]> gcc.gnu.org Git - gcc.git/blame - gcc/df-core.c
* combine.c (move_deaths): Compare LUIDs within the same BB only.
[gcc.git] / gcc / df-core.c
CommitLineData
4d779342 1/* Allocation for dataflow support routines.
fa10beec 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7072a650 3 2008, 2009 Free Software Foundation, Inc.
4d779342
DB
4 Originally contributed by Michael P. Hayes
5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
9dcd6f09 13Software Foundation; either version 3, or (at your option) any later
4d779342
DB
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
9dcd6f09
NC
22along with GCC; see the file COPYING3. If not see
23<http://www.gnu.org/licenses/>. */
4d779342
DB
24
25/*
26OVERVIEW:
27
28The files in this collection (df*.c,df.h) provide a general framework
29for solving dataflow problems. The global dataflow is performed using
30a good implementation of iterative dataflow analysis.
31
32The file df-problems.c provides problem instance for the most common
33dataflow problems: reaching defs, upward exposed uses, live variables,
34uninitialized variables, def-use chains, and use-def chains. However,
35the interface allows other dataflow problems to be defined as well.
36
6fb5fa3c
DB
37Dataflow analysis is available in most of the rtl backend (the parts
38between pass_df_initialize and pass_df_finish). It is quite likely
39that these boundaries will be expanded in the future. The only
40requirement is that there be a correct control flow graph.
4d779342 41
6fb5fa3c
DB
42There are three variations of the live variable problem that are
43available whenever dataflow is available. The LR problem finds the
44areas that can reach a use of a variable, the UR problems finds the
fa10beec 45areas that can be reached from a definition of a variable. The LIVE
6fb5fa3c 46problem finds the intersection of these two areas.
4d779342 47
6fb5fa3c
DB
48There are several optional problems. These can be enabled when they
49are needed and disabled when they are not needed.
4d779342 50
6fb5fa3c
DB
51Dataflow problems are generally solved in three layers. The bottom
52layer is called scanning where a data structure is built for each rtl
53insn that describes the set of defs and uses of that insn. Scanning
54is generally kept up to date, i.e. as the insns changes, the scanned
55version of that insn changes also. There are various mechanisms for
56making this happen and are described in the INCREMENTAL SCANNING
57section.
4d779342 58
6fb5fa3c 59In the middle layer, basic blocks are scanned to produce transfer
fa10beec 60functions which describe the effects of that block on the global
6fb5fa3c
DB
61dataflow solution. The transfer functions are only rebuilt if the
62some instruction within the block has changed.
4d779342 63
6fb5fa3c 64The top layer is the dataflow solution itself. The dataflow solution
0d52bcc1 65is computed by using an efficient iterative solver and the transfer
6fb5fa3c
DB
66functions. The dataflow solution must be recomputed whenever the
67control changes or if one of the transfer function changes.
4d779342
DB
68
69
6fb5fa3c 70USAGE:
4d779342 71
6fb5fa3c 72Here is an example of using the dataflow routines.
4d779342 73
05c219bb 74 df_[chain,live,note,rd]_add_problem (flags);
4d779342 75
6fb5fa3c 76 df_set_blocks (blocks);
4d779342 77
6fb5fa3c 78 df_analyze ();
4d779342 79
6fb5fa3c 80 df_dump (stderr);
4d779342 81
0d475361 82 df_finish_pass (false);
4d779342 83
05c219bb 84DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
6fb5fa3c
DB
85instance to struct df_problem, to the set of problems solved in this
86instance of df. All calls to add a problem for a given instance of df
87must occur before the first call to DF_ANALYZE.
4d779342
DB
88
89Problems can be dependent on other problems. For instance, solving
d1c78882 90def-use or use-def chains is dependent on solving reaching
c0220ea4 91definitions. As long as these dependencies are listed in the problem
4d779342
DB
92definition, the order of adding the problems is not material.
93Otherwise, the problems will be solved in the order of calls to
94df_add_problem. Note that it is not necessary to have a problem. In
95that case, df will just be used to do the scanning.
96
97
98
99DF_SET_BLOCKS is an optional call used to define a region of the
100function on which the analysis will be performed. The normal case is
101to analyze the entire function and no call to df_set_blocks is made.
6fb5fa3c
DB
102DF_SET_BLOCKS only effects the blocks that are effected when computing
103the transfer functions and final solution. The insn level information
104is always kept up to date.
4d779342
DB
105
106When a subset is given, the analysis behaves as if the function only
107contains those blocks and any edges that occur directly between the
108blocks in the set. Care should be taken to call df_set_blocks right
c0220ea4 109before the call to analyze in order to eliminate the possibility that
4d779342
DB
110optimizations that reorder blocks invalidate the bitvector.
111
6fb5fa3c
DB
112DF_ANALYZE causes all of the defined problems to be (re)solved. When
113DF_ANALYZE is completes, the IN and OUT sets for each basic block
114contain the computer information. The DF_*_BB_INFO macros can be used
0a41f3b2 115to access these bitvectors. All deferred rescannings are down before
0d52bcc1 116the transfer functions are recomputed.
4d779342
DB
117
118DF_DUMP can then be called to dump the information produce to some
6fb5fa3c
DB
119file. This calls DF_DUMP_START, to print the information that is not
120basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121for each block to print the basic specific information. These parts
122can all be called separately as part of a larger dump function.
123
124
125DF_FINISH_PASS causes df_remove_problem to be called on all of the
126optional problems. It also causes any insns whose scanning has been
0a41f3b2 127deferred to be rescanned as well as clears all of the changeable flags.
6fb5fa3c
DB
128Setting the pass manager TODO_df_finish flag causes this function to
129be run. However, the pass manager will call df_finish_pass AFTER the
130pass dumping has been done, so if you want to see the results of the
131optional problems in the pass dumps, use the TODO flag rather than
132calling the function yourself.
133
134INCREMENTAL SCANNING
135
136There are four ways of doing the incremental scanning:
137
1381) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
143
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
cea618ac 147 upon even after changes have been made to the instructions. This
6fb5fa3c
DB
148 technique is contra indicated in several cases:
149
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
156
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
166
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
169
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
172
0d52bcc1 1732) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
6fb5fa3c
DB
174 df_insn_delete do not immediately change the insn but instead make
175 a note that the insn needs to be rescanned. The next call to
176 df_analyze, df_finish_pass, or df_process_deferred_rescans will
177 cause all of the pending rescans to be processed.
178
179 This is the technique of choice if either 1a, 1b, or 1c are issues
ecb7f6de
PB
180 in the pass. In the case of 1a or 1b, a call to df_finish_pass
181 (either manually or via TODO_df_finish) should be made before the
182 next call to df_analyze or df_process_deferred_rescans.
183
184 This mode is also used by a few passes that still rely on note_uses,
185 note_stores and for_each_rtx instead of using the DF data. This
186 can be said to fall under case 1c.
6fb5fa3c
DB
187
188 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189 (This mode can be cleared by calling df_clear_flags
0a41f3b2 190 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
6fb5fa3c
DB
191 be rescanned.
192
ecb7f6de
PB
1933) Total rescanning - In this mode the rescanning is disabled.
194 Only when insns are deleted is the df information associated with
195 it also deleted. At the end of the pass, a call must be made to
196 df_insn_rescan_all. This method is used by the register allocator
197 since it generally changes each insn multiple times (once for each ref)
198 and does not need to make use of the updated scanning information.
6fb5fa3c
DB
199
2004) Do it yourself - In this mechanism, the pass updates the insns
6ed3da00 201 itself using the low level df primitives. Currently no pass does
6fb5fa3c
DB
202 this, but it has the advantage that it is quite efficient given
203 that the pass generally has exact knowledge of what it is changing.
204
205DATA STRUCTURES
4d779342
DB
206
207Scanning produces a `struct df_ref' data structure (ref) is allocated
208for every register reference (def or use) and this records the insn
209and bb the ref is found within. The refs are linked together in
210chains of uses and defs for each insn and for each register. Each ref
211also has a chain field that links all the use refs for a def or all
212the def refs for a use. This is used to create use-def or def-use
213chains.
214
215Different optimizations have different needs. Ultimately, only
216register allocation and schedulers should be using the bitmaps
217produced for the live register and uninitialized register problems.
218The rest of the backend should be upgraded to using and maintaining
219the linked information such as def use or use def chains.
220
221
4d779342
DB
222PHILOSOPHY:
223
224While incremental bitmaps are not worthwhile to maintain, incremental
225chains may be perfectly reasonable. The fastest way to build chains
226from scratch or after significant modifications is to build reaching
227definitions (RD) and build the chains from this.
228
229However, general algorithms for maintaining use-def or def-use chains
230are not practical. The amount of work to recompute the chain any
231chain after an arbitrary change is large. However, with a modest
232amount of work it is generally possible to have the application that
233uses the chains keep them up to date. The high level knowledge of
234what is really happening is essential to crafting efficient
235incremental algorithms.
236
237As for the bit vector problems, there is no interface to give a set of
238blocks over with to resolve the iteration. In general, restarting a
239dataflow iteration is difficult and expensive. Again, the best way to
6fc0bb99 240keep the dataflow information up to data (if this is really what is
4d779342
DB
241needed) it to formulate a problem specific solution.
242
243There are fine grained calls for creating and deleting references from
244instructions in df-scan.c. However, these are not currently connected
245to the engine that resolves the dataflow equations.
246
247
248DATA STRUCTURES:
249
250The basic object is a DF_REF (reference) and this may either be a
251DEF (definition) or a USE of a register.
252
253These are linked into a variety of lists; namely reg-def, reg-use,
254insn-def, insn-use, def-use, and use-def lists. For example, the
255reg-def lists contain all the locations that define a given register
256while the insn-use lists contain all the locations that use a
257register.
258
259Note that the reg-def and reg-use chains are generally short for
260pseudos and long for the hard registers.
261
6fb5fa3c
DB
262ACCESSING INSNS:
263
50e94c7e
SB
2641) The df insn information is kept in an array of DF_INSN_INFO objects.
265 The array is indexed by insn uid, and every DF_REF points to the
266 DF_INSN_INFO object of the insn that contains the reference.
267
2682) Each insn has three sets of refs, which are linked into one of three
269 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274 The latter list are the list of references in REG_EQUAL or REG_EQUIV
275 notes. These macros produce a ref (or NULL), the rest of the list
276 can be obtained by traversal of the NEXT_REF field (accessed by the
277 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
278 the uses or refs in an instruction.
279
2803) Each insn has a logical uid field (LUID) which is stored in the
281 DF_INSN_INFO object for the insn. The LUID field is accessed by
282 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283 When properly set, the LUID is an integer that numbers each insn in
284 the basic block, in order from the start of the block.
285 The numbers are only correct after a call to df_analyze. They will
286 rot after insns are added deleted or moved round.
6fb5fa3c 287
4d779342
DB
288ACCESSING REFS:
289
290There are 4 ways to obtain access to refs:
291
2921) References are divided into two categories, REAL and ARTIFICIAL.
293
6fb5fa3c 294 REAL refs are associated with instructions.
4d779342
DB
295
296 ARTIFICIAL refs are associated with basic blocks. The heads of
6fb5fa3c
DB
297 these lists can be accessed by calling df_get_artificial_defs or
298 df_get_artificial_uses for the particular basic block.
4d779342 299
912f2dac
DB
300 Artificial defs and uses occur both at the beginning and ends of blocks.
301
302 For blocks that area at the destination of eh edges, the
303 artificial uses and defs occur at the beginning. The defs relate
304 to the registers specified in EH_RETURN_DATA_REGNO and the uses
305 relate to the registers specified in ED_USES. Logically these
306 defs and uses should really occur along the eh edge, but there is
307 no convenient way to do this. Artificial edges that occur at the
308 beginning of the block have the DF_REF_AT_TOP flag set.
309
310 Artificial uses occur at the end of all blocks. These arise from
311 the hard registers that are always live, such as the stack
312 register and are put there to keep the code from forgetting about
313 them.
314
c0220ea4 315 Artificial defs occur at the end of the entry block. These arise
912f2dac 316 from registers that are live at entry to the function.
4d779342 317
6fb5fa3c
DB
3182) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
319 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
4d779342 320
6fb5fa3c
DB
321 All of the eq_uses, uses and defs associated with each pseudo or
322 hard register may be linked in a bidirectional chain. These are
323 called reg-use or reg_def chains. If the changeable flag
324 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
325 treated like uses. If it is not set they are ignored.
326
327 The first use, eq_use or def for a register can be obtained using
328 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329 macros. Subsequent uses for the same regno can be obtained by
330 following the next_reg field of the ref. The number of elements in
331 each of the chains can be found by using the DF_REG_USE_COUNT,
332 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
4d779342
DB
333
334 In previous versions of this code, these chains were ordered. It
335 has not been practical to continue this practice.
336
3373) If def-use or use-def chains are built, these can be traversed to
6fb5fa3c
DB
338 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
339 include the eq_uses. Otherwise these are ignored when building the
340 chains.
4d779342
DB
341
3424) An array of all of the uses (and an array of all of the defs) can
343 be built. These arrays are indexed by the value in the id
344 structure. These arrays are only lazily kept up to date, and that
345 process can be expensive. To have these arrays built, call
6fb5fa3c
DB
346 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
347 has been set the array will contain the eq_uses. Otherwise these
348 are ignored when building the array and assigning the ids. Note
349 that the values in the id field of a ref may change across calls to
350 df_analyze or df_reorganize_defs or df_reorganize_uses.
4d779342
DB
351
352 If the only use of this array is to find all of the refs, it is
353 better to traverse all of the registers and then traverse all of
354 reg-use or reg-def chains.
355
4d779342
DB
356NOTES:
357
358Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359both a use and a def. These are both marked read/write to show that they
360are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361will generate a use of reg 42 followed by a def of reg 42 (both marked
362read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363generates a use of reg 41 then a def of reg 41 (both marked read/write),
364even though reg 41 is decremented before it is used for the memory
365address in this second example.
366
367A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368for which the number of word_mode units covered by the outer mode is
fa10beec 369smaller than that covered by the inner mode, invokes a read-modify-write
4d779342
DB
370operation. We generate both a use and a def and again mark them
371read/write.
372
373Paradoxical subreg writes do not leave a trace of the old content, so they
374are write-only operations.
375*/
376
377
378#include "config.h"
379#include "system.h"
380#include "coretypes.h"
381#include "tm.h"
382#include "rtl.h"
383#include "tm_p.h"
384#include "insn-config.h"
385#include "recog.h"
386#include "function.h"
387#include "regs.h"
388#include "output.h"
389#include "alloc-pool.h"
390#include "flags.h"
391#include "hard-reg-set.h"
392#include "basic-block.h"
393#include "sbitmap.h"
394#include "bitmap.h"
395#include "timevar.h"
396#include "df.h"
397#include "tree-pass.h"
185082a7 398#include "params.h"
4d779342 399
23249ac4 400static void *df_get_bb_info (struct dataflow *, unsigned int);
30cb87a0 401static void df_set_bb_info (struct dataflow *, unsigned int, void *);
6fb5fa3c
DB
402#ifdef DF_DEBUG_CFG
403static void df_set_clean_cfg (void);
404#endif
4d779342 405
6fb5fa3c
DB
406/* An obstack for bitmap not related to specific dataflow problems.
407 This obstack should e.g. be used for bitmaps with a short life time
408 such as temporary bitmaps. */
4d779342 409
6fb5fa3c 410bitmap_obstack df_bitmap_obstack;
4d779342 411
4d779342 412
6fb5fa3c
DB
413/*----------------------------------------------------------------------------
414 Functions to create, destroy and manipulate an instance of df.
415----------------------------------------------------------------------------*/
416
417struct df *df;
4d779342 418
6fb5fa3c 419/* Add PROBLEM (and any dependent problems) to the DF instance. */
4d779342 420
6fb5fa3c
DB
421void
422df_add_problem (struct df_problem *problem)
4d779342
DB
423{
424 struct dataflow *dflow;
6fb5fa3c 425 int i;
4d779342
DB
426
427 /* First try to add the dependent problem. */
6fb5fa3c
DB
428 if (problem->dependent_problem)
429 df_add_problem (problem->dependent_problem);
4d779342
DB
430
431 /* Check to see if this problem has already been defined. If it
432 has, just return that instance, if not, add it to the end of the
433 vector. */
434 dflow = df->problems_by_index[problem->id];
435 if (dflow)
6fb5fa3c 436 return;
4d779342
DB
437
438 /* Make a new one and add it to the end. */
5ed6ace5 439 dflow = XCNEW (struct dataflow);
4d779342 440 dflow->problem = problem;
6fb5fa3c
DB
441 dflow->computed = false;
442 dflow->solutions_dirty = true;
4d779342
DB
443 df->problems_by_index[dflow->problem->id] = dflow;
444
6fb5fa3c
DB
445 /* Keep the defined problems ordered by index. This solves the
446 problem that RI will use the information from UREC if UREC has
447 been defined, or from LIVE if LIVE is defined and otherwise LR.
448 However for this to work, the computation of RI must be pushed
449 after which ever of those problems is defined, but we do not
450 require any of those except for LR to have actually been
451 defined. */
452 df->num_problems_defined++;
453 for (i = df->num_problems_defined - 2; i >= 0; i--)
454 {
455 if (problem->id < df->problems_in_order[i]->problem->id)
456 df->problems_in_order[i+1] = df->problems_in_order[i];
457 else
458 {
459 df->problems_in_order[i+1] = dflow;
460 return;
461 }
462 }
463 df->problems_in_order[0] = dflow;
4d779342
DB
464}
465
466
23249ac4
DB
467/* Set the MASK flags in the DFLOW problem. The old flags are
468 returned. If a flag is not allowed to be changed this will fail if
469 checking is enabled. */
81f40b79 470int
bbbbb16a 471df_set_flags (int changeable_flags)
23249ac4 472{
81f40b79 473 int old_flags = df->changeable_flags;
6fb5fa3c 474 df->changeable_flags |= changeable_flags;
23249ac4
DB
475 return old_flags;
476}
477
6fb5fa3c 478
23249ac4
DB
479/* Clear the MASK flags in the DFLOW problem. The old flags are
480 returned. If a flag is not allowed to be changed this will fail if
481 checking is enabled. */
81f40b79 482int
bbbbb16a 483df_clear_flags (int changeable_flags)
23249ac4 484{
81f40b79 485 int old_flags = df->changeable_flags;
6fb5fa3c 486 df->changeable_flags &= ~changeable_flags;
23249ac4
DB
487 return old_flags;
488}
489
6fb5fa3c 490
4d779342
DB
491/* Set the blocks that are to be considered for analysis. If this is
492 not called or is called with null, the entire function in
493 analyzed. */
494
495void
6fb5fa3c 496df_set_blocks (bitmap blocks)
4d779342
DB
497{
498 if (blocks)
499 {
6fb5fa3c
DB
500 if (dump_file)
501 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
3b8266e2
KZ
502 if (df->blocks_to_analyze)
503 {
89a95777
KZ
504 /* This block is called to change the focus from one subset
505 to another. */
3b8266e2 506 int p;
6fb5fa3c 507 bitmap diff = BITMAP_ALLOC (&df_bitmap_obstack);
3b8266e2 508 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
89a95777 509 for (p = 0; p < df->num_problems_defined; p++)
3b8266e2
KZ
510 {
511 struct dataflow *dflow = df->problems_in_order[p];
89a95777 512 if (dflow->optional_p && dflow->problem->reset_fun)
6fb5fa3c 513 dflow->problem->reset_fun (df->blocks_to_analyze);
89a95777 514 else if (dflow->problem->free_blocks_on_set_blocks)
3b8266e2
KZ
515 {
516 bitmap_iterator bi;
517 unsigned int bb_index;
518
519 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
520 {
521 basic_block bb = BASIC_BLOCK (bb_index);
30cb87a0
KZ
522 if (bb)
523 {
6fb5fa3c
DB
524 void *bb_info = df_get_bb_info (dflow, bb_index);
525 if (bb_info)
526 {
527 dflow->problem->free_bb_fun (bb, bb_info);
528 df_set_bb_info (dflow, bb_index, NULL);
529 }
30cb87a0 530 }
3b8266e2
KZ
531 }
532 }
533 }
534
535 BITMAP_FREE (diff);
536 }
537 else
30cb87a0 538 {
89a95777
KZ
539 /* This block of code is executed to change the focus from
540 the entire function to a subset. */
541 bitmap blocks_to_reset = NULL;
542 int p;
543 for (p = 0; p < df->num_problems_defined; p++)
30cb87a0 544 {
89a95777
KZ
545 struct dataflow *dflow = df->problems_in_order[p];
546 if (dflow->optional_p && dflow->problem->reset_fun)
30cb87a0 547 {
89a95777 548 if (!blocks_to_reset)
30cb87a0 549 {
89a95777
KZ
550 basic_block bb;
551 blocks_to_reset =
552 BITMAP_ALLOC (&df_bitmap_obstack);
553 FOR_ALL_BB(bb)
30cb87a0 554 {
89a95777 555 bitmap_set_bit (blocks_to_reset, bb->index);
30cb87a0 556 }
30cb87a0 557 }
89a95777 558 dflow->problem->reset_fun (blocks_to_reset);
30cb87a0 559 }
30cb87a0 560 }
89a95777
KZ
561 if (blocks_to_reset)
562 BITMAP_FREE (blocks_to_reset);
563
6fb5fa3c 564 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
30cb87a0 565 }
4d779342 566 bitmap_copy (df->blocks_to_analyze, blocks);
6fb5fa3c 567 df->analyze_subset = true;
4d779342
DB
568 }
569 else
570 {
89a95777
KZ
571 /* This block is executed to reset the focus to the entire
572 function. */
6fb5fa3c 573 if (dump_file)
89a95777 574 fprintf (dump_file, "clearing blocks_to_analyze\n");
4d779342
DB
575 if (df->blocks_to_analyze)
576 {
577 BITMAP_FREE (df->blocks_to_analyze);
578 df->blocks_to_analyze = NULL;
579 }
6fb5fa3c 580 df->analyze_subset = false;
4d779342 581 }
6fb5fa3c
DB
582
583 /* Setting the blocks causes the refs to be unorganized since only
584 the refs in the blocks are seen. */
585 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
586 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
587 df_mark_solutions_dirty ();
4d779342
DB
588}
589
590
6fb5fa3c
DB
591/* Delete a DFLOW problem (and any problems that depend on this
592 problem). */
23249ac4
DB
593
594void
6fb5fa3c 595df_remove_problem (struct dataflow *dflow)
23249ac4 596{
6fb5fa3c 597 struct df_problem *problem;
23249ac4 598 int i;
6fb5fa3c
DB
599
600 if (!dflow)
601 return;
602
603 problem = dflow->problem;
604 gcc_assert (problem->remove_problem_fun);
605
6fb5fa3c 606 /* Delete any problems that depended on this problem first. */
89a95777 607 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
608 if (df->problems_in_order[i]->problem->dependent_problem == problem)
609 df_remove_problem (df->problems_in_order[i]);
610
611 /* Now remove this problem. */
89a95777 612 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
613 if (df->problems_in_order[i] == dflow)
614 {
615 int j;
616 for (j = i + 1; j < df->num_problems_defined; j++)
617 df->problems_in_order[j-1] = df->problems_in_order[j];
7039a415 618 df->problems_in_order[j-1] = NULL;
6fb5fa3c
DB
619 df->num_problems_defined--;
620 break;
621 }
622
623 (problem->remove_problem_fun) ();
624 df->problems_by_index[problem->id] = NULL;
625}
626
627
05c219bb
PB
628/* Remove all of the problems that are not permanent. Scanning, LR
629 and (at -O2 or higher) LIVE are permanent, the rest are removable.
630 Also clear all of the changeable_flags. */
6fb5fa3c
DB
631
632void
0d475361 633df_finish_pass (bool verify ATTRIBUTE_UNUSED)
6fb5fa3c
DB
634{
635 int i;
636 int removed = 0;
637
3089f8b5 638#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
639 enum df_changeable_flags saved_flags;
640#endif
641
642 if (!df)
643 return;
644
645 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
646 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
647
3089f8b5 648#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
649 saved_flags = df->changeable_flags;
650#endif
651
89a95777 652 for (i = 0; i < df->num_problems_defined; i++)
23249ac4
DB
653 {
654 struct dataflow *dflow = df->problems_in_order[i];
6fb5fa3c
DB
655 struct df_problem *problem = dflow->problem;
656
89a95777
KZ
657 if (dflow->optional_p)
658 {
659 gcc_assert (problem->remove_problem_fun);
660 (problem->remove_problem_fun) ();
661 df->problems_in_order[i] = NULL;
662 df->problems_by_index[problem->id] = NULL;
663 removed++;
664 }
6fb5fa3c
DB
665 }
666 df->num_problems_defined -= removed;
667
668 /* Clear all of the flags. */
669 df->changeable_flags = 0;
670 df_process_deferred_rescans ();
671
672 /* Set the focus back to the whole function. */
673 if (df->blocks_to_analyze)
674 {
675 BITMAP_FREE (df->blocks_to_analyze);
676 df->blocks_to_analyze = NULL;
677 df_mark_solutions_dirty ();
678 df->analyze_subset = false;
23249ac4 679 }
6fb5fa3c 680
3089f8b5 681#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
682 /* Verification will fail in DF_NO_INSN_RESCAN. */
683 if (!(saved_flags & DF_NO_INSN_RESCAN))
684 {
685 df_lr_verify_transfer_functions ();
686 if (df_live)
687 df_live_verify_transfer_functions ();
688 }
689
690#ifdef DF_DEBUG_CFG
691 df_set_clean_cfg ();
692#endif
693#endif
0d475361
PB
694
695#ifdef ENABLE_CHECKING
696 if (verify)
697 df->changeable_flags |= DF_VERIFY_SCHEDULED;
698#endif
6fb5fa3c
DB
699}
700
701
702/* Set up the dataflow instance for the entire back end. */
703
704static unsigned int
705rest_of_handle_df_initialize (void)
706{
707 gcc_assert (!df);
708 df = XCNEW (struct df);
709 df->changeable_flags = 0;
710
711 bitmap_obstack_initialize (&df_bitmap_obstack);
712
713 /* Set this to a conservative value. Stack_ptr_mod will compute it
714 correctly later. */
715 current_function_sp_is_unchanging = 0;
716
717 df_scan_add_problem ();
718 df_scan_alloc (NULL);
719
720 /* These three problems are permanent. */
721 df_lr_add_problem ();
89a95777 722 if (optimize > 1)
6fb5fa3c
DB
723 df_live_add_problem ();
724
725 df->postorder = XNEWVEC (int, last_basic_block);
726 df->postorder_inverted = XNEWVEC (int, last_basic_block);
727 df->n_blocks = post_order_compute (df->postorder, true, true);
728 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
729 gcc_assert (df->n_blocks == df->n_blocks_inverted);
730
731 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
732 memset (df->hard_regs_live_count, 0,
733 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
734
735 df_hard_reg_init ();
736 /* After reload, some ports add certain bits to regs_ever_live so
737 this cannot be reset. */
738 df_compute_regs_ever_live (true);
739 df_scan_blocks ();
740 df_compute_regs_ever_live (false);
741 return 0;
742}
743
744
745static bool
746gate_opt (void)
747{
748 return optimize > 0;
23249ac4
DB
749}
750
751
8ddbbcae 752struct rtl_opt_pass pass_df_initialize_opt =
6fb5fa3c 753{
8ddbbcae
JH
754 {
755 RTL_PASS,
6fb5fa3c
DB
756 "dfinit", /* name */
757 gate_opt, /* gate */
758 rest_of_handle_df_initialize, /* execute */
759 NULL, /* sub */
760 NULL, /* next */
761 0, /* static_pass_number */
7072a650 762 TV_NONE, /* tv_id */
6fb5fa3c
DB
763 0, /* properties_required */
764 0, /* properties_provided */
765 0, /* properties_destroyed */
766 0, /* todo_flags_start */
8ddbbcae
JH
767 0 /* todo_flags_finish */
768 }
6fb5fa3c
DB
769};
770
771
772static bool
773gate_no_opt (void)
774{
775 return optimize == 0;
776}
777
778
8ddbbcae 779struct rtl_opt_pass pass_df_initialize_no_opt =
6fb5fa3c 780{
8ddbbcae
JH
781 {
782 RTL_PASS,
6fb5fa3c
DB
783 "dfinit", /* name */
784 gate_no_opt, /* gate */
785 rest_of_handle_df_initialize, /* execute */
786 NULL, /* sub */
787 NULL, /* next */
788 0, /* static_pass_number */
7072a650 789 TV_NONE, /* tv_id */
6fb5fa3c
DB
790 0, /* properties_required */
791 0, /* properties_provided */
792 0, /* properties_destroyed */
793 0, /* todo_flags_start */
8ddbbcae
JH
794 0 /* todo_flags_finish */
795 }
6fb5fa3c
DB
796};
797
798
4d779342
DB
799/* Free all the dataflow info and the DF structure. This should be
800 called from the df_finish macro which also NULLs the parm. */
801
6fb5fa3c
DB
802static unsigned int
803rest_of_handle_df_finish (void)
4d779342
DB
804{
805 int i;
806
6fb5fa3c
DB
807 gcc_assert (df);
808
4d779342 809 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
810 {
811 struct dataflow *dflow = df->problems_in_order[i];
812 dflow->problem->free_fun ();
813 }
4d779342 814
6fb5fa3c
DB
815 if (df->postorder)
816 free (df->postorder);
817 if (df->postorder_inverted)
818 free (df->postorder_inverted);
819 free (df->hard_regs_live_count);
4d779342 820 free (df);
6fb5fa3c
DB
821 df = NULL;
822
823 bitmap_obstack_release (&df_bitmap_obstack);
824 return 0;
4d779342
DB
825}
826
6fb5fa3c 827
8ddbbcae 828struct rtl_opt_pass pass_df_finish =
6fb5fa3c 829{
8ddbbcae
JH
830 {
831 RTL_PASS,
6fb5fa3c
DB
832 "dfinish", /* name */
833 NULL, /* gate */
834 rest_of_handle_df_finish, /* execute */
835 NULL, /* sub */
836 NULL, /* next */
837 0, /* static_pass_number */
7072a650 838 TV_NONE, /* tv_id */
6fb5fa3c
DB
839 0, /* properties_required */
840 0, /* properties_provided */
841 0, /* properties_destroyed */
842 0, /* todo_flags_start */
8ddbbcae
JH
843 0 /* todo_flags_finish */
844 }
6fb5fa3c
DB
845};
846
847
848
849
4d779342
DB
850\f
851/*----------------------------------------------------------------------------
852 The general data flow analysis engine.
853----------------------------------------------------------------------------*/
854
855
6fb5fa3c
DB
856/* Helper function for df_worklist_dataflow.
857 Propagate the dataflow forward.
858 Given a BB_INDEX, do the dataflow propagation
859 and set bits on for successors in PENDING
860 if the out set of the dataflow has changed. */
4d779342
DB
861
862static void
6fb5fa3c
DB
863df_worklist_propagate_forward (struct dataflow *dataflow,
864 unsigned bb_index,
865 unsigned *bbindex_to_postorder,
866 bitmap pending,
867 sbitmap considered)
4d779342 868{
4d779342
DB
869 edge e;
870 edge_iterator ei;
6fb5fa3c 871 basic_block bb = BASIC_BLOCK (bb_index);
4d779342 872
6fb5fa3c 873 /* Calculate <conf_op> of incoming edges. */
4d779342
DB
874 if (EDGE_COUNT (bb->preds) > 0)
875 FOR_EACH_EDGE (e, ei, bb->preds)
6fb5fa3c
DB
876 {
877 if (TEST_BIT (considered, e->src->index))
878 dataflow->problem->con_fun_n (e);
879 }
e45dcf9c 880 else if (dataflow->problem->con_fun_0)
6fb5fa3c
DB
881 dataflow->problem->con_fun_0 (bb);
882
883 if (dataflow->problem->trans_fun (bb_index))
4d779342 884 {
6fb5fa3c
DB
885 /* The out set of this block has changed.
886 Propagate to the outgoing blocks. */
887 FOR_EACH_EDGE (e, ei, bb->succs)
888 {
889 unsigned ob_index = e->dest->index;
890
891 if (TEST_BIT (considered, ob_index))
892 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
893 }
4d779342
DB
894 }
895}
896
6fb5fa3c
DB
897
898/* Helper function for df_worklist_dataflow.
899 Propagate the dataflow backward. */
900
4d779342 901static void
6fb5fa3c
DB
902df_worklist_propagate_backward (struct dataflow *dataflow,
903 unsigned bb_index,
904 unsigned *bbindex_to_postorder,
905 bitmap pending,
906 sbitmap considered)
4d779342 907{
4d779342
DB
908 edge e;
909 edge_iterator ei;
6fb5fa3c 910 basic_block bb = BASIC_BLOCK (bb_index);
4d779342 911
6fb5fa3c 912 /* Calculate <conf_op> of incoming edges. */
4d779342 913 if (EDGE_COUNT (bb->succs) > 0)
6fb5fa3c 914 FOR_EACH_EDGE (e, ei, bb->succs)
4d779342 915 {
6fb5fa3c
DB
916 if (TEST_BIT (considered, e->dest->index))
917 dataflow->problem->con_fun_n (e);
4d779342 918 }
e45dcf9c 919 else if (dataflow->problem->con_fun_0)
6fb5fa3c 920 dataflow->problem->con_fun_0 (bb);
4d779342 921
6fb5fa3c 922 if (dataflow->problem->trans_fun (bb_index))
4d779342 923 {
6fb5fa3c
DB
924 /* The out set of this block has changed.
925 Propagate to the outgoing blocks. */
926 FOR_EACH_EDGE (e, ei, bb->preds)
927 {
928 unsigned ob_index = e->src->index;
929
930 if (TEST_BIT (considered, ob_index))
931 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
932 }
4d779342
DB
933 }
934}
935
936
185082a7
SP
937
938/* This will free "pending". */
185082a7
SP
939
940static void
941df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
942 bitmap pending,
943 sbitmap considered,
944 int *blocks_in_postorder,
945 unsigned *bbindex_to_postorder)
946{
947 enum df_flow_dir dir = dataflow->problem->dir;
948 int dcount = 0;
949 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
950
951 /* Double-queueing. Worklist is for the current iteration,
952 and pending is for the next. */
953 while (!bitmap_empty_p (pending))
954 {
955 /* Swap pending and worklist. */
956 bitmap temp = worklist;
957 worklist = pending;
958 pending = temp;
959
960 do
961 {
962 int index;
963 unsigned bb_index;
964 dcount++;
965
966 index = bitmap_first_set_bit (worklist);
967 bitmap_clear_bit (worklist, index);
968
969 bb_index = blocks_in_postorder[index];
970
971 if (dir == DF_FORWARD)
972 df_worklist_propagate_forward (dataflow, bb_index,
973 bbindex_to_postorder,
974 pending, considered);
975 else
976 df_worklist_propagate_backward (dataflow, bb_index,
977 bbindex_to_postorder,
978 pending, considered);
979 }
980 while (!bitmap_empty_p (worklist));
981 }
982
983 BITMAP_FREE (worklist);
984 BITMAP_FREE (pending);
985
986 /* Dump statistics. */
987 if (dump_file)
988 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
989 "n_basic_blocks %d n_edges %d"
990 " count %d (%5.2g)\n",
991 n_basic_blocks, n_edges,
992 dcount, dcount / (float)n_basic_blocks);
993}
994
6fb5fa3c
DB
995/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
996 with "n"-th bit representing the n-th block in the reverse-postorder order.
240b5cea
SB
997 The solver is a double-queue algorithm similar to the "double stack" solver
998 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
999 The only significant difference is that the worklist in this implementation
1000 is always sorted in RPO of the CFG visiting direction. */
4d779342 1001
6fb5fa3c
DB
1002void
1003df_worklist_dataflow (struct dataflow *dataflow,
1004 bitmap blocks_to_consider,
1005 int *blocks_in_postorder,
1006 int n_blocks)
4d779342 1007{
6fb5fa3c 1008 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
4d779342
DB
1009 sbitmap considered = sbitmap_alloc (last_basic_block);
1010 bitmap_iterator bi;
6fb5fa3c
DB
1011 unsigned int *bbindex_to_postorder;
1012 int i;
1013 unsigned int index;
1014 enum df_flow_dir dir = dataflow->problem->dir;
4d779342 1015
6fb5fa3c 1016 gcc_assert (dir != DF_NONE);
4d779342 1017
6fb5fa3c
DB
1018 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1019 bbindex_to_postorder =
1020 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
4d779342 1021
6fb5fa3c
DB
1022 /* Initialize the array to an out-of-bound value. */
1023 for (i = 0; i < last_basic_block; i++)
1024 bbindex_to_postorder[i] = last_basic_block;
23249ac4 1025
6fb5fa3c
DB
1026 /* Initialize the considered map. */
1027 sbitmap_zero (considered);
1028 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
4d779342 1029 {
6fb5fa3c 1030 SET_BIT (considered, index);
4d779342
DB
1031 }
1032
6fb5fa3c 1033 /* Initialize the mapping of block index to postorder. */
4d779342
DB
1034 for (i = 0; i < n_blocks; i++)
1035 {
6fb5fa3c
DB
1036 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1037 /* Add all blocks to the worklist. */
1038 bitmap_set_bit (pending, i);
1039 }
4d779342 1040
185082a7 1041 /* Initialize the problem. */
6fb5fa3c
DB
1042 if (dataflow->problem->init_fun)
1043 dataflow->problem->init_fun (blocks_to_consider);
4d779342 1044
240b5cea
SB
1045 /* Solve it. */
1046 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1047 blocks_in_postorder,
1048 bbindex_to_postorder);
4d779342 1049
4d779342 1050 sbitmap_free (considered);
6fb5fa3c 1051 free (bbindex_to_postorder);
4d779342
DB
1052}
1053
1054
1055/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1056 the order of the remaining entries. Returns the length of the resulting
1057 list. */
1058
1059static unsigned
1060df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1061{
1062 unsigned act, last;
1063
1064 for (act = 0, last = 0; act < len; act++)
1065 if (bitmap_bit_p (blocks, list[act]))
1066 list[last++] = list[act];
1067
1068 return last;
1069}
1070
1071
1072/* Execute dataflow analysis on a single dataflow problem.
1073
4d779342
DB
1074 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1075 examined or will be computed. For calls from DF_ANALYZE, this is
6fb5fa3c 1076 the set of blocks that has been passed to DF_SET_BLOCKS.
4d779342
DB
1077*/
1078
23249ac4 1079void
4d779342
DB
1080df_analyze_problem (struct dataflow *dflow,
1081 bitmap blocks_to_consider,
6fb5fa3c 1082 int *postorder, int n_blocks)
4d779342 1083{
6fb5fa3c
DB
1084 timevar_push (dflow->problem->tv_id);
1085
3089f8b5 1086#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1087 if (dflow->problem->verify_start_fun)
1088 dflow->problem->verify_start_fun ();
1089#endif
1090
4d779342 1091 /* (Re)Allocate the datastructures necessary to solve the problem. */
e45dcf9c 1092 if (dflow->problem->alloc_fun)
6fb5fa3c 1093 dflow->problem->alloc_fun (blocks_to_consider);
4d779342 1094
6fb5fa3c 1095 /* Set up the problem and compute the local information. */
e45dcf9c 1096 if (dflow->problem->local_compute_fun)
6fb5fa3c 1097 dflow->problem->local_compute_fun (blocks_to_consider);
4d779342
DB
1098
1099 /* Solve the equations. */
e45dcf9c 1100 if (dflow->problem->dataflow_fun)
6fb5fa3c
DB
1101 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1102 postorder, n_blocks);
4d779342
DB
1103
1104 /* Massage the solution. */
e45dcf9c 1105 if (dflow->problem->finalize_fun)
6fb5fa3c
DB
1106 dflow->problem->finalize_fun (blocks_to_consider);
1107
3089f8b5 1108#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1109 if (dflow->problem->verify_end_fun)
1110 dflow->problem->verify_end_fun ();
1111#endif
1112
1113 timevar_pop (dflow->problem->tv_id);
1114
1115 dflow->computed = true;
4d779342
DB
1116}
1117
1118
1119/* Analyze dataflow info for the basic blocks specified by the bitmap
1120 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1121
1122void
6fb5fa3c 1123df_analyze (void)
4d779342 1124{
6fb5fa3c 1125 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
4d779342 1126 bool everything;
6fb5fa3c
DB
1127 int i;
1128
1129 if (df->postorder)
1130 free (df->postorder);
1131 if (df->postorder_inverted)
1132 free (df->postorder_inverted);
1133 df->postorder = XNEWVEC (int, last_basic_block);
1134 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1135 df->n_blocks = post_order_compute (df->postorder, true, true);
1136 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1137
1138 /* These should be the same. */
1139 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1140
1141 /* We need to do this before the df_verify_all because this is
1142 not kept incrementally up to date. */
1143 df_compute_regs_ever_live (false);
1144 df_process_deferred_rescans ();
1145
6fb5fa3c
DB
1146 if (dump_file)
1147 fprintf (dump_file, "df_analyze called\n");
3089f8b5 1148
0d475361
PB
1149#ifndef ENABLE_DF_CHECKING
1150 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1151#endif
1152 df_verify ();
6fb5fa3c
DB
1153
1154 for (i = 0; i < df->n_blocks; i++)
1155 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1156
1157#ifdef ENABLE_CHECKING
1158 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1159 the ENTRY block. */
1160 for (i = 0; i < df->n_blocks_inverted; i++)
1161 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1162#endif
4d779342
DB
1163
1164 /* Make sure that we have pruned any unreachable blocks from these
1165 sets. */
6fb5fa3c 1166 if (df->analyze_subset)
4d779342
DB
1167 {
1168 everything = false;
1169 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
6fb5fa3c
DB
1170 df->n_blocks = df_prune_to_subcfg (df->postorder,
1171 df->n_blocks, df->blocks_to_analyze);
1172 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1173 df->n_blocks_inverted,
1174 df->blocks_to_analyze);
4d779342
DB
1175 BITMAP_FREE (current_all_blocks);
1176 }
1177 else
1178 {
1179 everything = true;
1180 df->blocks_to_analyze = current_all_blocks;
1181 current_all_blocks = NULL;
1182 }
1183
1184 /* Skip over the DF_SCAN problem. */
1185 for (i = 1; i < df->num_problems_defined; i++)
6fb5fa3c
DB
1186 {
1187 struct dataflow *dflow = df->problems_in_order[i];
1188 if (dflow->solutions_dirty)
1189 {
1190 if (dflow->problem->dir == DF_FORWARD)
1191 df_analyze_problem (dflow,
1192 df->blocks_to_analyze,
1193 df->postorder_inverted,
1194 df->n_blocks_inverted);
1195 else
1196 df_analyze_problem (dflow,
1197 df->blocks_to_analyze,
1198 df->postorder,
1199 df->n_blocks);
1200 }
1201 }
4d779342
DB
1202
1203 if (everything)
1204 {
1205 BITMAP_FREE (df->blocks_to_analyze);
1206 df->blocks_to_analyze = NULL;
1207 }
1208
6fb5fa3c
DB
1209#ifdef DF_DEBUG_CFG
1210 df_set_clean_cfg ();
1211#endif
1212}
1213
1214
1215/* Return the number of basic blocks from the last call to df_analyze. */
1216
1217int
1218df_get_n_blocks (enum df_flow_dir dir)
1219{
1220 gcc_assert (dir != DF_NONE);
1221
1222 if (dir == DF_FORWARD)
1223 {
1224 gcc_assert (df->postorder_inverted);
1225 return df->n_blocks_inverted;
1226 }
1227
1228 gcc_assert (df->postorder);
1229 return df->n_blocks;
1230}
1231
1232
1233/* Return a pointer to the array of basic blocks in the reverse postorder.
1234 Depending on the direction of the dataflow problem,
1235 it returns either the usual reverse postorder array
1236 or the reverse postorder of inverted traversal. */
1237int *
1238df_get_postorder (enum df_flow_dir dir)
1239{
1240 gcc_assert (dir != DF_NONE);
1241
1242 if (dir == DF_FORWARD)
1243 {
1244 gcc_assert (df->postorder_inverted);
1245 return df->postorder_inverted;
1246 }
1247 gcc_assert (df->postorder);
1248 return df->postorder;
4d779342
DB
1249}
1250
6fb5fa3c
DB
1251static struct df_problem user_problem;
1252static struct dataflow user_dflow;
4d779342 1253
6fb5fa3c
DB
1254/* Interface for calling iterative dataflow with user defined
1255 confluence and transfer functions. All that is necessary is to
1256 supply DIR, a direction, CONF_FUN_0, a confluence function for
1257 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1258 confluence function, TRANS_FUN, the basic block transfer function,
1259 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1260 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1261
1262void
1263df_simple_dataflow (enum df_flow_dir dir,
1264 df_init_function init_fun,
1265 df_confluence_function_0 con_fun_0,
1266 df_confluence_function_n con_fun_n,
1267 df_transfer_function trans_fun,
1268 bitmap blocks, int * postorder, int n_blocks)
1269{
1270 memset (&user_problem, 0, sizeof (struct df_problem));
1271 user_problem.dir = dir;
1272 user_problem.init_fun = init_fun;
1273 user_problem.con_fun_0 = con_fun_0;
1274 user_problem.con_fun_n = con_fun_n;
1275 user_problem.trans_fun = trans_fun;
1276 user_dflow.problem = &user_problem;
1277 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1278}
1279
1280
4d779342
DB
1281\f
1282/*----------------------------------------------------------------------------
1283 Functions to support limited incremental change.
1284----------------------------------------------------------------------------*/
1285
1286
1287/* Get basic block info. */
1288
1289static void *
1290df_get_bb_info (struct dataflow *dflow, unsigned int index)
1291{
6fb5fa3c
DB
1292 if (dflow->block_info == NULL)
1293 return NULL;
1294 if (index >= dflow->block_info_size)
1295 return NULL;
4d779342
DB
1296 return (struct df_scan_bb_info *) dflow->block_info[index];
1297}
1298
1299
1300/* Set basic block info. */
1301
1302static void
1303df_set_bb_info (struct dataflow *dflow, unsigned int index,
1304 void *bb_info)
1305{
6fb5fa3c 1306 gcc_assert (dflow->block_info);
4d779342
DB
1307 dflow->block_info[index] = bb_info;
1308}
1309
1310
6fb5fa3c
DB
1311/* Mark the solutions as being out of date. */
1312
1313void
1314df_mark_solutions_dirty (void)
1315{
1316 if (df)
1317 {
1318 int p;
1319 for (p = 1; p < df->num_problems_defined; p++)
1320 df->problems_in_order[p]->solutions_dirty = true;
1321 }
1322}
1323
1324
1325/* Return true if BB needs it's transfer functions recomputed. */
1326
1327bool
1328df_get_bb_dirty (basic_block bb)
1329{
1330 if (df && df_live)
1331 return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
1332 else
1333 return false;
1334}
1335
1336
1337/* Mark BB as needing it's transfer functions as being out of
1338 date. */
1339
1340void
1341df_set_bb_dirty (basic_block bb)
1342{
1343 if (df)
1344 {
1345 int p;
1346 for (p = 1; p < df->num_problems_defined; p++)
1347 {
1348 struct dataflow *dflow = df->problems_in_order[p];
1349 if (dflow->out_of_date_transfer_functions)
1350 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1351 }
1352 df_mark_solutions_dirty ();
1353 }
1354}
1355
1356
1357/* Clear the dirty bits. This is called from places that delete
1358 blocks. */
1359static void
1360df_clear_bb_dirty (basic_block bb)
1361{
1362 int p;
1363 for (p = 1; p < df->num_problems_defined; p++)
1364 {
1365 struct dataflow *dflow = df->problems_in_order[p];
1366 if (dflow->out_of_date_transfer_functions)
1367 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1368 }
1369}
4d779342
DB
1370/* Called from the rtl_compact_blocks to reorganize the problems basic
1371 block info. */
1372
1373void
6fb5fa3c 1374df_compact_blocks (void)
4d779342
DB
1375{
1376 int i, p;
1377 basic_block bb;
1378 void **problem_temps;
6fb5fa3c
DB
1379 int size = last_basic_block * sizeof (void *);
1380 bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
f883e0a7 1381 problem_temps = XNEWVAR (void *, size);
4d779342
DB
1382
1383 for (p = 0; p < df->num_problems_defined; p++)
1384 {
1385 struct dataflow *dflow = df->problems_in_order[p];
6fb5fa3c
DB
1386
1387 /* Need to reorganize the out_of_date_transfer_functions for the
1388 dflow problem. */
1389 if (dflow->out_of_date_transfer_functions)
1390 {
1391 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1392 bitmap_clear (dflow->out_of_date_transfer_functions);
1393 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1394 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1395 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1396 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1397
1398 i = NUM_FIXED_BLOCKS;
1399 FOR_EACH_BB (bb)
1400 {
1401 if (bitmap_bit_p (tmp, bb->index))
1402 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1403 i++;
1404 }
1405 }
1406
1407 /* Now shuffle the block info for the problem. */
e45dcf9c 1408 if (dflow->problem->free_bb_fun)
4d779342
DB
1409 {
1410 df_grow_bb_info (dflow);
1411 memcpy (problem_temps, dflow->block_info, size);
1412
1413 /* Copy the bb info from the problem tmps to the proper
1414 place in the block_info vector. Null out the copied
6fb5fa3c 1415 item. The entry and exit blocks never move. */
4d779342
DB
1416 i = NUM_FIXED_BLOCKS;
1417 FOR_EACH_BB (bb)
1418 {
1419 df_set_bb_info (dflow, i, problem_temps[bb->index]);
1420 problem_temps[bb->index] = NULL;
1421 i++;
1422 }
1423 memset (dflow->block_info + i, 0,
1424 (last_basic_block - i) *sizeof (void *));
1425
1426 /* Free any block infos that were not copied (and NULLed).
1427 These are from orphaned blocks. */
1428 for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
1429 {
3b8266e2
KZ
1430 basic_block bb = BASIC_BLOCK (i);
1431 if (problem_temps[i] && bb)
e45dcf9c 1432 dflow->problem->free_bb_fun
6fb5fa3c 1433 (bb, problem_temps[i]);
4d779342
DB
1434 }
1435 }
1436 }
1437
6fb5fa3c
DB
1438 /* Shuffle the bits in the basic_block indexed arrays. */
1439
1440 if (df->blocks_to_analyze)
1441 {
1442 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1443 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1444 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1445 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1446 bitmap_copy (tmp, df->blocks_to_analyze);
1447 bitmap_clear (df->blocks_to_analyze);
1448 i = NUM_FIXED_BLOCKS;
1449 FOR_EACH_BB (bb)
1450 {
1451 if (bitmap_bit_p (tmp, bb->index))
1452 bitmap_set_bit (df->blocks_to_analyze, i);
1453 i++;
1454 }
1455 }
1456
1457 BITMAP_FREE (tmp);
1458
4d779342
DB
1459 free (problem_temps);
1460
1461 i = NUM_FIXED_BLOCKS;
1462 FOR_EACH_BB (bb)
1463 {
9be0cc75 1464 SET_BASIC_BLOCK (i, bb);
4d779342
DB
1465 bb->index = i;
1466 i++;
1467 }
1468
1469 gcc_assert (i == n_basic_blocks);
1470
1471 for (; i < last_basic_block; i++)
9be0cc75 1472 SET_BASIC_BLOCK (i, NULL);
6fb5fa3c
DB
1473
1474#ifdef DF_DEBUG_CFG
1475 if (!df_lr->solutions_dirty)
1476 df_set_clean_cfg ();
1477#endif
4d779342
DB
1478}
1479
1480
6fb5fa3c 1481/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
4d779342
DB
1482 block. There is no excuse for people to do this kind of thing. */
1483
1484void
6fb5fa3c 1485df_bb_replace (int old_index, basic_block new_block)
4d779342 1486{
6fb5fa3c 1487 int new_block_index = new_block->index;
4d779342
DB
1488 int p;
1489
6fb5fa3c
DB
1490 if (dump_file)
1491 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1492
1493 gcc_assert (df);
1494 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1495
4d779342
DB
1496 for (p = 0; p < df->num_problems_defined; p++)
1497 {
1498 struct dataflow *dflow = df->problems_in_order[p];
1499 if (dflow->block_info)
1500 {
4d779342 1501 df_grow_bb_info (dflow);
6fb5fa3c 1502 gcc_assert (df_get_bb_info (dflow, old_index) == NULL);
4d779342 1503 df_set_bb_info (dflow, old_index,
6fb5fa3c 1504 df_get_bb_info (dflow, new_block_index));
4d779342
DB
1505 }
1506 }
1507
6fb5fa3c 1508 df_clear_bb_dirty (new_block);
9be0cc75 1509 SET_BASIC_BLOCK (old_index, new_block);
4d779342 1510 new_block->index = old_index;
6fb5fa3c
DB
1511 df_set_bb_dirty (BASIC_BLOCK (old_index));
1512 SET_BASIC_BLOCK (new_block_index, NULL);
1513}
1514
1515
1516/* Free all of the per basic block dataflow from all of the problems.
1517 This is typically called before a basic block is deleted and the
1518 problem will be reanalyzed. */
1519
1520void
1521df_bb_delete (int bb_index)
1522{
1523 basic_block bb = BASIC_BLOCK (bb_index);
1524 int i;
1525
1526 if (!df)
1527 return;
1528
1529 for (i = 0; i < df->num_problems_defined; i++)
1530 {
1531 struct dataflow *dflow = df->problems_in_order[i];
1532 if (dflow->problem->free_bb_fun)
1533 {
1534 void *bb_info = df_get_bb_info (dflow, bb_index);
1535 if (bb_info)
1536 {
1537 dflow->problem->free_bb_fun (bb, bb_info);
1538 df_set_bb_info (dflow, bb_index, NULL);
1539 }
1540 }
1541 }
1542 df_clear_bb_dirty (bb);
1543 df_mark_solutions_dirty ();
1544}
1545
1546
1547/* Verify that there is a place for everything and everything is in
1548 its place. This is too expensive to run after every pass in the
1549 mainline. However this is an excellent debugging tool if the
6ed3da00 1550 dataflow information is not being updated properly. You can just
6fb5fa3c
DB
1551 sprinkle calls in until you find the place that is changing an
1552 underlying structure without calling the proper updating
0d52bcc1 1553 routine. */
6fb5fa3c
DB
1554
1555void
1556df_verify (void)
1557{
1558 df_scan_verify ();
0d475361 1559#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1560 df_lr_verify_transfer_functions ();
1561 if (df_live)
1562 df_live_verify_transfer_functions ();
0d475361 1563#endif
6fb5fa3c
DB
1564}
1565
1566#ifdef DF_DEBUG_CFG
1567
1568/* Compute an array of ints that describes the cfg. This can be used
1569 to discover places where the cfg is modified by the appropriate
1570 calls have not been made to the keep df informed. The internals of
1571 this are unexciting, the key is that two instances of this can be
1572 compared to see if any changes have been made to the cfg. */
1573
1574static int *
1575df_compute_cfg_image (void)
1576{
1577 basic_block bb;
1578 int size = 2 + (2 * n_basic_blocks);
1579 int i;
1580 int * map;
1581
1582 FOR_ALL_BB (bb)
1583 {
1584 size += EDGE_COUNT (bb->succs);
1585 }
1586
1587 map = XNEWVEC (int, size);
1588 map[0] = size;
1589 i = 1;
1590 FOR_ALL_BB (bb)
1591 {
1592 edge_iterator ei;
1593 edge e;
1594
1595 map[i++] = bb->index;
1596 FOR_EACH_EDGE (e, ei, bb->succs)
1597 map[i++] = e->dest->index;
1598 map[i++] = -1;
1599 }
1600 map[i] = -1;
1601 return map;
1602}
1603
1604static int *saved_cfg = NULL;
1605
1606
1607/* This function compares the saved version of the cfg with the
1608 current cfg and aborts if the two are identical. The function
1609 silently returns if the cfg has been marked as dirty or the two are
1610 the same. */
1611
1612void
1613df_check_cfg_clean (void)
1614{
1615 int *new_map;
1616
1617 if (!df)
1618 return;
1619
1620 if (df_lr->solutions_dirty)
1621 return;
1622
1623 if (saved_cfg == NULL)
1624 return;
1625
1626 new_map = df_compute_cfg_image ();
1627 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1628 free (new_map);
4d779342
DB
1629}
1630
6fb5fa3c
DB
1631
1632/* This function builds a cfg fingerprint and squirrels it away in
1633 saved_cfg. */
1634
1635static void
1636df_set_clean_cfg (void)
1637{
1638 if (saved_cfg)
1639 free (saved_cfg);
1640 saved_cfg = df_compute_cfg_image ();
1641}
1642
1643#endif /* DF_DEBUG_CFG */
4d779342
DB
1644/*----------------------------------------------------------------------------
1645 PUBLIC INTERFACES TO QUERY INFORMATION.
1646----------------------------------------------------------------------------*/
1647
1648
4d779342
DB
1649/* Return first def of REGNO within BB. */
1650
57512f53 1651df_ref
6fb5fa3c 1652df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
4d779342
DB
1653{
1654 rtx insn;
57512f53 1655 df_ref *def_rec;
a1b53177 1656 unsigned int uid;
4d779342
DB
1657
1658 FOR_BB_INSNS (bb, insn)
1659 {
a1b53177
SB
1660 if (!INSN_P (insn))
1661 continue;
1662
1663 uid = INSN_UID (insn);
6fb5fa3c
DB
1664 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1665 {
57512f53 1666 df_ref def = *def_rec;
6fb5fa3c
DB
1667 if (DF_REF_REGNO (def) == regno)
1668 return def;
1669 }
4d779342
DB
1670 }
1671 return NULL;
1672}
1673
1674
1675/* Return last def of REGNO within BB. */
1676
57512f53 1677df_ref
6fb5fa3c 1678df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
4d779342
DB
1679{
1680 rtx insn;
57512f53 1681 df_ref *def_rec;
a1b53177 1682 unsigned int uid;
4d779342
DB
1683
1684 FOR_BB_INSNS_REVERSE (bb, insn)
1685 {
a1b53177
SB
1686 if (!INSN_P (insn))
1687 continue;
4d779342 1688
a1b53177 1689 uid = INSN_UID (insn);
6fb5fa3c
DB
1690 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1691 {
57512f53 1692 df_ref def = *def_rec;
6fb5fa3c
DB
1693 if (DF_REF_REGNO (def) == regno)
1694 return def;
1695 }
4d779342
DB
1696 }
1697
1698 return NULL;
1699}
1700
4d779342
DB
1701/* Finds the reference corresponding to the definition of REG in INSN.
1702 DF is the dataflow object. */
1703
57512f53 1704df_ref
6fb5fa3c 1705df_find_def (rtx insn, rtx reg)
4d779342
DB
1706{
1707 unsigned int uid;
57512f53 1708 df_ref *def_rec;
4d779342
DB
1709
1710 if (GET_CODE (reg) == SUBREG)
1711 reg = SUBREG_REG (reg);
1712 gcc_assert (REG_P (reg));
1713
1714 uid = INSN_UID (insn);
6fb5fa3c
DB
1715 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1716 {
57512f53 1717 df_ref def = *def_rec;
6fb5fa3c
DB
1718 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1719 return def;
1720 }
4d779342
DB
1721
1722 return NULL;
1723}
1724
1725
1726/* Return true if REG is defined in INSN, zero otherwise. */
1727
1728bool
6fb5fa3c 1729df_reg_defined (rtx insn, rtx reg)
4d779342 1730{
6fb5fa3c 1731 return df_find_def (insn, reg) != NULL;
4d779342
DB
1732}
1733
1734
1735/* Finds the reference corresponding to the use of REG in INSN.
1736 DF is the dataflow object. */
1737
57512f53 1738df_ref
6fb5fa3c 1739df_find_use (rtx insn, rtx reg)
4d779342
DB
1740{
1741 unsigned int uid;
57512f53 1742 df_ref *use_rec;
4d779342
DB
1743
1744 if (GET_CODE (reg) == SUBREG)
1745 reg = SUBREG_REG (reg);
1746 gcc_assert (REG_P (reg));
1747
1748 uid = INSN_UID (insn);
6fb5fa3c
DB
1749 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1750 {
57512f53 1751 df_ref use = *use_rec;
6fb5fa3c
DB
1752 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1753 return use;
1754 }
1755 if (df->changeable_flags & DF_EQ_NOTES)
1756 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1757 {
57512f53 1758 df_ref use = *use_rec;
6fb5fa3c
DB
1759 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1760 return use;
1761 }
4d779342
DB
1762 return NULL;
1763}
1764
1765
1766/* Return true if REG is referenced in INSN, zero otherwise. */
1767
1768bool
6fb5fa3c 1769df_reg_used (rtx insn, rtx reg)
4d779342 1770{
6fb5fa3c 1771 return df_find_use (insn, reg) != NULL;
4d779342
DB
1772}
1773
1774\f
1775/*----------------------------------------------------------------------------
1776 Debugging and printing functions.
1777----------------------------------------------------------------------------*/
1778
6fb5fa3c
DB
1779
1780/* Write information about registers and basic blocks into FILE.
1781 This is part of making a debugging dump. */
1782
1783void
1784df_print_regset (FILE *file, bitmap r)
1785{
1786 unsigned int i;
1787 bitmap_iterator bi;
1788
1789 if (r == NULL)
1790 fputs (" (nil)", file);
1791 else
1792 {
1793 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1794 {
1795 fprintf (file, " %d", i);
1796 if (i < FIRST_PSEUDO_REGISTER)
1797 fprintf (file, " [%s]", reg_names[i]);
1798 }
1799 }
1800 fprintf (file, "\n");
1801}
1802
1803
cc806ac1
RS
1804/* Write information about registers and basic blocks into FILE. The
1805 bitmap is in the form used by df_byte_lr. This is part of making a
1806 debugging dump. */
1807
1808void
1809df_print_byte_regset (FILE *file, bitmap r)
1810{
1811 unsigned int max_reg = max_reg_num ();
1812 bitmap_iterator bi;
1813
1814 if (r == NULL)
1815 fputs (" (nil)", file);
1816 else
1817 {
1818 unsigned int i;
1819 for (i = 0; i < max_reg; i++)
1820 {
1821 unsigned int first = df_byte_lr_get_regno_start (i);
1822 unsigned int len = df_byte_lr_get_regno_len (i);
1823
1824 if (len > 1)
1825 {
1826 bool found = false;
1827 unsigned int j;
1828
1829 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1830 {
1831 found = j < first + len;
1832 break;
1833 }
1834 if (found)
1835 {
1836 const char * sep = "";
1837 fprintf (file, " %d", i);
1838 if (i < FIRST_PSEUDO_REGISTER)
1839 fprintf (file, " [%s]", reg_names[i]);
1840 fprintf (file, "(");
1841 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1842 {
1843 if (j > first + len - 1)
1844 break;
1845 fprintf (file, "%s%d", sep, j-first);
1846 sep = ", ";
1847 }
1848 fprintf (file, ")");
1849 }
1850 }
1851 else
1852 {
1853 if (bitmap_bit_p (r, first))
1854 {
1855 fprintf (file, " %d", i);
1856 if (i < FIRST_PSEUDO_REGISTER)
1857 fprintf (file, " [%s]", reg_names[i]);
1858 }
1859 }
1860
1861 }
1862 }
1863 fprintf (file, "\n");
1864}
1865
1866
4d779342 1867/* Dump dataflow info. */
ffd640ed 1868
4d779342 1869void
6fb5fa3c
DB
1870df_dump (FILE *file)
1871{
1872 basic_block bb;
1873 df_dump_start (file);
1874
1875 FOR_ALL_BB (bb)
1876 {
1877 df_print_bb_index (bb, file);
1878 df_dump_top (bb, file);
1879 df_dump_bottom (bb, file);
1880 }
1881
1882 fprintf (file, "\n");
1883}
1884
1885
ffd640ed
KZ
1886/* Dump dataflow info for df->blocks_to_analyze. */
1887
1888void
1889df_dump_region (FILE *file)
1890{
1891 if (df->blocks_to_analyze)
1892 {
1893 bitmap_iterator bi;
1894 unsigned int bb_index;
1895
1896 fprintf (file, "\n\nstarting region dump\n");
1897 df_dump_start (file);
1898
1899 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1900 {
1901 basic_block bb = BASIC_BLOCK (bb_index);
1902
1903 df_print_bb_index (bb, file);
1904 df_dump_top (bb, file);
1905 df_dump_bottom (bb, file);
1906 }
1907 fprintf (file, "\n");
1908 }
1909 else
1910 df_dump (file);
1911}
1912
1913
6fb5fa3c
DB
1914/* Dump the introductory information for each problem defined. */
1915
1916void
1917df_dump_start (FILE *file)
4d779342
DB
1918{
1919 int i;
1920
23249ac4 1921 if (!df || !file)
4d779342
DB
1922 return;
1923
1924 fprintf (file, "\n\n%s\n", current_function_name ());
1925 fprintf (file, "\nDataflow summary:\n");
6fb5fa3c
DB
1926 if (df->blocks_to_analyze)
1927 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
1928 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
4d779342
DB
1929
1930 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
1931 {
1932 struct dataflow *dflow = df->problems_in_order[i];
1933 if (dflow->computed)
1934 {
1935 df_dump_problem_function fun = dflow->problem->dump_start_fun;
1936 if (fun)
1937 fun(file);
1938 }
1939 }
1940}
4d779342 1941
6fb5fa3c
DB
1942
1943/* Dump the top of the block information for BB. */
1944
1945void
1946df_dump_top (basic_block bb, FILE *file)
1947{
1948 int i;
1949
1950 if (!df || !file)
1951 return;
1952
1953 for (i = 0; i < df->num_problems_defined; i++)
1954 {
1955 struct dataflow *dflow = df->problems_in_order[i];
1956 if (dflow->computed)
1957 {
1958 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
1959 if (bbfun)
1960 bbfun (bb, file);
1961 }
1962 }
1963}
1964
1965
1966/* Dump the bottom of the block information for BB. */
1967
1968void
1969df_dump_bottom (basic_block bb, FILE *file)
1970{
1971 int i;
1972
1973 if (!df || !file)
1974 return;
1975
1976 for (i = 0; i < df->num_problems_defined; i++)
1977 {
1978 struct dataflow *dflow = df->problems_in_order[i];
1979 if (dflow->computed)
1980 {
1981 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
1982 if (bbfun)
1983 bbfun (bb, file);
1984 }
1985 }
4d779342
DB
1986}
1987
1988
1989void
57512f53 1990df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
4d779342
DB
1991{
1992 fprintf (file, "{ ");
6fb5fa3c 1993 while (*ref_rec)
4d779342 1994 {
57512f53 1995 df_ref ref = *ref_rec;
6fb5fa3c
DB
1996 fprintf (file, "%c%d(%d)",
1997 DF_REF_REG_DEF_P (ref) ? 'd' : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
4d779342
DB
1998 DF_REF_ID (ref),
1999 DF_REF_REGNO (ref));
2000 if (follow_chain)
23249ac4 2001 df_chain_dump (DF_REF_CHAIN (ref), file);
6fb5fa3c 2002 ref_rec++;
4d779342
DB
2003 }
2004 fprintf (file, "}");
2005}
2006
2007
2008/* Dump either a ref-def or reg-use chain. */
2009
2010void
57512f53 2011df_regs_chain_dump (df_ref ref, FILE *file)
4d779342
DB
2012{
2013 fprintf (file, "{ ");
2014 while (ref)
2015 {
2016 fprintf (file, "%c%d(%d) ",
2017 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2018 DF_REF_ID (ref),
2019 DF_REF_REGNO (ref));
57512f53 2020 ref = DF_REF_NEXT_REG (ref);
4d779342
DB
2021 }
2022 fprintf (file, "}");
2023}
2024
2025
23249ac4 2026static void
6fb5fa3c 2027df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
4d779342 2028{
6fb5fa3c 2029 while (*mws)
23249ac4 2030 {
6fb5fa3c 2031 fprintf (file, "mw %c r[%d..%d]\n",
57512f53 2032 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
6fb5fa3c
DB
2033 (*mws)->start_regno, (*mws)->end_regno);
2034 mws++;
23249ac4
DB
2035 }
2036}
2037
2038
2039static void
6fb5fa3c 2040df_insn_uid_debug (unsigned int uid,
23249ac4
DB
2041 bool follow_chain, FILE *file)
2042{
6fb5fa3c
DB
2043 fprintf (file, "insn %d luid %d",
2044 uid, DF_INSN_UID_LUID (uid));
4d779342 2045
6fb5fa3c 2046 if (DF_INSN_UID_DEFS (uid))
23249ac4
DB
2047 {
2048 fprintf (file, " defs ");
6fb5fa3c 2049 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
23249ac4
DB
2050 }
2051
6fb5fa3c 2052 if (DF_INSN_UID_USES (uid))
23249ac4
DB
2053 {
2054 fprintf (file, " uses ");
6fb5fa3c
DB
2055 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2056 }
2057
2058 if (DF_INSN_UID_EQ_USES (uid))
2059 {
2060 fprintf (file, " eq uses ");
2061 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
23249ac4
DB
2062 }
2063
6fb5fa3c 2064 if (DF_INSN_UID_MWS (uid))
23249ac4
DB
2065 {
2066 fprintf (file, " mws ");
6fb5fa3c 2067 df_mws_dump (DF_INSN_UID_MWS (uid), file);
23249ac4 2068 }
4d779342
DB
2069 fprintf (file, "\n");
2070}
2071
23249ac4
DB
2072
2073void
6fb5fa3c 2074df_insn_debug (rtx insn, bool follow_chain, FILE *file)
23249ac4 2075{
6fb5fa3c 2076 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
23249ac4
DB
2077}
2078
4d779342 2079void
6fb5fa3c 2080df_insn_debug_regno (rtx insn, FILE *file)
4d779342 2081{
50e94c7e 2082 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4d779342
DB
2083
2084 fprintf (file, "insn %d bb %d luid %d defs ",
50e94c7e
SB
2085 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2086 DF_INSN_INFO_LUID (insn_info));
2087 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
4d779342
DB
2088
2089 fprintf (file, " uses ");
50e94c7e 2090 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
6fb5fa3c
DB
2091
2092 fprintf (file, " eq_uses ");
50e94c7e 2093 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
4d779342
DB
2094 fprintf (file, "\n");
2095}
2096
2097void
6fb5fa3c 2098df_regno_debug (unsigned int regno, FILE *file)
4d779342
DB
2099{
2100 fprintf (file, "reg %d defs ", regno);
6fb5fa3c 2101 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
4d779342 2102 fprintf (file, " uses ");
6fb5fa3c
DB
2103 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2104 fprintf (file, " eq_uses ");
2105 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
4d779342
DB
2106 fprintf (file, "\n");
2107}
2108
2109
2110void
57512f53 2111df_ref_debug (df_ref ref, FILE *file)
4d779342
DB
2112{
2113 fprintf (file, "%c%d ",
2114 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2115 DF_REF_ID (ref));
6fb5fa3c 2116 fprintf (file, "reg %d bb %d insn %d flag 0x%x type 0x%x ",
4d779342
DB
2117 DF_REF_REGNO (ref),
2118 DF_REF_BBNO (ref),
57512f53 2119 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
6fb5fa3c
DB
2120 DF_REF_FLAGS (ref),
2121 DF_REF_TYPE (ref));
2122 if (DF_REF_LOC (ref))
2123 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref), (void *)*DF_REF_LOC (ref));
2124 else
2125 fprintf (file, "chain ");
23249ac4 2126 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2127 fprintf (file, "\n");
2128}
2129\f
2130/* Functions for debugging from GDB. */
2131
2132void
2133debug_df_insn (rtx insn)
2134{
6fb5fa3c 2135 df_insn_debug (insn, true, stderr);
4d779342
DB
2136 debug_rtx (insn);
2137}
2138
2139
2140void
2141debug_df_reg (rtx reg)
2142{
6fb5fa3c 2143 df_regno_debug (REGNO (reg), stderr);
4d779342
DB
2144}
2145
2146
2147void
2148debug_df_regno (unsigned int regno)
2149{
6fb5fa3c 2150 df_regno_debug (regno, stderr);
4d779342
DB
2151}
2152
2153
2154void
57512f53 2155debug_df_ref (df_ref ref)
4d779342 2156{
23249ac4 2157 df_ref_debug (ref, stderr);
4d779342
DB
2158}
2159
2160
2161void
2162debug_df_defno (unsigned int defno)
2163{
6fb5fa3c 2164 df_ref_debug (DF_DEFS_GET (defno), stderr);
4d779342
DB
2165}
2166
2167
2168void
2169debug_df_useno (unsigned int defno)
2170{
6fb5fa3c 2171 df_ref_debug (DF_USES_GET (defno), stderr);
4d779342
DB
2172}
2173
2174
2175void
2176debug_df_chain (struct df_link *link)
2177{
23249ac4 2178 df_chain_dump (link, stderr);
4d779342
DB
2179 fputc ('\n', stderr);
2180}
This page took 0.991702 seconds and 5 git commands to generate.