} (which is otherwise meaningless
498for function declarations).
499
3ab51846 500@smallexample
c1f7febf
RK
501bar (int *array, int offset, int size)
502@{
503 __label__ failure;
504 auto int access (int *, int);
0d893a63 505 /* @r{@dots{}} */
c1f7febf
RK
506 int access (int *array, int index)
507 @{
508 if (index > size)
509 goto failure;
510 return array[index + offset];
511 @}
0d893a63 512 /* @r{@dots{}} */
c1f7febf 513@}
3ab51846 514@end smallexample
c1f7febf
RK
515
516@node Constructing Calls
517@section Constructing Function Calls
518@cindex constructing calls
519@cindex forwarding calls
520
521Using the built-in functions described below, you can record
522the arguments a function received, and call another function
523with the same arguments, without knowing the number or types
524of the arguments.
525
526You can also record the return value of that function call,
527and later return that value, without knowing what data type
528the function tried to return (as long as your caller expects
529that data type).
530
6429bc7c
EB
531However, these built-in functions may interact badly with some
532sophisticated features or other extensions of the language. It
533is, therefore, not recommended to use them outside very simple
534functions acting as mere forwarders for their arguments.
535
84330467
JM
536@deftypefn {Built-in Function} {void *} __builtin_apply_args ()
537This built-in function returns a pointer to data
c1f7febf
RK
538describing how to perform a call with the same arguments as were passed
539to the current function.
540
541The function saves the arg pointer register, structure value address,
542and all registers that might be used to pass arguments to a function
543into a block of memory allocated on the stack. Then it returns the
544address of that block.
84330467 545@end deftypefn
c1f7febf 546
84330467
JM
547@deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
548This built-in function invokes @var{function}
549with a copy of the parameters described by @var{arguments}
550and @var{size}.
c1f7febf
RK
551
552The value of @var{arguments} should be the value returned by
553@code{__builtin_apply_args}. The argument @var{size} specifies the size
554of the stack argument data, in bytes.
555
84330467 556This function returns a pointer to data describing
c1f7febf
RK
557how to return whatever value was returned by @var{function}. The data
558is saved in a block of memory allocated on the stack.
559
560It is not always simple to compute the proper value for @var{size}. The
561value is used by @code{__builtin_apply} to compute the amount of data
562that should be pushed on the stack and copied from the incoming argument
563area.
84330467 564@end deftypefn
c1f7febf 565
84330467 566@deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
c1f7febf
RK
567This built-in function returns the value described by @var{result} from
568the containing function. You should specify, for @var{result}, a value
569returned by @code{__builtin_apply}.
84330467 570@end deftypefn
c1f7febf 571
ab940b73 572@deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
6ef5231b
JJ
573This built-in function represents all anonymous arguments of an inline
574function. It can be used only in inline functions which will be always
575inlined, never compiled as a separate function, such as those using
576@code{__attribute__ ((__always_inline__))} or
577@code{__attribute__ ((__gnu_inline__))} extern inline functions.
578It must be only passed as last argument to some other function
579with variable arguments. This is useful for writing small wrapper
580inlines for variable argument functions, when using preprocessor
581macros is undesirable. For example:
582@smallexample
583extern int myprintf (FILE *f, const char *format, ...);
584extern inline __attribute__ ((__gnu_inline__)) int
585myprintf (FILE *f, const char *format, ...)
586@{
587 int r = fprintf (f, "myprintf: ");
588 if (r < 0)
589 return r;
590 int s = fprintf (f, format, __builtin_va_arg_pack ());
591 if (s < 0)
592 return s;
593 return r + s;
594@}
595@end smallexample
596@end deftypefn
597
ab940b73 598@deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
ab0e176c
JJ
599This built-in function returns the number of anonymous arguments of
600an inline function. It can be used only in inline functions which
601will be always inlined, never compiled as a separate function, such
602as those using @code{__attribute__ ((__always_inline__))} or
603@code{__attribute__ ((__gnu_inline__))} extern inline functions.
604For example following will do link or runtime checking of open
605arguments for optimized code:
606@smallexample
607#ifdef __OPTIMIZE__
608extern inline __attribute__((__gnu_inline__)) int
609myopen (const char *path, int oflag, ...)
610@{
611 if (__builtin_va_arg_pack_len () > 1)
612 warn_open_too_many_arguments ();
613
614 if (__builtin_constant_p (oflag))
615 @{
616 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
617 @{
618 warn_open_missing_mode ();
619 return __open_2 (path, oflag);
620 @}
621 return open (path, oflag, __builtin_va_arg_pack ());
622 @}
ff2ce160 623
ab0e176c
JJ
624 if (__builtin_va_arg_pack_len () < 1)
625 return __open_2 (path, oflag);
626
627 return open (path, oflag, __builtin_va_arg_pack ());
628@}
629#endif
630@end smallexample
631@end deftypefn
632
c1f7febf
RK
633@node Typeof
634@section Referring to a Type with @code{typeof}
635@findex typeof
636@findex sizeof
637@cindex macros, types of arguments
638
639Another way to refer to the type of an expression is with @code{typeof}.
640The syntax of using of this keyword looks like @code{sizeof}, but the
641construct acts semantically like a type name defined with @code{typedef}.
642
643There are two ways of writing the argument to @code{typeof}: with an
644expression or with a type. Here is an example with an expression:
645
3ab51846 646@smallexample
c1f7febf 647typeof (x[0](1))
3ab51846 648@end smallexample
c1f7febf
RK
649
650@noindent
89aed483
JM
651This assumes that @code{x} is an array of pointers to functions;
652the type described is that of the values of the functions.
c1f7febf
RK
653
654Here is an example with a typename as the argument:
655
3ab51846 656@smallexample
c1f7febf 657typeof (int *)
3ab51846 658@end smallexample
c1f7febf
RK
659
660@noindent
661Here the type described is that of pointers to @code{int}.
662
5490d604 663If you are writing a header file that must work when included in ISO C
c1f7febf
RK
664programs, write @code{__typeof__} instead of @code{typeof}.
665@xref{Alternate Keywords}.
666
667A @code{typeof}-construct can be used anywhere a typedef name could be
668used. For example, you can use it in a declaration, in a cast, or inside
669of @code{sizeof} or @code{typeof}.
670
928c19bb
JM
671The operand of @code{typeof} is evaluated for its side effects if and
672only if it is an expression of variably modified type or the name of
673such a type.
674
95f79357
ZW
675@code{typeof} is often useful in conjunction with the
676statements-within-expressions feature. Here is how the two together can
677be used to define a safe ``maximum'' macro that operates on any
678arithmetic type and evaluates each of its arguments exactly once:
679
3ab51846 680@smallexample
95f79357
ZW
681#define max(a,b) \
682 (@{ typeof (a) _a = (a); \
683 typeof (b) _b = (b); \
684 _a > _b ? _a : _b; @})
3ab51846 685@end smallexample
95f79357 686
526278c9
VR
687@cindex underscores in variables in macros
688@cindex @samp{_} in variables in macros
689@cindex local variables in macros
690@cindex variables, local, in macros
691@cindex macros, local variables in
692
693The reason for using names that start with underscores for the local
694variables is to avoid conflicts with variable names that occur within the
695expressions that are substituted for @code{a} and @code{b}. Eventually we
696hope to design a new form of declaration syntax that allows you to declare
697variables whose scopes start only after their initializers; this will be a
698more reliable way to prevent such conflicts.
699
95f79357
ZW
700@noindent
701Some more examples of the use of @code{typeof}:
702
c1f7febf
RK
703@itemize @bullet
704@item
705This declares @code{y} with the type of what @code{x} points to.
706
3ab51846 707@smallexample
c1f7febf 708typeof (*x) y;
3ab51846 709@end smallexample
c1f7febf
RK
710
711@item
712This declares @code{y} as an array of such values.
713
3ab51846 714@smallexample
c1f7febf 715typeof (*x) y[4];
3ab51846 716@end smallexample
c1f7febf
RK
717
718@item
719This declares @code{y} as an array of pointers to characters:
720
3ab51846 721@smallexample
c1f7febf 722typeof (typeof (char *)[4]) y;
3ab51846 723@end smallexample
c1f7febf
RK
724
725@noindent
726It is equivalent to the following traditional C declaration:
727
3ab51846 728@smallexample
c1f7febf 729char *y[4];
3ab51846 730@end smallexample
c1f7febf
RK
731
732To see the meaning of the declaration using @code{typeof}, and why it
962e6e00 733might be a useful way to write, rewrite it with these macros:
c1f7febf 734
3ab51846 735@smallexample
c1f7febf
RK
736#define pointer(T) typeof(T *)
737#define array(T, N) typeof(T [N])
3ab51846 738@end smallexample
c1f7febf
RK
739
740@noindent
741Now the declaration can be rewritten this way:
742
3ab51846 743@smallexample
c1f7febf 744array (pointer (char), 4) y;
3ab51846 745@end smallexample
c1f7febf
RK
746
747@noindent
748Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
749pointers to @code{char}.
750@end itemize
751
95f79357
ZW
752@emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
753a more limited extension which permitted one to write
754
3ab51846 755@smallexample
95f79357 756typedef @var{T} = @var{expr};
3ab51846 757@end smallexample
95f79357
ZW
758
759@noindent
760with the effect of declaring @var{T} to have the type of the expression
761@var{expr}. This extension does not work with GCC 3 (versions between
7623.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
763relies on it should be rewritten to use @code{typeof}:
764
3ab51846 765@smallexample
95f79357 766typedef typeof(@var{expr}) @var{T};
3ab51846 767@end smallexample
95f79357
ZW
768
769@noindent
770This will work with all versions of GCC@.
771
c1f7febf
RK
772@node Conditionals
773@section Conditionals with Omitted Operands
774@cindex conditional expressions, extensions
775@cindex omitted middle-operands
776@cindex middle-operands, omitted
777@cindex extensions, @code{?:}
778@cindex @code{?:} extensions
779
780The middle operand in a conditional expression may be omitted. Then
781if the first operand is nonzero, its value is the value of the conditional
782expression.
783
784Therefore, the expression
785
3ab51846 786@smallexample
c1f7febf 787x ? : y
3ab51846 788@end smallexample
c1f7febf
RK
789
790@noindent
791has the value of @code{x} if that is nonzero; otherwise, the value of
792@code{y}.
793
794This example is perfectly equivalent to
795
3ab51846 796@smallexample
c1f7febf 797x ? x : y
3ab51846 798@end smallexample
c1f7febf 799
ab940b73
RW
800@cindex side effect in @code{?:}
801@cindex @code{?:} side effect
c1f7febf
RK
802@noindent
803In this simple case, the ability to omit the middle operand is not
804especially useful. When it becomes useful is when the first operand does,
805or may (if it is a macro argument), contain a side effect. Then repeating
806the operand in the middle would perform the side effect twice. Omitting
807the middle operand uses the value already computed without the undesirable
808effects of recomputing it.
809
a6766312
KT
810@node __int128
811@section 128-bits integers
812@cindex @code{__int128} data types
813
814As an extension the integer scalar type @code{__int128} is supported for
815targets having an integer mode wide enough to hold 128-bit.
816Simply write @code{__int128} for a signed 128-bit integer, or
817@code{unsigned __int128} for an unsigned 128-bit integer. There is no
818support in GCC to express an integer constant of type @code{__int128}
819for targets having @code{long long} integer with less then 128 bit width.
820
c1f7febf
RK
821@node Long Long
822@section Double-Word Integers
823@cindex @code{long long} data types
824@cindex double-word arithmetic
825@cindex multiprecision arithmetic
4b404517
JM
826@cindex @code{LL} integer suffix
827@cindex @code{ULL} integer suffix
c1f7febf 828
4b404517 829ISO C99 supports data types for integers that are at least 64 bits wide,
7e1542b9 830and as an extension GCC supports them in C90 mode and in C++.
4b404517 831Simply write @code{long long int} for a signed integer, or
c1f7febf 832@code{unsigned long long int} for an unsigned integer. To make an
84330467 833integer constant of type @code{long long int}, add the suffix @samp{LL}
c1f7febf 834to the integer. To make an integer constant of type @code{unsigned long
84330467 835long int}, add the suffix @samp{ULL} to the integer.
c1f7febf
RK
836
837You can use these types in arithmetic like any other integer types.
838Addition, subtraction, and bitwise boolean operations on these types
839are open-coded on all types of machines. Multiplication is open-coded
840if the machine supports fullword-to-doubleword a widening multiply
841instruction. Division and shifts are open-coded only on machines that
842provide special support. The operations that are not open-coded use
161d7b59 843special library routines that come with GCC@.
c1f7febf
RK
844
845There may be pitfalls when you use @code{long long} types for function
846arguments, unless you declare function prototypes. If a function
847expects type @code{int} for its argument, and you pass a value of type
848@code{long long int}, confusion will result because the caller and the
849subroutine will disagree about the number of bytes for the argument.
850Likewise, if the function expects @code{long long int} and you pass
851@code{int}. The best way to avoid such problems is to use prototypes.
852
853@node Complex
854@section Complex Numbers
855@cindex complex numbers
4b404517
JM
856@cindex @code{_Complex} keyword
857@cindex @code{__complex__} keyword
c1f7febf 858
4b404517 859ISO C99 supports complex floating data types, and as an extension GCC
7e1542b9 860supports them in C90 mode and in C++, and supports complex integer data
4b404517
JM
861types which are not part of ISO C99. You can declare complex types
862using the keyword @code{_Complex}. As an extension, the older GNU
863keyword @code{__complex__} is also supported.
c1f7febf 864
4b404517 865For example, @samp{_Complex double x;} declares @code{x} as a
c1f7febf 866variable whose real part and imaginary part are both of type
4b404517 867@code{double}. @samp{_Complex short int y;} declares @code{y} to
c1f7febf
RK
868have real and imaginary parts of type @code{short int}; this is not
869likely to be useful, but it shows that the set of complex types is
870complete.
871
872To write a constant with a complex data type, use the suffix @samp{i} or
873@samp{j} (either one; they are equivalent). For example, @code{2.5fi}
4b404517
JM
874has type @code{_Complex float} and @code{3i} has type
875@code{_Complex int}. Such a constant always has a pure imaginary
c1f7febf 876value, but you can form any complex value you like by adding one to a
4b404517
JM
877real constant. This is a GNU extension; if you have an ISO C99
878conforming C library (such as GNU libc), and want to construct complex
879constants of floating type, you should include @code{<complex.h>} and
880use the macros @code{I} or @code{_Complex_I} instead.
c1f7febf 881
4b404517
JM
882@cindex @code{__real__} keyword
883@cindex @code{__imag__} keyword
c1f7febf
RK
884To extract the real part of a complex-valued expression @var{exp}, write
885@code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
4b404517
JM
886extract the imaginary part. This is a GNU extension; for values of
887floating type, you should use the ISO C99 functions @code{crealf},
888@code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
889@code{cimagl}, declared in @code{<complex.h>} and also provided as
161d7b59 890built-in functions by GCC@.
c1f7febf 891
4b404517 892@cindex complex conjugation
c1f7febf 893The operator @samp{~} performs complex conjugation when used on a value
4b404517
JM
894with a complex type. This is a GNU extension; for values of
895floating type, you should use the ISO C99 functions @code{conjf},
896@code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
161d7b59 897provided as built-in functions by GCC@.
c1f7febf 898
f0523f02 899GCC can allocate complex automatic variables in a noncontiguous
c1f7febf 900fashion; it's even possible for the real part to be in a register while
580fb356
JW
901the imaginary part is on the stack (or vice-versa). Only the DWARF2
902debug info format can represent this, so use of DWARF2 is recommended.
903If you are using the stabs debug info format, GCC describes a noncontiguous
904complex variable as if it were two separate variables of noncomplex type.
c1f7febf
RK
905If the variable's actual name is @code{foo}, the two fictitious
906variables are named @code{foo$real} and @code{foo$imag}. You can
907examine and set these two fictitious variables with your debugger.
908
c77cd3d1
UB
909@node Floating Types
910@section Additional Floating Types
911@cindex additional floating types
912@cindex @code{__float80} data type
913@cindex @code{__float128} data type
914@cindex @code{w} floating point suffix
915@cindex @code{q} floating point suffix
916@cindex @code{W} floating point suffix
917@cindex @code{Q} floating point suffix
918
919As an extension, the GNU C compiler supports additional floating
920types, @code{__float80} and @code{__float128} to support 80bit
921(@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
922Support for additional types includes the arithmetic operators:
923add, subtract, multiply, divide; unary arithmetic operators;
924relational operators; equality operators; and conversions to and from
925integer and other floating types. Use a suffix @samp{w} or @samp{W}
926in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
927for @code{_float128}. You can declare complex types using the
928corresponding internal complex type, @code{XCmode} for @code{__float80}
929type and @code{TCmode} for @code{__float128} type:
930
931@smallexample
932typedef _Complex float __attribute__((mode(TC))) _Complex128;
933typedef _Complex float __attribute__((mode(XC))) _Complex80;
934@end smallexample
935
936Not all targets support additional floating point types. @code{__float80}
897eef7b 937and @code{__float128} types are supported on i386, x86_64 and ia64 targets.
41a1208a 938The @code{__float128} type is supported on hppa HP-UX targets.
c77cd3d1 939
0fd8c3ad
SL
940@node Half-Precision
941@section Half-Precision Floating Point
942@cindex half-precision floating point
943@cindex @code{__fp16} data type
944
945On ARM targets, GCC supports half-precision (16-bit) floating point via
ff2ce160 946the @code{__fp16} type. You must enable this type explicitly
0fd8c3ad
SL
947with the @option{-mfp16-format} command-line option in order to use it.
948
949ARM supports two incompatible representations for half-precision
950floating-point values. You must choose one of the representations and
951use it consistently in your program.
952
953Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
954This format can represent normalized values in the range of @math{2^{-14}} to 65504.
955There are 11 bits of significand precision, approximately 3
956decimal digits.
957
958Specifying @option{-mfp16-format=alternative} selects the ARM
959alternative format. This representation is similar to the IEEE
960format, but does not support infinities or NaNs. Instead, the range
961of exponents is extended, so that this format can represent normalized
962values in the range of @math{2^{-14}} to 131008.
963
964The @code{__fp16} type is a storage format only. For purposes
965of arithmetic and other operations, @code{__fp16} values in C or C++
966expressions are automatically promoted to @code{float}. In addition,
ff2ce160 967you cannot declare a function with a return value or parameters
0fd8c3ad
SL
968of type @code{__fp16}.
969
970Note that conversions from @code{double} to @code{__fp16}
971involve an intermediate conversion to @code{float}. Because
972of rounding, this can sometimes produce a different result than a
973direct conversion.
974
ff2ce160 975ARM provides hardware support for conversions between
0fd8c3ad
SL
976@code{__fp16} and @code{float} values
977as an extension to VFP and NEON (Advanced SIMD). GCC generates
e0dc3601 978code using these hardware instructions if you compile with
ff2ce160 979options to select an FPU that provides them;
e0dc3601 980for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
0fd8c3ad 981in addition to the @option{-mfp16-format} option to select
ff2ce160 982a half-precision format.
0fd8c3ad
SL
983
984Language-level support for the @code{__fp16} data type is
985independent of whether GCC generates code using hardware floating-point
986instructions. In cases where hardware support is not specified, GCC
987implements conversions between @code{__fp16} and @code{float} values
988as library calls.
989
9a8ce21f 990@node Decimal Float
85a92f7e
JJ
991@section Decimal Floating Types
992@cindex decimal floating types
9a8ce21f
JG
993@cindex @code{_Decimal32} data type
994@cindex @code{_Decimal64} data type
995@cindex @code{_Decimal128} data type
996@cindex @code{df} integer suffix
997@cindex @code{dd} integer suffix
998@cindex @code{dl} integer suffix
999@cindex @code{DF} integer suffix
1000@cindex @code{DD} integer suffix
1001@cindex @code{DL} integer suffix
1002
85a92f7e 1003As an extension, the GNU C compiler supports decimal floating types as
853eda8d 1004defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
85a92f7e
JJ
1005floating types in GCC will evolve as the draft technical report changes.
1006Calling conventions for any target might also change. Not all targets
1007support decimal floating types.
9a8ce21f 1008
85a92f7e
JJ
1009The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1010@code{_Decimal128}. They use a radix of ten, unlike the floating types
1011@code{float}, @code{double}, and @code{long double} whose radix is not
1012specified by the C standard but is usually two.
1013
1014Support for decimal floating types includes the arithmetic operators
9a8ce21f
JG
1015add, subtract, multiply, divide; unary arithmetic operators;
1016relational operators; equality operators; and conversions to and from
85a92f7e 1017integer and other floating types. Use a suffix @samp{df} or
9a8ce21f
JG
1018@samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1019or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1020@code{_Decimal128}.
1021
85a92f7e
JJ
1022GCC support of decimal float as specified by the draft technical report
1023is incomplete:
1024
1025@itemize @bullet
85a92f7e
JJ
1026@item
1027When the value of a decimal floating type cannot be represented in the
1028integer type to which it is being converted, the result is undefined
1029rather than the result value specified by the draft technical report.
853eda8d
JJ
1030
1031@item
1032GCC does not provide the C library functionality associated with
1033@file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1034@file{wchar.h}, which must come from a separate C library implementation.
1035Because of this the GNU C compiler does not define macro
1036@code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1037the technical report.
85a92f7e 1038@end itemize
9a8ce21f
JG
1039
1040Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1041are supported by the DWARF2 debug information format.
1042
6f4d7222 1043@node Hex Floats
6b42b9ea
UD
1044@section Hex Floats
1045@cindex hex floats
c5c76735 1046
4b404517 1047ISO C99 supports floating-point numbers written not only in the usual
6f4d7222 1048decimal notation, such as @code{1.55e1}, but also numbers such as
4b404517 1049@code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
7e1542b9 1050supports this in C90 mode (except in some cases when strictly
4b404517 1051conforming) and in C++. In that format the
84330467 1052@samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
6f4d7222 1053mandatory. The exponent is a decimal number that indicates the power of
84330467 10542 by which the significant part will be multiplied. Thus @samp{0x1.f} is
aee96fe9
JM
1055@tex
1056$1 {15\over16}$,
1057@end tex
1058@ifnottex
10591 15/16,
1060@end ifnottex
1061@samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
6f4d7222
UD
1062is the same as @code{1.55e1}.
1063
1064Unlike for floating-point numbers in the decimal notation the exponent
1065is always required in the hexadecimal notation. Otherwise the compiler
1066would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
84330467 1067could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
6f4d7222
UD
1068extension for floating-point constants of type @code{float}.
1069
0f996086
CF
1070@node Fixed-Point
1071@section Fixed-Point Types
1072@cindex fixed-point types
1073@cindex @code{_Fract} data type
1074@cindex @code{_Accum} data type
1075@cindex @code{_Sat} data type
1076@cindex @code{hr} fixed-suffix
1077@cindex @code{r} fixed-suffix
1078@cindex @code{lr} fixed-suffix
1079@cindex @code{llr} fixed-suffix
1080@cindex @code{uhr} fixed-suffix
1081@cindex @code{ur} fixed-suffix
1082@cindex @code{ulr} fixed-suffix
1083@cindex @code{ullr} fixed-suffix
1084@cindex @code{hk} fixed-suffix
1085@cindex @code{k} fixed-suffix
1086@cindex @code{lk} fixed-suffix
1087@cindex @code{llk} fixed-suffix
1088@cindex @code{uhk} fixed-suffix
1089@cindex @code{uk} fixed-suffix
1090@cindex @code{ulk} fixed-suffix
1091@cindex @code{ullk} fixed-suffix
1092@cindex @code{HR} fixed-suffix
1093@cindex @code{R} fixed-suffix
1094@cindex @code{LR} fixed-suffix
1095@cindex @code{LLR} fixed-suffix
1096@cindex @code{UHR} fixed-suffix
1097@cindex @code{UR} fixed-suffix
1098@cindex @code{ULR} fixed-suffix
1099@cindex @code{ULLR} fixed-suffix
1100@cindex @code{HK} fixed-suffix
1101@cindex @code{K} fixed-suffix
1102@cindex @code{LK} fixed-suffix
1103@cindex @code{LLK} fixed-suffix
1104@cindex @code{UHK} fixed-suffix
1105@cindex @code{UK} fixed-suffix
1106@cindex @code{ULK} fixed-suffix
1107@cindex @code{ULLK} fixed-suffix
1108
1109As an extension, the GNU C compiler supports fixed-point types as
1110defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1111types in GCC will evolve as the draft technical report changes.
1112Calling conventions for any target might also change. Not all targets
1113support fixed-point types.
1114
1115The fixed-point types are
1116@code{short _Fract},
1117@code{_Fract},
1118@code{long _Fract},
1119@code{long long _Fract},
1120@code{unsigned short _Fract},
1121@code{unsigned _Fract},
1122@code{unsigned long _Fract},
1123@code{unsigned long long _Fract},
1124@code{_Sat short _Fract},
1125@code{_Sat _Fract},
1126@code{_Sat long _Fract},
1127@code{_Sat long long _Fract},
1128@code{_Sat unsigned short _Fract},
1129@code{_Sat unsigned _Fract},
1130@code{_Sat unsigned long _Fract},
1131@code{_Sat unsigned long long _Fract},
1132@code{short _Accum},
1133@code{_Accum},
1134@code{long _Accum},
1135@code{long long _Accum},
1136@code{unsigned short _Accum},
1137@code{unsigned _Accum},
1138@code{unsigned long _Accum},
1139@code{unsigned long long _Accum},
1140@code{_Sat short _Accum},
1141@code{_Sat _Accum},
1142@code{_Sat long _Accum},
1143@code{_Sat long long _Accum},
1144@code{_Sat unsigned short _Accum},
1145@code{_Sat unsigned _Accum},
1146@code{_Sat unsigned long _Accum},
1147@code{_Sat unsigned long long _Accum}.
8fd94bda 1148
0f996086
CF
1149Fixed-point data values contain fractional and optional integral parts.
1150The format of fixed-point data varies and depends on the target machine.
1151
8fd94bda
JJ
1152Support for fixed-point types includes:
1153@itemize @bullet
1154@item
1155prefix and postfix increment and decrement operators (@code{++}, @code{--})
1156@item
1157unary arithmetic operators (@code{+}, @code{-}, @code{!})
1158@item
1159binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1160@item
1161binary shift operators (@code{<<}, @code{>>})
1162@item
1163relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1164@item
1165equality operators (@code{==}, @code{!=})
1166@item
1167assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1168@code{<<=}, @code{>>=})
1169@item
1170conversions to and from integer, floating-point, or fixed-point types
1171@end itemize
1172
1173Use a suffix in a fixed-point literal constant:
1174@itemize
1175@item @samp{hr} or @samp{HR} for @code{short _Fract} and
1176@code{_Sat short _Fract}
1177@item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1178@item @samp{lr} or @samp{LR} for @code{long _Fract} and
1179@code{_Sat long _Fract}
1180@item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1181@code{_Sat long long _Fract}
1182@item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1183@code{_Sat unsigned short _Fract}
1184@item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1185@code{_Sat unsigned _Fract}
1186@item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1187@code{_Sat unsigned long _Fract}
1188@item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1189and @code{_Sat unsigned long long _Fract}
1190@item @samp{hk} or @samp{HK} for @code{short _Accum} and
1191@code{_Sat short _Accum}
1192@item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1193@item @samp{lk} or @samp{LK} for @code{long _Accum} and
1194@code{_Sat long _Accum}
1195@item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1196@code{_Sat long long _Accum}
1197@item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1198@code{_Sat unsigned short _Accum}
1199@item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1200@code{_Sat unsigned _Accum}
1201@item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1202@code{_Sat unsigned long _Accum}
1203@item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1204and @code{_Sat unsigned long long _Accum}
1205@end itemize
0f996086
CF
1206
1207GCC support of fixed-point types as specified by the draft technical report
1208is incomplete:
1209
1210@itemize @bullet
1211@item
1212Pragmas to control overflow and rounding behaviors are not implemented.
1213@end itemize
1214
1215Fixed-point types are supported by the DWARF2 debug information format.
1216
09e881c9 1217@node Named Address Spaces
542bf446
GJL
1218@section Named Address Spaces
1219@cindex Named Address Spaces
09e881c9
BE
1220
1221As an extension, the GNU C compiler supports named address spaces as
1222defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
85b8555e
DD
1223address spaces in GCC will evolve as the draft technical report
1224changes. Calling conventions for any target might also change. At
542bf446
GJL
1225present, only the AVR, SPU, M32C, and RL78 targets support address
1226spaces other than the generic address space.
1227
1228Address space identifiers may be used exactly like any other C type
1229qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1230document for more details.
1231
1232@anchor{AVR Named Address Spaces}
1233@subsection AVR Named Address Spaces
1234
1235On the AVR target, there are several address spaces that can be used
1236in order to put read-only data into the flash memory and access that
1237data by means of the special instructions @code{LPM} or @code{ELPM}
1238needed to read from flash.
1239
aa9ec4db
GJL
1240Per default, any data including read-only data is located in RAM
1241(the generic address space) so that non-generic address spaces are
1242needed to locate read-only data in flash memory
1243@emph{and} to generate the right instructions to access this data
542bf446
GJL
1244without using (inline) assembler code.
1245
1246@table @code
3a840863
GJL
1247@item __flash
1248@cindex @code{__flash} AVR Named Address Spaces
1249The @code{__flash} qualifier will locate data in the
542bf446
GJL
1250@code{.progmem.data} section. Data will be read using the @code{LPM}
1251instruction. Pointers to this address space are 16 bits wide.
1252
3a840863
GJL
1253@item __flash1
1254@item __flash2
1255@item __flash3
1256@item __flash4
1257@item __flash5
1258@cindex @code{__flash1} AVR Named Address Spaces
1259@cindex @code{__flash2} AVR Named Address Spaces
1260@cindex @code{__flash3} AVR Named Address Spaces
1261@cindex @code{__flash4} AVR Named Address Spaces
1262@cindex @code{__flash5} AVR Named Address Spaces
542bf446
GJL
1263These are 16-bit address spaces locating data in section
1264@code{.progmem@var{N}.data} where @var{N} refers to
3a840863 1265address space @code{__flash@var{N}}.
542bf446
GJL
1266The compiler will set the @code{RAMPZ} segment register approptiately
1267before reading data by means of the @code{ELPM} instruction.
1268
3a840863
GJL
1269@item __memx
1270@cindex @code{__memx} AVR Named Address Spaces
542bf446
GJL
1271This is a 24-bit address space that linearizes flash and RAM:
1272If the high bit of the address is set, data is read from
1273RAM using the lower two bytes as RAM address.
1274If the high bit of the address is clear, data is read from flash
1275with @code{RAMPZ} set according to the high byte of the address.
1276
1277Objects in this address space will be located in @code{.progmem.data}.
1278@end table
1279
aa9ec4db
GJL
1280@b{Example}
1281
1282@example
3a840863 1283char my_read (const __flash char ** p)
aa9ec4db
GJL
1284@{
1285 /* p is a pointer to RAM that points to a pointer to flash.
1286 The first indirection of p will read that flash pointer
1287 from RAM and the second indirection reads a char from this
1288 flash address. */
1289
1290 return **p;
1291@}
1292
1293/* Locate array[] in flash memory */
3a840863 1294const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
aa9ec4db
GJL
1295
1296int i = 1;
1297
1298int main (void)
1299@{
1300 /* Return 17 by reading from flash memory */
1301 return array[array[i]];
1302@}
1303@end example
1304
542bf446
GJL
1305For each named address space supported by avr-gcc there is an equally
1306named but uppercase built-in macro defined.
1307The purpose is to facilitate testing if respective address space
1308support is available or not:
1309
1310@example
3a840863
GJL
1311#ifdef __FLASH
1312const __flash int var = 1;
542bf446
GJL
1313
1314int read_i (void)
1315@{
1316 return i;
1317@}
1318#else
1319#include <avr/pgmspace.h> /* From avr-libc */
1320
1321const int var PROGMEM = 1;
1322
1323int read_i (void)
1324@{
1325 return (int) pgm_read_word (&i);
1326@}
3a840863 1327#endif /* __FLASH */
542bf446
GJL
1328@end example
1329
1330Notice that attribute @ref{AVR Variable Attributes,@code{progmem}}
1331locates data in flash but
aa9ec4db
GJL
1332accesses to these data will read from generic address space, i.e.@:
1333from RAM,
1334so that you need special accessors like @code{pgm_read_byte}
542bf446
GJL
1335from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}}.
1336
1337@b{Limitations and caveats}
1338
1339@itemize
1340@item
1341Reading across the 64@tie{}KiB section boundary of
3a840863 1342the @code{__flash} or @code{__flash@var{N}} address spaces
542bf446
GJL
1343will show undefined behaviour. The only address space that
1344supports reading across the 64@tie{}KiB flash segment boundaries is
3a840863 1345@code{__memx}.
542bf446
GJL
1346
1347@item
3a840863 1348If you use one if the @code{__flash@var{N}} address spaces
542bf446
GJL
1349you will have to arrange your linker skript to locate the
1350@code{.progmem@var{N}.data} sections according to your needs.
1351
1352@item
aa9ec4db
GJL
1353Any data or pointers to the non-generic address spaces must
1354be qualified as @code{const}, i.e.@: as read-only data.
542bf446 1355This still applies if the data in one of these address
aa9ec4db 1356spaces like software version number or calibration lookup table are intended to
542bf446
GJL
1357be changed after load time by, say, a boot loader. In this case
1358the right qualification is @code{const} @code{volatile} so that the compiler
1359must not optimize away known values or insert them
1360as immediates into operands of instructions.
1361
1362@item
1363Code like the following is not yet supported because of missing
1364support in avr-binutils,
1365see @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1366@example
3a840863
GJL
1367extern const __memx char foo;
1368const __memx void *pfoo = &foo;
542bf446
GJL
1369@end example
1370The code will throw an assembler warning and the high byte of
aa9ec4db 1371@code{pfoo} will be initialized with@tie{}@code{0}, i.e.@: the
542bf446
GJL
1372initialization will be as if @code{foo} was located in the first
137364@tie{}KiB chunk of flash.
1374
542bf446
GJL
1375@end itemize
1376
542bf446
GJL
1377@subsection M32C Named Address Spaces
1378@cindex @code{__far} M32C Named Address Spaces
1379
1380On the M32C target, with the R8C and M16C cpu variants, variables
1381qualified with @code{__far} are accessed using 32-bit addresses in
1382order to access memory beyond the first 64@tie{}Ki bytes. If
1383@code{__far} is used with the M32CM or M32C cpu variants, it has no
1384effect.
1385
1386@subsection RL78 Named Address Spaces
1387@cindex @code{__far} RL78 Named Address Spaces
1388
1389On the RL78 target, variables qualified with @code{__far} are accessed
1390with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1391addresses. Non-far variables are assumed to appear in the topmost
139264@tie{}KiB of the address space.
1393
1394@subsection SPU Named Address Spaces
1395@cindex @code{__ea} SPU Named Address Spaces
1396
1397On the SPU target variables may be declared as
85b8555e
DD
1398belonging to another address space by qualifying the type with the
1399@code{__ea} address space identifier:
09e881c9
BE
1400
1401@smallexample
1402extern int __ea i;
1403@end smallexample
1404
1405When the variable @code{i} is accessed, the compiler will generate
1406special code to access this variable. It may use runtime library
1407support, or generate special machine instructions to access that address
1408space.
1409
c1f7febf
RK
1410@node Zero Length
1411@section Arrays of Length Zero
1412@cindex arrays of length zero
1413@cindex zero-length arrays
1414@cindex length-zero arrays
ffc5c6a9 1415@cindex flexible array members
c1f7febf 1416
161d7b59 1417Zero-length arrays are allowed in GNU C@. They are very useful as the
584ef5fe 1418last element of a structure which is really a header for a variable-length
c1f7febf
RK
1419object:
1420
3ab51846 1421@smallexample
c1f7febf
RK
1422struct line @{
1423 int length;
1424 char contents[0];
1425@};
1426
584ef5fe
RH
1427struct line *thisline = (struct line *)
1428 malloc (sizeof (struct line) + this_length);
1429thisline->length = this_length;
3ab51846 1430@end smallexample
c1f7febf 1431
3764f879 1432In ISO C90, you would have to give @code{contents} a length of 1, which
c1f7febf
RK
1433means either you waste space or complicate the argument to @code{malloc}.
1434
02f52e19 1435In ISO C99, you would use a @dfn{flexible array member}, which is
584ef5fe
RH
1436slightly different in syntax and semantics:
1437
1438@itemize @bullet
1439@item
1440Flexible array members are written as @code{contents[]} without
1441the @code{0}.
1442
1443@item
1444Flexible array members have incomplete type, and so the @code{sizeof}
1445operator may not be applied. As a quirk of the original implementation
1446of zero-length arrays, @code{sizeof} evaluates to zero.
1447
1448@item
1449Flexible array members may only appear as the last member of a
e7b6a0ee 1450@code{struct} that is otherwise non-empty.
2984fe64
JM
1451
1452@item
1453A structure containing a flexible array member, or a union containing
1454such a structure (possibly recursively), may not be a member of a
1455structure or an element of an array. (However, these uses are
1456permitted by GCC as extensions.)
ffc5c6a9 1457@end itemize
a25f1211 1458
ffc5c6a9 1459GCC versions before 3.0 allowed zero-length arrays to be statically
e7b6a0ee
DD
1460initialized, as if they were flexible arrays. In addition to those
1461cases that were useful, it also allowed initializations in situations
1462that would corrupt later data. Non-empty initialization of zero-length
1463arrays is now treated like any case where there are more initializer
1464elements than the array holds, in that a suitable warning about "excess
1465elements in array" is given, and the excess elements (all of them, in
1466this case) are ignored.
ffc5c6a9
RH
1467
1468Instead GCC allows static initialization of flexible array members.
1469This is equivalent to defining a new structure containing the original
1470structure followed by an array of sufficient size to contain the data.
e979f9e8 1471I.e.@: in the following, @code{f1} is constructed as if it were declared
ffc5c6a9 1472like @code{f2}.
a25f1211 1473
3ab51846 1474@smallexample
ffc5c6a9
RH
1475struct f1 @{
1476 int x; int y[];
1477@} f1 = @{ 1, @{ 2, 3, 4 @} @};
1478
1479struct f2 @{
1480 struct f1 f1; int data[3];
1481@} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
3ab51846 1482@end smallexample
584ef5fe 1483
ffc5c6a9
RH
1484@noindent
1485The convenience of this extension is that @code{f1} has the desired
1486type, eliminating the need to consistently refer to @code{f2.f1}.
1487
1488This has symmetry with normal static arrays, in that an array of
1489unknown size is also written with @code{[]}.
a25f1211 1490
ffc5c6a9
RH
1491Of course, this extension only makes sense if the extra data comes at
1492the end of a top-level object, as otherwise we would be overwriting
1493data at subsequent offsets. To avoid undue complication and confusion
1494with initialization of deeply nested arrays, we simply disallow any
1495non-empty initialization except when the structure is the top-level
1496object. For example:
584ef5fe 1497
3ab51846 1498@smallexample
ffc5c6a9
RH
1499struct foo @{ int x; int y[]; @};
1500struct bar @{ struct foo z; @};
1501
13ba36b4
JM
1502struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1503struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1504struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1505struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
3ab51846 1506@end smallexample
4b606faf 1507
ba05abd3
GK
1508@node Empty Structures
1509@section Structures With No Members
1510@cindex empty structures
1511@cindex zero-size structures
1512
1513GCC permits a C structure to have no members:
1514
3ab51846 1515@smallexample
ba05abd3
GK
1516struct empty @{
1517@};
3ab51846 1518@end smallexample
ba05abd3
GK
1519
1520The structure will have size zero. In C++, empty structures are part
db0b376e
MM
1521of the language. G++ treats empty structures as if they had a single
1522member of type @code{char}.
ba05abd3 1523
c1f7febf
RK
1524@node Variable Length
1525@section Arrays of Variable Length
1526@cindex variable-length arrays
1527@cindex arrays of variable length
4b404517 1528@cindex VLAs
c1f7febf 1529
4b404517 1530Variable-length automatic arrays are allowed in ISO C99, and as an
fbdaa0b2 1531extension GCC accepts them in C90 mode and in C++. These arrays are
c1f7febf
RK
1532declared like any other automatic arrays, but with a length that is not
1533a constant expression. The storage is allocated at the point of
1534declaration and deallocated when the brace-level is exited. For
1535example:
1536
3ab51846 1537@smallexample
c1f7febf
RK
1538FILE *
1539concat_fopen (char *s1, char *s2, char *mode)
1540@{
1541 char str[strlen (s1) + strlen (s2) + 1];
1542 strcpy (str, s1);
1543 strcat (str, s2);
1544 return fopen (str, mode);
1545@}
3ab51846 1546@end smallexample
c1f7febf
RK
1547
1548@cindex scope of a variable length array
1549@cindex variable-length array scope
1550@cindex deallocating variable length arrays
1551Jumping or breaking out of the scope of the array name deallocates the
1552storage. Jumping into the scope is not allowed; you get an error
1553message for it.
1554
1555@cindex @code{alloca} vs variable-length arrays
1556You can use the function @code{alloca} to get an effect much like
1557variable-length arrays. The function @code{alloca} is available in
1558many other C implementations (but not in all). On the other hand,
1559variable-length arrays are more elegant.
1560
1561There are other differences between these two methods. Space allocated
1562with @code{alloca} exists until the containing @emph{function} returns.
1563The space for a variable-length array is deallocated as soon as the array
1564name's scope ends. (If you use both variable-length arrays and
1565@code{alloca} in the same function, deallocation of a variable-length array
1566will also deallocate anything more recently allocated with @code{alloca}.)
1567
1568You can also use variable-length arrays as arguments to functions:
1569
3ab51846 1570@smallexample
c1f7febf
RK
1571struct entry
1572tester (int len, char data[len][len])
1573@{
0d893a63 1574 /* @r{@dots{}} */
c1f7febf 1575@}
3ab51846 1576@end smallexample
c1f7febf
RK
1577
1578The length of an array is computed once when the storage is allocated
1579and is remembered for the scope of the array in case you access it with
1580@code{sizeof}.
1581
1582If you want to pass the array first and the length afterward, you can
1583use a forward declaration in the parameter list---another GNU extension.
1584
3ab51846 1585@smallexample
c1f7febf
RK
1586struct entry
1587tester (int len; char data[len][len], int len)
1588@{
0d893a63 1589 /* @r{@dots{}} */
c1f7febf 1590@}
3ab51846 1591@end smallexample
c1f7febf
RK
1592
1593@cindex parameter forward declaration
1594The @samp{int len} before the semicolon is a @dfn{parameter forward
1595declaration}, and it serves the purpose of making the name @code{len}
1596known when the declaration of @code{data} is parsed.
1597
1598You can write any number of such parameter forward declarations in the
1599parameter list. They can be separated by commas or semicolons, but the
1600last one must end with a semicolon, which is followed by the ``real''
1601parameter declarations. Each forward declaration must match a ``real''
4b404517
JM
1602declaration in parameter name and data type. ISO C99 does not support
1603parameter forward declarations.
c1f7febf 1604
ccd96f0a
NB
1605@node Variadic Macros
1606@section Macros with a Variable Number of Arguments.
c1f7febf
RK
1607@cindex variable number of arguments
1608@cindex macro with variable arguments
1609@cindex rest argument (in macro)
ccd96f0a 1610@cindex variadic macros
c1f7febf 1611
ccd96f0a
NB
1612In the ISO C standard of 1999, a macro can be declared to accept a
1613variable number of arguments much as a function can. The syntax for
1614defining the macro is similar to that of a function. Here is an
1615example:
c1f7febf 1616
478c9e72 1617@smallexample
ccd96f0a 1618#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
478c9e72 1619@end smallexample
c1f7febf 1620
ccd96f0a
NB
1621Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1622such a macro, it represents the zero or more tokens until the closing
1623parenthesis that ends the invocation, including any commas. This set of
1624tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1625wherever it appears. See the CPP manual for more information.
1626
1627GCC has long supported variadic macros, and used a different syntax that
1628allowed you to give a name to the variable arguments just like any other
1629argument. Here is an example:
c1f7febf 1630
3ab51846 1631@smallexample
ccd96f0a 1632#define debug(format, args...) fprintf (stderr, format, args)
3ab51846 1633@end smallexample
c1f7febf 1634
ccd96f0a
NB
1635This is in all ways equivalent to the ISO C example above, but arguably
1636more readable and descriptive.
c1f7febf 1637
ccd96f0a
NB
1638GNU CPP has two further variadic macro extensions, and permits them to
1639be used with either of the above forms of macro definition.
1640
1641In standard C, you are not allowed to leave the variable argument out
1642entirely; but you are allowed to pass an empty argument. For example,
1643this invocation is invalid in ISO C, because there is no comma after
1644the string:
c1f7febf 1645
3ab51846 1646@smallexample
ccd96f0a 1647debug ("A message")
3ab51846 1648@end smallexample
c1f7febf 1649
ccd96f0a
NB
1650GNU CPP permits you to completely omit the variable arguments in this
1651way. In the above examples, the compiler would complain, though since
1652the expansion of the macro still has the extra comma after the format
1653string.
1654
1655To help solve this problem, CPP behaves specially for variable arguments
1656used with the token paste operator, @samp{##}. If instead you write
c1f7febf 1657
478c9e72 1658@smallexample
ccd96f0a 1659#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
478c9e72 1660@end smallexample
c1f7febf 1661
ccd96f0a
NB
1662and if the variable arguments are omitted or empty, the @samp{##}
1663operator causes the preprocessor to remove the comma before it. If you
1664do provide some variable arguments in your macro invocation, GNU CPP
1665does not complain about the paste operation and instead places the
1666variable arguments after the comma. Just like any other pasted macro
1667argument, these arguments are not macro expanded.
1668
1669@node Escaped Newlines
1670@section Slightly Looser Rules for Escaped Newlines
1671@cindex escaped newlines
1672@cindex newlines (escaped)
1673
f458d1d5
ZW
1674Recently, the preprocessor has relaxed its treatment of escaped
1675newlines. Previously, the newline had to immediately follow a
e6cc3a24
ZW
1676backslash. The current implementation allows whitespace in the form
1677of spaces, horizontal and vertical tabs, and form feeds between the
ccd96f0a
NB
1678backslash and the subsequent newline. The preprocessor issues a
1679warning, but treats it as a valid escaped newline and combines the two
1680lines to form a single logical line. This works within comments and
e6cc3a24
ZW
1681tokens, as well as between tokens. Comments are @emph{not} treated as
1682whitespace for the purposes of this relaxation, since they have not
1683yet been replaced with spaces.
c1f7febf
RK
1684
1685@node Subscripting
1686@section Non-Lvalue Arrays May Have Subscripts
1687@cindex subscripting
1688@cindex arrays, non-lvalue
1689
1690@cindex subscripting and function values
207bf485
JM
1691In ISO C99, arrays that are not lvalues still decay to pointers, and
1692may be subscripted, although they may not be modified or used after
1693the next sequence point and the unary @samp{&} operator may not be
1694applied to them. As an extension, GCC allows such arrays to be
7e1542b9 1695subscripted in C90 mode, though otherwise they do not decay to
207bf485 1696pointers outside C99 mode. For example,
7e1542b9 1697this is valid in GNU C though not valid in C90:
c1f7febf 1698
3ab51846 1699@smallexample
c1f7febf
RK
1700@group
1701struct foo @{int a[4];@};
1702
1703struct foo f();
1704
1705bar (int index)
1706@{
1707 return f().a[index];
1708@}
1709@end group
3ab51846 1710@end smallexample
c1f7febf
RK
1711
1712@node Pointer Arith
1713@section Arithmetic on @code{void}- and Function-Pointers
1714@cindex void pointers, arithmetic
1715@cindex void, size of pointer to
1716@cindex function pointers, arithmetic
1717@cindex function, size of pointer to
1718
1719In GNU C, addition and subtraction operations are supported on pointers to
1720@code{void} and on pointers to functions. This is done by treating the
1721size of a @code{void} or of a function as 1.
1722
1723A consequence of this is that @code{sizeof} is also allowed on @code{void}
1724and on function types, and returns 1.
1725
84330467
JM
1726@opindex Wpointer-arith
1727The option @option{-Wpointer-arith} requests a warning if these extensions
c1f7febf
RK
1728are used.
1729
1730@node Initializers
1731@section Non-Constant Initializers
1732@cindex initializers, non-constant
1733@cindex non-constant initializers
1734
4b404517 1735As in standard C++ and ISO C99, the elements of an aggregate initializer for an
161d7b59 1736automatic variable are not required to be constant expressions in GNU C@.
c1f7febf
RK
1737Here is an example of an initializer with run-time varying elements:
1738
3ab51846 1739@smallexample
c1f7febf
RK
1740foo (float f, float g)
1741@{
1742 float beat_freqs[2] = @{ f-g, f+g @};
0d893a63 1743 /* @r{@dots{}} */
c1f7febf 1744@}
3ab51846 1745@end smallexample
c1f7febf 1746
4b404517
JM
1747@node Compound Literals
1748@section Compound Literals
c1f7febf
RK
1749@cindex constructor expressions
1750@cindex initializations in expressions
1751@cindex structures, constructor expression
1752@cindex expressions, constructor
4b404517
JM
1753@cindex compound literals
1754@c The GNU C name for what C99 calls compound literals was "constructor expressions".
c1f7febf 1755
4b404517 1756ISO C99 supports compound literals. A compound literal looks like
c1f7febf
RK
1757a cast containing an initializer. Its value is an object of the
1758type specified in the cast, containing the elements specified in
db3acfa5 1759the initializer; it is an lvalue. As an extension, GCC supports
7e1542b9 1760compound literals in C90 mode and in C++.
c1f7febf
RK
1761
1762Usually, the specified type is a structure. Assume that
1763@code{struct foo} and @code{structure} are declared as shown:
1764
3ab51846 1765@smallexample
c1f7febf 1766struct foo @{int a; char b[2];@} structure;
3ab51846 1767@end smallexample
c1f7febf
RK
1768
1769@noindent
4b404517 1770Here is an example of constructing a @code{struct foo} with a compound literal:
c1f7febf 1771
3ab51846 1772@smallexample
c1f7febf 1773structure = ((struct foo) @{x + y, 'a', 0@});
3ab51846 1774@end smallexample
c1f7febf
RK
1775
1776@noindent
1777This is equivalent to writing the following:
1778
3ab51846 1779@smallexample
c1f7febf
RK
1780@{
1781 struct foo temp = @{x + y, 'a', 0@};
1782 structure = temp;
1783@}
3ab51846 1784@end smallexample
c1f7febf 1785
4b404517 1786You can also construct an array. If all the elements of the compound literal
c1f7febf 1787are (made up of) simple constant expressions, suitable for use in
db3acfa5
JM
1788initializers of objects of static storage duration, then the compound
1789literal can be coerced to a pointer to its first element and used in
1790such an initializer, as shown here:
c1f7febf 1791
3ab51846 1792@smallexample
c1f7febf 1793char **foo = (char *[]) @{ "x", "y", "z" @};
3ab51846 1794@end smallexample
c1f7febf 1795
49d6830d 1796Compound literals for scalar types and union types are
4b404517 1797also allowed, but then the compound literal is equivalent
c1f7febf
RK
1798to a cast.
1799
59c83dbf
JJ
1800As a GNU extension, GCC allows initialization of objects with static storage
1801duration by compound literals (which is not possible in ISO C99, because
1802the initializer is not a constant).
1803It is handled as if the object was initialized only with the bracket
1eaf20ec 1804enclosed list if the types of the compound literal and the object match.
59c83dbf
JJ
1805The initializer list of the compound literal must be constant.
1806If the object being initialized has array type of unknown size, the size is
ad47f1e5 1807determined by compound literal size.
59c83dbf 1808
3ab51846 1809@smallexample
59c83dbf
JJ
1810static struct foo x = (struct foo) @{1, 'a', 'b'@};
1811static int y[] = (int []) @{1, 2, 3@};
1812static int z[] = (int [3]) @{1@};
3ab51846 1813@end smallexample
59c83dbf
JJ
1814
1815@noindent
1816The above lines are equivalent to the following:
3ab51846 1817@smallexample
59c83dbf
JJ
1818static struct foo x = @{1, 'a', 'b'@};
1819static int y[] = @{1, 2, 3@};
ad47f1e5 1820static int z[] = @{1, 0, 0@};
3ab51846 1821@end smallexample
59c83dbf 1822
4b404517
JM
1823@node Designated Inits
1824@section Designated Initializers
c1f7febf
RK
1825@cindex initializers with labeled elements
1826@cindex labeled elements in initializers
1827@cindex case labels in initializers
4b404517 1828@cindex designated initializers
c1f7febf 1829
7e1542b9 1830Standard C90 requires the elements of an initializer to appear in a fixed
c1f7febf
RK
1831order, the same as the order of the elements in the array or structure
1832being initialized.
1833
26d4fec7
JM
1834In ISO C99 you can give the elements in any order, specifying the array
1835indices or structure field names they apply to, and GNU C allows this as
7e1542b9 1836an extension in C90 mode as well. This extension is not
c1f7febf
RK
1837implemented in GNU C++.
1838
26d4fec7 1839To specify an array index, write
c1f7febf
RK
1840@samp{[@var{index}] =} before the element value. For example,
1841
3ab51846 1842@smallexample
26d4fec7 1843int a[6] = @{ [4] = 29, [2] = 15 @};
3ab51846 1844@end smallexample
c1f7febf
RK
1845
1846@noindent
1847is equivalent to
1848
3ab51846 1849@smallexample
c1f7febf 1850int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
3ab51846 1851@end smallexample
c1f7febf
RK
1852
1853@noindent
1854The index values must be constant expressions, even if the array being
1855initialized is automatic.
1856
26d4fec7
JM
1857An alternative syntax for this which has been obsolete since GCC 2.5 but
1858GCC still accepts is to write @samp{[@var{index}]} before the element
1859value, with no @samp{=}.
1860
c1f7febf 1861To initialize a range of elements to the same value, write
26d4fec7
JM
1862@samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1863extension. For example,
c1f7febf 1864
3ab51846 1865@smallexample
c1f7febf 1866int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
3ab51846 1867@end smallexample
c1f7febf 1868
8b6a5902
JJ
1869@noindent
1870If the value in it has side-effects, the side-effects will happen only once,
1871not for each initialized field by the range initializer.
1872
c1f7febf
RK
1873@noindent
1874Note that the length of the array is the highest value specified
1875plus one.
1876
1877In a structure initializer, specify the name of a field to initialize
26d4fec7 1878with @samp{.@var{fieldname} =} before the element value. For example,
c1f7febf
RK
1879given the following structure,
1880
3ab51846 1881@smallexample
c1f7febf 1882struct point @{ int x, y; @};
3ab51846 1883@end smallexample
c1f7febf
RK
1884
1885@noindent
1886the following initialization
1887
3ab51846 1888@smallexample
26d4fec7 1889struct point p = @{ .y = yvalue, .x = xvalue @};
3ab51846 1890@end smallexample
c1f7febf
RK
1891
1892@noindent
1893is equivalent to
1894
3ab51846 1895@smallexample
c1f7febf 1896struct point p = @{ xvalue, yvalue @};
3ab51846 1897@end smallexample
c1f7febf 1898
26d4fec7
JM
1899Another syntax which has the same meaning, obsolete since GCC 2.5, is
1900@samp{@var{fieldname}:}, as shown here:
c1f7febf 1901
3ab51846 1902@smallexample
26d4fec7 1903struct point p = @{ y: yvalue, x: xvalue @};
3ab51846 1904@end smallexample
c1f7febf 1905
4b404517
JM
1906@cindex designators
1907The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1908@dfn{designator}. You can also use a designator (or the obsolete colon
1909syntax) when initializing a union, to specify which element of the union
1910should be used. For example,
c1f7febf 1911
3ab51846 1912@smallexample
c1f7febf
RK
1913union foo @{ int i; double d; @};
1914
26d4fec7 1915union foo f = @{ .d = 4 @};
3ab51846 1916@end smallexample
c1f7febf
RK
1917
1918@noindent
1919will convert 4 to a @code{double} to store it in the union using
1920the second element. By contrast, casting 4 to type @code{union foo}
1921would store it into the union as the integer @code{i}, since it is
1922an integer. (@xref{Cast to Union}.)
1923
1924You can combine this technique of naming elements with ordinary C
1925initialization of successive elements. Each initializer element that
4b404517 1926does not have a designator applies to the next consecutive element of the
c1f7febf
RK
1927array or structure. For example,
1928
3ab51846 1929@smallexample
c1f7febf 1930int a[6] = @{ [1] = v1, v2, [4] = v4 @};
3ab51846 1931@end smallexample
c1f7febf
RK
1932
1933@noindent
1934is equivalent to
1935
3ab51846 1936@smallexample
c1f7febf 1937int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
3ab51846 1938@end smallexample
c1f7febf
RK
1939
1940Labeling the elements of an array initializer is especially useful
1941when the indices are characters or belong to an @code{enum} type.
1942For example:
1943
3ab51846 1944@smallexample
c1f7febf
RK
1945int whitespace[256]
1946 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1947 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
3ab51846 1948@end smallexample
c1f7febf 1949
4b404517 1950@cindex designator lists
26d4fec7 1951You can also write a series of @samp{.@var{fieldname}} and
4b404517 1952@samp{[@var{index}]} designators before an @samp{=} to specify a
26d4fec7
JM
1953nested subobject to initialize; the list is taken relative to the
1954subobject corresponding to the closest surrounding brace pair. For
1955example, with the @samp{struct point} declaration above:
1956
478c9e72 1957@smallexample
26d4fec7 1958struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
478c9e72 1959@end smallexample
26d4fec7 1960
8b6a5902
JJ
1961@noindent
1962If the same field is initialized multiple times, it will have value from
1963the last initialization. If any such overridden initialization has
1964side-effect, it is unspecified whether the side-effect happens or not.
2dd76960 1965Currently, GCC will discard them and issue a warning.
8b6a5902 1966
c1f7febf
RK
1967@node Case Ranges
1968@section Case Ranges
1969@cindex case ranges
1970@cindex ranges in case statements
1971
1972You can specify a range of consecutive values in a single @code{case} label,
1973like this:
1974
3ab51846 1975@smallexample
c1f7febf 1976case @var{low} ... @var{high}:
3ab51846 1977@end smallexample
c1f7febf
RK
1978
1979@noindent
1980This has the same effect as the proper number of individual @code{case}
1981labels, one for each integer value from @var{low} to @var{high}, inclusive.
1982
1983This feature is especially useful for ranges of ASCII character codes:
1984
3ab51846 1985@smallexample
c1f7febf 1986case 'A' ... 'Z':
3ab51846 1987@end smallexample
c1f7febf
RK
1988
1989@strong{Be careful:} Write spaces around the @code{...}, for otherwise
1990it may be parsed wrong when you use it with integer values. For example,
1991write this:
1992
3ab51846 1993@smallexample
c1f7febf 1994case 1 ... 5:
3ab51846 1995@end smallexample
c1f7febf
RK
1996
1997@noindent
1998rather than this:
1999
3ab51846 2000@smallexample
c1f7febf 2001case 1...5:
3ab51846 2002@end smallexample
c1f7febf
RK
2003
2004@node Cast to Union
2005@section Cast to a Union Type
2006@cindex cast to a union
2007@cindex union, casting to a
2008
2009A cast to union type is similar to other casts, except that the type
2010specified is a union type. You can specify the type either with
2011@code{union @var{tag}} or with a typedef name. A cast to union is actually
2012a constructor though, not a cast, and hence does not yield an lvalue like
4b404517 2013normal casts. (@xref{Compound Literals}.)
c1f7febf
RK
2014
2015The types that may be cast to the union type are those of the members
2016of the union. Thus, given the following union and variables:
2017
3ab51846 2018@smallexample
c1f7febf
RK
2019union foo @{ int i; double d; @};
2020int x;
2021double y;
3ab51846 2022@end smallexample
c1f7febf
RK
2023
2024@noindent
aee96fe9 2025both @code{x} and @code{y} can be cast to type @code{union foo}.
c1f7febf
RK
2026
2027Using the cast as the right-hand side of an assignment to a variable of
2028union type is equivalent to storing in a member of the union:
2029
3ab51846 2030@smallexample
c1f7febf 2031union foo u;
0d893a63 2032/* @r{@dots{}} */
c1f7febf
RK
2033u = (union foo) x @equiv{} u.i = x
2034u = (union foo) y @equiv{} u.d = y
3ab51846 2035@end smallexample
c1f7febf
RK
2036
2037You can also use the union cast as a function argument:
2038
3ab51846 2039@smallexample
c1f7febf 2040void hack (union foo);
0d893a63 2041/* @r{@dots{}} */
c1f7febf 2042hack ((union foo) x);
3ab51846 2043@end smallexample
c1f7febf 2044
4b404517
JM
2045@node Mixed Declarations
2046@section Mixed Declarations and Code
2047@cindex mixed declarations and code
2048@cindex declarations, mixed with code
2049@cindex code, mixed with declarations
2050
2051ISO C99 and ISO C++ allow declarations and code to be freely mixed
2052within compound statements. As an extension, GCC also allows this in
7e1542b9 2053C90 mode. For example, you could do:
4b404517 2054
3ab51846 2055@smallexample
4b404517 2056int i;
0d893a63 2057/* @r{@dots{}} */
4b404517
JM
2058i++;
2059int j = i + 2;
3ab51846 2060@end smallexample
4b404517
JM
2061
2062Each identifier is visible from where it is declared until the end of
2063the enclosing block.
2064
c1f7febf
RK
2065@node Function Attributes
2066@section Declaring Attributes of Functions
2067@cindex function attributes
2068@cindex declaring attributes of functions
2069@cindex functions that never return
6e9a3221 2070@cindex functions that return more than once
c1f7febf
RK
2071@cindex functions that have no side effects
2072@cindex functions in arbitrary sections
2a59078d 2073@cindex functions that behave like malloc
c1f7febf
RK
2074@cindex @code{volatile} applied to function
2075@cindex @code{const} applied to function
26f6672d 2076@cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
b34c7881 2077@cindex functions with non-null pointer arguments
c1f7febf
RK
2078@cindex functions that are passed arguments in registers on the 386
2079@cindex functions that pop the argument stack on the 386
2080@cindex functions that do not pop the argument stack on the 386
ab442df7
MM
2081@cindex functions that have different compilation options on the 386
2082@cindex functions that have different optimization options
ba885ec5 2083@cindex functions that are dynamically resolved
c1f7febf
RK
2084
2085In GNU C, you declare certain things about functions called in your program
2086which help the compiler optimize function calls and check your code more
2087carefully.
2088
2089The keyword @code{__attribute__} allows you to specify special
2090attributes when making a declaration. This keyword is followed by an
9162542e 2091attribute specification inside double parentheses. The following
eacecf96 2092attributes are currently defined for functions on all targets:
837edd5f 2093@code{aligned}, @code{alloc_size}, @code{noreturn},
86631ea3
MJ
2094@code{returns_twice}, @code{noinline}, @code{noclone},
2095@code{always_inline}, @code{flatten}, @code{pure}, @code{const},
2096@code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
7458026b
ILT
2097@code{no_instrument_function}, @code{no_split_stack},
2098@code{section}, @code{constructor},
51bc54a6 2099@code{destructor}, @code{used}, @code{unused}, @code{deprecated},
ba885ec5
NS
2100@code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
2101@code{warn_unused_result}, @code{nonnull}, @code{gnu_inline},
2102@code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
2103@code{error} and @code{warning}. Several other attributes are defined
2104for functions on particular target systems. Other attributes,
2105including @code{section} are supported for variables declarations
2106(@pxref{Variable Attributes}) and for types (@pxref{Type Attributes}).
c1f7febf 2107
110532c8
BS
2108GCC plugins may provide their own attributes.
2109
c1f7febf
RK
2110You may also specify attributes with @samp{__} preceding and following
2111each keyword. This allows you to use them in header files without
2112being concerned about a possible macro of the same name. For example,
2113you may use @code{__noreturn__} instead of @code{noreturn}.
2114
2c5e91d2
JM
2115@xref{Attribute Syntax}, for details of the exact syntax for using
2116attributes.
2117
c1f7febf 2118@table @code
8a36672b 2119@c Keep this table alphabetized by attribute name. Treat _ as space.
c1f7febf 2120
c8619b90
NS
2121@item alias ("@var{target}")
2122@cindex @code{alias} attribute
2123The @code{alias} attribute causes the declaration to be emitted as an
2124alias for another symbol, which must be specified. For instance,
c1f7febf
RK
2125
2126@smallexample
c8619b90
NS
2127void __f () @{ /* @r{Do something.} */; @}
2128void f () __attribute__ ((weak, alias ("__f")));
c1f7febf
RK
2129@end smallexample
2130
a9b0b825 2131defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
52eb57df
RH
2132mangled name for the target must be used. It is an error if @samp{__f}
2133is not defined in the same translation unit.
c8619b90
NS
2134
2135Not all target machines support this attribute.
9162542e 2136
837edd5f
GK
2137@item aligned (@var{alignment})
2138@cindex @code{aligned} attribute
2139This attribute specifies a minimum alignment for the function,
2140measured in bytes.
2141
2142You cannot use this attribute to decrease the alignment of a function,
2143only to increase it. However, when you explicitly specify a function
2144alignment this will override the effect of the
2145@option{-falign-functions} (@pxref{Optimize Options}) option for this
2146function.
2147
2148Note that the effectiveness of @code{aligned} attributes may be
2149limited by inherent limitations in your linker. On many systems, the
2150linker is only able to arrange for functions to be aligned up to a
2151certain maximum alignment. (For some linkers, the maximum supported
2152alignment may be very very small.) See your linker documentation for
2153further information.
2154
2155The @code{aligned} attribute can also be used for variables and fields
2156(@pxref{Variable Attributes}.)
2157
51bc54a6
DM
2158@item alloc_size
2159@cindex @code{alloc_size} attribute
2160The @code{alloc_size} attribute is used to tell the compiler that the
2161function return value points to memory, where the size is given by
ff2ce160 2162one or two of the functions parameters. GCC uses this
51bc54a6
DM
2163information to improve the correctness of @code{__builtin_object_size}.
2164
2165The function parameter(s) denoting the allocated size are specified by
2166one or two integer arguments supplied to the attribute. The allocated size
2167is either the value of the single function argument specified or the product
2168of the two function arguments specified. Argument numbering starts at
2169one.
2170
ff2ce160 2171For instance,
51bc54a6
DM
2172
2173@smallexample
2174void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
1c42f5c6 2175void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
51bc54a6
DM
2176@end smallexample
2177
2178declares that my_calloc will return memory of the size given by
2179the product of parameter 1 and 2 and that my_realloc will return memory
2180of the size given by parameter 2.
2181
6aa77e6c 2182@item always_inline
c8619b90 2183@cindex @code{always_inline} function attribute
6aa77e6c
AH
2184Generally, functions are not inlined unless optimization is specified.
2185For functions declared inline, this attribute inlines the function even
2186if no optimization level was specified.
2187
4eb7fd83
JJ
2188@item gnu_inline
2189@cindex @code{gnu_inline} function attribute
da1c7394
ILT
2190This attribute should be used with a function which is also declared
2191with the @code{inline} keyword. It directs GCC to treat the function
7e1542b9 2192as if it were defined in gnu90 mode even when compiling in C99 or
da1c7394
ILT
2193gnu99 mode.
2194
2195If the function is declared @code{extern}, then this definition of the
2196function is used only for inlining. In no case is the function
2197compiled as a standalone function, not even if you take its address
2198explicitly. Such an address becomes an external reference, as if you
2199had only declared the function, and had not defined it. This has
2200almost the effect of a macro. The way to use this is to put a
2201function definition in a header file with this attribute, and put
2202another copy of the function, without @code{extern}, in a library
2203file. The definition in the header file will cause most calls to the
2204function to be inlined. If any uses of the function remain, they will
2205refer to the single copy in the library. Note that the two
2206definitions of the functions need not be precisely the same, although
2207if they do not have the same effect your program may behave oddly.
2208
3a47c4e4
AO
2209In C, if the function is neither @code{extern} nor @code{static}, then
2210the function is compiled as a standalone function, as well as being
da1c7394
ILT
2211inlined where possible.
2212
2213This is how GCC traditionally handled functions declared
2214@code{inline}. Since ISO C99 specifies a different semantics for
2215@code{inline}, this function attribute is provided as a transition
2216measure and as a useful feature in its own right. This attribute is
2217available in GCC 4.1.3 and later. It is available if either of the
2218preprocessor macros @code{__GNUC_GNU_INLINE__} or
2219@code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2220Function is As Fast As a Macro}.
4eb7fd83 2221
3a47c4e4
AO
2222In C++, this attribute does not depend on @code{extern} in any way,
2223but it still requires the @code{inline} keyword to enable its special
2224behavior.
2225
d752cfdb 2226@item artificial
1df48f5c 2227@cindex @code{artificial} function attribute
d752cfdb
JJ
2228This attribute is useful for small inline wrappers which if possible
2229should appear during debugging as a unit, depending on the debug
2230info format it will either mean marking the function as artificial
2231or using the caller location for all instructions within the inlined
2232body.
2233
65655f79
DD
2234@item bank_switch
2235@cindex interrupt handler functions
2236When added to an interrupt handler with the M32C port, causes the
2237prologue and epilogue to use bank switching to preserve the registers
2238rather than saving them on the stack.
2239
0691d1d4 2240@item flatten
1df48f5c 2241@cindex @code{flatten} function attribute
0691d1d4
RG
2242Generally, inlining into a function is limited. For a function marked with
2243this attribute, every call inside this function will be inlined, if possible.
2244Whether the function itself is considered for inlining depends on its size and
d6cc6ec9 2245the current inlining parameters.
0691d1d4 2246
d2af6a68
JJ
2247@item error ("@var{message}")
2248@cindex @code{error} function attribute
2249If this attribute is used on a function declaration and a call to such a function
2250is not eliminated through dead code elimination or other optimizations, an error
2251which will include @var{message} will be diagnosed. This is useful
2252for compile time checking, especially together with @code{__builtin_constant_p}
2253and inline functions where checking the inline function arguments is not
2254possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2255While it is possible to leave the function undefined and thus invoke
2256a link failure, when using this attribute the problem will be diagnosed
2257earlier and with exact location of the call even in presence of inline
2258functions or when not emitting debugging information.
2259
2260@item warning ("@var{message}")
2261@cindex @code{warning} function attribute
2262If this attribute is used on a function declaration and a call to such a function
2263is not eliminated through dead code elimination or other optimizations, a warning
2264which will include @var{message} will be diagnosed. This is useful
2265for compile time checking, especially together with @code{__builtin_constant_p}
2266and inline functions. While it is possible to define the function with
2267a message in @code{.gnu.warning*} section, when using this attribute the problem
2268will be diagnosed earlier and with exact location of the call even in presence
2269of inline functions or when not emitting debugging information.
2270
c8619b90
NS
2271@item cdecl
2272@cindex functions that do pop the argument stack on the 386
2273@opindex mrtd
2274On the Intel 386, the @code{cdecl} attribute causes the compiler to
2275assume that the calling function will pop off the stack space used to
2276pass arguments. This is
2277useful to override the effects of the @option{-mrtd} switch.
2a8f6b90 2278
2a8f6b90 2279@item const
c8619b90 2280@cindex @code{const} function attribute
2a8f6b90
JH
2281Many functions do not examine any values except their arguments, and
2282have no effects except the return value. Basically this is just slightly
50c177f7 2283more strict class than the @code{pure} attribute below, since function is not
2a59078d 2284allowed to read global memory.
2a8f6b90
JH
2285
2286@cindex pointer arguments
2287Note that a function that has pointer arguments and examines the data
2288pointed to must @emph{not} be declared @code{const}. Likewise, a
2289function that calls a non-@code{const} function usually must not be
2290@code{const}. It does not make sense for a @code{const} function to
2291return @code{void}.
2292
f0523f02 2293The attribute @code{const} is not implemented in GCC versions earlier
c1f7febf
RK
2294than 2.5. An alternative way to declare that a function has no side
2295effects, which works in the current version and in some older versions,
2296is as follows:
2297
2298@smallexample
2299typedef int intfn ();
2300
2301extern const intfn square;
2302@end smallexample
2303
2304This approach does not work in GNU C++ from 2.6.0 on, since the language
2305specifies that the @samp{const} must be attached to the return value.
2306
c8619b90
NS
2307@item constructor
2308@itemx destructor
fc8600f9
MM
2309@itemx constructor (@var{priority})
2310@itemx destructor (@var{priority})
c8619b90
NS
2311@cindex @code{constructor} function attribute
2312@cindex @code{destructor} function attribute
2313The @code{constructor} attribute causes the function to be called
2314automatically before execution enters @code{main ()}. Similarly, the
2315@code{destructor} attribute causes the function to be called
2316automatically after @code{main ()} has completed or @code{exit ()} has
2317been called. Functions with these attributes are useful for
2318initializing data that will be used implicitly during the execution of
2319the program.
2320
fc8600f9
MM
2321You may provide an optional integer priority to control the order in
2322which constructor and destructor functions are run. A constructor
2323with a smaller priority number runs before a constructor with a larger
2324priority number; the opposite relationship holds for destructors. So,
2325if you have a constructor that allocates a resource and a destructor
2326that deallocates the same resource, both functions typically have the
2327same priority. The priorities for constructor and destructor
2328functions are the same as those specified for namespace-scope C++
2329objects (@pxref{C++ Attributes}).
2330
c8619b90
NS
2331These attributes are not currently implemented for Objective-C@.
2332
2333@item deprecated
9b86d6bb 2334@itemx deprecated (@var{msg})
c8619b90
NS
2335@cindex @code{deprecated} attribute.
2336The @code{deprecated} attribute results in a warning if the function
2337is used anywhere in the source file. This is useful when identifying
2338functions that are expected to be removed in a future version of a
2339program. The warning also includes the location of the declaration
2340of the deprecated function, to enable users to easily find further
2341information about why the function is deprecated, or what they should
2342do instead. Note that the warnings only occurs for uses:
2343
2344@smallexample
2345int old_fn () __attribute__ ((deprecated));
2346int old_fn ();
2347int (*fn_ptr)() = old_fn;
2348@end smallexample
2349
9b86d6bb
L
2350results in a warning on line 3 but not line 2. The optional msg
2351argument, which must be a string, will be printed in the warning if
2352present.
c8619b90
NS
2353
2354The @code{deprecated} attribute can also be used for variables and
2355types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2356
e2491744
DD
2357@item disinterrupt
2358@cindex @code{disinterrupt} attribute
feeeff5c 2359On Epiphany and MeP targets, this attribute causes the compiler to emit
e2491744
DD
2360instructions to disable interrupts for the duration of the given
2361function.
2362
c8619b90
NS
2363@item dllexport
2364@cindex @code{__declspec(dllexport)}
b2ca3702
MM
2365On Microsoft Windows targets and Symbian OS targets the
2366@code{dllexport} attribute causes the compiler to provide a global
2367pointer to a pointer in a DLL, so that it can be referenced with the
2368@code{dllimport} attribute. On Microsoft Windows targets, the pointer
2369name is formed by combining @code{_imp__} and the function or variable
2370name.
2371
2372You can use @code{__declspec(dllexport)} as a synonym for
2373@code{__attribute__ ((dllexport))} for compatibility with other
2374compilers.
2375
2376On systems that support the @code{visibility} attribute, this
3a687f8b
MM
2377attribute also implies ``default'' visibility. It is an error to
2378explicitly specify any other visibility.
c8619b90 2379
ff2ce160 2380In previous versions of GCC, the @code{dllexport} attribute was ignored
47ea1edf
DK
2381for inlined functions, unless the @option{-fkeep-inline-functions} flag
2382had been used. The default behaviour now is to emit all dllexported
2383inline functions; however, this can cause object file-size bloat, in
2384which case the old behaviour can be restored by using
2385@option{-fno-keep-inline-dllexport}.
2386
2387The attribute is also ignored for undefined symbols.
c8619b90 2388
8a36672b
JM
2389When applied to C++ classes, the attribute marks defined non-inlined
2390member functions and static data members as exports. Static consts
c8619b90
NS
2391initialized in-class are not marked unless they are also defined
2392out-of-class.
2393
b55e3aad 2394For Microsoft Windows targets there are alternative methods for
b2ca3702 2395including the symbol in the DLL's export table such as using a
b55e3aad
NC
2396@file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2397the @option{--export-all} linker flag.
c8619b90
NS
2398
2399@item dllimport
2400@cindex @code{__declspec(dllimport)}
b2ca3702 2401On Microsoft Windows and Symbian OS targets, the @code{dllimport}
b55e3aad 2402attribute causes the compiler to reference a function or variable via
b2ca3702 2403a global pointer to a pointer that is set up by the DLL exporting the
3a687f8b
MM
2404symbol. The attribute implies @code{extern}. On Microsoft Windows
2405targets, the pointer name is formed by combining @code{_imp__} and the
2406function or variable name.
b2ca3702
MM
2407
2408You can use @code{__declspec(dllimport)} as a synonym for
2409@code{__attribute__ ((dllimport))} for compatibility with other
2410compilers.
c8619b90 2411
3a687f8b
MM
2412On systems that support the @code{visibility} attribute, this
2413attribute also implies ``default'' visibility. It is an error to
2414explicitly specify any other visibility.
2415
8a36672b 2416Currently, the attribute is ignored for inlined functions. If the
c8619b90
NS
2417attribute is applied to a symbol @emph{definition}, an error is reported.
2418If a symbol previously declared @code{dllimport} is later defined, the
2419attribute is ignored in subsequent references, and a warning is emitted.
2420The attribute is also overridden by a subsequent declaration as
2421@code{dllexport}.
2422
2423When applied to C++ classes, the attribute marks non-inlined
2424member functions and static data members as imports. However, the
2425attribute is ignored for virtual methods to allow creation of vtables
2426using thunks.
2427
b2ca3702 2428On the SH Symbian OS target the @code{dllimport} attribute also has
78466c0e 2429another affect---it can cause the vtable and run-time type information
b2ca3702
MM
2430for a class to be exported. This happens when the class has a
2431dllimport'ed constructor or a non-inline, non-pure virtual function
e4ae5e77 2432and, for either of those two conditions, the class also has an inline
b2ca3702
MM
2433constructor or destructor and has a key function that is defined in
2434the current translation unit.
b55e3aad
NC
2435
2436For Microsoft Windows based targets the use of the @code{dllimport}
2437attribute on functions is not necessary, but provides a small
8a36672b 2438performance benefit by eliminating a thunk in the DLL@. The use of the
b55e3aad 2439@code{dllimport} attribute on imported variables was required on older
b2ca3702 2440versions of the GNU linker, but can now be avoided by passing the
8a36672b 2441@option{--enable-auto-import} switch to the GNU linker. As with
b2ca3702 2442functions, using the attribute for a variable eliminates a thunk in
8a36672b 2443the DLL@.
b2ca3702 2444
d32034a7
DS
2445One drawback to using this attribute is that a pointer to a
2446@emph{variable} marked as @code{dllimport} cannot be used as a constant
2447address. However, a pointer to a @emph{function} with the
2448@code{dllimport} attribute can be used as a constant initializer; in
2449this case, the address of a stub function in the import lib is
2450referenced. On Microsoft Windows targets, the attribute can be disabled
b2ca3702 2451for functions by setting the @option{-mnop-fun-dllimport} flag.
c8619b90
NS
2452
2453@item eightbit_data
2454@cindex eight bit data on the H8/300, H8/300H, and H8S
2455Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2456variable should be placed into the eight bit data section.
2457The compiler will generate more efficient code for certain operations
2458on data in the eight bit data area. Note the eight bit data area is limited to
2459256 bytes of data.
2460
2461You must use GAS and GLD from GNU binutils version 2.7 or later for
2462this attribute to work correctly.
2463
0d4a78eb
BS
2464@item exception_handler
2465@cindex exception handler functions on the Blackfin processor
2466Use this attribute on the Blackfin to indicate that the specified function
2467is an exception handler. The compiler will generate function entry and
2468exit sequences suitable for use in an exception handler when this
2469attribute is present.
2470
1df48f5c
JW
2471@item externally_visible
2472@cindex @code{externally_visible} attribute.
2473This attribute, attached to a global variable or function, nullifies
2474the effect of the @option{-fwhole-program} command-line option, so the
6d41cd02 2475object remains visible outside the current compilation unit. If @option{-fwhole-program} is used together with @option{-flto} and @command{gold} is used as the linker plugin, @code{externally_visible} attributes are automatically added to functions (not variable yet due to a current @command{gold} issue) that are accessed outside of LTO objects according to resolution file produced by @command{gold}. For other linkers that cannot generate resolution file, explicit @code{externally_visible} attributes are still necessary.
1df48f5c 2476
c8619b90
NS
2477@item far
2478@cindex functions which handle memory bank switching
2479On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2480use a calling convention that takes care of switching memory banks when
2481entering and leaving a function. This calling convention is also the
2482default when using the @option{-mlong-calls} option.
2483
2484On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2485to call and return from a function.
2486
2487On 68HC11 the compiler will generate a sequence of instructions
2488to invoke a board-specific routine to switch the memory bank and call the
8a36672b 2489real function. The board-specific routine simulates a @code{call}.
c8619b90 2490At the end of a function, it will jump to a board-specific routine
8a36672b 2491instead of using @code{rts}. The board-specific return routine simulates
c8619b90
NS
2492the @code{rtc}.
2493
e2491744
DD
2494On MeP targets this causes the compiler to use a calling convention
2495which assumes the called function is too far away for the built-in
2496addressing modes.
2497
65655f79
DD
2498@item fast_interrupt
2499@cindex interrupt handler functions
65a324b4 2500Use this attribute on the M32C and RX ports to indicate that the specified
65655f79
DD
2501function is a fast interrupt handler. This is just like the
2502@code{interrupt} attribute, except that @code{freit} is used to return
2503instead of @code{reit}.
2504
c8619b90
NS
2505@item fastcall
2506@cindex functions that pop the argument stack on the 386
2507On the Intel 386, the @code{fastcall} attribute causes the compiler to
2f84b963
RG
2508pass the first argument (if of integral type) in the register ECX and
2509the second argument (if of integral type) in the register EDX@. Subsequent
2510and other typed arguments are passed on the stack. The called function will
2511pop the arguments off the stack. If the number of arguments is variable all
c8619b90 2512arguments are pushed on the stack.
c1f7febf 2513
3e65f251
KT
2514@item thiscall
2515@cindex functions that pop the argument stack on the 386
2516On the Intel 386, the @code{thiscall} attribute causes the compiler to
2517pass the first argument (if of integral type) in the register ECX.
2518Subsequent and other typed arguments are passed on the stack. The called
2519function will pop the arguments off the stack.
2520If the number of arguments is variable all arguments are pushed on the
2521stack.
2522The @code{thiscall} attribute is intended for C++ non-static member functions.
2523As gcc extension this calling convention can be used for C-functions
2524and for static member methods.
2525
c1f7febf
RK
2526@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2527@cindex @code{format} function attribute
84330467 2528@opindex Wformat
bb72a084 2529The @code{format} attribute specifies that a function takes @code{printf},
26f6672d
JM
2530@code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2531should be type-checked against a format string. For example, the
2532declaration:
c1f7febf
RK
2533
2534@smallexample
2535extern int
2536my_printf (void *my_object, const char *my_format, ...)
2537 __attribute__ ((format (printf, 2, 3)));
2538@end smallexample
2539
2540@noindent
2541causes the compiler to check the arguments in calls to @code{my_printf}
2542for consistency with the @code{printf} style format string argument
2543@code{my_format}.
2544
2545The parameter @var{archetype} determines how the format string is
6590fc9f
KT
2546interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2547@code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2548@code{strfmon}. (You can also use @code{__printf__},
2549@code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2550MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2551@code{ms_strftime} are also present.
2552@var{archtype} values such as @code{printf} refer to the formats accepted
2553by the system's C run-time library, while @code{gnu_} values always refer
2554to the formats accepted by the GNU C Library. On Microsoft Windows
2555targets, @code{ms_} values refer to the formats accepted by the
2556@file{msvcrt.dll} library.
2557The parameter @var{string-index}
2558specifies which argument is the format string argument (starting
2559from 1), while @var{first-to-check} is the number of the first
2560argument to check against the format string. For functions
2561where the arguments are not available to be checked (such as
c1f7febf 2562@code{vprintf}), specify the third parameter as zero. In this case the
b722c82c
JM
2563compiler only checks the format string for consistency. For
2564@code{strftime} formats, the third parameter is required to be zero.
f57a2e3a
BE
2565Since non-static C++ methods have an implicit @code{this} argument, the
2566arguments of such methods should be counted from two, not one, when
2567giving values for @var{string-index} and @var{first-to-check}.
c1f7febf
RK
2568
2569In the example above, the format string (@code{my_format}) is the second
2570argument of the function @code{my_print}, and the arguments to check
2571start with the third argument, so the correct parameters for the format
2572attribute are 2 and 3.
2573
84330467 2574@opindex ffreestanding
e6e931b7 2575@opindex fno-builtin
c1f7febf 2576The @code{format} attribute allows you to identify your own functions
f0523f02 2577which take format strings as arguments, so that GCC can check the
b722c82c 2578calls to these functions for errors. The compiler always (unless
e6e931b7 2579@option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
b722c82c 2580for the standard library functions @code{printf}, @code{fprintf},
bb72a084 2581@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
c1f7febf 2582@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
84330467 2583warnings are requested (using @option{-Wformat}), so there is no need to
b722c82c
JM
2584modify the header file @file{stdio.h}. In C99 mode, the functions
2585@code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
26f6672d 2586@code{vsscanf} are also checked. Except in strictly conforming C
b4c984fb
KG
2587standard modes, the X/Open function @code{strfmon} is also checked as
2588are @code{printf_unlocked} and @code{fprintf_unlocked}.
b722c82c 2589@xref{C Dialect Options,,Options Controlling C Dialect}.
c1f7febf 2590
ff2ce160 2591For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
91ebb981
IS
2592recognized in the same context. Declarations including these format attributes
2593will be parsed for correct syntax, however the result of checking of such format
ff2ce160 2594strings is not yet defined, and will not be carried out by this version of the
91ebb981
IS
2595compiler.
2596
2597The target may also provide additional types of format checks.
a2bec818
DJ
2598@xref{Target Format Checks,,Format Checks Specific to Particular
2599Target Machines}.
2600
c1f7febf
RK
2601@item format_arg (@var{string-index})
2602@cindex @code{format_arg} function attribute
84330467 2603@opindex Wformat-nonliteral
26f6672d
JM
2604The @code{format_arg} attribute specifies that a function takes a format
2605string for a @code{printf}, @code{scanf}, @code{strftime} or
2606@code{strfmon} style function and modifies it (for example, to translate
2607it into another language), so the result can be passed to a
2608@code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2609function (with the remaining arguments to the format function the same
2610as they would have been for the unmodified string). For example, the
2611declaration:
c1f7febf
RK
2612
2613@smallexample
2614extern char *
2615my_dgettext (char *my_domain, const char *my_format)
2616 __attribute__ ((format_arg (2)));
2617@end smallexample
2618
2619@noindent
26f6672d
JM
2620causes the compiler to check the arguments in calls to a @code{printf},
2621@code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2622format string argument is a call to the @code{my_dgettext} function, for
2623consistency with the format string argument @code{my_format}. If the
2624@code{format_arg} attribute had not been specified, all the compiler
2625could tell in such calls to format functions would be that the format
2626string argument is not constant; this would generate a warning when
84330467 2627@option{-Wformat-nonliteral} is used, but the calls could not be checked
26f6672d 2628without the attribute.
c1f7febf
RK
2629
2630The parameter @var{string-index} specifies which argument is the format
f57a2e3a
BE
2631string argument (starting from one). Since non-static C++ methods have
2632an implicit @code{this} argument, the arguments of such methods should
2633be counted from two.
c1f7febf
RK
2634
2635The @code{format-arg} attribute allows you to identify your own
f0523f02 2636functions which modify format strings, so that GCC can check the
26f6672d
JM
2637calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2638type function whose operands are a call to one of your own function.
2639The compiler always treats @code{gettext}, @code{dgettext}, and
2640@code{dcgettext} in this manner except when strict ISO C support is
84330467 2641requested by @option{-ansi} or an appropriate @option{-std} option, or
e6e931b7
JM
2642@option{-ffreestanding} or @option{-fno-builtin}
2643is used. @xref{C Dialect Options,,Options
26f6672d 2644Controlling C Dialect}.
c1f7febf 2645
91ebb981
IS
2646For Objective-C dialects, the @code{format-arg} attribute may refer to an
2647@code{NSString} reference for compatibility with the @code{format} attribute
2648above.
2649
2650The target may also allow additional types in @code{format-arg} attributes.
2651@xref{Target Format Checks,,Format Checks Specific to Particular
2652Target Machines}.
2653
c8619b90 2654@item function_vector
561642fa 2655@cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
c8619b90
NS
2656Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2657function should be called through the function vector. Calling a
2658function through the function vector will reduce code size, however;
2659the function vector has a limited size (maximum 128 entries on the H8/300
2660and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
b34c7881 2661
561642fa
AP
2662In SH2A target, this attribute declares a function to be called using the
2663TBR relative addressing mode. The argument to this attribute is the entry
2664number of the same function in a vector table containing all the TBR
2665relative addressable functions. For the successful jump, register TBR
2666should contain the start address of this TBR relative vector table.
2667In the startup routine of the user application, user needs to care of this
2668TBR register initialization. The TBR relative vector table can have at
2669max 256 function entries. The jumps to these functions will be generated
2670using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR).
c8619b90
NS
2671You must use GAS and GLD from GNU binutils version 2.7 or later for
2672this attribute to work correctly.
b34c7881 2673
561642fa
AP
2674Please refer the example of M16C target, to see the use of this
2675attribute while declaring a function,
2676
2677In an application, for a function being called once, this attribute will
2678save at least 8 bytes of code; and if other successive calls are being
2679made to the same function, it will save 2 bytes of code per each of these
2680calls.
2681
5abd2125
JS
2682On M16C/M32C targets, the @code{function_vector} attribute declares a
2683special page subroutine call function. Use of this attribute reduces
2684the code size by 2 bytes for each call generated to the
2685subroutine. The argument to the attribute is the vector number entry
2686from the special page vector table which contains the 16 low-order
2687bits of the subroutine's entry address. Each vector table has special
2688page number (18 to 255) which are used in @code{jsrs} instruction.
2689Jump addresses of the routines are generated by adding 0x0F0000 (in
2690case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2691byte addresses set in the vector table. Therefore you need to ensure
2692that all the special page vector routines should get mapped within the
2693address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2694(for M32C).
2695
2696In the following example 2 bytes will be saved for each call to
2697function @code{foo}.
2698
2699@smallexample
2700void foo (void) __attribute__((function_vector(0x18)));
2701void foo (void)
2702@{
2703@}
2704
2705void bar (void)
2706@{
2707 foo();
2708@}
2709@end smallexample
2710
2711If functions are defined in one file and are called in another file,
2712then be sure to write this declaration in both files.
2713
2714This attribute is ignored for R8C target.
2715
c8619b90
NS
2716@item interrupt
2717@cindex interrupt handler functions
b25364a0 2718Use this attribute on the ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS,
85b8555e 2719RL78, RX and Xstormy16 ports to indicate that the specified function is an
2bccb817
KH
2720interrupt handler. The compiler will generate function entry and exit
2721sequences suitable for use in an interrupt handler when this attribute
08b03910
JB
2722is present. With Epiphany targets it may also generate a special section with
2723code to initialize the interrupt vector table.
b34c7881 2724
80920132
ME
2725Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2726and SH processors can be specified via the @code{interrupt_handler} attribute.
b34c7881 2727
c8619b90 2728Note, on the AVR, interrupts will be enabled inside the function.
9162542e 2729
c8619b90
NS
2730Note, for the ARM, you can specify the kind of interrupt to be handled by
2731adding an optional parameter to the interrupt attribute like this:
e23bd218
IR
2732
2733@smallexample
c8619b90 2734void f () __attribute__ ((interrupt ("IRQ")));
e23bd218
IR
2735@end smallexample
2736
c8619b90 2737Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
e23bd218 2738
7a085dce 2739On ARMv7-M the interrupt type is ignored, and the attribute means the function
5b3e6663
PB
2740may be called with a word aligned stack pointer.
2741
08b03910
JB
2742On Epiphany targets one or more optional parameters can be added like this:
2743
2744@smallexample
2745void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2746@end smallexample
2747
2748Permissible values for these parameters are: @w{@code{reset}},
2749@w{@code{software_exception}}, @w{@code{page_miss}},
2750@w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
2751@w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
2752Multiple parameters indicate that multiple entries in the interrupt
2753vector table should be initialized for this function, i.e. for each
2754parameter @w{@var{name}}, a jump to the function will be emitted in
2755the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
2756entirely, in which case no interrupt vector table entry will be provided.
2757
2758Note, on Epiphany targets, interrupts are enabled inside the function
2759unless the @code{disinterrupt} attribute is also specified.
2760
2761On Epiphany targets, you can also use the following attribute to
2762modify the behavior of an interrupt handler:
2763@table @code
2764@item forwarder_section
2765@cindex @code{forwarder_section} attribute
2766The interrupt handler may be in external memory which cannot be
2767reached by a branch instruction, so generate a local memory trampoline
2768to transfer control. The single parameter identifies the section where
2769the trampoline will be placed.
2770@end table
2771
2772The following examples are all valid uses of these attributes on
2773Epiphany targets:
2774@smallexample
2775void __attribute__ ((interrupt)) universal_handler ();
2776void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
2777void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2778void __attribute__ ((interrupt ("timer0"), disinterrupt))
2779 fast_timer_handler ();
2780void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp")))
2781 external_dma_handler ();
2782@end smallexample
2783
e19da24c
CF
2784On MIPS targets, you can use the following attributes to modify the behavior
2785of an interrupt handler:
2786@table @code
2787@item use_shadow_register_set
2788@cindex @code{use_shadow_register_set} attribute
2789Assume that the handler uses a shadow register set, instead of
2790the main general-purpose registers.
2791
2792@item keep_interrupts_masked
2793@cindex @code{keep_interrupts_masked} attribute
2794Keep interrupts masked for the whole function. Without this attribute,
2795GCC tries to reenable interrupts for as much of the function as it can.
2796
2797@item use_debug_exception_return
2798@cindex @code{use_debug_exception_return} attribute
2799Return using the @code{deret} instruction. Interrupt handlers that don't
2800have this attribute return using @code{eret} instead.
2801@end table
2802
2803You can use any combination of these attributes, as shown below:
2804@smallexample
2805void __attribute__ ((interrupt)) v0 ();
2806void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
2807void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
2808void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
2809void __attribute__ ((interrupt, use_shadow_register_set,
73b8bfe1 2810 keep_interrupts_masked)) v4 ();
e19da24c 2811void __attribute__ ((interrupt, use_shadow_register_set,
73b8bfe1 2812 use_debug_exception_return)) v5 ();
e19da24c 2813void __attribute__ ((interrupt, keep_interrupts_masked,
73b8bfe1 2814 use_debug_exception_return)) v6 ();
e19da24c 2815void __attribute__ ((interrupt, use_shadow_register_set,
73b8bfe1
RW
2816 keep_interrupts_masked,
2817 use_debug_exception_return)) v7 ();
e19da24c
CF
2818@end smallexample
2819
85b8555e
DD
2820On RL78, use @code{brk_interrupt} instead of @code{interrupt} for
2821handlers intended to be used with the @code{BRK} opcode (i.e. those
2822that must end with @code{RETB} instead of @code{RETI}).
2823
ba885ec5
NS
2824@item ifunc ("@var{resolver}")
2825@cindex @code{ifunc} attribute
2826The @code{ifunc} attribute is used to mark a function as an indirect
2827function using the STT_GNU_IFUNC symbol type extension to the ELF
2828standard. This allows the resolution of the symbol value to be
2829determined dynamically at load time, and an optimized version of the
2830routine can be selected for the particular processor or other system
2831characteristics determined then. To use this attribute, first define
2832the implementation functions available, and a resolver function that
2833returns a pointer to the selected implementation function. The
2834implementation functions' declarations must match the API of the
2835function being implemented, the resolver's declaration is be a
2836function returning pointer to void function returning void:
2837
2838@smallexample
2839void *my_memcpy (void *dst, const void *src, size_t len)
2840@{
2841 @dots{}
2842@}
2843
2844static void (*resolve_memcpy (void)) (void)
2845@{
2846 return my_memcpy; // we'll just always select this routine
2847@}
2848@end smallexample
2849
2850The exported header file declaring the function the user calls would
2851contain:
2852
2853@smallexample
2854extern void *memcpy (void *, const void *, size_t);
2855@end smallexample
2856
2857allowing the user to call this as a regular function, unaware of the
2858implementation. Finally, the indirect function needs to be defined in
2859the same translation unit as the resolver function:
2860
2861@smallexample
2862void *memcpy (void *, const void *, size_t)
2863 __attribute__ ((ifunc ("resolve_memcpy")));
2864@end smallexample
2865
2866Indirect functions cannot be weak, and require a recent binutils (at
2867least version 2.20.1), and GNU C library (at least version 2.11.1).
2868
c8619b90 2869@item interrupt_handler
0d4a78eb
BS
2870@cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2871Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2872indicate that the specified function is an interrupt handler. The compiler
2873will generate function entry and exit sequences suitable for use in an
2874interrupt handler when this attribute is present.
2875
a4242737
KH
2876@item interrupt_thread
2877@cindex interrupt thread functions on fido
2878Use this attribute on fido, a subarchitecture of the m68k, to indicate
2879that the specified function is an interrupt handler that is designed
2880to run as a thread. The compiler omits generate prologue/epilogue
2881sequences and replaces the return instruction with a @code{sleep}
2882instruction. This attribute is available only on fido.
2883
d8f8ca80
RR
2884@item isr
2885@cindex interrupt service routines on ARM
2886Use this attribute on ARM to write Interrupt Service Routines. This is an
2887alias to the @code{interrupt} attribute above.
2888
0d4a78eb
BS
2889@item kspisusp
2890@cindex User stack pointer in interrupts on the Blackfin
2891When used together with @code{interrupt_handler}, @code{exception_handler}
2892or @code{nmi_handler}, code will be generated to load the stack pointer
2893from the USP register in the function prologue.
72954a4f 2894
4af797b5
JZ
2895@item l1_text
2896@cindex @code{l1_text} function attribute
2897This attribute specifies a function to be placed into L1 Instruction
0ee2ea09 2898SRAM@. The function will be put into a specific section named @code{.l1.text}.
4af797b5
JZ
2899With @option{-mfdpic}, function calls with a such function as the callee
2900or caller will use inlined PLT.
2901
603bb63e
BS
2902@item l2
2903@cindex @code{l2} function attribute
2904On the Blackfin, this attribute specifies a function to be placed into L2
2905SRAM. The function will be put into a specific section named
2906@code{.l1.text}. With @option{-mfdpic}, callers of such functions will use
2907an inlined PLT.
2908
46a4da10
JH
2909@item leaf
2910@cindex @code{leaf} function attribute
2911Calls to external functions with this attribute must return to the current
2b0d3573
RW
2912compilation unit only by return or by exception handling. In particular, leaf
2913functions are not allowed to call callback function passed to it from the current
46a4da10 2914compilation unit or directly call functions exported by the unit or longjmp
2b0d3573
RW
2915into the unit. Leaf function might still call functions from other compilation
2916units and thus they are not necessarily leaf in the sense that they contain no
46a4da10
JH
2917function calls at all.
2918
2919The attribute is intended for library functions to improve dataflow analysis.
2b0d3573
RW
2920The compiler takes the hint that any data not escaping the current compilation unit can
2921not be used or modified by the leaf function. For example, the @code{sin} function
2922is a leaf function, but @code{qsort} is not.
46a4da10 2923
2b0d3573
RW
2924Note that leaf functions might invoke signals and signal handlers might be
2925defined in the current compilation unit and use static variables. The only
46a4da10
JH
2926compliant way to write such a signal handler is to declare such variables
2927@code{volatile}.
2928
2b0d3573 2929The attribute has no effect on functions defined within the current compilation
46a4da10
JH
2930unit. This is to allow easy merging of multiple compilation units into one,
2931for example, by using the link time optimization. For this reason the
2932attribute is not allowed on types to annotate indirect calls.
2933
c8619b90
NS
2934@item long_call/short_call
2935@cindex indirect calls on ARM
2936This attribute specifies how a particular function is called on
feeeff5c
JR
2937ARM and Epiphany. Both attributes override the
2938@option{-mlong-calls} (@pxref{ARM Options})
bcbc9564 2939command-line switch and @code{#pragma long_calls} settings. The
87c365a4
NS
2940@code{long_call} attribute indicates that the function might be far
2941away from the call site and require a different (more expensive)
2942calling sequence. The @code{short_call} attribute always places
c8619b90
NS
2943the offset to the function from the call site into the @samp{BL}
2944instruction directly.
72954a4f 2945
c8619b90
NS
2946@item longcall/shortcall
2947@cindex functions called via pointer on the RS/6000 and PowerPC
87c365a4
NS
2948On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2949indicates that the function might be far away from the call site and
2950require a different (more expensive) calling sequence. The
2951@code{shortcall} attribute indicates that the function is always close
2952enough for the shorter calling sequence to be used. These attributes
2953override both the @option{-mlongcall} switch and, on the RS/6000 and
2954PowerPC, the @code{#pragma longcall} setting.
72954a4f 2955
c8619b90
NS
2956@xref{RS/6000 and PowerPC Options}, for more information on whether long
2957calls are necessary.
c1f7febf 2958
cd3a59b3 2959@item long_call/near/far
4dbdb061 2960@cindex indirect calls on MIPS
cd3a59b3
SL
2961These attributes specify how a particular function is called on MIPS@.
2962The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2963command-line switch. The @code{long_call} and @code{far} attributes are
2964synonyms, and cause the compiler to always call
4dbdb061 2965the function by first loading its address into a register, and then using
cd3a59b3 2966the contents of that register. The @code{near} attribute has the opposite
ff2ce160 2967effect; it specifies that non-PIC calls should be made using the more
cd3a59b3 2968efficient @code{jal} instruction.
4dbdb061 2969
140592a0
AG
2970@item malloc
2971@cindex @code{malloc} attribute
2972The @code{malloc} attribute is used to tell the compiler that a function
928a5ba9 2973may be treated as if any non-@code{NULL} pointer it returns cannot
65d5c485
RG
2974alias any other pointer valid when the function returns and that the memory
2975has undefined content.
140592a0 2976This will often improve optimization.
928a5ba9 2977Standard functions with this property include @code{malloc} and
65d5c485
RG
2978@code{calloc}. @code{realloc}-like functions do not have this
2979property as the memory pointed to does not have undefined content.
140592a0 2980
f9e4a411
SL
2981@item mips16/nomips16
2982@cindex @code{mips16} attribute
2983@cindex @code{nomips16} attribute
2984
2985On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2986function attributes to locally select or turn off MIPS16 code generation.
ff2ce160
MS
2987A function with the @code{mips16} attribute is emitted as MIPS16 code,
2988while MIPS16 code generation is disabled for functions with the
2989@code{nomips16} attribute. These attributes override the
f9e4a411 2990@option{-mips16} and @option{-mno-mips16} options on the command line
ff2ce160 2991(@pxref{MIPS Options}).
f9e4a411
SL
2992
2993When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2994preprocessor symbol @code{__mips16} reflects the setting on the command line,
2995not that within individual functions. Mixed MIPS16 and non-MIPS16 code
2996may interact badly with some GCC extensions such as @code{__builtin_apply}
2997(@pxref{Constructing Calls}).
2998
c8619b90
NS
2999@item model (@var{model-name})
3000@cindex function addressability on the M32R/D
3001@cindex variable addressability on the IA-64
3002
3003On the M32R/D, use this attribute to set the addressability of an
3004object, and of the code generated for a function. The identifier
3005@var{model-name} is one of @code{small}, @code{medium}, or
3006@code{large}, representing each of the code models.
3007
3008Small model objects live in the lower 16MB of memory (so that their
3009addresses can be loaded with the @code{ld24} instruction), and are
3010callable with the @code{bl} instruction.
3011
3012Medium model objects may live anywhere in the 32-bit address space (the
3013compiler will generate @code{seth/add3} instructions to load their addresses),
3014and are callable with the @code{bl} instruction.
3015
3016Large model objects may live anywhere in the 32-bit address space (the
3017compiler will generate @code{seth/add3} instructions to load their addresses),
3018and may not be reachable with the @code{bl} instruction (the compiler will
3019generate the much slower @code{seth/add3/jl} instruction sequence).
3020
3021On IA-64, use this attribute to set the addressability of an object.
3022At present, the only supported identifier for @var{model-name} is
3023@code{small}, indicating addressability via ``small'' (22-bit)
3024addresses (so that their addresses can be loaded with the @code{addl}
3025instruction). Caveat: such addressing is by definition not position
3026independent and hence this attribute must not be used for objects
3027defined by shared libraries.
3028
7c800926 3029@item ms_abi/sysv_abi
f9ac6b1e 3030@cindex @code{ms_abi} attribute
7c800926
KT
3031@cindex @code{sysv_abi} attribute
3032
2fe83a0c
KT
3033On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
3034to indicate which calling convention should be used for a function. The
3035@code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
3036while the @code{sysv_abi} attribute tells the compiler to use the ABI
3037used on GNU/Linux and other systems. The default is to use the Microsoft ABI
3038when targeting Windows. On all other systems, the default is the x86/AMD ABI.
7c800926 3039
2fe83a0c
KT
3040Note, the @code{ms_abi} attribute for Windows 64-bit targets currently
3041requires the @option{-maccumulate-outgoing-args} option.
7c800926 3042
628c4eee
KT
3043@item callee_pop_aggregate_return (@var{number})
3044@cindex @code{callee_pop_aggregate_return} attribute
3045
3046On 32-bit i?86-*-* targets, you can control by those attribute for
3047aggregate return in memory, if the caller is responsible to pop the hidden
3048pointer together with the rest of the arguments - @var{number} equal to
3049zero -, or if the callee is responsible to pop hidden pointer - @var{number}
e44dbbe1
RO
3050equal to one. The default i386 ABI assumes that the callee pops the
3051stack for hidden pointer.
628c4eee 3052
2fe83a0c
KT
3053Note, that on 32-bit i386 Windows targets the compiler assumes that the
3054caller pops the stack for hidden pointer.
3055
afd2c302
SD
3056@item ms_hook_prologue
3057@cindex @code{ms_hook_prologue} attribute
3058
135a687e
KT
3059On 32 bit i[34567]86-*-* targets and 64 bit x86_64-*-* targets, you can use
3060this function attribute to make gcc generate the "hot-patching" function
3061prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
3062and newer.
afd2c302 3063
c8619b90
NS
3064@item naked
3065@cindex function without a prologue/epilogue code
ed3100b2 3066Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that
85d9c13c 3067the specified function does not need prologue/epilogue sequences generated by
ff2ce160
MS
3068the compiler. It is up to the programmer to provide these sequences. The
3069only statements that can be safely included in naked functions are
007e61c2 3070@code{asm} statements that do not have operands. All other statements,
ff2ce160
MS
3071including declarations of local variables, @code{if} statements, and so
3072forth, should be avoided. Naked functions should be used to implement the
007e61c2
PB
3073body of an assembly function, while allowing the compiler to construct
3074the requisite function declaration for the assembler.
c8619b90
NS
3075
3076@item near
3077@cindex functions which do not handle memory bank switching on 68HC11/68HC12
3078On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
3079use the normal calling convention based on @code{jsr} and @code{rts}.
3080This attribute can be used to cancel the effect of the @option{-mlong-calls}
3081option.
3082
e2491744
DD
3083On MeP targets this attribute causes the compiler to assume the called
3084function is close enough to use the normal calling convention,
3085overriding the @code{-mtf} command line option.
3086
0d4a78eb
BS
3087@item nesting
3088@cindex Allow nesting in an interrupt handler on the Blackfin processor.
3089Use this attribute together with @code{interrupt_handler},
3090@code{exception_handler} or @code{nmi_handler} to indicate that the function
3091entry code should enable nested interrupts or exceptions.
3092
3093@item nmi_handler
3094@cindex NMI handler functions on the Blackfin processor
3095Use this attribute on the Blackfin to indicate that the specified function
3096is an NMI handler. The compiler will generate function entry and
3097exit sequences suitable for use in an NMI handler when this
3098attribute is present.
3099
c8619b90
NS
3100@item no_instrument_function
3101@cindex @code{no_instrument_function} function attribute
3102@opindex finstrument-functions
3103If @option{-finstrument-functions} is given, profiling function calls will
3104be generated at entry and exit of most user-compiled functions.
3105Functions with this attribute will not be so instrumented.
3106
7458026b
ILT
3107@item no_split_stack
3108@cindex @code{no_split_stack} function attribute
3109@opindex fsplit-stack
3110If @option{-fsplit-stack} is given, functions will have a small
3111prologue which decides whether to split the stack. Functions with the
3112@code{no_split_stack} attribute will not have that prologue, and thus
3113may run with only a small amount of stack space available.
3114
c8619b90
NS
3115@item noinline
3116@cindex @code{noinline} function attribute
3117This function attribute prevents a function from being considered for
3118inlining.
ccd2a21e
HPN
3119@c Don't enumerate the optimizations by name here; we try to be
3120@c future-compatible with this mechanism.
3121If the function does not have side-effects, there are optimizations
3122other than inlining that causes function calls to be optimized away,
3123although the function call is live. To keep such calls from being
3124optimized away, put
3125@smallexample
3126asm ("");
3127@end smallexample
3128(@pxref{Extended Asm}) in the called function, to serve as a special
3129side-effect.
c8619b90 3130
86631ea3
MJ
3131@item noclone
3132@cindex @code{noclone} function attribute
3133This function attribute prevents a function from being considered for
3134cloning - a mechanism which produces specialized copies of functions
3135and which is (currently) performed by interprocedural constant
3136propagation.
3137
c8619b90
NS
3138@item nonnull (@var{arg-index}, @dots{})
3139@cindex @code{nonnull} function attribute
3140The @code{nonnull} attribute specifies that some function parameters should
3141be non-null pointers. For instance, the declaration:
c1f7febf
RK
3142
3143@smallexample
c8619b90
NS
3144extern void *
3145my_memcpy (void *dest, const void *src, size_t len)
6ccde948 3146 __attribute__((nonnull (1, 2)));
c1f7febf
RK
3147@end smallexample
3148
c8619b90
NS
3149@noindent
3150causes the compiler to check that, in calls to @code{my_memcpy},
3151arguments @var{dest} and @var{src} are non-null. If the compiler
3152determines that a null pointer is passed in an argument slot marked
3153as non-null, and the @option{-Wnonnull} option is enabled, a warning
3154is issued. The compiler may also choose to make optimizations based
3155on the knowledge that certain function arguments will not be null.
af3e86c2 3156
c8619b90
NS
3157If no argument index list is given to the @code{nonnull} attribute,
3158all pointer arguments are marked as non-null. To illustrate, the
3159following declaration is equivalent to the previous example:
47bd70b5
JJ
3160
3161@smallexample
c8619b90
NS
3162extern void *
3163my_memcpy (void *dest, const void *src, size_t len)
6ccde948 3164 __attribute__((nonnull));
47bd70b5
JJ
3165@end smallexample
3166
c8619b90
NS
3167@item noreturn
3168@cindex @code{noreturn} function attribute
3169A few standard library functions, such as @code{abort} and @code{exit},
3170cannot return. GCC knows this automatically. Some programs define
3171their own functions that never return. You can declare them
3172@code{noreturn} to tell the compiler this fact. For example,
9e8aab55 3173
c8619b90
NS
3174@smallexample
3175@group
3176void fatal () __attribute__ ((noreturn));
d5c4db17 3177
c8619b90
NS
3178void
3179fatal (/* @r{@dots{}} */)
3180@{
3181 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3182 exit (1);
3183@}
3184@end group
3185@end smallexample
9e8aab55 3186
c8619b90
NS
3187The @code{noreturn} keyword tells the compiler to assume that
3188@code{fatal} cannot return. It can then optimize without regard to what
3189would happen if @code{fatal} ever did return. This makes slightly
3190better code. More importantly, it helps avoid spurious warnings of
3191uninitialized variables.
9e8aab55 3192
c8619b90
NS
3193The @code{noreturn} keyword does not affect the exceptional path when that
3194applies: a @code{noreturn}-marked function may still return to the caller
2e9522f4 3195by throwing an exception or calling @code{longjmp}.
9e8aab55 3196
c8619b90
NS
3197Do not assume that registers saved by the calling function are
3198restored before calling the @code{noreturn} function.
47bd70b5 3199
c8619b90
NS
3200It does not make sense for a @code{noreturn} function to have a return
3201type other than @code{void}.
c1f7febf 3202
c8619b90
NS
3203The attribute @code{noreturn} is not implemented in GCC versions
3204earlier than 2.5. An alternative way to declare that a function does
3205not return, which works in the current version and in some older
3206versions, is as follows:
5d34c8e9 3207
c8619b90
NS
3208@smallexample
3209typedef void voidfn ();
c1f7febf 3210
c8619b90
NS
3211volatile voidfn fatal;
3212@end smallexample
e91f04de 3213
a1e73046
PC
3214This approach does not work in GNU C++.
3215
c8619b90
NS
3216@item nothrow
3217@cindex @code{nothrow} function attribute
3218The @code{nothrow} attribute is used to inform the compiler that a
3219function cannot throw an exception. For example, most functions in
3220the standard C library can be guaranteed not to throw an exception
3221with the notable exceptions of @code{qsort} and @code{bsearch} that
3222take function pointer arguments. The @code{nothrow} attribute is not
3f3174b6 3223implemented in GCC versions earlier than 3.3.
c1f7febf 3224
ab442df7
MM
3225@item optimize
3226@cindex @code{optimize} function attribute
3227The @code{optimize} attribute is used to specify that a function is to
3228be compiled with different optimization options than specified on the
3229command line. Arguments can either be numbers or strings. Numbers
3230are assumed to be an optimization level. Strings that begin with
3231@code{O} are assumed to be an optimization option, while other options
3232are assumed to be used with a @code{-f} prefix. You can also use the
3233@samp{#pragma GCC optimize} pragma to set the optimization options
3234that affect more than one function.
3235@xref{Function Specific Option Pragmas}, for details about the
e3606f3b 3236@samp{#pragma GCC optimize} pragma.
ab442df7
MM
3237
3238This can be used for instance to have frequently executed functions
3239compiled with more aggressive optimization options that produce faster
3240and larger code, while other functions can be called with less
5779e713 3241aggressive options.
ab442df7 3242
3d33d151
AS
3243@item OS_main/OS_task
3244@cindex @code{OS_main} AVR function attribute
3245@cindex @code{OS_task} AVR function attribute
3246On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3247do not save/restore any call-saved register in their prologue/epilogue.
3248
3249The @code{OS_main} attribute can be used when there @emph{is
3250guarantee} that interrupts are disabled at the time when the function
3251is entered. This will save resources when the stack pointer has to be
3252changed to set up a frame for local variables.
3253
3254The @code{OS_task} attribute can be used when there is @emph{no
3255guarantee} that interrupts are disabled at that time when the function
3256is entered like for, e@.g@. task functions in a multi-threading operating
3257system. In that case, changing the stack pointer register will be
3258guarded by save/clear/restore of the global interrupt enable flag.
3259
aa9ec4db 3260The differences to the @code{naked} function attribute are:
3d33d151
AS
3261@itemize @bullet
3262@item @code{naked} functions do not have a return instruction whereas
3263@code{OS_main} and @code{OS_task} functions will have a @code{RET} or
3264@code{RETI} return instruction.
3265@item @code{naked} functions do not set up a frame for local variables
3266or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3267as needed.
3268@end itemize
3269
14a782c8
RE
3270@item pcs
3271@cindex @code{pcs} function attribute
3272
3273The @code{pcs} attribute can be used to control the calling convention
3274used for a function on ARM. The attribute takes an argument that specifies
3275the calling convention to use.
3276
3277When compiling using the AAPCS ABI (or a variant of that) then valid
3278values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3279order to use a variant other than @code{"aapcs"} then the compiler must
3280be permitted to use the appropriate co-processor registers (i.e., the
3281VFP registers must be available in order to use @code{"aapcs-vfp"}).
3282For example,
3283
3284@smallexample
3285/* Argument passed in r0, and result returned in r0+r1. */
3286double f2d (float) __attribute__((pcs("aapcs")));
3287@end smallexample
3288
3289Variadic functions always use the @code{"aapcs"} calling convention and
3290the compiler will reject attempts to specify an alternative.
3291
c8619b90
NS
3292@item pure
3293@cindex @code{pure} function attribute
3294Many functions have no effects except the return value and their
3295return value depends only on the parameters and/or global variables.
3296Such a function can be subject
3297to common subexpression elimination and loop optimization just as an
3298arithmetic operator would be. These functions should be declared
3299with the attribute @code{pure}. For example,
a5c76ee6 3300
c8619b90
NS
3301@smallexample
3302int square (int) __attribute__ ((pure));
3303@end smallexample
c1f7febf 3304
c8619b90
NS
3305@noindent
3306says that the hypothetical function @code{square} is safe to call
3307fewer times than the program says.
c27ba912 3308
c8619b90
NS
3309Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3310Interesting non-pure functions are functions with infinite loops or those
3311depending on volatile memory or other system resource, that may change between
3312two consecutive calls (such as @code{feof} in a multithreading environment).
c1f7febf 3313
c8619b90
NS
3314The attribute @code{pure} is not implemented in GCC versions earlier
3315than 2.96.
c1f7febf 3316
52bf96d2
JH
3317@item hot
3318@cindex @code{hot} function attribute
3319The @code{hot} attribute is used to inform the compiler that a function is a
3320hot spot of the compiled program. The function is optimized more aggressively
3321and on many target it is placed into special subsection of the text section so
3322all hot functions appears close together improving locality.
3323
3324When profile feedback is available, via @option{-fprofile-use}, hot functions
3325are automatically detected and this attribute is ignored.
3326
ab442df7
MM
3327The @code{hot} attribute is not implemented in GCC versions earlier
3328than 4.3.
3329
52bf96d2
JH
3330@item cold
3331@cindex @code{cold} function attribute
3332The @code{cold} attribute is used to inform the compiler that a function is
3333unlikely executed. The function is optimized for size rather than speed and on
3334many targets it is placed into special subsection of the text section so all
3335cold functions appears close together improving code locality of non-cold parts
3336of program. The paths leading to call of cold functions within code are marked
44c7bd63 3337as unlikely by the branch prediction mechanism. It is thus useful to mark
52bf96d2
JH
3338functions used to handle unlikely conditions, such as @code{perror}, as cold to
3339improve optimization of hot functions that do call marked functions in rare
3340occasions.
3341
3342When profile feedback is available, via @option{-fprofile-use}, hot functions
3343are automatically detected and this attribute is ignored.
3344
ab442df7
MM
3345The @code{cold} attribute is not implemented in GCC versions earlier than 4.3.
3346
c8619b90
NS
3347@item regparm (@var{number})
3348@cindex @code{regparm} attribute
3349@cindex functions that are passed arguments in registers on the 386
3350On the Intel 386, the @code{regparm} attribute causes the compiler to
2f84b963
RG
3351pass arguments number one to @var{number} if they are of integral type
3352in registers EAX, EDX, and ECX instead of on the stack. Functions that
3353take a variable number of arguments will continue to be passed all of their
c8619b90 3354arguments on the stack.
6d3d9133 3355
c8619b90
NS
3356Beware that on some ELF systems this attribute is unsuitable for
3357global functions in shared libraries with lazy binding (which is the
3358default). Lazy binding will send the first call via resolving code in
3359the loader, which might assume EAX, EDX and ECX can be clobbered, as
3360per the standard calling conventions. Solaris 8 is affected by this.
3361GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
21440b2d 3362safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
c8619b90
NS
3363disabled with the linker or the loader if desired, to avoid the
3364problem.)
6d3d9133 3365
2f84b963
RG
3366@item sseregparm
3367@cindex @code{sseregparm} attribute
3368On the Intel 386 with SSE support, the @code{sseregparm} attribute
56829cae 3369causes the compiler to pass up to 3 floating point arguments in
2f84b963
RG
3370SSE registers instead of on the stack. Functions that take a
3371variable number of arguments will continue to pass all of their
3372floating point arguments on the stack.
3373
33932946
SH
3374@item force_align_arg_pointer
3375@cindex @code{force_align_arg_pointer} attribute
3376On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3377applied to individual function definitions, generating an alternate
2e3f842f
L
3378prologue and epilogue that realigns the runtime stack if necessary.
3379This supports mixing legacy codes that run with a 4-byte aligned stack
3380with modern codes that keep a 16-byte stack for SSE compatibility.
33932946 3381
561642fa
AP
3382@item resbank
3383@cindex @code{resbank} attribute
3384On the SH2A target, this attribute enables the high-speed register
3385saving and restoration using a register bank for @code{interrupt_handler}
a640c13b 3386routines. Saving to the bank is performed automatically after the CPU
561642fa
AP
3387accepts an interrupt that uses a register bank.
3388
3389The nineteen 32-bit registers comprising general register R0 to R14,
3390control register GBR, and system registers MACH, MACL, and PR and the
3391vector table address offset are saved into a register bank. Register
3392banks are stacked in first-in last-out (FILO) sequence. Restoration
3393from the bank is executed by issuing a RESBANK instruction.
3394
6e9a3221
AN
3395@item returns_twice
3396@cindex @code{returns_twice} attribute
3397The @code{returns_twice} attribute tells the compiler that a function may
3398return more than one time. The compiler will ensure that all registers
3399are dead before calling such a function and will emit a warning about
3400the variables that may be clobbered after the second return from the
3401function. Examples of such functions are @code{setjmp} and @code{vfork}.
3402The @code{longjmp}-like counterpart of such function, if any, might need
3403to be marked with the @code{noreturn} attribute.
3404
c8619b90 3405@item saveall
0d4a78eb
BS
3406@cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3407Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
c8619b90
NS
3408all registers except the stack pointer should be saved in the prologue
3409regardless of whether they are used or not.
6d3d9133 3410
80920132
ME
3411@item save_volatiles
3412@cindex save volatile registers on the MicroBlaze
3413Use this attribute on the MicroBlaze to indicate that the function is
ff2ce160
MS
3414an interrupt handler. All volatile registers (in addition to non-volatile
3415registers) will be saved in the function prologue. If the function is a leaf
3416function, only volatiles used by the function are saved. A normal function
3417return is generated instead of a return from interrupt.
80920132 3418
c8619b90
NS
3419@item section ("@var{section-name}")
3420@cindex @code{section} function attribute
3421Normally, the compiler places the code it generates in the @code{text} section.
3422Sometimes, however, you need additional sections, or you need certain
3423particular functions to appear in special sections. The @code{section}
3424attribute specifies that a function lives in a particular section.
3425For example, the declaration:
6d3d9133
NC
3426
3427@smallexample
c8619b90 3428extern void foobar (void) __attribute__ ((section ("bar")));
6d3d9133
NC
3429@end smallexample
3430
c8619b90
NS
3431@noindent
3432puts the function @code{foobar} in the @code{bar} section.
6d3d9133 3433
c8619b90
NS
3434Some file formats do not support arbitrary sections so the @code{section}
3435attribute is not available on all platforms.
3436If you need to map the entire contents of a module to a particular
3437section, consider using the facilities of the linker instead.
3438
3d091dac
KG
3439@item sentinel
3440@cindex @code{sentinel} function attribute
254986c7
KG
3441This function attribute ensures that a parameter in a function call is
3442an explicit @code{NULL}. The attribute is only valid on variadic
3443functions. By default, the sentinel is located at position zero, the
3444last parameter of the function call. If an optional integer position
3445argument P is supplied to the attribute, the sentinel must be located at
3446position P counting backwards from the end of the argument list.
3447
3448@smallexample
3449__attribute__ ((sentinel))
3450is equivalent to
3451__attribute__ ((sentinel(0)))
3452@end smallexample
3453
3454The attribute is automatically set with a position of 0 for the built-in
3455functions @code{execl} and @code{execlp}. The built-in function
254ea84c 3456@code{execle} has the attribute set with a position of 1.
254986c7
KG
3457
3458A valid @code{NULL} in this context is defined as zero with any pointer
3459type. If your system defines the @code{NULL} macro with an integer type
3460then you need to add an explicit cast. GCC replaces @code{stddef.h}
3461with a copy that redefines NULL appropriately.
3462
3463The warnings for missing or incorrect sentinels are enabled with
3464@option{-Wformat}.
3d091dac 3465
c8619b90
NS
3466@item short_call
3467See long_call/short_call.
3468
3469@item shortcall
3470See longcall/shortcall.
3471
3472@item signal
3473@cindex signal handler functions on the AVR processors
3474Use this attribute on the AVR to indicate that the specified
3475function is a signal handler. The compiler will generate function
3476entry and exit sequences suitable for use in a signal handler when this
3477attribute is present. Interrupts will be disabled inside the function.
b93e3893
AO
3478
3479@item sp_switch
88ab0d1c 3480Use this attribute on the SH to indicate an @code{interrupt_handler}
b93e3893
AO
3481function should switch to an alternate stack. It expects a string
3482argument that names a global variable holding the address of the
3483alternate stack.
3484
3485@smallexample
3486void *alt_stack;
aee96fe9
JM
3487void f () __attribute__ ((interrupt_handler,
3488 sp_switch ("alt_stack")));
b93e3893
AO
3489@end smallexample
3490
c8619b90
NS
3491@item stdcall
3492@cindex functions that pop the argument stack on the 386
3493On the Intel 386, the @code{stdcall} attribute causes the compiler to
3494assume that the called function will pop off the stack space used to
3495pass arguments, unless it takes a variable number of arguments.
c1f7febf 3496
4b84f3de
SE
3497@item syscall_linkage
3498@cindex @code{syscall_linkage} attribute
3499This attribute is used to modify the IA64 calling convention by marking
3500all input registers as live at all function exits. This makes it possible
3501to restart a system call after an interrupt without having to save/restore
3502the input registers. This also prevents kernel data from leaking into
3503application code.
3504
1df48f5c
JW
3505@item target
3506@cindex @code{target} function attribute
3507The @code{target} attribute is used to specify that a function is to
3508be compiled with different target options than specified on the
3509command line. This can be used for instance to have functions
3510compiled with a different ISA (instruction set architecture) than the
3511default. You can also use the @samp{#pragma GCC target} pragma to set
3512more than one function to be compiled with specific target options.
3513@xref{Function Specific Option Pragmas}, for details about the
3514@samp{#pragma GCC target} pragma.
3515
3516For instance on a 386, you could compile one function with
3517@code{target("sse4.1,arch=core2")} and another with
3518@code{target("sse4a,arch=amdfam10")} that would be equivalent to
3519compiling the first function with @option{-msse4.1} and
3520@option{-march=core2} options, and the second function with
3521@option{-msse4a} and @option{-march=amdfam10} options. It is up to the
3522user to make sure that a function is only invoked on a machine that
3523supports the particular ISA it was compiled for (for example by using
3524@code{cpuid} on 386 to determine what feature bits and architecture
3525family are used).
3526
3527@smallexample
3528int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3529int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3530@end smallexample
3531
3532On the 386, the following options are allowed:
3533
3534@table @samp
3535@item abm
3536@itemx no-abm
3537@cindex @code{target("abm")} attribute
3538Enable/disable the generation of the advanced bit instructions.
3539
3540@item aes
3541@itemx no-aes
3542@cindex @code{target("aes")} attribute
3543Enable/disable the generation of the AES instructions.
3544
3545@item mmx
3546@itemx no-mmx
3547@cindex @code{target("mmx")} attribute
3548Enable/disable the generation of the MMX instructions.
3549
3550@item pclmul
3551@itemx no-pclmul
3552@cindex @code{target("pclmul")} attribute
3553Enable/disable the generation of the PCLMUL instructions.
3554
3555@item popcnt
3556@itemx no-popcnt
3557@cindex @code{target("popcnt")} attribute
3558Enable/disable the generation of the POPCNT instruction.
3559
3560@item sse
3561@itemx no-sse
3562@cindex @code{target("sse")} attribute
3563Enable/disable the generation of the SSE instructions.
3564
3565@item sse2
3566@itemx no-sse2
3567@cindex @code{target("sse2")} attribute
3568Enable/disable the generation of the SSE2 instructions.
3569
3570@item sse3
3571@itemx no-sse3
3572@cindex @code{target("sse3")} attribute
3573Enable/disable the generation of the SSE3 instructions.
3574
3575@item sse4
3576@itemx no-sse4
3577@cindex @code{target("sse4")} attribute
3578Enable/disable the generation of the SSE4 instructions (both SSE4.1
3579and SSE4.2).
3580
3581@item sse4.1
3582@itemx no-sse4.1
3583@cindex @code{target("sse4.1")} attribute
3584Enable/disable the generation of the sse4.1 instructions.
3585
3586@item sse4.2
3587@itemx no-sse4.2
3588@cindex @code{target("sse4.2")} attribute
3589Enable/disable the generation of the sse4.2 instructions.
3590
3591@item sse4a
3592@itemx no-sse4a
3593@cindex @code{target("sse4a")} attribute
3594Enable/disable the generation of the SSE4A instructions.
3595
cbf2e4d4
HJ
3596@item fma4
3597@itemx no-fma4
3598@cindex @code{target("fma4")} attribute
3599Enable/disable the generation of the FMA4 instructions.
3600
43a8b705
HJ
3601@item xop
3602@itemx no-xop
3603@cindex @code{target("xop")} attribute
3604Enable/disable the generation of the XOP instructions.
3605
3e901069
HJ
3606@item lwp
3607@itemx no-lwp
3608@cindex @code{target("lwp")} attribute
3609Enable/disable the generation of the LWP instructions.
3610
1df48f5c
JW
3611@item ssse3
3612@itemx no-ssse3
3613@cindex @code{target("ssse3")} attribute
3614Enable/disable the generation of the SSSE3 instructions.
3615
3616@item cld
3617@itemx no-cld
3618@cindex @code{target("cld")} attribute
3619Enable/disable the generation of the CLD before string moves.
3620
3621@item fancy-math-387
3622@itemx no-fancy-math-387
3623@cindex @code{target("fancy-math-387")} attribute
3624Enable/disable the generation of the @code{sin}, @code{cos}, and
3625@code{sqrt} instructions on the 387 floating point unit.
3626
3627@item fused-madd
3628@itemx no-fused-madd
3629@cindex @code{target("fused-madd")} attribute
3630Enable/disable the generation of the fused multiply/add instructions.
3631
3632@item ieee-fp
3633@itemx no-ieee-fp
3634@cindex @code{target("ieee-fp")} attribute
3635Enable/disable the generation of floating point that depends on IEEE arithmetic.
3636
3637@item inline-all-stringops
3638@itemx no-inline-all-stringops
3639@cindex @code{target("inline-all-stringops")} attribute
3640Enable/disable inlining of string operations.
3641
3642@item inline-stringops-dynamically
3643@itemx no-inline-stringops-dynamically
3644@cindex @code{target("inline-stringops-dynamically")} attribute
3645Enable/disable the generation of the inline code to do small string
3646operations and calling the library routines for large operations.
3647
3648@item align-stringops
3649@itemx no-align-stringops
3650@cindex @code{target("align-stringops")} attribute
3651Do/do not align destination of inlined string operations.
3652
3653@item recip
3654@itemx no-recip
3655@cindex @code{target("recip")} attribute
3656Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
048fd785 3657instructions followed an additional Newton-Raphson step instead of
1df48f5c
JW
3658doing a floating point division.
3659
3660@item arch=@var{ARCH}
3661@cindex @code{target("arch=@var{ARCH}")} attribute
3662Specify the architecture to generate code for in compiling the function.
3663
3664@item tune=@var{TUNE}
3665@cindex @code{target("tune=@var{TUNE}")} attribute
3666Specify the architecture to tune for in compiling the function.
3667
3668@item fpmath=@var{FPMATH}
3669@cindex @code{target("fpmath=@var{FPMATH}")} attribute
3670Specify which floating point unit to use. The
3671@code{target("fpmath=sse,387")} option must be specified as
3672@code{target("fpmath=sse+387")} because the comma would separate
3673different options.
15bf6f3a 3674@end table
fd438373 3675
fd438373
MM
3676On the PowerPC, the following options are allowed:
3677
3678@table @samp
3679@item altivec
3680@itemx no-altivec
3681@cindex @code{target("altivec")} attribute
3682Generate code that uses (does not use) AltiVec instructions. In
368332-bit code, you cannot enable Altivec instructions unless
3684@option{-mabi=altivec} was used on the command line.
3685
3686@item cmpb
3687@itemx no-cmpb
3688@cindex @code{target("cmpb")} attribute
3689Generate code that uses (does not use) the compare bytes instruction
3690implemented on the POWER6 processor and other processors that support
3691the PowerPC V2.05 architecture.
3692
3693@item dlmzb
3694@itemx no-dlmzb
3695@cindex @code{target("dlmzb")} attribute
3696Generate code that uses (does not use) the string-search @samp{dlmzb}
3697instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
3698generated by default when targetting those processors.
3699
3700@item fprnd
3701@itemx no-fprnd
3702@cindex @code{target("fprnd")} attribute
3703Generate code that uses (does not use) the FP round to integer
3704instructions implemented on the POWER5+ processor and other processors
3705that support the PowerPC V2.03 architecture.
3706
3707@item hard-dfp
3708@itemx no-hard-dfp
3709@cindex @code{target("hard-dfp")} attribute
3710Generate code that uses (does not use) the decimal floating point
3711instructions implemented on some POWER processors.
3712
3713@item isel
3714@itemx no-isel
3715@cindex @code{target("isel")} attribute
3716Generate code that uses (does not use) ISEL instruction.
3717
3718@item mfcrf
3719@itemx no-mfcrf
3720@cindex @code{target("mfcrf")} attribute
3721Generate code that uses (does not use) the move from condition
3722register field instruction implemented on the POWER4 processor and
3723other processors that support the PowerPC V2.01 architecture.
3724
3725@item mfpgpr
3726@itemx no-mfpgpr
3727@cindex @code{target("mfpgpr")} attribute
3728Generate code that uses (does not use) the FP move to/from general
3729purpose register instructions implemented on the POWER6X processor and
3730other processors that support the extended PowerPC V2.05 architecture.
3731
3732@item mulhw
3733@itemx no-mulhw
3734@cindex @code{target("mulhw")} attribute
3735Generate code that uses (does not use) the half-word multiply and
3736multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
3737These instructions are generated by default when targetting those
3738processors.
3739
3740@item multiple
3741@itemx no-multiple
3742@cindex @code{target("multiple")} attribute
3743Generate code that uses (does not use) the load multiple word
3744instructions and the store multiple word instructions.
3745
3746@item update
3747@itemx no-update
3748@cindex @code{target("update")} attribute
3749Generate code that uses (does not use) the load or store instructions
3750that update the base register to the address of the calculated memory
3751location.
3752
3753@item popcntb
3754@itemx no-popcntb
3755@cindex @code{target("popcntb")} attribute
3756Generate code that uses (does not use) the popcount and double
3757precision FP reciprocal estimate instruction implemented on the POWER5
3758processor and other processors that support the PowerPC V2.02
3759architecture.
3760
3761@item popcntd
3762@itemx no-popcntd
3763@cindex @code{target("popcntd")} attribute
3764Generate code that uses (does not use) the popcount instruction
3765implemented on the POWER7 processor and other processors that support
3766the PowerPC V2.06 architecture.
3767
3768@item powerpc-gfxopt
3769@itemx no-powerpc-gfxopt
3770@cindex @code{target("powerpc-gfxopt")} attribute
3771Generate code that uses (does not use) the optional PowerPC
3772architecture instructions in the Graphics group, including
3773floating-point select.
3774
3775@item powerpc-gpopt
3776@itemx no-powerpc-gpopt
3777@cindex @code{target("powerpc-gpopt")} attribute
3778Generate code that uses (does not use) the optional PowerPC
3779architecture instructions in the General Purpose group, including
3780floating-point square root.
3781
3782@item recip-precision
3783@itemx no-recip-precision
3784@cindex @code{target("recip-precision")} attribute
3785Assume (do not assume) that the reciprocal estimate instructions
3786provide higher precision estimates than is mandated by the powerpc
3787ABI.
3788
3789@item string
3790@itemx no-string
3791@cindex @code{target("string")} attribute
3792Generate code that uses (does not use) the load string instructions
3793and the store string word instructions to save multiple registers and
3794do small block moves.
3795
3796@item vsx
3797@itemx no-vsx
3798@cindex @code{target("vsx")} attribute
3799Generate code that uses (does not use) vector/scalar (VSX)
3800instructions, and also enable the use of built-in functions that allow
3801more direct access to the VSX instruction set. In 32-bit code, you
3802cannot enable VSX or Altivec instructions unless
3803@option{-mabi=altivec} was used on the command line.
3804
3805@item friz
3806@itemx no-friz
3807@cindex @code{target("friz")} attribute
3808Generate (do not generate) the @code{friz} instruction when the
3809@option{-funsafe-math-optimizations} option is used to optimize
3810rounding a floating point value to 64-bit integer and back to floating
3811point. The @code{friz} instruction does not return the same value if
3812the floating point number is too large to fit in an integer.
3813
3814@item avoid-indexed-addresses
3815@itemx no-avoid-indexed-addresses
3816@cindex @code{target("avoid-indexed-addresses")} attribute
3817Generate code that tries to avoid (not avoid) the use of indexed load
3818or store instructions.
3819
3820@item paired
3821@itemx no-paired
3822@cindex @code{target("paired")} attribute
3823Generate code that uses (does not use) the generation of PAIRED simd
3824instructions.
3825
3826@item longcall
3827@itemx no-longcall
3828@cindex @code{target("longcall")} attribute
3829Generate code that assumes (does not assume) that all calls are far
3830away so that a longer more expensive calling sequence is required.
3831
3832@item cpu=@var{CPU}
3833@cindex @code{target("cpu=@var{CPU}")} attribute
2b0d3573 3834Specify the architecture to generate code for when compiling the
76f59013 3835function. If you select the @code{target("cpu=power7")} attribute when
fd438373
MM
3836generating 32-bit code, VSX and Altivec instructions are not generated
3837unless you use the @option{-mabi=altivec} option on the command line.
3838
3839@item tune=@var{TUNE}
3840@cindex @code{target("tune=@var{TUNE}")} attribute
2b0d3573 3841Specify the architecture to tune for when compiling the function. If
fd438373 3842you do not specify the @code{target("tune=@var{TUNE}")} attribute and
2b0d3573 3843you do specify the @code{target("cpu=@var{CPU}")} attribute,
fd438373
MM
3844compilation will tune for the @var{CPU} architecture, and not the
3845default tuning specified on the command line.
3846@end table
1df48f5c 3847
fd438373
MM
3848On the 386/x86_64 and PowerPC backends, you can use either multiple
3849strings to specify multiple options, or you can separate the option
3850with a comma (@code{,}).
1df48f5c 3851
fd438373
MM
3852On the 386/x86_64 and PowerPC backends, the inliner will not inline a
3853function that has different target options than the caller, unless the
3854callee has a subset of the target options of the caller. For example
3855a function declared with @code{target("sse3")} can inline a function
3856with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
1df48f5c
JW
3857
3858The @code{target} attribute is not implemented in GCC versions earlier
fd438373
MM
3859than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. It is
3860not currently implemented for other backends.
1df48f5c 3861
c1f7febf 3862@item tiny_data
dbacaa98
KH
3863@cindex tiny data section on the H8/300H and H8S
3864Use this attribute on the H8/300H and H8S to indicate that the specified
c1f7febf
RK
3865variable should be placed into the tiny data section.
3866The compiler will generate more efficient code for loads and stores
3867on data in the tiny data section. Note the tiny data area is limited to
3868slightly under 32kbytes of data.
845da534 3869
c8619b90
NS
3870@item trap_exit
3871Use this attribute on the SH for an @code{interrupt_handler} to return using
3872@code{trapa} instead of @code{rte}. This attribute expects an integer
3873argument specifying the trap number to be used.
845da534 3874
c8619b90
NS
3875@item unused
3876@cindex @code{unused} attribute.
3877This attribute, attached to a function, means that the function is meant
3878to be possibly unused. GCC will not produce a warning for this
3879function.
a32767e4 3880
c8619b90
NS
3881@item used
3882@cindex @code{used} attribute.
3883This attribute, attached to a function, means that code must be emitted
3884for the function even if it appears that the function is not referenced.
3885This is useful, for example, when the function is referenced only in
3886inline assembly.
5936c7e7 3887
4951efb6
JM
3888When applied to a member function of a C++ class template, the
3889attribute also means that the function will be instantiated if the
3890class itself is instantiated.
3891
812b587e 3892@item version_id
4b84f3de
SE
3893@cindex @code{version_id} attribute
3894This IA64 HP-UX attribute, attached to a global variable or function, renames a
812b587e
SE
3895symbol to contain a version string, thus allowing for function level
3896versioning. HP-UX system header files may use version level functioning
3897for some system calls.
3898
3899@smallexample
3900extern int foo () __attribute__((version_id ("20040821")));
3901@end smallexample
3902
3903Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
3904
c8619b90
NS
3905@item visibility ("@var{visibility_type}")
3906@cindex @code{visibility} attribute
46bdbc00
GK
3907This attribute affects the linkage of the declaration to which it is attached.
3908There are four supported @var{visibility_type} values: default,
3909hidden, protected or internal visibility.
5936c7e7 3910
c8619b90
NS
3911@smallexample
3912void __attribute__ ((visibility ("protected")))
3913f () @{ /* @r{Do something.} */; @}
3914int i __attribute__ ((visibility ("hidden")));
3915@end smallexample
5936c7e7 3916
46bdbc00
GK
3917The possible values of @var{visibility_type} correspond to the
3918visibility settings in the ELF gABI.
5936c7e7 3919
c8619b90 3920@table @dfn
63c5b495 3921@c keep this list of visibilities in alphabetical order.
6b6cb52e 3922
c8619b90 3923@item default
46bdbc00
GK
3924Default visibility is the normal case for the object file format.
3925This value is available for the visibility attribute to override other
3926options that may change the assumed visibility of entities.
3927
3928On ELF, default visibility means that the declaration is visible to other
3929modules and, in shared libraries, means that the declared entity may be
3930overridden.
3931
3932On Darwin, default visibility means that the declaration is visible to
3933other modules.
3934
3935Default visibility corresponds to ``external linkage'' in the language.
6b6cb52e 3936
c8619b90 3937@item hidden
46bdbc00
GK
3938Hidden visibility indicates that the entity declared will have a new
3939form of linkage, which we'll call ``hidden linkage''. Two
3940declarations of an object with hidden linkage refer to the same object
3941if they are in the same shared object.
6b6cb52e 3942
c8619b90
NS
3943@item internal
3944Internal visibility is like hidden visibility, but with additional
46bdbc00
GK
3945processor specific semantics. Unless otherwise specified by the
3946psABI, GCC defines internal visibility to mean that a function is
3947@emph{never} called from another module. Compare this with hidden
3948functions which, while they cannot be referenced directly by other
3949modules, can be referenced indirectly via function pointers. By
3950indicating that a function cannot be called from outside the module,
3951GCC may for instance omit the load of a PIC register since it is known
3952that the calling function loaded the correct value.
6b6cb52e 3953
c8619b90 3954@item protected
46bdbc00
GK
3955Protected visibility is like default visibility except that it
3956indicates that references within the defining module will bind to the
3957definition in that module. That is, the declared entity cannot be
3958overridden by another module.
6b6cb52e 3959
c8619b90 3960@end table
6b6cb52e 3961
46bdbc00
GK
3962All visibilities are supported on many, but not all, ELF targets
3963(supported when the assembler supports the @samp{.visibility}
3964pseudo-op). Default visibility is supported everywhere. Hidden
3965visibility is supported on Darwin targets.
3966
3967The visibility attribute should be applied only to declarations which
3968would otherwise have external linkage. The attribute should be applied
3969consistently, so that the same entity should not be declared with
3970different settings of the attribute.
3971
3972In C++, the visibility attribute applies to types as well as functions
b9e75696
JM
3973and objects, because in C++ types have linkage. A class must not have
3974greater visibility than its non-static data member types and bases,
3975and class members default to the visibility of their class. Also, a
b70f0f48
JM
3976declaration without explicit visibility is limited to the visibility
3977of its type.
46bdbc00
GK
3978
3979In C++, you can mark member functions and static member variables of a
d1facce0 3980class with the visibility attribute. This is useful if you know a
46bdbc00
GK
3981particular method or static member variable should only be used from
3982one shared object; then you can mark it hidden while the rest of the
3983class has default visibility. Care must be taken to avoid breaking
b70f0f48
JM
3984the One Definition Rule; for example, it is usually not useful to mark
3985an inline method as hidden without marking the whole class as hidden.
6b6cb52e 3986
b9e75696
JM
3987A C++ namespace declaration can also have the visibility attribute.
3988This attribute applies only to the particular namespace body, not to
3989other definitions of the same namespace; it is equivalent to using
3990@samp{#pragma GCC visibility} before and after the namespace
3991definition (@pxref{Visibility Pragmas}).
3992
3993In C++, if a template argument has limited visibility, this
3994restriction is implicitly propagated to the template instantiation.
3995Otherwise, template instantiations and specializations default to the
3996visibility of their template.
3997
b70f0f48
JM
3998If both the template and enclosing class have explicit visibility, the
3999visibility from the template is used.
4000
e2491744
DD
4001@item vliw
4002@cindex @code{vliw} attribute
4003On MeP, the @code{vliw} attribute tells the compiler to emit
4004instructions in VLIW mode instead of core mode. Note that this
4005attribute is not allowed unless a VLIW coprocessor has been configured
4006and enabled through command line options.
4007
c8619b90
NS
4008@item warn_unused_result
4009@cindex @code{warn_unused_result} attribute
4010The @code{warn_unused_result} attribute causes a warning to be emitted
4011if a caller of the function with this attribute does not use its
4012return value. This is useful for functions where not checking
4013the result is either a security problem or always a bug, such as
4014@code{realloc}.
6b6cb52e 4015
c8619b90
NS
4016@smallexample
4017int fn () __attribute__ ((warn_unused_result));
4018int foo ()
4019@{
4020 if (fn () < 0) return -1;
4021 fn ();
4022 return 0;
4023@}
4024@end smallexample
6b6cb52e 4025
c8619b90 4026results in warning on line 5.
6b6cb52e 4027
c8619b90
NS
4028@item weak
4029@cindex @code{weak} attribute
4030The @code{weak} attribute causes the declaration to be emitted as a weak
4031symbol rather than a global. This is primarily useful in defining
4032library functions which can be overridden in user code, though it can
4033also be used with non-function declarations. Weak symbols are supported
4034for ELF targets, and also for a.out targets when using the GNU assembler
4035and linker.
6b6cb52e 4036
a0203ca7
AO
4037@item weakref
4038@itemx weakref ("@var{target}")
4039@cindex @code{weakref} attribute
4040The @code{weakref} attribute marks a declaration as a weak reference.
4041Without arguments, it should be accompanied by an @code{alias} attribute
4042naming the target symbol. Optionally, the @var{target} may be given as
4043an argument to @code{weakref} itself. In either case, @code{weakref}
4044implicitly marks the declaration as @code{weak}. Without a
4045@var{target}, given as an argument to @code{weakref} or to @code{alias},
4046@code{weakref} is equivalent to @code{weak}.
4047
4048@smallexample
a9b0b825 4049static int x() __attribute__ ((weakref ("y")));
a0203ca7 4050/* is equivalent to... */
a9b0b825 4051static int x() __attribute__ ((weak, weakref, alias ("y")));
a0203ca7 4052/* and to... */
a9b0b825
GK
4053static int x() __attribute__ ((weakref));
4054static int x() __attribute__ ((alias ("y")));
a0203ca7
AO
4055@end smallexample
4056
4057A weak reference is an alias that does not by itself require a
4058definition to be given for the target symbol. If the target symbol is
4896c7b8 4059only referenced through weak references, then it becomes a @code{weak}
a0203ca7
AO
4060undefined symbol. If it is directly referenced, however, then such
4061strong references prevail, and a definition will be required for the
4062symbol, not necessarily in the same translation unit.
4063
4064The effect is equivalent to moving all references to the alias to a
4065separate translation unit, renaming the alias to the aliased symbol,
4066declaring it as weak, compiling the two separate translation units and
4067performing a reloadable link on them.
4068
a9b0b825
GK
4069At present, a declaration to which @code{weakref} is attached can
4070only be @code{static}.
4071
c1f7febf
RK
4072@end table
4073
4074You can specify multiple attributes in a declaration by separating them
4075by commas within the double parentheses or by immediately following an
4076attribute declaration with another attribute declaration.
4077
4078@cindex @code{#pragma}, reason for not using
4079@cindex pragma, reason for not using
9f1bbeaa
JM
4080Some people object to the @code{__attribute__} feature, suggesting that
4081ISO C's @code{#pragma} should be used instead. At the time
4082@code{__attribute__} was designed, there were two reasons for not doing
4083this.
c1f7febf
RK
4084
4085@enumerate
4086@item
4087It is impossible to generate @code{#pragma} commands from a macro.
4088
4089@item
4090There is no telling what the same @code{#pragma} might mean in another
4091compiler.
4092@end enumerate
4093
9f1bbeaa
JM
4094These two reasons applied to almost any application that might have been
4095proposed for @code{#pragma}. It was basically a mistake to use
4096@code{#pragma} for @emph{anything}.
4097
4098The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
4099to be generated from macros. In addition, a @code{#pragma GCC}
4100namespace is now in use for GCC-specific pragmas. However, it has been
4101found convenient to use @code{__attribute__} to achieve a natural
4102attachment of attributes to their corresponding declarations, whereas
4103@code{#pragma GCC} is of use for constructs that do not naturally form
4104part of the grammar. @xref{Other Directives,,Miscellaneous
48795525 4105Preprocessing Directives, cpp, The GNU C Preprocessor}.
c1f7febf 4106
2c5e91d2
JM
4107@node Attribute Syntax
4108@section Attribute Syntax
4109@cindex attribute syntax
4110
4111This section describes the syntax with which @code{__attribute__} may be
4112used, and the constructs to which attribute specifiers bind, for the C
161d7b59 4113language. Some details may vary for C++ and Objective-C@. Because of
2c5e91d2
JM
4114infelicities in the grammar for attributes, some forms described here
4115may not be successfully parsed in all cases.
4116
91d231cb
JM
4117There are some problems with the semantics of attributes in C++. For
4118example, there are no manglings for attributes, although they may affect
4119code generation, so problems may arise when attributed types are used in
4120conjunction with templates or overloading. Similarly, @code{typeid}
4121does not distinguish between types with different attributes. Support
4122for attributes in C++ may be restricted in future to attributes on
4123declarations only, but not on nested declarators.
4124
2c5e91d2
JM
4125@xref{Function Attributes}, for details of the semantics of attributes
4126applying to functions. @xref{Variable Attributes}, for details of the
4127semantics of attributes applying to variables. @xref{Type Attributes},
4128for details of the semantics of attributes applying to structure, union
4129and enumerated types.
4130
4131An @dfn{attribute specifier} is of the form
4132@code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
4133is a possibly empty comma-separated sequence of @dfn{attributes}, where
4134each attribute is one of the following:
4135
4136@itemize @bullet
4137@item
4138Empty. Empty attributes are ignored.
4139
4140@item
4141A word (which may be an identifier such as @code{unused}, or a reserved
4142word such as @code{const}).
4143
4144@item
4145A word, followed by, in parentheses, parameters for the attribute.
4146These parameters take one of the following forms:
4147
4148@itemize @bullet
4149@item
4150An identifier. For example, @code{mode} attributes use this form.
4151
4152@item
4153An identifier followed by a comma and a non-empty comma-separated list
4154of expressions. For example, @code{format} attributes use this form.
4155
4156@item
4157A possibly empty comma-separated list of expressions. For example,
4158@code{format_arg} attributes use this form with the list being a single
4159integer constant expression, and @code{alias} attributes use this form
4160with the list being a single string constant.
4161@end itemize
4162@end itemize
4163
4164An @dfn{attribute specifier list} is a sequence of one or more attribute
4165specifiers, not separated by any other tokens.
4166
50fc59e7 4167In GNU C, an attribute specifier list may appear after the colon following a
2c5e91d2
JM
4168label, other than a @code{case} or @code{default} label. The only
4169attribute it makes sense to use after a label is @code{unused}. This
4170feature is intended for code generated by programs which contains labels
4171that may be unused but which is compiled with @option{-Wall}. It would
4172not normally be appropriate to use in it human-written code, though it
4173could be useful in cases where the code that jumps to the label is
5bca4e80
ILT
4174contained within an @code{#ifdef} conditional. GNU C++ only permits
4175attributes on labels if the attribute specifier is immediately
4176followed by a semicolon (i.e., the label applies to an empty
4177statement). If the semicolon is missing, C++ label attributes are
4178ambiguous, as it is permissible for a declaration, which could begin
4179with an attribute list, to be labelled in C++. Declarations cannot be
4180labelled in C90 or C99, so the ambiguity does not arise there.
2c5e91d2
JM
4181
4182An attribute specifier list may appear as part of a @code{struct},
4183@code{union} or @code{enum} specifier. It may go either immediately
4184after the @code{struct}, @code{union} or @code{enum} keyword, or after
b9e75696 4185the closing brace. The former syntax is preferred.
2c5e91d2
JM
4186Where attribute specifiers follow the closing brace, they are considered
4187to relate to the structure, union or enumerated type defined, not to any
4188enclosing declaration the type specifier appears in, and the type
4189defined is not complete until after the attribute specifiers.
4190@c Otherwise, there would be the following problems: a shift/reduce
4fe9b91c 4191@c conflict between attributes binding the struct/union/enum and
2c5e91d2
JM
4192@c binding to the list of specifiers/qualifiers; and "aligned"
4193@c attributes could use sizeof for the structure, but the size could be
4194@c changed later by "packed" attributes.
4195
4196Otherwise, an attribute specifier appears as part of a declaration,
4197counting declarations of unnamed parameters and type names, and relates
4198to that declaration (which may be nested in another declaration, for
91d231cb
JM
4199example in the case of a parameter declaration), or to a particular declarator
4200within a declaration. Where an
ff867905
JM
4201attribute specifier is applied to a parameter declared as a function or
4202an array, it should apply to the function or array rather than the
4203pointer to which the parameter is implicitly converted, but this is not
4204yet correctly implemented.
2c5e91d2
JM
4205
4206Any list of specifiers and qualifiers at the start of a declaration may
4207contain attribute specifiers, whether or not such a list may in that
4208context contain storage class specifiers. (Some attributes, however,
4209are essentially in the nature of storage class specifiers, and only make
4210sense where storage class specifiers may be used; for example,
4211@code{section}.) There is one necessary limitation to this syntax: the
4212first old-style parameter declaration in a function definition cannot
4213begin with an attribute specifier, because such an attribute applies to
4214the function instead by syntax described below (which, however, is not
4215yet implemented in this case). In some other cases, attribute
4216specifiers are permitted by this grammar but not yet supported by the
4217compiler. All attribute specifiers in this place relate to the
c771326b 4218declaration as a whole. In the obsolescent usage where a type of
2c5e91d2
JM
4219@code{int} is implied by the absence of type specifiers, such a list of
4220specifiers and qualifiers may be an attribute specifier list with no
4221other specifiers or qualifiers.
4222
7dcb0442
JM
4223At present, the first parameter in a function prototype must have some
4224type specifier which is not an attribute specifier; this resolves an
4225ambiguity in the interpretation of @code{void f(int
4226(__attribute__((foo)) x))}, but is subject to change. At present, if
4227the parentheses of a function declarator contain only attributes then
4228those attributes are ignored, rather than yielding an error or warning
4229or implying a single parameter of type int, but this is subject to
4230change.
4231
2c5e91d2
JM
4232An attribute specifier list may appear immediately before a declarator
4233(other than the first) in a comma-separated list of declarators in a
4234declaration of more than one identifier using a single list of
4b01f8d8 4235specifiers and qualifiers. Such attribute specifiers apply
9c34dbbf
ZW
4236only to the identifier before whose declarator they appear. For
4237example, in
4238
4239@smallexample
4240__attribute__((noreturn)) void d0 (void),
4241 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4242 d2 (void)
4243@end smallexample
4244
4245@noindent
4246the @code{noreturn} attribute applies to all the functions
4b01f8d8 4247declared; the @code{format} attribute only applies to @code{d1}.
2c5e91d2
JM
4248
4249An attribute specifier list may appear immediately before the comma,
4250@code{=} or semicolon terminating the declaration of an identifier other
770a9950
JM
4251than a function definition. Such attribute specifiers apply
4252to the declared object or function. Where an
9c34dbbf 4253assembler name for an object or function is specified (@pxref{Asm
770a9950
JM
4254Labels}), the attribute must follow the @code{asm}
4255specification.
2c5e91d2
JM
4256
4257An attribute specifier list may, in future, be permitted to appear after
4258the declarator in a function definition (before any old-style parameter
4259declarations or the function body).
4260
0e03329a
JM
4261Attribute specifiers may be mixed with type qualifiers appearing inside
4262the @code{[]} of a parameter array declarator, in the C99 construct by
4263which such qualifiers are applied to the pointer to which the array is
4264implicitly converted. Such attribute specifiers apply to the pointer,
4265not to the array, but at present this is not implemented and they are
4266ignored.
4267
2c5e91d2
JM
4268An attribute specifier list may appear at the start of a nested
4269declarator. At present, there are some limitations in this usage: the
91d231cb
JM
4270attributes correctly apply to the declarator, but for most individual
4271attributes the semantics this implies are not implemented.
4272When attribute specifiers follow the @code{*} of a pointer
4b01f8d8 4273declarator, they may be mixed with any type qualifiers present.
91d231cb 4274The following describes the formal semantics of this syntax. It will make the
2c5e91d2
JM
4275most sense if you are familiar with the formal specification of
4276declarators in the ISO C standard.
4277
4278Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4279D1}, where @code{T} contains declaration specifiers that specify a type
4280@var{Type} (such as @code{int}) and @code{D1} is a declarator that
4281contains an identifier @var{ident}. The type specified for @var{ident}
4282for derived declarators whose type does not include an attribute
4283specifier is as in the ISO C standard.
4284
4285If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4286and the declaration @code{T D} specifies the type
4287``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4288@code{T D1} specifies the type ``@var{derived-declarator-type-list}
4289@var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4290
4291If @code{D1} has the form @code{*
4292@var{type-qualifier-and-attribute-specifier-list} D}, and the
4293declaration @code{T D} specifies the type
4294``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4295@code{T D1} specifies the type ``@var{derived-declarator-type-list}
197ef306 4296@var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
2c5e91d2
JM
4297@var{ident}.
4298
f282ffb3 4299For example,
9c34dbbf
ZW
4300
4301@smallexample
4302void (__attribute__((noreturn)) ****f) (void);
4303@end smallexample
4304
4305@noindent
4306specifies the type ``pointer to pointer to pointer to pointer to
4307non-returning function returning @code{void}''. As another example,
4308
4309@smallexample
4310char *__attribute__((aligned(8))) *f;
4311@end smallexample
4312
4313@noindent
4314specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
91d231cb
JM
4315Note again that this does not work with most attributes; for example,
4316the usage of @samp{aligned} and @samp{noreturn} attributes given above
4317is not yet supported.
4318
4319For compatibility with existing code written for compiler versions that
4320did not implement attributes on nested declarators, some laxity is
4321allowed in the placing of attributes. If an attribute that only applies
4322to types is applied to a declaration, it will be treated as applying to
4323the type of that declaration. If an attribute that only applies to
4324declarations is applied to the type of a declaration, it will be treated
4325as applying to that declaration; and, for compatibility with code
4326placing the attributes immediately before the identifier declared, such
4327an attribute applied to a function return type will be treated as
4328applying to the function type, and such an attribute applied to an array
4329element type will be treated as applying to the array type. If an
4330attribute that only applies to function types is applied to a
4331pointer-to-function type, it will be treated as applying to the pointer
4332target type; if such an attribute is applied to a function return type
4333that is not a pointer-to-function type, it will be treated as applying
4334to the function type.
2c5e91d2 4335
c1f7febf
RK
4336@node Function Prototypes
4337@section Prototypes and Old-Style Function Definitions
4338@cindex function prototype declarations
4339@cindex old-style function definitions
4340@cindex promotion of formal parameters
4341
5490d604 4342GNU C extends ISO C to allow a function prototype to override a later
c1f7febf
RK
4343old-style non-prototype definition. Consider the following example:
4344
3ab51846 4345@smallexample
c1f7febf 4346/* @r{Use prototypes unless the compiler is old-fashioned.} */
d863830b 4347#ifdef __STDC__
c1f7febf
RK
4348#define P(x) x
4349#else
4350#define P(x) ()
4351#endif
4352
4353/* @r{Prototype function declaration.} */
4354int isroot P((uid_t));
4355
4356/* @r{Old-style function definition.} */
4357int
12bcfaa1 4358isroot (x) /* @r{??? lossage here ???} */
c1f7febf
RK
4359 uid_t x;
4360@{
4361 return x == 0;
4362@}
3ab51846 4363@end smallexample
c1f7febf 4364
5490d604 4365Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
c1f7febf
RK
4366not allow this example, because subword arguments in old-style
4367non-prototype definitions are promoted. Therefore in this example the
4368function definition's argument is really an @code{int}, which does not
4369match the prototype argument type of @code{short}.
4370
5490d604 4371This restriction of ISO C makes it hard to write code that is portable
c1f7febf
RK
4372to traditional C compilers, because the programmer does not know
4373whether the @code{uid_t} type is @code{short}, @code{int}, or
4374@code{long}. Therefore, in cases like these GNU C allows a prototype
4375to override a later old-style definition. More precisely, in GNU C, a
4376function prototype argument type overrides the argument type specified
4377by a later old-style definition if the former type is the same as the
4378latter type before promotion. Thus in GNU C the above example is
4379equivalent to the following:
4380
3ab51846 4381@smallexample
c1f7febf
RK
4382int isroot (uid_t);
4383
4384int
4385isroot (uid_t x)
4386@{
4387 return x == 0;
4388@}
3ab51846 4389@end smallexample
c1f7febf 4390
9c34dbbf 4391@noindent
c1f7febf
RK
4392GNU C++ does not support old-style function definitions, so this
4393extension is irrelevant.
4394
4395@node C++ Comments
4396@section C++ Style Comments
ab940b73 4397@cindex @code{//}
c1f7febf
RK
4398@cindex C++ comments
4399@cindex comments, C++ style
4400
4401In GNU C, you may use C++ style comments, which start with @samp{//} and
4402continue until the end of the line. Many other C implementations allow
f458d1d5
ZW
4403such comments, and they are included in the 1999 C standard. However,
4404C++ style comments are not recognized if you specify an @option{-std}
4405option specifying a version of ISO C before C99, or @option{-ansi}
7e1542b9 4406(equivalent to @option{-std=c90}).
c1f7febf
RK
4407
4408@node Dollar Signs
4409@section Dollar Signs in Identifier Names
4410@cindex $
4411@cindex dollar signs in identifier names
4412@cindex identifier names, dollar signs in
4413
79188db9
RK
4414In GNU C, you may normally use dollar signs in identifier names.
4415This is because many traditional C implementations allow such identifiers.
4416However, dollar signs in identifiers are not supported on a few target
4417machines, typically because the target assembler does not allow them.
c1f7febf
RK
4418
4419@node Character Escapes
4420@section The Character @key{ESC} in Constants
4421
4422You can use the sequence @samp{\e} in a string or character constant to
4423stand for the ASCII character @key{ESC}.
4424
c1f7febf
RK
4425@node Variable Attributes
4426@section Specifying Attributes of Variables
4427@cindex attribute of variables
4428@cindex variable attributes
4429
4430The keyword @code{__attribute__} allows you to specify special
4431attributes of variables or structure fields. This keyword is followed
905e8651
RH
4432by an attribute specification inside double parentheses. Some
4433attributes are currently defined generically for variables.
4434Other attributes are defined for variables on particular target
4435systems. Other attributes are available for functions
4436(@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
4437Other front ends might define more attributes
4438(@pxref{C++ Extensions,,Extensions to the C++ Language}).
c1f7febf
RK
4439
4440You may also specify attributes with @samp{__} preceding and following
4441each keyword. This allows you to use them in header files without
4442being concerned about a possible macro of the same name. For example,
4443you may use @code{__aligned__} instead of @code{aligned}.
4444
2c5e91d2
JM
4445@xref{Attribute Syntax}, for details of the exact syntax for using
4446attributes.
4447
c1f7febf
RK
4448@table @code
4449@cindex @code{aligned} attribute
4450@item aligned (@var{alignment})
4451This attribute specifies a minimum alignment for the variable or
4452structure field, measured in bytes. For example, the declaration:
4453
4454@smallexample
4455int x __attribute__ ((aligned (16))) = 0;
4456@end smallexample
4457
4458@noindent
4459causes the compiler to allocate the global variable @code{x} on a
446016-byte boundary. On a 68040, this could be used in conjunction with
4461an @code{asm} expression to access the @code{move16} instruction which
4462requires 16-byte aligned operands.
4463
4464You can also specify the alignment of structure fields. For example, to
4465create a double-word aligned @code{int} pair, you could write:
4466
4467@smallexample
4468struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4469@end smallexample
4470
4471@noindent
4472This is an alternative to creating a union with a @code{double} member
4473that forces the union to be double-word aligned.
4474
c1f7febf
RK
4475As in the preceding examples, you can explicitly specify the alignment
4476(in bytes) that you wish the compiler to use for a given variable or
4477structure field. Alternatively, you can leave out the alignment factor
6e4f1168
L
4478and just ask the compiler to align a variable or field to the
4479default alignment for the target architecture you are compiling for.
4480The default alignment is sufficient for all scalar types, but may not be
4481enough for all vector types on a target which supports vector operations.
4482The default alignment is fixed for a particular target ABI.
4483
4484Gcc also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4485which is the largest alignment ever used for any data type on the
4486target machine you are compiling for. For example, you could write:
c1f7febf
RK
4487
4488@smallexample
6e4f1168 4489short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
c1f7febf
RK
4490@end smallexample
4491
6e4f1168
L
4492The compiler automatically sets the alignment for the declared
4493variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
4494often make copy operations more efficient, because the compiler can
4495use whatever instructions copy the biggest chunks of memory when
4496performing copies to or from the variables or fields that you have
4497aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
4498may change depending on command line options.
c1f7febf 4499
e9f9692b
MW
4500When used on a struct, or struct member, the @code{aligned} attribute can
4501only increase the alignment; in order to decrease it, the @code{packed}
4502attribute must be specified as well. When used as part of a typedef, the
4503@code{aligned} attribute can both increase and decrease alignment, and
4504specifying the @code{packed} attribute will generate a warning.
c1f7febf
RK
4505
4506Note that the effectiveness of @code{aligned} attributes may be limited
4507by inherent limitations in your linker. On many systems, the linker is
4508only able to arrange for variables to be aligned up to a certain maximum
4509alignment. (For some linkers, the maximum supported alignment may
4510be very very small.) If your linker is only able to align variables
4511up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4512in an @code{__attribute__} will still only provide you with 8 byte
4513alignment. See your linker documentation for further information.
4514
ff2ce160 4515The @code{aligned} attribute can also be used for functions
837edd5f
GK
4516(@pxref{Function Attributes}.)
4517
0bfa5f65
RH
4518@item cleanup (@var{cleanup_function})
4519@cindex @code{cleanup} attribute
4520The @code{cleanup} attribute runs a function when the variable goes
4521out of scope. This attribute can only be applied to auto function
4522scope variables; it may not be applied to parameters or variables
4523with static storage duration. The function must take one parameter,
4524a pointer to a type compatible with the variable. The return value
4525of the function (if any) is ignored.
4526
4527If @option{-fexceptions} is enabled, then @var{cleanup_function}
4528will be run during the stack unwinding that happens during the
4529processing of the exception. Note that the @code{cleanup} attribute
4530does not allow the exception to be caught, only to perform an action.
4531It is undefined what happens if @var{cleanup_function} does not
4532return normally.
4533
905e8651
RH
4534@item common
4535@itemx nocommon
4536@cindex @code{common} attribute
4537@cindex @code{nocommon} attribute
4538@opindex fcommon
4539@opindex fno-common
4540The @code{common} attribute requests GCC to place a variable in
4541``common'' storage. The @code{nocommon} attribute requests the
78466c0e 4542opposite---to allocate space for it directly.
905e8651 4543
daf2f129 4544These attributes override the default chosen by the
905e8651
RH
4545@option{-fno-common} and @option{-fcommon} flags respectively.
4546
4547@item deprecated
9b86d6bb 4548@itemx deprecated (@var{msg})
905e8651
RH
4549@cindex @code{deprecated} attribute
4550The @code{deprecated} attribute results in a warning if the variable
4551is used anywhere in the source file. This is useful when identifying
4552variables that are expected to be removed in a future version of a
4553program. The warning also includes the location of the declaration
4554of the deprecated variable, to enable users to easily find further
4555information about why the variable is deprecated, or what they should
64c18e57 4556do instead. Note that the warning only occurs for uses:
905e8651
RH
4557
4558@smallexample
4559extern int old_var __attribute__ ((deprecated));
4560extern int old_var;
4561int new_fn () @{ return old_var; @}
4562@end smallexample
4563
9b86d6bb
L
4564results in a warning on line 3 but not line 2. The optional msg
4565argument, which must be a string, will be printed in the warning if
4566present.
905e8651
RH
4567
4568The @code{deprecated} attribute can also be used for functions and
4569types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
4570
c1f7febf
RK
4571@item mode (@var{mode})
4572@cindex @code{mode} attribute
4573This attribute specifies the data type for the declaration---whichever
4574type corresponds to the mode @var{mode}. This in effect lets you
4575request an integer or floating point type according to its width.
4576
4577You may also specify a mode of @samp{byte} or @samp{__byte__} to
4578indicate the mode corresponding to a one-byte integer, @samp{word} or
4579@samp{__word__} for the mode of a one-word integer, and @samp{pointer}
4580or @samp{__pointer__} for the mode used to represent pointers.
4581
c1f7febf
RK
4582@item packed
4583@cindex @code{packed} attribute
4584The @code{packed} attribute specifies that a variable or structure field
4585should have the smallest possible alignment---one byte for a variable,
4586and one bit for a field, unless you specify a larger value with the
4587@code{aligned} attribute.
4588
4589Here is a structure in which the field @code{x} is packed, so that it
4590immediately follows @code{a}:
4591
3ab51846 4592@smallexample
c1f7febf
RK
4593struct foo
4594@{
4595 char a;
4596 int x[2] __attribute__ ((packed));
4597@};
3ab51846 4598@end smallexample
c1f7febf 4599
2cd36c22
AN
4600@emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
4601@code{packed} attribute on bit-fields of type @code{char}. This has
4602been fixed in GCC 4.4 but the change can lead to differences in the
048fd785 4603structure layout. See the documentation of
2cd36c22
AN
4604@option{-Wpacked-bitfield-compat} for more information.
4605
84330467 4606@item section ("@var{section-name}")
c1f7febf
RK
4607@cindex @code{section} variable attribute
4608Normally, the compiler places the objects it generates in sections like
4609@code{data} and @code{bss}. Sometimes, however, you need additional sections,
4610or you need certain particular variables to appear in special sections,
4611for example to map to special hardware. The @code{section}
4612attribute specifies that a variable (or function) lives in a particular
4613section. For example, this small program uses several specific section names:
4614
4615@smallexample
4616struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
4617struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
4618char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
8b9d598f 4619int init_data __attribute__ ((section ("INITDATA")));
c1f7febf
RK
4620
4621main()
4622@{
12bcfaa1 4623 /* @r{Initialize stack pointer} */
c1f7febf
RK
4624 init_sp (stack + sizeof (stack));
4625
12bcfaa1 4626 /* @r{Initialize initialized data} */
c1f7febf
RK
4627 memcpy (&init_data, &data, &edata - &data);
4628
12bcfaa1 4629 /* @r{Turn on the serial ports} */
c1f7febf
RK
4630 init_duart (&a);
4631 init_duart (&b);
4632@}
4633@end smallexample
4634
4635@noindent
8b9d598f
SE
4636Use the @code{section} attribute with
4637@emph{global} variables and not @emph{local} variables,
4638as shown in the example.
c1f7febf 4639
8b9d598f
SE
4640You may use the @code{section} attribute with initialized or
4641uninitialized global variables but the linker requires
c1f7febf
RK
4642each object be defined once, with the exception that uninitialized
4643variables tentatively go in the @code{common} (or @code{bss}) section
8b9d598f
SE
4644and can be multiply ``defined''. Using the @code{section} attribute
4645will change what section the variable goes into and may cause the
4646linker to issue an error if an uninitialized variable has multiple
4647definitions. You can force a variable to be initialized with the
4648@option{-fno-common} flag or the @code{nocommon} attribute.
c1f7febf
RK
4649
4650Some file formats do not support arbitrary sections so the @code{section}
4651attribute is not available on all platforms.
4652If you need to map the entire contents of a module to a particular
4653section, consider using the facilities of the linker instead.
4654
593d3a34
MK
4655@item shared
4656@cindex @code{shared} variable attribute
95fef11f 4657On Microsoft Windows, in addition to putting variable definitions in a named
02f52e19 4658section, the section can also be shared among all running copies of an
161d7b59 4659executable or DLL@. For example, this small program defines shared data
84330467 4660by putting it in a named section @code{shared} and marking the section
593d3a34
MK
4661shareable:
4662
4663@smallexample
4664int foo __attribute__((section ("shared"), shared)) = 0;
4665
4666int
4667main()
4668@{
12bcfaa1
JM
4669 /* @r{Read and write foo. All running
4670 copies see the same value.} */
593d3a34
MK
4671 return 0;
4672@}
4673@end smallexample
4674
4675@noindent
4676You may only use the @code{shared} attribute along with @code{section}
02f52e19 4677attribute with a fully initialized global definition because of the way
593d3a34
MK
4678linkers work. See @code{section} attribute for more information.
4679
95fef11f 4680The @code{shared} attribute is only available on Microsoft Windows@.
593d3a34 4681
905e8651
RH
4682@item tls_model ("@var{tls_model}")
4683@cindex @code{tls_model} attribute
4684The @code{tls_model} attribute sets thread-local storage model
4685(@pxref{Thread-Local}) of a particular @code{__thread} variable,
bcbc9564 4686overriding @option{-ftls-model=} command-line switch on a per-variable
905e8651
RH
4687basis.
4688The @var{tls_model} argument should be one of @code{global-dynamic},
4689@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
4690
4691Not all targets support this attribute.
4692
c1f7febf
RK
4693@item unused
4694This attribute, attached to a variable, means that the variable is meant
f0523f02 4695to be possibly unused. GCC will not produce a warning for this
c1f7febf
RK
4696variable.
4697
5f79d643
RM
4698@item used
4699This attribute, attached to a variable, means that the variable must be
4700emitted even if it appears that the variable is not referenced.
4701
4951efb6
JM
4702When applied to a static data member of a C++ class template, the
4703attribute also means that the member will be instantiated if the
4704class itself is instantiated.
4705
1b9191d2
AH
4706@item vector_size (@var{bytes})
4707This attribute specifies the vector size for the variable, measured in
4708bytes. For example, the declaration:
4709
4710@smallexample
4711int foo __attribute__ ((vector_size (16)));
4712@end smallexample
4713
4714@noindent
4715causes the compiler to set the mode for @code{foo}, to be 16 bytes,
4716divided into @code{int} sized units. Assuming a 32-bit int (a vector of
47174 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
4718
4719This attribute is only applicable to integral and float scalars,
4720although arrays, pointers, and function return values are allowed in
4721conjunction with this construct.
4722
4723Aggregates with this attribute are invalid, even if they are of the same
4724size as a corresponding scalar. For example, the declaration:
4725
4726@smallexample
ad706f54 4727struct S @{ int a; @};
1b9191d2
AH
4728struct S __attribute__ ((vector_size (16))) foo;
4729@end smallexample
4730
4731@noindent
4732is invalid even if the size of the structure is the same as the size of
4733the @code{int}.
4734
a20f6f00
DS
4735@item selectany
4736The @code{selectany} attribute causes an initialized global variable to
4737have link-once semantics. When multiple definitions of the variable are
4738encountered by the linker, the first is selected and the remainder are
4739discarded. Following usage by the Microsoft compiler, the linker is told
4740@emph{not} to warn about size or content differences of the multiple
4741definitions.
4742
4743Although the primary usage of this attribute is for POD types, the
4744attribute can also be applied to global C++ objects that are initialized
4745by a constructor. In this case, the static initialization and destruction
4746code for the object is emitted in each translation defining the object,
4747but the calls to the constructor and destructor are protected by a
0ac11108 4748link-once guard variable.
a20f6f00
DS
4749
4750The @code{selectany} attribute is only available on Microsoft Windows
4751targets. You can use @code{__declspec (selectany)} as a synonym for
4752@code{__attribute__ ((selectany))} for compatibility with other
4753compilers.
4754
c1f7febf 4755@item weak
38bb2b65 4756The @code{weak} attribute is described in @ref{Function Attributes}.
6b6cb52e
DS
4757
4758@item dllimport
38bb2b65 4759The @code{dllimport} attribute is described in @ref{Function Attributes}.
6b6cb52e 4760
9baf8aea 4761@item dllexport
38bb2b65 4762The @code{dllexport} attribute is described in @ref{Function Attributes}.
6b6cb52e 4763
905e8651
RH
4764@end table
4765
542bf446 4766@anchor{AVR Variable Attributes}
3d33d151
AS
4767@subsection AVR Variable Attributes
4768
4769@table @code
4770@item progmem
4771@cindex @code{progmem} AVR variable attribute
542bf446
GJL
4772The @code{progmem} attribute is used on the AVR to place read-only
4773data in the non-volatile program memory (flash). The @code{progmem}
4774attribute accomplishes this by putting respective variables into a
4775section whose name starts with @code{.progmem}.
4776
aa9ec4db 4777This attribute works similar to the @code{section} attribute
542bf446
GJL
4778but adds additional checking. Notice that just like the
4779@code{section} attribute, @code{progmem} affects the location
4780of the data but not how this data is accessed.
4781
aa9ec4db
GJL
4782In order to read data located with the @code{progmem} attribute
4783(inline) assembler must be used.
4784@example
4785/* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}} */
4786#include <avr/pgmspace.h>
4787
4788/* Locate var in flash memory */
4789const int var[2] PROGMEM = @{ 1, 2 @};
4790
4791int read_var (int i)
4792@{
4793 /* Access var[] by accessor macro from avr/pgmspace.h */
4794 return (int) pgm_read_word (& var[i]);
4795@}
4796@end example
4797
542bf446
GJL
4798AVR is a Harvard architecture processor and data and read-only data
4799normally resides in the data memory (RAM).
aa9ec4db
GJL
4800
4801See also the @ref{AVR Named Address Spaces} section for
4802an alternate way to locate and access data in flash memory.
3d33d151
AS
4803@end table
4804
4af797b5
JZ
4805@subsection Blackfin Variable Attributes
4806
4807Three attributes are currently defined for the Blackfin.
4808
4809@table @code
4810@item l1_data
1588fb31
RW
4811@itemx l1_data_A
4812@itemx l1_data_B
4af797b5
JZ
4813@cindex @code{l1_data} variable attribute
4814@cindex @code{l1_data_A} variable attribute
4815@cindex @code{l1_data_B} variable attribute
4816Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
4817Variables with @code{l1_data} attribute will be put into the specific section
4818named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
4819the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
4820attribute will be put into the specific section named @code{.l1.data.B}.
603bb63e
BS
4821
4822@item l2
4823@cindex @code{l2} variable attribute
4824Use this attribute on the Blackfin to place the variable into L2 SRAM.
4825Variables with @code{l2} attribute will be put into the specific section
4826named @code{.l2.data}.
4af797b5
JZ
4827@end table
4828
905e8651 4829@subsection M32R/D Variable Attributes
845da534 4830
8a36672b 4831One attribute is currently defined for the M32R/D@.
905e8651
RH
4832
4833@table @code
845da534
DE
4834@item model (@var{model-name})
4835@cindex variable addressability on the M32R/D
4836Use this attribute on the M32R/D to set the addressability of an object.
4837The identifier @var{model-name} is one of @code{small}, @code{medium},
4838or @code{large}, representing each of the code models.
4839
4840Small model objects live in the lower 16MB of memory (so that their
4841addresses can be loaded with the @code{ld24} instruction).
4842
02f52e19 4843Medium and large model objects may live anywhere in the 32-bit address space
845da534
DE
4844(the compiler will generate @code{seth/add3} instructions to load their
4845addresses).
905e8651 4846@end table
845da534 4847
e2491744
DD
4848@anchor{MeP Variable Attributes}
4849@subsection MeP Variable Attributes
4850
4851The MeP target has a number of addressing modes and busses. The
4852@code{near} space spans the standard memory space's first 16 megabytes
4853(24 bits). The @code{far} space spans the entire 32-bit memory space.
4854The @code{based} space is a 128 byte region in the memory space which
4855is addressed relative to the @code{$tp} register. The @code{tiny}
4856space is a 65536 byte region relative to the @code{$gp} register. In
4857addition to these memory regions, the MeP target has a separate 16-bit
4858control bus which is specified with @code{cb} attributes.
4859
4860@table @code
4861
4862@item based
4863Any variable with the @code{based} attribute will be assigned to the
4864@code{.based} section, and will be accessed with relative to the
4865@code{$tp} register.
4866
4867@item tiny
4868Likewise, the @code{tiny} attribute assigned variables to the
4869@code{.tiny} section, relative to the @code{$gp} register.
4870
4871@item near
4872Variables with the @code{near} attribute are assumed to have addresses
4873that fit in a 24-bit addressing mode. This is the default for large
4874variables (@code{-mtiny=4} is the default) but this attribute can
4875override @code{-mtiny=} for small variables, or override @code{-ml}.
4876
4877@item far
4878Variables with the @code{far} attribute are addressed using a full
487932-bit address. Since this covers the entire memory space, this
4880allows modules to make no assumptions about where variables might be
4881stored.
4882
4883@item io
1588fb31 4884@itemx io (@var{addr})
e2491744
DD
4885Variables with the @code{io} attribute are used to address
4886memory-mapped peripherals. If an address is specified, the variable
4887is assigned that address, else it is not assigned an address (it is
4888assumed some other module will assign an address). Example:
4889
4890@example
4891int timer_count __attribute__((io(0x123)));
4892@end example
4893
4894@item cb
1588fb31 4895@itemx cb (@var{addr})
e2491744
DD
4896Variables with the @code{cb} attribute are used to access the control
4897bus, using special instructions. @code{addr} indicates the control bus
4898address. Example:
4899
4900@example
4901int cpu_clock __attribute__((cb(0x123)));
4902@end example
4903
4904@end table
4905
1ccbef77 4906@anchor{i386 Variable Attributes}
fe77449a
DR
4907@subsection i386 Variable Attributes
4908
4909Two attributes are currently defined for i386 configurations:
4910@code{ms_struct} and @code{gcc_struct}
4911
905e8651 4912@table @code
fe77449a
DR
4913@item ms_struct
4914@itemx gcc_struct
905e8651
RH
4915@cindex @code{ms_struct} attribute
4916@cindex @code{gcc_struct} attribute
fe77449a
DR
4917
4918If @code{packed} is used on a structure, or if bit-fields are used
4919it may be that the Microsoft ABI packs them differently
4920than GCC would normally pack them. Particularly when moving packed
4921data between functions compiled with GCC and the native Microsoft compiler
4922(either via function call or as data in a file), it may be necessary to access
4923either format.
4924
95fef11f 4925Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
fe77449a 4926compilers to match the native Microsoft compiler.
0ac11108
EC
4927
4928The Microsoft structure layout algorithm is fairly simple with the exception
4929of the bitfield packing:
4930
4931The padding and alignment of members of structures and whether a bit field
4932can straddle a storage-unit boundary
4933
4934@enumerate
4935@item Structure members are stored sequentially in the order in which they are
4936declared: the first member has the lowest memory address and the last member
4937the highest.
4938
4939@item Every data object has an alignment-requirement. The alignment-requirement
4940for all data except structures, unions, and arrays is either the size of the
4941object or the current packing size (specified with either the aligned attribute
4942or the pack pragma), whichever is less. For structures, unions, and arrays,
4943the alignment-requirement is the largest alignment-requirement of its members.
4944Every object is allocated an offset so that:
4945
4946offset % alignment-requirement == 0
4947
4948@item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
4949unit if the integral types are the same size and if the next bit field fits
4950into the current allocation unit without crossing the boundary imposed by the
4951common alignment requirements of the bit fields.
4952@end enumerate
4953
4954Handling of zero-length bitfields:
4955
4956MSVC interprets zero-length bitfields in the following ways:
4957
4958@enumerate
4959@item If a zero-length bitfield is inserted between two bitfields that would
4960normally be coalesced, the bitfields will not be coalesced.
4961
4962For example:
4963
4964@smallexample
4965struct
4966 @{
4967 unsigned long bf_1 : 12;
4968 unsigned long : 0;
4969 unsigned long bf_2 : 12;
4970 @} t1;
4971@end smallexample
4972
4973The size of @code{t1} would be 8 bytes with the zero-length bitfield. If the
4974zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
4975
4976@item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
4977alignment of the zero-length bitfield is greater than the member that follows it,
4978@code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
4979
4980For example:
4981
4982@smallexample
4983struct
4984 @{
4985 char foo : 4;
4986 short : 0;
4987 char bar;
4988 @} t2;
4989
4990struct
4991 @{
4992 char foo : 4;
4993 short : 0;
4994 double bar;
4995 @} t3;
4996@end smallexample
4997
4998For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
4999Accordingly, the size of @code{t2} will be 4. For @code{t3}, the zero-length
5000bitfield will not affect the alignment of @code{bar} or, as a result, the size
5001of the structure.
5002
5003Taking this into account, it is important to note the following:
5004
5005@enumerate
5006@item If a zero-length bitfield follows a normal bitfield, the type of the
5007zero-length bitfield may affect the alignment of the structure as whole. For
5008example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
5009normal bitfield, and is of type short.
5010
5011@item Even if a zero-length bitfield is not followed by a normal bitfield, it may
5012still affect the alignment of the structure:
5013
5014@smallexample
5015struct
5016 @{
5017 char foo : 6;
5018 long : 0;
5019 @} t4;
5020@end smallexample
5021
5022Here, @code{t4} will take up 4 bytes.
5023@end enumerate
5024
5025@item Zero-length bitfields following non-bitfield members are ignored:
5026
5027@smallexample
5028struct
5029 @{
5030 char foo;
5031 long : 0;
5032 char bar;
5033 @} t5;
5034@end smallexample
5035
5036Here, @code{t5} will take up 2 bytes.
5037@end enumerate
c1f7febf
RK
5038@end table
5039
1ccbef77
EC
5040@subsection PowerPC Variable Attributes
5041
63d0dca4
DE
5042Three attributes currently are defined for PowerPC configurations:
5043@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
1ccbef77 5044
63d0dca4 5045For full documentation of the struct attributes please see the
38bb2b65 5046documentation in @ref{i386 Variable Attributes}.
63d0dca4
DE
5047
5048For documentation of @code{altivec} attribute please see the
38bb2b65 5049documentation in @ref{PowerPC Type Attributes}.
1ccbef77 5050
85d9c13c
TS
5051@subsection SPU Variable Attributes
5052
5053The SPU supports the @code{spu_vector} attribute for variables. For
38bb2b65
SL
5054documentation of this attribute please see the documentation in
5055@ref{SPU Type Attributes}.
85d9c13c 5056
54e9a19d
DD
5057@subsection Xstormy16 Variable Attributes
5058
5059One attribute is currently defined for xstormy16 configurations:
38bb2b65 5060@code{below100}.
54e9a19d
DD
5061
5062@table @code
5063@item below100
5064@cindex @code{below100} attribute
5065
5066If a variable has the @code{below100} attribute (@code{BELOW100} is
5067allowed also), GCC will place the variable in the first 0x100 bytes of
5068memory and use special opcodes to access it. Such variables will be
5069placed in either the @code{.bss_below100} section or the
5070@code{.data_below100} section.
5071
5072@end table
5073
c1f7febf
RK
5074@node Type Attributes
5075@section Specifying Attributes of Types
5076@cindex attribute of types
5077@cindex type attributes
5078
5079The keyword @code{__attribute__} allows you to specify special
b9e75696
JM
5080attributes of @code{struct} and @code{union} types when you define
5081such types. This keyword is followed by an attribute specification
5082inside double parentheses. Seven attributes are currently defined for
5083types: @code{aligned}, @code{packed}, @code{transparent_union},
5084@code{unused}, @code{deprecated}, @code{visibility}, and
5085@code{may_alias}. Other attributes are defined for functions
5086(@pxref{Function Attributes}) and for variables (@pxref{Variable
5087Attributes}).
c1f7febf
RK
5088
5089You may also specify any one of these attributes with @samp{__}
5090preceding and following its keyword. This allows you to use these
5091attributes in header files without being concerned about a possible
5092macro of the same name. For example, you may use @code{__aligned__}
5093instead of @code{aligned}.
5094
4009f2e7
JM
5095You may specify type attributes in an enum, struct or union type
5096declaration or definition, or for other types in a @code{typedef}
5097declaration.
c1f7febf 5098
b9e75696
JM
5099For an enum, struct or union type, you may specify attributes either
5100between the enum, struct or union tag and the name of the type, or
5101just past the closing curly brace of the @emph{definition}. The
5102former syntax is preferred.
4051959b 5103
2c5e91d2
JM
5104@xref{Attribute Syntax}, for details of the exact syntax for using
5105attributes.
5106
c1f7febf
RK
5107@table @code
5108@cindex @code{aligned} attribute
5109@item aligned (@var{alignment})
5110This attribute specifies a minimum alignment (in bytes) for variables
5111of the specified type. For example, the declarations:
5112
5113@smallexample
f69eecfb
JL
5114struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
5115typedef int more_aligned_int __attribute__ ((aligned (8)));
c1f7febf
RK
5116@end smallexample
5117
5118@noindent
d863830b 5119force the compiler to insure (as far as it can) that each variable whose
c1f7febf 5120type is @code{struct S} or @code{more_aligned_int} will be allocated and
981f6289 5121aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
c1f7febf
RK
5122variables of type @code{struct S} aligned to 8-byte boundaries allows
5123the compiler to use the @code{ldd} and @code{std} (doubleword load and
5124store) instructions when copying one variable of type @code{struct S} to
5125another, thus improving run-time efficiency.
5126
5127Note that the alignment of any given @code{struct} or @code{union} type
5490d604 5128is required by the ISO C standard to be at least a perfect multiple of
c1f7febf
RK
5129the lowest common multiple of the alignments of all of the members of
5130the @code{struct} or @code{union} in question. This means that you @emph{can}
5131effectively adjust the alignment of a @code{struct} or @code{union}
5132type by attaching an @code{aligned} attribute to any one of the members
5133of such a type, but the notation illustrated in the example above is a
5134more obvious, intuitive, and readable way to request the compiler to
5135adjust the alignment of an entire @code{struct} or @code{union} type.
5136
5137As in the preceding example, you can explicitly specify the alignment
5138(in bytes) that you wish the compiler to use for a given @code{struct}
5139or @code{union} type. Alternatively, you can leave out the alignment factor
5140and just ask the compiler to align a type to the maximum
5141useful alignment for the target machine you are compiling for. For
5142example, you could write:
5143
5144@smallexample
5145struct S @{ short f[3]; @} __attribute__ ((aligned));
5146@end smallexample
5147
5148Whenever you leave out the alignment factor in an @code{aligned}
5149attribute specification, the compiler automatically sets the alignment
5150for the type to the largest alignment which is ever used for any data
5151type on the target machine you are compiling for. Doing this can often
5152make copy operations more efficient, because the compiler can use
5153whatever instructions copy the biggest chunks of memory when performing
5154copies to or from the variables which have types that you have aligned
5155this way.
5156
5157In the example above, if the size of each @code{short} is 2 bytes, then
5158the size of the entire @code{struct S} type is 6 bytes. The smallest
5159power of two which is greater than or equal to that is 8, so the
5160compiler sets the alignment for the entire @code{struct S} type to 8
5161bytes.
5162
5163Note that although you can ask the compiler to select a time-efficient
5164alignment for a given type and then declare only individual stand-alone
5165objects of that type, the compiler's ability to select a time-efficient
5166alignment is primarily useful only when you plan to create arrays of
5167variables having the relevant (efficiently aligned) type. If you
5168declare or use arrays of variables of an efficiently-aligned type, then
5169it is likely that your program will also be doing pointer arithmetic (or
5170subscripting, which amounts to the same thing) on pointers to the
5171relevant type, and the code that the compiler generates for these
5172pointer arithmetic operations will often be more efficient for
5173efficiently-aligned types than for other types.
5174
5175The @code{aligned} attribute can only increase the alignment; but you
5176can decrease it by specifying @code{packed} as well. See below.
5177
5178Note that the effectiveness of @code{aligned} attributes may be limited
5179by inherent limitations in your linker. On many systems, the linker is
5180only able to arrange for variables to be aligned up to a certain maximum
5181alignment. (For some linkers, the maximum supported alignment may
5182be very very small.) If your linker is only able to align variables
5183up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
5184in an @code{__attribute__} will still only provide you with 8 byte
5185alignment. See your linker documentation for further information.
5186
5187@item packed
a5bcc582 5188This attribute, attached to @code{struct} or @code{union} type
d1a701eb
MM
5189definition, specifies that each member (other than zero-width bitfields)
5190of the structure or union is placed to minimize the memory required. When
5191attached to an @code{enum} definition, it indicates that the smallest
5192integral type should be used.
c1f7febf 5193
84330467 5194@opindex fshort-enums
c1f7febf
RK
5195Specifying this attribute for @code{struct} and @code{union} types is
5196equivalent to specifying the @code{packed} attribute on each of the
84330467 5197structure or union members. Specifying the @option{-fshort-enums}
c1f7febf
RK
5198flag on the line is equivalent to specifying the @code{packed}
5199attribute on all @code{enum} definitions.
5200
a5bcc582
NS
5201In the following example @code{struct my_packed_struct}'s members are
5202packed closely together, but the internal layout of its @code{s} member
78466c0e 5203is not packed---to do that, @code{struct my_unpacked_struct} would need to
a5bcc582
NS
5204be packed too.
5205
5206@smallexample
5207struct my_unpacked_struct
5208 @{
5209 char c;
5210 int i;
5211 @};
5212
75b66a16 5213struct __attribute__ ((__packed__)) my_packed_struct
a5bcc582
NS
5214 @{
5215 char c;
5216 int i;
5217 struct my_unpacked_struct s;
5218 @};
5219@end smallexample
5220
e4ae5e77 5221You may only specify this attribute on the definition of an @code{enum},
a5bcc582
NS
5222@code{struct} or @code{union}, not on a @code{typedef} which does not
5223also define the enumerated type, structure or union.
c1f7febf
RK
5224
5225@item transparent_union
5226This attribute, attached to a @code{union} type definition, indicates
5227that any function parameter having that union type causes calls to that
5228function to be treated in a special way.
5229
5230First, the argument corresponding to a transparent union type can be of
5231any type in the union; no cast is required. Also, if the union contains
5232a pointer type, the corresponding argument can be a null pointer
5233constant or a void pointer expression; and if the union contains a void
5234pointer type, the corresponding argument can be any pointer expression.
5235If the union member type is a pointer, qualifiers like @code{const} on
5236the referenced type must be respected, just as with normal pointer
5237conversions.
5238
5239Second, the argument is passed to the function using the calling
64c18e57 5240conventions of the first member of the transparent union, not the calling
c1f7febf
RK
5241conventions of the union itself. All members of the union must have the
5242same machine representation; this is necessary for this argument passing
5243to work properly.
5244
5245Transparent unions are designed for library functions that have multiple
5246interfaces for compatibility reasons. For example, suppose the
5247@code{wait} function must accept either a value of type @code{int *} to
5248comply with Posix, or a value of type @code{union wait *} to comply with
5249the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
5250@code{wait} would accept both kinds of arguments, but it would also
5251accept any other pointer type and this would make argument type checking
5252less useful. Instead, @code{<sys/wait.h>} might define the interface
5253as follows:
5254
5255@smallexample
4009f2e7 5256typedef union __attribute__ ((__transparent_union__))
c1f7febf
RK
5257 @{
5258 int *__ip;
5259 union wait *__up;
4009f2e7 5260 @} wait_status_ptr_t;
c1f7febf
RK
5261
5262pid_t wait (wait_status_ptr_t);
5263@end smallexample
5264
5265This interface allows either @code{int *} or @code{union wait *}
5266arguments to be passed, using the @code{int *} calling convention.
5267The program can call @code{wait} with arguments of either type:
5268
3ab51846 5269@smallexample
c1f7febf
RK
5270int w1 () @{ int w; return wait (&w); @}
5271int w2 () @{ union wait w; return wait (&w); @}
3ab51846 5272@end smallexample
c1f7febf
RK
5273
5274With this interface, @code{wait}'s implementation might look like this:
5275
3ab51846 5276@smallexample
c1f7febf
RK
5277pid_t wait (wait_status_ptr_t p)
5278@{
5279 return waitpid (-1, p.__ip, 0);
5280@}
3ab51846 5281@end smallexample
d863830b
JL
5282
5283@item unused
5284When attached to a type (including a @code{union} or a @code{struct}),
5285this attribute means that variables of that type are meant to appear
f0523f02 5286possibly unused. GCC will not produce a warning for any variables of
d863830b
JL
5287that type, even if the variable appears to do nothing. This is often
5288the case with lock or thread classes, which are usually defined and then
5289not referenced, but contain constructors and destructors that have
956d6950 5290nontrivial bookkeeping functions.
d863830b 5291
e23bd218 5292@item deprecated
9b86d6bb 5293@itemx deprecated (@var{msg})
e23bd218
IR
5294The @code{deprecated} attribute results in a warning if the type
5295is used anywhere in the source file. This is useful when identifying
5296types that are expected to be removed in a future version of a program.
5297If possible, the warning also includes the location of the declaration
5298of the deprecated type, to enable users to easily find further
5299information about why the type is deprecated, or what they should do
5300instead. Note that the warnings only occur for uses and then only
adc9fe67 5301if the type is being applied to an identifier that itself is not being
e23bd218
IR
5302declared as deprecated.
5303
5304@smallexample
5305typedef int T1 __attribute__ ((deprecated));
5306T1 x;
5307typedef T1 T2;
5308T2 y;
5309typedef T1 T3 __attribute__ ((deprecated));
5310T3 z __attribute__ ((deprecated));
5311@end smallexample
5312
5313results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
5314warning is issued for line 4 because T2 is not explicitly
5315deprecated. Line 5 has no warning because T3 is explicitly
9b86d6bb
L
5316deprecated. Similarly for line 6. The optional msg
5317argument, which must be a string, will be printed in the warning if
5318present.
e23bd218
IR
5319
5320The @code{deprecated} attribute can also be used for functions and
5321variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5322
d18b1ed8 5323@item may_alias
ac7ee6ad
RG
5324Accesses through pointers to types with this attribute are not subject
5325to type-based alias analysis, but are instead assumed to be able to alias
5326any other type of objects. In the context of 6.5/7 an lvalue expression
5327dereferencing such a pointer is treated like having a character type.
5328See @option{-fstrict-aliasing} for more information on aliasing issues.
5329This extension exists to support some vector APIs, in which pointers to
5330one vector type are permitted to alias pointers to a different vector type.
5331
5332Note that an object of a type with this attribute does not have any
5333special semantics.
d18b1ed8
OS
5334
5335Example of use:
5336
478c9e72 5337@smallexample
d18b1ed8
OS
5338typedef short __attribute__((__may_alias__)) short_a;
5339
5340int
5341main (void)
5342@{
5343 int a = 0x12345678;
5344 short_a *b = (short_a *) &a;
5345
5346 b[1] = 0;
5347
5348 if (a == 0x12345678)
5349 abort();
5350
5351 exit(0);
5352@}
478c9e72 5353@end smallexample
d18b1ed8
OS
5354
5355If you replaced @code{short_a} with @code{short} in the variable
5356declaration, the above program would abort when compiled with
5357@option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5358above in recent GCC versions.
fe77449a 5359
b9e75696 5360@item visibility
b9e75696
JM
5361In C++, attribute visibility (@pxref{Function Attributes}) can also be
5362applied to class, struct, union and enum types. Unlike other type
5363attributes, the attribute must appear between the initial keyword and
5364the name of the type; it cannot appear after the body of the type.
5365
b70f0f48
JM
5366Note that the type visibility is applied to vague linkage entities
5367associated with the class (vtable, typeinfo node, etc.). In
5368particular, if a class is thrown as an exception in one shared object
5369and caught in another, the class must have default visibility.
5370Otherwise the two shared objects will be unable to use the same
5371typeinfo node and exception handling will break.
5372
38bb2b65
SL
5373@end table
5374
ada37101
TG
5375To specify multiple attributes, separate them by commas within the
5376double parentheses: for example, @samp{__attribute__ ((aligned (16),
5377packed))}.
5378
04fb56d5
MM
5379@subsection ARM Type Attributes
5380
5381On those ARM targets that support @code{dllimport} (such as Symbian
f0eb93a8 5382OS), you can use the @code{notshared} attribute to indicate that the
04fb56d5 5383virtual table and other similar data for a class should not be
8a36672b 5384exported from a DLL@. For example:
04fb56d5
MM
5385
5386@smallexample
5387class __declspec(notshared) C @{
5388public:
f0eb93a8 5389 __declspec(dllimport) C();
04fb56d5
MM
5390 virtual void f();
5391@}
5392
5393__declspec(dllexport)
5394C::C() @{@}
5395@end smallexample
5396
5397In this code, @code{C::C} is exported from the current DLL, but the
5398virtual table for @code{C} is not exported. (You can use
5399@code{__attribute__} instead of @code{__declspec} if you prefer, but
5400most Symbian OS code uses @code{__declspec}.)
5401
e2491744
DD
5402@anchor{MeP Type Attributes}
5403@subsection MeP Type Attributes
5404
5405Many of the MeP variable attributes may be applied to types as well.
5406Specifically, the @code{based}, @code{tiny}, @code{near}, and
5407@code{far} attributes may be applied to either. The @code{io} and
5408@code{cb} attributes may not be applied to types.
5409
63d0dca4 5410@anchor{i386 Type Attributes}
fe77449a
DR
5411@subsection i386 Type Attributes
5412
5413Two attributes are currently defined for i386 configurations:
38bb2b65
SL
5414@code{ms_struct} and @code{gcc_struct}.
5415
5416@table @code
fe77449a
DR
5417
5418@item ms_struct
5419@itemx gcc_struct
5420@cindex @code{ms_struct}
5421@cindex @code{gcc_struct}
5422
5423If @code{packed} is used on a structure, or if bit-fields are used
5424it may be that the Microsoft ABI packs them differently
5425than GCC would normally pack them. Particularly when moving packed
5426data between functions compiled with GCC and the native Microsoft compiler
5427(either via function call or as data in a file), it may be necessary to access
5428either format.
5429
95fef11f 5430Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
fe77449a 5431compilers to match the native Microsoft compiler.
c1f7febf
RK
5432@end table
5433
63d0dca4
DE
5434@anchor{PowerPC Type Attributes}
5435@subsection PowerPC Type Attributes
5436
5437Three attributes currently are defined for PowerPC configurations:
5438@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5439
ff2ce160 5440For full documentation of the @code{ms_struct} and @code{gcc_struct}
38bb2b65 5441attributes please see the documentation in @ref{i386 Type Attributes}.
63d0dca4
DE
5442
5443The @code{altivec} attribute allows one to declare AltiVec vector data
5444types supported by the AltiVec Programming Interface Manual. The
5445attribute requires an argument to specify one of three vector types:
5446@code{vector__}, @code{pixel__} (always followed by unsigned short),
5447and @code{bool__} (always followed by unsigned).
5448
5449@smallexample
5450__attribute__((altivec(vector__)))
5451__attribute__((altivec(pixel__))) unsigned short
5452__attribute__((altivec(bool__))) unsigned
5453@end smallexample
5454
5455These attributes mainly are intended to support the @code{__vector},
5456@code{__pixel}, and @code{__bool} AltiVec keywords.
5457
85d9c13c
TS
5458@anchor{SPU Type Attributes}
5459@subsection SPU Type Attributes
5460
5461The SPU supports the @code{spu_vector} attribute for types. This attribute
5462allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5463Language Extensions Specification. It is intended to support the
5464@code{__vector} keyword.
5465
2be478a2
JW
5466@node Alignment
5467@section Inquiring on Alignment of Types or Variables
5468@cindex alignment
5469@cindex type alignment
5470@cindex variable alignment
5471
5472The keyword @code{__alignof__} allows you to inquire about how an object
5473is aligned, or the minimum alignment usually required by a type. Its
5474syntax is just like @code{sizeof}.
5475
5476For example, if the target machine requires a @code{double} value to be
5477aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5478This is true on many RISC machines. On more traditional machine
5479designs, @code{__alignof__ (double)} is 4 or even 2.
5480
5481Some machines never actually require alignment; they allow reference to any
5482data type even at an odd address. For these machines, @code{__alignof__}
5483reports the smallest alignment that GCC will give the data type, usually as
5484mandated by the target ABI.
5485
5486If the operand of @code{__alignof__} is an lvalue rather than a type,
5487its value is the required alignment for its type, taking into account
5488any minimum alignment specified with GCC's @code{__attribute__}
5489extension (@pxref{Variable Attributes}). For example, after this
5490declaration:
5491
5492@smallexample
5493struct foo @{ int x; char y; @} foo1;
5494@end smallexample
5495
5496@noindent
5497the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
5498alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
5499
5500It is an error to ask for the alignment of an incomplete type.
5501
85d9c13c 5502
c1f7febf
RK
5503@node Inline
5504@section An Inline Function is As Fast As a Macro
5505@cindex inline functions
5506@cindex integrating function code
5507@cindex open coding
5508@cindex macros, inline alternative
5509
0a052b16
GK
5510By declaring a function inline, you can direct GCC to make
5511calls to that function faster. One way GCC can achieve this is to
c1f7febf
RK
5512integrate that function's code into the code for its callers. This
5513makes execution faster by eliminating the function-call overhead; in
0a052b16
GK
5514addition, if any of the actual argument values are constant, their
5515known values may permit simplifications at compile time so that not
5516all of the inline function's code needs to be included. The effect on
5517code size is less predictable; object code may be larger or smaller
5518with function inlining, depending on the particular case. You can
5519also direct GCC to try to integrate all ``simple enough'' functions
5520into their callers with the option @option{-finline-functions}.
5521
5522GCC implements three different semantics of declaring a function
da1c7394
ILT
5523inline. One is available with @option{-std=gnu89} or
5524@option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
2778d766 5525on all inline declarations, another when
48b0b196
JM
5526@option{-std=c99}, @option{-std=c11},
5527@option{-std=gnu99} or @option{-std=gnu11}
2778d766 5528(without @option{-fgnu89-inline}), and the third
da1c7394 5529is used when compiling C++.
4b404517 5530
c1f7febf
RK
5531To declare a function inline, use the @code{inline} keyword in its
5532declaration, like this:
5533
3ab51846 5534@smallexample
0a052b16 5535static inline int
c1f7febf
RK
5536inc (int *a)
5537@{
bcbc9564 5538 return (*a)++;
c1f7febf 5539@}
3ab51846 5540@end smallexample
c1f7febf 5541
7e1542b9 5542If you are writing a header file to be included in ISO C90 programs, write
0a052b16 5543@code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
247b14bd 5544
0a052b16
GK
5545The three types of inlining behave similarly in two important cases:
5546when the @code{inline} keyword is used on a @code{static} function,
5547like the example above, and when a function is first declared without
5548using the @code{inline} keyword and then is defined with
5549@code{inline}, like this:
c1f7febf 5550
0a052b16
GK
5551@smallexample
5552extern int inc (int *a);
5553inline int
5554inc (int *a)
5555@{
bcbc9564 5556 return (*a)++;
0a052b16
GK
5557@}
5558@end smallexample
c1f7febf 5559
0a052b16
GK
5560In both of these common cases, the program behaves the same as if you
5561had not used the @code{inline} keyword, except for its speed.
c1f7febf
RK
5562
5563@cindex inline functions, omission of
84330467 5564@opindex fkeep-inline-functions
c1f7febf
RK
5565When a function is both inline and @code{static}, if all calls to the
5566function are integrated into the caller, and the function's address is
5567never used, then the function's own assembler code is never referenced.
f0523f02 5568In this case, GCC does not actually output assembler code for the
84330467 5569function, unless you specify the option @option{-fkeep-inline-functions}.
c1f7febf
RK
5570Some calls cannot be integrated for various reasons (in particular,
5571calls that precede the function's definition cannot be integrated, and
5572neither can recursive calls within the definition). If there is a
5573nonintegrated call, then the function is compiled to assembler code as
5574usual. The function must also be compiled as usual if the program
5575refers to its address, because that can't be inlined.
5576
0a052b16
GK
5577@opindex Winline
5578Note that certain usages in a function definition can make it unsuitable
5579for inline substitution. Among these usages are: use of varargs, use of
5580alloca, use of variable sized data types (@pxref{Variable Length}),
5581use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
5582and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
5583will warn when a function marked @code{inline} could not be substituted,
5584and will give the reason for the failure.
5585
5586@cindex automatic @code{inline} for C++ member fns
5587@cindex @code{inline} automatic for C++ member fns
5588@cindex member fns, automatically @code{inline}
5589@cindex C++ member fns, automatically @code{inline}
5590@opindex fno-default-inline
5591As required by ISO C++, GCC considers member functions defined within
5592the body of a class to be marked inline even if they are
5593not explicitly declared with the @code{inline} keyword. You can
5594override this with @option{-fno-default-inline}; @pxref{C++ Dialect
5595Options,,Options Controlling C++ Dialect}.
5596
5597GCC does not inline any functions when not optimizing unless you specify
5598the @samp{always_inline} attribute for the function, like this:
5599
5600@smallexample
5601/* @r{Prototype.} */
5602inline void foo (const char) __attribute__((always_inline));
5603@end smallexample
5604
7e1542b9 5605The remainder of this section is specific to GNU C90 inlining.
0a052b16 5606
c1f7febf
RK
5607@cindex non-static inline function
5608When an inline function is not @code{static}, then the compiler must assume
5609that there may be calls from other source files; since a global symbol can
5610be defined only once in any program, the function must not be defined in
5611the other source files, so the calls therein cannot be integrated.
5612Therefore, a non-@code{static} inline function is always compiled on its
5613own in the usual fashion.
5614
5615If you specify both @code{inline} and @code{extern} in the function
5616definition, then the definition is used only for inlining. In no case
5617is the function compiled on its own, not even if you refer to its
5618address explicitly. Such an address becomes an external reference, as
5619if you had only declared the function, and had not defined it.
5620
5621This combination of @code{inline} and @code{extern} has almost the
5622effect of a macro. The way to use it is to put a function definition in
5623a header file with these keywords, and put another copy of the
5624definition (lacking @code{inline} and @code{extern}) in a library file.
5625The definition in the header file will cause most calls to the function
5626to be inlined. If any uses of the function remain, they will refer to
5627the single copy in the library.
5628
8f0fe813
NS
5629@node Volatiles
5630@section When is a Volatile Object Accessed?
5631@cindex accessing volatiles
5632@cindex volatile read
5633@cindex volatile write
5634@cindex volatile access
5635
5636C has the concept of volatile objects. These are normally accessed by
5637pointers and used for accessing hardware or inter-thread
2b0d3573 5638communication. The standard encourages compilers to refrain from
8f0fe813
NS
5639optimizations concerning accesses to volatile objects, but leaves it
5640implementation defined as to what constitutes a volatile access. The
5641minimum requirement is that at a sequence point all previous accesses
5642to volatile objects have stabilized and no subsequent accesses have
5643occurred. Thus an implementation is free to reorder and combine
5644volatile accesses which occur between sequence points, but cannot do
2b0d3573 5645so for accesses across a sequence point. The use of volatile does
8f0fe813
NS
5646not allow you to violate the restriction on updating objects multiple
5647times between two sequence points.
5648
5649Accesses to non-volatile objects are not ordered with respect to
5650volatile accesses. You cannot use a volatile object as a memory
5651barrier to order a sequence of writes to non-volatile memory. For
5652instance:
5653
5654@smallexample
5655int *ptr = @var{something};
5656volatile int vobj;
5657*ptr = @var{something};
5658vobj = 1;
5659@end smallexample
5660
5661Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
5662that the write to @var{*ptr} will have occurred by the time the update
5663of @var{vobj} has happened. If you need this guarantee, you must use
5664a stronger memory barrier such as:
5665
5666@smallexample
5667int *ptr = @var{something};
5668volatile int vobj;
5669*ptr = @var{something};
5670asm volatile ("" : : : "memory");
5671vobj = 1;
5672@end smallexample
5673
2b0d3573 5674A scalar volatile object is read when it is accessed in a void context:
8f0fe813
NS
5675
5676@smallexample
5677volatile int *src = @var{somevalue};
5678*src;
5679@end smallexample
5680
5681Such expressions are rvalues, and GCC implements this as a
5682read of the volatile object being pointed to.
5683
5684Assignments are also expressions and have an rvalue. However when
5685assigning to a scalar volatile, the volatile object is not reread,
5686regardless of whether the assignment expression's rvalue is used or
5687not. If the assignment's rvalue is used, the value is that assigned
5688to the volatile object. For instance, there is no read of @var{vobj}
5689in all the following cases:
5690
5691@smallexample
5692int obj;
5693volatile int vobj;
5694vobj = @var{something};
5695obj = vobj = @var{something};
5696obj ? vobj = @var{onething} : vobj = @var{anotherthing};
5697obj = (@var{something}, vobj = @var{anotherthing});
5698@end smallexample
5699
5700If you need to read the volatile object after an assignment has
5701occurred, you must use a separate expression with an intervening
5702sequence point.
5703
5704As bitfields are not individually addressable, volatile bitfields may
5705be implicitly read when written to, or when adjacent bitfields are
5706accessed. Bitfield operations may be optimized such that adjacent
5707bitfields are only partially accessed, if they straddle a storage unit
5708boundary. For these reasons it is unwise to use volatile bitfields to
5709access hardware.
5710
c1f7febf
RK
5711@node Extended Asm
5712@section Assembler Instructions with C Expression Operands
5713@cindex extended @code{asm}
5714@cindex @code{asm} expressions
5715@cindex assembler instructions
5716@cindex registers
5717
c85f7c16
JL
5718In an assembler instruction using @code{asm}, you can specify the
5719operands of the instruction using C expressions. This means you need not
5720guess which registers or memory locations will contain the data you want
c1f7febf
RK
5721to use.
5722
c85f7c16
JL
5723You must specify an assembler instruction template much like what
5724appears in a machine description, plus an operand constraint string for
5725each operand.
c1f7febf
RK
5726
5727For example, here is how to use the 68881's @code{fsinx} instruction:
5728
3ab51846 5729@smallexample
c1f7febf 5730asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
3ab51846 5731@end smallexample
c1f7febf
RK
5732
5733@noindent
5734Here @code{angle} is the C expression for the input operand while
5735@code{result} is that of the output operand. Each has @samp{"f"} as its
c85f7c16
JL
5736operand constraint, saying that a floating point register is required.
5737The @samp{=} in @samp{=f} indicates that the operand is an output; all
5738output operands' constraints must use @samp{=}. The constraints use the
5739same language used in the machine description (@pxref{Constraints}).
5740
5741Each operand is described by an operand-constraint string followed by
5742the C expression in parentheses. A colon separates the assembler
5743template from the first output operand and another separates the last
5744output operand from the first input, if any. Commas separate the
84b72302
RH
5745operands within each group. The total number of operands is currently
5746limited to 30; this limitation may be lifted in some future version of
8a36672b 5747GCC@.
c85f7c16
JL
5748
5749If there are no output operands but there are input operands, you must
5750place two consecutive colons surrounding the place where the output
c1f7febf
RK
5751operands would go.
5752
84b72302
RH
5753As of GCC version 3.1, it is also possible to specify input and output
5754operands using symbolic names which can be referenced within the
5755assembler code. These names are specified inside square brackets
5756preceding the constraint string, and can be referenced inside the
5757assembler code using @code{%[@var{name}]} instead of a percentage sign
5758followed by the operand number. Using named operands the above example
5759could look like:
5760
3ab51846 5761@smallexample
84b72302
RH
5762asm ("fsinx %[angle],%[output]"
5763 : [output] "=f" (result)
5764 : [angle] "f" (angle));
3ab51846 5765@end smallexample
84b72302
RH
5766
5767@noindent
5768Note that the symbolic operand names have no relation whatsoever to
5769other C identifiers. You may use any name you like, even those of
64c18e57 5770existing C symbols, but you must ensure that no two operands within the same
84b72302
RH
5771assembler construct use the same symbolic name.
5772
c1f7febf 5773Output operand expressions must be lvalues; the compiler can check this.
c85f7c16
JL
5774The input operands need not be lvalues. The compiler cannot check
5775whether the operands have data types that are reasonable for the
5776instruction being executed. It does not parse the assembler instruction
5777template and does not know what it means or even whether it is valid
5778assembler input. The extended @code{asm} feature is most often used for
5779machine instructions the compiler itself does not know exist. If
5780the output expression cannot be directly addressed (for example, it is a
f0523f02 5781bit-field), your constraint must allow a register. In that case, GCC
c85f7c16
JL
5782will use the register as the output of the @code{asm}, and then store
5783that register into the output.
5784
f0523f02 5785The ordinary output operands must be write-only; GCC will assume that
c85f7c16
JL
5786the values in these operands before the instruction are dead and need
5787not be generated. Extended asm supports input-output or read-write
5788operands. Use the constraint character @samp{+} to indicate such an
373a04f1
JM
5789operand and list it with the output operands. You should only use
5790read-write operands when the constraints for the operand (or the
5791operand in which only some of the bits are to be changed) allow a
5792register.
5793
5794You may, as an alternative, logically split its function into two
5795separate operands, one input operand and one write-only output
5796operand. The connection between them is expressed by constraints
5797which say they need to be in the same location when the instruction
5798executes. You can use the same C expression for both operands, or
5799different expressions. For example, here we write the (fictitious)
5800@samp{combine} instruction with @code{bar} as its read-only source
5801operand and @code{foo} as its read-write destination:
c1f7febf 5802
3ab51846 5803@smallexample
c1f7febf 5804asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
3ab51846 5805@end smallexample
c1f7febf
RK
5806
5807@noindent
c85f7c16 5808The constraint @samp{"0"} for operand 1 says that it must occupy the
84b72302
RH
5809same location as operand 0. A number in constraint is allowed only in
5810an input operand and it must refer to an output operand.
c1f7febf 5811
84b72302 5812Only a number in the constraint can guarantee that one operand will be in
c85f7c16
JL
5813the same place as another. The mere fact that @code{foo} is the value
5814of both operands is not enough to guarantee that they will be in the
5815same place in the generated assembler code. The following would not
5816work reliably:
c1f7febf 5817
3ab51846 5818@smallexample
c1f7febf 5819asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
3ab51846 5820@end smallexample
c1f7febf
RK
5821
5822Various optimizations or reloading could cause operands 0 and 1 to be in
f0523f02 5823different registers; GCC knows no reason not to do so. For example, the
c1f7febf
RK
5824compiler might find a copy of the value of @code{foo} in one register and
5825use it for operand 1, but generate the output operand 0 in a different
5826register (copying it afterward to @code{foo}'s own address). Of course,
5827since the register for operand 1 is not even mentioned in the assembler
f0523f02 5828code, the result will not work, but GCC can't tell that.
c1f7febf 5829
84b72302
RH
5830As of GCC version 3.1, one may write @code{[@var{name}]} instead of
5831the operand number for a matching constraint. For example:
5832
3ab51846 5833@smallexample
84b72302
RH
5834asm ("cmoveq %1,%2,%[result]"
5835 : [result] "=r"(result)
5836 : "r" (test), "r"(new), "[result]"(old));
3ab51846 5837@end smallexample
84b72302 5838
805c33df
HPN
5839Sometimes you need to make an @code{asm} operand be a specific register,
5840but there's no matching constraint letter for that register @emph{by
5841itself}. To force the operand into that register, use a local variable
5842for the operand and specify the register in the variable declaration.
5843@xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
5844register constraint letter that matches the register:
5845
5846@smallexample
5847register int *p1 asm ("r0") = @dots{};
5848register int *p2 asm ("r1") = @dots{};
5849register int *result asm ("r0");
5850asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5851@end smallexample
5852
b55d5746
HPN
5853@anchor{Example of asm with clobbered asm reg}
5854In the above example, beware that a register that is call-clobbered by
5855the target ABI will be overwritten by any function call in the
5856assignment, including library calls for arithmetic operators.
0c6390fa
L
5857Also a register may be clobbered when generating some operations,
5858like variable shift, memory copy or memory move on x86.
b55d5746
HPN
5859Assuming it is a call-clobbered register, this may happen to @code{r0}
5860above by the assignment to @code{p2}. If you have to use such a
5861register, use temporary variables for expressions between the register
5862assignment and use:
5863
5864@smallexample
5865int t1 = @dots{};
5866register int *p1 asm ("r0") = @dots{};
5867register int *p2 asm ("r1") = t1;
5868register int *result asm ("r0");
5869asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5870@end smallexample
5871
c85f7c16
JL
5872Some instructions clobber specific hard registers. To describe this,
5873write a third colon after the input operands, followed by the names of
5874the clobbered hard registers (given as strings). Here is a realistic
5875example for the VAX:
c1f7febf 5876
3ab51846 5877@smallexample
c1f7febf 5878asm volatile ("movc3 %0,%1,%2"
12bcfaa1 5879 : /* @r{no outputs} */
c1f7febf
RK
5880 : "g" (from), "g" (to), "g" (count)
5881 : "r0", "r1", "r2", "r3", "r4", "r5");
3ab51846 5882@end smallexample
c1f7febf 5883
c5c76735
JL
5884You may not write a clobber description in a way that overlaps with an
5885input or output operand. For example, you may not have an operand
5886describing a register class with one member if you mention that register
acb5d088
HPN
5887in the clobber list. Variables declared to live in specific registers
5888(@pxref{Explicit Reg Vars}), and used as asm input or output operands must
5889have no part mentioned in the clobber description.
5890There is no way for you to specify that an input
c5c76735
JL
5891operand is modified without also specifying it as an output
5892operand. Note that if all the output operands you specify are for this
5893purpose (and hence unused), you will then also need to specify
5894@code{volatile} for the @code{asm} construct, as described below, to
f0523f02 5895prevent GCC from deleting the @code{asm} statement as unused.
8fe1938e 5896
c1f7febf 5897If you refer to a particular hardware register from the assembler code,
c85f7c16
JL
5898you will probably have to list the register after the third colon to
5899tell the compiler the register's value is modified. In some assemblers,
5900the register names begin with @samp{%}; to produce one @samp{%} in the
5901assembler code, you must write @samp{%%} in the input.
5902
5903If your assembler instruction can alter the condition code register, add
f0523f02 5904@samp{cc} to the list of clobbered registers. GCC on some machines
c85f7c16
JL
5905represents the condition codes as a specific hardware register;
5906@samp{cc} serves to name this register. On other machines, the
5907condition code is handled differently, and specifying @samp{cc} has no
5908effect. But it is valid no matter what the machine.
c1f7febf 5909
bbf5a54d 5910If your assembler instructions access memory in an unpredictable
c85f7c16 5911fashion, add @samp{memory} to the list of clobbered registers. This
bbf5a54d
AJ
5912will cause GCC to not keep memory values cached in registers across the
5913assembler instruction and not optimize stores or loads to that memory.
5914You will also want to add the @code{volatile} keyword if the memory
5915affected is not listed in the inputs or outputs of the @code{asm}, as
5916the @samp{memory} clobber does not count as a side-effect of the
5917@code{asm}. If you know how large the accessed memory is, you can add
5918it as input or output but if this is not known, you should add
5919@samp{memory}. As an example, if you access ten bytes of a string, you
5920can use a memory input like:
5921
cd1a8088 5922@smallexample
bbf5a54d 5923@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
cd1a8088 5924@end smallexample
bbf5a54d
AJ
5925
5926Note that in the following example the memory input is necessary,
5927otherwise GCC might optimize the store to @code{x} away:
cd1a8088 5928@smallexample
bbf5a54d
AJ
5929int foo ()
5930@{
5931 int x = 42;
5932 int *y = &x;
5933 int result;
5934 asm ("magic stuff accessing an 'int' pointed to by '%1'"
5935 "=&d" (r) : "a" (y), "m" (*y));
f0eb93a8 5936 return result;
bbf5a54d 5937@}
cd1a8088 5938@end smallexample
c1f7febf 5939
c85f7c16 5940You can put multiple assembler instructions together in a single
8720914b
HPN
5941@code{asm} template, separated by the characters normally used in assembly
5942code for the system. A combination that works in most places is a newline
5943to break the line, plus a tab character to move to the instruction field
5944(written as @samp{\n\t}). Sometimes semicolons can be used, if the
5945assembler allows semicolons as a line-breaking character. Note that some
5946assembler dialects use semicolons to start a comment.
5947The input operands are guaranteed not to use any of the clobbered
c85f7c16
JL
5948registers, and neither will the output operands' addresses, so you can
5949read and write the clobbered registers as many times as you like. Here
5950is an example of multiple instructions in a template; it assumes the
5951subroutine @code{_foo} accepts arguments in registers 9 and 10:
c1f7febf 5952
3ab51846 5953@smallexample
8720914b 5954asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
c1f7febf
RK
5955 : /* no outputs */
5956 : "g" (from), "g" (to)
5957 : "r9", "r10");
3ab51846 5958@end smallexample
c1f7febf 5959
f0523f02 5960Unless an output operand has the @samp{&} constraint modifier, GCC
c85f7c16
JL
5961may allocate it in the same register as an unrelated input operand, on
5962the assumption the inputs are consumed before the outputs are produced.
c1f7febf
RK
5963This assumption may be false if the assembler code actually consists of
5964more than one instruction. In such a case, use @samp{&} for each output
c85f7c16 5965operand that may not overlap an input. @xref{Modifiers}.
c1f7febf 5966
c85f7c16
JL
5967If you want to test the condition code produced by an assembler
5968instruction, you must include a branch and a label in the @code{asm}
5969construct, as follows:
c1f7febf 5970
3ab51846 5971@smallexample
8720914b 5972asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
c1f7febf
RK
5973 : "g" (result)
5974 : "g" (input));
3ab51846 5975@end smallexample
c1f7febf
RK
5976
5977@noindent
5978This assumes your assembler supports local labels, as the GNU assembler
5979and most Unix assemblers do.
5980
5981Speaking of labels, jumps from one @code{asm} to another are not
c85f7c16
JL
5982supported. The compiler's optimizers do not know about these jumps, and
5983therefore they cannot take account of them when deciding how to
1c384bf1 5984optimize. @xref{Extended asm with goto}.
c1f7febf
RK
5985
5986@cindex macros containing @code{asm}
5987Usually the most convenient way to use these @code{asm} instructions is to
5988encapsulate them in macros that look like functions. For example,
5989
3ab51846 5990@smallexample
c1f7febf
RK
5991#define sin(x) \
5992(@{ double __value, __arg = (x); \
5993 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
5994 __value; @})
3ab51846 5995@end smallexample
c1f7febf
RK
5996
5997@noindent
5998Here the variable @code{__arg} is used to make sure that the instruction
5999operates on a proper @code{double} value, and to accept only those
6000arguments @code{x} which can convert automatically to a @code{double}.
6001
c85f7c16
JL
6002Another way to make sure the instruction operates on the correct data
6003type is to use a cast in the @code{asm}. This is different from using a
c1f7febf
RK
6004variable @code{__arg} in that it converts more different types. For
6005example, if the desired type were @code{int}, casting the argument to
6006@code{int} would accept a pointer with no complaint, while assigning the
6007argument to an @code{int} variable named @code{__arg} would warn about
6008using a pointer unless the caller explicitly casts it.
6009
f0523f02 6010If an @code{asm} has output operands, GCC assumes for optimization
c85f7c16
JL
6011purposes the instruction has no side effects except to change the output
6012operands. This does not mean instructions with a side effect cannot be
6013used, but you must be careful, because the compiler may eliminate them
6014if the output operands aren't used, or move them out of loops, or
6015replace two with one if they constitute a common subexpression. Also,
6016if your instruction does have a side effect on a variable that otherwise
6017appears not to change, the old value of the variable may be reused later
6018if it happens to be found in a register.
c1f7febf 6019
2f59e40e
DJ
6020You can prevent an @code{asm} instruction from being deleted
6021by writing the keyword @code{volatile} after
c1f7febf
RK
6022the @code{asm}. For example:
6023
3ab51846 6024@smallexample
310668e8
JM
6025#define get_and_set_priority(new) \
6026(@{ int __old; \
6027 asm volatile ("get_and_set_priority %0, %1" \
6028 : "=g" (__old) : "g" (new)); \
c85f7c16 6029 __old; @})
3ab51846 6030@end smallexample
c1f7febf
RK
6031
6032@noindent
e71b34aa
MM
6033The @code{volatile} keyword indicates that the instruction has
6034important side-effects. GCC will not delete a volatile @code{asm} if
6035it is reachable. (The instruction can still be deleted if GCC can
6036prove that control-flow will never reach the location of the
f0eb93a8 6037instruction.) Note that even a volatile @code{asm} instruction
2f59e40e 6038can be moved relative to other code, including across jump
f0eb93a8
JM
6039instructions. For example, on many targets there is a system
6040register which can be set to control the rounding mode of
2f59e40e
DJ
6041floating point operations. You might try
6042setting it with a volatile @code{asm}, like this PowerPC example:
e71b34aa 6043
3ab51846 6044@smallexample
2f59e40e
DJ
6045 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
6046 sum = x + y;
3ab51846 6047@end smallexample
e71b34aa 6048
ebb48a4d 6049@noindent
2f59e40e
DJ
6050This will not work reliably, as the compiler may move the addition back
6051before the volatile @code{asm}. To make it work you need to add an
6052artificial dependency to the @code{asm} referencing a variable in the code
6053you don't want moved, for example:
6054
6055@smallexample
6056 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
6057 sum = x + y;
6058@end smallexample
6059
6060Similarly, you can't expect a
6061sequence of volatile @code{asm} instructions to remain perfectly
6062consecutive. If you want consecutive output, use a single @code{asm}.
6063Also, GCC will perform some optimizations across a volatile @code{asm}
6064instruction; GCC does not ``forget everything'' when it encounters
6065a volatile @code{asm} instruction the way some other compilers do.
6066
6067An @code{asm} instruction without any output operands will be treated
6068identically to a volatile @code{asm} instruction.
c1f7febf
RK
6069
6070It is a natural idea to look for a way to give access to the condition
6071code left by the assembler instruction. However, when we attempted to
6072implement this, we found no way to make it work reliably. The problem
6073is that output operands might need reloading, which would result in
6074additional following ``store'' instructions. On most machines, these
6075instructions would alter the condition code before there was time to
6076test it. This problem doesn't arise for ordinary ``test'' and
6077``compare'' instructions because they don't have any output operands.
6078
eda3fbbe
GB
6079For reasons similar to those described above, it is not possible to give
6080an assembler instruction access to the condition code left by previous
6081instructions.
6082
1c384bf1
RH
6083@anchor{Extended asm with goto}
6084As of GCC version 4.5, @code{asm goto} may be used to have the assembly
6085jump to one or more C labels. In this form, a fifth section after the
6086clobber list contains a list of all C labels to which the assembly may jump.
6087Each label operand is implicitly self-named. The @code{asm} is also assumed
6088to fall through to the next statement.
6089
6090This form of @code{asm} is restricted to not have outputs. This is due
6091to a internal restriction in the compiler that control transfer instructions
6092cannot have outputs. This restriction on @code{asm goto} may be lifted
6093in some future version of the compiler. In the mean time, @code{asm goto}
6094may include a memory clobber, and so leave outputs in memory.
6095
6096@smallexample
6097int frob(int x)
6098@{
6099 int y;
6100 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
6101 : : "r"(x), "r"(&y) : "r5", "memory" : error);
6102 return y;
6103 error:
6104 return -1;
6105@}
6106@end smallexample
6107
6108In this (inefficient) example, the @code{frob} instruction sets the
6109carry bit to indicate an error. The @code{jc} instruction detects
ff2ce160 6110this and branches to the @code{error} label. Finally, the output
1c384bf1
RH
6111of the @code{frob} instruction (@code{%r5}) is stored into the memory
6112for variable @code{y}, which is later read by the @code{return} statement.
6113
6114@smallexample
6115void doit(void)
6116@{
6117 int i = 0;
6118 asm goto ("mfsr %%r1, 123; jmp %%r1;"
6119 ".pushsection doit_table;"
73b8bfe1
RW
6120 ".long %l0, %l1, %l2, %l3;"
6121 ".popsection"
6122 : : : "r1" : label1, label2, label3, label4);
1c384bf1
RH
6123 __builtin_unreachable ();
6124
6125 label1:
6126 f1();
6127 return;
6128 label2:
6129 f2();
6130 return;
6131 label3:
6132 i = 1;
6133 label4:
6134 f3(i);
6135@}
6136@end smallexample
6137
6138In this (also inefficient) example, the @code{mfsr} instruction reads
6139an address from some out-of-band machine register, and the following
6140@code{jmp} instruction branches to that address. The address read by
6141the @code{mfsr} instruction is assumed to have been previously set via
6142some application-specific mechanism to be one of the four values stored
6143in the @code{doit_table} section. Finally, the @code{asm} is followed
6144by a call to @code{__builtin_unreachable} to indicate that the @code{asm}
6145does not in fact fall through.
6146
6147@smallexample
6148#define TRACE1(NUM) \
6149 do @{ \
6150 asm goto ("0: nop;" \
6151 ".pushsection trace_table;" \
6152 ".long 0b, %l0;" \
6153 ".popsection" \
6154 : : : : trace#NUM); \
6155 if (0) @{ trace#NUM: trace(); @} \
6156 @} while (0)
6157#define TRACE TRACE1(__COUNTER__)
6158@end smallexample
6159
6160In this example (which in fact inspired the @code{asm goto} feature)
6161we want on rare occasions to call the @code{trace} function; on other
6162occasions we'd like to keep the overhead to the absolute minimum.
6163The normal code path consists of a single @code{nop} instruction.
6164However, we record the address of this @code{nop} together with the
6165address of a label that calls the @code{trace} function. This allows
ff2ce160 6166the @code{nop} instruction to be patched at runtime to be an
1c384bf1
RH
6167unconditional branch to the stored label. It is assumed that an
6168optimizing compiler will move the labeled block out of line, to
6169optimize the fall through path from the @code{asm}.
6170
5490d604 6171If you are writing a header file that should be includable in ISO C
c1f7febf
RK
6172programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
6173Keywords}.
6174
ece7fc1c
RE
6175@subsection Size of an @code{asm}
6176
6177Some targets require that GCC track the size of each instruction used in
6178order to generate correct code. Because the final length of an
6179@code{asm} is only known by the assembler, GCC must make an estimate as
6180to how big it will be. The estimate is formed by counting the number of
6181statements in the pattern of the @code{asm} and multiplying that by the
6182length of the longest instruction on that processor. Statements in the
6183@code{asm} are identified by newline characters and whatever statement
6184separator characters are supported by the assembler; on most processors
6185this is the `@code{;}' character.
6186
6187Normally, GCC's estimate is perfectly adequate to ensure that correct
6188code is generated, but it is possible to confuse the compiler if you use
6189pseudo instructions or assembler macros that expand into multiple real
6190instructions or if you use assembler directives that expand to more
6191space in the object file than would be needed for a single instruction.
6192If this happens then the assembler will produce a diagnostic saying that
6193a label is unreachable.
6194
fe0ce426
JH
6195@subsection i386 floating point asm operands
6196
6197There are several rules on the usage of stack-like regs in
6198asm_operands insns. These rules apply only to the operands that are
6199stack-like regs:
6200
6201@enumerate
6202@item
6203Given a set of input regs that die in an asm_operands, it is
6204necessary to know which are implicitly popped by the asm, and
6205which must be explicitly popped by gcc.
6206
6207An input reg that is implicitly popped by the asm must be
6208explicitly clobbered, unless it is constrained to match an
6209output operand.
6210
6211@item
6212For any input reg that is implicitly popped by an asm, it is
6213necessary to know how to adjust the stack to compensate for the pop.
6214If any non-popped input is closer to the top of the reg-stack than
6215the implicitly popped reg, it would not be possible to know what the
84330467 6216stack looked like---it's not clear how the rest of the stack ``slides
fe0ce426
JH
6217up''.
6218
6219All implicitly popped input regs must be closer to the top of
6220the reg-stack than any input that is not implicitly popped.
6221
6222It is possible that if an input dies in an insn, reload might
6223use the input reg for an output reload. Consider this example:
6224
3ab51846 6225@smallexample
fe0ce426 6226asm ("foo" : "=t" (a) : "f" (b));
3ab51846 6227@end smallexample
fe0ce426
JH
6228
6229This asm says that input B is not popped by the asm, and that
c771326b 6230the asm pushes a result onto the reg-stack, i.e., the stack is one
fe0ce426
JH
6231deeper after the asm than it was before. But, it is possible that
6232reload will think that it can use the same reg for both the input and
6233the output, if input B dies in this insn.
6234
6235If any input operand uses the @code{f} constraint, all output reg
6236constraints must use the @code{&} earlyclobber.
6237
6238The asm above would be written as
6239
3ab51846 6240@smallexample
fe0ce426 6241asm ("foo" : "=&t" (a) : "f" (b));
3ab51846 6242@end smallexample
fe0ce426
JH
6243
6244@item
6245Some operands need to be in particular places on the stack. All
84330467 6246output operands fall in this category---there is no other way to
fe0ce426
JH
6247know which regs the outputs appear in unless the user indicates
6248this in the constraints.
6249
6250Output operands must specifically indicate which reg an output
6251appears in after an asm. @code{=f} is not allowed: the operand
6252constraints must select a class with a single reg.
6253
6254@item
6255Output operands may not be ``inserted'' between existing stack regs.
6256Since no 387 opcode uses a read/write operand, all output operands
6257are dead before the asm_operands, and are pushed by the asm_operands.
6258It makes no sense to push anywhere but the top of the reg-stack.
6259
6260Output operands must start at the top of the reg-stack: output
6261operands may not ``skip'' a reg.
6262
6263@item
6264Some asm statements may need extra stack space for internal
6265calculations. This can be guaranteed by clobbering stack registers
6266unrelated to the inputs and outputs.
6267
6268@end enumerate
6269
6270Here are a couple of reasonable asms to want to write. This asm
6271takes one input, which is internally popped, and produces two outputs.
6272
3ab51846 6273@smallexample
fe0ce426 6274asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
3ab51846 6275@end smallexample
fe0ce426
JH
6276
6277This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
6278and replaces them with one output. The user must code the @code{st(1)}
6279clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
6280
3ab51846 6281@smallexample
fe0ce426 6282asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
3ab51846 6283@end smallexample
fe0ce426 6284
c1f7febf 6285@include md.texi
c1f7febf
RK
6286
6287@node Asm Labels
6288@section Controlling Names Used in Assembler Code
6289@cindex assembler names for identifiers
6290@cindex names used in assembler code
6291@cindex identifiers, names in assembler code
6292
6293You can specify the name to be used in the assembler code for a C
6294function or variable by writing the @code{asm} (or @code{__asm__})
6295keyword after the declarator as follows:
6296
3ab51846 6297@smallexample
c1f7febf 6298int foo asm ("myfoo") = 2;
3ab51846 6299@end smallexample
c1f7febf
RK
6300
6301@noindent
6302This specifies that the name to be used for the variable @code{foo} in
6303the assembler code should be @samp{myfoo} rather than the usual
6304@samp{_foo}.
6305
6306On systems where an underscore is normally prepended to the name of a C
6307function or variable, this feature allows you to define names for the
6308linker that do not start with an underscore.
6309
0adc3c19
MM
6310It does not make sense to use this feature with a non-static local
6311variable since such variables do not have assembler names. If you are
6312trying to put the variable in a particular register, see @ref{Explicit
6313Reg Vars}. GCC presently accepts such code with a warning, but will
6314probably be changed to issue an error, rather than a warning, in the
6315future.
6316
c1f7febf
RK
6317You cannot use @code{asm} in this way in a function @emph{definition}; but
6318you can get the same effect by writing a declaration for the function
6319before its definition and putting @code{asm} there, like this:
6320
3ab51846 6321@smallexample
c1f7febf
RK
6322extern func () asm ("FUNC");
6323
6324func (x, y)
6325 int x, y;
0d893a63 6326/* @r{@dots{}} */
3ab51846 6327@end smallexample
c1f7febf
RK
6328
6329It is up to you to make sure that the assembler names you choose do not
6330conflict with any other assembler symbols. Also, you must not use a
f0523f02
JM
6331register name; that would produce completely invalid assembler code. GCC
6332does not as yet have the ability to store static variables in registers.
c1f7febf
RK
6333Perhaps that will be added.
6334
6335@node Explicit Reg Vars
6336@section Variables in Specified Registers
6337@cindex explicit register variables
6338@cindex variables in specified registers
6339@cindex specified registers
6340@cindex registers, global allocation
6341
6342GNU C allows you to put a few global variables into specified hardware
6343registers. You can also specify the register in which an ordinary
6344register variable should be allocated.
6345
6346@itemize @bullet
6347@item
6348Global register variables reserve registers throughout the program.
6349This may be useful in programs such as programming language
6350interpreters which have a couple of global variables that are accessed
6351very often.
6352
6353@item
6354Local register variables in specific registers do not reserve the
805c33df
HPN
6355registers, except at the point where they are used as input or output
6356operands in an @code{asm} statement and the @code{asm} statement itself is
6357not deleted. The compiler's data flow analysis is capable of determining
c1f7febf 6358where the specified registers contain live values, and where they are
8d344fbc 6359available for other uses. Stores into local register variables may be deleted
0deaf590
JL
6360when they appear to be dead according to dataflow analysis. References
6361to local register variables may be deleted or moved or simplified.
c1f7febf
RK
6362
6363These local variables are sometimes convenient for use with the extended
6364@code{asm} feature (@pxref{Extended Asm}), if you want to write one
6365output of the assembler instruction directly into a particular register.
6366(This will work provided the register you specify fits the constraints
6367specified for that operand in the @code{asm}.)
6368@end itemize
6369
6370@menu
6371* Global Reg Vars::
6372* Local Reg Vars::
6373@end menu
6374
6375@node Global Reg Vars
6376@subsection Defining Global Register Variables
6377@cindex global register variables
6378@cindex registers, global variables in
6379
6380You can define a global register variable in GNU C like this:
6381
3ab51846 6382@smallexample
c1f7febf 6383register int *foo asm ("a5");
3ab51846 6384@end smallexample
c1f7febf
RK
6385
6386@noindent
6387Here @code{a5} is the name of the register which should be used. Choose a
6388register which is normally saved and restored by function calls on your
6389machine, so that library routines will not clobber it.
6390
6391Naturally the register name is cpu-dependent, so you would need to
6392conditionalize your program according to cpu type. The register
6393@code{a5} would be a good choice on a 68000 for a variable of pointer
6394type. On machines with register windows, be sure to choose a ``global''
6395register that is not affected magically by the function call mechanism.
6396
6397In addition, operating systems on one type of cpu may differ in how they
6398name the registers; then you would need additional conditionals. For
6399example, some 68000 operating systems call this register @code{%a5}.
6400
6401Eventually there may be a way of asking the compiler to choose a register
6402automatically, but first we need to figure out how it should choose and
6403how to enable you to guide the choice. No solution is evident.
6404
6405Defining a global register variable in a certain register reserves that
6406register entirely for this use, at least within the current compilation.
6407The register will not be allocated for any other purpose in the functions
6408in the current compilation. The register will not be saved and restored by
6409these functions. Stores into this register are never deleted even if they
6410would appear to be dead, but references may be deleted or moved or
6411simplified.
6412
6413It is not safe to access the global register variables from signal
6414handlers, or from more than one thread of control, because the system
6415library routines may temporarily use the register for other things (unless
6416you recompile them specially for the task at hand).
6417
6418@cindex @code{qsort}, and global register variables
6419It is not safe for one function that uses a global register variable to
6420call another such function @code{foo} by way of a third function
e979f9e8 6421@code{lose} that was compiled without knowledge of this variable (i.e.@: in a
c1f7febf
RK
6422different source file in which the variable wasn't declared). This is
6423because @code{lose} might save the register and put some other value there.
6424For example, you can't expect a global register variable to be available in
6425the comparison-function that you pass to @code{qsort}, since @code{qsort}
6426might have put something else in that register. (If you are prepared to
6427recompile @code{qsort} with the same global register variable, you can
6428solve this problem.)
6429
6430If you want to recompile @code{qsort} or other source files which do not
6431actually use your global register variable, so that they will not use that
6432register for any other purpose, then it suffices to specify the compiler
84330467 6433option @option{-ffixed-@var{reg}}. You need not actually add a global
c1f7febf
RK
6434register declaration to their source code.
6435
6436A function which can alter the value of a global register variable cannot
6437safely be called from a function compiled without this variable, because it
6438could clobber the value the caller expects to find there on return.
6439Therefore, the function which is the entry point into the part of the
6440program that uses the global register variable must explicitly save and
6441restore the value which belongs to its caller.
6442
6443@cindex register variable after @code{longjmp}
6444@cindex global register after @code{longjmp}
6445@cindex value after @code{longjmp}
6446@findex longjmp
6447@findex setjmp
6448On most machines, @code{longjmp} will restore to each global register
6449variable the value it had at the time of the @code{setjmp}. On some
6450machines, however, @code{longjmp} will not change the value of global
6451register variables. To be portable, the function that called @code{setjmp}
6452should make other arrangements to save the values of the global register
6453variables, and to restore them in a @code{longjmp}. This way, the same
6454thing will happen regardless of what @code{longjmp} does.
6455
6456All global register variable declarations must precede all function
6457definitions. If such a declaration could appear after function
6458definitions, the declaration would be too late to prevent the register from
6459being used for other purposes in the preceding functions.
6460
6461Global register variables may not have initial values, because an
6462executable file has no means to supply initial contents for a register.
6463
981f6289 6464On the SPARC, there are reports that g3 @dots{} g7 are suitable
c1f7febf
RK
6465registers, but certain library functions, such as @code{getwd}, as well
6466as the subroutines for division and remainder, modify g3 and g4. g1 and
6467g2 are local temporaries.
6468
6469On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
6470Of course, it will not do to use more than a few of those.
6471
6472@node Local Reg Vars
6473@subsection Specifying Registers for Local Variables
6474@cindex local variables, specifying registers
6475@cindex specifying registers for local variables
6476@cindex registers for local variables
6477
6478You can define a local register variable with a specified register
6479like this:
6480
3ab51846 6481@smallexample
c1f7febf 6482register int *foo asm ("a5");
3ab51846 6483@end smallexample
c1f7febf
RK
6484
6485@noindent
6486Here @code{a5} is the name of the register which should be used. Note
6487that this is the same syntax used for defining global register
6488variables, but for a local variable it would appear within a function.
6489
6490Naturally the register name is cpu-dependent, but this is not a
6491problem, since specific registers are most often useful with explicit
6492assembler instructions (@pxref{Extended Asm}). Both of these things
6493generally require that you conditionalize your program according to
6494cpu type.
6495
6496In addition, operating systems on one type of cpu may differ in how they
6497name the registers; then you would need additional conditionals. For
6498example, some 68000 operating systems call this register @code{%a5}.
6499
c1f7febf
RK
6500Defining such a register variable does not reserve the register; it
6501remains available for other uses in places where flow control determines
d754127f 6502the variable's value is not live.
e5e809f4 6503
f0523f02 6504This option does not guarantee that GCC will generate code that has
e5e809f4 6505this variable in the register you specify at all times. You may not
805c33df
HPN
6506code an explicit reference to this register in the @emph{assembler
6507instruction template} part of an @code{asm} statement and assume it will
6508always refer to this variable. However, using the variable as an
6509@code{asm} @emph{operand} guarantees that the specified register is used
6510for the operand.
c1f7febf 6511
8d344fbc 6512Stores into local register variables may be deleted when they appear to be dead
0deaf590
JL
6513according to dataflow analysis. References to local register variables may
6514be deleted or moved or simplified.
6515
b55d5746
HPN
6516As for global register variables, it's recommended that you choose a
6517register which is normally saved and restored by function calls on
6518your machine, so that library routines will not clobber it. A common
6519pitfall is to initialize multiple call-clobbered registers with
6520arbitrary expressions, where a function call or library call for an
6521arithmetic operator will overwrite a register value from a previous
6522assignment, for example @code{r0} below:
6523@smallexample
6524register int *p1 asm ("r0") = @dots{};
6525register int *p2 asm ("r1") = @dots{};
6526@end smallexample
6527In those cases, a solution is to use a temporary variable for
6528each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
6529
c1f7febf
RK
6530@node Alternate Keywords
6531@section Alternate Keywords
6532@cindex alternate keywords
6533@cindex keywords, alternate
6534
5490d604 6535@option{-ansi} and the various @option{-std} options disable certain
f458d1d5
ZW
6536keywords. This causes trouble when you want to use GNU C extensions, or
6537a general-purpose header file that should be usable by all programs,
6538including ISO C programs. The keywords @code{asm}, @code{typeof} and
6539@code{inline} are not available in programs compiled with
6540@option{-ansi} or @option{-std} (although @code{inline} can be used in a
48b0b196 6541program compiled with @option{-std=c99} or @option{-std=c11}). The
2778d766 6542ISO C99 keyword
5490d604
JM
6543@code{restrict} is only available when @option{-std=gnu99} (which will
6544eventually be the default) or @option{-std=c99} (or the equivalent
2778d766
JM
6545@option{-std=iso9899:1999}), or an option for a later standard
6546version, is used.
c1f7febf
RK
6547
6548The way to solve these problems is to put @samp{__} at the beginning and
6549end of each problematical keyword. For example, use @code{__asm__}
f458d1d5 6550instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
c1f7febf
RK
6551
6552Other C compilers won't accept these alternative keywords; if you want to
6553compile with another compiler, you can define the alternate keywords as
6554macros to replace them with the customary keywords. It looks like this:
6555
3ab51846 6556@smallexample
c1f7febf
RK
6557#ifndef __GNUC__
6558#define __asm__ asm
6559#endif
3ab51846 6560@end smallexample
c1f7febf 6561
6e6b0525 6562@findex __extension__
84330467
JM
6563@opindex pedantic
6564@option{-pedantic} and other options cause warnings for many GNU C extensions.
dbe519e0 6565You can
c1f7febf
RK
6566prevent such warnings within one expression by writing
6567@code{__extension__} before the expression. @code{__extension__} has no
6568effect aside from this.
6569
6570@node Incomplete Enums
6571@section Incomplete @code{enum} Types
6572
6573You can define an @code{enum} tag without specifying its possible values.
6574This results in an incomplete type, much like what you get if you write
6575@code{struct foo} without describing the elements. A later declaration
6576which does specify the possible values completes the type.
6577
6578You can't allocate variables or storage using the type while it is
6579incomplete. However, you can work with pointers to that type.
6580
6581This extension may not be very useful, but it makes the handling of
6582@code{enum} more consistent with the way @code{struct} and @code{union}
6583are handled.
6584
6585This extension is not supported by GNU C++.
6586
6587@node Function Names
6588@section Function Names as Strings
e6cc3a24 6589@cindex @code{__func__} identifier
4b404517
JM
6590@cindex @code{__FUNCTION__} identifier
6591@cindex @code{__PRETTY_FUNCTION__} identifier
c1f7febf 6592
e6cc3a24
ZW
6593GCC provides three magic variables which hold the name of the current
6594function, as a string. The first of these is @code{__func__}, which
6595is part of the C99 standard:
6596
e6cc3a24
ZW
6597The identifier @code{__func__} is implicitly declared by the translator
6598as if, immediately following the opening brace of each function
6599definition, the declaration
6600
6601@smallexample
6602static const char __func__[] = "function-name";
6603@end smallexample
c1f7febf 6604
38bb2b65 6605@noindent
e6cc3a24
ZW
6606appeared, where function-name is the name of the lexically-enclosing
6607function. This name is the unadorned name of the function.
e6cc3a24
ZW
6608
6609@code{__FUNCTION__} is another name for @code{__func__}. Older
6610versions of GCC recognize only this name. However, it is not
6611standardized. For maximum portability, we recommend you use
6612@code{__func__}, but provide a fallback definition with the
6613preprocessor:
6614
6615@smallexample
6616#if __STDC_VERSION__ < 199901L
6617# if __GNUC__ >= 2
6618# define __func__ __FUNCTION__
6619# else
6620# define __func__ "<unknown>"
6621# endif
6622#endif
6623@end smallexample
6624
6625In C, @code{__PRETTY_FUNCTION__} is yet another name for
6626@code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
6627the type signature of the function as well as its bare name. For
6628example, this program:
c1f7febf
RK
6629
6630@smallexample
6631extern "C" @{
6632extern int printf (char *, ...);
6633@}
6634
6635class a @{
6636 public:
a721a601 6637 void sub (int i)
c1f7febf
RK
6638 @{
6639 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
6640 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
6641 @}
6642@};
6643
6644int
6645main (void)
6646@{
6647 a ax;
6648 ax.sub (0);
6649 return 0;
6650@}
6651@end smallexample
6652
6653@noindent
6654gives this output:
6655
6656@smallexample
6657__FUNCTION__ = sub
e6cc3a24 6658__PRETTY_FUNCTION__ = void a::sub(int)
22acfb79
NM
6659@end smallexample
6660
e6cc3a24
ZW
6661These identifiers are not preprocessor macros. In GCC 3.3 and
6662earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
6663were treated as string literals; they could be used to initialize
6664@code{char} arrays, and they could be concatenated with other string
6665literals. GCC 3.4 and later treat them as variables, like
6666@code{__func__}. In C++, @code{__FUNCTION__} and
6667@code{__PRETTY_FUNCTION__} have always been variables.
22acfb79 6668
c1f7febf
RK
6669@node Return Address
6670@section Getting the Return or Frame Address of a Function
6671
6672These functions may be used to get information about the callers of a
6673function.
6674
84330467 6675@deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
c1f7febf
RK
6676This function returns the return address of the current function, or of
6677one of its callers. The @var{level} argument is number of frames to
6678scan up the call stack. A value of @code{0} yields the return address
6679of the current function, a value of @code{1} yields the return address
8a36672b 6680of the caller of the current function, and so forth. When inlining
95b1627e
EC
6681the expected behavior is that the function will return the address of
6682the function that will be returned to. To work around this behavior use
6683the @code{noinline} function attribute.
c1f7febf
RK
6684
6685The @var{level} argument must be a constant integer.
6686
6687On some machines it may be impossible to determine the return address of
6688any function other than the current one; in such cases, or when the top
dd96fbc5 6689of the stack has been reached, this function will return @code{0} or a
8a36672b 6690random value. In addition, @code{__builtin_frame_address} may be used
dd96fbc5 6691to determine if the top of the stack has been reached.
c1f7febf 6692
48c4de16
TS
6693Additional post-processing of the returned value may be needed, see
6694@code{__builtin_extract_return_address}.
6695
df2a54e9 6696This function should only be used with a nonzero argument for debugging
c1f7febf 6697purposes.
84330467 6698@end deftypefn
c1f7febf 6699
48c4de16
TS
6700@deftypefn {Built-in Function} {void *} __builtin_extract_return_address (void *@var{addr})
6701The address as returned by @code{__builtin_return_address} may have to be fed
6702through this function to get the actual encoded address. For example, on the
670331-bit S/390 platform the highest bit has to be masked out, or on SPARC
6704platforms an offset has to be added for the true next instruction to be
6705executed.
6706
6707If no fixup is needed, this function simply passes through @var{addr}.
6708@end deftypefn
6709
6710@deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
6711This function does the reverse of @code{__builtin_extract_return_address}.
6712@end deftypefn
6713
84330467 6714@deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
c1f7febf
RK
6715This function is similar to @code{__builtin_return_address}, but it
6716returns the address of the function frame rather than the return address
6717of the function. Calling @code{__builtin_frame_address} with a value of
6718@code{0} yields the frame address of the current function, a value of
6719@code{1} yields the frame address of the caller of the current function,
6720and so forth.
6721
6722The frame is the area on the stack which holds local variables and saved
6723registers. The frame address is normally the address of the first word
6724pushed on to the stack by the function. However, the exact definition
6725depends upon the processor and the calling convention. If the processor
6726has a dedicated frame pointer register, and the function has a frame,
6727then @code{__builtin_frame_address} will return the value of the frame
6728pointer register.
6729
dd96fbc5
L
6730On some machines it may be impossible to determine the frame address of
6731any function other than the current one; in such cases, or when the top
6732of the stack has been reached, this function will return @code{0} if
6733the first frame pointer is properly initialized by the startup code.
6734
df2a54e9 6735This function should only be used with a nonzero argument for debugging
dd96fbc5 6736purposes.
84330467 6737@end deftypefn
c1f7febf 6738
1255c85c
BS
6739@node Vector Extensions
6740@section Using vector instructions through built-in functions
6741
6742On some targets, the instruction set contains SIMD vector instructions that
6743operate on multiple values contained in one large register at the same time.
f8723eb6 6744For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
1255c85c
BS
6745this way.
6746
6747The first step in using these extensions is to provide the necessary data
6748types. This should be done using an appropriate @code{typedef}:
6749
3ab51846 6750@smallexample
4a5eab38 6751typedef int v4si __attribute__ ((vector_size (16)));
3ab51846 6752@end smallexample
1255c85c 6753
4a5eab38
PB
6754The @code{int} type specifies the base type, while the attribute specifies
6755the vector size for the variable, measured in bytes. For example, the
6756declaration above causes the compiler to set the mode for the @code{v4si}
6757type to be 16 bytes wide and divided into @code{int} sized units. For
6758a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
6759corresponding mode of @code{foo} will be @acronym{V4SI}.
1255c85c 6760
4a5eab38
PB
6761The @code{vector_size} attribute is only applicable to integral and
6762float scalars, although arrays, pointers, and function return values
6763are allowed in conjunction with this construct.
6764
6765All the basic integer types can be used as base types, both as signed
6766and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
6767@code{long long}. In addition, @code{float} and @code{double} can be
6768used to build floating-point vector types.
1255c85c 6769
cb2a532e 6770Specifying a combination that is not valid for the current architecture
2dd76960 6771will cause GCC to synthesize the instructions using a narrower mode.
cb2a532e 6772For example, if you specify a variable of type @code{V4SI} and your
2dd76960 6773architecture does not allow for this specific SIMD type, GCC will
cb2a532e
AH
6774produce code that uses 4 @code{SIs}.
6775
6776The types defined in this manner can be used with a subset of normal C
2dd76960 6777operations. Currently, GCC will allow using the following operators
5cfd5d9b 6778on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
cb2a532e
AH
6779
6780The operations behave like C++ @code{valarrays}. Addition is defined as
6781the addition of the corresponding elements of the operands. For
6782example, in the code below, each of the 4 elements in @var{a} will be
6783added to the corresponding 4 elements in @var{b} and the resulting
6784vector will be stored in @var{c}.
6785
3ab51846 6786@smallexample
4a5eab38 6787typedef int v4si __attribute__ ((vector_size (16)));
cb2a532e
AH
6788
6789v4si a, b, c;
6790
6791c = a + b;
3ab51846 6792@end smallexample
cb2a532e 6793
3a3e1600
GK
6794Subtraction, multiplication, division, and the logical operations
6795operate in a similar manner. Likewise, the result of using the unary
6796minus or complement operators on a vector type is a vector whose
6797elements are the negative or complemented values of the corresponding
cb2a532e
AH
6798elements in the operand.
6799
f87bd04b
AS
6800In C it is possible to use shifting operators @code{<<}, @code{>>} on
6801integer-type vectors. The operation is defined as following: @code{@{a0,
6802a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
6803@dots{}, an >> bn@}}@. Vector operands must have the same number of
0e3a99ae
AS
6804elements.
6805
6806For the convenience in C it is allowed to use a binary vector operation
6807where one operand is a scalar. In that case the compiler will transform
6808the scalar operand into a vector where each element is the scalar from
6809the operation. The transformation will happen only if the scalar could be
6810safely converted to the vector-element type.
f87bd04b
AS
6811Consider the following code.
6812
6813@smallexample
6814typedef int v4si __attribute__ ((vector_size (16)));
6815
0e3a99ae
AS
6816v4si a, b, c;
6817long l;
6818
6819a = b + 1; /* a = b + @{1,1,1,1@}; */
6820a = 2 * b; /* a = @{2,2,2,2@} * b; */
f87bd04b 6821
0e3a99ae 6822a = l + a; /* Error, cannot convert long to int. */
f87bd04b
AS
6823@end smallexample
6824
30cd1c5d
AS
6825In C vectors can be subscripted as if the vector were an array with
6826the same number of elements and base type. Out of bound accesses
6827invoke undefined behavior at runtime. Warnings for out of bound
6828accesses for vector subscription can be enabled with
6829@option{-Warray-bounds}.
6830
d246ab4f
AS
6831In GNU C vector comparison is supported within standard comparison
6832operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
6833vector expressions of integer-type or real-type. Comparison between
6834integer-type vectors and real-type vectors are not supported. The
6835result of the comparison is a vector of the same width and number of
6836elements as the comparison operands with a signed integral element
6837type.
6838
6839Vectors are compared element-wise producing 0 when comparison is false
6840and -1 (constant of the appropriate type where all bits are set)
6841otherwise. Consider the following example.
6842
6843@smallexample
6844typedef int v4si __attribute__ ((vector_size (16)));
6845
6846v4si a = @{1,2,3,4@};
6847v4si b = @{3,2,1,4@};
6848v4si c;
6849
6850c = a > b; /* The result would be @{0, 0,-1, 0@} */
6851c = a == b; /* The result would be @{0,-1, 0,-1@} */
6852@end smallexample
6853
f90e8e2e
AS
6854Vector shuffling is available using functions
6855@code{__builtin_shuffle (vec, mask)} and
2205ed25
RH
6856@code{__builtin_shuffle (vec0, vec1, mask)}.
6857Both functions construct a permutation of elements from one or two
6858vectors and return a vector of the same type as the input vector(s).
6859The @var{mask} is an integral vector with the same width (@var{W})
6860and element count (@var{N}) as the output vector.
f90e8e2e 6861
2205ed25
RH
6862The elements of the input vectors are numbered in memory ordering of
6863@var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
6864elements of @var{mask} are considered modulo @var{N} in the single-operand
6865case and modulo @math{2*@var{N}} in the two-operand case.
6866
6867Consider the following example,
f90e8e2e
AS
6868
6869@smallexample
6870typedef int v4si __attribute__ ((vector_size (16)));
6871
6872v4si a = @{1,2,3,4@};
6873v4si b = @{5,6,7,8@};
6874v4si mask1 = @{0,1,1,3@};
6875v4si mask2 = @{0,4,2,5@};
6876v4si res;
6877
6878res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
6879res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
6880@end smallexample
6881
2205ed25
RH
6882Note that @code{__builtin_shuffle} is intentionally semantically
6883compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
6884
cb2a532e
AH
6885You can declare variables and use them in function calls and returns, as
6886well as in assignments and some casts. You can specify a vector type as
6887a return type for a function. Vector types can also be used as function
6888arguments. It is possible to cast from one vector type to another,
6889provided they are of the same size (in fact, you can also cast vectors
6890to and from other datatypes of the same size).
6891
6892You cannot operate between vectors of different lengths or different
90a21764 6893signedness without a cast.
cb2a532e 6894
7a3ea201
RH
6895@node Offsetof
6896@section Offsetof
6897@findex __builtin_offsetof
6898
6899GCC implements for both C and C++ a syntactic extension to implement
6900the @code{offsetof} macro.
6901
6902@smallexample
6903primary:
6ccde948 6904 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
7a3ea201
RH
6905
6906offsetof_member_designator:
6ccde948
RW
6907 @code{identifier}
6908 | offsetof_member_designator "." @code{identifier}
6909 | offsetof_member_designator "[" @code{expr} "]"
7a3ea201
RH
6910@end smallexample
6911
6912This extension is sufficient such that
6913
6914@smallexample
6915#define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
6916@end smallexample
6917
6918is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
6919may be dependent. In either case, @var{member} may consist of a single
6920identifier, or a sequence of member accesses and array references.
6921
86951993
AM
6922@node __sync Builtins
6923@section Legacy __sync built-in functions for atomic memory access
48ae6c13
RH
6924
6925The following builtins are intended to be compatible with those described
6926in the @cite{Intel Itanium Processor-specific Application Binary Interface},
6927section 7.4. As such, they depart from the normal GCC practice of using
6928the ``__builtin_'' prefix, and further that they are overloaded such that
6929they work on multiple types.
6930
6931The definition given in the Intel documentation allows only for the use of
6932the types @code{int}, @code{long}, @code{long long} as well as their unsigned
6933counterparts. GCC will allow any integral scalar or pointer type that is
69341, 2, 4 or 8 bytes in length.
6935
6936Not all operations are supported by all target processors. If a particular
6937operation cannot be implemented on the target processor, a warning will be
6938generated and a call an external function will be generated. The external
6939function will carry the same name as the builtin, with an additional suffix
6940@samp{_@var{n}} where @var{n} is the size of the data type.
6941
6942@c ??? Should we have a mechanism to suppress this warning? This is almost
6943@c useful for implementing the operation under the control of an external
6944@c mutex.
6945
6946In most cases, these builtins are considered a @dfn{full barrier}. That is,
6947no memory operand will be moved across the operation, either forward or
6948backward. Further, instructions will be issued as necessary to prevent the
6949processor from speculating loads across the operation and from queuing stores
6950after the operation.
6951
d1facce0 6952All of the routines are described in the Intel documentation to take
48ae6c13
RH
6953``an optional list of variables protected by the memory barrier''. It's
6954not clear what is meant by that; it could mean that @emph{only} the
6955following variables are protected, or it could mean that these variables
6956should in addition be protected. At present GCC ignores this list and
6957protects all variables which are globally accessible. If in the future
6958we make some use of this list, an empty list will continue to mean all
6959globally accessible variables.
6960
6961@table @code
6962@item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
6963@itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
6964@itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
6965@itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
6966@itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
6967@itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
6968@findex __sync_fetch_and_add
6969@findex __sync_fetch_and_sub
6970@findex __sync_fetch_and_or
6971@findex __sync_fetch_and_and
6972@findex __sync_fetch_and_xor
6973@findex __sync_fetch_and_nand
6974These builtins perform the operation suggested by the name, and
6975returns the value that had previously been in memory. That is,
6976
6977@smallexample
6978@{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
23462d4d 6979@{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
48ae6c13
RH
6980@end smallexample
6981
23462d4d
UB
6982@emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
6983builtin as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
6984
48ae6c13
RH
6985@item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
6986@itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
6987@itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
6988@itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
6989@itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
6990@itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
6991@findex __sync_add_and_fetch
6992@findex __sync_sub_and_fetch
6993@findex __sync_or_and_fetch
6994@findex __sync_and_and_fetch
6995@findex __sync_xor_and_fetch
6996@findex __sync_nand_and_fetch
6997These builtins perform the operation suggested by the name, and
6998return the new value. That is,
6999
7000@smallexample
7001@{ *ptr @var{op}= value; return *ptr; @}
23462d4d 7002@{ *ptr = ~(*ptr & value); return *ptr; @} // nand
48ae6c13
RH
7003@end smallexample
7004
23462d4d
UB
7005@emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
7006builtin as @code{*ptr = ~(*ptr & value)} instead of
7007@code{*ptr = ~*ptr & value}.
7008
06ef8c2e
L
7009@item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
7010@itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
48ae6c13
RH
7011@findex __sync_bool_compare_and_swap
7012@findex __sync_val_compare_and_swap
7013These builtins perform an atomic compare and swap. That is, if the current
7014value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
7015@code{*@var{ptr}}.
7016
0ac11108 7017The ``bool'' version returns true if the comparison is successful and
48ae6c13 7018@var{newval} was written. The ``val'' version returns the contents
f12b785d 7019of @code{*@var{ptr}} before the operation.
48ae6c13
RH
7020
7021@item __sync_synchronize (...)
7022@findex __sync_synchronize
7023This builtin issues a full memory barrier.
7024
7025@item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
7026@findex __sync_lock_test_and_set
7027This builtin, as described by Intel, is not a traditional test-and-set
7028operation, but rather an atomic exchange operation. It writes @var{value}
7029into @code{*@var{ptr}}, and returns the previous contents of
7030@code{*@var{ptr}}.
7031
7032Many targets have only minimal support for such locks, and do not support
7033a full exchange operation. In this case, a target may support reduced
7034functionality here by which the @emph{only} valid value to store is the
7035immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
7036is implementation defined.
7037
7038This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
7039This means that references after the builtin cannot move to (or be
7040speculated to) before the builtin, but previous memory stores may not
0ac11108 7041be globally visible yet, and previous memory loads may not yet be
48ae6c13
RH
7042satisfied.
7043
7044@item void __sync_lock_release (@var{type} *ptr, ...)
7045@findex __sync_lock_release
7046This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
7047Normally this means writing the constant 0 to @code{*@var{ptr}}.
7048
7049This builtin is not a full barrier, but rather a @dfn{release barrier}.
7050This means that all previous memory stores are globally visible, and all
7051previous memory loads have been satisfied, but following memory reads
7052are not prevented from being speculated to before the barrier.
7053@end table
7054
86951993
AM
7055@node __atomic Builtins
7056@section Built-in functions for memory model aware atomic operations
7057
7058The following built-in functions approximately match the requirements for
7059C++11 memory model. Many are similar to the @samp{__sync} prefixed built-in
7060functions, but all also have a memory model parameter. These are all
7061identified by being prefixed with @samp{__atomic}, and most are overloaded
7062such that they work with multiple types.
7063
7064GCC will allow any integral scalar or pointer type that is 1, 2, 4, or 8
7065bytes in length. 16-byte integral types are also allowed if
7066@samp{__int128} (@pxref{__int128}) is supported by the architecture.
7067
7068Target architectures are encouraged to provide their own patterns for
7069each of these built-in functions. If no target is provided, the original
7070non-memory model set of @samp{__sync} atomic built-in functions will be
7071utilized, along with any required synchronization fences surrounding it in
7072order to achieve the proper behaviour. Execution in this case is subject
7073to the same restrictions as those built-in functions.
7074
7075If there is no pattern or mechanism to provide a lock free instruction
7076sequence, a call is made to an external routine with the same parameters
7077to be resolved at runtime.
7078
7079The four non-arithmetic functions (load, store, exchange, and
7080compare_exchange) all have a generic version as well. This generic
7081version will work on any data type. If the data type size maps to one
7082of the integral sizes which may have lock free support, the generic
7083version will utilize the lock free built-in function. Otherwise an
7084external call is left to be resolved at runtime. This external call will
7085be the same format with the addition of a @samp{size_t} parameter inserted
7086as the first parameter indicating the size of the object being pointed to.
7087All objects must be the same size.
7088
7089There are 6 different memory models which can be specified. These map
7090to the same names in the C++11 standard. Refer there or to the
7091@uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on
7092atomic synchronization} for more detailed definitions. These memory
7093models integrate both barriers to code motion as well as synchronization
7094requirements with other threads. These are listed in approximately
7095ascending order of strength.
7096
7097@table @code
7098@item __ATOMIC_RELAXED
7099No barriers or synchronization.
7100@item __ATOMIC_CONSUME
7101Data dependency only for both barrier and synchronization with another
7102thread.
7103@item __ATOMIC_ACQUIRE
7104Barrier to hoisting of code and synchronizes with release (or stronger)
7105semantic stores from another thread.
7106@item __ATOMIC_RELEASE
7107Barrier to sinking of code and synchronizes with acquire (or stronger)
7108semantic loads from another thread.
7109@item __ATOMIC_ACQ_REL
7110Full barrier in both directions and synchronizes with acquire loads and
7111release stores in another thread.
7112@item __ATOMIC_SEQ_CST
7113Full barrier in both directions and synchronizes with acquire loads and
7114release stores in all threads.
7115@end table
7116
7117When implementing patterns for these built-in functions , the memory model
7118parameter can be ignored as long as the pattern implements the most
7119restrictive @code{__ATOMIC_SEQ_CST} model. Any of the other memory models
7120will execute correctly with this memory model but they may not execute as
7121efficiently as they could with a more appropriate implemention of the
7122relaxed requirements.
7123
7124Note that the C++11 standard allows for the memory model parameter to be
7125determined at runtime rather than at compile time. These built-in
7126functions will map any runtime value to @code{__ATOMIC_SEQ_CST} rather
7127than invoke a runtime library call or inline a switch statement. This is
7128standard compliant, safe, and the simplest approach for now.
7129
b1cef2a5
AM
7130The memory model parameter is a signed int, but only the lower 8 bits are
7131reserved for the memory model. The remainder of the signed int is reserved
7132for future use and should be 0. Use of the predefined atomic values will
7133ensure proper usage.
7134
86951993
AM
7135@deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memmodel)
7136This built-in function implements an atomic load operation. It returns the
7137contents of @code{*@var{ptr}}.
7138
7139The valid memory model variants are
7140@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7141and @code{__ATOMIC_CONSUME}.
7142
7143@end deftypefn
7144
7145@deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memmodel)
7146This is the generic version of an atomic load. It will return the
7147contents of @code{*@var{ptr}} in @code{*@var{ret}}.
7148
7149@end deftypefn
7150
7151@deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memmodel)
7152This built-in function implements an atomic store operation. It writes
0669295b 7153@code{@var{val}} into @code{*@var{ptr}}.
86951993
AM
7154
7155The valid memory model variants are
7156@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
7157
7158@end deftypefn
7159
7160@deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memmodel)
7161This is the generic version of an atomic store. It will store the value
7162of @code{*@var{val}} into @code{*@var{ptr}}.
7163
7164@end deftypefn
7165
7166@deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memmodel)
7167This built-in function implements an atomic exchange operation. It writes
7168@var{val} into @code{*@var{ptr}}, and returns the previous contents of
7169@code{*@var{ptr}}.
7170
86951993
AM
7171The valid memory model variants are
7172@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7173@code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
7174
7175@end deftypefn
7176
7177@deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memmodel)
7178This is the generic version of an atomic exchange. It will store the
7179contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
7180of @code{*@var{ptr}} will be copied into @code{*@var{ret}}.
7181
7182@end deftypefn
7183
7184@deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memmodel, int failure_memmodel)
7185This built-in function implements an atomic compare and exchange operation.
7186This compares the contents of @code{*@var{ptr}} with the contents of
7187@code{*@var{expected}} and if equal, writes @var{desired} into
7188@code{*@var{ptr}}. If they are not equal, the current contents of
9ac1504b
AM
7189@code{*@var{ptr}} is written into @code{*@var{expected}}. @var{weak} is true
7190for weak compare_exchange, and false for the strong variation. Many targets
7191only offer the strong variation and ignore the parameter. When in doubt, use
7192the strong variation.
86951993 7193
8ca1b342 7194True is returned if @var{desired} is written into
86951993
AM
7195@code{*@var{ptr}} and the execution is considered to conform to the
7196memory model specified by @var{success_memmodel}. There are no
7197restrictions on what memory model can be used here.
7198
7199False is returned otherwise, and the execution is considered to conform
7200to @var{failure_memmodel}. This memory model cannot be
7201@code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
7202stronger model than that specified by @var{success_memmodel}.
7203
7204@end deftypefn
7205
7206@deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memmodel, int failure_memmodel)
7207This built-in function implements the generic version of
7208@code{__atomic_compare_exchange}. The function is virtually identical to
7209@code{__atomic_compare_exchange_n}, except the desired value is also a
7210pointer.
7211
7212@end deftypefn
7213
7214@deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7215@deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7216@deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7217@deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7218@deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7219@deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7220These built-in functions perform the operation suggested by the name, and
7221return the result of the operation. That is,
7222
7223@smallexample
7224@{ *ptr @var{op}= val; return *ptr; @}
7225@end smallexample
7226
7227All memory models are valid.
7228
7229@end deftypefn
7230
7231@deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memmodel)
7232@deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memmodel)
7233@deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memmodel)
7234@deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memmodel)
7235@deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memmodel)
7236@deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memmodel)
7237These built-in functions perform the operation suggested by the name, and
7238return the value that had previously been in @code{*@var{ptr}}. That is,
7239
7240@smallexample
7241@{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
7242@end smallexample
7243
7244All memory models are valid.
7245
7246@end deftypefn
7247
f8a27aa6 7248@deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memmodel)
1aabd05e
AM
7249
7250This built-in function performs an atomic test-and-set operation on
f8a27aa6
RH
7251the byte at @code{*@var{ptr}}. The byte is set to some implementation
7252defined non-zero "set" value and the return value is @code{true} if and only
7253if the previous contents were "set".
1aabd05e
AM
7254
7255All memory models are valid.
7256
7257@end deftypefn
7258
7259@deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memmodel)
7260
7261This built-in function performs an atomic clear operation on
7262@code{*@var{ptr}}. After the operation, @code{*@var{ptr}} will contain 0.
7263
7264The valid memory model variants are
7265@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
7266@code{__ATOMIC_RELEASE}.
7267
7268@end deftypefn
7269
86951993
AM
7270@deftypefn {Built-in Function} void __atomic_thread_fence (int memmodel)
7271
7272This built-in function acts as a synchronization fence between threads
7273based on the specified memory model.
7274
7275All memory orders are valid.
7276
7277@end deftypefn
7278
7279@deftypefn {Built-in Function} void __atomic_signal_fence (int memmodel)
7280
7281This built-in function acts as a synchronization fence between a thread
7282and signal handlers based in the same thread.
7283
7284All memory orders are valid.
7285
7286@end deftypefn
7287
9ac1504b 7288@deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
86951993 7289
9ac1504b
AM
7290This built-in function returns true if objects of @var{size} bytes will always
7291generate lock free atomic instructions for the target architecture.
7292@var{size} must resolve to a compile time constant and the result also resolves to compile time constant.
86951993 7293
9ac1504b
AM
7294@var{ptr} is an optional pointer to the object which may be used to determine
7295alignment. A value of 0 indicates typical alignment should be used. The
7296compiler may also ignore this parameter.
86951993
AM
7297
7298@smallexample
9ac1504b 7299if (_atomic_always_lock_free (sizeof (long long), 0))
86951993
AM
7300@end smallexample
7301
7302@end deftypefn
7303
9ac1504b 7304@deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
86951993 7305
9ac1504b 7306This built-in function returns true if objects of @var{size} bytes will always
86951993
AM
7307generate lock free atomic instructions for the target architecture. If
7308it is not known to be lock free a call is made to a runtime routine named
7309@code{__atomic_is_lock_free}.
7310
9ac1504b
AM
7311@var{ptr} is an optional pointer to the object which may be used to determine
7312alignment. A value of 0 indicates typical alignment should be used. The
7313compiler may also ignore this parameter.
86951993
AM
7314@end deftypefn
7315
10a0d495
JJ
7316@node Object Size Checking
7317@section Object Size Checking Builtins
7318@findex __builtin_object_size
7319@findex __builtin___memcpy_chk
7320@findex __builtin___mempcpy_chk
7321@findex __builtin___memmove_chk
7322@findex __builtin___memset_chk
7323@findex __builtin___strcpy_chk
7324@findex __builtin___stpcpy_chk
7325@findex __builtin___strncpy_chk
7326@findex __builtin___strcat_chk
7327@findex __builtin___strncat_chk
7328@findex __builtin___sprintf_chk
7329@findex __builtin___snprintf_chk
7330@findex __builtin___vsprintf_chk
7331@findex __builtin___vsnprintf_chk
7332@findex __builtin___printf_chk
7333@findex __builtin___vprintf_chk
7334@findex __builtin___fprintf_chk
7335@findex __builtin___vfprintf_chk
7336
7337GCC implements a limited buffer overflow protection mechanism
7338that can prevent some buffer overflow attacks.
7339
7340@deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
7341is a built-in construct that returns a constant number of bytes from
7342@var{ptr} to the end of the object @var{ptr} pointer points to
7343(if known at compile time). @code{__builtin_object_size} never evaluates
7344its arguments for side-effects. If there are any side-effects in them, it
7345returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7346for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
7347point to and all of them are known at compile time, the returned number
7348is the maximum of remaining byte counts in those objects if @var{type} & 2 is
a4d05547 73490 and minimum if nonzero. If it is not possible to determine which objects
10a0d495
JJ
7350@var{ptr} points to at compile time, @code{__builtin_object_size} should
7351return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7352for @var{type} 2 or 3.
7353
7354@var{type} is an integer constant from 0 to 3. If the least significant
7355bit is clear, objects are whole variables, if it is set, a closest
7356surrounding subobject is considered the object a pointer points to.
7357The second bit determines if maximum or minimum of remaining bytes
7358is computed.
7359
7360@smallexample
7361struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
7362char *p = &var.buf1[1], *q = &var.b;
7363
7364/* Here the object p points to is var. */
7365assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
7366/* The subobject p points to is var.buf1. */
7367assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
7368/* The object q points to is var. */
7369assert (__builtin_object_size (q, 0)
6ccde948 7370 == (char *) (&var + 1) - (char *) &var.b);
10a0d495
JJ
7371/* The subobject q points to is var.b. */
7372assert (__builtin_object_size (q, 1) == sizeof (var.b));
7373@end smallexample
7374@end deftypefn
7375
7376There are built-in functions added for many common string operation
021efafc 7377functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10a0d495
JJ
7378built-in is provided. This built-in has an additional last argument,
7379which is the number of bytes remaining in object the @var{dest}
7380argument points to or @code{(size_t) -1} if the size is not known.
7381
7382The built-in functions are optimized into the normal string functions
7383like @code{memcpy} if the last argument is @code{(size_t) -1} or if
7384it is known at compile time that the destination object will not
7385be overflown. If the compiler can determine at compile time the
7386object will be always overflown, it issues a warning.
7387
7388The intended use can be e.g.
7389
7390@smallexample
7391#undef memcpy
7392#define bos0(dest) __builtin_object_size (dest, 0)
7393#define memcpy(dest, src, n) \
7394 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
7395
7396char *volatile p;
7397char buf[10];
7398/* It is unknown what object p points to, so this is optimized
7399 into plain memcpy - no checking is possible. */
7400memcpy (p, "abcde", n);
7401/* Destination is known and length too. It is known at compile
7402 time there will be no overflow. */
7403memcpy (&buf[5], "abcde", 5);
7404/* Destination is known, but the length is not known at compile time.
7405 This will result in __memcpy_chk call that can check for overflow
7406 at runtime. */
7407memcpy (&buf[5], "abcde", n);
7408/* Destination is known and it is known at compile time there will
7409 be overflow. There will be a warning and __memcpy_chk call that
7410 will abort the program at runtime. */
7411memcpy (&buf[6], "abcde", 5);
7412@end smallexample
7413
7414Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
7415@code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
7416@code{strcat} and @code{strncat}.
7417
7418There are also checking built-in functions for formatted output functions.
7419@smallexample
7420int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
7421int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6ccde948 7422 const char *fmt, ...);
10a0d495 7423int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
6ccde948 7424 va_list ap);
10a0d495 7425int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
6ccde948 7426 const char *fmt, va_list ap);
10a0d495
JJ
7427@end smallexample
7428
7429The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
021efafc 7430etc.@: functions and can contain implementation specific flags on what
10a0d495
JJ
7431additional security measures the checking function might take, such as
7432handling @code{%n} differently.
7433
7434The @var{os} argument is the object size @var{s} points to, like in the
a4d05547 7435other built-in functions. There is a small difference in the behavior
10a0d495
JJ
7436though, if @var{os} is @code{(size_t) -1}, the built-in functions are
7437optimized into the non-checking functions only if @var{flag} is 0, otherwise
7438the checking function is called with @var{os} argument set to
7439@code{(size_t) -1}.
7440
7441In addition to this, there are checking built-in functions
7442@code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
7443@code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
7444These have just one additional argument, @var{flag}, right before
7445format string @var{fmt}. If the compiler is able to optimize them to
021efafc 7446@code{fputc} etc.@: functions, it will, otherwise the checking function
10a0d495
JJ
7447should be called and the @var{flag} argument passed to it.
7448
185ebd6c 7449@node Other Builtins
f0523f02 7450@section Other built-in functions provided by GCC
c771326b 7451@cindex built-in functions
3bf5906b 7452@findex __builtin_fpclassify
0c8d3c2b 7453@findex __builtin_isfinite
8a91c45b 7454@findex __builtin_isnormal
01702459
JM
7455@findex __builtin_isgreater
7456@findex __builtin_isgreaterequal
05f41289 7457@findex __builtin_isinf_sign
01702459
JM
7458@findex __builtin_isless
7459@findex __builtin_islessequal
7460@findex __builtin_islessgreater
7461@findex __builtin_isunordered
17684d46
RG
7462@findex __builtin_powi
7463@findex __builtin_powif
7464@findex __builtin_powil
98ff7c4d
KG
7465@findex _Exit
7466@findex _exit
01702459
JM
7467@findex abort
7468@findex abs
98ff7c4d
KG
7469@findex acos
7470@findex acosf
7471@findex acosh
7472@findex acoshf
7473@findex acoshl
7474@findex acosl
01702459 7475@findex alloca
98ff7c4d
KG
7476@findex asin
7477@findex asinf
7478@findex asinh
7479@findex asinhf
7480@findex asinhl
7481@findex asinl
29f523be 7482@findex atan
46847aa6
RS
7483@findex atan2
7484@findex atan2f
7485@findex atan2l
29f523be 7486@findex atanf
98ff7c4d
KG
7487@findex atanh
7488@findex atanhf
7489@findex atanhl
29f523be 7490@findex atanl
01702459
JM
7491@findex bcmp
7492@findex bzero
075ec276
RS
7493@findex cabs
7494@findex cabsf
7495@findex cabsl
11bf0eb0
KG
7496@findex cacos
7497@findex cacosf
7498@findex cacosh
7499@findex cacoshf
7500@findex cacoshl
7501@findex cacosl
1331d16f 7502@findex calloc
11bf0eb0
KG
7503@findex carg
7504@findex cargf
7505@findex cargl
7506@findex casin
7507@findex casinf
7508@findex casinh
7509@findex casinhf
7510@findex casinhl
7511@findex casinl
7512@findex catan
7513@findex catanf
7514@findex catanh
7515@findex catanhf
7516@findex catanhl
7517@findex catanl
98ff7c4d
KG
7518@findex cbrt
7519@findex cbrtf
7520@findex cbrtl
11bf0eb0
KG
7521@findex ccos
7522@findex ccosf
7523@findex ccosh
7524@findex ccoshf
7525@findex ccoshl
7526@findex ccosl
b052d8ee
RS
7527@findex ceil
7528@findex ceilf
7529@findex ceill
11bf0eb0
KG
7530@findex cexp
7531@findex cexpf
7532@findex cexpl
341e3d11
JM
7533@findex cimag
7534@findex cimagf
7535@findex cimagl
c3887ef2
PC
7536@findex clog
7537@findex clogf
7538@findex clogl
341e3d11
JM
7539@findex conj
7540@findex conjf
7541@findex conjl
98ff7c4d
KG
7542@findex copysign
7543@findex copysignf
7544@findex copysignl
01702459
JM
7545@findex cos
7546@findex cosf
98ff7c4d
KG
7547@findex cosh
7548@findex coshf
7549@findex coshl
01702459 7550@findex cosl
11bf0eb0
KG
7551@findex cpow
7552@findex cpowf
7553@findex cpowl
7554@findex cproj
7555@findex cprojf
7556@findex cprojl
341e3d11
JM
7557@findex creal
7558@findex crealf
7559@findex creall
11bf0eb0
KG
7560@findex csin
7561@findex csinf
7562@findex csinh
7563@findex csinhf
7564@findex csinhl
7565@findex csinl
7566@findex csqrt
7567@findex csqrtf
7568@findex csqrtl
7569@findex ctan
7570@findex ctanf
7571@findex ctanh
7572@findex ctanhf
7573@findex ctanhl
7574@findex ctanl
178b2b9f
RS
7575@findex dcgettext
7576@findex dgettext
98ff7c4d
KG
7577@findex drem
7578@findex dremf
7579@findex dreml
488f17e1
KG
7580@findex erf
7581@findex erfc
7582@findex erfcf
7583@findex erfcl
7584@findex erff
7585@findex erfl
01702459 7586@findex exit
e7b489c8 7587@findex exp
98ff7c4d
KG
7588@findex exp10
7589@findex exp10f
7590@findex exp10l
7591@findex exp2
7592@findex exp2f
7593@findex exp2l
e7b489c8
RS
7594@findex expf
7595@findex expl
98ff7c4d
KG
7596@findex expm1
7597@findex expm1f
7598@findex expm1l
01702459
JM
7599@findex fabs
7600@findex fabsf
7601@findex fabsl
98ff7c4d
KG
7602@findex fdim
7603@findex fdimf
7604@findex fdiml
01702459 7605@findex ffs
b052d8ee
RS
7606@findex floor
7607@findex floorf
7608@findex floorl
98ff7c4d
KG
7609@findex fma
7610@findex fmaf
7611@findex fmal
7612@findex fmax
7613@findex fmaxf
7614@findex fmaxl
7615@findex fmin
7616@findex fminf
7617@findex fminl
b052d8ee
RS
7618@findex fmod
7619@findex fmodf
7620@findex fmodl
18f988a0 7621@findex fprintf
b4c984fb 7622@findex fprintf_unlocked
01702459 7623@findex fputs
b4c984fb 7624@findex fputs_unlocked
a2a919aa
KG
7625@findex frexp
7626@findex frexpf
7627@findex frexpl
178b2b9f 7628@findex fscanf
488f17e1
KG
7629@findex gamma
7630@findex gammaf
7631@findex gammal
bf460eec
KG
7632@findex gamma_r
7633@findex gammaf_r
7634@findex gammal_r
178b2b9f 7635@findex gettext
98ff7c4d
KG
7636@findex hypot
7637@findex hypotf
7638@findex hypotl
7639@findex ilogb
7640@findex ilogbf
7641@findex ilogbl
e78f4a97 7642@findex imaxabs
c7b6c6cd 7643@findex index
740e5b6f
KG
7644@findex isalnum
7645@findex isalpha
7646@findex isascii
7647@findex isblank
7648@findex iscntrl
7649@findex isdigit
7650@findex isgraph
7651@findex islower
7652@findex isprint
7653@findex ispunct
7654@findex isspace
7655@findex isupper
ca4944e1
KG
7656@findex iswalnum
7657@findex iswalpha
7658@findex iswblank
7659@findex iswcntrl
7660@findex iswdigit
7661@findex iswgraph
7662@findex iswlower
7663@findex iswprint
7664@findex iswpunct
7665@findex iswspace
7666@findex iswupper
7667@findex iswxdigit
740e5b6f 7668@findex isxdigit
488f17e1
KG
7669@findex j0
7670@findex j0f
7671@findex j0l
7672@findex j1
7673@findex j1f
7674@findex j1l
7675@findex jn
7676@findex jnf
7677@findex jnl
01702459 7678@findex labs
98ff7c4d
KG
7679@findex ldexp
7680@findex ldexpf
7681@findex ldexpl
488f17e1
KG
7682@findex lgamma
7683@findex lgammaf
7684@findex lgammal
bf460eec
KG
7685@findex lgamma_r
7686@findex lgammaf_r
7687@findex lgammal_r
01702459 7688@findex llabs
98ff7c4d
KG
7689@findex llrint
7690@findex llrintf
7691@findex llrintl
7692@findex llround
7693@findex llroundf
7694@findex llroundl
e7b489c8 7695@findex log
98ff7c4d
KG
7696@findex log10
7697@findex log10f
7698@findex log10l
7699@findex log1p
7700@findex log1pf
7701@findex log1pl
7702@findex log2
7703@findex log2f
7704@findex log2l
7705@findex logb
7706@findex logbf
7707@findex logbl
e7b489c8
RS
7708@findex logf
7709@findex logl
98ff7c4d
KG
7710@findex lrint
7711@findex lrintf
7712@findex lrintl
7713@findex lround
7714@findex lroundf
7715@findex lroundl
1331d16f 7716@findex malloc
2a5fce6d 7717@findex memchr
01702459
JM
7718@findex memcmp
7719@findex memcpy
9cb65f92 7720@findex mempcpy
01702459 7721@findex memset
a2a919aa
KG
7722@findex modf
7723@findex modff
7724@findex modfl
b052d8ee
RS
7725@findex nearbyint
7726@findex nearbyintf
7727@findex nearbyintl
98ff7c4d
KG
7728@findex nextafter
7729@findex nextafterf
7730@findex nextafterl
7731@findex nexttoward
7732@findex nexttowardf
7733@findex nexttowardl
46847aa6 7734@findex pow
98ff7c4d
KG
7735@findex pow10
7736@findex pow10f
7737@findex pow10l
46847aa6
RS
7738@findex powf
7739@findex powl
01702459 7740@findex printf
b4c984fb 7741@findex printf_unlocked
08291658
RS
7742@findex putchar
7743@findex puts
98ff7c4d
KG
7744@findex remainder
7745@findex remainderf
7746@findex remainderl
a2a919aa
KG
7747@findex remquo
7748@findex remquof
7749@findex remquol
c7b6c6cd 7750@findex rindex
98ff7c4d
KG
7751@findex rint
7752@findex rintf
7753@findex rintl
b052d8ee
RS
7754@findex round
7755@findex roundf
7756@findex roundl
98ff7c4d
KG
7757@findex scalb
7758@findex scalbf
7759@findex scalbl
7760@findex scalbln
7761@findex scalblnf
7762@findex scalblnf
7763@findex scalbn
7764@findex scalbnf
7765@findex scanfnl
ef79730c
RS
7766@findex signbit
7767@findex signbitf
7768@findex signbitl
44aea9ac
JJ
7769@findex signbitd32
7770@findex signbitd64
7771@findex signbitd128
488f17e1
KG
7772@findex significand
7773@findex significandf
7774@findex significandl
01702459 7775@findex sin
a2a919aa
KG
7776@findex sincos
7777@findex sincosf
7778@findex sincosl
01702459 7779@findex sinf
98ff7c4d
KG
7780@findex sinh
7781@findex sinhf
7782@findex sinhl
01702459 7783@findex sinl
08291658
RS
7784@findex snprintf
7785@findex sprintf
01702459
JM
7786@findex sqrt
7787@findex sqrtf
7788@findex sqrtl
08291658 7789@findex sscanf
9cb65f92 7790@findex stpcpy
e905ac64
KG
7791@findex stpncpy
7792@findex strcasecmp
d118937d 7793@findex strcat
01702459
JM
7794@findex strchr
7795@findex strcmp
7796@findex strcpy
d118937d 7797@findex strcspn
1331d16f 7798@findex strdup
178b2b9f
RS
7799@findex strfmon
7800@findex strftime
01702459 7801@findex strlen
e905ac64 7802@findex strncasecmp
d118937d 7803@findex strncat
da9e9f08
KG
7804@findex strncmp
7805@findex strncpy
e905ac64 7806@findex strndup
01702459
JM
7807@findex strpbrk
7808@findex strrchr
d118937d 7809@findex strspn
01702459 7810@findex strstr
29f523be
RS
7811@findex tan
7812@findex tanf
98ff7c4d
KG
7813@findex tanh
7814@findex tanhf
7815@findex tanhl
29f523be 7816@findex tanl
488f17e1
KG
7817@findex tgamma
7818@findex tgammaf
7819@findex tgammal
740e5b6f
KG
7820@findex toascii
7821@findex tolower
7822@findex toupper
ca4944e1
KG
7823@findex towlower
7824@findex towupper
4977bab6
ZW
7825@findex trunc
7826@findex truncf
7827@findex truncl
178b2b9f
RS
7828@findex vfprintf
7829@findex vfscanf
08291658
RS
7830@findex vprintf
7831@findex vscanf
7832@findex vsnprintf
7833@findex vsprintf
7834@findex vsscanf
488f17e1
KG
7835@findex y0
7836@findex y0f
7837@findex y0l
7838@findex y1
7839@findex y1f
7840@findex y1l
7841@findex yn
7842@findex ynf
7843@findex ynl
185ebd6c 7844
f0523f02 7845GCC provides a large number of built-in functions other than the ones
185ebd6c
RH
7846mentioned above. Some of these are for internal use in the processing
7847of exceptions or variable-length argument lists and will not be
7848documented here because they may change from time to time; we do not
7849recommend general use of these functions.
7850
7851The remaining functions are provided for optimization purposes.
7852
84330467 7853@opindex fno-builtin
9c34dbbf
ZW
7854GCC includes built-in versions of many of the functions in the standard
7855C library. The versions prefixed with @code{__builtin_} will always be
7856treated as having the same meaning as the C library function even if you
8a36672b 7857specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
9c34dbbf 7858Many of these functions are only optimized in certain cases; if they are
01702459
JM
7859not optimized in a particular case, a call to the library function will
7860be emitted.
7861
84330467
JM
7862@opindex ansi
7863@opindex std
2778d766 7864Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
48b0b196 7865@option{-std=c99} or @option{-std=c11}), the functions
98ff7c4d
KG
7866@code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
7867@code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
7868@code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
bf460eec
KG
7869@code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
7870@code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
7871@code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
740e5b6f
KG
7872@code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
7873@code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
bf460eec
KG
7874@code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
7875@code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
7876@code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
7877@code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
7878@code{signbitd64}, @code{signbitd128}, @code{significandf},
7879@code{significandl}, @code{significand}, @code{sincosf},
7880@code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
7881@code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
7882@code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
7883@code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
7884@code{yn}
1331d16f 7885may be handled as built-in functions.
b052d8ee 7886All these functions have corresponding versions
7e1542b9 7887prefixed with @code{__builtin_}, which may be used even in strict C90
9c34dbbf 7888mode.
01702459 7889
075ec276 7890The ISO C99 functions
98ff7c4d
KG
7891@code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
7892@code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
11bf0eb0
KG
7893@code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
7894@code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
7895@code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
7896@code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
7897@code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
7898@code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
7899@code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
7900@code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
c3887ef2
PC
7901@code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
7902@code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
7903@code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
7904@code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
7905@code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
7906@code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
7907@code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
7908@code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
7909@code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
7910@code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
7911@code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
7912@code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
7913@code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
7914@code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
7915@code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
ca4944e1
KG
7916@code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
7917@code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
7918@code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
7919@code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
7920@code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
740e5b6f
KG
7921@code{nextafterf}, @code{nextafterl}, @code{nextafter},
7922@code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
7923@code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
7924@code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
7925@code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
7926@code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
7927@code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
7928@code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
7929@code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
08291658 7930are handled as built-in functions
7e1542b9 7931except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
46847aa6 7932
98ff7c4d
KG
7933There are also built-in versions of the ISO C99 functions
7934@code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
29f523be 7935@code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
98ff7c4d
KG
7936@code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
7937@code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
a2a919aa
KG
7938@code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
7939@code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
7940@code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
7941@code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
7942@code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
46847aa6
RS
7943that are recognized in any mode since ISO C90 reserves these names for
7944the purpose to which ISO C99 puts them. All these functions have
7945corresponding versions prefixed with @code{__builtin_}.
7946
ca4944e1
KG
7947The ISO C94 functions
7948@code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
7949@code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
7950@code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
7951@code{towupper}
7952are handled as built-in functions
7e1542b9 7953except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
ca4944e1 7954
98ff7c4d
KG
7955The ISO C90 functions
7956@code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
7957@code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
7958@code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
740e5b6f
KG
7959@code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
7960@code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
7961@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
7962@code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
7963@code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
2a5fce6d
PC
7964@code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
7965@code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
7966@code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
7967@code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
7968@code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
7969@code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
7970@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
7971@code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
08291658 7972are all recognized as built-in functions unless
46847aa6
RS
7973@option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
7974is specified for an individual function). All of these functions have
4977bab6 7975corresponding versions prefixed with @code{__builtin_}.
9c34dbbf
ZW
7976
7977GCC provides built-in versions of the ISO C99 floating point comparison
7978macros that avoid raising exceptions for unordered operands. They have
7979the same names as the standard macros ( @code{isgreater},
7980@code{isgreaterequal}, @code{isless}, @code{islessequal},
7981@code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
7982prefixed. We intend for a library implementor to be able to simply
7983@code{#define} each standard macro to its built-in equivalent.
3bf5906b
KG
7984In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
7985@code{isinf_sign} and @code{isnormal} built-ins used with
7986@code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
7987builtins appear both with and without the @code{__builtin_} prefix.
185ebd6c 7988
ecbcf7b3
AH
7989@deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
7990
7991You can use the built-in function @code{__builtin_types_compatible_p} to
7992determine whether two types are the same.
7993
7994This built-in function returns 1 if the unqualified versions of the
7995types @var{type1} and @var{type2} (which are types, not expressions) are
7996compatible, 0 otherwise. The result of this built-in function can be
7997used in integer constant expressions.
7998
7999This built-in function ignores top level qualifiers (e.g., @code{const},
8000@code{volatile}). For example, @code{int} is equivalent to @code{const
8001int}.
8002
8003The type @code{int[]} and @code{int[5]} are compatible. On the other
8004hand, @code{int} and @code{char *} are not compatible, even if the size
8005of their types, on the particular architecture are the same. Also, the
8006amount of pointer indirection is taken into account when determining
8007similarity. Consequently, @code{short *} is not similar to
8008@code{short **}. Furthermore, two types that are typedefed are
8009considered compatible if their underlying types are compatible.
8010
bca63328
JM
8011An @code{enum} type is not considered to be compatible with another
8012@code{enum} type even if both are compatible with the same integer
8013type; this is what the C standard specifies.
8014For example, @code{enum @{foo, bar@}} is not similar to
ecbcf7b3
AH
8015@code{enum @{hot, dog@}}.
8016
8017You would typically use this function in code whose execution varies
8018depending on the arguments' types. For example:
8019
8020@smallexample
6e5bb5ad
JM
8021#define foo(x) \
8022 (@{ \
b7886f14 8023 typeof (x) tmp = (x); \
6e5bb5ad
JM
8024 if (__builtin_types_compatible_p (typeof (x), long double)) \
8025 tmp = foo_long_double (tmp); \
8026 else if (__builtin_types_compatible_p (typeof (x), double)) \
8027 tmp = foo_double (tmp); \
8028 else if (__builtin_types_compatible_p (typeof (x), float)) \
8029 tmp = foo_float (tmp); \
8030 else \
8031 abort (); \
8032 tmp; \
ecbcf7b3
AH
8033 @})
8034@end smallexample
8035
8a36672b 8036@emph{Note:} This construct is only available for C@.
ecbcf7b3
AH
8037
8038@end deftypefn
8039
8040@deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
8041
8042You can use the built-in function @code{__builtin_choose_expr} to
8043evaluate code depending on the value of a constant expression. This
928c19bb 8044built-in function returns @var{exp1} if @var{const_exp}, which is an
6cea734d 8045integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
ecbcf7b3
AH
8046
8047This built-in function is analogous to the @samp{? :} operator in C,
8048except that the expression returned has its type unaltered by promotion
8049rules. Also, the built-in function does not evaluate the expression
8050that was not chosen. For example, if @var{const_exp} evaluates to true,
8051@var{exp2} is not evaluated even if it has side-effects.
8052
8053This built-in function can return an lvalue if the chosen argument is an
8054lvalue.
8055
8056If @var{exp1} is returned, the return type is the same as @var{exp1}'s
8057type. Similarly, if @var{exp2} is returned, its return type is the same
8058as @var{exp2}.
8059
8060Example:
8061
8062@smallexample
478c9e72
JJ
8063#define foo(x) \
8064 __builtin_choose_expr ( \
8065 __builtin_types_compatible_p (typeof (x), double), \
8066 foo_double (x), \
8067 __builtin_choose_expr ( \
8068 __builtin_types_compatible_p (typeof (x), float), \
8069 foo_float (x), \
8070 /* @r{The void expression results in a compile-time error} \
8071 @r{when assigning the result to something.} */ \
ecbcf7b3
AH
8072 (void)0))
8073@end smallexample
8074
8a36672b 8075@emph{Note:} This construct is only available for C@. Furthermore, the
ecbcf7b3
AH
8076unused expression (@var{exp1} or @var{exp2} depending on the value of
8077@var{const_exp}) may still generate syntax errors. This may change in
8078future revisions.
8079
8080@end deftypefn
8081
d4a83c10
JM
8082@deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
8083
8084The built-in function @code{__builtin_complex} is provided for use in
48b0b196 8085implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
d4a83c10
JM
8086@code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
8087real binary floating-point type, and the result has the corresponding
8088complex type with real and imaginary parts @var{real} and @var{imag}.
8089Unlike @samp{@var{real} + I * @var{imag}}, this works even when
8090infinities, NaNs and negative zeros are involved.
8091
8092@end deftypefn
8093
84330467
JM
8094@deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
8095You can use the built-in function @code{__builtin_constant_p} to
185ebd6c 8096determine if a value is known to be constant at compile-time and hence
f0523f02 8097that GCC can perform constant-folding on expressions involving that
185ebd6c
RH
8098value. The argument of the function is the value to test. The function
8099returns the integer 1 if the argument is known to be a compile-time
8100constant and 0 if it is not known to be a compile-time constant. A
8101return of 0 does not indicate that the value is @emph{not} a constant,
f0523f02 8102but merely that GCC cannot prove it is a constant with the specified
84330467 8103value of the @option{-O} option.
185ebd6c
RH
8104
8105You would typically use this function in an embedded application where
8106memory was a critical resource. If you have some complex calculation,
8107you may want it to be folded if it involves constants, but need to call
8108a function if it does not. For example:
8109
4d390518 8110@smallexample
310668e8
JM
8111#define Scale_Value(X) \
8112 (__builtin_constant_p (X) \
8113 ? ((X) * SCALE + OFFSET) : Scale (X))
185ebd6c
RH
8114@end smallexample
8115
84330467 8116You may use this built-in function in either a macro or an inline
185ebd6c 8117function. However, if you use it in an inlined function and pass an
f0523f02 8118argument of the function as the argument to the built-in, GCC will
185ebd6c 8119never return 1 when you call the inline function with a string constant
4b404517 8120or compound literal (@pxref{Compound Literals}) and will not return 1
185ebd6c 8121when you pass a constant numeric value to the inline function unless you
84330467 8122specify the @option{-O} option.
13104975
ZW
8123
8124You may also use @code{__builtin_constant_p} in initializers for static
8125data. For instance, you can write
8126
8127@smallexample
79323c50 8128static const int table[] = @{
13104975 8129 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
0d893a63 8130 /* @r{@dots{}} */
79323c50 8131@};
13104975
ZW
8132@end smallexample
8133
8134@noindent
8135This is an acceptable initializer even if @var{EXPRESSION} is not a
928c19bb
JM
8136constant expression, including the case where
8137@code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
8138folded to a constant but @var{EXPRESSION} contains operands that would
c782f1dd 8139not otherwise be permitted in a static initializer (for example,
928c19bb 8140@code{0 && foo ()}). GCC must be more conservative about evaluating the
13104975
ZW
8141built-in in this case, because it has no opportunity to perform
8142optimization.
8143
8144Previous versions of GCC did not accept this built-in in data
8145initializers. The earliest version where it is completely safe is
81463.0.1.
84330467 8147@end deftypefn
185ebd6c 8148
84330467
JM
8149@deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
8150@opindex fprofile-arcs
02f52e19 8151You may use @code{__builtin_expect} to provide the compiler with
994a57cd 8152branch prediction information. In general, you should prefer to
84330467 8153use actual profile feedback for this (@option{-fprofile-arcs}), as
994a57cd 8154programmers are notoriously bad at predicting how their programs
60b6e1f5 8155actually perform. However, there are applications in which this
994a57cd
RH
8156data is hard to collect.
8157
ef950eba
JH
8158The return value is the value of @var{exp}, which should be an integral
8159expression. The semantics of the built-in are that it is expected that
8160@var{exp} == @var{c}. For example:
994a57cd
RH
8161
8162@smallexample
8163if (__builtin_expect (x, 0))
8164 foo ();
8165@end smallexample
8166
8167@noindent
8168would indicate that we do not expect to call @code{foo}, since
8169we expect @code{x} to be zero. Since you are limited to integral
8170expressions for @var{exp}, you should use constructions such as
8171
8172@smallexample
8173if (__builtin_expect (ptr != NULL, 1))
e2724fd2 8174 foo (*ptr);
994a57cd
RH
8175@end smallexample
8176
8177@noindent
8178when testing pointer or floating-point values.
84330467 8179@end deftypefn
994a57cd 8180
a18c20ec
AP
8181@deftypefn {Built-in Function} void __builtin_trap (void)
8182This function causes the program to exit abnormally. GCC implements
8183this function by using a target-dependent mechanism (such as
8184intentionally executing an illegal instruction) or by calling
8185@code{abort}. The mechanism used may vary from release to release so
8186you should not rely on any particular implementation.
8187@end deftypefn
8188
468059bc
DD
8189@deftypefn {Built-in Function} void __builtin_unreachable (void)
8190If control flow reaches the point of the @code{__builtin_unreachable},
8191the program is undefined. It is useful in situations where the
8192compiler cannot deduce the unreachability of the code.
8193
8194One such case is immediately following an @code{asm} statement that
8195will either never terminate, or one that transfers control elsewhere
8196and never returns. In this example, without the
8197@code{__builtin_unreachable}, GCC would issue a warning that control
8198reaches the end of a non-void function. It would also generate code
8199to return after the @code{asm}.
8200
8201@smallexample
8202int f (int c, int v)
8203@{
8204 if (c)
8205 @{
8206 return v;
8207 @}
8208 else
8209 @{
8210 asm("jmp error_handler");
8211 __builtin_unreachable ();
8212 @}
8213@}
8214@end smallexample
8215
8216Because the @code{asm} statement unconditionally transfers control out
8217of the function, control will never reach the end of the function
8218body. The @code{__builtin_unreachable} is in fact unreachable and
8219communicates this fact to the compiler.
8220
8221Another use for @code{__builtin_unreachable} is following a call a
8222function that never returns but that is not declared
8223@code{__attribute__((noreturn))}, as in this example:
8224
8225@smallexample
8226void function_that_never_returns (void);
8227
8228int g (int c)
8229@{
8230 if (c)
8231 @{
8232 return 1;
8233 @}
8234 else
8235 @{
8236 function_that_never_returns ();
8237 __builtin_unreachable ();
8238 @}
8239@}
8240@end smallexample
8241
8242@end deftypefn
8243
45d439ac
JJ
8244@deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
8245This function returns its first argument, and allows the compiler
8246to assume that the returned pointer is at least @var{align} bytes
8247aligned. This built-in can have either two or three arguments,
8248if it has three, the third argument should have integer type, and
8249if it is non-zero means misalignment offset. For example:
8250
8251@smallexample
8252void *x = __builtin_assume_aligned (arg, 16);
8253@end smallexample
8254
8255means that the compiler can assume x, set to arg, is at least
825616 byte aligned, while:
8257
8258@smallexample
8259void *x = __builtin_assume_aligned (arg, 32, 8);
8260@end smallexample
8261
8262means that the compiler can assume for x, set to arg, that
8263(char *) x - 8 is 32 byte aligned.
8264@end deftypefn
8265
677feb77
DD
8266@deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
8267This function is used to flush the processor's instruction cache for
8268the region of memory between @var{begin} inclusive and @var{end}
8269exclusive. Some targets require that the instruction cache be
8270flushed, after modifying memory containing code, in order to obtain
8271deterministic behavior.
8272
8273If the target does not require instruction cache flushes,
8274@code{__builtin___clear_cache} has no effect. Otherwise either
8275instructions are emitted in-line to clear the instruction cache or a
8276call to the @code{__clear_cache} function in libgcc is made.
8277@end deftypefn
8278
3bca17dd 8279@deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
a9ccbb60
JJ
8280This function is used to minimize cache-miss latency by moving data into
8281a cache before it is accessed.
8282You can insert calls to @code{__builtin_prefetch} into code for which
8283you know addresses of data in memory that is likely to be accessed soon.
8284If the target supports them, data prefetch instructions will be generated.
8285If the prefetch is done early enough before the access then the data will
8286be in the cache by the time it is accessed.
8287
8288The value of @var{addr} is the address of the memory to prefetch.
e83d297b 8289There are two optional arguments, @var{rw} and @var{locality}.
a9ccbb60 8290The value of @var{rw} is a compile-time constant one or zero; one
e83d297b
JJ
8291means that the prefetch is preparing for a write to the memory address
8292and zero, the default, means that the prefetch is preparing for a read.
a9ccbb60
JJ
8293The value @var{locality} must be a compile-time constant integer between
8294zero and three. A value of zero means that the data has no temporal
8295locality, so it need not be left in the cache after the access. A value
8296of three means that the data has a high degree of temporal locality and
8297should be left in all levels of cache possible. Values of one and two
e83d297b
JJ
8298mean, respectively, a low or moderate degree of temporal locality. The
8299default is three.
a9ccbb60
JJ
8300
8301@smallexample
8302for (i = 0; i < n; i++)
8303 @{
8304 a[i] = a[i] + b[i];
8305 __builtin_prefetch (&a[i+j], 1, 1);
8306 __builtin_prefetch (&b[i+j], 0, 1);
0d893a63 8307 /* @r{@dots{}} */
a9ccbb60
JJ
8308 @}
8309@end smallexample
8310
f282ffb3 8311Data prefetch does not generate faults if @var{addr} is invalid, but
a9ccbb60
JJ
8312the address expression itself must be valid. For example, a prefetch
8313of @code{p->next} will not fault if @code{p->next} is not a valid
8314address, but evaluation will fault if @code{p} is not a valid address.
8315
8316If the target does not support data prefetch, the address expression
8317is evaluated if it includes side effects but no other code is generated
8318and GCC does not issue a warning.
8319@end deftypefn
8320
ab5e2615
RH
8321@deftypefn {Built-in Function} double __builtin_huge_val (void)
8322Returns a positive infinity, if supported by the floating-point format,
8323else @code{DBL_MAX}. This function is suitable for implementing the
8324ISO C macro @code{HUGE_VAL}.
8325@end deftypefn
8326
8327@deftypefn {Built-in Function} float __builtin_huge_valf (void)
8328Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
8329@end deftypefn
8330
dad78426 8331@deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
ab5e2615
RH
8332Similar to @code{__builtin_huge_val}, except the return
8333type is @code{long double}.
8334@end deftypefn
8335
3bf5906b
KG
8336@deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
8337This built-in implements the C99 fpclassify functionality. The first
8338five int arguments should be the target library's notion of the
8339possible FP classes and are used for return values. They must be
8340constant values and they must appear in this order: @code{FP_NAN},
32101f99 8341@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
3bf5906b
KG
8342@code{FP_ZERO}. The ellipsis is for exactly one floating point value
8343to classify. GCC treats the last argument as type-generic, which
8344means it does not do default promotion from float to double.
8345@end deftypefn
8346
ab5e2615
RH
8347@deftypefn {Built-in Function} double __builtin_inf (void)
8348Similar to @code{__builtin_huge_val}, except a warning is generated
8349if the target floating-point format does not support infinities.
ab5e2615
RH
8350@end deftypefn
8351
9a8ce21f
JG
8352@deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
8353Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
8354@end deftypefn
8355
8356@deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
8357Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
8358@end deftypefn
8359
8360@deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
8361Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
8362@end deftypefn
8363
ab5e2615
RH
8364@deftypefn {Built-in Function} float __builtin_inff (void)
8365Similar to @code{__builtin_inf}, except the return type is @code{float}.
9c86fc0b 8366This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
ab5e2615
RH
8367@end deftypefn
8368
dad78426 8369@deftypefn {Built-in Function} {long double} __builtin_infl (void)
ab5e2615
RH
8370Similar to @code{__builtin_inf}, except the return
8371type is @code{long double}.
8372@end deftypefn
8373
05f41289
KG
8374@deftypefn {Built-in Function} int __builtin_isinf_sign (...)
8375Similar to @code{isinf}, except the return value will be negative for
8376an argument of @code{-Inf}. Note while the parameter list is an
8377ellipsis, this function only accepts exactly one floating point
8378argument. GCC treats this parameter as type-generic, which means it
8379does not do default promotion from float to double.
8380@end deftypefn
8381
1472e41c
RH
8382@deftypefn {Built-in Function} double __builtin_nan (const char *str)
8383This is an implementation of the ISO C99 function @code{nan}.
8384
8385Since ISO C99 defines this function in terms of @code{strtod}, which we
c0478a66 8386do not implement, a description of the parsing is in order. The string
1472e41c
RH
8387is parsed as by @code{strtol}; that is, the base is recognized by
8388leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
8389in the significand such that the least significant bit of the number
daf2f129 8390is at the least significant bit of the significand. The number is
1472e41c 8391truncated to fit the significand field provided. The significand is
8a36672b 8392forced to be a quiet NaN@.
1472e41c 8393
a7d37464
GK
8394This function, if given a string literal all of which would have been
8395consumed by strtol, is evaluated early enough that it is considered a
8396compile-time constant.
1472e41c
RH
8397@end deftypefn
8398
9a8ce21f
JG
8399@deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
8400Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
8401@end deftypefn
8402
8403@deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
8404Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
8405@end deftypefn
8406
8407@deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
8408Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
8409@end deftypefn
8410
1472e41c
RH
8411@deftypefn {Built-in Function} float __builtin_nanf (const char *str)
8412Similar to @code{__builtin_nan}, except the return type is @code{float}.
8413@end deftypefn
8414
dad78426 8415@deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
1472e41c
RH
8416Similar to @code{__builtin_nan}, except the return type is @code{long double}.
8417@end deftypefn
8418
8419@deftypefn {Built-in Function} double __builtin_nans (const char *str)
daf2f129 8420Similar to @code{__builtin_nan}, except the significand is forced
8a36672b 8421to be a signaling NaN@. The @code{nans} function is proposed by
aaa67502 8422@uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
1472e41c
RH
8423@end deftypefn
8424
8425@deftypefn {Built-in Function} float __builtin_nansf (const char *str)
8426Similar to @code{__builtin_nans}, except the return type is @code{float}.
8427@end deftypefn
8428
dad78426 8429@deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
1472e41c
RH
8430Similar to @code{__builtin_nans}, except the return type is @code{long double}.
8431@end deftypefn
8432
2928cd7a
RH
8433@deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
8434Returns one plus the index of the least significant 1-bit of @var{x}, or
8435if @var{x} is zero, returns zero.
8436@end deftypefn
8437
8438@deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
8439Returns the number of leading 0-bits in @var{x}, starting at the most
8440significant bit position. If @var{x} is 0, the result is undefined.
8441@end deftypefn
8442
8443@deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
8444Returns the number of trailing 0-bits in @var{x}, starting at the least
8445significant bit position. If @var{x} is 0, the result is undefined.
8446@end deftypefn
8447
3801c801
BS
8448@deftypefn {Built-in Function} int __builtin_clrsb (int x)
8449Returns the number of leading redundant sign bits in @var{x}, i.e. the
8450number of bits following the most significant bit which are identical
8451to it. There are no special cases for 0 or other values.
8452@end deftypefn
8453
2928cd7a
RH
8454@deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
8455Returns the number of 1-bits in @var{x}.
8456@end deftypefn
8457
8458@deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
8a36672b 8459Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
2928cd7a
RH
8460modulo 2.
8461@end deftypefn
8462
8463@deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
8464Similar to @code{__builtin_ffs}, except the argument type is
8465@code{unsigned long}.
8466@end deftypefn
8467
8468@deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
8469Similar to @code{__builtin_clz}, except the argument type is
8470@code{unsigned long}.
8471@end deftypefn
8472
8473@deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
8474Similar to @code{__builtin_ctz}, except the argument type is
8475@code{unsigned long}.
8476@end deftypefn
8477
3801c801
BS
8478@deftypefn {Built-in Function} int __builtin_clrsbl (long)
8479Similar to @code{__builtin_clrsb}, except the argument type is
8480@code{long}.
8481@end deftypefn
8482
2928cd7a
RH
8483@deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
8484Similar to @code{__builtin_popcount}, except the argument type is
8485@code{unsigned long}.
8486@end deftypefn
8487
8488@deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
8489Similar to @code{__builtin_parity}, except the argument type is
8490@code{unsigned long}.
8491@end deftypefn
8492
8493@deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
8494Similar to @code{__builtin_ffs}, except the argument type is
8495@code{unsigned long long}.
8496@end deftypefn
8497
8498@deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
8499Similar to @code{__builtin_clz}, except the argument type is
8500@code{unsigned long long}.
8501@end deftypefn
8502
8503@deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
8504Similar to @code{__builtin_ctz}, except the argument type is
8505@code{unsigned long long}.
8506@end deftypefn
8507
3801c801
BS
8508@deftypefn {Built-in Function} int __builtin_clrsbll (long long)
8509Similar to @code{__builtin_clrsb}, except the argument type is
8510@code{long long}.
8511@end deftypefn
8512
2928cd7a
RH
8513@deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
8514Similar to @code{__builtin_popcount}, except the argument type is
8515@code{unsigned long long}.
8516@end deftypefn
8517
8518@deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
8519Similar to @code{__builtin_parity}, except the argument type is
8520@code{unsigned long long}.
8521@end deftypefn
8522
17684d46
RG
8523@deftypefn {Built-in Function} double __builtin_powi (double, int)
8524Returns the first argument raised to the power of the second. Unlike the
8525@code{pow} function no guarantees about precision and rounding are made.
8526@end deftypefn
8527
8528@deftypefn {Built-in Function} float __builtin_powif (float, int)
8529Similar to @code{__builtin_powi}, except the argument and return types
8530are @code{float}.
8531@end deftypefn
8532
8533@deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
8534Similar to @code{__builtin_powi}, except the argument and return types
8535are @code{long double}.
8536@end deftypefn
8537
ac868f29 8538@deftypefn {Built-in Function} int16_t __builtin_bswap16 (int16_t x)
167fa32c 8539Returns @var{x} with the order of the bytes reversed; for example,
ac868f29 8540@code{0xaabb} becomes @code{0xbbaa}. Byte here always means
167fa32c
EC
8541exactly 8 bits.
8542@end deftypefn
8543
ac868f29
EB
8544@deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
8545Similar to @code{__builtin_bswap16}, except the argument and return types
8546are 32-bit.
8547@end deftypefn
8548
167fa32c
EC
8549@deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
8550Similar to @code{__builtin_bswap32}, except the argument and return types
8551are 64-bit.
8552@end deftypefn
2928cd7a 8553
0975678f
JM
8554@node Target Builtins
8555@section Built-in Functions Specific to Particular Target Machines
8556
8557On some target machines, GCC supports many built-in functions specific
8558to those machines. Generally these generate calls to specific machine
8559instructions, but allow the compiler to schedule those calls.
8560
8561@menu
6d8fd7bb 8562* Alpha Built-in Functions::
88f77cba
JB
8563* ARM iWMMXt Built-in Functions::
8564* ARM NEON Intrinsics::
43ea6502 8565* AVR Built-in Functions::
161c21b6 8566* Blackfin Built-in Functions::
c3ee0579 8567* FR-V Built-in Functions::
0975678f 8568* X86 Built-in Functions::
118ea793 8569* MIPS DSP Built-in Functions::
d840bfd3 8570* MIPS Paired-Single Support::
93581857 8571* MIPS Loongson Built-in Functions::
4d210b07 8572* Other MIPS Built-in Functions::
358da97e 8573* picoChip Built-in Functions::
29e6733c 8574* PowerPC AltiVec/VSX Built-in Functions::
65a324b4 8575* RX Built-in Functions::
c5145ceb 8576* SPARC VIS Built-in Functions::
85d9c13c 8577* SPU Built-in Functions::
bcead286 8578* TI C6X Built-in Functions::
dd552284
WL
8579* TILE-Gx Built-in Functions::
8580* TILEPro Built-in Functions::
0975678f
JM
8581@end menu
8582
6d8fd7bb
RH
8583@node Alpha Built-in Functions
8584@subsection Alpha Built-in Functions
8585
8586These built-in functions are available for the Alpha family of
8587processors, depending on the command-line switches used.
8588
95b1627e 8589The following built-in functions are always available. They
6d8fd7bb
RH
8590all generate the machine instruction that is part of the name.
8591
3ab51846 8592@smallexample
6d8fd7bb
RH
8593long __builtin_alpha_implver (void)
8594long __builtin_alpha_rpcc (void)
8595long __builtin_alpha_amask (long)
8596long __builtin_alpha_cmpbge (long, long)
c4b50f1a
RH
8597long __builtin_alpha_extbl (long, long)
8598long __builtin_alpha_extwl (long, long)
8599long __builtin_alpha_extll (long, long)
6d8fd7bb 8600long __builtin_alpha_extql (long, long)
c4b50f1a
RH
8601long __builtin_alpha_extwh (long, long)
8602long __builtin_alpha_extlh (long, long)
6d8fd7bb 8603long __builtin_alpha_extqh (long, long)
c4b50f1a
RH
8604long __builtin_alpha_insbl (long, long)
8605long __builtin_alpha_inswl (long, long)
8606long __builtin_alpha_insll (long, long)
8607long __builtin_alpha_insql (long, long)
8608long __builtin_alpha_inswh (long, long)
8609long __builtin_alpha_inslh (long, long)
8610long __builtin_alpha_insqh (long, long)
8611long __builtin_alpha_mskbl (long, long)
8612long __builtin_alpha_mskwl (long, long)
8613long __builtin_alpha_mskll (long, long)
8614long __builtin_alpha_mskql (long, long)
8615long __builtin_alpha_mskwh (long, long)
8616long __builtin_alpha_msklh (long, long)
8617long __builtin_alpha_mskqh (long, long)
8618long __builtin_alpha_umulh (long, long)
6d8fd7bb
RH
8619long __builtin_alpha_zap (long, long)
8620long __builtin_alpha_zapnot (long, long)
3ab51846 8621@end smallexample
6d8fd7bb
RH
8622
8623The following built-in functions are always with @option{-mmax}
8624or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
8625later. They all generate the machine instruction that is part
8626of the name.
8627
3ab51846 8628@smallexample
6d8fd7bb
RH
8629long __builtin_alpha_pklb (long)
8630long __builtin_alpha_pkwb (long)
8631long __builtin_alpha_unpkbl (long)
8632long __builtin_alpha_unpkbw (long)
8633long __builtin_alpha_minub8 (long, long)
8634long __builtin_alpha_minsb8 (long, long)
8635long __builtin_alpha_minuw4 (long, long)
8636long __builtin_alpha_minsw4 (long, long)
8637long __builtin_alpha_maxub8 (long, long)
8638long __builtin_alpha_maxsb8 (long, long)
8639long __builtin_alpha_maxuw4 (long, long)
8640long __builtin_alpha_maxsw4 (long, long)
8641long __builtin_alpha_perr (long, long)
3ab51846 8642@end smallexample
6d8fd7bb 8643
c4b50f1a
RH
8644The following built-in functions are always with @option{-mcix}
8645or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
8646later. They all generate the machine instruction that is part
8647of the name.
8648
3ab51846 8649@smallexample
c4b50f1a
RH
8650long __builtin_alpha_cttz (long)
8651long __builtin_alpha_ctlz (long)
8652long __builtin_alpha_ctpop (long)
3ab51846 8653@end smallexample
c4b50f1a 8654
116b7a5e
RH
8655The following builtins are available on systems that use the OSF/1
8656PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
8657PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
8658@code{rdval} and @code{wrval}.
8659
3ab51846 8660@smallexample
116b7a5e
RH
8661void *__builtin_thread_pointer (void)
8662void __builtin_set_thread_pointer (void *)
3ab51846 8663@end smallexample
116b7a5e 8664
88f77cba
JB
8665@node ARM iWMMXt Built-in Functions
8666@subsection ARM iWMMXt Built-in Functions
4bc73018
NC
8667
8668These built-in functions are available for the ARM family of
88f77cba 8669processors when the @option{-mcpu=iwmmxt} switch is used:
4bc73018 8670
3ab51846 8671@smallexample
d63851eb
ILT
8672typedef int v2si __attribute__ ((vector_size (8)));
8673typedef short v4hi __attribute__ ((vector_size (8)));
8674typedef char v8qi __attribute__ ((vector_size (8)));
8675
8676int __builtin_arm_getwcx (int)
8677void __builtin_arm_setwcx (int, int)
8678int __builtin_arm_textrmsb (v8qi, int)
8679int __builtin_arm_textrmsh (v4hi, int)
8680int __builtin_arm_textrmsw (v2si, int)
8681int __builtin_arm_textrmub (v8qi, int)
8682int __builtin_arm_textrmuh (v4hi, int)
8683int __builtin_arm_textrmuw (v2si, int)
8684v8qi __builtin_arm_tinsrb (v8qi, int)
8685v4hi __builtin_arm_tinsrh (v4hi, int)
8686v2si __builtin_arm_tinsrw (v2si, int)
8687long long __builtin_arm_tmia (long long, int, int)
8688long long __builtin_arm_tmiabb (long long, int, int)
8689long long __builtin_arm_tmiabt (long long, int, int)
8690long long __builtin_arm_tmiaph (long long, int, int)
8691long long __builtin_arm_tmiatb (long long, int, int)
8692long long __builtin_arm_tmiatt (long long, int, int)
8693int __builtin_arm_tmovmskb (v8qi)
8694int __builtin_arm_tmovmskh (v4hi)
8695int __builtin_arm_tmovmskw (v2si)
8696long long __builtin_arm_waccb (v8qi)
8697long long __builtin_arm_wacch (v4hi)
8698long long __builtin_arm_waccw (v2si)
8699v8qi __builtin_arm_waddb (v8qi, v8qi)
8700v8qi __builtin_arm_waddbss (v8qi, v8qi)
8701v8qi __builtin_arm_waddbus (v8qi, v8qi)
8702v4hi __builtin_arm_waddh (v4hi, v4hi)
8703v4hi __builtin_arm_waddhss (v4hi, v4hi)
8704v4hi __builtin_arm_waddhus (v4hi, v4hi)
4bc73018 8705v2si __builtin_arm_waddw (v2si, v2si)
4bc73018 8706v2si __builtin_arm_waddwss (v2si, v2si)
4bc73018 8707v2si __builtin_arm_waddwus (v2si, v2si)
d63851eb
ILT
8708v8qi __builtin_arm_walign (v8qi, v8qi, int)
8709long long __builtin_arm_wand(long long, long long)
8710long long __builtin_arm_wandn (long long, long long)
8711v8qi __builtin_arm_wavg2b (v8qi, v8qi)
8712v8qi __builtin_arm_wavg2br (v8qi, v8qi)
8713v4hi __builtin_arm_wavg2h (v4hi, v4hi)
8714v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
8715v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
8716v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
4bc73018 8717v2si __builtin_arm_wcmpeqw (v2si, v2si)
d63851eb
ILT
8718v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
8719v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
4bc73018 8720v2si __builtin_arm_wcmpgtsw (v2si, v2si)
d63851eb
ILT
8721v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
8722v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
8723v2si __builtin_arm_wcmpgtuw (v2si, v2si)
8724long long __builtin_arm_wmacs (long long, v4hi, v4hi)
8725long long __builtin_arm_wmacsz (v4hi, v4hi)
8726long long __builtin_arm_wmacu (long long, v4hi, v4hi)
8727long long __builtin_arm_wmacuz (v4hi, v4hi)
8728v4hi __builtin_arm_wmadds (v4hi, v4hi)
8729v4hi __builtin_arm_wmaddu (v4hi, v4hi)
8730v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
8731v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
4bc73018 8732v2si __builtin_arm_wmaxsw (v2si, v2si)
d63851eb
ILT
8733v8qi __builtin_arm_wmaxub (v8qi, v8qi)
8734v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
4bc73018 8735v2si __builtin_arm_wmaxuw (v2si, v2si)
d63851eb
ILT
8736v8qi __builtin_arm_wminsb (v8qi, v8qi)
8737v4hi __builtin_arm_wminsh (v4hi, v4hi)
4bc73018 8738v2si __builtin_arm_wminsw (v2si, v2si)
d63851eb
ILT
8739v8qi __builtin_arm_wminub (v8qi, v8qi)
8740v4hi __builtin_arm_wminuh (v4hi, v4hi)
4bc73018 8741v2si __builtin_arm_wminuw (v2si, v2si)
d63851eb
ILT
8742v4hi __builtin_arm_wmulsm (v4hi, v4hi)
8743v4hi __builtin_arm_wmulul (v4hi, v4hi)
8744v4hi __builtin_arm_wmulum (v4hi, v4hi)
8745long long __builtin_arm_wor (long long, long long)
8746v2si __builtin_arm_wpackdss (long long, long long)
8747v2si __builtin_arm_wpackdus (long long, long long)
8748v8qi __builtin_arm_wpackhss (v4hi, v4hi)
8749v8qi __builtin_arm_wpackhus (v4hi, v4hi)
8750v4hi __builtin_arm_wpackwss (v2si, v2si)
8751v4hi __builtin_arm_wpackwus (v2si, v2si)
8752long long __builtin_arm_wrord (long long, long long)
8753long long __builtin_arm_wrordi (long long, int)
8754v4hi __builtin_arm_wrorh (v4hi, long long)
8755v4hi __builtin_arm_wrorhi (v4hi, int)
8756v2si __builtin_arm_wrorw (v2si, long long)
8757v2si __builtin_arm_wrorwi (v2si, int)
8758v2si __builtin_arm_wsadb (v8qi, v8qi)
8759v2si __builtin_arm_wsadbz (v8qi, v8qi)
8760v2si __builtin_arm_wsadh (v4hi, v4hi)
8761v2si __builtin_arm_wsadhz (v4hi, v4hi)
8762v4hi __builtin_arm_wshufh (v4hi, int)
8763long long __builtin_arm_wslld (long long, long long)
8764long long __builtin_arm_wslldi (long long, int)
8765v4hi __builtin_arm_wsllh (v4hi, long long)
8766v4hi __builtin_arm_wsllhi (v4hi, int)
8767v2si __builtin_arm_wsllw (v2si, long long)
4bc73018 8768v2si __builtin_arm_wsllwi (v2si, int)
d63851eb
ILT
8769long long __builtin_arm_wsrad (long long, long long)
8770long long __builtin_arm_wsradi (long long, int)
8771v4hi __builtin_arm_wsrah (v4hi, long long)
8772v4hi __builtin_arm_wsrahi (v4hi, int)
8773v2si __builtin_arm_wsraw (v2si, long long)
4bc73018 8774v2si __builtin_arm_wsrawi (v2si, int)
d63851eb
ILT
8775long long __builtin_arm_wsrld (long long, long long)
8776long long __builtin_arm_wsrldi (long long, int)
8777v4hi __builtin_arm_wsrlh (v4hi, long long)
8778v4hi __builtin_arm_wsrlhi (v4hi, int)
8779v2si __builtin_arm_wsrlw (v2si, long long)
4bc73018 8780v2si __builtin_arm_wsrlwi (v2si, int)
d63851eb
ILT
8781v8qi __builtin_arm_wsubb (v8qi, v8qi)
8782v8qi __builtin_arm_wsubbss (v8qi, v8qi)
8783v8qi __builtin_arm_wsubbus (v8qi, v8qi)
8784v4hi __builtin_arm_wsubh (v4hi, v4hi)
8785v4hi __builtin_arm_wsubhss (v4hi, v4hi)
8786v4hi __builtin_arm_wsubhus (v4hi, v4hi)
8787v2si __builtin_arm_wsubw (v2si, v2si)
8788v2si __builtin_arm_wsubwss (v2si, v2si)
8789v2si __builtin_arm_wsubwus (v2si, v2si)
8790v4hi __builtin_arm_wunpckehsb (v8qi)
8791v2si __builtin_arm_wunpckehsh (v4hi)
8792long long __builtin_arm_wunpckehsw (v2si)
8793v4hi __builtin_arm_wunpckehub (v8qi)
8794v2si __builtin_arm_wunpckehuh (v4hi)
8795long long __builtin_arm_wunpckehuw (v2si)
8796v4hi __builtin_arm_wunpckelsb (v8qi)
8797v2si __builtin_arm_wunpckelsh (v4hi)
8798long long __builtin_arm_wunpckelsw (v2si)
8799v4hi __builtin_arm_wunpckelub (v8qi)
8800v2si __builtin_arm_wunpckeluh (v4hi)
8801long long __builtin_arm_wunpckeluw (v2si)
8802v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
8803v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
4bc73018 8804v2si __builtin_arm_wunpckihw (v2si, v2si)
d63851eb
ILT
8805v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
8806v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
4bc73018 8807v2si __builtin_arm_wunpckilw (v2si, v2si)
d63851eb
ILT
8808long long __builtin_arm_wxor (long long, long long)
8809long long __builtin_arm_wzero ()
3ab51846 8810@end smallexample
4bc73018 8811
88f77cba
JB
8812@node ARM NEON Intrinsics
8813@subsection ARM NEON Intrinsics
8814
8815These built-in intrinsics for the ARM Advanced SIMD extension are available
8816when the @option{-mfpu=neon} switch is used:
8817
8818@include arm-neon-intrinsics.texi
8819
43ea6502
AS
8820@node AVR Built-in Functions
8821@subsection AVR Built-in Functions
8822
8823For each built-in function for AVR, there is an equally named,
8824uppercase built-in macro defined. That way users can easily query if
8825or if not a specific built-in is implemented or not. For example, if
8826@code{__builtin_avr_nop} is available the macro
8827@code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
8828
8829The following built-in functions map to the respective machine
8830instruction, i.e. @code{nop}, @code{sei}, @code{cli}, @code{sleep},
8831@code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
f451d14d
GJL
8832resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
8833as library call if no hardware multiplier is available.
43ea6502
AS
8834
8835@smallexample
8836void __builtin_avr_nop (void)
8837void __builtin_avr_sei (void)
8838void __builtin_avr_cli (void)
8839void __builtin_avr_sleep (void)
8840void __builtin_avr_wdr (void)
8841unsigned char __builtin_avr_swap (unsigned char)
8842unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
8843int __builtin_avr_fmuls (char, char)
8844int __builtin_avr_fmulsu (char, unsigned char)
8845@end smallexample
8846
8847In order to delay execution for a specific number of cycles, GCC
8848implements
8849@smallexample
8850void __builtin_avr_delay_cycles (unsigned long ticks)
8851@end smallexample
8852
49b2772e 8853@noindent
43ea6502
AS
8854@code{ticks} is the number of ticks to delay execution. Note that this
8855built-in does not take into account the effect of interrupts which
8856might increase delay time. @code{ticks} must be a compile time
8857integer constant; delays with a variable number of cycles are not supported.
8858
49b2772e 8859@smallexample
1619fcfc
GJL
8860char __builtin_avr_flash_segment (const __memx void*)
8861@end smallexample
8862
8863@noindent
8864This built-in takes a byte address to the 24-bit
8865@ref{AVR Named Address Spaces,address space} @code{__memx} and returns
8866the number of the flash segment (the 64 KiB chunk) where the address
8867points to. Counting starts at @code{0}.
8868If the address does not point to flash memory, return @code{-1}.
8869
8870@smallexample
8871unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
49b2772e
GJL
8872@end smallexample
8873
8874@noindent
0c578db6
GJL
8875Insert bits from @var{bits} into @var{val} and return the resulting
8876value. The nibbles of @var{map} determine how the insertion is
8877performed: Let @var{X} be the @var{n}-th nibble of @var{map}
8878@enumerate
8879@item If @var{X} is @code{0xf},
8880then the @var{n}-th bit of @var{val} is returned unaltered.
8881
8882@item If X is in the range 0@dots{}7,
8883then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
8884
8885@item If X is in the range 8@dots{}@code{0xe},
8886then the @var{n}-th result bit is undefined.
8887@end enumerate
49b2772e
GJL
8888
8889@noindent
0c578db6
GJL
8890One typical use case for this built-in is adjusting input and
8891output values to non-contiguous port layouts. Some examples:
49b2772e
GJL
8892
8893@smallexample
0c578db6
GJL
8894// same as val, bits is unused
8895__builtin_avr_insert_bits (0xffffffff, bits, val)
49b2772e
GJL
8896@end smallexample
8897
0c578db6
GJL
8898@smallexample
8899// same as bits, val is unused
8900__builtin_avr_insert_bits (0x76543210, bits, val)
8901@end smallexample
8902
8903@smallexample
8904// same as rotating bits by 4
8905__builtin_avr_insert_bits (0x32107654, bits, 0)
8906@end smallexample
8907
8908@smallexample
8909// high-nibble of result is the high-nibble of val
8910// low-nibble of result is the low-nibble of bits
8911__builtin_avr_insert_bits (0xffff3210, bits, val)
8912@end smallexample
8913
8914@smallexample
8915// reverse the bit order of bits
8916__builtin_avr_insert_bits (0x01234567, bits, 0)
8917@end smallexample
49b2772e 8918
161c21b6
BS
8919@node Blackfin Built-in Functions
8920@subsection Blackfin Built-in Functions
8921
8922Currently, there are two Blackfin-specific built-in functions. These are
8923used for generating @code{CSYNC} and @code{SSYNC} machine insns without
8924using inline assembly; by using these built-in functions the compiler can
8925automatically add workarounds for hardware errata involving these
8926instructions. These functions are named as follows:
8927
8928@smallexample
8929void __builtin_bfin_csync (void)
8930void __builtin_bfin_ssync (void)
8931@end smallexample
8932
c3ee0579
RS
8933@node FR-V Built-in Functions
8934@subsection FR-V Built-in Functions
8935
8936GCC provides many FR-V-specific built-in functions. In general,
8937these functions are intended to be compatible with those described
8938by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
8939Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
8940@code{__MBTOHE}, the gcc forms of which pass 128-bit values by
8941pointer rather than by value.
8942
8943Most of the functions are named after specific FR-V instructions.
27ef2cdd 8944Such functions are said to be ``directly mapped'' and are summarized
c3ee0579
RS
8945here in tabular form.
8946
8947@menu
8948* Argument Types::
8949* Directly-mapped Integer Functions::
8950* Directly-mapped Media Functions::
c14ff86e 8951* Raw read/write Functions::
c3ee0579
RS
8952* Other Built-in Functions::
8953@end menu
8954
8955@node Argument Types
8956@subsubsection Argument Types
8957
8958The arguments to the built-in functions can be divided into three groups:
8959register numbers, compile-time constants and run-time values. In order
8960to make this classification clear at a glance, the arguments and return
8961values are given the following pseudo types:
8962
8963@multitable @columnfractions .20 .30 .15 .35
8964@item Pseudo type @tab Real C type @tab Constant? @tab Description
8965@item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
8966@item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
8967@item @code{sw1} @tab @code{int} @tab No @tab a signed word
8968@item @code{uw2} @tab @code{unsigned long long} @tab No
8969@tab an unsigned doubleword
8970@item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
8971@item @code{const} @tab @code{int} @tab Yes @tab an integer constant
8972@item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
8973@item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
8974@end multitable
8975
8976These pseudo types are not defined by GCC, they are simply a notational
8977convenience used in this manual.
8978
8979Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
8980and @code{sw2} are evaluated at run time. They correspond to
8981register operands in the underlying FR-V instructions.
8982
8983@code{const} arguments represent immediate operands in the underlying
8984FR-V instructions. They must be compile-time constants.
8985
8986@code{acc} arguments are evaluated at compile time and specify the number
8987of an accumulator register. For example, an @code{acc} argument of 2
8988will select the ACC2 register.
8989
8990@code{iacc} arguments are similar to @code{acc} arguments but specify the
8991number of an IACC register. See @pxref{Other Built-in Functions}
8992for more details.
8993
8994@node Directly-mapped Integer Functions
8995@subsubsection Directly-mapped Integer Functions
8996
8997The functions listed below map directly to FR-V I-type instructions.
8998
8999@multitable @columnfractions .45 .32 .23
9000@item Function prototype @tab Example usage @tab Assembly output
9001@item @code{sw1 __ADDSS (sw1, sw1)}
9002@tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
9003@tab @code{ADDSS @var{a},@var{b},@var{c}}
9004@item @code{sw1 __SCAN (sw1, sw1)}
9005@tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
9006@tab @code{SCAN @var{a},@var{b},@var{c}}
9007@item @code{sw1 __SCUTSS (sw1)}
9008@tab @code{@var{b} = __SCUTSS (@var{a})}
9009@tab @code{SCUTSS @var{a},@var{b}}
9010@item @code{sw1 __SLASS (sw1, sw1)}
9011@tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
9012@tab @code{SLASS @var{a},@var{b},@var{c}}
9013@item @code{void __SMASS (sw1, sw1)}
9014@tab @code{__SMASS (@var{a}, @var{b})}
9015@tab @code{SMASS @var{a},@var{b}}
9016@item @code{void __SMSSS (sw1, sw1)}
9017@tab @code{__SMSSS (@var{a}, @var{b})}
9018@tab @code{SMSSS @var{a},@var{b}}
9019@item @code{void __SMU (sw1, sw1)}
9020@tab @code{__SMU (@var{a}, @var{b})}
9021@tab @code{SMU @var{a},@var{b}}
9022@item @code{sw2 __SMUL (sw1, sw1)}
9023@tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
9024@tab @code{SMUL @var{a},@var{b},@var{c}}
9025@item @code{sw1 __SUBSS (sw1, sw1)}
9026@tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
9027@tab @code{SUBSS @var{a},@var{b},@var{c}}
9028@item @code{uw2 __UMUL (uw1, uw1)}
9029@tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
9030@tab @code{UMUL @var{a},@var{b},@var{c}}
9031@end multitable
9032
9033@node Directly-mapped Media Functions
9034@subsubsection Directly-mapped Media Functions
9035
9036The functions listed below map directly to FR-V M-type instructions.
9037
9038@multitable @columnfractions .45 .32 .23
9039@item Function prototype @tab Example usage @tab Assembly output
9040@item @code{uw1 __MABSHS (sw1)}
9041@tab @code{@var{b} = __MABSHS (@var{a})}
9042@tab @code{MABSHS @var{a},@var{b}}
9043@item @code{void __MADDACCS (acc, acc)}
9044@tab @code{__MADDACCS (@var{b}, @var{a})}
9045@tab @code{MADDACCS @var{a},@var{b}}
9046@item @code{sw1 __MADDHSS (sw1, sw1)}
9047@tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
9048@tab @code{MADDHSS @var{a},@var{b},@var{c}}
9049@item @code{uw1 __MADDHUS (uw1, uw1)}
9050@tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
9051@tab @code{MADDHUS @var{a},@var{b},@var{c}}
9052@item @code{uw1 __MAND (uw1, uw1)}
9053@tab @code{@var{c} = __MAND (@var{a}, @var{b})}
9054@tab @code{MAND @var{a},@var{b},@var{c}}
9055@item @code{void __MASACCS (acc, acc)}
9056@tab @code{__MASACCS (@var{b}, @var{a})}
9057@tab @code{MASACCS @var{a},@var{b}}
9058@item @code{uw1 __MAVEH (uw1, uw1)}
9059@tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
9060@tab @code{MAVEH @var{a},@var{b},@var{c}}
9061@item @code{uw2 __MBTOH (uw1)}
9062@tab @code{@var{b} = __MBTOH (@var{a})}
9063@tab @code{MBTOH @var{a},@var{b}}
9064@item @code{void __MBTOHE (uw1 *, uw1)}
9065@tab @code{__MBTOHE (&@var{b}, @var{a})}
9066@tab @code{MBTOHE @var{a},@var{b}}
9067@item @code{void __MCLRACC (acc)}
9068@tab @code{__MCLRACC (@var{a})}
9069@tab @code{MCLRACC @var{a}}
9070@item @code{void __MCLRACCA (void)}
9071@tab @code{__MCLRACCA ()}
9072@tab @code{MCLRACCA}
9073@item @code{uw1 __Mcop1 (uw1, uw1)}
9074@tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
9075@tab @code{Mcop1 @var{a},@var{b},@var{c}}
9076@item @code{uw1 __Mcop2 (uw1, uw1)}
9077@tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
9078@tab @code{Mcop2 @var{a},@var{b},@var{c}}
9079@item @code{uw1 __MCPLHI (uw2, const)}
9080@tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
9081@tab @code{MCPLHI @var{a},#@var{b},@var{c}}
9082@item @code{uw1 __MCPLI (uw2, const)}
9083@tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
9084@tab @code{MCPLI @var{a},#@var{b},@var{c}}
9085@item @code{void __MCPXIS (acc, sw1, sw1)}
9086@tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
9087@tab @code{MCPXIS @var{a},@var{b},@var{c}}
9088@item @code{void __MCPXIU (acc, uw1, uw1)}
9089@tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
9090@tab @code{MCPXIU @var{a},@var{b},@var{c}}
9091@item @code{void __MCPXRS (acc, sw1, sw1)}
9092@tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
9093@tab @code{MCPXRS @var{a},@var{b},@var{c}}
9094@item @code{void __MCPXRU (acc, uw1, uw1)}
9095@tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
9096@tab @code{MCPXRU @var{a},@var{b},@var{c}}
9097@item @code{uw1 __MCUT (acc, uw1)}
9098@tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
9099@tab @code{MCUT @var{a},@var{b},@var{c}}
9100@item @code{uw1 __MCUTSS (acc, sw1)}
9101@tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
9102@tab @code{MCUTSS @var{a},@var{b},@var{c}}
9103@item @code{void __MDADDACCS (acc, acc)}
9104@tab @code{__MDADDACCS (@var{b}, @var{a})}
9105@tab @code{MDADDACCS @var{a},@var{b}}
9106@item @code{void __MDASACCS (acc, acc)}
9107@tab @code{__MDASACCS (@var{b}, @var{a})}
9108@tab @code{MDASACCS @var{a},@var{b}}
9109@item @code{uw2 __MDCUTSSI (acc, const)}
9110@tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
9111@tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
9112@item @code{uw2 __MDPACKH (uw2, uw2)}
9113@tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
9114@tab @code{MDPACKH @var{a},@var{b},@var{c}}
9115@item @code{uw2 __MDROTLI (uw2, const)}
9116@tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
9117@tab @code{MDROTLI @var{a},#@var{b},@var{c}}
9118@item @code{void __MDSUBACCS (acc, acc)}
9119@tab @code{__MDSUBACCS (@var{b}, @var{a})}
9120@tab @code{MDSUBACCS @var{a},@var{b}}
9121@item @code{void __MDUNPACKH (uw1 *, uw2)}
9122@tab @code{__MDUNPACKH (&@var{b}, @var{a})}
9123@tab @code{MDUNPACKH @var{a},@var{b}}
9124@item @code{uw2 __MEXPDHD (uw1, const)}
9125@tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
9126@tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
9127@item @code{uw1 __MEXPDHW (uw1, const)}
9128@tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
9129@tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
9130@item @code{uw1 __MHDSETH (uw1, const)}
9131@tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
9132@tab @code{MHDSETH @var{a},#@var{b},@var{c}}
9133@item @code{sw1 __MHDSETS (const)}
9134@tab @code{@var{b} = __MHDSETS (@var{a})}
9135@tab @code{MHDSETS #@var{a},@var{b}}
9136@item @code{uw1 __MHSETHIH (uw1, const)}
9137@tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
9138@tab @code{MHSETHIH #@var{a},@var{b}}
9139@item @code{sw1 __MHSETHIS (sw1, const)}
9140@tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
9141@tab @code{MHSETHIS #@var{a},@var{b}}
9142@item @code{uw1 __MHSETLOH (uw1, const)}
9143@tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
9144@tab @code{MHSETLOH #@var{a},@var{b}}
9145@item @code{sw1 __MHSETLOS (sw1, const)}
9146@tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
9147@tab @code{MHSETLOS #@var{a},@var{b}}
9148@item @code{uw1 __MHTOB (uw2)}
9149@tab @code{@var{b} = __MHTOB (@var{a})}
9150@tab @code{MHTOB @var{a},@var{b}}
9151@item @code{void __MMACHS (acc, sw1, sw1)}
9152@tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
9153@tab @code{MMACHS @var{a},@var{b},@var{c}}
9154@item @code{void __MMACHU (acc, uw1, uw1)}
9155@tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
9156@tab @code{MMACHU @var{a},@var{b},@var{c}}
9157@item @code{void __MMRDHS (acc, sw1, sw1)}
9158@tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
9159@tab @code{MMRDHS @var{a},@var{b},@var{c}}
9160@item @code{void __MMRDHU (acc, uw1, uw1)}
9161@tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
9162@tab @code{MMRDHU @var{a},@var{b},@var{c}}
9163@item @code{void __MMULHS (acc, sw1, sw1)}
9164@tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
9165@tab @code{MMULHS @var{a},@var{b},@var{c}}
9166@item @code{void __MMULHU (acc, uw1, uw1)}
9167@tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
9168@tab @code{MMULHU @var{a},@var{b},@var{c}}
9169@item @code{void __MMULXHS (acc, sw1, sw1)}
9170@tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
9171@tab @code{MMULXHS @var{a},@var{b},@var{c}}
9172@item @code{void __MMULXHU (acc, uw1, uw1)}
9173@tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
9174@tab @code{MMULXHU @var{a},@var{b},@var{c}}
9175@item @code{uw1 __MNOT (uw1)}
9176@tab @code{@var{b} = __MNOT (@var{a})}
9177@tab @code{MNOT @var{a},@var{b}}
9178@item @code{uw1 __MOR (uw1, uw1)}
9179@tab @code{@var{c} = __MOR (@var{a}, @var{b})}
9180@tab @code{MOR @var{a},@var{b},@var{c}}
9181@item @code{uw1 __MPACKH (uh, uh)}
9182@tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
9183@tab @code{MPACKH @var{a},@var{b},@var{c}}
9184@item @code{sw2 __MQADDHSS (sw2, sw2)}
9185@tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
9186@tab @code{MQADDHSS @var{a},@var{b},@var{c}}
9187@item @code{uw2 __MQADDHUS (uw2, uw2)}
9188@tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
9189@tab @code{MQADDHUS @var{a},@var{b},@var{c}}
9190@item @code{void __MQCPXIS (acc, sw2, sw2)}
9191@tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
9192@tab @code{MQCPXIS @var{a},@var{b},@var{c}}
9193@item @code{void __MQCPXIU (acc, uw2, uw2)}
9194@tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
9195@tab @code{MQCPXIU @var{a},@var{b},@var{c}}
9196@item @code{void __MQCPXRS (acc, sw2, sw2)}
9197@tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
9198@tab @code{MQCPXRS @var{a},@var{b},@var{c}}
9199@item @code{void __MQCPXRU (acc, uw2, uw2)}
9200@tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
9201@tab @code{MQCPXRU @var{a},@var{b},@var{c}}
9202@item @code{sw2 __MQLCLRHS (sw2, sw2)}
9203@tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
9204@tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
9205@item @code{sw2 __MQLMTHS (sw2, sw2)}
9206@tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
9207@tab @code{MQLMTHS @var{a},@var{b},@var{c}}
9208@item @code{void __MQMACHS (acc, sw2, sw2)}
9209@tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
9210@tab @code{MQMACHS @var{a},@var{b},@var{c}}
9211@item @code{void __MQMACHU (acc, uw2, uw2)}
9212@tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
9213@tab @code{MQMACHU @var{a},@var{b},@var{c}}
9214@item @code{void __MQMACXHS (acc, sw2, sw2)}
9215@tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
9216@tab @code{MQMACXHS @var{a},@var{b},@var{c}}
9217@item @code{void __MQMULHS (acc, sw2, sw2)}
9218@tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
9219@tab @code{MQMULHS @var{a},@var{b},@var{c}}
9220@item @code{void __MQMULHU (acc, uw2, uw2)}
9221@tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
9222@tab @code{MQMULHU @var{a},@var{b},@var{c}}
9223@item @code{void __MQMULXHS (acc, sw2, sw2)}
9224@tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
9225@tab @code{MQMULXHS @var{a},@var{b},@var{c}}
9226@item @code{void __MQMULXHU (acc, uw2, uw2)}
9227@tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
9228@tab @code{MQMULXHU @var{a},@var{b},@var{c}}
9229@item @code{sw2 __MQSATHS (sw2, sw2)}
9230@tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
9231@tab @code{MQSATHS @var{a},@var{b},@var{c}}
9232@item @code{uw2 __MQSLLHI (uw2, int)}
9233@tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
9234@tab @code{MQSLLHI @var{a},@var{b},@var{c}}
9235@item @code{sw2 __MQSRAHI (sw2, int)}
9236@tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
9237@tab @code{MQSRAHI @var{a},@var{b},@var{c}}
9238@item @code{sw2 __MQSUBHSS (sw2, sw2)}
9239@tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
9240@tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
9241@item @code{uw2 __MQSUBHUS (uw2, uw2)}
9242@tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
9243@tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
9244@item @code{void __MQXMACHS (acc, sw2, sw2)}
9245@tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
9246@tab @code{MQXMACHS @var{a},@var{b},@var{c}}
9247@item @code{void __MQXMACXHS (acc, sw2, sw2)}
9248@tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
9249@tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
9250@item @code{uw1 __MRDACC (acc)}
9251@tab @code{@var{b} = __MRDACC (@var{a})}
9252@tab @code{MRDACC @var{a},@var{b}}
9253@item @code{uw1 __MRDACCG (acc)}
9254@tab @code{@var{b} = __MRDACCG (@var{a})}
9255@tab @code{MRDACCG @var{a},@var{b}}
9256@item @code{uw1 __MROTLI (uw1, const)}
9257@tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
9258@tab @code{MROTLI @var{a},#@var{b},@var{c}}
9259@item @code{uw1 __MROTRI (uw1, const)}
9260@tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
9261@tab @code{MROTRI @var{a},#@var{b},@var{c}}
9262@item @code{sw1 __MSATHS (sw1, sw1)}
9263@tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
9264@tab @code{MSATHS @var{a},@var{b},@var{c}}
9265@item @code{uw1 __MSATHU (uw1, uw1)}
9266@tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
9267@tab @code{MSATHU @var{a},@var{b},@var{c}}
9268@item @code{uw1 __MSLLHI (uw1, const)}
9269@tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
9270@tab @code{MSLLHI @var{a},#@var{b},@var{c}}
9271@item @code{sw1 __MSRAHI (sw1, const)}
9272@tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
9273@tab @code{MSRAHI @var{a},#@var{b},@var{c}}
9274@item @code{uw1 __MSRLHI (uw1, const)}
9275@tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
9276@tab @code{MSRLHI @var{a},#@var{b},@var{c}}
9277@item @code{void __MSUBACCS (acc, acc)}
9278@tab @code{__MSUBACCS (@var{b}, @var{a})}
9279@tab @code{MSUBACCS @var{a},@var{b}}
9280@item @code{sw1 __MSUBHSS (sw1, sw1)}
9281@tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
9282@tab @code{MSUBHSS @var{a},@var{b},@var{c}}
9283@item @code{uw1 __MSUBHUS (uw1, uw1)}
9284@tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
9285@tab @code{MSUBHUS @var{a},@var{b},@var{c}}
9286@item @code{void __MTRAP (void)}
9287@tab @code{__MTRAP ()}
9288@tab @code{MTRAP}
9289@item @code{uw2 __MUNPACKH (uw1)}
9290@tab @code{@var{b} = __MUNPACKH (@var{a})}
9291@tab @code{MUNPACKH @var{a},@var{b}}
9292@item @code{uw1 __MWCUT (uw2, uw1)}
9293@tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
9294@tab @code{MWCUT @var{a},@var{b},@var{c}}
9295@item @code{void __MWTACC (acc, uw1)}
9296@tab @code{__MWTACC (@var{b}, @var{a})}
9297@tab @code{MWTACC @var{a},@var{b}}
9298@item @code{void __MWTACCG (acc, uw1)}
9299@tab @code{__MWTACCG (@var{b}, @var{a})}
9300@tab @code{MWTACCG @var{a},@var{b}}
9301@item @code{uw1 __MXOR (uw1, uw1)}
9302@tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
9303@tab @code{MXOR @var{a},@var{b},@var{c}}
9304@end multitable
9305
c14ff86e
AH
9306@node Raw read/write Functions
9307@subsubsection Raw read/write Functions
9308
9309This sections describes built-in functions related to read and write
9310instructions to access memory. These functions generate
9311@code{membar} instructions to flush the I/O load and stores where
9312appropriate, as described in Fujitsu's manual described above.
9313
9314@table @code
9315
9316@item unsigned char __builtin_read8 (void *@var{data})
9317@item unsigned short __builtin_read16 (void *@var{data})
9318@item unsigned long __builtin_read32 (void *@var{data})
9319@item unsigned long long __builtin_read64 (void *@var{data})
9320
9321@item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
9322@item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
9323@item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
9324@item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
9325@end table
9326
c3ee0579
RS
9327@node Other Built-in Functions
9328@subsubsection Other Built-in Functions
9329
9330This section describes built-in functions that are not named after
9331a specific FR-V instruction.
9332
9333@table @code
9334@item sw2 __IACCreadll (iacc @var{reg})
9335Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
9336for future expansion and must be 0.
9337
9338@item sw1 __IACCreadl (iacc @var{reg})
9339Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
9340Other values of @var{reg} are rejected as invalid.
9341
9342@item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
9343Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
9344is reserved for future expansion and must be 0.
9345
9346@item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
9347Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
9348is 1. Other values of @var{reg} are rejected as invalid.
9349
9350@item void __data_prefetch0 (const void *@var{x})
9351Use the @code{dcpl} instruction to load the contents of address @var{x}
9352into the data cache.
9353
9354@item void __data_prefetch (const void *@var{x})
9355Use the @code{nldub} instruction to load the contents of address @var{x}
9356into the data cache. The instruction will be issued in slot I1@.
9357@end table
9358
0975678f
JM
9359@node X86 Built-in Functions
9360@subsection X86 Built-in Functions
9361
9362These built-in functions are available for the i386 and x86-64 family
9363of computers, depending on the command-line switches used.
9364
75576871
BB
9365Note that, if you specify command-line switches such as @option{-msse},
9366the compiler could use the extended instruction sets even if the built-ins
9367are not used explicitly in the program. For this reason, applications
9368which perform runtime CPU detection must compile separate files for each
9369supported architecture, using the appropriate flags. In particular,
9370the file containing the CPU detection code should be compiled without
9371these options.
9372
0975678f 9373The following machine modes are available for use with MMX built-in functions
333c8841
AH
9374(@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
9375@code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
9376vector of eight 8-bit integers. Some of the built-in functions operate on
75d8b30e 9377MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
0975678f 9378
f8723eb6 9379If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
333c8841 9380of two 32-bit floating point values.
0975678f 9381
333c8841
AH
9382If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
9383floating point values. Some instructions use a vector of four 32-bit
0975678f 9384integers, these use @code{V4SI}. Finally, some instructions operate on an
333c8841 9385entire vector register, interpreting it as a 128-bit integer, these use mode
0975678f
JM
9386@code{TI}.
9387
27f56cb1 9388In 64-bit mode, the x86-64 family of processors uses additional built-in
5513e239
UB
9389functions for efficient use of @code{TF} (@code{__float128}) 128-bit
9390floating point and @code{TC} 128-bit complex floating point values.
9391
27f56cb1
GP
9392The following floating point built-in functions are available in 64-bit
9393mode. All of them implement the function that is part of the name.
5513e239
UB
9394
9395@smallexample
9396__float128 __builtin_fabsq (__float128)
9397__float128 __builtin_copysignq (__float128, __float128)
9398@end smallexample
9399
74838de3
L
9400The following built-in function is always available.
9401
9402@table @code
9403@item void __builtin_ia32_pause (void)
6c81b2bc
L
9404Generates the @code{pause} machine instruction with a compiler memory
9405barrier.
74838de3
L
9406@end table
9407
5513e239
UB
9408The following floating point built-in functions are made available in the
940964-bit mode.
9410
9411@table @code
9412@item __float128 __builtin_infq (void)
9413Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
593812b6
BE
9414@findex __builtin_infq
9415
9416@item __float128 __builtin_huge_valq (void)
9417Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
9418@findex __builtin_huge_valq
5513e239
UB
9419@end table
9420
0975678f
JM
9421The following built-in functions are made available by @option{-mmmx}.
9422All of them generate the machine instruction that is part of the name.
9423
3ab51846 9424@smallexample
0975678f
JM
9425v8qi __builtin_ia32_paddb (v8qi, v8qi)
9426v4hi __builtin_ia32_paddw (v4hi, v4hi)
9427v2si __builtin_ia32_paddd (v2si, v2si)
9428v8qi __builtin_ia32_psubb (v8qi, v8qi)
9429v4hi __builtin_ia32_psubw (v4hi, v4hi)
9430v2si __builtin_ia32_psubd (v2si, v2si)
9431v8qi __builtin_ia32_paddsb (v8qi, v8qi)
9432v4hi __builtin_ia32_paddsw (v4hi, v4hi)
9433v8qi __builtin_ia32_psubsb (v8qi, v8qi)
9434v4hi __builtin_ia32_psubsw (v4hi, v4hi)
9435v8qi __builtin_ia32_paddusb (v8qi, v8qi)
9436v4hi __builtin_ia32_paddusw (v4hi, v4hi)
9437v8qi __builtin_ia32_psubusb (v8qi, v8qi)
9438v4hi __builtin_ia32_psubusw (v4hi, v4hi)
9439v4hi __builtin_ia32_pmullw (v4hi, v4hi)
9440v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
9441di __builtin_ia32_pand (di, di)
9442di __builtin_ia32_pandn (di,di)
9443di __builtin_ia32_por (di, di)
9444di __builtin_ia32_pxor (di, di)
9445v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
9446v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
9447v2si __builtin_ia32_pcmpeqd (v2si, v2si)
9448v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
9449v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
9450v2si __builtin_ia32_pcmpgtd (v2si, v2si)
9451v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
9452v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
9453v2si __builtin_ia32_punpckhdq (v2si, v2si)
9454v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
9455v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
9456v2si __builtin_ia32_punpckldq (v2si, v2si)
9457v8qi __builtin_ia32_packsswb (v4hi, v4hi)
9458v4hi __builtin_ia32_packssdw (v2si, v2si)
9459v8qi __builtin_ia32_packuswb (v4hi, v4hi)
10a97ae6 9460
52eaae97
UB
9461v4hi __builtin_ia32_psllw (v4hi, v4hi)
9462v2si __builtin_ia32_pslld (v2si, v2si)
9463v1di __builtin_ia32_psllq (v1di, v1di)
9464v4hi __builtin_ia32_psrlw (v4hi, v4hi)
9465v2si __builtin_ia32_psrld (v2si, v2si)
9466v1di __builtin_ia32_psrlq (v1di, v1di)
9467v4hi __builtin_ia32_psraw (v4hi, v4hi)
9468v2si __builtin_ia32_psrad (v2si, v2si)
9469v4hi __builtin_ia32_psllwi (v4hi, int)
9470v2si __builtin_ia32_pslldi (v2si, int)
9471v1di __builtin_ia32_psllqi (v1di, int)
9472v4hi __builtin_ia32_psrlwi (v4hi, int)
9473v2si __builtin_ia32_psrldi (v2si, int)
9474v1di __builtin_ia32_psrlqi (v1di, int)
9475v4hi __builtin_ia32_psrawi (v4hi, int)
9476v2si __builtin_ia32_psradi (v2si, int)
10a97ae6 9477
3ab51846 9478@end smallexample
0975678f
JM
9479
9480The following built-in functions are made available either with
9481@option{-msse}, or with a combination of @option{-m3dnow} and
9482@option{-march=athlon}. All of them generate the machine
9483instruction that is part of the name.
9484
3ab51846 9485@smallexample
0975678f
JM
9486v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
9487v8qi __builtin_ia32_pavgb (v8qi, v8qi)
9488v4hi __builtin_ia32_pavgw (v4hi, v4hi)
ab555a5b 9489v1di __builtin_ia32_psadbw (v8qi, v8qi)
0975678f
JM
9490v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
9491v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
9492v8qi __builtin_ia32_pminub (v8qi, v8qi)
9493v4hi __builtin_ia32_pminsw (v4hi, v4hi)
9494int __builtin_ia32_pextrw (v4hi, int)
9495v4hi __builtin_ia32_pinsrw (v4hi, int, int)
9496int __builtin_ia32_pmovmskb (v8qi)
9497void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
9498void __builtin_ia32_movntq (di *, di)
9499void __builtin_ia32_sfence (void)
3ab51846 9500@end smallexample
0975678f
JM
9501
9502The following built-in functions are available when @option{-msse} is used.
9503All of them generate the machine instruction that is part of the name.
9504
3ab51846 9505@smallexample
0975678f
JM
9506int __builtin_ia32_comieq (v4sf, v4sf)
9507int __builtin_ia32_comineq (v4sf, v4sf)
9508int __builtin_ia32_comilt (v4sf, v4sf)
9509int __builtin_ia32_comile (v4sf, v4sf)
9510int __builtin_ia32_comigt (v4sf, v4sf)
9511int __builtin_ia32_comige (v4sf, v4sf)
9512int __builtin_ia32_ucomieq (v4sf, v4sf)
9513int __builtin_ia32_ucomineq (v4sf, v4sf)
9514int __builtin_ia32_ucomilt (v4sf, v4sf)
9515int __builtin_ia32_ucomile (v4sf, v4sf)
9516int __builtin_ia32_ucomigt (v4sf, v4sf)
9517int __builtin_ia32_ucomige (v4sf, v4sf)
9518v4sf __builtin_ia32_addps (v4sf, v4sf)
9519v4sf __builtin_ia32_subps (v4sf, v4sf)
9520v4sf __builtin_ia32_mulps (v4sf, v4sf)
9521v4sf __builtin_ia32_divps (v4sf, v4sf)
9522v4sf __builtin_ia32_addss (v4sf, v4sf)
9523v4sf __builtin_ia32_subss (v4sf, v4sf)
9524v4sf __builtin_ia32_mulss (v4sf, v4sf)
9525v4sf __builtin_ia32_divss (v4sf, v4sf)
9526v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
9527v4si __builtin_ia32_cmpltps (v4sf, v4sf)
9528v4si __builtin_ia32_cmpleps (v4sf, v4sf)
9529v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
9530v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
9531v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
9532v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
9533v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
9534v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
9535v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
9536v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
9537v4si __builtin_ia32_cmpordps (v4sf, v4sf)
9538v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
9539v4si __builtin_ia32_cmpltss (v4sf, v4sf)
9540v4si __builtin_ia32_cmpless (v4sf, v4sf)
0975678f
JM
9541v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
9542v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
9543v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
9544v4si __builtin_ia32_cmpnless (v4sf, v4sf)
0975678f
JM
9545v4si __builtin_ia32_cmpordss (v4sf, v4sf)
9546v4sf __builtin_ia32_maxps (v4sf, v4sf)
9547v4sf __builtin_ia32_maxss (v4sf, v4sf)
9548v4sf __builtin_ia32_minps (v4sf, v4sf)
9549v4sf __builtin_ia32_minss (v4sf, v4sf)
9550v4sf __builtin_ia32_andps (v4sf, v4sf)
9551v4sf __builtin_ia32_andnps (v4sf, v4sf)
9552v4sf __builtin_ia32_orps (v4sf, v4sf)
9553v4sf __builtin_ia32_xorps (v4sf, v4sf)
9554v4sf __builtin_ia32_movss (v4sf, v4sf)
9555v4sf __builtin_ia32_movhlps (v4sf, v4sf)
9556v4sf __builtin_ia32_movlhps (v4sf, v4sf)
9557v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
9558v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
9559v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
9560v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
9561v2si __builtin_ia32_cvtps2pi (v4sf)
9562int __builtin_ia32_cvtss2si (v4sf)
9563v2si __builtin_ia32_cvttps2pi (v4sf)
9564int __builtin_ia32_cvttss2si (v4sf)
9565v4sf __builtin_ia32_rcpps (v4sf)
9566v4sf __builtin_ia32_rsqrtps (v4sf)
9567v4sf __builtin_ia32_sqrtps (v4sf)
9568v4sf __builtin_ia32_rcpss (v4sf)
9569v4sf __builtin_ia32_rsqrtss (v4sf)
9570v4sf __builtin_ia32_sqrtss (v4sf)
9571v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
9572void __builtin_ia32_movntps (float *, v4sf)
9573int __builtin_ia32_movmskps (v4sf)
3ab51846 9574@end smallexample
0975678f
JM
9575
9576The following built-in functions are available when @option{-msse} is used.
9577
9578@table @code
9579@item v4sf __builtin_ia32_loadaps (float *)
9580Generates the @code{movaps} machine instruction as a load from memory.
9581@item void __builtin_ia32_storeaps (float *, v4sf)
9582Generates the @code{movaps} machine instruction as a store to memory.
9583@item v4sf __builtin_ia32_loadups (float *)
9584Generates the @code{movups} machine instruction as a load from memory.
9585@item void __builtin_ia32_storeups (float *, v4sf)
9586Generates the @code{movups} machine instruction as a store to memory.
9587@item v4sf __builtin_ia32_loadsss (float *)
9588Generates the @code{movss} machine instruction as a load from memory.
9589@item void __builtin_ia32_storess (float *, v4sf)
9590Generates the @code{movss} machine instruction as a store to memory.
bb1418c1 9591@item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
0975678f 9592Generates the @code{movhps} machine instruction as a load from memory.
bb1418c1 9593@item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
0975678f 9594Generates the @code{movlps} machine instruction as a load from memory
bb1418c1 9595@item void __builtin_ia32_storehps (v2sf *, v4sf)
0975678f 9596Generates the @code{movhps} machine instruction as a store to memory.
bb1418c1 9597@item void __builtin_ia32_storelps (v2sf *, v4sf)
0975678f
JM
9598Generates the @code{movlps} machine instruction as a store to memory.
9599@end table
9600
d7aa4788
RG
9601The following built-in functions are available when @option{-msse2} is used.
9602All of them generate the machine instruction that is part of the name.
9603
9604@smallexample
9605int __builtin_ia32_comisdeq (v2df, v2df)
9606int __builtin_ia32_comisdlt (v2df, v2df)
9607int __builtin_ia32_comisdle (v2df, v2df)
9608int __builtin_ia32_comisdgt (v2df, v2df)
9609int __builtin_ia32_comisdge (v2df, v2df)
9610int __builtin_ia32_comisdneq (v2df, v2df)
9611int __builtin_ia32_ucomisdeq (v2df, v2df)
9612int __builtin_ia32_ucomisdlt (v2df, v2df)
9613int __builtin_ia32_ucomisdle (v2df, v2df)
9614int __builtin_ia32_ucomisdgt (v2df, v2df)
9615int __builtin_ia32_ucomisdge (v2df, v2df)
9616int __builtin_ia32_ucomisdneq (v2df, v2df)
9617v2df __builtin_ia32_cmpeqpd (v2df, v2df)
9618v2df __builtin_ia32_cmpltpd (v2df, v2df)
9619v2df __builtin_ia32_cmplepd (v2df, v2df)
9620v2df __builtin_ia32_cmpgtpd (v2df, v2df)
9621v2df __builtin_ia32_cmpgepd (v2df, v2df)
9622v2df __builtin_ia32_cmpunordpd (v2df, v2df)
9623v2df __builtin_ia32_cmpneqpd (v2df, v2df)
9624v2df __builtin_ia32_cmpnltpd (v2df, v2df)
9625v2df __builtin_ia32_cmpnlepd (v2df, v2df)
9626v2df __builtin_ia32_cmpngtpd (v2df, v2df)
9627v2df __builtin_ia32_cmpngepd (v2df, v2df)
9628v2df __builtin_ia32_cmpordpd (v2df, v2df)
9629v2df __builtin_ia32_cmpeqsd (v2df, v2df)
9630v2df __builtin_ia32_cmpltsd (v2df, v2df)
9631v2df __builtin_ia32_cmplesd (v2df, v2df)
9632v2df __builtin_ia32_cmpunordsd (v2df, v2df)
9633v2df __builtin_ia32_cmpneqsd (v2df, v2df)
9634v2df __builtin_ia32_cmpnltsd (v2df, v2df)
9635v2df __builtin_ia32_cmpnlesd (v2df, v2df)
9636v2df __builtin_ia32_cmpordsd (v2df, v2df)
9637v2di __builtin_ia32_paddq (v2di, v2di)
9638v2di __builtin_ia32_psubq (v2di, v2di)
9639v2df __builtin_ia32_addpd (v2df, v2df)
9640v2df __builtin_ia32_subpd (v2df, v2df)
9641v2df __builtin_ia32_mulpd (v2df, v2df)
9642v2df __builtin_ia32_divpd (v2df, v2df)
9643v2df __builtin_ia32_addsd (v2df, v2df)
9644v2df __builtin_ia32_subsd (v2df, v2df)
9645v2df __builtin_ia32_mulsd (v2df, v2df)
9646v2df __builtin_ia32_divsd (v2df, v2df)
9647v2df __builtin_ia32_minpd (v2df, v2df)
9648v2df __builtin_ia32_maxpd (v2df, v2df)
9649v2df __builtin_ia32_minsd (v2df, v2df)
9650v2df __builtin_ia32_maxsd (v2df, v2df)
9651v2df __builtin_ia32_andpd (v2df, v2df)
9652v2df __builtin_ia32_andnpd (v2df, v2df)
9653v2df __builtin_ia32_orpd (v2df, v2df)
9654v2df __builtin_ia32_xorpd (v2df, v2df)
9655v2df __builtin_ia32_movsd (v2df, v2df)
9656v2df __builtin_ia32_unpckhpd (v2df, v2df)
9657v2df __builtin_ia32_unpcklpd (v2df, v2df)
9658v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
9659v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
9660v4si __builtin_ia32_paddd128 (v4si, v4si)
9661v2di __builtin_ia32_paddq128 (v2di, v2di)
9662v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
9663v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
9664v4si __builtin_ia32_psubd128 (v4si, v4si)
9665v2di __builtin_ia32_psubq128 (v2di, v2di)
9666v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
9667v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
9668v2di __builtin_ia32_pand128 (v2di, v2di)
9669v2di __builtin_ia32_pandn128 (v2di, v2di)
9670v2di __builtin_ia32_por128 (v2di, v2di)
9671v2di __builtin_ia32_pxor128 (v2di, v2di)
9672v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
9673v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
9674v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
9675v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
9676v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
9677v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
9678v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
9679v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
9680v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
9681v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
9682v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
9683v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
9684v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
9685v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
9686v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
9687v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
9688v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
9689v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
9690v4si __builtin_ia32_punpckldq128 (v4si, v4si)
9691v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
1b667c82
L
9692v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
9693v8hi __builtin_ia32_packssdw128 (v4si, v4si)
9694v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
d7aa4788
RG
9695v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
9696void __builtin_ia32_maskmovdqu (v16qi, v16qi)
9697v2df __builtin_ia32_loadupd (double *)
9698void __builtin_ia32_storeupd (double *, v2df)
bb1418c1
L
9699v2df __builtin_ia32_loadhpd (v2df, double const *)
9700v2df __builtin_ia32_loadlpd (v2df, double const *)
d7aa4788
RG
9701int __builtin_ia32_movmskpd (v2df)
9702int __builtin_ia32_pmovmskb128 (v16qi)
9703void __builtin_ia32_movnti (int *, int)
f32c951e 9704void __builtin_ia32_movnti64 (long long int *, long long int)
d7aa4788
RG
9705void __builtin_ia32_movntpd (double *, v2df)
9706void __builtin_ia32_movntdq (v2df *, v2df)
9707v4si __builtin_ia32_pshufd (v4si, int)
9708v8hi __builtin_ia32_pshuflw (v8hi, int)
9709v8hi __builtin_ia32_pshufhw (v8hi, int)
9710v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
9711v2df __builtin_ia32_sqrtpd (v2df)
9712v2df __builtin_ia32_sqrtsd (v2df)
9713v2df __builtin_ia32_shufpd (v2df, v2df, int)
9714v2df __builtin_ia32_cvtdq2pd (v4si)
9715v4sf __builtin_ia32_cvtdq2ps (v4si)
9716v4si __builtin_ia32_cvtpd2dq (v2df)
9717v2si __builtin_ia32_cvtpd2pi (v2df)
9718v4sf __builtin_ia32_cvtpd2ps (v2df)
9719v4si __builtin_ia32_cvttpd2dq (v2df)
9720v2si __builtin_ia32_cvttpd2pi (v2df)
9721v2df __builtin_ia32_cvtpi2pd (v2si)
9722int __builtin_ia32_cvtsd2si (v2df)
9723int __builtin_ia32_cvttsd2si (v2df)
9724long long __builtin_ia32_cvtsd2si64 (v2df)
9725long long __builtin_ia32_cvttsd2si64 (v2df)
9726v4si __builtin_ia32_cvtps2dq (v4sf)
9727v2df __builtin_ia32_cvtps2pd (v4sf)
9728v4si __builtin_ia32_cvttps2dq (v4sf)
9729v2df __builtin_ia32_cvtsi2sd (v2df, int)
9730v2df __builtin_ia32_cvtsi642sd (v2df, long long)
9731v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
9732v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
9733void __builtin_ia32_clflush (const void *)
9734void __builtin_ia32_lfence (void)
9735void __builtin_ia32_mfence (void)
9736v16qi __builtin_ia32_loaddqu (const char *)
9737void __builtin_ia32_storedqu (char *, v16qi)
ab555a5b 9738v1di __builtin_ia32_pmuludq (v2si, v2si)
d7aa4788 9739v2di __builtin_ia32_pmuludq128 (v4si, v4si)
52eaae97
UB
9740v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
9741v4si __builtin_ia32_pslld128 (v4si, v4si)
9742v2di __builtin_ia32_psllq128 (v2di, v2di)
9743v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
9744v4si __builtin_ia32_psrld128 (v4si, v4si)
d7aa4788 9745v2di __builtin_ia32_psrlq128 (v2di, v2di)
52eaae97
UB
9746v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
9747v4si __builtin_ia32_psrad128 (v4si, v4si)
d7aa4788
RG
9748v2di __builtin_ia32_pslldqi128 (v2di, int)
9749v8hi __builtin_ia32_psllwi128 (v8hi, int)
9750v4si __builtin_ia32_pslldi128 (v4si, int)
9751v2di __builtin_ia32_psllqi128 (v2di, int)
9752v2di __builtin_ia32_psrldqi128 (v2di, int)
9753v8hi __builtin_ia32_psrlwi128 (v8hi, int)
9754v4si __builtin_ia32_psrldi128 (v4si, int)
9755v2di __builtin_ia32_psrlqi128 (v2di, int)
9756v8hi __builtin_ia32_psrawi128 (v8hi, int)
9757v4si __builtin_ia32_psradi128 (v4si, int)
9758v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
b53b23dc 9759v2di __builtin_ia32_movq128 (v2di)
d7aa4788
RG
9760@end smallexample
9761
9e200aaf 9762The following built-in functions are available when @option{-msse3} is used.
22c7c85e
L
9763All of them generate the machine instruction that is part of the name.
9764
3ab51846 9765@smallexample
22c7c85e 9766v2df __builtin_ia32_addsubpd (v2df, v2df)
d7aa4788 9767v4sf __builtin_ia32_addsubps (v4sf, v4sf)
22c7c85e 9768v2df __builtin_ia32_haddpd (v2df, v2df)
d7aa4788 9769v4sf __builtin_ia32_haddps (v4sf, v4sf)
22c7c85e 9770v2df __builtin_ia32_hsubpd (v2df, v2df)
d7aa4788 9771v4sf __builtin_ia32_hsubps (v4sf, v4sf)
22c7c85e
L
9772v16qi __builtin_ia32_lddqu (char const *)
9773void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
9774v2df __builtin_ia32_movddup (v2df)
9775v4sf __builtin_ia32_movshdup (v4sf)
9776v4sf __builtin_ia32_movsldup (v4sf)
9777void __builtin_ia32_mwait (unsigned int, unsigned int)
3ab51846 9778@end smallexample
22c7c85e 9779
9e200aaf 9780The following built-in functions are available when @option{-msse3} is used.
22c7c85e
L
9781
9782@table @code
9783@item v2df __builtin_ia32_loadddup (double const *)
9784Generates the @code{movddup} machine instruction as a load from memory.
9785@end table
9786
b1875f52
L
9787The following built-in functions are available when @option{-mssse3} is used.
9788All of them generate the machine instruction that is part of the name
9789with MMX registers.
9790
9791@smallexample
9792v2si __builtin_ia32_phaddd (v2si, v2si)
9793v4hi __builtin_ia32_phaddw (v4hi, v4hi)
9794v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
9795v2si __builtin_ia32_phsubd (v2si, v2si)
9796v4hi __builtin_ia32_phsubw (v4hi, v4hi)
9797v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
1b667c82 9798v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
b1875f52
L
9799v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
9800v8qi __builtin_ia32_pshufb (v8qi, v8qi)
9801v8qi __builtin_ia32_psignb (v8qi, v8qi)
9802v2si __builtin_ia32_psignd (v2si, v2si)
9803v4hi __builtin_ia32_psignw (v4hi, v4hi)
99c25ac1 9804v1di __builtin_ia32_palignr (v1di, v1di, int)
b1875f52
L
9805v8qi __builtin_ia32_pabsb (v8qi)
9806v2si __builtin_ia32_pabsd (v2si)
9807v4hi __builtin_ia32_pabsw (v4hi)
9808@end smallexample
9809
9810The following built-in functions are available when @option{-mssse3} is used.
9811All of them generate the machine instruction that is part of the name
9812with SSE registers.
9813
9814@smallexample
9815v4si __builtin_ia32_phaddd128 (v4si, v4si)
9816v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
9817v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
9818v4si __builtin_ia32_phsubd128 (v4si, v4si)
9819v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
9820v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
1b667c82 9821v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
b1875f52
L
9822v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
9823v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
9824v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
9825v4si __builtin_ia32_psignd128 (v4si, v4si)
9826v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
858e5e79 9827v2di __builtin_ia32_palignr128 (v2di, v2di, int)
b1875f52
L
9828v16qi __builtin_ia32_pabsb128 (v16qi)
9829v4si __builtin_ia32_pabsd128 (v4si)
9830v8hi __builtin_ia32_pabsw128 (v8hi)
9831@end smallexample
9832
9a5cee02
L
9833The following built-in functions are available when @option{-msse4.1} is
9834used. All of them generate the machine instruction that is part of the
9835name.
9836
9837@smallexample
9838v2df __builtin_ia32_blendpd (v2df, v2df, const int)
9839v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
9840v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
9841v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
291d9a2d 9842v2df __builtin_ia32_dppd (v2df, v2df, const int)
9a5cee02
L
9843v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
9844v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
9845v2di __builtin_ia32_movntdqa (v2di *);
9846v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
9847v8hi __builtin_ia32_packusdw128 (v4si, v4si)
9848v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
9849v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
9850v2di __builtin_ia32_pcmpeqq (v2di, v2di)
9851v8hi __builtin_ia32_phminposuw128 (v8hi)
9852v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
9853v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
9854v4si __builtin_ia32_pmaxud128 (v4si, v4si)
9855v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
9856v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
9857v4si __builtin_ia32_pminsd128 (v4si, v4si)
9858v4si __builtin_ia32_pminud128 (v4si, v4si)
9859v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
9860v4si __builtin_ia32_pmovsxbd128 (v16qi)
9861v2di __builtin_ia32_pmovsxbq128 (v16qi)
9862v8hi __builtin_ia32_pmovsxbw128 (v16qi)
9863v2di __builtin_ia32_pmovsxdq128 (v4si)
9864v4si __builtin_ia32_pmovsxwd128 (v8hi)
9865v2di __builtin_ia32_pmovsxwq128 (v8hi)
9866v4si __builtin_ia32_pmovzxbd128 (v16qi)
9867v2di __builtin_ia32_pmovzxbq128 (v16qi)
9868v8hi __builtin_ia32_pmovzxbw128 (v16qi)
9869v2di __builtin_ia32_pmovzxdq128 (v4si)
9870v4si __builtin_ia32_pmovzxwd128 (v8hi)
9871v2di __builtin_ia32_pmovzxwq128 (v8hi)
9872v2di __builtin_ia32_pmuldq128 (v4si, v4si)
9873v4si __builtin_ia32_pmulld128 (v4si, v4si)
9874int __builtin_ia32_ptestc128 (v2di, v2di)
9875int __builtin_ia32_ptestnzc128 (v2di, v2di)
9876int __builtin_ia32_ptestz128 (v2di, v2di)
9877v2df __builtin_ia32_roundpd (v2df, const int)
9878v4sf __builtin_ia32_roundps (v4sf, const int)
9879v2df __builtin_ia32_roundsd (v2df, v2df, const int)
9880v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
9881@end smallexample
9882
9883The following built-in functions are available when @option{-msse4.1} is
9884used.
9885
9886@table @code
9887@item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
9888Generates the @code{insertps} machine instruction.
9889@item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
9890Generates the @code{pextrb} machine instruction.
9891@item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
9892Generates the @code{pinsrb} machine instruction.
9893@item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
9894Generates the @code{pinsrd} machine instruction.
9895@item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
9896Generates the @code{pinsrq} machine instruction in 64bit mode.
9897@end table
9898
9899The following built-in functions are changed to generate new SSE4.1
9900instructions when @option{-msse4.1} is used.
9901
9902@table @code
9903@item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
9904Generates the @code{extractps} machine instruction.
9905@item int __builtin_ia32_vec_ext_v4si (v4si, const int)
9906Generates the @code{pextrd} machine instruction.
9907@item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
9908Generates the @code{pextrq} machine instruction in 64bit mode.
9909@end table
9910
3b8dd071
L
9911The following built-in functions are available when @option{-msse4.2} is
9912used. All of them generate the machine instruction that is part of the
9913name.
9914
9915@smallexample
9916v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
9917int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
9918int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
9919int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
9920int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
9921int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
9922int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
9923v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
9924int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
9925int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
9926int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
9927int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
9928int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
9929int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
291d9a2d 9930v2di __builtin_ia32_pcmpgtq (v2di, v2di)
3b8dd071
L
9931@end smallexample
9932
9933The following built-in functions are available when @option{-msse4.2} is
9934used.
9935
9936@table @code
291d9a2d 9937@item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
3b8dd071 9938Generates the @code{crc32b} machine instruction.
291d9a2d 9939@item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
3b8dd071 9940Generates the @code{crc32w} machine instruction.
291d9a2d 9941@item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
3b8dd071 9942Generates the @code{crc32l} machine instruction.
a44acfb9 9943@item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
412ac8d5 9944Generates the @code{crc32q} machine instruction.
3b8dd071
L
9945@end table
9946
9947The following built-in functions are changed to generate new SSE4.2
9948instructions when @option{-msse4.2} is used.
9949
9950@table @code
291d9a2d 9951@item int __builtin_popcount (unsigned int)
3b8dd071 9952Generates the @code{popcntl} machine instruction.
291d9a2d 9953@item int __builtin_popcountl (unsigned long)
3b8dd071
L
9954Generates the @code{popcntl} or @code{popcntq} machine instruction,
9955depending on the size of @code{unsigned long}.
291d9a2d 9956@item int __builtin_popcountll (unsigned long long)
3b8dd071
L
9957Generates the @code{popcntq} machine instruction.
9958@end table
9959
31cb596a
JY
9960The following built-in functions are available when @option{-mavx} is
9961used. All of them generate the machine instruction that is part of the
9962name.
9963
9964@smallexample
9965v4df __builtin_ia32_addpd256 (v4df,v4df)
9966v8sf __builtin_ia32_addps256 (v8sf,v8sf)
9967v4df __builtin_ia32_addsubpd256 (v4df,v4df)
9968v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
9969v4df __builtin_ia32_andnpd256 (v4df,v4df)
9970v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
9971v4df __builtin_ia32_andpd256 (v4df,v4df)
9972v8sf __builtin_ia32_andps256 (v8sf,v8sf)
9973v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
9974v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
9975v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
9976v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
9977v2df __builtin_ia32_cmppd (v2df,v2df,int)
9978v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
9979v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
9980v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
9981v2df __builtin_ia32_cmpsd (v2df,v2df,int)
9982v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
9983v4df __builtin_ia32_cvtdq2pd256 (v4si)
9984v8sf __builtin_ia32_cvtdq2ps256 (v8si)
9985v4si __builtin_ia32_cvtpd2dq256 (v4df)
9986v4sf __builtin_ia32_cvtpd2ps256 (v4df)
9987v8si __builtin_ia32_cvtps2dq256 (v8sf)
9988v4df __builtin_ia32_cvtps2pd256 (v4sf)
9989v4si __builtin_ia32_cvttpd2dq256 (v4df)
9990v8si __builtin_ia32_cvttps2dq256 (v8sf)
9991v4df __builtin_ia32_divpd256 (v4df,v4df)
9992v8sf __builtin_ia32_divps256 (v8sf,v8sf)
9993v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
9994v4df __builtin_ia32_haddpd256 (v4df,v4df)
9995v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
9996v4df __builtin_ia32_hsubpd256 (v4df,v4df)
9997v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
9998v32qi __builtin_ia32_lddqu256 (pcchar)
9999v32qi __builtin_ia32_loaddqu256 (pcchar)
10000v4df __builtin_ia32_loadupd256 (pcdouble)
10001v8sf __builtin_ia32_loadups256 (pcfloat)
10002v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
10003v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
10004v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
10005v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
10006void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
10007void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
10008void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
10009void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
10010v4df __builtin_ia32_maxpd256 (v4df,v4df)
10011v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
10012v4df __builtin_ia32_minpd256 (v4df,v4df)
10013v8sf __builtin_ia32_minps256 (v8sf,v8sf)
10014v4df __builtin_ia32_movddup256 (v4df)
10015int __builtin_ia32_movmskpd256 (v4df)
10016int __builtin_ia32_movmskps256 (v8sf)
10017v8sf __builtin_ia32_movshdup256 (v8sf)
10018v8sf __builtin_ia32_movsldup256 (v8sf)
10019v4df __builtin_ia32_mulpd256 (v4df,v4df)
10020v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
10021v4df __builtin_ia32_orpd256 (v4df,v4df)
10022v8sf __builtin_ia32_orps256 (v8sf,v8sf)
10023v2df __builtin_ia32_pd_pd256 (v4df)
10024v4df __builtin_ia32_pd256_pd (v2df)
10025v4sf __builtin_ia32_ps_ps256 (v8sf)
10026v8sf __builtin_ia32_ps256_ps (v4sf)
10027int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
10028int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
10029int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
10030v8sf __builtin_ia32_rcpps256 (v8sf)
10031v4df __builtin_ia32_roundpd256 (v4df,int)
10032v8sf __builtin_ia32_roundps256 (v8sf,int)
10033v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
10034v8sf __builtin_ia32_rsqrtps256 (v8sf)
10035v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
10036v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
10037v4si __builtin_ia32_si_si256 (v8si)
10038v8si __builtin_ia32_si256_si (v4si)
10039v4df __builtin_ia32_sqrtpd256 (v4df)
10040v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
10041v8sf __builtin_ia32_sqrtps256 (v8sf)
10042void __builtin_ia32_storedqu256 (pchar,v32qi)
10043void __builtin_ia32_storeupd256 (pdouble,v4df)
10044void __builtin_ia32_storeups256 (pfloat,v8sf)
10045v4df __builtin_ia32_subpd256 (v4df,v4df)
10046v8sf __builtin_ia32_subps256 (v8sf,v8sf)
10047v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
10048v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
10049v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
10050v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
10051v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
10052v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
10053v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
10054v4sf __builtin_ia32_vbroadcastss (pcfloat)
10055v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
10056v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
10057v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
10058v4si __builtin_ia32_vextractf128_si256 (v8si,int)
10059v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
10060v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
10061v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
10062v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
10063v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
10064v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
10065v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
10066v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
10067v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
10068v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
10069v2df __builtin_ia32_vpermilpd (v2df,int)
10070v4df __builtin_ia32_vpermilpd256 (v4df,int)
10071v4sf __builtin_ia32_vpermilps (v4sf,int)
10072v8sf __builtin_ia32_vpermilps256 (v8sf,int)
10073v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
10074v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
10075v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
10076v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
10077int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
10078int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
10079int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
10080int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
10081int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
10082int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
10083int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
10084int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
10085int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
10086int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
10087int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
10088int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
10089void __builtin_ia32_vzeroall (void)
10090void __builtin_ia32_vzeroupper (void)
10091v4df __builtin_ia32_xorpd256 (v4df,v4df)
10092v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
10093@end smallexample
10094
977e83a3
KY
10095The following built-in functions are available when @option{-mavx2} is
10096used. All of them generate the machine instruction that is part of the
10097name.
10098
10099@smallexample
10100v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
10101v32qi __builtin_ia32_pabsb256 (v32qi)
10102v16hi __builtin_ia32_pabsw256 (v16hi)
10103v8si __builtin_ia32_pabsd256 (v8si)
10104v16hi builtin_ia32_packssdw256 (v8si,v8si)
10105v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
10106v16hi __builtin_ia32_packusdw256 (v8si,v8si)
10107v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
10108v32qi__builtin_ia32_paddb256 (v32qi,v32qi)
10109v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
10110v8si __builtin_ia32_paddd256 (v8si,v8si)
10111v4di __builtin_ia32_paddq256 (v4di,v4di)
10112v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
10113v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
10114v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
10115v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
10116v4di __builtin_ia32_palignr256 (v4di,v4di,int)
10117v4di __builtin_ia32_andsi256 (v4di,v4di)
10118v4di __builtin_ia32_andnotsi256 (v4di,v4di)
10119v32qi__builtin_ia32_pavgb256 (v32qi,v32qi)
10120v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
10121v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
10122v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
10123v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
10124v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
10125v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
10126v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
10127v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
10128v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
10129v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
10130v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
10131v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
10132v8si __builtin_ia32_phaddd256 (v8si,v8si)
10133v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
10134v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
10135v8si __builtin_ia32_phsubd256 (v8si,v8si)
10136v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
10137v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
10138v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
10139v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
10140v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
10141v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
10142v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
10143v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
10144v8si __builtin_ia32_pmaxud256 (v8si,v8si)
10145v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
10146v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
10147v8si __builtin_ia32_pminsd256 (v8si,v8si)
10148v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
10149v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
10150v8si __builtin_ia32_pminud256 (v8si,v8si)
10151int __builtin_ia32_pmovmskb256 (v32qi)
10152v16hi __builtin_ia32_pmovsxbw256 (v16qi)
10153v8si __builtin_ia32_pmovsxbd256 (v16qi)
10154v4di __builtin_ia32_pmovsxbq256 (v16qi)
10155v8si __builtin_ia32_pmovsxwd256 (v8hi)
10156v4di __builtin_ia32_pmovsxwq256 (v8hi)
10157v4di __builtin_ia32_pmovsxdq256 (v4si)
10158v16hi __builtin_ia32_pmovzxbw256 (v16qi)
10159v8si __builtin_ia32_pmovzxbd256 (v16qi)
10160v4di __builtin_ia32_pmovzxbq256 (v16qi)
10161v8si __builtin_ia32_pmovzxwd256 (v8hi)
10162v4di __builtin_ia32_pmovzxwq256 (v8hi)
10163v4di __builtin_ia32_pmovzxdq256 (v4si)
10164v4di __builtin_ia32_pmuldq256 (v8si,v8si)
10165v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
10166v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
10167v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
10168v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
10169v8si __builtin_ia32_pmulld256 (v8si,v8si)
10170v4di __builtin_ia32_pmuludq256 (v8si,v8si)
10171v4di __builtin_ia32_por256 (v4di,v4di)
10172v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
10173v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
10174v8si __builtin_ia32_pshufd256 (v8si,int)
10175v16hi __builtin_ia32_pshufhw256 (v16hi,int)
10176v16hi __builtin_ia32_pshuflw256 (v16hi,int)
10177v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
10178v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
10179v8si __builtin_ia32_psignd256 (v8si,v8si)
10180v4di __builtin_ia32_pslldqi256 (v4di,int)
10181v16hi __builtin_ia32_psllwi256 (16hi,int)
10182v16hi __builtin_ia32_psllw256(v16hi,v8hi)
10183v8si __builtin_ia32_pslldi256 (v8si,int)
10184v8si __builtin_ia32_pslld256(v8si,v4si)
10185v4di __builtin_ia32_psllqi256 (v4di,int)
10186v4di __builtin_ia32_psllq256(v4di,v2di)
10187v16hi __builtin_ia32_psrawi256 (v16hi,int)
10188v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
10189v8si __builtin_ia32_psradi256 (v8si,int)
10190v8si __builtin_ia32_psrad256 (v8si,v4si)
10191v4di __builtin_ia32_psrldqi256 (v4di, int)
10192v16hi __builtin_ia32_psrlwi256 (v16hi,int)
10193v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
10194v8si __builtin_ia32_psrldi256 (v8si,int)
10195v8si __builtin_ia32_psrld256 (v8si,v4si)
10196v4di __builtin_ia32_psrlqi256 (v4di,int)
10197v4di __builtin_ia32_psrlq256(v4di,v2di)
10198v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
10199v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
10200v8si __builtin_ia32_psubd256 (v8si,v8si)
10201v4di __builtin_ia32_psubq256 (v4di,v4di)
10202v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
10203v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
10204v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
10205v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
10206v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
10207v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
10208v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
10209v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
10210v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
10211v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
10212v8si __builtin_ia32_punpckldq256 (v8si,v8si)
10213v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
10214v4di __builtin_ia32_pxor256 (v4di,v4di)
10215v4di __builtin_ia32_movntdqa256 (pv4di)
10216v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
10217v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
10218v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
10219v4di __builtin_ia32_vbroadcastsi256 (v2di)
10220v4si __builtin_ia32_pblendd128 (v4si,v4si)
10221v8si __builtin_ia32_pblendd256 (v8si,v8si)
10222v32qi __builtin_ia32_pbroadcastb256 (v16qi)
10223v16hi __builtin_ia32_pbroadcastw256 (v8hi)
10224v8si __builtin_ia32_pbroadcastd256 (v4si)
10225v4di __builtin_ia32_pbroadcastq256 (v2di)
10226v16qi __builtin_ia32_pbroadcastb128 (v16qi)
10227v8hi __builtin_ia32_pbroadcastw128 (v8hi)
10228v4si __builtin_ia32_pbroadcastd128 (v4si)
10229v2di __builtin_ia32_pbroadcastq128 (v2di)
10230v8si __builtin_ia32_permvarsi256 (v8si,v8si)
10231v4df __builtin_ia32_permdf256 (v4df,int)
10232v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
10233v4di __builtin_ia32_permdi256 (v4di,int)
10234v4di __builtin_ia32_permti256 (v4di,v4di,int)
10235v4di __builtin_ia32_extract128i256 (v4di,int)
10236v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
10237v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
10238v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
10239v4si __builtin_ia32_maskloadd (pcv4si,v4si)
10240v2di __builtin_ia32_maskloadq (pcv2di,v2di)
10241void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
10242void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
10243void __builtin_ia32_maskstored (pv4si,v4si,v4si)
10244void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
10245v8si __builtin_ia32_psllv8si (v8si,v8si)
10246v4si __builtin_ia32_psllv4si (v4si,v4si)
10247v4di __builtin_ia32_psllv4di (v4di,v4di)
10248v2di __builtin_ia32_psllv2di (v2di,v2di)
10249v8si __builtin_ia32_psrav8si (v8si,v8si)
10250v4si __builtin_ia32_psrav4si (v4si,v4si)
10251v8si __builtin_ia32_psrlv8si (v8si,v8si)
10252v4si __builtin_ia32_psrlv4si (v4si,v4si)
10253v4di __builtin_ia32_psrlv4di (v4di,v4di)
10254v2di __builtin_ia32_psrlv2di (v2di,v2di)
10255v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
10256v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
10257v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
10258v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
10259v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
10260v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
10261v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
10262v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
10263v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
10264v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
10265v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
10266v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
10267v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
10268v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
10269v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
10270v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
10271@end smallexample
10272
8b96a312
L
10273The following built-in functions are available when @option{-maes} is
10274used. All of them generate the machine instruction that is part of the
10275name.
10276
10277@smallexample
10278v2di __builtin_ia32_aesenc128 (v2di, v2di)
10279v2di __builtin_ia32_aesenclast128 (v2di, v2di)
10280v2di __builtin_ia32_aesdec128 (v2di, v2di)
10281v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
10282v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
10283v2di __builtin_ia32_aesimc128 (v2di)
10284@end smallexample
10285
10286The following built-in function is available when @option{-mpclmul} is
10287used.
10288
10289@table @code
10290@item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
10291Generates the @code{pclmulqdq} machine instruction.
10292@end table
10293
4ee89d5f
L
10294The following built-in function is available when @option{-mfsgsbase} is
10295used. All of them generate the machine instruction that is part of the
10296name.
10297
10298@smallexample
10299unsigned int __builtin_ia32_rdfsbase32 (void)
10300unsigned long long __builtin_ia32_rdfsbase64 (void)
10301unsigned int __builtin_ia32_rdgsbase32 (void)
10302unsigned long long __builtin_ia32_rdgsbase64 (void)
10303void _writefsbase_u32 (unsigned int)
10304void _writefsbase_u64 (unsigned long long)
10305void _writegsbase_u32 (unsigned int)
10306void _writegsbase_u64 (unsigned long long)
10307@end smallexample
10308
10309The following built-in function is available when @option{-mrdrnd} is
10310used. All of them generate the machine instruction that is part of the
10311name.
10312
10313@smallexample
11c4a1c0
L
10314unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
10315unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
10316unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
4ee89d5f
L
10317@end smallexample
10318
21efb4d4 10319The following built-in functions are available when @option{-msse4a} is used.
291d9a2d 10320All of them generate the machine instruction that is part of the name.
21efb4d4
HJ
10321
10322@smallexample
291d9a2d
UB
10323void __builtin_ia32_movntsd (double *, v2df)
10324void __builtin_ia32_movntss (float *, v4sf)
10325v2di __builtin_ia32_extrq (v2di, v16qi)
10326v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
10327v2di __builtin_ia32_insertq (v2di, v2di)
10328v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
21efb4d4
HJ
10329@end smallexample
10330
43a8b705
HJ
10331The following built-in functions are available when @option{-mxop} is used.
10332@smallexample
10333v2df __builtin_ia32_vfrczpd (v2df)
10334v4sf __builtin_ia32_vfrczps (v4sf)
10335v2df __builtin_ia32_vfrczsd (v2df, v2df)
10336v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
10337v4df __builtin_ia32_vfrczpd256 (v4df)
10338v8sf __builtin_ia32_vfrczps256 (v8sf)
10339v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
10340v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
10341v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
10342v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
10343v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
10344v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
10345v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
10346v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
10347v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
10348v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
10349v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
10350v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
10351v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
10352v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
10353v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10354v4si __builtin_ia32_vpcomeqd (v4si, v4si)
10355v2di __builtin_ia32_vpcomeqq (v2di, v2di)
10356v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
10357v4si __builtin_ia32_vpcomequd (v4si, v4si)
10358v2di __builtin_ia32_vpcomequq (v2di, v2di)
10359v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
10360v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10361v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
10362v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
10363v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
10364v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
10365v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
10366v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
10367v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
10368v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
10369v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
10370v4si __builtin_ia32_vpcomged (v4si, v4si)
10371v2di __builtin_ia32_vpcomgeq (v2di, v2di)
10372v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
10373v4si __builtin_ia32_vpcomgeud (v4si, v4si)
10374v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
10375v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
10376v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
10377v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
10378v4si __builtin_ia32_vpcomgtd (v4si, v4si)
10379v2di __builtin_ia32_vpcomgtq (v2di, v2di)
10380v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
10381v4si __builtin_ia32_vpcomgtud (v4si, v4si)
10382v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
10383v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
10384v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
10385v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
10386v4si __builtin_ia32_vpcomled (v4si, v4si)
10387v2di __builtin_ia32_vpcomleq (v2di, v2di)
10388v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
10389v4si __builtin_ia32_vpcomleud (v4si, v4si)
10390v2di __builtin_ia32_vpcomleuq (v2di, v2di)
10391v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
10392v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
10393v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
10394v4si __builtin_ia32_vpcomltd (v4si, v4si)
10395v2di __builtin_ia32_vpcomltq (v2di, v2di)
10396v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
10397v4si __builtin_ia32_vpcomltud (v4si, v4si)
10398v2di __builtin_ia32_vpcomltuq (v2di, v2di)
10399v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
10400v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
10401v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
10402v4si __builtin_ia32_vpcomned (v4si, v4si)
10403v2di __builtin_ia32_vpcomneq (v2di, v2di)
10404v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
10405v4si __builtin_ia32_vpcomneud (v4si, v4si)
10406v2di __builtin_ia32_vpcomneuq (v2di, v2di)
10407v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
10408v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
10409v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
10410v4si __builtin_ia32_vpcomtrued (v4si, v4si)
10411v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
10412v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
10413v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
10414v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
10415v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
10416v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
10417v4si __builtin_ia32_vphaddbd (v16qi)
10418v2di __builtin_ia32_vphaddbq (v16qi)
10419v8hi __builtin_ia32_vphaddbw (v16qi)
10420v2di __builtin_ia32_vphadddq (v4si)
10421v4si __builtin_ia32_vphaddubd (v16qi)
10422v2di __builtin_ia32_vphaddubq (v16qi)
10423v8hi __builtin_ia32_vphaddubw (v16qi)
10424v2di __builtin_ia32_vphaddudq (v4si)
10425v4si __builtin_ia32_vphadduwd (v8hi)
10426v2di __builtin_ia32_vphadduwq (v8hi)
10427v4si __builtin_ia32_vphaddwd (v8hi)
10428v2di __builtin_ia32_vphaddwq (v8hi)
10429v8hi __builtin_ia32_vphsubbw (v16qi)
10430v2di __builtin_ia32_vphsubdq (v4si)
10431v4si __builtin_ia32_vphsubwd (v8hi)
10432v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
10433v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
10434v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
10435v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
10436v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
10437v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
10438v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
10439v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
10440v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
10441v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
10442v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
10443v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
10444v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
10445v16qi __builtin_ia32_vprotb (v16qi, v16qi)
10446v4si __builtin_ia32_vprotd (v4si, v4si)
10447v2di __builtin_ia32_vprotq (v2di, v2di)
10448v8hi __builtin_ia32_vprotw (v8hi, v8hi)
10449v16qi __builtin_ia32_vpshab (v16qi, v16qi)
10450v4si __builtin_ia32_vpshad (v4si, v4si)
10451v2di __builtin_ia32_vpshaq (v2di, v2di)
10452v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
10453v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
10454v4si __builtin_ia32_vpshld (v4si, v4si)
10455v2di __builtin_ia32_vpshlq (v2di, v2di)
10456v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
10457@end smallexample
10458
cbf2e4d4
HJ
10459The following built-in functions are available when @option{-mfma4} is used.
10460All of them generate the machine instruction that is part of the name
10461with MMX registers.
10462
10463@smallexample
10464v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
10465v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
10466v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
10467v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
10468v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
10469v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
10470v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
10471v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
10472v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
10473v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
10474v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
10475v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
10476v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
10477v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
10478v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
10479v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
10480v2df __builtin_ia32_fmaddsubpd (v2df, v2df, v2df)
10481v4sf __builtin_ia32_fmaddsubps (v4sf, v4sf, v4sf)
10482v2df __builtin_ia32_fmsubaddpd (v2df, v2df, v2df)
10483v4sf __builtin_ia32_fmsubaddps (v4sf, v4sf, v4sf)
10484v4df __builtin_ia32_fmaddpd256 (v4df, v4df, v4df)
10485v8sf __builtin_ia32_fmaddps256 (v8sf, v8sf, v8sf)
10486v4df __builtin_ia32_fmsubpd256 (v4df, v4df, v4df)
10487v8sf __builtin_ia32_fmsubps256 (v8sf, v8sf, v8sf)
10488v4df __builtin_ia32_fnmaddpd256 (v4df, v4df, v4df)
10489v8sf __builtin_ia32_fnmaddps256 (v8sf, v8sf, v8sf)
10490v4df __builtin_ia32_fnmsubpd256 (v4df, v4df, v4df)
10491v8sf __builtin_ia32_fnmsubps256 (v8sf, v8sf, v8sf)
10492v4df __builtin_ia32_fmaddsubpd256 (v4df, v4df, v4df)
10493v8sf __builtin_ia32_fmaddsubps256 (v8sf, v8sf, v8sf)
10494v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df)
10495v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf)
10496
10497@end smallexample
3e901069
HJ
10498
10499The following built-in functions are available when @option{-mlwp} is used.
10500
10501@smallexample
10502void __builtin_ia32_llwpcb16 (void *);
10503void __builtin_ia32_llwpcb32 (void *);
10504void __builtin_ia32_llwpcb64 (void *);
10505void * __builtin_ia32_llwpcb16 (void);
10506void * __builtin_ia32_llwpcb32 (void);
10507void * __builtin_ia32_llwpcb64 (void);
10508void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
10509void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
10510void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
10511unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
10512unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
10513unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
10514@end smallexample
cbf2e4d4 10515
91afcfa3
QN
10516The following built-in functions are available when @option{-mbmi} is used.
10517All of them generate the machine instruction that is part of the name.
10518@smallexample
10519unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
10520unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
5fcafa60
KY
10521@end smallexample
10522
82feeb8d
L
10523The following built-in functions are available when @option{-mbmi2} is used.
10524All of them generate the machine instruction that is part of the name.
10525@smallexample
10526unsigned int _bzhi_u32 (unsigned int, unsigned int)
10527unsigned int _pdep_u32 (unsigned int, unsigned int)
10528unsigned int _pext_u32 (unsigned int, unsigned int)
10529unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
10530unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
10531unsigned long long _pext_u64 (unsigned long long, unsigned long long)
10532@end smallexample
10533
5fcafa60
KY
10534The following built-in functions are available when @option{-mlzcnt} is used.
10535All of them generate the machine instruction that is part of the name.
10536@smallexample
91afcfa3
QN
10537unsigned short __builtin_ia32_lzcnt_16(unsigned short);
10538unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
10539unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
10540@end smallexample
10541
94d13ad1
QN
10542The following built-in functions are available when @option{-mtbm} is used.
10543Both of them generate the immediate form of the bextr machine instruction.
10544@smallexample
10545unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
10546unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
10547@end smallexample
10548
10549
0975678f
JM
10550The following built-in functions are available when @option{-m3dnow} is used.
10551All of them generate the machine instruction that is part of the name.
10552
3ab51846 10553@smallexample
0975678f
JM
10554void __builtin_ia32_femms (void)
10555v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
10556v2si __builtin_ia32_pf2id (v2sf)
10557v2sf __builtin_ia32_pfacc (v2sf, v2sf)
10558v2sf __builtin_ia32_pfadd (v2sf, v2sf)
10559v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
10560v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
10561v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
10562v2sf __builtin_ia32_pfmax (v2sf, v2sf)
10563v2sf __builtin_ia32_pfmin (v2sf, v2sf)
10564v2sf __builtin_ia32_pfmul (v2sf, v2sf)
10565v2sf __builtin_ia32_pfrcp (v2sf)
10566v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
10567v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
10568v2sf __builtin_ia32_pfrsqrt (v2sf)
10569v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
10570v2sf __builtin_ia32_pfsub (v2sf, v2sf)
10571v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
10572v2sf __builtin_ia32_pi2fd (v2si)
10573v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
3ab51846 10574@end smallexample
0975678f
JM
10575
10576The following built-in functions are available when both @option{-m3dnow}
10577and @option{-march=athlon} are used. All of them generate the machine
10578instruction that is part of the name.
10579
3ab51846 10580@smallexample
0975678f
JM
10581v2si __builtin_ia32_pf2iw (v2sf)
10582v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
10583v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
10584v2sf __builtin_ia32_pi2fw (v2si)
10585v2sf __builtin_ia32_pswapdsf (v2sf)
10586v2si __builtin_ia32_pswapdsi (v2si)
3ab51846 10587@end smallexample
0975678f 10588
118ea793
CF
10589@node MIPS DSP Built-in Functions
10590@subsection MIPS DSP Built-in Functions
10591
10592The MIPS DSP Application-Specific Extension (ASE) includes new
10593instructions that are designed to improve the performance of DSP and
10594media applications. It provides instructions that operate on packed
32041385 105958-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
118ea793
CF
10596
10597GCC supports MIPS DSP operations using both the generic
10598vector extensions (@pxref{Vector Extensions}) and a collection of
10599MIPS-specific built-in functions. Both kinds of support are
10600enabled by the @option{-mdsp} command-line option.
10601
32041385
CF
10602Revision 2 of the ASE was introduced in the second half of 2006.
10603This revision adds extra instructions to the original ASE, but is
10604otherwise backwards-compatible with it. You can select revision 2
10605using the command-line option @option{-mdspr2}; this option implies
10606@option{-mdsp}.
10607
1e27273f
CM
10608The SCOUNT and POS bits of the DSP control register are global. The
10609WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
10610POS bits. During optimization, the compiler will not delete these
10611instructions and it will not delete calls to functions containing
10612these instructions.
10613
118ea793
CF
10614At present, GCC only provides support for operations on 32-bit
10615vectors. The vector type associated with 8-bit integer data is
32041385
CF
10616usually called @code{v4i8}, the vector type associated with Q7
10617is usually called @code{v4q7}, the vector type associated with 16-bit
10618integer data is usually called @code{v2i16}, and the vector type
10619associated with Q15 is usually called @code{v2q15}. They can be
10620defined in C as follows:
118ea793
CF
10621
10622@smallexample
32041385
CF
10623typedef signed char v4i8 __attribute__ ((vector_size(4)));
10624typedef signed char v4q7 __attribute__ ((vector_size(4)));
10625typedef short v2i16 __attribute__ ((vector_size(4)));
118ea793
CF
10626typedef short v2q15 __attribute__ ((vector_size(4)));
10627@end smallexample
10628
32041385
CF
10629@code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
10630initialized in the same way as aggregates. For example:
118ea793
CF
10631
10632@smallexample
10633v4i8 a = @{1, 2, 3, 4@};
10634v4i8 b;
10635b = (v4i8) @{5, 6, 7, 8@};
10636
10637v2q15 c = @{0x0fcb, 0x3a75@};
10638v2q15 d;
10639d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
10640@end smallexample
10641
10642@emph{Note:} The CPU's endianness determines the order in which values
10643are packed. On little-endian targets, the first value is the least
10644significant and the last value is the most significant. The opposite
10645order applies to big-endian targets. For example, the code above will
10646set the lowest byte of @code{a} to @code{1} on little-endian targets
10647and @code{4} on big-endian targets.
10648
32041385 10649@emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
118ea793 10650representation. As shown in this example, the integer representation
32041385
CF
10651of a Q7 value can be obtained by multiplying the fractional value by
10652@code{0x1.0p7}. The equivalent for Q15 values is to multiply by
118ea793
CF
10653@code{0x1.0p15}. The equivalent for Q31 values is to multiply by
10654@code{0x1.0p31}.
10655
10656The table below lists the @code{v4i8} and @code{v2q15} operations for which
10657hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
10658and @code{c} and @code{d} are @code{v2q15} values.
10659
10660@multitable @columnfractions .50 .50
10661@item C code @tab MIPS instruction
10662@item @code{a + b} @tab @code{addu.qb}
10663@item @code{c + d} @tab @code{addq.ph}
10664@item @code{a - b} @tab @code{subu.qb}
10665@item @code{c - d} @tab @code{subq.ph}
10666@end multitable
10667
32041385
CF
10668The table below lists the @code{v2i16} operation for which
10669hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
10670@code{v2i16} values.
10671
10672@multitable @columnfractions .50 .50
10673@item C code @tab MIPS instruction
10674@item @code{e * f} @tab @code{mul.ph}
10675@end multitable
10676
118ea793
CF
10677It is easier to describe the DSP built-in functions if we first define
10678the following types:
10679
10680@smallexample
10681typedef int q31;
10682typedef int i32;
32041385 10683typedef unsigned int ui32;
118ea793
CF
10684typedef long long a64;
10685@end smallexample
10686
10687@code{q31} and @code{i32} are actually the same as @code{int}, but we
10688use @code{q31} to indicate a Q31 fractional value and @code{i32} to
10689indicate a 32-bit integer value. Similarly, @code{a64} is the same as
10690@code{long long}, but we use @code{a64} to indicate values that will
10691be placed in one of the four DSP accumulators (@code{$ac0},
10692@code{$ac1}, @code{$ac2} or @code{$ac3}).
10693
10694Also, some built-in functions prefer or require immediate numbers as
10695parameters, because the corresponding DSP instructions accept both immediate
10696numbers and register operands, or accept immediate numbers only. The
10697immediate parameters are listed as follows.
10698
10699@smallexample
32041385 10700imm0_3: 0 to 3.
118ea793
CF
10701imm0_7: 0 to 7.
10702imm0_15: 0 to 15.
10703imm0_31: 0 to 31.
10704imm0_63: 0 to 63.
10705imm0_255: 0 to 255.
10706imm_n32_31: -32 to 31.
10707imm_n512_511: -512 to 511.
10708@end smallexample
10709
10710The following built-in functions map directly to a particular MIPS DSP
10711instruction. Please refer to the architecture specification
10712for details on what each instruction does.
10713
10714@smallexample
10715v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
10716v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
10717q31 __builtin_mips_addq_s_w (q31, q31)
10718v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
10719v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
10720v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
10721v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
10722q31 __builtin_mips_subq_s_w (q31, q31)
10723v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
10724v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
10725i32 __builtin_mips_addsc (i32, i32)
10726i32 __builtin_mips_addwc (i32, i32)
10727i32 __builtin_mips_modsub (i32, i32)
10728i32 __builtin_mips_raddu_w_qb (v4i8)
10729v2q15 __builtin_mips_absq_s_ph (v2q15)
10730q31 __builtin_mips_absq_s_w (q31)
10731v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
10732v2q15 __builtin_mips_precrq_ph_w (q31, q31)
10733v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
10734v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
10735q31 __builtin_mips_preceq_w_phl (v2q15)
10736q31 __builtin_mips_preceq_w_phr (v2q15)
10737v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
10738v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
10739v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
10740v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
10741v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
10742v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
10743v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
10744v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
10745v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
10746v4i8 __builtin_mips_shll_qb (v4i8, i32)
10747v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
10748v2q15 __builtin_mips_shll_ph (v2q15, i32)
10749v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
10750v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
10751q31 __builtin_mips_shll_s_w (q31, imm0_31)
10752q31 __builtin_mips_shll_s_w (q31, i32)
10753v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
10754v4i8 __builtin_mips_shrl_qb (v4i8, i32)
10755v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
10756v2q15 __builtin_mips_shra_ph (v2q15, i32)
10757v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
10758v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
10759q31 __builtin_mips_shra_r_w (q31, imm0_31)
10760q31 __builtin_mips_shra_r_w (q31, i32)
10761v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
10762v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
10763v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
10764q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
10765q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
10766a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
10767a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
10768a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
10769a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
10770a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
10771a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
10772a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
10773a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
10774a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
10775a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
10776a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
10777a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
10778a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
10779i32 __builtin_mips_bitrev (i32)
10780i32 __builtin_mips_insv (i32, i32)
10781v4i8 __builtin_mips_repl_qb (imm0_255)
10782v4i8 __builtin_mips_repl_qb (i32)
10783v2q15 __builtin_mips_repl_ph (imm_n512_511)
10784v2q15 __builtin_mips_repl_ph (i32)
10785void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
10786void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
10787void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
10788i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
10789i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
10790i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
10791void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
10792void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
10793void __builtin_mips_cmp_le_ph (v2q15, v2q15)
10794v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
10795v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
10796v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
10797i32 __builtin_mips_extr_w (a64, imm0_31)
10798i32 __builtin_mips_extr_w (a64, i32)
10799i32 __builtin_mips_extr_r_w (a64, imm0_31)
10800i32 __builtin_mips_extr_s_h (a64, i32)
10801i32 __builtin_mips_extr_rs_w (a64, imm0_31)
10802i32 __builtin_mips_extr_rs_w (a64, i32)
10803i32 __builtin_mips_extr_s_h (a64, imm0_31)
10804i32 __builtin_mips_extr_r_w (a64, i32)
10805i32 __builtin_mips_extp (a64, imm0_31)
10806i32 __builtin_mips_extp (a64, i32)
10807i32 __builtin_mips_extpdp (a64, imm0_31)
10808i32 __builtin_mips_extpdp (a64, i32)
10809a64 __builtin_mips_shilo (a64, imm_n32_31)
10810a64 __builtin_mips_shilo (a64, i32)
10811a64 __builtin_mips_mthlip (a64, i32)
10812void __builtin_mips_wrdsp (i32, imm0_63)
10813i32 __builtin_mips_rddsp (imm0_63)
10814i32 __builtin_mips_lbux (void *, i32)
10815i32 __builtin_mips_lhx (void *, i32)
10816i32 __builtin_mips_lwx (void *, i32)
770da00a 10817a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
118ea793 10818i32 __builtin_mips_bposge32 (void)
293b77b0
CF
10819a64 __builtin_mips_madd (a64, i32, i32);
10820a64 __builtin_mips_maddu (a64, ui32, ui32);
10821a64 __builtin_mips_msub (a64, i32, i32);
10822a64 __builtin_mips_msubu (a64, ui32, ui32);
10823a64 __builtin_mips_mult (i32, i32);
10824a64 __builtin_mips_multu (ui32, ui32);
118ea793
CF
10825@end smallexample
10826
32041385
CF
10827The following built-in functions map directly to a particular MIPS DSP REV 2
10828instruction. Please refer to the architecture specification
10829for details on what each instruction does.
10830
10831@smallexample
10832v4q7 __builtin_mips_absq_s_qb (v4q7);
10833v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
10834v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
10835v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
10836v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
10837i32 __builtin_mips_append (i32, i32, imm0_31);
10838i32 __builtin_mips_balign (i32, i32, imm0_3);
10839i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
10840i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
10841i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
10842a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
10843a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
32041385
CF
10844v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
10845v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
10846q31 __builtin_mips_mulq_rs_w (q31, q31);
10847v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
10848q31 __builtin_mips_mulq_s_w (q31, q31);
10849a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
32041385
CF
10850v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
10851v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
10852v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
10853i32 __builtin_mips_prepend (i32, i32, imm0_31);
10854v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
10855v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
10856v4i8 __builtin_mips_shra_qb (v4i8, i32);
10857v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
10858v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
10859v2i16 __builtin_mips_shrl_ph (v2i16, i32);
10860v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
10861v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
10862v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
10863v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
10864v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
10865v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
10866q31 __builtin_mips_addqh_w (q31, q31);
10867q31 __builtin_mips_addqh_r_w (q31, q31);
10868v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
10869v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
10870q31 __builtin_mips_subqh_w (q31, q31);
10871q31 __builtin_mips_subqh_r_w (q31, q31);
10872a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
10873a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
10874a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
10875a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
10876a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
10877a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
10878@end smallexample
10879
10880
d840bfd3
CF
10881@node MIPS Paired-Single Support
10882@subsection MIPS Paired-Single Support
10883
10884The MIPS64 architecture includes a number of instructions that
10885operate on pairs of single-precision floating-point values.
10886Each pair is packed into a 64-bit floating-point register,
10887with one element being designated the ``upper half'' and
10888the other being designated the ``lower half''.
10889
10890GCC supports paired-single operations using both the generic
10891vector extensions (@pxref{Vector Extensions}) and a collection of
10892MIPS-specific built-in functions. Both kinds of support are
10893enabled by the @option{-mpaired-single} command-line option.
10894
10895The vector type associated with paired-single values is usually
10896called @code{v2sf}. It can be defined in C as follows:
10897
10898@smallexample
10899typedef float v2sf __attribute__ ((vector_size (8)));
10900@end smallexample
10901
10902@code{v2sf} values are initialized in the same way as aggregates.
10903For example:
10904
10905@smallexample
10906v2sf a = @{1.5, 9.1@};
10907v2sf b;
10908float e, f;
10909b = (v2sf) @{e, f@};
10910@end smallexample
10911
10912@emph{Note:} The CPU's endianness determines which value is stored in
10913the upper half of a register and which value is stored in the lower half.
10914On little-endian targets, the first value is the lower one and the second
10915value is the upper one. The opposite order applies to big-endian targets.
10916For example, the code above will set the lower half of @code{a} to
10917@code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
10918
93581857
MS
10919@node MIPS Loongson Built-in Functions
10920@subsection MIPS Loongson Built-in Functions
10921
10922GCC provides intrinsics to access the SIMD instructions provided by the
10923ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
10924available after inclusion of the @code{loongson.h} header file,
10925operate on the following 64-bit vector types:
10926
10927@itemize
10928@item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
10929@item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
10930@item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
10931@item @code{int8x8_t}, a vector of eight signed 8-bit integers;
10932@item @code{int16x4_t}, a vector of four signed 16-bit integers;
10933@item @code{int32x2_t}, a vector of two signed 32-bit integers.
10934@end itemize
10935
10936The intrinsics provided are listed below; each is named after the
10937machine instruction to which it corresponds, with suffixes added as
10938appropriate to distinguish intrinsics that expand to the same machine
10939instruction yet have different argument types. Refer to the architecture
10940documentation for a description of the functionality of each
10941instruction.
10942
10943@smallexample
10944int16x4_t packsswh (int32x2_t s, int32x2_t t);
10945int8x8_t packsshb (int16x4_t s, int16x4_t t);
10946uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
10947uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
10948uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
10949uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
10950int32x2_t paddw_s (int32x2_t s, int32x2_t t);
10951int16x4_t paddh_s (int16x4_t s, int16x4_t t);
10952int8x8_t paddb_s (int8x8_t s, int8x8_t t);
10953uint64_t paddd_u (uint64_t s, uint64_t t);
10954int64_t paddd_s (int64_t s, int64_t t);
10955int16x4_t paddsh (int16x4_t s, int16x4_t t);
10956int8x8_t paddsb (int8x8_t s, int8x8_t t);
10957uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
10958uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
10959uint64_t pandn_ud (uint64_t s, uint64_t t);
10960uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
10961uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
10962uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
10963int64_t pandn_sd (int64_t s, int64_t t);
10964int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
10965int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
10966int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
10967uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
10968uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
10969uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
10970uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
10971uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
10972int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
10973int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
10974int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
10975uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
10976uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
10977uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
10978int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
10979int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
10980int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
10981uint16x4_t pextrh_u (uint16x4_t s, int field);
10982int16x4_t pextrh_s (int16x4_t s, int field);
10983uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
10984uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
10985uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
10986uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
10987int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
10988int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
10989int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
10990int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
10991int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
10992int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
10993uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
10994int16x4_t pminsh (int16x4_t s, int16x4_t t);
10995uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
10996uint8x8_t pmovmskb_u (uint8x8_t s);
10997int8x8_t pmovmskb_s (int8x8_t s);
10998uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
10999int16x4_t pmulhh (int16x4_t s, int16x4_t t);
11000int16x4_t pmullh (int16x4_t s, int16x4_t t);
11001int64_t pmuluw (uint32x2_t s, uint32x2_t t);
11002uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
11003uint16x4_t biadd (uint8x8_t s);
11004uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
11005uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
11006int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
11007uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
11008int16x4_t psllh_s (int16x4_t s, uint8_t amount);
11009uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
11010int32x2_t psllw_s (int32x2_t s, uint8_t amount);
11011uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
11012int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
11013uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
11014int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
11015uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
11016int16x4_t psrah_s (int16x4_t s, uint8_t amount);
11017uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
11018int32x2_t psraw_s (int32x2_t s, uint8_t amount);
11019uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
11020uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
11021uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
11022int32x2_t psubw_s (int32x2_t s, int32x2_t t);
11023int16x4_t psubh_s (int16x4_t s, int16x4_t t);
11024int8x8_t psubb_s (int8x8_t s, int8x8_t t);
11025uint64_t psubd_u (uint64_t s, uint64_t t);
11026int64_t psubd_s (int64_t s, int64_t t);
11027int16x4_t psubsh (int16x4_t s, int16x4_t t);
11028int8x8_t psubsb (int8x8_t s, int8x8_t t);
11029uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
11030uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
11031uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
11032uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
11033uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
11034int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
11035int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
11036int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
11037uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
11038uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
11039uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
11040int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
11041int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
11042int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
11043@end smallexample
11044
d840bfd3
CF
11045@menu
11046* Paired-Single Arithmetic::
11047* Paired-Single Built-in Functions::
11048* MIPS-3D Built-in Functions::
11049@end menu
11050
11051@node Paired-Single Arithmetic
11052@subsubsection Paired-Single Arithmetic
11053
11054The table below lists the @code{v2sf} operations for which hardware
11055support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
11056values and @code{x} is an integral value.
11057
11058@multitable @columnfractions .50 .50
11059@item C code @tab MIPS instruction
11060@item @code{a + b} @tab @code{add.ps}
11061@item @code{a - b} @tab @code{sub.ps}
11062@item @code{-a} @tab @code{neg.ps}
11063@item @code{a * b} @tab @code{mul.ps}
11064@item @code{a * b + c} @tab @code{madd.ps}
11065@item @code{a * b - c} @tab @code{msub.ps}
11066@item @code{-(a * b + c)} @tab @code{nmadd.ps}
11067@item @code{-(a * b - c)} @tab @code{nmsub.ps}
11068@item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
11069@end multitable
11070
11071Note that the multiply-accumulate instructions can be disabled
11072using the command-line option @code{-mno-fused-madd}.
11073
11074@node Paired-Single Built-in Functions
11075@subsubsection Paired-Single Built-in Functions
11076
11077The following paired-single functions map directly to a particular
11078MIPS instruction. Please refer to the architecture specification
11079for details on what each instruction does.
11080
11081@table @code
11082@item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
11083Pair lower lower (@code{pll.ps}).
11084
11085@item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
11086Pair upper lower (@code{pul.ps}).
11087
11088@item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
11089Pair lower upper (@code{plu.ps}).
11090
11091@item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
11092Pair upper upper (@code{puu.ps}).
11093
11094@item v2sf __builtin_mips_cvt_ps_s (float, float)
11095Convert pair to paired single (@code{cvt.ps.s}).
11096
11097@item float __builtin_mips_cvt_s_pl (v2sf)
11098Convert pair lower to single (@code{cvt.s.pl}).
11099
11100@item float __builtin_mips_cvt_s_pu (v2sf)
11101Convert pair upper to single (@code{cvt.s.pu}).
11102
11103@item v2sf __builtin_mips_abs_ps (v2sf)
11104Absolute value (@code{abs.ps}).
11105
11106@item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
11107Align variable (@code{alnv.ps}).
11108
11109@emph{Note:} The value of the third parameter must be 0 or 4
11110modulo 8, otherwise the result will be unpredictable. Please read the
11111instruction description for details.
11112@end table
11113
11114The following multi-instruction functions are also available.
11115In each case, @var{cond} can be any of the 16 floating-point conditions:
11116@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11117@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
11118@code{lt}, @code{nge}, @code{le} or @code{ngt}.
11119
11120@table @code
11121@item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11122@itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11123Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
11124@code{movt.ps}/@code{movf.ps}).
11125
11126The @code{movt} functions return the value @var{x} computed by:
11127
11128@smallexample
11129c.@var{cond}.ps @var{cc},@var{a},@var{b}
11130mov.ps @var{x},@var{c}
11131movt.ps @var{x},@var{d},@var{cc}
11132@end smallexample
11133
11134The @code{movf} functions are similar but use @code{movf.ps} instead
11135of @code{movt.ps}.
11136
11137@item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11138@itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11139Comparison of two paired-single values (@code{c.@var{cond}.ps},
11140@code{bc1t}/@code{bc1f}).
11141
11142These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11143and return either the upper or lower half of the result. For example:
11144
11145@smallexample
11146v2sf a, b;
11147if (__builtin_mips_upper_c_eq_ps (a, b))
11148 upper_halves_are_equal ();
11149else
11150 upper_halves_are_unequal ();
11151
11152if (__builtin_mips_lower_c_eq_ps (a, b))
11153 lower_halves_are_equal ();
11154else
11155 lower_halves_are_unequal ();
11156@end smallexample
11157@end table
11158
11159@node MIPS-3D Built-in Functions
11160@subsubsection MIPS-3D Built-in Functions
11161
11162The MIPS-3D Application-Specific Extension (ASE) includes additional
11163paired-single instructions that are designed to improve the performance
11164of 3D graphics operations. Support for these instructions is controlled
11165by the @option{-mips3d} command-line option.
11166
11167The functions listed below map directly to a particular MIPS-3D
11168instruction. Please refer to the architecture specification for
11169more details on what each instruction does.
11170
11171@table @code
11172@item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
11173Reduction add (@code{addr.ps}).
11174
11175@item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
11176Reduction multiply (@code{mulr.ps}).
11177
11178@item v2sf __builtin_mips_cvt_pw_ps (v2sf)
11179Convert paired single to paired word (@code{cvt.pw.ps}).
11180
11181@item v2sf __builtin_mips_cvt_ps_pw (v2sf)
11182Convert paired word to paired single (@code{cvt.ps.pw}).
11183
11184@item float __builtin_mips_recip1_s (float)
11185@itemx double __builtin_mips_recip1_d (double)
11186@itemx v2sf __builtin_mips_recip1_ps (v2sf)
11187Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
11188
11189@item float __builtin_mips_recip2_s (float, float)
11190@itemx double __builtin_mips_recip2_d (double, double)
11191@itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
11192Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
11193
11194@item float __builtin_mips_rsqrt1_s (float)
11195@itemx double __builtin_mips_rsqrt1_d (double)
11196@itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
11197Reduced precision reciprocal square root (sequence step 1)
11198(@code{rsqrt1.@var{fmt}}).
11199
11200@item float __builtin_mips_rsqrt2_s (float, float)
11201@itemx double __builtin_mips_rsqrt2_d (double, double)
11202@itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
11203Reduced precision reciprocal square root (sequence step 2)
11204(@code{rsqrt2.@var{fmt}}).
11205@end table
11206
11207The following multi-instruction functions are also available.
11208In each case, @var{cond} can be any of the 16 floating-point conditions:
11209@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11210@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
11211@code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
11212
11213@table @code
11214@item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
11215@itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
11216Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
11217@code{bc1t}/@code{bc1f}).
11218
11219These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
11220or @code{cabs.@var{cond}.d} and return the result as a boolean value.
11221For example:
11222
11223@smallexample
11224float a, b;
11225if (__builtin_mips_cabs_eq_s (a, b))
11226 true ();
11227else
11228 false ();
11229@end smallexample
11230
11231@item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11232@itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11233Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
11234@code{bc1t}/@code{bc1f}).
11235
11236These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
11237and return either the upper or lower half of the result. For example:
11238
11239@smallexample
11240v2sf a, b;
11241if (__builtin_mips_upper_cabs_eq_ps (a, b))
11242 upper_halves_are_equal ();
11243else
11244 upper_halves_are_unequal ();
11245
11246if (__builtin_mips_lower_cabs_eq_ps (a, b))
11247 lower_halves_are_equal ();
11248else
11249 lower_halves_are_unequal ();
11250@end smallexample
11251
11252@item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11253@itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11254Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
11255@code{movt.ps}/@code{movf.ps}).
11256
11257The @code{movt} functions return the value @var{x} computed by:
11258
11259@smallexample
11260cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
11261mov.ps @var{x},@var{c}
11262movt.ps @var{x},@var{d},@var{cc}
11263@end smallexample
11264
11265The @code{movf} functions are similar but use @code{movf.ps} instead
11266of @code{movt.ps}.
11267
11268@item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11269@itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11270@itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11271@itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11272Comparison of two paired-single values
11273(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11274@code{bc1any2t}/@code{bc1any2f}).
11275
11276These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11277or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
11278result is true and the @code{all} forms return true if both results are true.
11279For example:
11280
11281@smallexample
11282v2sf a, b;
11283if (__builtin_mips_any_c_eq_ps (a, b))
11284 one_is_true ();
11285else
11286 both_are_false ();
11287
11288if (__builtin_mips_all_c_eq_ps (a, b))
11289 both_are_true ();
11290else
11291 one_is_false ();
11292@end smallexample
11293
11294@item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11295@itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11296@itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11297@itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11298Comparison of four paired-single values
11299(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11300@code{bc1any4t}/@code{bc1any4f}).
11301
11302These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
11303to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
11304The @code{any} forms return true if any of the four results are true
11305and the @code{all} forms return true if all four results are true.
11306For example:
11307
11308@smallexample
11309v2sf a, b, c, d;
11310if (__builtin_mips_any_c_eq_4s (a, b, c, d))
11311 some_are_true ();
11312else
11313 all_are_false ();
11314
11315if (__builtin_mips_all_c_eq_4s (a, b, c, d))
11316 all_are_true ();
11317else
11318 some_are_false ();
11319@end smallexample
11320@end table
11321
358da97e
HS
11322@node picoChip Built-in Functions
11323@subsection picoChip Built-in Functions
11324
11325GCC provides an interface to selected machine instructions from the
11326picoChip instruction set.
11327
11328@table @code
11329@item int __builtin_sbc (int @var{value})
11330Sign bit count. Return the number of consecutive bits in @var{value}
11331which have the same value as the sign-bit. The result is the number of
11332leading sign bits minus one, giving the number of redundant sign bits in
11333@var{value}.
11334
11335@item int __builtin_byteswap (int @var{value})
11336Byte swap. Return the result of swapping the upper and lower bytes of
11337@var{value}.
11338
11339@item int __builtin_brev (int @var{value})
11340Bit reversal. Return the result of reversing the bits in
11341@var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
11342and so on.
11343
11344@item int __builtin_adds (int @var{x}, int @var{y})
11345Saturating addition. Return the result of adding @var{x} and @var{y},
11346storing the value 32767 if the result overflows.
11347
11348@item int __builtin_subs (int @var{x}, int @var{y})
11349Saturating subtraction. Return the result of subtracting @var{y} from
8ad1dde7 11350@var{x}, storing the value @minus{}32768 if the result overflows.
358da97e
HS
11351
11352@item void __builtin_halt (void)
11353Halt. The processor will stop execution. This built-in is useful for
11354implementing assertions.
11355
11356@end table
11357
4d210b07
RS
11358@node Other MIPS Built-in Functions
11359@subsection Other MIPS Built-in Functions
11360
11361GCC provides other MIPS-specific built-in functions:
11362
11363@table @code
11364@item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
11365Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
11366GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
11367when this function is available.
11368@end table
11369
29e6733c 11370@node PowerPC AltiVec/VSX Built-in Functions
333c8841
AH
11371@subsection PowerPC AltiVec Built-in Functions
11372
b0b343db
JJ
11373GCC provides an interface for the PowerPC family of processors to access
11374the AltiVec operations described in Motorola's AltiVec Programming
11375Interface Manual. The interface is made available by including
11376@code{<altivec.h>} and using @option{-maltivec} and
11377@option{-mabi=altivec}. The interface supports the following vector
11378types.
333c8841 11379
b0b343db
JJ
11380@smallexample
11381vector unsigned char
11382vector signed char
11383vector bool char
333c8841 11384
b0b343db
JJ
11385vector unsigned short
11386vector signed short
11387vector bool short
11388vector pixel
11389
11390vector unsigned int
11391vector signed int
11392vector bool int
11393vector float
11394@end smallexample
11395
29e6733c
MM
11396If @option{-mvsx} is used the following additional vector types are
11397implemented.
11398
11399@smallexample
11400vector unsigned long
11401vector signed long
11402vector double
11403@end smallexample
11404
11405The long types are only implemented for 64-bit code generation, and
11406the long type is only used in the floating point/integer conversion
11407instructions.
11408
b0b343db
JJ
11409GCC's implementation of the high-level language interface available from
11410C and C++ code differs from Motorola's documentation in several ways.
11411
11412@itemize @bullet
11413
11414@item
11415A vector constant is a list of constant expressions within curly braces.
11416
11417@item
11418A vector initializer requires no cast if the vector constant is of the
11419same type as the variable it is initializing.
333c8841 11420
b0b343db 11421@item
5edea4c6
JJ
11422If @code{signed} or @code{unsigned} is omitted, the signedness of the
11423vector type is the default signedness of the base type. The default
11424varies depending on the operating system, so a portable program should
11425always specify the signedness.
4e6e4e4c
JJ
11426
11427@item
11428Compiling with @option{-maltivec} adds keywords @code{__vector},
5950c3c9
BE
11429@code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
11430@code{bool}. When compiling ISO C, the context-sensitive substitution
11431of the keywords @code{vector}, @code{pixel} and @code{bool} is
11432disabled. To use them, you must include @code{<altivec.h>} instead.
4e6e4e4c
JJ
11433
11434@item
11435GCC allows using a @code{typedef} name as the type specifier for a
11436vector type.
b0b343db
JJ
11437
11438@item
11439For C, overloaded functions are implemented with macros so the following
11440does not work:
90989b26
AH
11441
11442@smallexample
8254cb45 11443 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
90989b26
AH
11444@end smallexample
11445
b0b343db
JJ
11446Since @code{vec_add} is a macro, the vector constant in the example
11447is treated as four separate arguments. Wrap the entire argument in
11448parentheses for this to work.
11449@end itemize
90989b26 11450
ae4b4a02
AH
11451@emph{Note:} Only the @code{<altivec.h>} interface is supported.
11452Internally, GCC uses built-in functions to achieve the functionality in
11453the aforementioned header file, but they are not supported and are
11454subject to change without notice.
11455
b0b343db
JJ
11456The following interfaces are supported for the generic and specific
11457AltiVec operations and the AltiVec predicates. In cases where there
11458is a direct mapping between generic and specific operations, only the
11459generic names are shown here, although the specific operations can also
11460be used.
333c8841 11461
b0b343db
JJ
11462Arguments that are documented as @code{const int} require literal
11463integral values within the range required for that operation.
333c8841 11464
b0b343db
JJ
11465@smallexample
11466vector signed char vec_abs (vector signed char);
11467vector signed short vec_abs (vector signed short);
11468vector signed int vec_abs (vector signed int);
11469vector float vec_abs (vector float);
333c8841 11470
b0b343db
JJ
11471vector signed char vec_abss (vector signed char);
11472vector signed short vec_abss (vector signed short);
11473vector signed int vec_abss (vector signed int);
333c8841 11474
b0b343db
JJ
11475vector signed char vec_add (vector bool char, vector signed char);
11476vector signed char vec_add (vector signed char, vector bool char);
11477vector signed char vec_add (vector signed char, vector signed char);
11478vector unsigned char vec_add (vector bool char, vector unsigned char);
11479vector unsigned char vec_add (vector unsigned char, vector bool char);
924fcc4e
JM
11480vector unsigned char vec_add (vector unsigned char,
11481 vector unsigned char);
b0b343db
JJ
11482vector signed short vec_add (vector bool short, vector signed short);
11483vector signed short vec_add (vector signed short, vector bool short);
333c8841 11484vector signed short vec_add (vector signed short, vector signed short);
b0b343db 11485vector unsigned short vec_add (vector bool short,
924fcc4e
JM
11486 vector unsigned short);
11487vector unsigned short vec_add (vector unsigned short,
b0b343db 11488 vector bool short);
6e5bb5ad
JM
11489vector unsigned short vec_add (vector unsigned short,
11490 vector unsigned short);
b0b343db
JJ
11491vector signed int vec_add (vector bool int, vector signed int);
11492vector signed int vec_add (vector signed int, vector bool int);
333c8841 11493vector signed int vec_add (vector signed int, vector signed int);
b0b343db
JJ
11494vector unsigned int vec_add (vector bool int, vector unsigned int);
11495vector unsigned int vec_add (vector unsigned int, vector bool int);
333c8841
AH
11496vector unsigned int vec_add (vector unsigned int, vector unsigned int);
11497vector float vec_add (vector float, vector float);
11498
b0b343db
JJ
11499vector float vec_vaddfp (vector float, vector float);
11500
11501vector signed int vec_vadduwm (vector bool int, vector signed int);
11502vector signed int vec_vadduwm (vector signed int, vector bool int);
11503vector signed int vec_vadduwm (vector signed int, vector signed int);
11504vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
11505vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
11506vector unsigned int vec_vadduwm (vector unsigned int,
11507 vector unsigned int);
11508
11509vector signed short vec_vadduhm (vector bool short,
11510 vector signed short);
11511vector signed short vec_vadduhm (vector signed short,
11512 vector bool short);
11513vector signed short vec_vadduhm (vector signed short,
11514 vector signed short);
11515vector unsigned short vec_vadduhm (vector bool short,
11516 vector unsigned short);
11517vector unsigned short vec_vadduhm (vector unsigned short,
11518 vector bool short);
11519vector unsigned short vec_vadduhm (vector unsigned short,
11520 vector unsigned short);
11521
11522vector signed char vec_vaddubm (vector bool char, vector signed char);
11523vector signed char vec_vaddubm (vector signed char, vector bool char);
11524vector signed char vec_vaddubm (vector signed char, vector signed char);
11525vector unsigned char vec_vaddubm (vector bool char,
11526 vector unsigned char);
11527vector unsigned char vec_vaddubm (vector unsigned char,
11528 vector bool char);
11529vector unsigned char vec_vaddubm (vector unsigned char,
11530 vector unsigned char);
11531
333c8841
AH
11532vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
11533
b0b343db
JJ
11534vector unsigned char vec_adds (vector bool char, vector unsigned char);
11535vector unsigned char vec_adds (vector unsigned char, vector bool char);
924fcc4e
JM
11536vector unsigned char vec_adds (vector unsigned char,
11537 vector unsigned char);
b0b343db
JJ
11538vector signed char vec_adds (vector bool char, vector signed char);
11539vector signed char vec_adds (vector signed char, vector bool char);
333c8841 11540vector signed char vec_adds (vector signed char, vector signed char);
b0b343db 11541vector unsigned short vec_adds (vector bool short,
924fcc4e
JM
11542 vector unsigned short);
11543vector unsigned short vec_adds (vector unsigned short,
b0b343db 11544 vector bool short);
6e5bb5ad
JM
11545vector unsigned short vec_adds (vector unsigned short,
11546 vector unsigned short);
b0b343db
JJ
11547vector signed short vec_adds (vector bool short, vector signed short);
11548vector signed short vec_adds (vector signed short, vector bool short);
333c8841 11549vector signed short vec_adds (vector signed short, vector signed short);
b0b343db
JJ
11550vector unsigned int vec_adds (vector bool int, vector unsigned int);
11551vector unsigned int vec_adds (vector unsigned int, vector bool int);
333c8841 11552vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
b0b343db
JJ
11553vector signed int vec_adds (vector bool int, vector signed int);
11554vector signed int vec_adds (vector signed int, vector bool int);
333c8841
AH
11555vector signed int vec_adds (vector signed int, vector signed int);
11556
b0b343db
JJ
11557vector signed int vec_vaddsws (vector bool int, vector signed int);
11558vector signed int vec_vaddsws (vector signed int, vector bool int);
11559vector signed int vec_vaddsws (vector signed int, vector signed int);
11560
11561vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
11562vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
11563vector unsigned int vec_vadduws (vector unsigned int,
11564 vector unsigned int);
11565
11566vector signed short vec_vaddshs (vector bool short,
11567 vector signed short);
11568vector signed short vec_vaddshs (vector signed short,
11569 vector bool short);
11570vector signed short vec_vaddshs (vector signed short,
11571 vector signed short);
11572
11573vector unsigned short vec_vadduhs (vector bool short,
11574 vector unsigned short);
11575vector unsigned short vec_vadduhs (vector unsigned short,
11576 vector bool short);
11577vector unsigned short vec_vadduhs (vector unsigned short,
11578 vector unsigned short);
11579
11580vector signed char vec_vaddsbs (vector bool char, vector signed char);
11581vector signed char vec_vaddsbs (vector signed char, vector bool char);
11582vector signed char vec_vaddsbs (vector signed char, vector signed char);
11583
11584vector unsigned char vec_vaddubs (vector bool char,
11585 vector unsigned char);
11586vector unsigned char vec_vaddubs (vector unsigned char,
11587 vector bool char);
11588vector unsigned char vec_vaddubs (vector unsigned char,
11589 vector unsigned char);
11590
333c8841 11591vector float vec_and (vector float, vector float);
b0b343db
JJ
11592vector float vec_and (vector float, vector bool int);
11593vector float vec_and (vector bool int, vector float);
11594vector bool int vec_and (vector bool int, vector bool int);
11595vector signed int vec_and (vector bool int, vector signed int);
11596vector signed int vec_and (vector signed int, vector bool int);
333c8841 11597vector signed int vec_and (vector signed int, vector signed int);
b0b343db
JJ
11598vector unsigned int vec_and (vector bool int, vector unsigned int);
11599vector unsigned int vec_and (vector unsigned int, vector bool int);
333c8841 11600vector unsigned int vec_and (vector unsigned int, vector unsigned int);
b0b343db
JJ
11601vector bool short vec_and (vector bool short, vector bool short);
11602vector signed short vec_and (vector bool short, vector signed short);
11603vector signed short vec_and (vector signed short, vector bool short);
333c8841 11604vector signed short vec_and (vector signed short, vector signed short);
b0b343db 11605vector unsigned short vec_and (vector bool short,
924fcc4e
JM
11606 vector unsigned short);
11607vector unsigned short vec_and (vector unsigned short,
b0b343db 11608 vector bool short);
6e5bb5ad
JM
11609vector unsigned short vec_and (vector unsigned short,
11610 vector unsigned short);
b0b343db
JJ
11611vector signed char vec_and (vector bool char, vector signed char);
11612vector bool char vec_and (vector bool char, vector bool char);
11613vector signed char vec_and (vector signed char, vector bool char);
333c8841 11614vector signed char vec_and (vector signed char, vector signed char);
b0b343db
JJ
11615vector unsigned char vec_and (vector bool char, vector unsigned char);
11616vector unsigned char vec_and (vector unsigned char, vector bool char);
924fcc4e
JM
11617vector unsigned char vec_and (vector unsigned char,
11618 vector unsigned char);
333c8841
AH
11619
11620vector float vec_andc (vector float, vector float);
b0b343db
JJ
11621vector float vec_andc (vector float, vector bool int);
11622vector float vec_andc (vector bool int, vector float);
11623vector bool int vec_andc (vector bool int, vector bool int);
11624vector signed int vec_andc (vector bool int, vector signed int);
11625vector signed int vec_andc (vector signed int, vector bool int);
333c8841 11626vector signed int vec_andc (vector signed int, vector signed int);
b0b343db
JJ
11627vector unsigned int vec_andc (vector bool int, vector unsigned int);
11628vector unsigned int vec_andc (vector unsigned int, vector bool int);
333c8841 11629vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
b0b343db
JJ
11630vector bool short vec_andc (vector bool short, vector bool short);
11631vector signed short vec_andc (vector bool short, vector signed short);
11632vector signed short vec_andc (vector signed short, vector bool short);
333c8841 11633vector signed short vec_andc (vector signed short, vector signed short);
b0b343db 11634vector unsigned short vec_andc (vector bool short,
924fcc4e
JM
11635 vector unsigned short);
11636vector unsigned short vec_andc (vector unsigned short,
b0b343db 11637 vector bool short);
6e5bb5ad
JM
11638vector unsigned short vec_andc (vector unsigned short,
11639 vector unsigned short);
b0b343db
JJ
11640vector signed char vec_andc (vector bool char, vector signed char);
11641vector bool char vec_andc (vector bool char, vector bool char);
11642vector signed char vec_andc (vector signed char, vector bool char);
333c8841 11643vector signed char vec_andc (vector signed char, vector signed char);
b0b343db
JJ
11644vector unsigned char vec_andc (vector bool char, vector unsigned char);
11645vector unsigned char vec_andc (vector unsigned char, vector bool char);
924fcc4e
JM
11646vector unsigned char vec_andc (vector unsigned char,
11647 vector unsigned char);
333c8841 11648
924fcc4e
JM
11649vector unsigned char vec_avg (vector unsigned char,
11650 vector unsigned char);
333c8841 11651vector signed char vec_avg (vector signed char, vector signed char);
6e5bb5ad
JM
11652vector unsigned short vec_avg (vector unsigned short,
11653 vector unsigned short);
333c8841
AH
11654vector signed short vec_avg (vector signed short, vector signed short);
11655vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
11656vector signed int vec_avg (vector signed int, vector signed int);
11657
b0b343db
JJ
11658vector signed int vec_vavgsw (vector signed int, vector signed int);
11659
11660vector unsigned int vec_vavguw (vector unsigned int,
11661 vector unsigned int);
11662
11663vector signed short vec_vavgsh (vector signed short,
11664 vector signed short);
11665
11666vector unsigned short vec_vavguh (vector unsigned short,
11667 vector unsigned short);
11668
11669vector signed char vec_vavgsb (vector signed char, vector signed char);
11670
11671vector unsigned char vec_vavgub (vector unsigned char,
11672 vector unsigned char);
11673
29e6733c
MM
11674vector float vec_copysign (vector float);
11675
333c8841
AH
11676vector float vec_ceil (vector float);
11677
11678vector signed int vec_cmpb (vector float, vector float);
11679
b0b343db
JJ
11680vector bool char vec_cmpeq (vector signed char, vector signed char);
11681vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
11682vector bool short vec_cmpeq (vector signed short, vector signed short);
11683vector bool short vec_cmpeq (vector unsigned short,
11684 vector unsigned short);
11685vector bool int vec_cmpeq (vector signed int, vector signed int);
11686vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
11687vector bool int vec_cmpeq (vector float, vector float);
333c8841 11688
b0b343db 11689vector bool int vec_vcmpeqfp (vector float, vector float);
333c8841 11690
b0b343db
JJ
11691vector bool int vec_vcmpequw (vector signed int, vector signed int);
11692vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
11693
11694vector bool short vec_vcmpequh (vector signed short,
11695 vector signed short);
11696vector bool short vec_vcmpequh (vector unsigned short,
11697 vector unsigned short);
333c8841 11698
b0b343db
JJ
11699vector bool char vec_vcmpequb (vector signed char, vector signed char);
11700vector bool char vec_vcmpequb (vector unsigned char,
11701 vector unsigned char);
333c8841 11702
b0b343db 11703vector bool int vec_cmpge (vector float, vector float);
333c8841 11704
b0b343db
JJ
11705vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
11706vector bool char vec_cmpgt (vector signed char, vector signed char);
11707vector bool short vec_cmpgt (vector unsigned short,
11708 vector unsigned short);
11709vector bool short vec_cmpgt (vector signed short, vector signed short);
11710vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
11711vector bool int vec_cmpgt (vector signed int, vector signed int);
11712vector bool int vec_cmpgt (vector float, vector float);
11713
11714vector bool int vec_vcmpgtfp (vector float, vector float);
11715
11716vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
11717
11718vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
333c8841 11719
b0b343db
JJ
11720vector bool short vec_vcmpgtsh (vector signed short,
11721 vector signed short);
11722
11723vector bool short vec_vcmpgtuh (vector unsigned short,
11724 vector unsigned short);
11725
11726vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
11727
11728vector bool char vec_vcmpgtub (vector unsigned char,
11729 vector unsigned char);
11730
11731vector bool int vec_cmple (vector float, vector float);
11732
11733vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
11734vector bool char vec_cmplt (vector signed char, vector signed char);
11735vector bool short vec_cmplt (vector unsigned short,
11736 vector unsigned short);
11737vector bool short vec_cmplt (vector signed short, vector signed short);
11738vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
11739vector bool int vec_cmplt (vector signed int, vector signed int);
11740vector bool int vec_cmplt (vector float, vector float);
333c8841 11741
b0b343db
JJ
11742vector float vec_ctf (vector unsigned int, const int);
11743vector float vec_ctf (vector signed int, const int);
333c8841 11744
b0b343db
JJ
11745vector float vec_vcfsx (vector signed int, const int);
11746
11747vector float vec_vcfux (vector unsigned int, const int);
11748
11749vector signed int vec_cts (vector float, const int);
11750
11751vector unsigned int vec_ctu (vector float, const int);
11752
11753void vec_dss (const int);
333c8841
AH
11754
11755void vec_dssall (void);
11756
b0b343db
JJ
11757void vec_dst (const vector unsigned char *, int, const int);
11758void vec_dst (const vector signed char *, int, const int);
11759void vec_dst (const vector bool char *, int, const int);
11760void vec_dst (const vector unsigned short *, int, const int);
11761void vec_dst (const vector signed short *, int, const int);
11762void vec_dst (const vector bool short *, int, const int);
11763void vec_dst (const vector pixel *, int, const int);
11764void vec_dst (const vector unsigned int *, int, const int);
11765void vec_dst (const vector signed int *, int, const int);
11766void vec_dst (const vector bool int *, int, const int);
11767void vec_dst (const vector float *, int, const int);
11768void vec_dst (const unsigned char *, int, const int);
11769void vec_dst (const signed char *, int, const int);
11770void vec_dst (const unsigned short *, int, const int);
11771void vec_dst (const short *, int, const int);
11772void vec_dst (const unsigned int *, int, const int);
11773void vec_dst (const int *, int, const int);
11774void vec_dst (const unsigned long *, int, const int);
11775void vec_dst (const long *, int, const int);
11776void vec_dst (const float *, int, const int);
11777
11778void vec_dstst (const vector unsigned char *, int, const int);
11779void vec_dstst (const vector signed char *, int, const int);
11780void vec_dstst (const vector bool char *, int, const int);
11781void vec_dstst (const vector unsigned short *, int, const int);
11782void vec_dstst (const vector signed short *, int, const int);
11783void vec_dstst (const vector bool short *, int, const int);
11784void vec_dstst (const vector pixel *, int, const int);
11785void vec_dstst (const vector unsigned int *, int, const int);
11786void vec_dstst (const vector signed int *, int, const int);
11787void vec_dstst (const vector bool int *, int, const int);
11788void vec_dstst (const vector float *, int, const int);
11789void vec_dstst (const unsigned char *, int, const int);
11790void vec_dstst (const signed char *, int, const int);
11791void vec_dstst (const unsigned short *, int, const int);
11792void vec_dstst (const short *, int, const int);
11793void vec_dstst (const unsigned int *, int, const int);
11794void vec_dstst (const int *, int, const int);
11795void vec_dstst (const unsigned long *, int, const int);
11796void vec_dstst (const long *, int, const int);
11797void vec_dstst (const float *, int, const int);
11798
11799void vec_dststt (const vector unsigned char *, int, const int);
11800void vec_dststt (const vector signed char *, int, const int);
11801void vec_dststt (const vector bool char *, int, const int);
11802void vec_dststt (const vector unsigned short *, int, const int);
11803void vec_dststt (const vector signed short *, int, const int);
11804void vec_dststt (const vector bool short *, int, const int);
11805void vec_dststt (const vector pixel *, int, const int);
11806void vec_dststt (const vector unsigned int *, int, const int);
11807void vec_dststt (const vector signed int *, int, const int);
11808void vec_dststt (const vector bool int *, int, const int);
11809void vec_dststt (const vector float *, int, const int);
11810void vec_dststt (const unsigned char *, int, const int);
11811void vec_dststt (const signed char *, int, const int);
11812void vec_dststt (const unsigned short *, int, const int);
11813void vec_dststt (const short *, int, const int);
11814void vec_dststt (const unsigned int *, int, const int);
11815void vec_dststt (const int *, int, const int);
11816void vec_dststt (const unsigned long *, int, const int);
11817void vec_dststt (const long *, int, const int);
11818void vec_dststt (const float *, int, const int);
11819
11820void vec_dstt (const vector unsigned char *, int, const int);
11821void vec_dstt (const vector signed char *, int, const int);
11822void vec_dstt (const vector bool char *, int, const int);
11823void vec_dstt (const vector unsigned short *, int, const int);
11824void vec_dstt (const vector signed short *, int, const int);
11825void vec_dstt (const vector bool short *, int, const int);
11826void vec_dstt (const vector pixel *, int, const int);
11827void vec_dstt (const vector unsigned int *, int, const int);
11828void vec_dstt (const vector signed int *, int, const int);
11829void vec_dstt (const vector bool int *, int, const int);
11830void vec_dstt (const vector float *, int, const int);
11831void vec_dstt (const unsigned char *, int, const int);
11832void vec_dstt (const signed char *, int, const int);
11833void vec_dstt (const unsigned short *, int, const int);
11834void vec_dstt (const short *, int, const int);
11835void vec_dstt (const unsigned int *, int, const int);
11836void vec_dstt (const int *, int, const int);
11837void vec_dstt (const unsigned long *, int, const int);
11838void vec_dstt (const long *, int, const int);
11839void vec_dstt (const float *, int, const int);
11840
11841vector float vec_expte (vector float);
11842
11843vector float vec_floor (vector float);
11844
11845vector float vec_ld (int, const vector float *);
11846vector float vec_ld (int, const float *);
11847vector bool int vec_ld (int, const vector bool int *);
11848vector signed int vec_ld (int, const vector signed int *);
11849vector signed int vec_ld (int, const int *);
11850vector signed int vec_ld (int, const long *);
11851vector unsigned int vec_ld (int, const vector unsigned int *);
11852vector unsigned int vec_ld (int, const unsigned int *);
11853vector unsigned int vec_ld (int, const unsigned long *);
11854vector bool short vec_ld (int, const vector bool short *);
11855vector pixel vec_ld (int, const vector pixel *);
11856vector signed short vec_ld (int, const vector signed short *);
11857vector signed short vec_ld (int, const short *);
11858vector unsigned short vec_ld (int, const vector unsigned short *);
11859vector unsigned short vec_ld (int, const unsigned short *);
11860vector bool char vec_ld (int, const vector bool char *);
11861vector signed char vec_ld (int, const vector signed char *);
11862vector signed char vec_ld (int, const signed char *);
11863vector unsigned char vec_ld (int, const vector unsigned char *);
11864vector unsigned char vec_ld (int, const unsigned char *);
11865
11866vector signed char vec_lde (int, const signed char *);
11867vector unsigned char vec_lde (int, const unsigned char *);
11868vector signed short vec_lde (int, const short *);
11869vector unsigned short vec_lde (int, const unsigned short *);
11870vector float vec_lde (int, const float *);
11871vector signed int vec_lde (int, const int *);
11872vector unsigned int vec_lde (int, const unsigned int *);
11873vector signed int vec_lde (int, const long *);
11874vector unsigned int vec_lde (int, const unsigned long *);
11875
11876vector float vec_lvewx (int, float *);
11877vector signed int vec_lvewx (int, int *);
11878vector unsigned int vec_lvewx (int, unsigned int *);
11879vector signed int vec_lvewx (int, long *);
11880vector unsigned int vec_lvewx (int, unsigned long *);
11881
11882vector signed short vec_lvehx (int, short *);
11883vector unsigned short vec_lvehx (int, unsigned short *);
11884
11885vector signed char vec_lvebx (int, char *);
11886vector unsigned char vec_lvebx (int, unsigned char *);
11887
11888vector float vec_ldl (int, const vector float *);
11889vector float vec_ldl (int, const float *);
11890vector bool int vec_ldl (int, const vector bool int *);
11891vector signed int vec_ldl (int, const vector signed int *);
11892vector signed int vec_ldl (int, const int *);
11893vector signed int vec_ldl (int, const long *);
11894vector unsigned int vec_ldl (int, const vector unsigned int *);
11895vector unsigned int vec_ldl (int, const unsigned int *);
11896vector unsigned int vec_ldl (int, const unsigned long *);
11897vector bool short vec_ldl (int, const vector bool short *);
11898vector pixel vec_ldl (int, const vector pixel *);
11899vector signed short vec_ldl (int, const vector signed short *);
11900vector signed short vec_ldl (int, const short *);
11901vector unsigned short vec_ldl (int, const vector unsigned short *);
11902vector unsigned short vec_ldl (int, const unsigned short *);
11903vector bool char vec_ldl (int, const vector bool char *);
11904vector signed char vec_ldl (int, const vector signed char *);
11905vector signed char vec_ldl (int, const signed char *);
11906vector unsigned char vec_ldl (int, const vector unsigned char *);
11907vector unsigned char vec_ldl (int, const unsigned char *);
333c8841
AH
11908
11909vector float vec_loge (vector float);
11910
b0b343db
JJ
11911vector unsigned char vec_lvsl (int, const volatile unsigned char *);
11912vector unsigned char vec_lvsl (int, const volatile signed char *);
11913vector unsigned char vec_lvsl (int, const volatile unsigned short *);
11914vector unsigned char vec_lvsl (int, const volatile short *);
11915vector unsigned char vec_lvsl (int, const volatile unsigned int *);
11916vector unsigned char vec_lvsl (int, const volatile int *);
11917vector unsigned char vec_lvsl (int, const volatile unsigned long *);
11918vector unsigned char vec_lvsl (int, const volatile long *);
11919vector unsigned char vec_lvsl (int, const volatile float *);
11920
11921vector unsigned char vec_lvsr (int, const volatile unsigned char *);
11922vector unsigned char vec_lvsr (int, const volatile signed char *);
11923vector unsigned char vec_lvsr (int, const volatile unsigned short *);
11924vector unsigned char vec_lvsr (int, const volatile short *);
11925vector unsigned char vec_lvsr (int, const volatile unsigned int *);
11926vector unsigned char vec_lvsr (int, const volatile int *);
11927vector unsigned char vec_lvsr (int, const volatile unsigned long *);
11928vector unsigned char vec_lvsr (int, const volatile long *);
11929vector unsigned char vec_lvsr (int, const volatile float *);
333c8841
AH
11930
11931vector float vec_madd (vector float, vector float, vector float);
11932
b0b343db
JJ
11933vector signed short vec_madds (vector signed short,
11934 vector signed short,
6e5bb5ad 11935 vector signed short);
333c8841 11936
b0b343db
JJ
11937vector unsigned char vec_max (vector bool char, vector unsigned char);
11938vector unsigned char vec_max (vector unsigned char, vector bool char);
924fcc4e
JM
11939vector unsigned char vec_max (vector unsigned char,
11940 vector unsigned char);
b0b343db
JJ
11941vector signed char vec_max (vector bool char, vector signed char);
11942vector signed char vec_max (vector signed char, vector bool char);
333c8841 11943vector signed char vec_max (vector signed char, vector signed char);
b0b343db 11944vector unsigned short vec_max (vector bool short,
924fcc4e
JM
11945 vector unsigned short);
11946vector unsigned short vec_max (vector unsigned short,
b0b343db 11947 vector bool short);
6e5bb5ad
JM
11948vector unsigned short vec_max (vector unsigned short,
11949 vector unsigned short);
b0b343db
JJ
11950vector signed short vec_max (vector bool short, vector signed short);
11951vector signed short vec_max (vector signed short, vector bool short);
333c8841 11952vector signed short vec_max (vector signed short, vector signed short);
b0b343db
JJ
11953vector unsigned int vec_max (vector bool int, vector unsigned int);
11954vector unsigned int vec_max (vector unsigned int, vector bool int);
333c8841 11955vector unsigned int vec_max (vector unsigned int, vector unsigned int);
b0b343db
JJ
11956vector signed int vec_max (vector bool int, vector signed int);
11957vector signed int vec_max (vector signed int, vector bool int);
333c8841
AH
11958vector signed int vec_max (vector signed int, vector signed int);
11959vector float vec_max (vector float, vector float);
11960
b0b343db
JJ
11961vector float vec_vmaxfp (vector float, vector float);
11962
11963vector signed int vec_vmaxsw (vector bool int, vector signed int);
11964vector signed int vec_vmaxsw (vector signed int, vector bool int);
11965vector signed int vec_vmaxsw (vector signed int, vector signed int);
11966
11967vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
11968vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
11969vector unsigned int vec_vmaxuw (vector unsigned int,
11970 vector unsigned int);
11971
11972vector signed short vec_vmaxsh (vector bool short, vector signed short);
11973vector signed short vec_vmaxsh (vector signed short, vector bool short);
11974vector signed short vec_vmaxsh (vector signed short,
11975 vector signed short);
11976
11977vector unsigned short vec_vmaxuh (vector bool short,
11978 vector unsigned short);
11979vector unsigned short vec_vmaxuh (vector unsigned short,
11980 vector bool short);
11981vector unsigned short vec_vmaxuh (vector unsigned short,
11982 vector unsigned short);
11983
11984vector signed char vec_vmaxsb (vector bool char, vector signed char);
11985vector signed char vec_vmaxsb (vector signed char, vector bool char);
11986vector signed char vec_vmaxsb (vector signed char, vector signed char);
11987
11988vector unsigned char vec_vmaxub (vector bool char,
11989 vector unsigned char);
11990vector unsigned char vec_vmaxub (vector unsigned char,
11991 vector bool char);
11992vector unsigned char vec_vmaxub (vector unsigned char,
11993 vector unsigned char);
11994
11995vector bool char vec_mergeh (vector bool char, vector bool char);
333c8841 11996vector signed char vec_mergeh (vector signed char, vector signed char);
6e5bb5ad
JM
11997vector unsigned char vec_mergeh (vector unsigned char,
11998 vector unsigned char);
b0b343db
JJ
11999vector bool short vec_mergeh (vector bool short, vector bool short);
12000vector pixel vec_mergeh (vector pixel, vector pixel);
924fcc4e
JM
12001vector signed short vec_mergeh (vector signed short,
12002 vector signed short);
6e5bb5ad
JM
12003vector unsigned short vec_mergeh (vector unsigned short,
12004 vector unsigned short);
333c8841 12005vector float vec_mergeh (vector float, vector float);
b0b343db 12006vector bool int vec_mergeh (vector bool int, vector bool int);
333c8841 12007vector signed int vec_mergeh (vector signed int, vector signed int);
924fcc4e
JM
12008vector unsigned int vec_mergeh (vector unsigned int,
12009 vector unsigned int);
333c8841 12010
b0b343db
JJ
12011vector float vec_vmrghw (vector float, vector float);
12012vector bool int vec_vmrghw (vector bool int, vector bool int);
12013vector signed int vec_vmrghw (vector signed int, vector signed int);
12014vector unsigned int vec_vmrghw (vector unsigned int,
12015 vector unsigned int);
12016
12017vector bool short vec_vmrghh (vector bool short, vector bool short);
12018vector signed short vec_vmrghh (vector signed short,
12019 vector signed short);
12020vector unsigned short vec_vmrghh (vector unsigned short,
12021 vector unsigned short);
12022vector pixel vec_vmrghh (vector pixel, vector pixel);
12023
12024vector bool char vec_vmrghb (vector bool char, vector bool char);
12025vector signed char vec_vmrghb (vector signed char, vector signed char);
12026vector unsigned char vec_vmrghb (vector unsigned char,
12027 vector unsigned char);
12028
12029vector bool char vec_mergel (vector bool char, vector bool char);
333c8841 12030vector signed char vec_mergel (vector signed char, vector signed char);
6e5bb5ad
JM
12031vector unsigned char vec_mergel (vector unsigned char,
12032 vector unsigned char);
b0b343db
JJ
12033vector bool short vec_mergel (vector bool short, vector bool short);
12034vector pixel vec_mergel (vector pixel, vector pixel);
924fcc4e
JM
12035vector signed short vec_mergel (vector signed short,
12036 vector signed short);
6e5bb5ad
JM
12037vector unsigned short vec_mergel (vector unsigned short,
12038 vector unsigned short);
333c8841 12039vector float vec_mergel (vector float, vector float);
b0b343db 12040vector bool int vec_mergel (vector bool int, vector bool int);
333c8841 12041vector signed int vec_mergel (vector signed int, vector signed int);
924fcc4e
JM
12042vector unsigned int vec_mergel (vector unsigned int,
12043 vector unsigned int);
333c8841 12044
b0b343db
JJ
12045vector float vec_vmrglw (vector float, vector float);
12046vector signed int vec_vmrglw (vector signed int, vector signed int);
12047vector unsigned int vec_vmrglw (vector unsigned int,
12048 vector unsigned int);
12049vector bool int vec_vmrglw (vector bool int, vector bool int);
333c8841 12050
b0b343db
JJ
12051vector bool short vec_vmrglh (vector bool short, vector bool short);
12052vector signed short vec_vmrglh (vector signed short,
12053 vector signed short);
12054vector unsigned short vec_vmrglh (vector unsigned short,
12055 vector unsigned short);
12056vector pixel vec_vmrglh (vector pixel, vector pixel);
12057
12058vector bool char vec_vmrglb (vector bool char, vector bool char);
12059vector signed char vec_vmrglb (vector signed char, vector signed char);
12060vector unsigned char vec_vmrglb (vector unsigned char,
12061 vector unsigned char);
333c8841 12062
b0b343db 12063vector unsigned short vec_mfvscr (void);
333c8841 12064
b0b343db
JJ
12065vector unsigned char vec_min (vector bool char, vector unsigned char);
12066vector unsigned char vec_min (vector unsigned char, vector bool char);
924fcc4e
JM
12067vector unsigned char vec_min (vector unsigned char,
12068 vector unsigned char);
b0b343db
JJ
12069vector signed char vec_min (vector bool char, vector signed char);
12070vector signed char vec_min (vector signed char, vector bool char);
333c8841 12071vector signed char vec_min (vector signed char, vector signed char);
b0b343db 12072vector unsigned short vec_min (vector bool short,
924fcc4e
JM
12073 vector unsigned short);
12074vector unsigned short vec_min (vector unsigned short,
b0b343db 12075 vector bool short);
6e5bb5ad
JM
12076vector unsigned short vec_min (vector unsigned short,
12077 vector unsigned short);
b0b343db
JJ
12078vector signed short vec_min (vector bool short, vector signed short);
12079vector signed short vec_min (vector signed short, vector bool short);
333c8841 12080vector signed short vec_min (vector signed short, vector signed short);
b0b343db
JJ
12081vector unsigned int vec_min (vector bool int, vector unsigned int);
12082vector unsigned int vec_min (vector unsigned int, vector bool int);
333c8841 12083vector unsigned int vec_min (vector unsigned int, vector unsigned int);
b0b343db
JJ
12084vector signed int vec_min (vector bool int, vector signed int);
12085vector signed int vec_min (vector signed int, vector bool int);
333c8841
AH
12086vector signed int vec_min (vector signed int, vector signed int);
12087vector float vec_min (vector float, vector float);
12088
b0b343db
JJ
12089vector float vec_vminfp (vector float, vector float);
12090
12091vector signed int vec_vminsw (vector bool int, vector signed int);
12092vector signed int vec_vminsw (vector signed int, vector bool int);
12093vector signed int vec_vminsw (vector signed int, vector signed int);
12094
12095vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
12096vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
12097vector unsigned int vec_vminuw (vector unsigned int,
12098 vector unsigned int);
12099
12100vector signed short vec_vminsh (vector bool short, vector signed short);
12101vector signed short vec_vminsh (vector signed short, vector bool short);
12102vector signed short vec_vminsh (vector signed short,
12103 vector signed short);
12104
12105vector unsigned short vec_vminuh (vector bool short,
12106 vector unsigned short);
12107vector unsigned short vec_vminuh (vector unsigned short,
12108 vector bool short);
12109vector unsigned short vec_vminuh (vector unsigned short,
12110 vector unsigned short);
12111
12112vector signed char vec_vminsb (vector bool char, vector signed char);
12113vector signed char vec_vminsb (vector signed char, vector bool char);
12114vector signed char vec_vminsb (vector signed char, vector signed char);
12115
12116vector unsigned char vec_vminub (vector bool char,
12117 vector unsigned char);
12118vector unsigned char vec_vminub (vector unsigned char,
12119 vector bool char);
12120vector unsigned char vec_vminub (vector unsigned char,
12121 vector unsigned char);
12122
12123vector signed short vec_mladd (vector signed short,
12124 vector signed short,
6e5bb5ad 12125 vector signed short);
924fcc4e
JM
12126vector signed short vec_mladd (vector signed short,
12127 vector unsigned short,
6e5bb5ad 12128 vector unsigned short);
924fcc4e
JM
12129vector signed short vec_mladd (vector unsigned short,
12130 vector signed short,
6e5bb5ad
JM
12131 vector signed short);
12132vector unsigned short vec_mladd (vector unsigned short,
12133 vector unsigned short,
12134 vector unsigned short);
12135
924fcc4e
JM
12136vector signed short vec_mradds (vector signed short,
12137 vector signed short,
6e5bb5ad
JM
12138 vector signed short);
12139
924fcc4e
JM
12140vector unsigned int vec_msum (vector unsigned char,
12141 vector unsigned char,
6e5bb5ad 12142 vector unsigned int);
b0b343db
JJ
12143vector signed int vec_msum (vector signed char,
12144 vector unsigned char,
6e5bb5ad 12145 vector signed int);
924fcc4e
JM
12146vector unsigned int vec_msum (vector unsigned short,
12147 vector unsigned short,
6e5bb5ad 12148 vector unsigned int);
b0b343db
JJ
12149vector signed int vec_msum (vector signed short,
12150 vector signed short,
6e5bb5ad
JM
12151 vector signed int);
12152
b0b343db
JJ
12153vector signed int vec_vmsumshm (vector signed short,
12154 vector signed short,
12155 vector signed int);
12156
12157vector unsigned int vec_vmsumuhm (vector unsigned short,
12158 vector unsigned short,
12159 vector unsigned int);
12160
12161vector signed int vec_vmsummbm (vector signed char,
12162 vector unsigned char,
12163 vector signed int);
12164
12165vector unsigned int vec_vmsumubm (vector unsigned char,
12166 vector unsigned char,
12167 vector unsigned int);
12168
6e5bb5ad 12169vector unsigned int vec_msums (vector unsigned short,
924fcc4e
JM
12170 vector unsigned short,
12171 vector unsigned int);
b0b343db
JJ
12172vector signed int vec_msums (vector signed short,
12173 vector signed short,
6e5bb5ad 12174 vector signed int);
333c8841 12175
b0b343db
JJ
12176vector signed int vec_vmsumshs (vector signed short,
12177 vector signed short,
12178 vector signed int);
12179
12180vector unsigned int vec_vmsumuhs (vector unsigned short,
12181 vector unsigned short,
12182 vector unsigned int);
12183
333c8841
AH
12184void vec_mtvscr (vector signed int);
12185void vec_mtvscr (vector unsigned int);
b0b343db 12186void vec_mtvscr (vector bool int);
333c8841
AH
12187void vec_mtvscr (vector signed short);
12188void vec_mtvscr (vector unsigned short);
b0b343db
JJ
12189void vec_mtvscr (vector bool short);
12190void vec_mtvscr (vector pixel);
333c8841
AH
12191void vec_mtvscr (vector signed char);
12192void vec_mtvscr (vector unsigned char);
b0b343db 12193void vec_mtvscr (vector bool char);
333c8841 12194
924fcc4e
JM
12195vector unsigned short vec_mule (vector unsigned char,
12196 vector unsigned char);
b0b343db
JJ
12197vector signed short vec_mule (vector signed char,
12198 vector signed char);
924fcc4e
JM
12199vector unsigned int vec_mule (vector unsigned short,
12200 vector unsigned short);
333c8841
AH
12201vector signed int vec_mule (vector signed short, vector signed short);
12202
b0b343db
JJ
12203vector signed int vec_vmulesh (vector signed short,
12204 vector signed short);
12205
12206vector unsigned int vec_vmuleuh (vector unsigned short,
12207 vector unsigned short);
12208
12209vector signed short vec_vmulesb (vector signed char,
12210 vector signed char);
12211
12212vector unsigned short vec_vmuleub (vector unsigned char,
12213 vector unsigned char);
12214
924fcc4e
JM
12215vector unsigned short vec_mulo (vector unsigned char,
12216 vector unsigned char);
333c8841 12217vector signed short vec_mulo (vector signed char, vector signed char);
924fcc4e
JM
12218vector unsigned int vec_mulo (vector unsigned short,
12219 vector unsigned short);
333c8841
AH
12220vector signed int vec_mulo (vector signed short, vector signed short);
12221
b0b343db
JJ
12222vector signed int vec_vmulosh (vector signed short,
12223 vector signed short);
12224
12225vector unsigned int vec_vmulouh (vector unsigned short,
12226 vector unsigned short);
12227
12228vector signed short vec_vmulosb (vector signed char,
12229 vector signed char);
12230
12231vector unsigned short vec_vmuloub (vector unsigned char,
12232 vector unsigned char);
12233
333c8841
AH
12234vector float vec_nmsub (vector float, vector float, vector float);
12235
12236vector float vec_nor (vector float, vector float);
12237vector signed int vec_nor (vector signed int, vector signed int);
12238vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
b0b343db 12239vector bool int vec_nor (vector bool int, vector bool int);
333c8841 12240vector signed short vec_nor (vector signed short, vector signed short);
6e5bb5ad
JM
12241vector unsigned short vec_nor (vector unsigned short,
12242 vector unsigned short);
b0b343db 12243vector bool short vec_nor (vector bool short, vector bool short);
333c8841 12244vector signed char vec_nor (vector signed char, vector signed char);
924fcc4e
JM
12245vector unsigned char vec_nor (vector unsigned char,
12246 vector unsigned char);
b0b343db 12247vector bool char vec_nor (vector bool char, vector bool char);
333c8841
AH
12248
12249vector float vec_or (vector float, vector float);
b0b343db
JJ
12250vector float vec_or (vector float, vector bool int);
12251vector float vec_or (vector bool int, vector float);
12252vector bool int vec_or (vector bool int, vector bool int);
12253vector signed int vec_or (vector bool int, vector signed int);
12254vector signed int vec_or (vector signed int, vector bool int);
333c8841 12255vector signed int vec_or (vector signed int, vector signed int);
b0b343db
JJ
12256vector unsigned int vec_or (vector bool int, vector unsigned int);
12257vector unsigned int vec_or (vector unsigned int, vector bool int);
333c8841 12258vector unsigned int vec_or (vector unsigned int, vector unsigned int);
b0b343db
JJ
12259vector bool short vec_or (vector bool short, vector bool short);
12260vector signed short vec_or (vector bool short, vector signed short);
12261vector signed short vec_or (vector signed short, vector bool short);
333c8841 12262vector signed short vec_or (vector signed short, vector signed short);
b0b343db
JJ
12263vector unsigned short vec_or (vector bool short, vector unsigned short);
12264vector unsigned short vec_or (vector unsigned short, vector bool short);
924fcc4e
JM
12265vector unsigned short vec_or (vector unsigned short,
12266 vector unsigned short);
b0b343db
JJ
12267vector signed char vec_or (vector bool char, vector signed char);
12268vector bool char vec_or (vector bool char, vector bool char);
12269vector signed char vec_or (vector signed char, vector bool char);
333c8841 12270vector signed char vec_or (vector signed char, vector signed char);
b0b343db
JJ
12271vector unsigned char vec_or (vector bool char, vector unsigned char);
12272vector unsigned char vec_or (vector unsigned char, vector bool char);
924fcc4e
JM
12273vector unsigned char vec_or (vector unsigned char,
12274 vector unsigned char);
333c8841
AH
12275
12276vector signed char vec_pack (vector signed short, vector signed short);
6e5bb5ad
JM
12277vector unsigned char vec_pack (vector unsigned short,
12278 vector unsigned short);
b0b343db 12279vector bool char vec_pack (vector bool short, vector bool short);
333c8841 12280vector signed short vec_pack (vector signed int, vector signed int);
924fcc4e
JM
12281vector unsigned short vec_pack (vector unsigned int,
12282 vector unsigned int);
b0b343db 12283vector bool short vec_pack (vector bool int, vector bool int);
333c8841 12284
b0b343db
JJ
12285vector bool short vec_vpkuwum (vector bool int, vector bool int);
12286vector signed short vec_vpkuwum (vector signed int, vector signed int);
12287vector unsigned short vec_vpkuwum (vector unsigned int,
12288 vector unsigned int);
12289
12290vector bool char vec_vpkuhum (vector bool short, vector bool short);
12291vector signed char vec_vpkuhum (vector signed short,
12292 vector signed short);
12293vector unsigned char vec_vpkuhum (vector unsigned short,
12294 vector unsigned short);
12295
12296vector pixel vec_packpx (vector unsigned int, vector unsigned int);
333c8841 12297
6e5bb5ad
JM
12298vector unsigned char vec_packs (vector unsigned short,
12299 vector unsigned short);
333c8841 12300vector signed char vec_packs (vector signed short, vector signed short);
924fcc4e
JM
12301vector unsigned short vec_packs (vector unsigned int,
12302 vector unsigned int);
333c8841
AH
12303vector signed short vec_packs (vector signed int, vector signed int);
12304
b0b343db
JJ
12305vector signed short vec_vpkswss (vector signed int, vector signed int);
12306
12307vector unsigned short vec_vpkuwus (vector unsigned int,
12308 vector unsigned int);
12309
12310vector signed char vec_vpkshss (vector signed short,
12311 vector signed short);
12312
12313vector unsigned char vec_vpkuhus (vector unsigned short,
12314 vector unsigned short);
12315
6e5bb5ad
JM
12316vector unsigned char vec_packsu (vector unsigned short,
12317 vector unsigned short);
924fcc4e
JM
12318vector unsigned char vec_packsu (vector signed short,
12319 vector signed short);
12320vector unsigned short vec_packsu (vector unsigned int,
12321 vector unsigned int);
333c8841
AH
12322vector unsigned short vec_packsu (vector signed int, vector signed int);
12323
b0b343db
JJ
12324vector unsigned short vec_vpkswus (vector signed int,
12325 vector signed int);
12326
12327vector unsigned char vec_vpkshus (vector signed short,
12328 vector signed short);
12329
12330vector float vec_perm (vector float,
12331 vector float,
924fcc4e 12332 vector unsigned char);
b0b343db
JJ
12333vector signed int vec_perm (vector signed int,
12334 vector signed int,
6e5bb5ad 12335 vector unsigned char);
b0b343db
JJ
12336vector unsigned int vec_perm (vector unsigned int,
12337 vector unsigned int,
6e5bb5ad 12338 vector unsigned char);
b0b343db
JJ
12339vector bool int vec_perm (vector bool int,
12340 vector bool int,
12341 vector unsigned char);
12342vector signed short vec_perm (vector signed short,
12343 vector signed short,
6e5bb5ad
JM
12344 vector unsigned char);
12345vector unsigned short vec_perm (vector unsigned short,
12346 vector unsigned short,
12347 vector unsigned char);
b0b343db
JJ
12348vector bool short vec_perm (vector bool short,
12349 vector bool short,
12350 vector unsigned char);
12351vector pixel vec_perm (vector pixel,
12352 vector pixel,
12353 vector unsigned char);
12354vector signed char vec_perm (vector signed char,
12355 vector signed char,
6e5bb5ad 12356 vector unsigned char);
924fcc4e
JM
12357vector unsigned char vec_perm (vector unsigned char,
12358 vector unsigned char,
6e5bb5ad 12359 vector unsigned char);
b0b343db
JJ
12360vector bool char vec_perm (vector bool char,
12361 vector bool char,
12362 vector unsigned char);
333c8841
AH
12363
12364vector float vec_re (vector float);
12365
b0b343db
JJ
12366vector signed char vec_rl (vector signed char,
12367 vector unsigned char);
924fcc4e
JM
12368vector unsigned char vec_rl (vector unsigned char,
12369 vector unsigned char);
333c8841 12370vector signed short vec_rl (vector signed short, vector unsigned short);
924fcc4e
JM
12371vector unsigned short vec_rl (vector unsigned short,
12372 vector unsigned short);
333c8841
AH
12373vector signed int vec_rl (vector signed int, vector unsigned int);
12374vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
12375
b0b343db
JJ
12376vector signed int vec_vrlw (vector signed int, vector unsigned int);
12377vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
12378
12379vector signed short vec_vrlh (vector signed short,
12380 vector unsigned short);
12381vector unsigned short vec_vrlh (vector unsigned short,
12382 vector unsigned short);
12383
12384vector signed char vec_vrlb (vector signed char, vector unsigned char);
12385vector unsigned char vec_vrlb (vector unsigned char,
12386 vector unsigned char);
12387
333c8841
AH
12388vector float vec_round (vector float);
12389
92902797
MM
12390vector float vec_recip (vector float, vector float);
12391
12392vector float vec_rsqrt (vector float);
12393
333c8841
AH
12394vector float vec_rsqrte (vector float);
12395
b0b343db 12396vector float vec_sel (vector float, vector float, vector bool int);
333c8841 12397vector float vec_sel (vector float, vector float, vector unsigned int);
b0b343db
JJ
12398vector signed int vec_sel (vector signed int,
12399 vector signed int,
12400 vector bool int);
12401vector signed int vec_sel (vector signed int,
12402 vector signed int,
6e5bb5ad 12403 vector unsigned int);
b0b343db
JJ
12404vector unsigned int vec_sel (vector unsigned int,
12405 vector unsigned int,
12406 vector bool int);
12407vector unsigned int vec_sel (vector unsigned int,
12408 vector unsigned int,
6e5bb5ad 12409 vector unsigned int);
b0b343db
JJ
12410vector bool int vec_sel (vector bool int,
12411 vector bool int,
12412 vector bool int);
12413vector bool int vec_sel (vector bool int,
12414 vector bool int,
12415 vector unsigned int);
12416vector signed short vec_sel (vector signed short,
12417 vector signed short,
12418 vector bool short);
12419vector signed short vec_sel (vector signed short,
12420 vector signed short,
6e5bb5ad
JM
12421 vector unsigned short);
12422vector unsigned short vec_sel (vector unsigned short,
924fcc4e 12423 vector unsigned short,
b0b343db 12424 vector bool short);
6e5bb5ad
JM
12425vector unsigned short vec_sel (vector unsigned short,
12426 vector unsigned short,
12427 vector unsigned short);
b0b343db
JJ
12428vector bool short vec_sel (vector bool short,
12429 vector bool short,
12430 vector bool short);
12431vector bool short vec_sel (vector bool short,
12432 vector bool short,
12433 vector unsigned short);
12434vector signed char vec_sel (vector signed char,
12435 vector signed char,
12436 vector bool char);
12437vector signed char vec_sel (vector signed char,
12438 vector signed char,
6e5bb5ad 12439 vector unsigned char);
924fcc4e
JM
12440vector unsigned char vec_sel (vector unsigned char,
12441 vector unsigned char,
b0b343db 12442 vector bool char);
924fcc4e
JM
12443vector unsigned char vec_sel (vector unsigned char,
12444 vector unsigned char,
6e5bb5ad 12445 vector unsigned char);
b0b343db
JJ
12446vector bool char vec_sel (vector bool char,
12447 vector bool char,
12448 vector bool char);
12449vector bool char vec_sel (vector bool char,
12450 vector bool char,
12451 vector unsigned char);
12452
12453vector signed char vec_sl (vector signed char,
12454 vector unsigned char);
924fcc4e
JM
12455vector unsigned char vec_sl (vector unsigned char,
12456 vector unsigned char);
333c8841 12457vector signed short vec_sl (vector signed short, vector unsigned short);
924fcc4e
JM
12458vector unsigned short vec_sl (vector unsigned short,
12459 vector unsigned short);
333c8841
AH
12460vector signed int vec_sl (vector signed int, vector unsigned int);
12461vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
12462
b0b343db
JJ
12463vector signed int vec_vslw (vector signed int, vector unsigned int);
12464vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
12465
12466vector signed short vec_vslh (vector signed short,
12467 vector unsigned short);
12468vector unsigned short vec_vslh (vector unsigned short,
12469 vector unsigned short);
12470
12471vector signed char vec_vslb (vector signed char, vector unsigned char);
12472vector unsigned char vec_vslb (vector unsigned char,
12473 vector unsigned char);
12474
12475vector float vec_sld (vector float, vector float, const int);
12476vector signed int vec_sld (vector signed int,
12477 vector signed int,
12478 const int);
12479vector unsigned int vec_sld (vector unsigned int,
12480 vector unsigned int,
12481 const int);
12482vector bool int vec_sld (vector bool int,
12483 vector bool int,
12484 const int);
12485vector signed short vec_sld (vector signed short,
12486 vector signed short,
12487 const int);
6e5bb5ad 12488vector unsigned short vec_sld (vector unsigned short,
b0b343db
JJ
12489 vector unsigned short,
12490 const int);
12491vector bool short vec_sld (vector bool short,
12492 vector bool short,
12493 const int);
12494vector pixel vec_sld (vector pixel,
12495 vector pixel,
12496 const int);
12497vector signed char vec_sld (vector signed char,
12498 vector signed char,
12499 const int);
924fcc4e
JM
12500vector unsigned char vec_sld (vector unsigned char,
12501 vector unsigned char,
b0b343db
JJ
12502 const int);
12503vector bool char vec_sld (vector bool char,
12504 vector bool char,
12505 const int);
333c8841 12506
b0b343db
JJ
12507vector signed int vec_sll (vector signed int,
12508 vector unsigned int);
12509vector signed int vec_sll (vector signed int,
12510 vector unsigned short);
12511vector signed int vec_sll (vector signed int,
12512 vector unsigned char);
12513vector unsigned int vec_sll (vector unsigned int,
12514 vector unsigned int);
924fcc4e
JM
12515vector unsigned int vec_sll (vector unsigned int,
12516 vector unsigned short);
b0b343db
JJ
12517vector unsigned int vec_sll (vector unsigned int,
12518 vector unsigned char);
12519vector bool int vec_sll (vector bool int,
12520 vector unsigned int);
12521vector bool int vec_sll (vector bool int,
12522 vector unsigned short);
12523vector bool int vec_sll (vector bool int,
12524 vector unsigned char);
12525vector signed short vec_sll (vector signed short,
12526 vector unsigned int);
924fcc4e
JM
12527vector signed short vec_sll (vector signed short,
12528 vector unsigned short);
b0b343db
JJ
12529vector signed short vec_sll (vector signed short,
12530 vector unsigned char);
924fcc4e
JM
12531vector unsigned short vec_sll (vector unsigned short,
12532 vector unsigned int);
6e5bb5ad
JM
12533vector unsigned short vec_sll (vector unsigned short,
12534 vector unsigned short);
924fcc4e
JM
12535vector unsigned short vec_sll (vector unsigned short,
12536 vector unsigned char);
b0b343db
JJ
12537vector bool short vec_sll (vector bool short, vector unsigned int);
12538vector bool short vec_sll (vector bool short, vector unsigned short);
12539vector bool short vec_sll (vector bool short, vector unsigned char);
12540vector pixel vec_sll (vector pixel, vector unsigned int);
12541vector pixel vec_sll (vector pixel, vector unsigned short);
12542vector pixel vec_sll (vector pixel, vector unsigned char);
333c8841
AH
12543vector signed char vec_sll (vector signed char, vector unsigned int);
12544vector signed char vec_sll (vector signed char, vector unsigned short);
12545vector signed char vec_sll (vector signed char, vector unsigned char);
924fcc4e
JM
12546vector unsigned char vec_sll (vector unsigned char,
12547 vector unsigned int);
12548vector unsigned char vec_sll (vector unsigned char,
12549 vector unsigned short);
12550vector unsigned char vec_sll (vector unsigned char,
12551 vector unsigned char);
b0b343db
JJ
12552vector bool char vec_sll (vector bool char, vector unsigned int);
12553vector bool char vec_sll (vector bool char, vector unsigned short);
12554vector bool char vec_sll (vector bool char, vector unsigned char);
333c8841
AH
12555
12556vector float vec_slo (vector float, vector signed char);
12557vector float vec_slo (vector float, vector unsigned char);
12558vector signed int vec_slo (vector signed int, vector signed char);
12559vector signed int vec_slo (vector signed int, vector unsigned char);
12560vector unsigned int vec_slo (vector unsigned int, vector signed char);
12561vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
333c8841
AH
12562vector signed short vec_slo (vector signed short, vector signed char);
12563vector signed short vec_slo (vector signed short, vector unsigned char);
924fcc4e
JM
12564vector unsigned short vec_slo (vector unsigned short,
12565 vector signed char);
12566vector unsigned short vec_slo (vector unsigned short,
12567 vector unsigned char);
b0b343db
JJ
12568vector pixel vec_slo (vector pixel, vector signed char);
12569vector pixel vec_slo (vector pixel, vector unsigned char);
333c8841
AH
12570vector signed char vec_slo (vector signed char, vector signed char);
12571vector signed char vec_slo (vector signed char, vector unsigned char);
12572vector unsigned char vec_slo (vector unsigned char, vector signed char);
924fcc4e
JM
12573vector unsigned char vec_slo (vector unsigned char,
12574 vector unsigned char);
333c8841 12575
b0b343db
JJ
12576vector signed char vec_splat (vector signed char, const int);
12577vector unsigned char vec_splat (vector unsigned char, const int);
12578vector bool char vec_splat (vector bool char, const int);
12579vector signed short vec_splat (vector signed short, const int);
12580vector unsigned short vec_splat (vector unsigned short, const int);
12581vector bool short vec_splat (vector bool short, const int);
12582vector pixel vec_splat (vector pixel, const int);
12583vector float vec_splat (vector float, const int);
12584vector signed int vec_splat (vector signed int, const int);
12585vector unsigned int vec_splat (vector unsigned int, const int);
12586vector bool int vec_splat (vector bool int, const int);
12587
12588vector float vec_vspltw (vector float, const int);
12589vector signed int vec_vspltw (vector signed int, const int);
12590vector unsigned int vec_vspltw (vector unsigned int, const int);
12591vector bool int vec_vspltw (vector bool int, const int);
12592
12593vector bool short vec_vsplth (vector bool short, const int);
12594vector signed short vec_vsplth (vector signed short, const int);
12595vector unsigned short vec_vsplth (vector unsigned short, const int);
12596vector pixel vec_vsplth (vector pixel, const int);
12597
12598vector signed char vec_vspltb (vector signed char, const int);
12599vector unsigned char vec_vspltb (vector unsigned char, const int);
12600vector bool char vec_vspltb (vector bool char, const int);
333c8841 12601
b0b343db 12602vector signed char vec_splat_s8 (const int);
333c8841 12603
b0b343db 12604vector signed short vec_splat_s16 (const int);
333c8841 12605
b0b343db 12606vector signed int vec_splat_s32 (const int);
333c8841 12607
b0b343db 12608vector unsigned char vec_splat_u8 (const int);
333c8841 12609
b0b343db 12610vector unsigned short vec_splat_u16 (const int);
333c8841 12611
b0b343db 12612vector unsigned int vec_splat_u32 (const int);
333c8841
AH
12613
12614vector signed char vec_sr (vector signed char, vector unsigned char);
924fcc4e
JM
12615vector unsigned char vec_sr (vector unsigned char,
12616 vector unsigned char);
b0b343db
JJ
12617vector signed short vec_sr (vector signed short,
12618 vector unsigned short);
924fcc4e
JM
12619vector unsigned short vec_sr (vector unsigned short,
12620 vector unsigned short);
333c8841
AH
12621vector signed int vec_sr (vector signed int, vector unsigned int);
12622vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
12623
b0b343db
JJ
12624vector signed int vec_vsrw (vector signed int, vector unsigned int);
12625vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
12626
12627vector signed short vec_vsrh (vector signed short,
12628 vector unsigned short);
12629vector unsigned short vec_vsrh (vector unsigned short,
12630 vector unsigned short);
12631
12632vector signed char vec_vsrb (vector signed char, vector unsigned char);
12633vector unsigned char vec_vsrb (vector unsigned char,
12634 vector unsigned char);
12635
333c8841 12636vector signed char vec_sra (vector signed char, vector unsigned char);
924fcc4e
JM
12637vector unsigned char vec_sra (vector unsigned char,
12638 vector unsigned char);
12639vector signed short vec_sra (vector signed short,
12640 vector unsigned short);
6e5bb5ad
JM
12641vector unsigned short vec_sra (vector unsigned short,
12642 vector unsigned short);
333c8841
AH
12643vector signed int vec_sra (vector signed int, vector unsigned int);
12644vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
12645
b0b343db
JJ
12646vector signed int vec_vsraw (vector signed int, vector unsigned int);
12647vector unsigned int vec_vsraw (vector unsigned int,
12648 vector unsigned int);
12649
12650vector signed short vec_vsrah (vector signed short,
12651 vector unsigned short);
12652vector unsigned short vec_vsrah (vector unsigned short,
12653 vector unsigned short);
12654
12655vector signed char vec_vsrab (vector signed char, vector unsigned char);
12656vector unsigned char vec_vsrab (vector unsigned char,
12657 vector unsigned char);
12658
333c8841
AH
12659vector signed int vec_srl (vector signed int, vector unsigned int);
12660vector signed int vec_srl (vector signed int, vector unsigned short);
12661vector signed int vec_srl (vector signed int, vector unsigned char);
12662vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
924fcc4e
JM
12663vector unsigned int vec_srl (vector unsigned int,
12664 vector unsigned short);
333c8841 12665vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
b0b343db
JJ
12666vector bool int vec_srl (vector bool int, vector unsigned int);
12667vector bool int vec_srl (vector bool int, vector unsigned short);
12668vector bool int vec_srl (vector bool int, vector unsigned char);
333c8841 12669vector signed short vec_srl (vector signed short, vector unsigned int);
924fcc4e
JM
12670vector signed short vec_srl (vector signed short,
12671 vector unsigned short);
333c8841 12672vector signed short vec_srl (vector signed short, vector unsigned char);
924fcc4e
JM
12673vector unsigned short vec_srl (vector unsigned short,
12674 vector unsigned int);
6e5bb5ad
JM
12675vector unsigned short vec_srl (vector unsigned short,
12676 vector unsigned short);
924fcc4e
JM
12677vector unsigned short vec_srl (vector unsigned short,
12678 vector unsigned char);
b0b343db
JJ
12679vector bool short vec_srl (vector bool short, vector unsigned int);
12680vector bool short vec_srl (vector bool short, vector unsigned short);
12681vector bool short vec_srl (vector bool short, vector unsigned char);
12682vector pixel vec_srl (vector pixel, vector unsigned int);
12683vector pixel vec_srl (vector pixel, vector unsigned short);
12684vector pixel vec_srl (vector pixel, vector unsigned char);
333c8841
AH
12685vector signed char vec_srl (vector signed char, vector unsigned int);
12686vector signed char vec_srl (vector signed char, vector unsigned short);
12687vector signed char vec_srl (vector signed char, vector unsigned char);
924fcc4e
JM
12688vector unsigned char vec_srl (vector unsigned char,
12689 vector unsigned int);
12690vector unsigned char vec_srl (vector unsigned char,
12691 vector unsigned short);
12692vector unsigned char vec_srl (vector unsigned char,
12693 vector unsigned char);
b0b343db
JJ
12694vector bool char vec_srl (vector bool char, vector unsigned int);
12695vector bool char vec_srl (vector bool char, vector unsigned short);
12696vector bool char vec_srl (vector bool char, vector unsigned char);
333c8841
AH
12697
12698vector float vec_sro (vector float, vector signed char);
12699vector float vec_sro (vector float, vector unsigned char);
12700vector signed int vec_sro (vector signed int, vector signed char);
12701vector signed int vec_sro (vector signed int, vector unsigned char);
12702vector unsigned int vec_sro (vector unsigned int, vector signed char);
12703vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
333c8841
AH
12704vector signed short vec_sro (vector signed short, vector signed char);
12705vector signed short vec_sro (vector signed short, vector unsigned char);
924fcc4e
JM
12706vector unsigned short vec_sro (vector unsigned short,
12707 vector signed char);
12708vector unsigned short vec_sro (vector unsigned short,
12709 vector unsigned char);
b0b343db
JJ
12710vector pixel vec_sro (vector pixel, vector signed char);
12711vector pixel vec_sro (vector pixel, vector unsigned char);
333c8841
AH
12712vector signed char vec_sro (vector signed char, vector signed char);
12713vector signed char vec_sro (vector signed char, vector unsigned char);
12714vector unsigned char vec_sro (vector unsigned char, vector signed char);
924fcc4e
JM
12715vector unsigned char vec_sro (vector unsigned char,
12716 vector unsigned char);
333c8841 12717
333c8841 12718void vec_st (vector float, int, vector float *);
b0b343db
JJ
12719void vec_st (vector float, int, float *);
12720void vec_st (vector signed int, int, vector signed int *);
333c8841 12721void vec_st (vector signed int, int, int *);
333c8841 12722void vec_st (vector unsigned int, int, vector unsigned int *);
b0b343db
JJ
12723void vec_st (vector unsigned int, int, unsigned int *);
12724void vec_st (vector bool int, int, vector bool int *);
12725void vec_st (vector bool int, int, unsigned int *);
12726void vec_st (vector bool int, int, int *);
333c8841 12727void vec_st (vector signed short, int, vector signed short *);
b0b343db 12728void vec_st (vector signed short, int, short *);
333c8841 12729void vec_st (vector unsigned short, int, vector unsigned short *);
b0b343db
JJ
12730void vec_st (vector unsigned short, int, unsigned short *);
12731void vec_st (vector bool short, int, vector bool short *);
12732void vec_st (vector bool short, int, unsigned short *);
12733void vec_st (vector pixel, int, vector pixel *);
12734void vec_st (vector pixel, int, unsigned short *);
12735void vec_st (vector pixel, int, short *);
12736void vec_st (vector bool short, int, short *);
333c8841 12737void vec_st (vector signed char, int, vector signed char *);
b0b343db 12738void vec_st (vector signed char, int, signed char *);
333c8841 12739void vec_st (vector unsigned char, int, vector unsigned char *);
b0b343db
JJ
12740void vec_st (vector unsigned char, int, unsigned char *);
12741void vec_st (vector bool char, int, vector bool char *);
12742void vec_st (vector bool char, int, unsigned char *);
12743void vec_st (vector bool char, int, signed char *);
333c8841 12744
333c8841
AH
12745void vec_ste (vector signed char, int, signed char *);
12746void vec_ste (vector unsigned char, int, unsigned char *);
b0b343db
JJ
12747void vec_ste (vector bool char, int, signed char *);
12748void vec_ste (vector bool char, int, unsigned char *);
333c8841 12749void vec_ste (vector signed short, int, short *);
b0b343db
JJ
12750void vec_ste (vector unsigned short, int, unsigned short *);
12751void vec_ste (vector bool short, int, short *);
12752void vec_ste (vector bool short, int, unsigned short *);
12753void vec_ste (vector pixel, int, short *);
12754void vec_ste (vector pixel, int, unsigned short *);
12755void vec_ste (vector float, int, float *);
333c8841
AH
12756void vec_ste (vector signed int, int, int *);
12757void vec_ste (vector unsigned int, int, unsigned int *);
b0b343db
JJ
12758void vec_ste (vector bool int, int, int *);
12759void vec_ste (vector bool int, int, unsigned int *);
12760
12761void vec_stvewx (vector float, int, float *);
12762void vec_stvewx (vector signed int, int, int *);
12763void vec_stvewx (vector unsigned int, int, unsigned int *);
12764void vec_stvewx (vector bool int, int, int *);
12765void vec_stvewx (vector bool int, int, unsigned int *);
12766
12767void vec_stvehx (vector signed short, int, short *);
12768void vec_stvehx (vector unsigned short, int, unsigned short *);
12769void vec_stvehx (vector bool short, int, short *);
12770void vec_stvehx (vector bool short, int, unsigned short *);
12771void vec_stvehx (vector pixel, int, short *);
12772void vec_stvehx (vector pixel, int, unsigned short *);
12773
12774void vec_stvebx (vector signed char, int, signed char *);
12775void vec_stvebx (vector unsigned char, int, unsigned char *);
12776void vec_stvebx (vector bool char, int, signed char *);
12777void vec_stvebx (vector bool char, int, unsigned char *);
333c8841
AH
12778
12779void vec_stl (vector float, int, vector float *);
12780void vec_stl (vector float, int, float *);
12781void vec_stl (vector signed int, int, vector signed int *);
12782void vec_stl (vector signed int, int, int *);
333c8841
AH
12783void vec_stl (vector unsigned int, int, vector unsigned int *);
12784void vec_stl (vector unsigned int, int, unsigned int *);
b0b343db
JJ
12785void vec_stl (vector bool int, int, vector bool int *);
12786void vec_stl (vector bool int, int, unsigned int *);
12787void vec_stl (vector bool int, int, int *);
333c8841 12788void vec_stl (vector signed short, int, vector signed short *);
b0b343db
JJ
12789void vec_stl (vector signed short, int, short *);
12790void vec_stl (vector unsigned short, int, vector unsigned short *);
333c8841 12791void vec_stl (vector unsigned short, int, unsigned short *);
b0b343db
JJ
12792void vec_stl (vector bool short, int, vector bool short *);
12793void vec_stl (vector bool short, int, unsigned short *);
12794void vec_stl (vector bool short, int, short *);
12795void vec_stl (vector pixel, int, vector pixel *);
12796void vec_stl (vector pixel, int, unsigned short *);
12797void vec_stl (vector pixel, int, short *);
333c8841 12798void vec_stl (vector signed char, int, vector signed char *);
b0b343db 12799void vec_stl (vector signed char, int, signed char *);
333c8841 12800void vec_stl (vector unsigned char, int, vector unsigned char *);
b0b343db
JJ
12801void vec_stl (vector unsigned char, int, unsigned char *);
12802void vec_stl (vector bool char, int, vector bool char *);
12803void vec_stl (vector bool char, int, unsigned char *);
12804void vec_stl (vector bool char, int, signed char *);
333c8841 12805
b0b343db
JJ
12806vector signed char vec_sub (vector bool char, vector signed char);
12807vector signed char vec_sub (vector signed char, vector bool char);
333c8841 12808vector signed char vec_sub (vector signed char, vector signed char);
b0b343db
JJ
12809vector unsigned char vec_sub (vector bool char, vector unsigned char);
12810vector unsigned char vec_sub (vector unsigned char, vector bool char);
924fcc4e
JM
12811vector unsigned char vec_sub (vector unsigned char,
12812 vector unsigned char);
b0b343db
JJ
12813vector signed short vec_sub (vector bool short, vector signed short);
12814vector signed short vec_sub (vector signed short, vector bool short);
333c8841 12815vector signed short vec_sub (vector signed short, vector signed short);
b0b343db 12816vector unsigned short vec_sub (vector bool short,
924fcc4e
JM
12817 vector unsigned short);
12818vector unsigned short vec_sub (vector unsigned short,
b0b343db 12819 vector bool short);
6e5bb5ad
JM
12820vector unsigned short vec_sub (vector unsigned short,
12821 vector unsigned short);
b0b343db
JJ
12822vector signed int vec_sub (vector bool int, vector signed int);
12823vector signed int vec_sub (vector signed int, vector bool int);
333c8841 12824vector signed int vec_sub (vector signed int, vector signed int);
b0b343db
JJ
12825vector unsigned int vec_sub (vector bool int, vector unsigned int);
12826vector unsigned int vec_sub (vector unsigned int, vector bool int);
333c8841
AH
12827vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
12828vector float vec_sub (vector float, vector float);
12829
b0b343db
JJ
12830vector float vec_vsubfp (vector float, vector float);
12831
12832vector signed int vec_vsubuwm (vector bool int, vector signed int);
12833vector signed int vec_vsubuwm (vector signed int, vector bool int);
12834vector signed int vec_vsubuwm (vector signed int, vector signed int);
12835vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
12836vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
12837vector unsigned int vec_vsubuwm (vector unsigned int,
12838 vector unsigned int);
12839
12840vector signed short vec_vsubuhm (vector bool short,
12841 vector signed short);
12842vector signed short vec_vsubuhm (vector signed short,
12843 vector bool short);
12844vector signed short vec_vsubuhm (vector signed short,
12845 vector signed short);
12846vector unsigned short vec_vsubuhm (vector bool short,
12847 vector unsigned short);
12848vector unsigned short vec_vsubuhm (vector unsigned short,
12849 vector bool short);
12850vector unsigned short vec_vsubuhm (vector unsigned short,
12851 vector unsigned short);
12852
12853vector signed char vec_vsububm (vector bool char, vector signed char);
12854vector signed char vec_vsububm (vector signed char, vector bool char);
12855vector signed char vec_vsububm (vector signed char, vector signed char);
12856vector unsigned char vec_vsububm (vector bool char,
12857 vector unsigned char);
12858vector unsigned char vec_vsububm (vector unsigned char,
12859 vector bool char);
12860vector unsigned char vec_vsububm (vector unsigned char,
12861 vector unsigned char);
12862
333c8841
AH
12863vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
12864
b0b343db
JJ
12865vector unsigned char vec_subs (vector bool char, vector unsigned char);
12866vector unsigned char vec_subs (vector unsigned char, vector bool char);
924fcc4e
JM
12867vector unsigned char vec_subs (vector unsigned char,
12868 vector unsigned char);
b0b343db
JJ
12869vector signed char vec_subs (vector bool char, vector signed char);
12870vector signed char vec_subs (vector signed char, vector bool char);
333c8841 12871vector signed char vec_subs (vector signed char, vector signed char);
b0b343db 12872vector unsigned short vec_subs (vector bool short,
924fcc4e
JM
12873 vector unsigned short);
12874vector unsigned short vec_subs (vector unsigned short,
b0b343db 12875 vector bool short);
6e5bb5ad
JM
12876vector unsigned short vec_subs (vector unsigned short,
12877 vector unsigned short);
b0b343db
JJ
12878vector signed short vec_subs (vector bool short, vector signed short);
12879vector signed short vec_subs (vector signed short, vector bool short);
333c8841 12880vector signed short vec_subs (vector signed short, vector signed short);
b0b343db
JJ
12881vector unsigned int vec_subs (vector bool int, vector unsigned int);
12882vector unsigned int vec_subs (vector unsigned int, vector bool int);
333c8841 12883vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
b0b343db
JJ
12884vector signed int vec_subs (vector bool int, vector signed int);
12885vector signed int vec_subs (vector signed int, vector bool int);
333c8841
AH
12886vector signed int vec_subs (vector signed int, vector signed int);
12887
b0b343db
JJ
12888vector signed int vec_vsubsws (vector bool int, vector signed int);
12889vector signed int vec_vsubsws (vector signed int, vector bool int);
12890vector signed int vec_vsubsws (vector signed int, vector signed int);
12891
12892vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
12893vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
12894vector unsigned int vec_vsubuws (vector unsigned int,
12895 vector unsigned int);
12896
12897vector signed short vec_vsubshs (vector bool short,
12898 vector signed short);
12899vector signed short vec_vsubshs (vector signed short,
12900 vector bool short);
12901vector signed short vec_vsubshs (vector signed short,
12902 vector signed short);
12903
12904vector unsigned short vec_vsubuhs (vector bool short,
12905 vector unsigned short);
12906vector unsigned short vec_vsubuhs (vector unsigned short,
12907 vector bool short);
12908vector unsigned short vec_vsubuhs (vector unsigned short,
12909 vector unsigned short);
12910
12911vector signed char vec_vsubsbs (vector bool char, vector signed char);
12912vector signed char vec_vsubsbs (vector signed char, vector bool char);
12913vector signed char vec_vsubsbs (vector signed char, vector signed char);
12914
12915vector unsigned char vec_vsububs (vector bool char,
12916 vector unsigned char);
12917vector unsigned char vec_vsububs (vector unsigned char,
12918 vector bool char);
12919vector unsigned char vec_vsububs (vector unsigned char,
12920 vector unsigned char);
12921
924fcc4e
JM
12922vector unsigned int vec_sum4s (vector unsigned char,
12923 vector unsigned int);
333c8841
AH
12924vector signed int vec_sum4s (vector signed char, vector signed int);
12925vector signed int vec_sum4s (vector signed short, vector signed int);
12926
b0b343db
JJ
12927vector signed int vec_vsum4shs (vector signed short, vector signed int);
12928
12929vector signed int vec_vsum4sbs (vector signed char, vector signed int);
12930
12931vector unsigned int vec_vsum4ubs (vector unsigned char,
12932 vector unsigned int);
12933
333c8841
AH
12934vector signed int vec_sum2s (vector signed int, vector signed int);
12935
12936vector signed int vec_sums (vector signed int, vector signed int);
12937
12938vector float vec_trunc (vector float);
12939
12940vector signed short vec_unpackh (vector signed char);
b0b343db 12941vector bool short vec_unpackh (vector bool char);
333c8841 12942vector signed int vec_unpackh (vector signed short);
b0b343db
JJ
12943vector bool int vec_unpackh (vector bool short);
12944vector unsigned int vec_unpackh (vector pixel);
12945
12946vector bool int vec_vupkhsh (vector bool short);
12947vector signed int vec_vupkhsh (vector signed short);
12948
12949vector unsigned int vec_vupkhpx (vector pixel);
12950
12951vector bool short vec_vupkhsb (vector bool char);
12952vector signed short vec_vupkhsb (vector signed char);
333c8841
AH
12953
12954vector signed short vec_unpackl (vector signed char);
b0b343db
JJ
12955vector bool short vec_unpackl (vector bool char);
12956vector unsigned int vec_unpackl (vector pixel);
333c8841 12957vector signed int vec_unpackl (vector signed short);
b0b343db
JJ
12958vector bool int vec_unpackl (vector bool short);
12959
12960vector unsigned int vec_vupklpx (vector pixel);
12961
12962vector bool int vec_vupklsh (vector bool short);
12963vector signed int vec_vupklsh (vector signed short);
12964
12965vector bool short vec_vupklsb (vector bool char);
12966vector signed short vec_vupklsb (vector signed char);
333c8841
AH
12967
12968vector float vec_xor (vector float, vector float);
b0b343db
JJ
12969vector float vec_xor (vector float, vector bool int);
12970vector float vec_xor (vector bool int, vector float);
12971vector bool int vec_xor (vector bool int, vector bool int);
12972vector signed int vec_xor (vector bool int, vector signed int);
12973vector signed int vec_xor (vector signed int, vector bool int);
333c8841 12974vector signed int vec_xor (vector signed int, vector signed int);
b0b343db
JJ
12975vector unsigned int vec_xor (vector bool int, vector unsigned int);
12976vector unsigned int vec_xor (vector unsigned int, vector bool int);
333c8841 12977vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
b0b343db
JJ
12978vector bool short vec_xor (vector bool short, vector bool short);
12979vector signed short vec_xor (vector bool short, vector signed short);
12980vector signed short vec_xor (vector signed short, vector bool short);
333c8841 12981vector signed short vec_xor (vector signed short, vector signed short);
b0b343db 12982vector unsigned short vec_xor (vector bool short,
924fcc4e
JM
12983 vector unsigned short);
12984vector unsigned short vec_xor (vector unsigned short,
b0b343db 12985 vector bool short);
6e5bb5ad
JM
12986vector unsigned short vec_xor (vector unsigned short,
12987 vector unsigned short);
b0b343db
JJ
12988vector signed char vec_xor (vector bool char, vector signed char);
12989vector bool char vec_xor (vector bool char, vector bool char);
12990vector signed char vec_xor (vector signed char, vector bool char);
333c8841 12991vector signed char vec_xor (vector signed char, vector signed char);
b0b343db
JJ
12992vector unsigned char vec_xor (vector bool char, vector unsigned char);
12993vector unsigned char vec_xor (vector unsigned char, vector bool char);
924fcc4e
JM
12994vector unsigned char vec_xor (vector unsigned char,
12995 vector unsigned char);
333c8841 12996
b0b343db
JJ
12997int vec_all_eq (vector signed char, vector bool char);
12998int vec_all_eq (vector signed char, vector signed char);
12999int vec_all_eq (vector unsigned char, vector bool char);
13000int vec_all_eq (vector unsigned char, vector unsigned char);
13001int vec_all_eq (vector bool char, vector bool char);
13002int vec_all_eq (vector bool char, vector unsigned char);
13003int vec_all_eq (vector bool char, vector signed char);
13004int vec_all_eq (vector signed short, vector bool short);
13005int vec_all_eq (vector signed short, vector signed short);
13006int vec_all_eq (vector unsigned short, vector bool short);
13007int vec_all_eq (vector unsigned short, vector unsigned short);
13008int vec_all_eq (vector bool short, vector bool short);
13009int vec_all_eq (vector bool short, vector unsigned short);
13010int vec_all_eq (vector bool short, vector signed short);
13011int vec_all_eq (vector pixel, vector pixel);
13012int vec_all_eq (vector signed int, vector bool int);
13013int vec_all_eq (vector signed int, vector signed int);
13014int vec_all_eq (vector unsigned int, vector bool int);
13015int vec_all_eq (vector unsigned int, vector unsigned int);
13016int vec_all_eq (vector bool int, vector bool int);
13017int vec_all_eq (vector bool int, vector unsigned int);
13018int vec_all_eq (vector bool int, vector signed int);
13019int vec_all_eq (vector float, vector float);
13020
13021int vec_all_ge (vector bool char, vector unsigned char);
13022int vec_all_ge (vector unsigned char, vector bool char);
13023int vec_all_ge (vector unsigned char, vector unsigned char);
13024int vec_all_ge (vector bool char, vector signed char);
13025int vec_all_ge (vector signed char, vector bool char);
13026int vec_all_ge (vector signed char, vector signed char);
13027int vec_all_ge (vector bool short, vector unsigned short);
13028int vec_all_ge (vector unsigned short, vector bool short);
13029int vec_all_ge (vector unsigned short, vector unsigned short);
13030int vec_all_ge (vector signed short, vector signed short);
13031int vec_all_ge (vector bool short, vector signed short);
13032int vec_all_ge (vector signed short, vector bool short);
13033int vec_all_ge (vector bool int, vector unsigned int);
13034int vec_all_ge (vector unsigned int, vector bool int);
13035int vec_all_ge (vector unsigned int, vector unsigned int);
13036int vec_all_ge (vector bool int, vector signed int);
13037int vec_all_ge (vector signed int, vector bool int);
13038int vec_all_ge (vector signed int, vector signed int);
13039int vec_all_ge (vector float, vector float);
13040
13041int vec_all_gt (vector bool char, vector unsigned char);
13042int vec_all_gt (vector unsigned char, vector bool char);
13043int vec_all_gt (vector unsigned char, vector unsigned char);
13044int vec_all_gt (vector bool char, vector signed char);
13045int vec_all_gt (vector signed char, vector bool char);
13046int vec_all_gt (vector signed char, vector signed char);
13047int vec_all_gt (vector bool short, vector unsigned short);
13048int vec_all_gt (vector unsigned short, vector bool short);
13049int vec_all_gt (vector unsigned short, vector unsigned short);
13050int vec_all_gt (vector bool short, vector signed short);
13051int vec_all_gt (vector signed short, vector bool short);
13052int vec_all_gt (vector signed short, vector signed short);
13053int vec_all_gt (vector bool int, vector unsigned int);
13054int vec_all_gt (vector unsigned int, vector bool int);
13055int vec_all_gt (vector unsigned int, vector unsigned int);
13056int vec_all_gt (vector bool int, vector signed int);
13057int vec_all_gt (vector signed int, vector bool int);
13058int vec_all_gt (vector signed int, vector signed int);
13059int vec_all_gt (vector float, vector float);
13060
13061int vec_all_in (vector float, vector float);
13062
13063int vec_all_le (vector bool char, vector unsigned char);
13064int vec_all_le (vector unsigned char, vector bool char);
13065int vec_all_le (vector unsigned char, vector unsigned char);
13066int vec_all_le (vector bool char, vector signed char);
13067int vec_all_le (vector signed char, vector bool char);
13068int vec_all_le (vector signed char, vector signed char);
13069int vec_all_le (vector bool short, vector unsigned short);
13070int vec_all_le (vector unsigned short, vector bool short);
13071int vec_all_le (vector unsigned short, vector unsigned short);
13072int vec_all_le (vector bool short, vector signed short);
13073int vec_all_le (vector signed short, vector bool short);
13074int vec_all_le (vector signed short, vector signed short);
13075int vec_all_le (vector bool int, vector unsigned int);
13076int vec_all_le (vector unsigned int, vector bool int);
13077int vec_all_le (vector unsigned int, vector unsigned int);
13078int vec_all_le (vector bool int, vector signed int);
13079int vec_all_le (vector signed int, vector bool int);
13080int vec_all_le (vector signed int, vector signed int);
13081int vec_all_le (vector float, vector float);
13082
13083int vec_all_lt (vector bool char, vector unsigned char);
13084int vec_all_lt (vector unsigned char, vector bool char);
13085int vec_all_lt (vector unsigned char, vector unsigned char);
13086int vec_all_lt (vector bool char, vector signed char);
13087int vec_all_lt (vector signed char, vector bool char);
13088int vec_all_lt (vector signed char, vector signed char);
13089int vec_all_lt (vector bool short, vector unsigned short);
13090int vec_all_lt (vector unsigned short, vector bool short);
13091int vec_all_lt (vector unsigned short, vector unsigned short);
13092int vec_all_lt (vector bool short, vector signed short);
13093int vec_all_lt (vector signed short, vector bool short);
13094int vec_all_lt (vector signed short, vector signed short);
13095int vec_all_lt (vector bool int, vector unsigned int);
13096int vec_all_lt (vector unsigned int, vector bool int);
13097int vec_all_lt (vector unsigned int, vector unsigned int);
13098int vec_all_lt (vector bool int, vector signed int);
13099int vec_all_lt (vector signed int, vector bool int);
13100int vec_all_lt (vector signed int, vector signed int);
13101int vec_all_lt (vector float, vector float);
13102
13103int vec_all_nan (vector float);
13104
13105int vec_all_ne (vector signed char, vector bool char);
13106int vec_all_ne (vector signed char, vector signed char);
13107int vec_all_ne (vector unsigned char, vector bool char);
13108int vec_all_ne (vector unsigned char, vector unsigned char);
13109int vec_all_ne (vector bool char, vector bool char);
13110int vec_all_ne (vector bool char, vector unsigned char);
13111int vec_all_ne (vector bool char, vector signed char);
13112int vec_all_ne (vector signed short, vector bool short);
13113int vec_all_ne (vector signed short, vector signed short);
13114int vec_all_ne (vector unsigned short, vector bool short);
13115int vec_all_ne (vector unsigned short, vector unsigned short);
13116int vec_all_ne (vector bool short, vector bool short);
13117int vec_all_ne (vector bool short, vector unsigned short);
13118int vec_all_ne (vector bool short, vector signed short);
13119int vec_all_ne (vector pixel, vector pixel);
13120int vec_all_ne (vector signed int, vector bool int);
13121int vec_all_ne (vector signed int, vector signed int);
13122int vec_all_ne (vector unsigned int, vector bool int);
13123int vec_all_ne (vector unsigned int, vector unsigned int);
13124int vec_all_ne (vector bool int, vector bool int);
13125int vec_all_ne (vector bool int, vector unsigned int);
13126int vec_all_ne (vector bool int, vector signed int);
13127int vec_all_ne (vector float, vector float);
13128
13129int vec_all_nge (vector float, vector float);
13130
13131int vec_all_ngt (vector float, vector float);
13132
13133int vec_all_nle (vector float, vector float);
13134
13135int vec_all_nlt (vector float, vector float);
13136
13137int vec_all_numeric (vector float);
13138
13139int vec_any_eq (vector signed char, vector bool char);
13140int vec_any_eq (vector signed char, vector signed char);
13141int vec_any_eq (vector unsigned char, vector bool char);
13142int vec_any_eq (vector unsigned char, vector unsigned char);
13143int vec_any_eq (vector bool char, vector bool char);
13144int vec_any_eq (vector bool char, vector unsigned char);
13145int vec_any_eq (vector bool char, vector signed char);
13146int vec_any_eq (vector signed short, vector bool short);
13147int vec_any_eq (vector signed short, vector signed short);
13148int vec_any_eq (vector unsigned short, vector bool short);
13149int vec_any_eq (vector unsigned short, vector unsigned short);
13150int vec_any_eq (vector bool short, vector bool short);
13151int vec_any_eq (vector bool short, vector unsigned short);
13152int vec_any_eq (vector bool short, vector signed short);
13153int vec_any_eq (vector pixel, vector pixel);
13154int vec_any_eq (vector signed int, vector bool int);
13155int vec_any_eq (vector signed int, vector signed int);
13156int vec_any_eq (vector unsigned int, vector bool int);
13157int vec_any_eq (vector unsigned int, vector unsigned int);
13158int vec_any_eq (vector bool int, vector bool int);
13159int vec_any_eq (vector bool int, vector unsigned int);
13160int vec_any_eq (vector bool int, vector signed int);
13161int vec_any_eq (vector float, vector float);
13162
13163int vec_any_ge (vector signed char, vector bool char);
13164int vec_any_ge (vector unsigned char, vector bool char);
13165int vec_any_ge (vector unsigned char, vector unsigned char);
13166int vec_any_ge (vector signed char, vector signed char);
13167int vec_any_ge (vector bool char, vector unsigned char);
13168int vec_any_ge (vector bool char, vector signed char);
13169int vec_any_ge (vector unsigned short, vector bool short);
13170int vec_any_ge (vector unsigned short, vector unsigned short);
13171int vec_any_ge (vector signed short, vector signed short);
13172int vec_any_ge (vector signed short, vector bool short);
13173int vec_any_ge (vector bool short, vector unsigned short);
13174int vec_any_ge (vector bool short, vector signed short);
13175int vec_any_ge (vector signed int, vector bool int);
13176int vec_any_ge (vector unsigned int, vector bool int);
13177int vec_any_ge (vector unsigned int, vector unsigned int);
13178int vec_any_ge (vector signed int, vector signed int);
13179int vec_any_ge (vector bool int, vector unsigned int);
13180int vec_any_ge (vector bool int, vector signed int);
13181int vec_any_ge (vector float, vector float);
13182
13183int vec_any_gt (vector bool char, vector unsigned char);
13184int vec_any_gt (vector unsigned char, vector bool char);
13185int vec_any_gt (vector unsigned char, vector unsigned char);
13186int vec_any_gt (vector bool char, vector signed char);
13187int vec_any_gt (vector signed char, vector bool char);
13188int vec_any_gt (vector signed char, vector signed char);
13189int vec_any_gt (vector bool short, vector unsigned short);
13190int vec_any_gt (vector unsigned short, vector bool short);
13191int vec_any_gt (vector unsigned short, vector unsigned short);
13192int vec_any_gt (vector bool short, vector signed short);
13193int vec_any_gt (vector signed short, vector bool short);
13194int vec_any_gt (vector signed short, vector signed short);
13195int vec_any_gt (vector bool int, vector unsigned int);
13196int vec_any_gt (vector unsigned int, vector bool int);
13197int vec_any_gt (vector unsigned int, vector unsigned int);
13198int vec_any_gt (vector bool int, vector signed int);
13199int vec_any_gt (vector signed int, vector bool int);
13200int vec_any_gt (vector signed int, vector signed int);
13201int vec_any_gt (vector float, vector float);
13202
13203int vec_any_le (vector bool char, vector unsigned char);
13204int vec_any_le (vector unsigned char, vector bool char);
13205int vec_any_le (vector unsigned char, vector unsigned char);
13206int vec_any_le (vector bool char, vector signed char);
13207int vec_any_le (vector signed char, vector bool char);
13208int vec_any_le (vector signed char, vector signed char);
13209int vec_any_le (vector bool short, vector unsigned short);
13210int vec_any_le (vector unsigned short, vector bool short);
13211int vec_any_le (vector unsigned short, vector unsigned short);
13212int vec_any_le (vector bool short, vector signed short);
13213int vec_any_le (vector signed short, vector bool short);
13214int vec_any_le (vector signed short, vector signed short);
13215int vec_any_le (vector bool int, vector unsigned int);
13216int vec_any_le (vector unsigned int, vector bool int);
13217int vec_any_le (vector unsigned int, vector unsigned int);
13218int vec_any_le (vector bool int, vector signed int);
13219int vec_any_le (vector signed int, vector bool int);
13220int vec_any_le (vector signed int, vector signed int);
13221int vec_any_le (vector float, vector float);
13222
13223int vec_any_lt (vector bool char, vector unsigned char);
13224int vec_any_lt (vector unsigned char, vector bool char);
13225int vec_any_lt (vector unsigned char, vector unsigned char);
13226int vec_any_lt (vector bool char, vector signed char);
13227int vec_any_lt (vector signed char, vector bool char);
13228int vec_any_lt (vector signed char, vector signed char);
13229int vec_any_lt (vector bool short, vector unsigned short);
13230int vec_any_lt (vector unsigned short, vector bool short);
13231int vec_any_lt (vector unsigned short, vector unsigned short);
13232int vec_any_lt (vector bool short, vector signed short);
13233int vec_any_lt (vector signed short, vector bool short);
13234int vec_any_lt (vector signed short, vector signed short);
13235int vec_any_lt (vector bool int, vector unsigned int);
13236int vec_any_lt (vector unsigned int, vector bool int);
13237int vec_any_lt (vector unsigned int, vector unsigned int);
13238int vec_any_lt (vector bool int, vector signed int);
13239int vec_any_lt (vector signed int, vector bool int);
13240int vec_any_lt (vector signed int, vector signed int);
13241int vec_any_lt (vector float, vector float);
13242
13243int vec_any_nan (vector float);
13244
13245int vec_any_ne (vector signed char, vector bool char);
13246int vec_any_ne (vector signed char, vector signed char);
13247int vec_any_ne (vector unsigned char, vector bool char);
13248int vec_any_ne (vector unsigned char, vector unsigned char);
13249int vec_any_ne (vector bool char, vector bool char);
13250int vec_any_ne (vector bool char, vector unsigned char);
13251int vec_any_ne (vector bool char, vector signed char);
13252int vec_any_ne (vector signed short, vector bool short);
13253int vec_any_ne (vector signed short, vector signed short);
13254int vec_any_ne (vector unsigned short, vector bool short);
13255int vec_any_ne (vector unsigned short, vector unsigned short);
13256int vec_any_ne (vector bool short, vector bool short);
13257int vec_any_ne (vector bool short, vector unsigned short);
13258int vec_any_ne (vector bool short, vector signed short);
13259int vec_any_ne (vector pixel, vector pixel);
13260int vec_any_ne (vector signed int, vector bool int);
13261int vec_any_ne (vector signed int, vector signed int);
13262int vec_any_ne (vector unsigned int, vector bool int);
13263int vec_any_ne (vector unsigned int, vector unsigned int);
13264int vec_any_ne (vector bool int, vector bool int);
13265int vec_any_ne (vector bool int, vector unsigned int);
13266int vec_any_ne (vector bool int, vector signed int);
13267int vec_any_ne (vector float, vector float);
13268
13269int vec_any_nge (vector float, vector float);
13270
13271int vec_any_ngt (vector float, vector float);
13272
13273int vec_any_nle (vector float, vector float);
13274
13275int vec_any_nlt (vector float, vector float);
13276
13277int vec_any_numeric (vector float);
13278
13279int vec_any_out (vector float, vector float);
333c8841
AH
13280@end smallexample
13281
29e6733c
MM
13282If the vector/scalar (VSX) instruction set is available, the following
13283additional functions are available:
13284
13285@smallexample
13286vector double vec_abs (vector double);
13287vector double vec_add (vector double, vector double);
13288vector double vec_and (vector double, vector double);
13289vector double vec_and (vector double, vector bool long);
13290vector double vec_and (vector bool long, vector double);
13291vector double vec_andc (vector double, vector double);
13292vector double vec_andc (vector double, vector bool long);
13293vector double vec_andc (vector bool long, vector double);
13294vector double vec_ceil (vector double);
13295vector bool long vec_cmpeq (vector double, vector double);
13296vector bool long vec_cmpge (vector double, vector double);
13297vector bool long vec_cmpgt (vector double, vector double);
13298vector bool long vec_cmple (vector double, vector double);
13299vector bool long vec_cmplt (vector double, vector double);
13300vector float vec_div (vector float, vector float);
13301vector double vec_div (vector double, vector double);
13302vector double vec_floor (vector double);
c9485473
MM
13303vector double vec_ld (int, const vector double *);
13304vector double vec_ld (int, const double *);
13305vector double vec_ldl (int, const vector double *);
13306vector double vec_ldl (int, const double *);
13307vector unsigned char vec_lvsl (int, const volatile double *);
13308vector unsigned char vec_lvsr (int, const volatile double *);
29e6733c
MM
13309vector double vec_madd (vector double, vector double, vector double);
13310vector double vec_max (vector double, vector double);
13311vector double vec_min (vector double, vector double);
13312vector float vec_msub (vector float, vector float, vector float);
13313vector double vec_msub (vector double, vector double, vector double);
13314vector float vec_mul (vector float, vector float);
13315vector double vec_mul (vector double, vector double);
13316vector float vec_nearbyint (vector float);
13317vector double vec_nearbyint (vector double);
13318vector float vec_nmadd (vector float, vector float, vector float);
13319vector double vec_nmadd (vector double, vector double, vector double);
13320vector double vec_nmsub (vector double, vector double, vector double);
13321vector double vec_nor (vector double, vector double);
13322vector double vec_or (vector double, vector double);
13323vector double vec_or (vector double, vector bool long);
13324vector double vec_or (vector bool long, vector double);
13325vector double vec_perm (vector double,
13326 vector double,
13327 vector unsigned char);
29e6733c 13328vector double vec_rint (vector double);
92902797
MM
13329vector double vec_recip (vector double, vector double);
13330vector double vec_rsqrt (vector double);
13331vector double vec_rsqrte (vector double);
29e6733c
MM
13332vector double vec_sel (vector double, vector double, vector bool long);
13333vector double vec_sel (vector double, vector double, vector unsigned long);
13334vector double vec_sub (vector double, vector double);
13335vector float vec_sqrt (vector float);
13336vector double vec_sqrt (vector double);
c9485473
MM
13337void vec_st (vector double, int, vector double *);
13338void vec_st (vector double, int, double *);
29e6733c
MM
13339vector double vec_trunc (vector double);
13340vector double vec_xor (vector double, vector double);
13341vector double vec_xor (vector double, vector bool long);
13342vector double vec_xor (vector bool long, vector double);
13343int vec_all_eq (vector double, vector double);
13344int vec_all_ge (vector double, vector double);
13345int vec_all_gt (vector double, vector double);
13346int vec_all_le (vector double, vector double);
13347int vec_all_lt (vector double, vector double);
13348int vec_all_nan (vector double);
13349int vec_all_ne (vector double, vector double);
13350int vec_all_nge (vector double, vector double);
13351int vec_all_ngt (vector double, vector double);
13352int vec_all_nle (vector double, vector double);
13353int vec_all_nlt (vector double, vector double);
13354int vec_all_numeric (vector double);
13355int vec_any_eq (vector double, vector double);
13356int vec_any_ge (vector double, vector double);
13357int vec_any_gt (vector double, vector double);
13358int vec_any_le (vector double, vector double);
13359int vec_any_lt (vector double, vector double);
13360int vec_any_nan (vector double);
13361int vec_any_ne (vector double, vector double);
13362int vec_any_nge (vector double, vector double);
13363int vec_any_ngt (vector double, vector double);
13364int vec_any_nle (vector double, vector double);
13365int vec_any_nlt (vector double, vector double);
13366int vec_any_numeric (vector double);
c9485473
MM
13367
13368vector double vec_vsx_ld (int, const vector double *);
13369vector double vec_vsx_ld (int, const double *);
13370vector float vec_vsx_ld (int, const vector float *);
13371vector float vec_vsx_ld (int, const float *);
13372vector bool int vec_vsx_ld (int, const vector bool int *);
13373vector signed int vec_vsx_ld (int, const vector signed int *);
13374vector signed int vec_vsx_ld (int, const int *);
13375vector signed int vec_vsx_ld (int, const long *);
13376vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
13377vector unsigned int vec_vsx_ld (int, const unsigned int *);
13378vector unsigned int vec_vsx_ld (int, const unsigned long *);
13379vector bool short vec_vsx_ld (int, const vector bool short *);
13380vector pixel vec_vsx_ld (int, const vector pixel *);
13381vector signed short vec_vsx_ld (int, const vector signed short *);
13382vector signed short vec_vsx_ld (int, const short *);
13383vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
13384vector unsigned short vec_vsx_ld (int, const unsigned short *);
13385vector bool char vec_vsx_ld (int, const vector bool char *);
13386vector signed char vec_vsx_ld (int, const vector signed char *);
13387vector signed char vec_vsx_ld (int, const signed char *);
13388vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
13389vector unsigned char vec_vsx_ld (int, const unsigned char *);
13390
13391void vec_vsx_st (vector double, int, vector double *);
13392void vec_vsx_st (vector double, int, double *);
13393void vec_vsx_st (vector float, int, vector float *);
13394void vec_vsx_st (vector float, int, float *);
13395void vec_vsx_st (vector signed int, int, vector signed int *);
13396void vec_vsx_st (vector signed int, int, int *);
13397void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
13398void vec_vsx_st (vector unsigned int, int, unsigned int *);
13399void vec_vsx_st (vector bool int, int, vector bool int *);
13400void vec_vsx_st (vector bool int, int, unsigned int *);
13401void vec_vsx_st (vector bool int, int, int *);
13402void vec_vsx_st (vector signed short, int, vector signed short *);
13403void vec_vsx_st (vector signed short, int, short *);
13404void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
13405void vec_vsx_st (vector unsigned short, int, unsigned short *);
13406void vec_vsx_st (vector bool short, int, vector bool short *);
13407void vec_vsx_st (vector bool short, int, unsigned short *);
13408void vec_vsx_st (vector pixel, int, vector pixel *);
13409void vec_vsx_st (vector pixel, int, unsigned short *);
13410void vec_vsx_st (vector pixel, int, short *);
13411void vec_vsx_st (vector bool short, int, short *);
13412void vec_vsx_st (vector signed char, int, vector signed char *);
13413void vec_vsx_st (vector signed char, int, signed char *);
13414void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
13415void vec_vsx_st (vector unsigned char, int, unsigned char *);
13416void vec_vsx_st (vector bool char, int, vector bool char *);
13417void vec_vsx_st (vector bool char, int, unsigned char *);
13418void vec_vsx_st (vector bool char, int, signed char *);
13419@end smallexample
13420
13421Note that the @samp{vec_ld} and @samp{vec_st} builtins will always
13422generate the Altivec @samp{LVX} and @samp{STVX} instructions even
13423if the VSX instruction set is available. The @samp{vec_vsx_ld} and
13424@samp{vec_vsx_st} builtins will always generate the VSX @samp{LXVD2X},
13425@samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
29e6733c
MM
13426
13427GCC provides a few other builtins on Powerpc to access certain instructions:
13428@smallexample
13429float __builtin_recipdivf (float, float);
13430float __builtin_rsqrtf (float);
13431double __builtin_recipdiv (double, double);
92902797 13432double __builtin_rsqrt (double);
29e6733c 13433long __builtin_bpermd (long, long);
29e6733c
MM
13434@end smallexample
13435
92902797
MM
13436The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
13437@code{__builtin_rsqrtf} functions generate multiple instructions to
13438implement the reciprocal sqrt functionality using reciprocal sqrt
13439estimate instructions.
13440
13441The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
13442functions generate multiple instructions to implement division using
13443the reciprocal estimate instructions.
13444
65a324b4
NC
13445@node RX Built-in Functions
13446@subsection RX Built-in Functions
13447GCC supports some of the RX instructions which cannot be expressed in
13448the C programming language via the use of built-in functions. The
13449following functions are supported:
13450
13451@deftypefn {Built-in Function} void __builtin_rx_brk (void)
13452Generates the @code{brk} machine instruction.
13453@end deftypefn
13454
13455@deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
13456Generates the @code{clrpsw} machine instruction to clear the specified
13457bit in the processor status word.
13458@end deftypefn
13459
13460@deftypefn {Built-in Function} void __builtin_rx_int (int)
13461Generates the @code{int} machine instruction to generate an interrupt
13462with the specified value.
13463@end deftypefn
13464
13465@deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
13466Generates the @code{machi} machine instruction to add the result of
13467multiplying the top 16-bits of the two arguments into the
13468accumulator.
13469@end deftypefn
13470
13471@deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
13472Generates the @code{maclo} machine instruction to add the result of
13473multiplying the bottom 16-bits of the two arguments into the
13474accumulator.
13475@end deftypefn
13476
13477@deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
13478Generates the @code{mulhi} machine instruction to place the result of
13479multiplying the top 16-bits of the two arguments into the
13480accumulator.
13481@end deftypefn
13482
13483@deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
13484Generates the @code{mullo} machine instruction to place the result of
13485multiplying the bottom 16-bits of the two arguments into the
13486accumulator.
13487@end deftypefn
13488
13489@deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
13490Generates the @code{mvfachi} machine instruction to read the top
1349132-bits of the accumulator.
13492@end deftypefn
13493
13494@deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
13495Generates the @code{mvfacmi} machine instruction to read the middle
1349632-bits of the accumulator.
13497@end deftypefn
13498
13499@deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
13500Generates the @code{mvfc} machine instruction which reads the control
13501register specified in its argument and returns its value.
13502@end deftypefn
13503
13504@deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
13505Generates the @code{mvtachi} machine instruction to set the top
1350632-bits of the accumulator.
13507@end deftypefn
13508
13509@deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
13510Generates the @code{mvtaclo} machine instruction to set the bottom
1351132-bits of the accumulator.
13512@end deftypefn
13513
13514@deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
13515Generates the @code{mvtc} machine instruction which sets control
13516register number @code{reg} to @code{val}.
13517@end deftypefn
13518
13519@deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
13520Generates the @code{mvtipl} machine instruction set the interrupt
13521priority level.
13522@end deftypefn
13523
13524@deftypefn {Built-in Function} void __builtin_rx_racw (int)
13525Generates the @code{racw} machine instruction to round the accumulator
13526according to the specified mode.
13527@end deftypefn
13528
13529@deftypefn {Built-in Function} int __builtin_rx_revw (int)
13530Generates the @code{revw} machine instruction which swaps the bytes in
13531the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
13532and also bits 16--23 occupy bits 24--31 and vice versa.
13533@end deftypefn
13534
13535@deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
13536Generates the @code{rmpa} machine instruction which initiates a
13537repeated multiply and accumulate sequence.
13538@end deftypefn
13539
13540@deftypefn {Built-in Function} void __builtin_rx_round (float)
13541Generates the @code{round} machine instruction which returns the
13542floating point argument rounded according to the current rounding mode
13543set in the floating point status word register.
13544@end deftypefn
13545
13546@deftypefn {Built-in Function} int __builtin_rx_sat (int)
13547Generates the @code{sat} machine instruction which returns the
13548saturated value of the argument.
13549@end deftypefn
13550
13551@deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
13552Generates the @code{setpsw} machine instruction to set the specified
13553bit in the processor status word.
13554@end deftypefn
13555
13556@deftypefn {Built-in Function} void __builtin_rx_wait (void)
13557Generates the @code{wait} machine instruction.
13558@end deftypefn
13559
c5145ceb
JM
13560@node SPARC VIS Built-in Functions
13561@subsection SPARC VIS Built-in Functions
13562
13563GCC supports SIMD operations on the SPARC using both the generic vector
2fd13506 13564extensions (@pxref{Vector Extensions}) as well as built-in functions for
c5145ceb
JM
13565the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
13566switch, the VIS extension is exposed as the following built-in functions:
13567
13568@smallexample
f14e0262 13569typedef int v1si __attribute__ ((vector_size (4)));
c5145ceb
JM
13570typedef int v2si __attribute__ ((vector_size (8)));
13571typedef short v4hi __attribute__ ((vector_size (8)));
13572typedef short v2hi __attribute__ ((vector_size (4)));
47640f40
DM
13573typedef unsigned char v8qi __attribute__ ((vector_size (8)));
13574typedef unsigned char v4qi __attribute__ ((vector_size (4)));
c5145ceb 13575
10b859c0
DM
13576void __builtin_vis_write_gsr (int64_t);
13577int64_t __builtin_vis_read_gsr (void);
13578
c5145ceb 13579void * __builtin_vis_alignaddr (void *, long);
47640f40 13580void * __builtin_vis_alignaddrl (void *, long);
c5145ceb
JM
13581int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
13582v2si __builtin_vis_faligndatav2si (v2si, v2si);
13583v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
13584v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
13585
13586v4hi __builtin_vis_fexpand (v4qi);
13587
13588v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
47640f40
DM
13589v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
13590v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
c5145ceb
JM
13591v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
13592v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
13593v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
13594v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
13595
13596v4qi __builtin_vis_fpack16 (v4hi);
47640f40 13597v8qi __builtin_vis_fpack32 (v2si, v8qi);
c5145ceb
JM
13598v2hi __builtin_vis_fpackfix (v2si);
13599v8qi __builtin_vis_fpmerge (v4qi, v4qi);
13600
13601int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
b1e4f4dd 13602
cb8bbba8
DM
13603long __builtin_vis_edge8 (void *, void *);
13604long __builtin_vis_edge8l (void *, void *);
13605long __builtin_vis_edge16 (void *, void *);
13606long __builtin_vis_edge16l (void *, void *);
13607long __builtin_vis_edge32 (void *, void *);
13608long __builtin_vis_edge32l (void *, void *);
13609
13610long __builtin_vis_fcmple16 (v4hi, v4hi);
13611long __builtin_vis_fcmple32 (v2si, v2si);
13612long __builtin_vis_fcmpne16 (v4hi, v4hi);
13613long __builtin_vis_fcmpne32 (v2si, v2si);
13614long __builtin_vis_fcmpgt16 (v4hi, v4hi);
13615long __builtin_vis_fcmpgt32 (v2si, v2si);
13616long __builtin_vis_fcmpeq16 (v4hi, v4hi);
13617long __builtin_vis_fcmpeq32 (v2si, v2si);
f14e0262
DM
13618
13619v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
13620v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
13621v2si __builtin_vis_fpadd32 (v2si, v2si);
13622v1si __builtin_vis_fpadd32s (v1si, v1si);
13623v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
13624v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
13625v2si __builtin_vis_fpsub32 (v2si, v2si);
13626v1si __builtin_vis_fpsub32s (v1si, v1si);
1ec01ab2
DM
13627
13628long __builtin_vis_array8 (long, long);
13629long __builtin_vis_array16 (long, long);
13630long __builtin_vis_array32 (long, long);
c5145ceb
JM
13631@end smallexample
13632
96d7b15f
DM
13633When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
13634functions also become available:
c4728c6b
DM
13635
13636@smallexample
13637long __builtin_vis_bmask (long, long);
13638int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
13639v2si __builtin_vis_bshufflev2si (v2si, v2si);
13640v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
13641v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
13642
13643long __builtin_vis_edge8n (void *, void *);
13644long __builtin_vis_edge8ln (void *, void *);
13645long __builtin_vis_edge16n (void *, void *);
13646long __builtin_vis_edge16ln (void *, void *);
13647long __builtin_vis_edge32n (void *, void *);
13648long __builtin_vis_edge32ln (void *, void *);
13649@end smallexample
13650
96d7b15f
DM
13651When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
13652functions also become available:
13653
13654@smallexample
13655void __builtin_vis_cmask8 (long);
13656void __builtin_vis_cmask16 (long);
13657void __builtin_vis_cmask32 (long);
13658
13659v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
13660
13661v4hi __builtin_vis_fsll16 (v4hi, v4hi);
13662v4hi __builtin_vis_fslas16 (v4hi, v4hi);
13663v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
13664v4hi __builtin_vis_fsra16 (v4hi, v4hi);
13665v2si __builtin_vis_fsll16 (v2si, v2si);
13666v2si __builtin_vis_fslas16 (v2si, v2si);
13667v2si __builtin_vis_fsrl16 (v2si, v2si);
13668v2si __builtin_vis_fsra16 (v2si, v2si);
13669
13670long __builtin_vis_pdistn (v8qi, v8qi);
13671
13672v4hi __builtin_vis_fmean16 (v4hi, v4hi);
13673
13674int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
13675int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
13676
13677v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
13678v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
13679v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
13680v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
13681v2si __builtin_vis_fpadds32 (v2si, v2si);
13682v1si __builtin_vis_fpadds32s (v1si, v1si);
13683v2si __builtin_vis_fpsubs32 (v2si, v2si);
13684v1si __builtin_vis_fpsubs32s (v1si, v1si);
13685
13686long __builtin_vis_fucmple8 (v8qi, v8qi);
13687long __builtin_vis_fucmpne8 (v8qi, v8qi);
13688long __builtin_vis_fucmpgt8 (v8qi, v8qi);
13689long __builtin_vis_fucmpeq8 (v8qi, v8qi);
facb3fd7
DM
13690
13691float __builtin_vis_fhadds (float, float);
13692double __builtin_vis_fhaddd (double, double);
13693float __builtin_vis_fhsubs (float, float);
13694double __builtin_vis_fhsubd (double, double);
13695float __builtin_vis_fnhadds (float, float);
13696double __builtin_vis_fnhaddd (double, double);
13697
13698int64_t __builtin_vis_umulxhi (int64_t, int64_t);
13699int64_t __builtin_vis_xmulx (int64_t, int64_t);
13700int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
96d7b15f
DM
13701@end smallexample
13702
85d9c13c
TS
13703@node SPU Built-in Functions
13704@subsection SPU Built-in Functions
13705
13706GCC provides extensions for the SPU processor as described in the
13707Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
13708found at @uref{http://cell.scei.co.jp/} or
13709@uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
13710implementation differs in several ways.
13711
13712@itemize @bullet
13713
13714@item
13715The optional extension of specifying vector constants in parentheses is
13716not supported.
13717
13718@item
13719A vector initializer requires no cast if the vector constant is of the
13720same type as the variable it is initializing.
13721
13722@item
13723If @code{signed} or @code{unsigned} is omitted, the signedness of the
13724vector type is the default signedness of the base type. The default
13725varies depending on the operating system, so a portable program should
13726always specify the signedness.
13727
13728@item
13729By default, the keyword @code{__vector} is added. The macro
13730@code{vector} is defined in @code{<spu_intrinsics.h>} and can be
13731undefined.
13732
13733@item
13734GCC allows using a @code{typedef} name as the type specifier for a
13735vector type.
13736
13737@item
13738For C, overloaded functions are implemented with macros so the following
13739does not work:
13740
13741@smallexample
13742 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13743@end smallexample
13744
13745Since @code{spu_add} is a macro, the vector constant in the example
13746is treated as four separate arguments. Wrap the entire argument in
13747parentheses for this to work.
13748
13749@item
13750The extended version of @code{__builtin_expect} is not supported.
13751
13752@end itemize
13753
5681c208 13754@emph{Note:} Only the interface described in the aforementioned
85d9c13c
TS
13755specification is supported. Internally, GCC uses built-in functions to
13756implement the required functionality, but these are not supported and
13757are subject to change without notice.
13758
bcead286
BS
13759@node TI C6X Built-in Functions
13760@subsection TI C6X Built-in Functions
13761
13762GCC provides intrinsics to access certain instructions of the TI C6X
13763processors. These intrinsics, listed below, are available after
13764inclusion of the @code{c6x_intrinsics.h} header file. They map directly
13765to C6X instructions.
13766
13767@smallexample
13768
13769int _sadd (int, int)
13770int _ssub (int, int)
13771int _sadd2 (int, int)
13772int _ssub2 (int, int)
13773long long _mpy2 (int, int)
13774long long _smpy2 (int, int)
13775int _add4 (int, int)
13776int _sub4 (int, int)
13777int _saddu4 (int, int)
13778
13779int _smpy (int, int)
13780int _smpyh (int, int)
13781int _smpyhl (int, int)
13782int _smpylh (int, int)
13783
13784int _sshl (int, int)
13785int _subc (int, int)
13786
13787int _avg2 (int, int)
13788int _avgu4 (int, int)
13789
13790int _clrr (int, int)
13791int _extr (int, int)
13792int _extru (int, int)
13793int _abs (int)
13794int _abs2 (int)
13795
13796@end smallexample
13797
dd552284
WL
13798@node TILE-Gx Built-in Functions
13799@subsection TILE-Gx Built-in Functions
13800
13801GCC provides intrinsics to access every instruction of the TILE-Gx
13802processor. The intrinsics are of the form:
13803
13804@smallexample
13805
13806unsigned long long __insn_@var{op} (...)
13807
13808@end smallexample
13809
13810Where @var{op} is the name of the instruction. Refer to the ISA manual
13811for the complete list of instructions.
13812
13813GCC also provides intrinsics to directly access the network registers.
13814The intrinsics are:
13815
13816@smallexample
13817
13818unsigned long long __tile_idn0_receive (void)
13819unsigned long long __tile_idn1_receive (void)
13820unsigned long long __tile_udn0_receive (void)
13821unsigned long long __tile_udn1_receive (void)
13822unsigned long long __tile_udn2_receive (void)
13823unsigned long long __tile_udn3_receive (void)
13824void __tile_idn_send (unsigned long long)
13825void __tile_udn_send (unsigned long long)
13826
13827@end smallexample
13828
13829The intrinsic @code{void __tile_network_barrier (void)} is used to
13830guarantee that no network operatons before it will be reordered with
13831those after it.
13832
13833@node TILEPro Built-in Functions
13834@subsection TILEPro Built-in Functions
13835
13836GCC provides intrinsics to access every instruction of the TILEPro
13837processor. The intrinsics are of the form:
13838
13839@smallexample
13840
13841unsigned __insn_@var{op} (...)
13842
13843@end smallexample
13844
13845Where @var{op} is the name of the instruction. Refer to the ISA manual
13846for the complete list of instructions.
13847
13848GCC also provides intrinsics to directly access the network registers.
13849The intrinsics are:
13850
13851@smallexample
13852
13853unsigned __tile_idn0_receive (void)
13854unsigned __tile_idn1_receive (void)
13855unsigned __tile_sn_receive (void)
13856unsigned __tile_udn0_receive (void)
13857unsigned __tile_udn1_receive (void)
13858unsigned __tile_udn2_receive (void)
13859unsigned __tile_udn3_receive (void)
13860void __tile_idn_send (unsigned)
13861void __tile_sn_send (unsigned)
13862void __tile_udn_send (unsigned)
13863
13864@end smallexample
13865
13866The intrinsic @code{void __tile_network_barrier (void)} is used to
13867guarantee that no network operatons before it will be reordered with
13868those after it.
13869
a2bec818
DJ
13870@node Target Format Checks
13871@section Format Checks Specific to Particular Target Machines
13872
13873For some target machines, GCC supports additional options to the
13874format attribute
13875(@pxref{Function Attributes,,Declaring Attributes of Functions}).
13876
13877@menu
13878* Solaris Format Checks::
91ebb981 13879* Darwin Format Checks::
a2bec818
DJ
13880@end menu
13881
13882@node Solaris Format Checks
13883@subsection Solaris Format Checks
13884
13885Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
13886check. @code{cmn_err} accepts a subset of the standard @code{printf}
13887conversions, and the two-argument @code{%b} conversion for displaying
13888bit-fields. See the Solaris man page for @code{cmn_err} for more information.
13889
91ebb981
IS
13890@node Darwin Format Checks
13891@subsection Darwin Format Checks
13892
ff2ce160 13893Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
91ebb981
IS
13894attribute context. Declarations made with such attribution will be parsed for correct syntax
13895and format argument types. However, parsing of the format string itself is currently undefined
ff2ce160 13896and will not be carried out by this version of the compiler.
91ebb981
IS
13897
13898Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
13899also be used as format arguments. Note that the relevant headers are only likely to be
13900available on Darwin (OSX) installations. On such installations, the XCode and system
13901documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
13902associated functions.
13903
0168a849
SS
13904@node Pragmas
13905@section Pragmas Accepted by GCC
13906@cindex pragmas
ab940b73 13907@cindex @code{#pragma}
0168a849
SS
13908
13909GCC supports several types of pragmas, primarily in order to compile
13910code originally written for other compilers. Note that in general
13911we do not recommend the use of pragmas; @xref{Function Attributes},
13912for further explanation.
13913
13914@menu
13915* ARM Pragmas::
38b2d076 13916* M32C Pragmas::
e2491744 13917* MeP Pragmas::
a5c76ee6 13918* RS/6000 and PowerPC Pragmas::
0168a849 13919* Darwin Pragmas::
07a43492 13920* Solaris Pragmas::
84b8b0e0 13921* Symbol-Renaming Pragmas::
467cecf3 13922* Structure-Packing Pragmas::
52eb57df 13923* Weak Pragmas::
79cf5994 13924* Diagnostic Pragmas::
b9e75696 13925* Visibility Pragmas::
20cef83a 13926* Push/Pop Macro Pragmas::
ab442df7 13927* Function Specific Option Pragmas::
0168a849
SS
13928@end menu
13929
13930@node ARM Pragmas
13931@subsection ARM Pragmas
13932
13933The ARM target defines pragmas for controlling the default addition of
13934@code{long_call} and @code{short_call} attributes to functions.
13935@xref{Function Attributes}, for information about the effects of these
13936attributes.
13937
13938@table @code
13939@item long_calls
13940@cindex pragma, long_calls
13941Set all subsequent functions to have the @code{long_call} attribute.
13942
13943@item no_long_calls
13944@cindex pragma, no_long_calls
13945Set all subsequent functions to have the @code{short_call} attribute.
13946
13947@item long_calls_off
13948@cindex pragma, long_calls_off
13949Do not affect the @code{long_call} or @code{short_call} attributes of
13950subsequent functions.
13951@end table
13952
38b2d076
DD
13953@node M32C Pragmas
13954@subsection M32C Pragmas
13955
13956@table @code
f6052f86 13957@item GCC memregs @var{number}
38b2d076 13958@cindex pragma, memregs
bcbc9564 13959Overrides the command-line option @code{-memregs=} for the current
38b2d076
DD
13960file. Use with care! This pragma must be before any function in the
13961file, and mixing different memregs values in different objects may
13962make them incompatible. This pragma is useful when a
13963performance-critical function uses a memreg for temporary values,
13964as it may allow you to reduce the number of memregs used.
13965
f6052f86
DD
13966@item ADDRESS @var{name} @var{address}
13967@cindex pragma, address
13968For any declared symbols matching @var{name}, this does three things
13969to that symbol: it forces the symbol to be located at the given
13970address (a number), it forces the symbol to be volatile, and it
13971changes the symbol's scope to be static. This pragma exists for
13972compatibility with other compilers, but note that the common
13973@code{1234H} numeric syntax is not supported (use @code{0x1234}
13974instead). Example:
13975
13976@example
13977#pragma ADDRESS port3 0x103
13978char port3;
13979@end example
13980
38b2d076
DD
13981@end table
13982
e2491744
DD
13983@node MeP Pragmas
13984@subsection MeP Pragmas
13985
13986@table @code
13987
13988@item custom io_volatile (on|off)
13989@cindex pragma, custom io_volatile
13990Overrides the command line option @code{-mio-volatile} for the current
13991file. Note that for compatibility with future GCC releases, this
13992option should only be used once before any @code{io} variables in each
13993file.
13994
13995@item GCC coprocessor available @var{registers}
13996@cindex pragma, coprocessor available
13997Specifies which coprocessor registers are available to the register
13998allocator. @var{registers} may be a single register, register range
13999separated by ellipses, or comma-separated list of those. Example:
14000
14001@example
14002#pragma GCC coprocessor available $c0...$c10, $c28
14003@end example
14004
14005@item GCC coprocessor call_saved @var{registers}
14006@cindex pragma, coprocessor call_saved
14007Specifies which coprocessor registers are to be saved and restored by
14008any function using them. @var{registers} may be a single register,
14009register range separated by ellipses, or comma-separated list of
14010those. Example:
14011
14012@example
14013#pragma GCC coprocessor call_saved $c4...$c6, $c31
14014@end example
14015
14016@item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
14017@cindex pragma, coprocessor subclass
14018Creates and defines a register class. These register classes can be
14019used by inline @code{asm} constructs. @var{registers} may be a single
14020register, register range separated by ellipses, or comma-separated
14021list of those. Example:
14022
14023@example
14024#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
14025
14026asm ("cpfoo %0" : "=B" (x));
14027@end example
14028
14029@item GCC disinterrupt @var{name} , @var{name} @dots{}
14030@cindex pragma, disinterrupt
14031For the named functions, the compiler adds code to disable interrupts
14032for the duration of those functions. Any functions so named, which
14033are not encountered in the source, cause a warning that the pragma was
14034not used. Examples:
14035
14036@example
14037#pragma disinterrupt foo
14038#pragma disinterrupt bar, grill
ddaa3488 14039int foo () @{ @dots{} @}
e2491744
DD
14040@end example
14041
14042@item GCC call @var{name} , @var{name} @dots{}
14043@cindex pragma, call
14044For the named functions, the compiler always uses a register-indirect
14045call model when calling the named functions. Examples:
14046
14047@example
14048extern int foo ();
14049#pragma call foo
14050@end example
14051
14052@end table
14053
a5c76ee6
ZW
14054@node RS/6000 and PowerPC Pragmas
14055@subsection RS/6000 and PowerPC Pragmas
14056
14057The RS/6000 and PowerPC targets define one pragma for controlling
14058whether or not the @code{longcall} attribute is added to function
14059declarations by default. This pragma overrides the @option{-mlongcall}
95b1627e 14060option, but not the @code{longcall} and @code{shortcall} attributes.
a5c76ee6
ZW
14061@xref{RS/6000 and PowerPC Options}, for more information about when long
14062calls are and are not necessary.
14063
14064@table @code
14065@item longcall (1)
14066@cindex pragma, longcall
14067Apply the @code{longcall} attribute to all subsequent function
14068declarations.
14069
14070@item longcall (0)
14071Do not apply the @code{longcall} attribute to subsequent function
14072declarations.
14073@end table
14074
0168a849 14075@c Describe h8300 pragmas here.
0168a849
SS
14076@c Describe sh pragmas here.
14077@c Describe v850 pragmas here.
14078
14079@node Darwin Pragmas
14080@subsection Darwin Pragmas
14081
14082The following pragmas are available for all architectures running the
14083Darwin operating system. These are useful for compatibility with other
85ebf0c6 14084Mac OS compilers.
0168a849
SS
14085
14086@table @code
14087@item mark @var{tokens}@dots{}
14088@cindex pragma, mark
14089This pragma is accepted, but has no effect.
14090
14091@item options align=@var{alignment}
14092@cindex pragma, options align
14093This pragma sets the alignment of fields in structures. The values of
14094@var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
14095@code{power}, to emulate PowerPC alignment. Uses of this pragma nest
14096properly; to restore the previous setting, use @code{reset} for the
14097@var{alignment}.
14098
14099@item segment @var{tokens}@dots{}
14100@cindex pragma, segment
14101This pragma is accepted, but has no effect.
14102
14103@item unused (@var{var} [, @var{var}]@dots{})
14104@cindex pragma, unused
14105This pragma declares variables to be possibly unused. GCC will not
14106produce warnings for the listed variables. The effect is similar to
14107that of the @code{unused} attribute, except that this pragma may appear
14108anywhere within the variables' scopes.
14109@end table
14110
07a43492
DJ
14111@node Solaris Pragmas
14112@subsection Solaris Pragmas
14113
14114The Solaris target supports @code{#pragma redefine_extname}
14115(@pxref{Symbol-Renaming Pragmas}). It also supports additional
14116@code{#pragma} directives for compatibility with the system compiler.
14117
14118@table @code
14119@item align @var{alignment} (@var{variable} [, @var{variable}]...)
14120@cindex pragma, align
14121
14122Increase the minimum alignment of each @var{variable} to @var{alignment}.
14123This is the same as GCC's @code{aligned} attribute @pxref{Variable
b5b3e36a 14124Attributes}). Macro expansion occurs on the arguments to this pragma
0ee2ea09 14125when compiling C and Objective-C@. It does not currently occur when
b5b3e36a
DJ
14126compiling C++, but this is a bug which may be fixed in a future
14127release.
07a43492
DJ
14128
14129@item fini (@var{function} [, @var{function}]...)
14130@cindex pragma, fini
14131
14132This pragma causes each listed @var{function} to be called after
14133main, or during shared module unloading, by adding a call to the
14134@code{.fini} section.
14135
14136@item init (@var{function} [, @var{function}]...)
14137@cindex pragma, init
14138
14139This pragma causes each listed @var{function} to be called during
14140initialization (before @code{main}) or during shared module loading, by
14141adding a call to the @code{.init} section.
14142
14143@end table
14144
84b8b0e0
ZW
14145@node Symbol-Renaming Pragmas
14146@subsection Symbol-Renaming Pragmas
41c64394 14147
5c30094f 14148For compatibility with the Solaris system headers, GCC
84b8b0e0 14149supports two @code{#pragma} directives which change the name used in
5c30094f 14150assembly for a given declaration. To get this effect
c54d7dc9 14151on all platforms supported by GCC, use the asm labels extension (@pxref{Asm
84b8b0e0 14152Labels}).
41c64394
RH
14153
14154@table @code
14155@item redefine_extname @var{oldname} @var{newname}
14156@cindex pragma, redefine_extname
14157
84b8b0e0
ZW
14158This pragma gives the C function @var{oldname} the assembly symbol
14159@var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
c54d7dc9 14160will be defined if this pragma is available (currently on all platforms).
41c64394
RH
14161@end table
14162
5c30094f 14163This pragma and the asm labels extension interact in a complicated
84b8b0e0
ZW
14164manner. Here are some corner cases you may want to be aware of.
14165
14166@enumerate
14167@item Both pragmas silently apply only to declarations with external
14168linkage. Asm labels do not have this restriction.
14169
14170@item In C++, both pragmas silently apply only to declarations with
14171``C'' linkage. Again, asm labels do not have this restriction.
14172
14173@item If any of the three ways of changing the assembly name of a
14174declaration is applied to a declaration whose assembly name has
14175already been determined (either by a previous use of one of these
14176features, or because the compiler needed the assembly name in order to
14177generate code), and the new name is different, a warning issues and
14178the name does not change.
14179
14180@item The @var{oldname} used by @code{#pragma redefine_extname} is
14181always the C-language name.
84b8b0e0
ZW
14182@end enumerate
14183
467cecf3
JB
14184@node Structure-Packing Pragmas
14185@subsection Structure-Packing Pragmas
14186
20cef83a
DS
14187For compatibility with Microsoft Windows compilers, GCC supports a
14188set of @code{#pragma} directives which change the maximum alignment of
14189members of structures (other than zero-width bitfields), unions, and
14190classes subsequently defined. The @var{n} value below always is required
14191to be a small power of two and specifies the new alignment in bytes.
467cecf3
JB
14192
14193@enumerate
14194@item @code{#pragma pack(@var{n})} simply sets the new alignment.
14195@item @code{#pragma pack()} sets the alignment to the one that was in
bcbc9564 14196effect when compilation started (see also command-line option
917e11d7 14197@option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
467cecf3
JB
14198@item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
14199setting on an internal stack and then optionally sets the new alignment.
14200@item @code{#pragma pack(pop)} restores the alignment setting to the one
14201saved at the top of the internal stack (and removes that stack entry).
14202Note that @code{#pragma pack([@var{n}])} does not influence this internal
14203stack; thus it is possible to have @code{#pragma pack(push)} followed by
14204multiple @code{#pragma pack(@var{n})} instances and finalized by a single
14205@code{#pragma pack(pop)}.
14206@end enumerate
14207
021efafc 14208Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
6bb7beac
EC
14209@code{#pragma} which lays out a structure as the documented
14210@code{__attribute__ ((ms_struct))}.
14211@enumerate
14212@item @code{#pragma ms_struct on} turns on the layout for structures
14213declared.
14214@item @code{#pragma ms_struct off} turns off the layout for structures
14215declared.
14216@item @code{#pragma ms_struct reset} goes back to the default layout.
14217@end enumerate
14218
52eb57df
RH
14219@node Weak Pragmas
14220@subsection Weak Pragmas
14221
14222For compatibility with SVR4, GCC supports a set of @code{#pragma}
14223directives for declaring symbols to be weak, and defining weak
14224aliases.
14225
14226@table @code
14227@item #pragma weak @var{symbol}
14228@cindex pragma, weak
14229This pragma declares @var{symbol} to be weak, as if the declaration
14230had the attribute of the same name. The pragma may appear before
e8ba94fc 14231or after the declaration of @var{symbol}. It is not an error for
52eb57df
RH
14232@var{symbol} to never be defined at all.
14233
14234@item #pragma weak @var{symbol1} = @var{symbol2}
14235This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
14236It is an error if @var{symbol2} is not defined in the current
14237translation unit.
14238@end table
14239
79cf5994
DD
14240@node Diagnostic Pragmas
14241@subsection Diagnostic Pragmas
14242
14243GCC allows the user to selectively enable or disable certain types of
14244diagnostics, and change the kind of the diagnostic. For example, a
14245project's policy might require that all sources compile with
14246@option{-Werror} but certain files might have exceptions allowing
14247specific types of warnings. Or, a project might selectively enable
14248diagnostics and treat them as errors depending on which preprocessor
14249macros are defined.
14250
14251@table @code
14252@item #pragma GCC diagnostic @var{kind} @var{option}
14253@cindex pragma, diagnostic
14254
14255Modifies the disposition of a diagnostic. Note that not all
1eaf20ec 14256diagnostics are modifiable; at the moment only warnings (normally
923158be 14257controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
79cf5994
DD
14258Use @option{-fdiagnostics-show-option} to determine which diagnostics
14259are controllable and which option controls them.
14260
14261@var{kind} is @samp{error} to treat this diagnostic as an error,
14262@samp{warning} to treat it like a warning (even if @option{-Werror} is
14263in effect), or @samp{ignored} if the diagnostic is to be ignored.
bcbc9564 14264@var{option} is a double quoted string which matches the command-line
79cf5994
DD
14265option.
14266
14267@example
14268#pragma GCC diagnostic warning "-Wformat"
c116cd05
MLI
14269#pragma GCC diagnostic error "-Wformat"
14270#pragma GCC diagnostic ignored "-Wformat"
79cf5994
DD
14271@end example
14272
cd7fe53b
DD
14273Note that these pragmas override any command-line options. GCC keeps
14274track of the location of each pragma, and issues diagnostics according
14275to the state as of that point in the source file. Thus, pragmas occurring
14276after a line do not affect diagnostics caused by that line.
14277
14278@item #pragma GCC diagnostic push
14279@itemx #pragma GCC diagnostic pop
14280
14281Causes GCC to remember the state of the diagnostics as of each
14282@code{push}, and restore to that point at each @code{pop}. If a
14283@code{pop} has no matching @code{push}, the command line options are
14284restored.
14285
14286@example
14287#pragma GCC diagnostic error "-Wuninitialized"
14288 foo(a); /* error is given for this one */
14289#pragma GCC diagnostic push
14290#pragma GCC diagnostic ignored "-Wuninitialized"
14291 foo(b); /* no diagnostic for this one */
14292#pragma GCC diagnostic pop
14293 foo(c); /* error is given for this one */
14294#pragma GCC diagnostic pop
14295 foo(d); /* depends on command line options */
14296@end example
79cf5994
DD
14297
14298@end table
14299
0d48657d
SB
14300GCC also offers a simple mechanism for printing messages during
14301compilation.
14302
14303@table @code
14304@item #pragma message @var{string}
14305@cindex pragma, diagnostic
14306
14307Prints @var{string} as a compiler message on compilation. The message
14308is informational only, and is neither a compilation warning nor an error.
14309
14310@smallexample
14311#pragma message "Compiling " __FILE__ "..."
14312@end smallexample
14313
14314@var{string} may be parenthesized, and is printed with location
14315information. For example,
14316
14317@smallexample
14318#define DO_PRAGMA(x) _Pragma (#x)
14319#define TODO(x) DO_PRAGMA(message ("TODO - " #x))
14320
14321TODO(Remember to fix this)
14322@end smallexample
14323
14324prints @samp{/tmp/file.c:4: note: #pragma message:
14325TODO - Remember to fix this}.
14326
14327@end table
14328
b9e75696
JM
14329@node Visibility Pragmas
14330@subsection Visibility Pragmas
14331
14332@table @code
14333@item #pragma GCC visibility push(@var{visibility})
14334@itemx #pragma GCC visibility pop
14335@cindex pragma, visibility
14336
14337This pragma allows the user to set the visibility for multiple
14338declarations without having to give each a visibility attribute
14339@xref{Function Attributes}, for more information about visibility and
14340the attribute syntax.
14341
14342In C++, @samp{#pragma GCC visibility} affects only namespace-scope
14343declarations. Class members and template specializations are not
14344affected; if you want to override the visibility for a particular
14345member or instantiation, you must use an attribute.
14346
14347@end table
14348
20cef83a
DS
14349
14350@node Push/Pop Macro Pragmas
14351@subsection Push/Pop Macro Pragmas
14352
14353For compatibility with Microsoft Windows compilers, GCC supports
14354@samp{#pragma push_macro(@var{"macro_name"})}
14355and @samp{#pragma pop_macro(@var{"macro_name"})}.
14356
14357@table @code
14358@item #pragma push_macro(@var{"macro_name"})
14359@cindex pragma, push_macro
14360This pragma saves the value of the macro named as @var{macro_name} to
14361the top of the stack for this macro.
14362
14363@item #pragma pop_macro(@var{"macro_name"})
14364@cindex pragma, pop_macro
14365This pragma sets the value of the macro named as @var{macro_name} to
14366the value on top of the stack for this macro. If the stack for
14367@var{macro_name} is empty, the value of the macro remains unchanged.
14368@end table
14369
14370For example:
14371
14372@smallexample
14373#define X 1
14374#pragma push_macro("X")
14375#undef X
14376#define X -1
14377#pragma pop_macro("X")
ff2ce160 14378int x [X];
20cef83a
DS
14379@end smallexample
14380
14381In this example, the definition of X as 1 is saved by @code{#pragma
14382push_macro} and restored by @code{#pragma pop_macro}.
14383
ab442df7
MM
14384@node Function Specific Option Pragmas
14385@subsection Function Specific Option Pragmas
14386
14387@table @code
5779e713
MM
14388@item #pragma GCC target (@var{"string"}...)
14389@cindex pragma GCC target
ab442df7
MM
14390
14391This pragma allows you to set target specific options for functions
14392defined later in the source file. One or more strings can be
14393specified. Each function that is defined after this point will be as
5779e713 14394if @code{attribute((target("STRING")))} was specified for that
ab442df7
MM
14395function. The parenthesis around the options is optional.
14396@xref{Function Attributes}, for more information about the
5779e713 14397@code{target} attribute and the attribute syntax.
ab442df7 14398
fd438373
MM
14399The @code{#pragma GCC target} attribute is not implemented in GCC versions earlier
14400than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. At
14401present, it is not implemented for other backends.
ab442df7
MM
14402@end table
14403
ab442df7
MM
14404@table @code
14405@item #pragma GCC optimize (@var{"string"}...)
14406@cindex pragma GCC optimize
14407
14408This pragma allows you to set global optimization options for functions
14409defined later in the source file. One or more strings can be
14410specified. Each function that is defined after this point will be as
14411if @code{attribute((optimize("STRING")))} was specified for that
14412function. The parenthesis around the options is optional.
14413@xref{Function Attributes}, for more information about the
14414@code{optimize} attribute and the attribute syntax.
14415
14416The @samp{#pragma GCC optimize} pragma is not implemented in GCC
14417versions earlier than 4.4.
14418@end table
14419
14420@table @code
5779e713
MM
14421@item #pragma GCC push_options
14422@itemx #pragma GCC pop_options
14423@cindex pragma GCC push_options
14424@cindex pragma GCC pop_options
14425
14426These pragmas maintain a stack of the current target and optimization
14427options. It is intended for include files where you temporarily want
14428to switch to using a different @samp{#pragma GCC target} or
14429@samp{#pragma GCC optimize} and then to pop back to the previous
14430options.
14431
14432The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
14433pragmas are not implemented in GCC versions earlier than 4.4.
ab442df7
MM
14434@end table
14435
14436@table @code
5779e713
MM
14437@item #pragma GCC reset_options
14438@cindex pragma GCC reset_options
ab442df7 14439
5779e713
MM
14440This pragma clears the current @code{#pragma GCC target} and
14441@code{#pragma GCC optimize} to use the default switches as specified
14442on the command line.
14443
14444The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
14445versions earlier than 4.4.
ab442df7
MM
14446@end table
14447
3e96a2fd 14448@node Unnamed Fields
2fbebc71 14449@section Unnamed struct/union fields within structs/unions
ab940b73
RW
14450@cindex @code{struct}
14451@cindex @code{union}
3e96a2fd 14452
48b0b196 14453As permitted by ISO C11 and for compatibility with other compilers,
4bdd0a60 14454GCC allows you to define
3e96a2fd
DD
14455a structure or union that contains, as fields, structures and unions
14456without names. For example:
14457
3ab51846 14458@smallexample
3e96a2fd
DD
14459struct @{
14460 int a;
14461 union @{
14462 int b;
14463 float c;
14464 @};
14465 int d;
14466@} foo;
3ab51846 14467@end smallexample
3e96a2fd
DD
14468
14469In this example, the user would be able to access members of the unnamed
14470union with code like @samp{foo.b}. Note that only unnamed structs and
14471unions are allowed, you may not have, for example, an unnamed
14472@code{int}.
14473
14474You must never create such structures that cause ambiguous field definitions.
14475For example, this structure:
14476
3ab51846 14477@smallexample
3e96a2fd
DD
14478struct @{
14479 int a;
14480 struct @{
14481 int a;
14482 @};
14483@} foo;
3ab51846 14484@end smallexample
3e96a2fd
DD
14485
14486It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
492fc0ee 14487The compiler gives errors for such constructs.
3e96a2fd 14488
2fbebc71
JM
14489@opindex fms-extensions
14490Unless @option{-fms-extensions} is used, the unnamed field must be a
14491structure or union definition without a tag (for example, @samp{struct
ff8e2159 14492@{ int a; @};}). If @option{-fms-extensions} is used, the field may
2fbebc71
JM
14493also be a definition with a tag such as @samp{struct foo @{ int a;
14494@};}, a reference to a previously defined structure or union such as
14495@samp{struct foo;}, or a reference to a @code{typedef} name for a
ff8e2159 14496previously defined structure or union type.
2fbebc71 14497
478a1c5b
ILT
14498@opindex fplan9-extensions
14499The option @option{-fplan9-extensions} enables
14500@option{-fms-extensions} as well as two other extensions. First, a
14501pointer to a structure is automatically converted to a pointer to an
14502anonymous field for assignments and function calls. For example:
14503
14504@smallexample
14505struct s1 @{ int a; @};
14506struct s2 @{ struct s1; @};
14507extern void f1 (struct s1 *);
14508void f2 (struct s2 *p) @{ f1 (p); @}
14509@end smallexample
14510
14511In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
14512converted into a pointer to the anonymous field.
14513
14514Second, when the type of an anonymous field is a @code{typedef} for a
14515@code{struct} or @code{union}, code may refer to the field using the
14516name of the @code{typedef}.
14517
14518@smallexample
14519typedef struct @{ int a; @} s1;
14520struct s2 @{ s1; @};
14521s1 f1 (struct s2 *p) @{ return p->s1; @}
14522@end smallexample
14523
14524These usages are only permitted when they are not ambiguous.
14525
3d78f2e9
RH
14526@node Thread-Local
14527@section Thread-Local Storage
14528@cindex Thread-Local Storage
9217ef40 14529@cindex @acronym{TLS}
ab940b73 14530@cindex @code{__thread}
3d78f2e9 14531
9217ef40
RH
14532Thread-local storage (@acronym{TLS}) is a mechanism by which variables
14533are allocated such that there is one instance of the variable per extant
3d78f2e9
RH
14534thread. The run-time model GCC uses to implement this originates
14535in the IA-64 processor-specific ABI, but has since been migrated
14536to other processors as well. It requires significant support from
14537the linker (@command{ld}), dynamic linker (@command{ld.so}), and
14538system libraries (@file{libc.so} and @file{libpthread.so}), so it
9217ef40 14539is not available everywhere.
3d78f2e9
RH
14540
14541At the user level, the extension is visible with a new storage
14542class keyword: @code{__thread}. For example:
14543
3ab51846 14544@smallexample
3d78f2e9
RH
14545__thread int i;
14546extern __thread struct state s;
14547static __thread char *p;
3ab51846 14548@end smallexample
3d78f2e9
RH
14549
14550The @code{__thread} specifier may be used alone, with the @code{extern}
14551or @code{static} specifiers, but with no other storage class specifier.
14552When used with @code{extern} or @code{static}, @code{__thread} must appear
14553immediately after the other storage class specifier.
14554
14555The @code{__thread} specifier may be applied to any global, file-scoped
244c2241
RH
14556static, function-scoped static, or static data member of a class. It may
14557not be applied to block-scoped automatic or non-static data member.
3d78f2e9
RH
14558
14559When the address-of operator is applied to a thread-local variable, it is
14560evaluated at run-time and returns the address of the current thread's
14561instance of that variable. An address so obtained may be used by any
14562thread. When a thread terminates, any pointers to thread-local variables
14563in that thread become invalid.
14564
14565No static initialization may refer to the address of a thread-local variable.
14566
244c2241
RH
14567In C++, if an initializer is present for a thread-local variable, it must
14568be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
14569standard.
3d78f2e9 14570
419d1d37 14571See @uref{http://www.akkadia.org/drepper/tls.pdf,
3d78f2e9
RH
14572ELF Handling For Thread-Local Storage} for a detailed explanation of
14573the four thread-local storage addressing models, and how the run-time
14574is expected to function.
14575
9217ef40
RH
14576@menu
14577* C99 Thread-Local Edits::
14578* C++98 Thread-Local Edits::
14579@end menu
14580
14581@node C99 Thread-Local Edits
14582@subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
14583
14584The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
14585that document the exact semantics of the language extension.
14586
14587@itemize @bullet
14588@item
14589@cite{5.1.2 Execution environments}
14590
14591Add new text after paragraph 1
14592
14593@quotation
14594Within either execution environment, a @dfn{thread} is a flow of
14595control within a program. It is implementation defined whether
14596or not there may be more than one thread associated with a program.
14597It is implementation defined how threads beyond the first are
14598created, the name and type of the function called at thread
14599startup, and how threads may be terminated. However, objects
14600with thread storage duration shall be initialized before thread
14601startup.
14602@end quotation
14603
14604@item
14605@cite{6.2.4 Storage durations of objects}
14606
14607Add new text before paragraph 3
14608
14609@quotation
14610An object whose identifier is declared with the storage-class
14611specifier @w{@code{__thread}} has @dfn{thread storage duration}.
14612Its lifetime is the entire execution of the thread, and its
14613stored value is initialized only once, prior to thread startup.
14614@end quotation
14615
14616@item
14617@cite{6.4.1 Keywords}
14618
14619Add @code{__thread}.
14620
14621@item
14622@cite{6.7.1 Storage-class specifiers}
14623
14624Add @code{__thread} to the list of storage class specifiers in
14625paragraph 1.
14626
14627Change paragraph 2 to
14628
14629@quotation
14630With the exception of @code{__thread}, at most one storage-class
14631specifier may be given [@dots{}]. The @code{__thread} specifier may
14632be used alone, or immediately following @code{extern} or
14633@code{static}.
14634@end quotation
14635
14636Add new text after paragraph 6
14637
14638@quotation
14639The declaration of an identifier for a variable that has
14640block scope that specifies @code{__thread} shall also
14641specify either @code{extern} or @code{static}.
14642
14643The @code{__thread} specifier shall be used only with
14644variables.
14645@end quotation
14646@end itemize
14647
14648@node C++98 Thread-Local Edits
14649@subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
14650
14651The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
14652that document the exact semantics of the language extension.
14653
14654@itemize @bullet
8d23a2c8 14655@item
9217ef40
RH
14656@b{[intro.execution]}
14657
14658New text after paragraph 4
14659
14660@quotation
14661A @dfn{thread} is a flow of control within the abstract machine.
14662It is implementation defined whether or not there may be more than
14663one thread.
14664@end quotation
14665
14666New text after paragraph 7
14667
14668@quotation
95b1627e 14669It is unspecified whether additional action must be taken to
9217ef40
RH
14670ensure when and whether side effects are visible to other threads.
14671@end quotation
14672
14673@item
14674@b{[lex.key]}
14675
14676Add @code{__thread}.
14677
14678@item
14679@b{[basic.start.main]}
14680
14681Add after paragraph 5
14682
14683@quotation
14684The thread that begins execution at the @code{main} function is called
95b1627e 14685the @dfn{main thread}. It is implementation defined how functions
9217ef40
RH
14686beginning threads other than the main thread are designated or typed.
14687A function so designated, as well as the @code{main} function, is called
14688a @dfn{thread startup function}. It is implementation defined what
14689happens if a thread startup function returns. It is implementation
14690defined what happens to other threads when any thread calls @code{exit}.
14691@end quotation
14692
14693@item
14694@b{[basic.start.init]}
14695
14696Add after paragraph 4
14697
14698@quotation
14699The storage for an object of thread storage duration shall be
c0478a66 14700statically initialized before the first statement of the thread startup
9217ef40
RH
14701function. An object of thread storage duration shall not require
14702dynamic initialization.
14703@end quotation
14704
14705@item
14706@b{[basic.start.term]}
14707
14708Add after paragraph 3
14709
14710@quotation
244c2241
RH
14711The type of an object with thread storage duration shall not have a
14712non-trivial destructor, nor shall it be an array type whose elements
14713(directly or indirectly) have non-trivial destructors.
9217ef40
RH
14714@end quotation
14715
14716@item
14717@b{[basic.stc]}
14718
14719Add ``thread storage duration'' to the list in paragraph 1.
14720
14721Change paragraph 2
14722
14723@quotation
14724Thread, static, and automatic storage durations are associated with
14725objects introduced by declarations [@dots{}].
14726@end quotation
14727
14728Add @code{__thread} to the list of specifiers in paragraph 3.
14729
14730@item
14731@b{[basic.stc.thread]}
14732
14733New section before @b{[basic.stc.static]}
14734
14735@quotation
63519d23 14736The keyword @code{__thread} applied to a non-local object gives the
9217ef40
RH
14737object thread storage duration.
14738
14739A local variable or class data member declared both @code{static}
14740and @code{__thread} gives the variable or member thread storage
14741duration.
14742@end quotation
14743
14744@item
14745@b{[basic.stc.static]}
14746
14747Change paragraph 1
14748
14749@quotation
14750All objects which have neither thread storage duration, dynamic
14751storage duration nor are local [@dots{}].
14752@end quotation
14753
14754@item
14755@b{[dcl.stc]}
14756
14757Add @code{__thread} to the list in paragraph 1.
14758
14759Change paragraph 1
14760
14761@quotation
14762With the exception of @code{__thread}, at most one
14763@var{storage-class-specifier} shall appear in a given
14764@var{decl-specifier-seq}. The @code{__thread} specifier may
14765be used alone, or immediately following the @code{extern} or
14766@code{static} specifiers. [@dots{}]
14767@end quotation
14768
14769Add after paragraph 5
14770
14771@quotation
14772The @code{__thread} specifier can be applied only to the names of objects
14773and to anonymous unions.
14774@end quotation
14775
14776@item
14777@b{[class.mem]}
14778
14779Add after paragraph 6
14780
14781@quotation
14782Non-@code{static} members shall not be @code{__thread}.
14783@end quotation
14784@end itemize
14785
f7fd775f
JW
14786@node Binary constants
14787@section Binary constants using the @samp{0b} prefix
14788@cindex Binary constants using the @samp{0b} prefix
14789
14790Integer constants can be written as binary constants, consisting of a
14791sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
14792@samp{0B}. This is particularly useful in environments that operate a
14793lot on the bit-level (like microcontrollers).
14794
14795The following statements are identical:
14796
14797@smallexample
14798i = 42;
14799i = 0x2a;
14800i = 052;
14801i = 0b101010;
14802@end smallexample
14803
14804The type of these constants follows the same rules as for octal or
14805hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
14806can be applied.
14807
c1f7febf
RK
14808@node C++ Extensions
14809@chapter Extensions to the C++ Language
14810@cindex extensions, C++ language
14811@cindex C++ language extensions
14812
14813The GNU compiler provides these extensions to the C++ language (and you
14814can also use most of the C language extensions in your C++ programs). If you
14815want to write code that checks whether these features are available, you can
14816test for the GNU compiler the same way as for C programs: check for a
14817predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
48795525
GP
14818test specifically for GNU C++ (@pxref{Common Predefined Macros,,
14819Predefined Macros,cpp,The GNU C Preprocessor}).
c1f7febf
RK
14820
14821@menu
8f0fe813 14822* C++ Volatiles:: What constitutes an access to a volatile object.
49419c8f 14823* Restricted Pointers:: C99 restricted pointers and references.
7a81cf7f 14824* Vague Linkage:: Where G++ puts inlines, vtables and such.
c1f7febf 14825* C++ Interface:: You can use a single C++ header file for both
e6f3b89d 14826 declarations and definitions.
c1f7febf 14827* Template Instantiation:: Methods for ensuring that exactly one copy of
e6f3b89d 14828 each needed template instantiation is emitted.
0ded1f18
JM
14829* Bound member functions:: You can extract a function pointer to the
14830 method denoted by a @samp{->*} or @samp{.*} expression.
e6f3b89d 14831* C++ Attributes:: Variable, function, and type attributes for C++ only.
664a90c0 14832* Namespace Association:: Strong using-directives for namespace association.
cb68ec50 14833* Type Traits:: Compiler support for type traits
1f730ff7 14834* Java Exceptions:: Tweaking exception handling to work with Java.
90ea7324 14835* Deprecated Features:: Things will disappear from g++.
e6f3b89d 14836* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
c1f7febf
RK
14837@end menu
14838
8f0fe813
NS
14839@node C++ Volatiles
14840@section When is a Volatile C++ Object Accessed?
02cac427
NS
14841@cindex accessing volatiles
14842@cindex volatile read
14843@cindex volatile write
14844@cindex volatile access
14845
8f0fe813
NS
14846The C++ standard differs from the C standard in its treatment of
14847volatile objects. It fails to specify what constitutes a volatile
14848access, except to say that C++ should behave in a similar manner to C
14849with respect to volatiles, where possible. However, the different
c4c8962b 14850lvalueness of expressions between C and C++ complicate the behavior.
8f0fe813 14851G++ behaves the same as GCC for volatile access, @xref{C
c4c8962b 14852Extensions,,Volatiles}, for a description of GCC's behavior.
02cac427 14853
8f0fe813
NS
14854The C and C++ language specifications differ when an object is
14855accessed in a void context:
02cac427 14856
3ab51846 14857@smallexample
c771326b 14858volatile int *src = @var{somevalue};
02cac427 14859*src;
3ab51846 14860@end smallexample
02cac427 14861
8f0fe813
NS
14862The C++ standard specifies that such expressions do not undergo lvalue
14863to rvalue conversion, and that the type of the dereferenced object may
14864be incomplete. The C++ standard does not specify explicitly that it
14865is lvalue to rvalue conversion which is responsible for causing an
14866access. There is reason to believe that it is, because otherwise
14867certain simple expressions become undefined. However, because it
14868would surprise most programmers, G++ treats dereferencing a pointer to
14869volatile object of complete type as GCC would do for an equivalent
14870type in C@. When the object has incomplete type, G++ issues a
14871warning; if you wish to force an error, you must force a conversion to
14872rvalue with, for instance, a static cast.
02cac427 14873
f0523f02 14874When using a reference to volatile, G++ does not treat equivalent
02cac427 14875expressions as accesses to volatiles, but instead issues a warning that
767094dd 14876no volatile is accessed. The rationale for this is that otherwise it
02cac427
NS
14877becomes difficult to determine where volatile access occur, and not
14878possible to ignore the return value from functions returning volatile
767094dd 14879references. Again, if you wish to force a read, cast the reference to
02cac427
NS
14880an rvalue.
14881
c4c8962b 14882G++ implements the same behavior as GCC does when assigning to a
8f0fe813
NS
14883volatile object -- there is no reread of the assigned-to object, the
14884assigned rvalue is reused. Note that in C++ assignment expressions
14885are lvalues, and if used as an lvalue, the volatile object will be
14886referred to. For instance, @var{vref} will refer to @var{vobj}, as
14887expected, in the following example:
14888
14889@smallexample
14890volatile int vobj;
14891volatile int &vref = vobj = @var{something};
14892@end smallexample
14893
535233a8
NS
14894@node Restricted Pointers
14895@section Restricting Pointer Aliasing
14896@cindex restricted pointers
14897@cindex restricted references
14898@cindex restricted this pointer
14899
2dd76960 14900As with the C front end, G++ understands the C99 feature of restricted pointers,
535233a8 14901specified with the @code{__restrict__}, or @code{__restrict} type
767094dd 14902qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
535233a8
NS
14903language flag, @code{restrict} is not a keyword in C++.
14904
14905In addition to allowing restricted pointers, you can specify restricted
14906references, which indicate that the reference is not aliased in the local
14907context.
14908
3ab51846 14909@smallexample
535233a8
NS
14910void fn (int *__restrict__ rptr, int &__restrict__ rref)
14911@{
0d893a63 14912 /* @r{@dots{}} */
535233a8 14913@}
3ab51846 14914@end smallexample
535233a8
NS
14915
14916@noindent
14917In the body of @code{fn}, @var{rptr} points to an unaliased integer and
14918@var{rref} refers to a (different) unaliased integer.
14919
14920You may also specify whether a member function's @var{this} pointer is
14921unaliased by using @code{__restrict__} as a member function qualifier.
14922
3ab51846 14923@smallexample
535233a8
NS
14924void T::fn () __restrict__
14925@{
0d893a63 14926 /* @r{@dots{}} */
535233a8 14927@}
3ab51846 14928@end smallexample
535233a8
NS
14929
14930@noindent
14931Within the body of @code{T::fn}, @var{this} will have the effective
767094dd 14932definition @code{T *__restrict__ const this}. Notice that the
535233a8
NS
14933interpretation of a @code{__restrict__} member function qualifier is
14934different to that of @code{const} or @code{volatile} qualifier, in that it
767094dd 14935is applied to the pointer rather than the object. This is consistent with
535233a8
NS
14936other compilers which implement restricted pointers.
14937
14938As with all outermost parameter qualifiers, @code{__restrict__} is
767094dd 14939ignored in function definition matching. This means you only need to
535233a8
NS
14940specify @code{__restrict__} in a function definition, rather than
14941in a function prototype as well.
14942
7a81cf7f
JM
14943@node Vague Linkage
14944@section Vague Linkage
14945@cindex vague linkage
14946
14947There are several constructs in C++ which require space in the object
14948file but are not clearly tied to a single translation unit. We say that
14949these constructs have ``vague linkage''. Typically such constructs are
14950emitted wherever they are needed, though sometimes we can be more
14951clever.
14952
14953@table @asis
14954@item Inline Functions
14955Inline functions are typically defined in a header file which can be
14956included in many different compilations. Hopefully they can usually be
14957inlined, but sometimes an out-of-line copy is necessary, if the address
14958of the function is taken or if inlining fails. In general, we emit an
14959out-of-line copy in all translation units where one is needed. As an
14960exception, we only emit inline virtual functions with the vtable, since
14961it will always require a copy.
14962
14963Local static variables and string constants used in an inline function
14964are also considered to have vague linkage, since they must be shared
14965between all inlined and out-of-line instances of the function.
14966
14967@item VTables
14968@cindex vtable
14969C++ virtual functions are implemented in most compilers using a lookup
14970table, known as a vtable. The vtable contains pointers to the virtual
14971functions provided by a class, and each object of the class contains a
14972pointer to its vtable (or vtables, in some multiple-inheritance
14973situations). If the class declares any non-inline, non-pure virtual
14974functions, the first one is chosen as the ``key method'' for the class,
14975and the vtable is only emitted in the translation unit where the key
14976method is defined.
14977
14978@emph{Note:} If the chosen key method is later defined as inline, the
14979vtable will still be emitted in every translation unit which defines it.
14980Make sure that any inline virtuals are declared inline in the class
14981body, even if they are not defined there.
14982
ab940b73
RW
14983@item @code{type_info} objects
14984@cindex @code{type_info}
7a81cf7f
JM
14985@cindex RTTI
14986C++ requires information about types to be written out in order to
14987implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
ab940b73 14988For polymorphic classes (classes with virtual functions), the @samp{type_info}
7a81cf7f
JM
14989object is written out along with the vtable so that @samp{dynamic_cast}
14990can determine the dynamic type of a class object at runtime. For all
ab940b73 14991other types, we write out the @samp{type_info} object when it is used: when
7a81cf7f
JM
14992applying @samp{typeid} to an expression, throwing an object, or
14993referring to a type in a catch clause or exception specification.
14994
14995@item Template Instantiations
14996Most everything in this section also applies to template instantiations,
14997but there are other options as well.
14998@xref{Template Instantiation,,Where's the Template?}.
14999
15000@end table
15001
15002When used with GNU ld version 2.8 or later on an ELF system such as
95fef11f 15003GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
7a81cf7f
JM
15004these constructs will be discarded at link time. This is known as
15005COMDAT support.
15006
15007On targets that don't support COMDAT, but do support weak symbols, GCC
15008will use them. This way one copy will override all the others, but
15009the unused copies will still take up space in the executable.
15010
15011For targets which do not support either COMDAT or weak symbols,
15012most entities with vague linkage will be emitted as local symbols to
15013avoid duplicate definition errors from the linker. This will not happen
15014for local statics in inlines, however, as having multiple copies will
15015almost certainly break things.
15016
15017@xref{C++ Interface,,Declarations and Definitions in One Header}, for
15018another way to control placement of these constructs.
15019
c1f7febf 15020@node C++ Interface
fc72b380 15021@section #pragma interface and implementation
c1f7febf
RK
15022
15023@cindex interface and implementation headers, C++
15024@cindex C++ interface and implementation headers
c1f7febf 15025@cindex pragmas, interface and implementation
c1f7febf 15026
fc72b380
JM
15027@code{#pragma interface} and @code{#pragma implementation} provide the
15028user with a way of explicitly directing the compiler to emit entities
15029with vague linkage (and debugging information) in a particular
15030translation unit.
c1f7febf 15031
fc72b380
JM
15032@emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
15033most cases, because of COMDAT support and the ``key method'' heuristic
15034mentioned in @ref{Vague Linkage}. Using them can actually cause your
27ef2cdd 15035program to grow due to unnecessary out-of-line copies of inline
fc72b380
JM
15036functions. Currently (3.4) the only benefit of these
15037@code{#pragma}s is reduced duplication of debugging information, and
15038that should be addressed soon on DWARF 2 targets with the use of
15039COMDAT groups.
c1f7febf
RK
15040
15041@table @code
15042@item #pragma interface
15043@itemx #pragma interface "@var{subdir}/@var{objects}.h"
15044@kindex #pragma interface
15045Use this directive in @emph{header files} that define object classes, to save
15046space in most of the object files that use those classes. Normally,
15047local copies of certain information (backup copies of inline member
15048functions, debugging information, and the internal tables that implement
15049virtual functions) must be kept in each object file that includes class
15050definitions. You can use this pragma to avoid such duplication. When a
15051header file containing @samp{#pragma interface} is included in a
15052compilation, this auxiliary information will not be generated (unless
15053the main input source file itself uses @samp{#pragma implementation}).
15054Instead, the object files will contain references to be resolved at link
15055time.
15056
15057The second form of this directive is useful for the case where you have
15058multiple headers with the same name in different directories. If you
15059use this form, you must specify the same string to @samp{#pragma
15060implementation}.
15061
15062@item #pragma implementation
15063@itemx #pragma implementation "@var{objects}.h"
15064@kindex #pragma implementation
15065Use this pragma in a @emph{main input file}, when you want full output from
15066included header files to be generated (and made globally visible). The
15067included header file, in turn, should use @samp{#pragma interface}.
15068Backup copies of inline member functions, debugging information, and the
15069internal tables used to implement virtual functions are all generated in
15070implementation files.
15071
15072@cindex implied @code{#pragma implementation}
15073@cindex @code{#pragma implementation}, implied
15074@cindex naming convention, implementation headers
15075If you use @samp{#pragma implementation} with no argument, it applies to
15076an include file with the same basename@footnote{A file's @dfn{basename}
15077was the name stripped of all leading path information and of trailing
15078suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
15079file. For example, in @file{allclass.cc}, giving just
15080@samp{#pragma implementation}
15081by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
15082
15083In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
15084an implementation file whenever you would include it from
15085@file{allclass.cc} even if you never specified @samp{#pragma
15086implementation}. This was deemed to be more trouble than it was worth,
15087however, and disabled.
15088
c1f7febf
RK
15089Use the string argument if you want a single implementation file to
15090include code from multiple header files. (You must also use
15091@samp{#include} to include the header file; @samp{#pragma
15092implementation} only specifies how to use the file---it doesn't actually
15093include it.)
15094
15095There is no way to split up the contents of a single header file into
15096multiple implementation files.
15097@end table
15098
15099@cindex inlining and C++ pragmas
15100@cindex C++ pragmas, effect on inlining
15101@cindex pragmas in C++, effect on inlining
15102@samp{#pragma implementation} and @samp{#pragma interface} also have an
15103effect on function inlining.
15104
15105If you define a class in a header file marked with @samp{#pragma
fc72b380
JM
15106interface}, the effect on an inline function defined in that class is
15107similar to an explicit @code{extern} declaration---the compiler emits
15108no code at all to define an independent version of the function. Its
15109definition is used only for inlining with its callers.
c1f7febf 15110
84330467 15111@opindex fno-implement-inlines
c1f7febf
RK
15112Conversely, when you include the same header file in a main source file
15113that declares it as @samp{#pragma implementation}, the compiler emits
15114code for the function itself; this defines a version of the function
15115that can be found via pointers (or by callers compiled without
15116inlining). If all calls to the function can be inlined, you can avoid
84330467 15117emitting the function by compiling with @option{-fno-implement-inlines}.
c1f7febf
RK
15118If any calls were not inlined, you will get linker errors.
15119
15120@node Template Instantiation
15121@section Where's the Template?
c1f7febf
RK
15122@cindex template instantiation
15123
15124C++ templates are the first language feature to require more
15125intelligence from the environment than one usually finds on a UNIX
15126system. Somehow the compiler and linker have to make sure that each
15127template instance occurs exactly once in the executable if it is needed,
15128and not at all otherwise. There are two basic approaches to this
962e6e00 15129problem, which are referred to as the Borland model and the Cfront model.
c1f7febf
RK
15130
15131@table @asis
15132@item Borland model
15133Borland C++ solved the template instantiation problem by adding the code
469b759e
JM
15134equivalent of common blocks to their linker; the compiler emits template
15135instances in each translation unit that uses them, and the linker
15136collapses them together. The advantage of this model is that the linker
15137only has to consider the object files themselves; there is no external
15138complexity to worry about. This disadvantage is that compilation time
15139is increased because the template code is being compiled repeatedly.
15140Code written for this model tends to include definitions of all
15141templates in the header file, since they must be seen to be
15142instantiated.
c1f7febf
RK
15143
15144@item Cfront model
15145The AT&T C++ translator, Cfront, solved the template instantiation
15146problem by creating the notion of a template repository, an
469b759e
JM
15147automatically maintained place where template instances are stored. A
15148more modern version of the repository works as follows: As individual
15149object files are built, the compiler places any template definitions and
15150instantiations encountered in the repository. At link time, the link
15151wrapper adds in the objects in the repository and compiles any needed
15152instances that were not previously emitted. The advantages of this
15153model are more optimal compilation speed and the ability to use the
15154system linker; to implement the Borland model a compiler vendor also
c1f7febf 15155needs to replace the linker. The disadvantages are vastly increased
469b759e
JM
15156complexity, and thus potential for error; for some code this can be
15157just as transparent, but in practice it can been very difficult to build
c1f7febf 15158multiple programs in one directory and one program in multiple
469b759e
JM
15159directories. Code written for this model tends to separate definitions
15160of non-inline member templates into a separate file, which should be
15161compiled separately.
c1f7febf
RK
15162@end table
15163
469b759e 15164When used with GNU ld version 2.8 or later on an ELF system such as
2dd76960
JM
15165GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
15166Borland model. On other systems, G++ implements neither automatic
a4b3b54a 15167model.
469b759e 15168
513d0519 15169You have the following options for dealing with template instantiations:
c1f7febf
RK
15170
15171@enumerate
d863830b 15172@item
84330467
JM
15173@opindex frepo
15174Compile your template-using code with @option{-frepo}. The compiler will
d863830b
JL
15175generate files with the extension @samp{.rpo} listing all of the
15176template instantiations used in the corresponding object files which
15177could be instantiated there; the link wrapper, @samp{collect2}, will
15178then update the @samp{.rpo} files to tell the compiler where to place
15179those instantiations and rebuild any affected object files. The
15180link-time overhead is negligible after the first pass, as the compiler
15181will continue to place the instantiations in the same files.
15182
15183This is your best option for application code written for the Borland
15184model, as it will just work. Code written for the Cfront model will
15185need to be modified so that the template definitions are available at
15186one or more points of instantiation; usually this is as simple as adding
15187@code{#include <tmethods.cc>} to the end of each template header.
15188
15189For library code, if you want the library to provide all of the template
15190instantiations it needs, just try to link all of its object files
15191together; the link will fail, but cause the instantiations to be
15192generated as a side effect. Be warned, however, that this may cause
15193conflicts if multiple libraries try to provide the same instantiations.
15194For greater control, use explicit instantiation as described in the next
15195option.
15196
c1f7febf 15197@item
84330467
JM
15198@opindex fno-implicit-templates
15199Compile your code with @option{-fno-implicit-templates} to disable the
c1f7febf
RK
15200implicit generation of template instances, and explicitly instantiate
15201all the ones you use. This approach requires more knowledge of exactly
15202which instances you need than do the others, but it's less
15203mysterious and allows greater control. You can scatter the explicit
15204instantiations throughout your program, perhaps putting them in the
15205translation units where the instances are used or the translation units
15206that define the templates themselves; you can put all of the explicit
15207instantiations you need into one big file; or you can create small files
15208like
15209
3ab51846 15210@smallexample
c1f7febf
RK
15211#include "Foo.h"
15212#include "Foo.cc"
15213
15214template class Foo<int>;
15215template ostream& operator <<
15216 (ostream&, const Foo<int>&);
3ab51846 15217@end smallexample
c1f7febf
RK
15218
15219for each of the instances you need, and create a template instantiation
15220library from those.
15221
15222If you are using Cfront-model code, you can probably get away with not
84330467 15223using @option{-fno-implicit-templates} when compiling files that don't
c1f7febf
RK
15224@samp{#include} the member template definitions.
15225
15226If you use one big file to do the instantiations, you may want to
84330467 15227compile it without @option{-fno-implicit-templates} so you get all of the
c1f7febf
RK
15228instances required by your explicit instantiations (but not by any
15229other files) without having to specify them as well.
15230
513d0519
JW
15231The ISO C++ 2011 standard allows forward declaration of explicit
15232instantiations (with @code{extern}). G++ supports explicit instantiation
15233declarations in C++98 mode and has extended the template instantiation
15234syntax to support instantiation of the compiler support data for a
e979f9e8 15235template class (i.e.@: the vtable) without instantiating any of its
4003d7f9
JM
15236members (with @code{inline}), and instantiation of only the static data
15237members of a template class, without the support data or member
15238functions (with (@code{static}):
c1f7febf 15239
3ab51846 15240@smallexample
c1f7febf 15241extern template int max (int, int);
c1f7febf 15242inline template class Foo<int>;
4003d7f9 15243static template class Foo<int>;
3ab51846 15244@end smallexample
c1f7febf
RK
15245
15246@item
2dd76960 15247Do nothing. Pretend G++ does implement automatic instantiation
c1f7febf
RK
15248management. Code written for the Borland model will work fine, but
15249each translation unit will contain instances of each of the templates it
15250uses. In a large program, this can lead to an unacceptable amount of code
15251duplication.
c1f7febf
RK
15252@end enumerate
15253
0ded1f18
JM
15254@node Bound member functions
15255@section Extracting the function pointer from a bound pointer to member function
0ded1f18
JM
15256@cindex pmf
15257@cindex pointer to member function
15258@cindex bound pointer to member function
15259
15260In C++, pointer to member functions (PMFs) are implemented using a wide
15261pointer of sorts to handle all the possible call mechanisms; the PMF
15262needs to store information about how to adjust the @samp{this} pointer,
15263and if the function pointed to is virtual, where to find the vtable, and
15264where in the vtable to look for the member function. If you are using
15265PMFs in an inner loop, you should really reconsider that decision. If
15266that is not an option, you can extract the pointer to the function that
15267would be called for a given object/PMF pair and call it directly inside
15268the inner loop, to save a bit of time.
15269
15270Note that you will still be paying the penalty for the call through a
15271function pointer; on most modern architectures, such a call defeats the
161d7b59 15272branch prediction features of the CPU@. This is also true of normal
0ded1f18
JM
15273virtual function calls.
15274
15275The syntax for this extension is
15276
3ab51846 15277@smallexample
0ded1f18
JM
15278extern A a;
15279extern int (A::*fp)();
15280typedef int (*fptr)(A *);
15281
15282fptr p = (fptr)(a.*fp);
3ab51846 15283@end smallexample
0ded1f18 15284
e979f9e8 15285For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
767094dd 15286no object is needed to obtain the address of the function. They can be
0fb6bbf5
ML
15287converted to function pointers directly:
15288
3ab51846 15289@smallexample
0fb6bbf5 15290fptr p1 = (fptr)(&A::foo);
3ab51846 15291@end smallexample
0fb6bbf5 15292
84330467
JM
15293@opindex Wno-pmf-conversions
15294You must specify @option{-Wno-pmf-conversions} to use this extension.
0ded1f18 15295
5c25e11d
PE
15296@node C++ Attributes
15297@section C++-Specific Variable, Function, and Type Attributes
15298
15299Some attributes only make sense for C++ programs.
15300
15301@table @code
15302@item init_priority (@var{priority})
ab940b73 15303@cindex @code{init_priority} attribute
5c25e11d
PE
15304
15305
15306In Standard C++, objects defined at namespace scope are guaranteed to be
15307initialized in an order in strict accordance with that of their definitions
15308@emph{in a given translation unit}. No guarantee is made for initializations
15309across translation units. However, GNU C++ allows users to control the
3844cd2e 15310order of initialization of objects defined at namespace scope with the
5c25e11d
PE
15311@code{init_priority} attribute by specifying a relative @var{priority},
15312a constant integral expression currently bounded between 101 and 65535
15313inclusive. Lower numbers indicate a higher priority.
15314
15315In the following example, @code{A} would normally be created before
15316@code{B}, but the @code{init_priority} attribute has reversed that order:
15317
478c9e72 15318@smallexample
5c25e11d
PE
15319Some_Class A __attribute__ ((init_priority (2000)));
15320Some_Class B __attribute__ ((init_priority (543)));
478c9e72 15321@end smallexample
5c25e11d
PE
15322
15323@noindent
15324Note that the particular values of @var{priority} do not matter; only their
15325relative ordering.
15326
60c87482 15327@item java_interface
ab940b73 15328@cindex @code{java_interface} attribute
60c87482 15329
02f52e19 15330This type attribute informs C++ that the class is a Java interface. It may
60c87482 15331only be applied to classes declared within an @code{extern "Java"} block.
02f52e19
AJ
15332Calls to methods declared in this interface will be dispatched using GCJ's
15333interface table mechanism, instead of regular virtual table dispatch.
60c87482 15334
5c25e11d
PE
15335@end table
15336
38bb2b65 15337See also @ref{Namespace Association}.
86098eb8 15338
664a90c0
JM
15339@node Namespace Association
15340@section Namespace Association
86098eb8 15341
fea77ed9
MM
15342@strong{Caution:} The semantics of this extension are not fully
15343defined. Users should refrain from using this extension as its
15344semantics may change subtly over time. It is possible that this
664a90c0 15345extension will be removed in future versions of G++.
fea77ed9 15346
86098eb8
JM
15347A using-directive with @code{__attribute ((strong))} is stronger
15348than a normal using-directive in two ways:
15349
15350@itemize @bullet
15351@item
664a90c0
JM
15352Templates from the used namespace can be specialized and explicitly
15353instantiated as though they were members of the using namespace.
86098eb8
JM
15354
15355@item
15356The using namespace is considered an associated namespace of all
15357templates in the used namespace for purposes of argument-dependent
15358name lookup.
15359@end itemize
15360
664a90c0
JM
15361The used namespace must be nested within the using namespace so that
15362normal unqualified lookup works properly.
15363
86098eb8
JM
15364This is useful for composing a namespace transparently from
15365implementation namespaces. For example:
15366
15367@smallexample
15368namespace std @{
15369 namespace debug @{
15370 template <class T> struct A @{ @};
15371 @}
15372 using namespace debug __attribute ((__strong__));
cd1a8088 15373 template <> struct A<int> @{ @}; // @r{ok to specialize}
86098eb8
JM
15374
15375 template <class T> void f (A<T>);
15376@}
15377
15378int main()
15379@{
cd1a8088 15380 f (std::A<float>()); // @r{lookup finds} std::f
86098eb8
JM
15381 f (std::A<int>());
15382@}
15383@end smallexample
15384
cb68ec50
PC
15385@node Type Traits
15386@section Type Traits
15387
15388The C++ front-end implements syntactic extensions that allow to
15389determine at compile time various characteristics of a type (or of a
15390pair of types).
15391
15392@table @code
15393@item __has_nothrow_assign (type)
b29441ec
PC
15394If @code{type} is const qualified or is a reference type then the trait is
15395false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
15396is true, else if @code{type} is a cv class or union type with copy assignment
15397operators that are known not to throw an exception then the trait is true,
ff2ce160 15398else it is false. Requires: @code{type} shall be a complete type,
5307cbaa 15399(possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15400
15401@item __has_nothrow_copy (type)
15402If @code{__has_trivial_copy (type)} is true then the trait is true, else if
15403@code{type} is a cv class or union type with copy constructors that
15404are known not to throw an exception then the trait is true, else it is false.
5307cbaa
PC
15405Requires: @code{type} shall be a complete type, (possibly cv-qualified)
15406@code{void}, or an array of unknown bound.
cb68ec50
PC
15407
15408@item __has_nothrow_constructor (type)
15409If @code{__has_trivial_constructor (type)} is true then the trait is
15410true, else if @code{type} is a cv class or union type (or array
15411thereof) with a default constructor that is known not to throw an
ff2ce160
MS
15412exception then the trait is true, else it is false. Requires:
15413@code{type} shall be a complete type, (possibly cv-qualified)
5307cbaa 15414@code{void}, or an array of unknown bound.
cb68ec50
PC
15415
15416@item __has_trivial_assign (type)
15417If @code{type} is const qualified or is a reference type then the trait is
15418false. Otherwise if @code{__is_pod (type)} is true then the trait is
15419true, else if @code{type} is a cv class or union type with a trivial
15420copy assignment ([class.copy]) then the trait is true, else it is
ff2ce160 15421false. Requires: @code{type} shall be a complete type, (possibly
5307cbaa 15422cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15423
15424@item __has_trivial_copy (type)
ff2ce160 15425If @code{__is_pod (type)} is true or @code{type} is a reference type
cb68ec50
PC
15426then the trait is true, else if @code{type} is a cv class or union type
15427with a trivial copy constructor ([class.copy]) then the trait
15428is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa 15429type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15430
15431@item __has_trivial_constructor (type)
15432If @code{__is_pod (type)} is true then the trait is true, else if
15433@code{type} is a cv class or union type (or array thereof) with a
15434trivial default constructor ([class.ctor]) then the trait is true,
5307cbaa
PC
15435else it is false. Requires: @code{type} shall be a complete
15436type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15437
15438@item __has_trivial_destructor (type)
15439If @code{__is_pod (type)} is true or @code{type} is a reference type then
15440the trait is true, else if @code{type} is a cv class or union type (or
15441array thereof) with a trivial destructor ([class.dtor]) then the trait
15442is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa 15443type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15444
15445@item __has_virtual_destructor (type)
15446If @code{type} is a class type with a virtual destructor
15447([class.dtor]) then the trait is true, else it is false. Requires:
5307cbaa
PC
15448@code{type} shall be a complete type, (possibly cv-qualified)
15449@code{void}, or an array of unknown bound.
cb68ec50
PC
15450
15451@item __is_abstract (type)
15452If @code{type} is an abstract class ([class.abstract]) then the trait
15453is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa 15454type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15455
15456@item __is_base_of (base_type, derived_type)
15457If @code{base_type} is a base class of @code{derived_type}
15458([class.derived]) then the trait is true, otherwise it is false.
15459Top-level cv qualifications of @code{base_type} and
15460@code{derived_type} are ignored. For the purposes of this trait, a
15461class type is considered is own base. Requires: if @code{__is_class
15462(base_type)} and @code{__is_class (derived_type)} are true and
15463@code{base_type} and @code{derived_type} are not the same type
15464(disregarding cv-qualifiers), @code{derived_type} shall be a complete
15465type. Diagnostic is produced if this requirement is not met.
15466
15467@item __is_class (type)
15468If @code{type} is a cv class type, and not a union type
d1facce0 15469([basic.compound]) the trait is true, else it is false.
cb68ec50
PC
15470
15471@item __is_empty (type)
15472If @code{__is_class (type)} is false then the trait is false.
15473Otherwise @code{type} is considered empty if and only if: @code{type}
15474has no non-static data members, or all non-static data members, if
d1facce0 15475any, are bit-fields of length 0, and @code{type} has no virtual
cb68ec50 15476members, and @code{type} has no virtual base classes, and @code{type}
ff2ce160 15477has no base classes @code{base_type} for which
cb68ec50 15478@code{__is_empty (base_type)} is false. Requires: @code{type} shall
5307cbaa
PC
15479be a complete type, (possibly cv-qualified) @code{void}, or an array
15480of unknown bound.
cb68ec50
PC
15481
15482@item __is_enum (type)
d1facce0 15483If @code{type} is a cv enumeration type ([basic.compound]) the trait is
cb68ec50
PC
15484true, else it is false.
15485
5307cbaa
PC
15486@item __is_literal_type (type)
15487If @code{type} is a literal type ([basic.types]) the trait is
15488true, else it is false. Requires: @code{type} shall be a complete type,
15489(possibly cv-qualified) @code{void}, or an array of unknown bound.
15490
cb68ec50
PC
15491@item __is_pod (type)
15492If @code{type} is a cv POD type ([basic.types]) then the trait is true,
5307cbaa
PC
15493else it is false. Requires: @code{type} shall be a complete type,
15494(possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15495
15496@item __is_polymorphic (type)
15497If @code{type} is a polymorphic class ([class.virtual]) then the trait
15498is true, else it is false. Requires: @code{type} shall be a complete
5307cbaa
PC
15499type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15500
15501@item __is_standard_layout (type)
15502If @code{type} is a standard-layout type ([basic.types]) the trait is
15503true, else it is false. Requires: @code{type} shall be a complete
15504type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15505
15506@item __is_trivial (type)
15507If @code{type} is a trivial type ([basic.types]) the trait is
15508true, else it is false. Requires: @code{type} shall be a complete
15509type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
cb68ec50
PC
15510
15511@item __is_union (type)
d1facce0 15512If @code{type} is a cv union type ([basic.compound]) the trait is
cb68ec50
PC
15513true, else it is false.
15514
74e883ce
PC
15515@item __underlying_type (type)
15516The underlying type of @code{type}. Requires: @code{type} shall be
15517an enumeration type ([dcl.enum]).
15518
cb68ec50
PC
15519@end table
15520
1f730ff7
ZW
15521@node Java Exceptions
15522@section Java Exceptions
15523
15524The Java language uses a slightly different exception handling model
15525from C++. Normally, GNU C++ will automatically detect when you are
15526writing C++ code that uses Java exceptions, and handle them
15527appropriately. However, if C++ code only needs to execute destructors
15528when Java exceptions are thrown through it, GCC will guess incorrectly.
9c34dbbf 15529Sample problematic code is:
1f730ff7 15530
478c9e72 15531@smallexample
1f730ff7 15532 struct S @{ ~S(); @};
cd1a8088 15533 extern void bar(); // @r{is written in Java, and may throw exceptions}
1f730ff7
ZW
15534 void foo()
15535 @{
15536 S s;
15537 bar();
15538 @}
478c9e72 15539@end smallexample
1f730ff7
ZW
15540
15541@noindent
15542The usual effect of an incorrect guess is a link failure, complaining of
15543a missing routine called @samp{__gxx_personality_v0}.
15544
15545You can inform the compiler that Java exceptions are to be used in a
15546translation unit, irrespective of what it might think, by writing
15547@samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
15548@samp{#pragma} must appear before any functions that throw or catch
15549exceptions, or run destructors when exceptions are thrown through them.
15550
15551You cannot mix Java and C++ exceptions in the same translation unit. It
15552is believed to be safe to throw a C++ exception from one file through
9c34dbbf
ZW
15553another file compiled for the Java exception model, or vice versa, but
15554there may be bugs in this area.
1f730ff7 15555
e6f3b89d
PE
15556@node Deprecated Features
15557@section Deprecated Features
15558
15559In the past, the GNU C++ compiler was extended to experiment with new
767094dd 15560features, at a time when the C++ language was still evolving. Now that
e6f3b89d 15561the C++ standard is complete, some of those features are superseded by
767094dd
JM
15562superior alternatives. Using the old features might cause a warning in
15563some cases that the feature will be dropped in the future. In other
e6f3b89d
PE
15564cases, the feature might be gone already.
15565
15566While the list below is not exhaustive, it documents some of the options
15567that are now deprecated:
15568
15569@table @code
15570@item -fexternal-templates
15571@itemx -falt-external-templates
2dd76960 15572These are two of the many ways for G++ to implement template
767094dd 15573instantiation. @xref{Template Instantiation}. The C++ standard clearly
e6f3b89d 15574defines how template definitions have to be organized across
2dd76960 15575implementation units. G++ has an implicit instantiation mechanism that
e6f3b89d
PE
15576should work just fine for standard-conforming code.
15577
15578@item -fstrict-prototype
15579@itemx -fno-strict-prototype
15580Previously it was possible to use an empty prototype parameter list to
15581indicate an unspecified number of parameters (like C), rather than no
767094dd 15582parameters, as C++ demands. This feature has been removed, except where
38bb2b65 15583it is required for backwards compatibility. @xref{Backwards Compatibility}.
e6f3b89d
PE
15584@end table
15585
ae209f28
NS
15586G++ allows a virtual function returning @samp{void *} to be overridden
15587by one returning a different pointer type. This extension to the
15588covariant return type rules is now deprecated and will be removed from a
15589future version.
15590
8ff24a79
MM
15591The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
15592their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
32e26ece
GK
15593and are now removed from G++. Code using these operators should be
15594modified to use @code{std::min} and @code{std::max} instead.
8ff24a79 15595
ad1a6d45 15596The named return value extension has been deprecated, and is now
2dd76960 15597removed from G++.
e6f3b89d 15598
82c18d5c 15599The use of initializer lists with new expressions has been deprecated,
2dd76960 15600and is now removed from G++.
ad1a6d45
NS
15601
15602Floating and complex non-type template parameters have been deprecated,
2dd76960 15603and are now removed from G++.
ad1a6d45 15604
90ea7324 15605The implicit typename extension has been deprecated and is now
2dd76960 15606removed from G++.
90ea7324 15607
1eaf20ec 15608The use of default arguments in function pointers, function typedefs
90ea7324 15609and other places where they are not permitted by the standard is
2dd76960 15610deprecated and will be removed from a future version of G++.
82c18d5c 15611
6871294a
JW
15612G++ allows floating-point literals to appear in integral constant expressions,
15613e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
15614This extension is deprecated and will be removed from a future version.
15615
15616G++ allows static data members of const floating-point type to be declared
15617with an initializer in a class definition. The standard only allows
15618initializers for static members of const integral types and const
15619enumeration types so this extension has been deprecated and will be removed
15620from a future version.
15621
e6f3b89d
PE
15622@node Backwards Compatibility
15623@section Backwards Compatibility
15624@cindex Backwards Compatibility
15625@cindex ARM [Annotated C++ Reference Manual]
15626
aee96fe9 15627Now that there is a definitive ISO standard C++, G++ has a specification
767094dd 15628to adhere to. The C++ language evolved over time, and features that
e6f3b89d 15629used to be acceptable in previous drafts of the standard, such as the ARM
767094dd 15630[Annotated C++ Reference Manual], are no longer accepted. In order to allow
aee96fe9 15631compilation of C++ written to such drafts, G++ contains some backwards
767094dd 15632compatibilities. @emph{All such backwards compatibility features are
aee96fe9 15633liable to disappear in future versions of G++.} They should be considered
38bb2b65 15634deprecated. @xref{Deprecated Features}.
e6f3b89d
PE
15635
15636@table @code
15637@item For scope
15638If a variable is declared at for scope, it used to remain in scope until
15639the end of the scope which contained the for statement (rather than just
aee96fe9 15640within the for scope). G++ retains this, but issues a warning, if such a
e6f3b89d
PE
15641variable is accessed outside the for scope.
15642
ad1a6d45 15643@item Implicit C language
630d3d5a 15644Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
767094dd
JM
15645scope to set the language. On such systems, all header files are
15646implicitly scoped inside a C language scope. Also, an empty prototype
e6f3b89d
PE
15647@code{()} will be treated as an unspecified number of arguments, rather
15648than no arguments, as C++ demands.
15649@end table
This page took 6.641461 seconds and 5 git commands to generate.