]> gcc.gnu.org Git - gcc.git/blame - gcc/df-core.c
function.h (struct rtl_data): Remove struct and accessor macros.
[gcc.git] / gcc / df-core.c
CommitLineData
4d779342 1/* Allocation for dataflow support routines.
5624e564 2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
b8698a0f 3 Originally contributed by Michael P. Hayes
4d779342
DB
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
9dcd6f09 12Software Foundation; either version 3, or (at your option) any later
4d779342
DB
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
9dcd6f09
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
4d779342
DB
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
6fb5fa3c
DB
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
4d779342 40
6fb5fa3c
DB
41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
fa10beec 44areas that can be reached from a definition of a variable. The LIVE
b8698a0f 45problem finds the intersection of these two areas.
4d779342 46
6fb5fa3c
DB
47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
4d779342 49
6fb5fa3c
DB
50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
4d779342 57
6fb5fa3c 58In the middle layer, basic blocks are scanned to produce transfer
fa10beec 59functions which describe the effects of that block on the global
6fb5fa3c 60dataflow solution. The transfer functions are only rebuilt if the
b8698a0f 61some instruction within the block has changed.
4d779342 62
6fb5fa3c 63The top layer is the dataflow solution itself. The dataflow solution
0d52bcc1 64is computed by using an efficient iterative solver and the transfer
6fb5fa3c
DB
65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
4d779342
DB
67
68
6fb5fa3c 69USAGE:
4d779342 70
6fb5fa3c 71Here is an example of using the dataflow routines.
4d779342 72
05c219bb 73 df_[chain,live,note,rd]_add_problem (flags);
4d779342 74
6fb5fa3c 75 df_set_blocks (blocks);
4d779342 76
6fb5fa3c 77 df_analyze ();
4d779342 78
6fb5fa3c 79 df_dump (stderr);
4d779342 80
0d475361 81 df_finish_pass (false);
4d779342 82
05c219bb 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
6fb5fa3c
DB
84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
4d779342
DB
87
88Problems can be dependent on other problems. For instance, solving
d1c78882 89def-use or use-def chains is dependent on solving reaching
c0220ea4 90definitions. As long as these dependencies are listed in the problem
4d779342
DB
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
6fb5fa3c
DB
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
4d779342
DB
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
c0220ea4 108before the call to analyze in order to eliminate the possibility that
4d779342
DB
109optimizations that reorder blocks invalidate the bitvector.
110
6fb5fa3c
DB
111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
0a41f3b2 114to access these bitvectors. All deferred rescannings are down before
0d52bcc1 115the transfer functions are recomputed.
4d779342
DB
116
117DF_DUMP can then be called to dump the information produce to some
6fb5fa3c
DB
118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
0a41f3b2 126deferred to be rescanned as well as clears all of the changeable flags.
6fb5fa3c
DB
127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
cea618ac 146 upon even after changes have been made to the instructions. This
6fb5fa3c
DB
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
0d52bcc1 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
6fb5fa3c
DB
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
ecb7f6de
PB
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
e02101ff 184 note_stores and rtx iterators instead of using the DF data. This
ecb7f6de 185 can be said to fall under case 1c.
6fb5fa3c
DB
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
0a41f3b2 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
6fb5fa3c
DB
190 be rescanned.
191
ecb7f6de
PB
1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
6fb5fa3c
DB
198
1994) Do it yourself - In this mechanism, the pass updates the insns
6ed3da00 200 itself using the low level df primitives. Currently no pass does
6fb5fa3c 201 this, but it has the advantage that it is quite efficient given
b8698a0f 202 that the pass generally has exact knowledge of what it is changing.
6fb5fa3c
DB
203
204DATA STRUCTURES
4d779342
DB
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
4d779342
DB
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
6fc0bb99 239keep the dataflow information up to data (if this is really what is
4d779342
DB
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
b8698a0f 249The basic object is a DF_REF (reference) and this may either be a
4d779342
DB
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
6fb5fa3c
DB
261ACCESSING INSNS:
262
50e94c7e
SB
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
6fb5fa3c 286
4d779342
DB
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
b8698a0f 293 REAL refs are associated with instructions.
4d779342
DB
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
6fb5fa3c 296 these lists can be accessed by calling df_get_artificial_defs or
b8698a0f
L
297 df_get_artificial_uses for the particular basic block.
298
912f2dac
DB
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
c0220ea4 314 Artificial defs occur at the end of the entry block. These arise
912f2dac 315 from registers that are live at entry to the function.
4d779342 316
b8698a0f 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
6fb5fa3c 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
4d779342 319
6fb5fa3c
DB
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
b8698a0f 324 treated like uses. If it is not set they are ignored.
6fb5fa3c
DB
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
4d779342
DB
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
6fb5fa3c
DB
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
4d779342
DB
340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
6fb5fa3c
DB
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
b8698a0f 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
4d779342
DB
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
4d779342 355NOTES:
b8698a0f 356
4d779342
DB
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
fa10beec 368smaller than that covered by the inner mode, invokes a read-modify-write
4d779342
DB
369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
b8698a0f 373are write-only operations.
4d779342
DB
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
380#include "tm.h"
381#include "rtl.h"
382#include "tm_p.h"
383#include "insn-config.h"
384#include "recog.h"
83685514 385#include "hard-reg-set.h"
4d779342
DB
386#include "function.h"
387#include "regs.h"
4d779342
DB
388#include "alloc-pool.h"
389#include "flags.h"
60393bbc
AM
390#include "predict.h"
391#include "dominance.h"
392#include "cfg.h"
393#include "cfganal.h"
4d779342
DB
394#include "basic-block.h"
395#include "sbitmap.h"
396#include "bitmap.h"
4d779342
DB
397#include "df.h"
398#include "tree-pass.h"
185082a7 399#include "params.h"
7be64667 400#include "cfgloop.h"
2bb8cb58 401#include "emit-rtl.h"
4d779342 402
23249ac4 403static void *df_get_bb_info (struct dataflow *, unsigned int);
30cb87a0 404static void df_set_bb_info (struct dataflow *, unsigned int, void *);
e285df08 405static void df_clear_bb_info (struct dataflow *, unsigned int);
6fb5fa3c
DB
406#ifdef DF_DEBUG_CFG
407static void df_set_clean_cfg (void);
408#endif
4d779342 409
532aafad
SB
410/* The obstack on which regsets are allocated. */
411struct bitmap_obstack reg_obstack;
412
6fb5fa3c
DB
413/* An obstack for bitmap not related to specific dataflow problems.
414 This obstack should e.g. be used for bitmaps with a short life time
415 such as temporary bitmaps. */
4d779342 416
6fb5fa3c 417bitmap_obstack df_bitmap_obstack;
4d779342 418
4d779342 419
6fb5fa3c
DB
420/*----------------------------------------------------------------------------
421 Functions to create, destroy and manipulate an instance of df.
422----------------------------------------------------------------------------*/
423
f12c802a 424struct df_d *df;
4d779342 425
6fb5fa3c 426/* Add PROBLEM (and any dependent problems) to the DF instance. */
4d779342 427
6fb5fa3c
DB
428void
429df_add_problem (struct df_problem *problem)
4d779342
DB
430{
431 struct dataflow *dflow;
6fb5fa3c 432 int i;
4d779342
DB
433
434 /* First try to add the dependent problem. */
6fb5fa3c
DB
435 if (problem->dependent_problem)
436 df_add_problem (problem->dependent_problem);
4d779342
DB
437
438 /* Check to see if this problem has already been defined. If it
439 has, just return that instance, if not, add it to the end of the
440 vector. */
441 dflow = df->problems_by_index[problem->id];
442 if (dflow)
6fb5fa3c 443 return;
4d779342
DB
444
445 /* Make a new one and add it to the end. */
5ed6ace5 446 dflow = XCNEW (struct dataflow);
4d779342 447 dflow->problem = problem;
6fb5fa3c
DB
448 dflow->computed = false;
449 dflow->solutions_dirty = true;
4d779342
DB
450 df->problems_by_index[dflow->problem->id] = dflow;
451
6fb5fa3c
DB
452 /* Keep the defined problems ordered by index. This solves the
453 problem that RI will use the information from UREC if UREC has
454 been defined, or from LIVE if LIVE is defined and otherwise LR.
455 However for this to work, the computation of RI must be pushed
456 after which ever of those problems is defined, but we do not
457 require any of those except for LR to have actually been
b8698a0f 458 defined. */
6fb5fa3c
DB
459 df->num_problems_defined++;
460 for (i = df->num_problems_defined - 2; i >= 0; i--)
461 {
462 if (problem->id < df->problems_in_order[i]->problem->id)
463 df->problems_in_order[i+1] = df->problems_in_order[i];
464 else
465 {
466 df->problems_in_order[i+1] = dflow;
467 return;
468 }
469 }
470 df->problems_in_order[0] = dflow;
4d779342
DB
471}
472
473
23249ac4
DB
474/* Set the MASK flags in the DFLOW problem. The old flags are
475 returned. If a flag is not allowed to be changed this will fail if
476 checking is enabled. */
81f40b79 477int
bbbbb16a 478df_set_flags (int changeable_flags)
23249ac4 479{
81f40b79 480 int old_flags = df->changeable_flags;
6fb5fa3c 481 df->changeable_flags |= changeable_flags;
23249ac4
DB
482 return old_flags;
483}
484
6fb5fa3c 485
23249ac4
DB
486/* Clear the MASK flags in the DFLOW problem. The old flags are
487 returned. If a flag is not allowed to be changed this will fail if
488 checking is enabled. */
81f40b79 489int
bbbbb16a 490df_clear_flags (int changeable_flags)
23249ac4 491{
81f40b79 492 int old_flags = df->changeable_flags;
6fb5fa3c 493 df->changeable_flags &= ~changeable_flags;
23249ac4
DB
494 return old_flags;
495}
496
6fb5fa3c 497
4d779342
DB
498/* Set the blocks that are to be considered for analysis. If this is
499 not called or is called with null, the entire function in
500 analyzed. */
501
b8698a0f 502void
6fb5fa3c 503df_set_blocks (bitmap blocks)
4d779342
DB
504{
505 if (blocks)
506 {
6fb5fa3c
DB
507 if (dump_file)
508 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
3b8266e2
KZ
509 if (df->blocks_to_analyze)
510 {
89a95777
KZ
511 /* This block is called to change the focus from one subset
512 to another. */
3b8266e2 513 int p;
a7e3698d
JH
514 bitmap_head diff;
515 bitmap_initialize (&diff, &df_bitmap_obstack);
516 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
89a95777 517 for (p = 0; p < df->num_problems_defined; p++)
3b8266e2
KZ
518 {
519 struct dataflow *dflow = df->problems_in_order[p];
89a95777 520 if (dflow->optional_p && dflow->problem->reset_fun)
6fb5fa3c 521 dflow->problem->reset_fun (df->blocks_to_analyze);
89a95777 522 else if (dflow->problem->free_blocks_on_set_blocks)
3b8266e2
KZ
523 {
524 bitmap_iterator bi;
525 unsigned int bb_index;
b8698a0f 526
a7e3698d 527 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
3b8266e2 528 {
06e28de2 529 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
30cb87a0
KZ
530 if (bb)
531 {
6fb5fa3c 532 void *bb_info = df_get_bb_info (dflow, bb_index);
e285df08
JH
533 dflow->problem->free_bb_fun (bb, bb_info);
534 df_clear_bb_info (dflow, bb_index);
30cb87a0 535 }
3b8266e2
KZ
536 }
537 }
538 }
539
a7e3698d 540 bitmap_clear (&diff);
3b8266e2
KZ
541 }
542 else
30cb87a0 543 {
89a95777
KZ
544 /* This block of code is executed to change the focus from
545 the entire function to a subset. */
a7e3698d
JH
546 bitmap_head blocks_to_reset;
547 bool initialized = false;
89a95777
KZ
548 int p;
549 for (p = 0; p < df->num_problems_defined; p++)
30cb87a0 550 {
89a95777
KZ
551 struct dataflow *dflow = df->problems_in_order[p];
552 if (dflow->optional_p && dflow->problem->reset_fun)
30cb87a0 553 {
a7e3698d 554 if (!initialized)
30cb87a0 555 {
89a95777 556 basic_block bb;
a7e3698d 557 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
04a90bec 558 FOR_ALL_BB_FN (bb, cfun)
30cb87a0 559 {
a7e3698d 560 bitmap_set_bit (&blocks_to_reset, bb->index);
30cb87a0 561 }
30cb87a0 562 }
a7e3698d 563 dflow->problem->reset_fun (&blocks_to_reset);
30cb87a0 564 }
30cb87a0 565 }
a7e3698d
JH
566 if (initialized)
567 bitmap_clear (&blocks_to_reset);
89a95777 568
6fb5fa3c 569 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
30cb87a0 570 }
4d779342 571 bitmap_copy (df->blocks_to_analyze, blocks);
6fb5fa3c 572 df->analyze_subset = true;
4d779342
DB
573 }
574 else
575 {
89a95777
KZ
576 /* This block is executed to reset the focus to the entire
577 function. */
6fb5fa3c 578 if (dump_file)
89a95777 579 fprintf (dump_file, "clearing blocks_to_analyze\n");
4d779342
DB
580 if (df->blocks_to_analyze)
581 {
582 BITMAP_FREE (df->blocks_to_analyze);
583 df->blocks_to_analyze = NULL;
584 }
6fb5fa3c 585 df->analyze_subset = false;
4d779342 586 }
6fb5fa3c
DB
587
588 /* Setting the blocks causes the refs to be unorganized since only
589 the refs in the blocks are seen. */
590 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
591 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
592 df_mark_solutions_dirty ();
4d779342
DB
593}
594
595
6fb5fa3c
DB
596/* Delete a DFLOW problem (and any problems that depend on this
597 problem). */
23249ac4
DB
598
599void
6fb5fa3c 600df_remove_problem (struct dataflow *dflow)
23249ac4 601{
6fb5fa3c 602 struct df_problem *problem;
23249ac4 603 int i;
6fb5fa3c
DB
604
605 if (!dflow)
606 return;
607
608 problem = dflow->problem;
609 gcc_assert (problem->remove_problem_fun);
610
6fb5fa3c 611 /* Delete any problems that depended on this problem first. */
89a95777 612 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
613 if (df->problems_in_order[i]->problem->dependent_problem == problem)
614 df_remove_problem (df->problems_in_order[i]);
615
616 /* Now remove this problem. */
89a95777 617 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
618 if (df->problems_in_order[i] == dflow)
619 {
620 int j;
621 for (j = i + 1; j < df->num_problems_defined; j++)
622 df->problems_in_order[j-1] = df->problems_in_order[j];
7039a415 623 df->problems_in_order[j-1] = NULL;
6fb5fa3c
DB
624 df->num_problems_defined--;
625 break;
626 }
627
628 (problem->remove_problem_fun) ();
629 df->problems_by_index[problem->id] = NULL;
630}
631
632
05c219bb
PB
633/* Remove all of the problems that are not permanent. Scanning, LR
634 and (at -O2 or higher) LIVE are permanent, the rest are removable.
635 Also clear all of the changeable_flags. */
6fb5fa3c
DB
636
637void
0d475361 638df_finish_pass (bool verify ATTRIBUTE_UNUSED)
6fb5fa3c
DB
639{
640 int i;
6fb5fa3c 641
3089f8b5 642#ifdef ENABLE_DF_CHECKING
a46edbff 643 int saved_flags;
6fb5fa3c
DB
644#endif
645
646 if (!df)
647 return;
648
649 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
650 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
651
3089f8b5 652#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
653 saved_flags = df->changeable_flags;
654#endif
655
8f252203
TP
656 /* We iterate over problems by index as each problem removed will
657 lead to problems_in_order to be reordered. */
658 for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
23249ac4 659 {
8f252203 660 struct dataflow *dflow = df->problems_by_index[i];
6fb5fa3c 661
8f252203
TP
662 if (dflow && dflow->optional_p)
663 df_remove_problem (dflow);
6fb5fa3c 664 }
6fb5fa3c
DB
665
666 /* Clear all of the flags. */
667 df->changeable_flags = 0;
668 df_process_deferred_rescans ();
669
670 /* Set the focus back to the whole function. */
671 if (df->blocks_to_analyze)
672 {
673 BITMAP_FREE (df->blocks_to_analyze);
674 df->blocks_to_analyze = NULL;
675 df_mark_solutions_dirty ();
676 df->analyze_subset = false;
23249ac4 677 }
6fb5fa3c 678
3089f8b5 679#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
680 /* Verification will fail in DF_NO_INSN_RESCAN. */
681 if (!(saved_flags & DF_NO_INSN_RESCAN))
682 {
683 df_lr_verify_transfer_functions ();
684 if (df_live)
685 df_live_verify_transfer_functions ();
686 }
687
688#ifdef DF_DEBUG_CFG
689 df_set_clean_cfg ();
690#endif
691#endif
0d475361
PB
692
693#ifdef ENABLE_CHECKING
694 if (verify)
695 df->changeable_flags |= DF_VERIFY_SCHEDULED;
696#endif
6fb5fa3c
DB
697}
698
699
700/* Set up the dataflow instance for the entire back end. */
701
702static unsigned int
703rest_of_handle_df_initialize (void)
704{
705 gcc_assert (!df);
f12c802a 706 df = XCNEW (struct df_d);
6fb5fa3c
DB
707 df->changeable_flags = 0;
708
709 bitmap_obstack_initialize (&df_bitmap_obstack);
710
711 /* Set this to a conservative value. Stack_ptr_mod will compute it
712 correctly later. */
416ff32e 713 crtl->sp_is_unchanging = 0;
6fb5fa3c
DB
714
715 df_scan_add_problem ();
716 df_scan_alloc (NULL);
717
718 /* These three problems are permanent. */
719 df_lr_add_problem ();
89a95777 720 if (optimize > 1)
6fb5fa3c
DB
721 df_live_add_problem ();
722
8b1c6fd7
DM
723 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
724 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
725 df->n_blocks = post_order_compute (df->postorder, true, true);
726 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
727 gcc_assert (df->n_blocks == df->n_blocks_inverted);
728
225ccc68 729 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
6fb5fa3c
DB
730
731 df_hard_reg_init ();
732 /* After reload, some ports add certain bits to regs_ever_live so
733 this cannot be reset. */
734 df_compute_regs_ever_live (true);
735 df_scan_blocks ();
736 df_compute_regs_ever_live (false);
737 return 0;
738}
739
740
27a4cd48
DM
741namespace {
742
743const pass_data pass_data_df_initialize_opt =
6fb5fa3c 744{
27a4cd48
DM
745 RTL_PASS, /* type */
746 "dfinit", /* name */
747 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
748 TV_DF_SCAN, /* tv_id */
749 0, /* properties_required */
750 0, /* properties_provided */
751 0, /* properties_destroyed */
752 0, /* todo_flags_start */
753 0, /* todo_flags_finish */
6fb5fa3c
DB
754};
755
27a4cd48
DM
756class pass_df_initialize_opt : public rtl_opt_pass
757{
758public:
c3284718
RS
759 pass_df_initialize_opt (gcc::context *ctxt)
760 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
27a4cd48
DM
761 {}
762
763 /* opt_pass methods: */
1a3d085c 764 virtual bool gate (function *) { return optimize > 0; }
be55bfe6
TS
765 virtual unsigned int execute (function *)
766 {
767 return rest_of_handle_df_initialize ();
768 }
27a4cd48
DM
769
770}; // class pass_df_initialize_opt
771
772} // anon namespace
773
774rtl_opt_pass *
775make_pass_df_initialize_opt (gcc::context *ctxt)
776{
777 return new pass_df_initialize_opt (ctxt);
778}
779
6fb5fa3c 780
27a4cd48
DM
781namespace {
782
783const pass_data pass_data_df_initialize_no_opt =
6fb5fa3c 784{
27a4cd48
DM
785 RTL_PASS, /* type */
786 "no-opt dfinit", /* name */
787 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
788 TV_DF_SCAN, /* tv_id */
789 0, /* properties_required */
790 0, /* properties_provided */
791 0, /* properties_destroyed */
792 0, /* todo_flags_start */
793 0, /* todo_flags_finish */
6fb5fa3c
DB
794};
795
27a4cd48
DM
796class pass_df_initialize_no_opt : public rtl_opt_pass
797{
798public:
c3284718
RS
799 pass_df_initialize_no_opt (gcc::context *ctxt)
800 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
27a4cd48
DM
801 {}
802
803 /* opt_pass methods: */
1a3d085c 804 virtual bool gate (function *) { return optimize == 0; }
be55bfe6
TS
805 virtual unsigned int execute (function *)
806 {
807 return rest_of_handle_df_initialize ();
808 }
27a4cd48
DM
809
810}; // class pass_df_initialize_no_opt
811
812} // anon namespace
813
814rtl_opt_pass *
815make_pass_df_initialize_no_opt (gcc::context *ctxt)
816{
817 return new pass_df_initialize_no_opt (ctxt);
818}
819
6fb5fa3c 820
4d779342
DB
821/* Free all the dataflow info and the DF structure. This should be
822 called from the df_finish macro which also NULLs the parm. */
823
6fb5fa3c
DB
824static unsigned int
825rest_of_handle_df_finish (void)
4d779342
DB
826{
827 int i;
828
6fb5fa3c
DB
829 gcc_assert (df);
830
4d779342 831 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
832 {
833 struct dataflow *dflow = df->problems_in_order[i];
b8698a0f 834 dflow->problem->free_fun ();
6fb5fa3c 835 }
4d779342 836
04695783
JM
837 free (df->postorder);
838 free (df->postorder_inverted);
6fb5fa3c 839 free (df->hard_regs_live_count);
4d779342 840 free (df);
6fb5fa3c
DB
841 df = NULL;
842
843 bitmap_obstack_release (&df_bitmap_obstack);
844 return 0;
4d779342
DB
845}
846
6fb5fa3c 847
27a4cd48
DM
848namespace {
849
850const pass_data pass_data_df_finish =
6fb5fa3c 851{
27a4cd48
DM
852 RTL_PASS, /* type */
853 "dfinish", /* name */
854 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
855 TV_NONE, /* tv_id */
856 0, /* properties_required */
857 0, /* properties_provided */
858 0, /* properties_destroyed */
859 0, /* todo_flags_start */
860 0, /* todo_flags_finish */
6fb5fa3c
DB
861};
862
27a4cd48
DM
863class pass_df_finish : public rtl_opt_pass
864{
865public:
c3284718
RS
866 pass_df_finish (gcc::context *ctxt)
867 : rtl_opt_pass (pass_data_df_finish, ctxt)
27a4cd48
DM
868 {}
869
870 /* opt_pass methods: */
be55bfe6
TS
871 virtual unsigned int execute (function *)
872 {
873 return rest_of_handle_df_finish ();
874 }
27a4cd48
DM
875
876}; // class pass_df_finish
877
878} // anon namespace
879
880rtl_opt_pass *
881make_pass_df_finish (gcc::context *ctxt)
882{
883 return new pass_df_finish (ctxt);
884}
885
6fb5fa3c
DB
886
887
888
4d779342
DB
889\f
890/*----------------------------------------------------------------------------
891 The general data flow analysis engine.
892----------------------------------------------------------------------------*/
893
50b2e859
JH
894/* Return time BB when it was visited for last time. */
895#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
4d779342 896
6fb5fa3c 897/* Helper function for df_worklist_dataflow.
b8698a0f 898 Propagate the dataflow forward.
6fb5fa3c
DB
899 Given a BB_INDEX, do the dataflow propagation
900 and set bits on for successors in PENDING
50b2e859
JH
901 if the out set of the dataflow has changed.
902
903 AGE specify time when BB was visited last time.
904 AGE of 0 means we are visiting for first time and need to
905 compute transfer function to initialize datastructures.
906 Otherwise we re-do transfer function only if something change
907 while computing confluence functions.
908 We need to compute confluence only of basic block that are younger
909 then last visit of the BB.
910
911 Return true if BB info has changed. This is always the case
912 in the first visit. */
4d779342 913
1a0f3fa1 914static bool
6fb5fa3c
DB
915df_worklist_propagate_forward (struct dataflow *dataflow,
916 unsigned bb_index,
917 unsigned *bbindex_to_postorder,
918 bitmap pending,
1a0f3fa1 919 sbitmap considered,
50b2e859 920 ptrdiff_t age)
4d779342 921{
4d779342
DB
922 edge e;
923 edge_iterator ei;
06e28de2 924 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 925 bool changed = !age;
4d779342 926
6fb5fa3c 927 /* Calculate <conf_op> of incoming edges. */
4d779342
DB
928 if (EDGE_COUNT (bb->preds) > 0)
929 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 930 {
50b2e859 931 if (age <= BB_LAST_CHANGE_AGE (e->src)
d7c028c0 932 && bitmap_bit_p (considered, e->src->index))
1a0f3fa1 933 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 934 }
e45dcf9c 935 else if (dataflow->problem->con_fun_0)
50b2e859 936 dataflow->problem->con_fun_0 (bb);
6fb5fa3c 937
1a0f3fa1
JH
938 if (changed
939 && dataflow->problem->trans_fun (bb_index))
4d779342 940 {
b8698a0f 941 /* The out set of this block has changed.
6fb5fa3c
DB
942 Propagate to the outgoing blocks. */
943 FOR_EACH_EDGE (e, ei, bb->succs)
944 {
945 unsigned ob_index = e->dest->index;
946
d7c028c0 947 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
948 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
949 }
1a0f3fa1 950 return true;
4d779342 951 }
1a0f3fa1 952 return false;
4d779342
DB
953}
954
6fb5fa3c
DB
955
956/* Helper function for df_worklist_dataflow.
957 Propagate the dataflow backward. */
958
1a0f3fa1 959static bool
6fb5fa3c
DB
960df_worklist_propagate_backward (struct dataflow *dataflow,
961 unsigned bb_index,
962 unsigned *bbindex_to_postorder,
963 bitmap pending,
1a0f3fa1 964 sbitmap considered,
50b2e859 965 ptrdiff_t age)
4d779342 966{
4d779342
DB
967 edge e;
968 edge_iterator ei;
06e28de2 969 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 970 bool changed = !age;
4d779342 971
6fb5fa3c 972 /* Calculate <conf_op> of incoming edges. */
4d779342 973 if (EDGE_COUNT (bb->succs) > 0)
6fb5fa3c 974 FOR_EACH_EDGE (e, ei, bb->succs)
b8698a0f 975 {
50b2e859 976 if (age <= BB_LAST_CHANGE_AGE (e->dest)
d7c028c0 977 && bitmap_bit_p (considered, e->dest->index))
1a0f3fa1 978 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 979 }
e45dcf9c 980 else if (dataflow->problem->con_fun_0)
50b2e859 981 dataflow->problem->con_fun_0 (bb);
4d779342 982
1a0f3fa1
JH
983 if (changed
984 && dataflow->problem->trans_fun (bb_index))
4d779342 985 {
b8698a0f 986 /* The out set of this block has changed.
6fb5fa3c
DB
987 Propagate to the outgoing blocks. */
988 FOR_EACH_EDGE (e, ei, bb->preds)
989 {
990 unsigned ob_index = e->src->index;
991
d7c028c0 992 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
993 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
994 }
1a0f3fa1 995 return true;
4d779342 996 }
1a0f3fa1 997 return false;
4d779342
DB
998}
999
50b2e859
JH
1000/* Main dataflow solver loop.
1001
1002 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
1003 need to visit.
1004 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
688010ba 1005 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
50b2e859
JH
1006 PENDING will be freed.
1007
1008 The worklists are bitmaps indexed by postorder positions.
1009
1010 The function implements standard algorithm for dataflow solving with two
1011 worklists (we are processing WORKLIST and storing new BBs to visit in
1012 PENDING).
185082a7 1013
50b2e859
JH
1014 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1015 and when it was last visited (stored in last_visit_age). This avoids need
1016 to re-do confluence function for edges to basic blocks whose source
1017 did not change since destination was visited last time. */
185082a7 1018
b8698a0f 1019static void
185082a7
SP
1020df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1021 bitmap pending,
1022 sbitmap considered,
1023 int *blocks_in_postorder,
1a0f3fa1
JH
1024 unsigned *bbindex_to_postorder,
1025 int n_blocks)
185082a7
SP
1026{
1027 enum df_flow_dir dir = dataflow->problem->dir;
1028 int dcount = 0;
1029 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
50b2e859 1030 int age = 0;
1a0f3fa1 1031 bool changed;
6e1aa848 1032 vec<int> last_visit_age = vNULL;
50b2e859 1033 int prev_age;
1a0f3fa1
JH
1034 basic_block bb;
1035 int i;
1036
9771b263 1037 last_visit_age.safe_grow_cleared (n_blocks);
185082a7
SP
1038
1039 /* Double-queueing. Worklist is for the current iteration,
1040 and pending is for the next. */
1041 while (!bitmap_empty_p (pending))
1042 {
1a0f3fa1
JH
1043 bitmap_iterator bi;
1044 unsigned int index;
1045
185082a7
SP
1046 /* Swap pending and worklist. */
1047 bitmap temp = worklist;
1048 worklist = pending;
1049 pending = temp;
1050
1a0f3fa1 1051 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
185082a7 1052 {
185082a7
SP
1053 unsigned bb_index;
1054 dcount++;
1055
50b2e859 1056 bitmap_clear_bit (pending, index);
185082a7 1057 bb_index = blocks_in_postorder[index];
06e28de2 1058 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
9771b263 1059 prev_age = last_visit_age[index];
185082a7 1060 if (dir == DF_FORWARD)
1a0f3fa1
JH
1061 changed = df_worklist_propagate_forward (dataflow, bb_index,
1062 bbindex_to_postorder,
1063 pending, considered,
1064 prev_age);
b8698a0f 1065 else
1a0f3fa1
JH
1066 changed = df_worklist_propagate_backward (dataflow, bb_index,
1067 bbindex_to_postorder,
1068 pending, considered,
1069 prev_age);
9771b263 1070 last_visit_age[index] = ++age;
1a0f3fa1 1071 if (changed)
50b2e859 1072 bb->aux = (void *)(ptrdiff_t)age;
185082a7 1073 }
1a0f3fa1 1074 bitmap_clear (worklist);
185082a7 1075 }
1a0f3fa1 1076 for (i = 0; i < n_blocks; i++)
06e28de2 1077 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
185082a7
SP
1078
1079 BITMAP_FREE (worklist);
1080 BITMAP_FREE (pending);
9771b263 1081 last_visit_age.release ();
185082a7
SP
1082
1083 /* Dump statistics. */
1084 if (dump_file)
1085 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1086 "n_basic_blocks %d n_edges %d"
1087 " count %d (%5.2g)\n",
dc936fb2 1088 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
0cae8d31 1089 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
185082a7
SP
1090}
1091
6fb5fa3c 1092/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
b8698a0f 1093 with "n"-th bit representing the n-th block in the reverse-postorder order.
240b5cea
SB
1094 The solver is a double-queue algorithm similar to the "double stack" solver
1095 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1096 The only significant difference is that the worklist in this implementation
1097 is always sorted in RPO of the CFG visiting direction. */
4d779342 1098
b8698a0f 1099void
6fb5fa3c
DB
1100df_worklist_dataflow (struct dataflow *dataflow,
1101 bitmap blocks_to_consider,
1102 int *blocks_in_postorder,
1103 int n_blocks)
4d779342 1104{
6fb5fa3c 1105 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
8b1c6fd7 1106 sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
4d779342 1107 bitmap_iterator bi;
6fb5fa3c
DB
1108 unsigned int *bbindex_to_postorder;
1109 int i;
1110 unsigned int index;
1111 enum df_flow_dir dir = dataflow->problem->dir;
4d779342 1112
6fb5fa3c 1113 gcc_assert (dir != DF_NONE);
4d779342 1114
6fb5fa3c 1115 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
8b1c6fd7
DM
1116 bbindex_to_postorder = XNEWVEC (unsigned int,
1117 last_basic_block_for_fn (cfun));
4d779342 1118
6fb5fa3c 1119 /* Initialize the array to an out-of-bound value. */
8b1c6fd7
DM
1120 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1121 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
23249ac4 1122
6fb5fa3c 1123 /* Initialize the considered map. */
f61e445a 1124 bitmap_clear (considered);
6fb5fa3c 1125 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
4d779342 1126 {
d7c028c0 1127 bitmap_set_bit (considered, index);
4d779342
DB
1128 }
1129
6fb5fa3c 1130 /* Initialize the mapping of block index to postorder. */
4d779342
DB
1131 for (i = 0; i < n_blocks; i++)
1132 {
6fb5fa3c
DB
1133 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1134 /* Add all blocks to the worklist. */
1135 bitmap_set_bit (pending, i);
1136 }
4d779342 1137
185082a7 1138 /* Initialize the problem. */
6fb5fa3c
DB
1139 if (dataflow->problem->init_fun)
1140 dataflow->problem->init_fun (blocks_to_consider);
4d779342 1141
240b5cea
SB
1142 /* Solve it. */
1143 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1144 blocks_in_postorder,
1a0f3fa1
JH
1145 bbindex_to_postorder,
1146 n_blocks);
4d779342 1147 sbitmap_free (considered);
6fb5fa3c 1148 free (bbindex_to_postorder);
4d779342
DB
1149}
1150
1151
1152/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1153 the order of the remaining entries. Returns the length of the resulting
1154 list. */
1155
1156static unsigned
1157df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1158{
1159 unsigned act, last;
1160
1161 for (act = 0, last = 0; act < len; act++)
1162 if (bitmap_bit_p (blocks, list[act]))
1163 list[last++] = list[act];
1164
1165 return last;
1166}
1167
1168
b8698a0f 1169/* Execute dataflow analysis on a single dataflow problem.
4d779342 1170
4d779342
DB
1171 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1172 examined or will be computed. For calls from DF_ANALYZE, this is
b8698a0f 1173 the set of blocks that has been passed to DF_SET_BLOCKS.
4d779342
DB
1174*/
1175
23249ac4 1176void
b8698a0f
L
1177df_analyze_problem (struct dataflow *dflow,
1178 bitmap blocks_to_consider,
6fb5fa3c 1179 int *postorder, int n_blocks)
4d779342 1180{
6fb5fa3c
DB
1181 timevar_push (dflow->problem->tv_id);
1182
e7f96023
JH
1183 /* (Re)Allocate the datastructures necessary to solve the problem. */
1184 if (dflow->problem->alloc_fun)
1185 dflow->problem->alloc_fun (blocks_to_consider);
1186
3089f8b5 1187#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1188 if (dflow->problem->verify_start_fun)
1189 dflow->problem->verify_start_fun ();
1190#endif
1191
6fb5fa3c 1192 /* Set up the problem and compute the local information. */
e45dcf9c 1193 if (dflow->problem->local_compute_fun)
6fb5fa3c 1194 dflow->problem->local_compute_fun (blocks_to_consider);
4d779342
DB
1195
1196 /* Solve the equations. */
e45dcf9c 1197 if (dflow->problem->dataflow_fun)
6fb5fa3c
DB
1198 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1199 postorder, n_blocks);
4d779342
DB
1200
1201 /* Massage the solution. */
e45dcf9c 1202 if (dflow->problem->finalize_fun)
6fb5fa3c
DB
1203 dflow->problem->finalize_fun (blocks_to_consider);
1204
3089f8b5 1205#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1206 if (dflow->problem->verify_end_fun)
1207 dflow->problem->verify_end_fun ();
1208#endif
1209
1210 timevar_pop (dflow->problem->tv_id);
1211
1212 dflow->computed = true;
4d779342
DB
1213}
1214
1215
7be64667 1216/* Analyze dataflow info. */
4d779342 1217
7be64667
RB
1218static void
1219df_analyze_1 (void)
4d779342 1220{
6fb5fa3c 1221 int i;
b8698a0f 1222
6fb5fa3c
DB
1223 /* These should be the same. */
1224 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1225
1226 /* We need to do this before the df_verify_all because this is
1227 not kept incrementally up to date. */
1228 df_compute_regs_ever_live (false);
1229 df_process_deferred_rescans ();
1230
6fb5fa3c
DB
1231 if (dump_file)
1232 fprintf (dump_file, "df_analyze called\n");
3089f8b5 1233
0d475361
PB
1234#ifndef ENABLE_DF_CHECKING
1235 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1236#endif
1237 df_verify ();
6fb5fa3c 1238
7be64667
RB
1239 /* Skip over the DF_SCAN problem. */
1240 for (i = 1; i < df->num_problems_defined; i++)
1241 {
1242 struct dataflow *dflow = df->problems_in_order[i];
1243 if (dflow->solutions_dirty)
1244 {
1245 if (dflow->problem->dir == DF_FORWARD)
1246 df_analyze_problem (dflow,
1247 df->blocks_to_analyze,
1248 df->postorder_inverted,
1249 df->n_blocks_inverted);
1250 else
1251 df_analyze_problem (dflow,
1252 df->blocks_to_analyze,
1253 df->postorder,
1254 df->n_blocks);
1255 }
1256 }
1257
1258 if (!df->analyze_subset)
1259 {
1260 BITMAP_FREE (df->blocks_to_analyze);
1261 df->blocks_to_analyze = NULL;
1262 }
1263
1264#ifdef DF_DEBUG_CFG
1265 df_set_clean_cfg ();
1266#endif
1267}
1268
1269/* Analyze dataflow info. */
1270
1271void
1272df_analyze (void)
1273{
1274 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1275 int i;
1276
1277 free (df->postorder);
1278 free (df->postorder_inverted);
1279 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1280 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1281 df->n_blocks = post_order_compute (df->postorder, true, true);
1282 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1283
6fb5fa3c
DB
1284 for (i = 0; i < df->n_blocks; i++)
1285 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1286
1287#ifdef ENABLE_CHECKING
1288 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1289 the ENTRY block. */
1290 for (i = 0; i < df->n_blocks_inverted; i++)
1291 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1292#endif
4d779342
DB
1293
1294 /* Make sure that we have pruned any unreachable blocks from these
1295 sets. */
6fb5fa3c 1296 if (df->analyze_subset)
4d779342 1297 {
4d779342 1298 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
b8698a0f 1299 df->n_blocks = df_prune_to_subcfg (df->postorder,
6fb5fa3c 1300 df->n_blocks, df->blocks_to_analyze);
b8698a0f 1301 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
7be64667
RB
1302 df->n_blocks_inverted,
1303 df->blocks_to_analyze);
4d779342
DB
1304 BITMAP_FREE (current_all_blocks);
1305 }
1306 else
1307 {
4d779342
DB
1308 df->blocks_to_analyze = current_all_blocks;
1309 current_all_blocks = NULL;
1310 }
1311
7be64667
RB
1312 df_analyze_1 ();
1313}
1314
1315/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1316 Returns the number of blocks which is always loop->num_nodes. */
1317
1318static int
1319loop_post_order_compute (int *post_order, struct loop *loop)
1320{
1321 edge_iterator *stack;
1322 int sp;
1323 int post_order_num = 0;
1324 bitmap visited;
1325
1326 /* Allocate stack for back-tracking up CFG. */
1327 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1328 sp = 0;
1329
1330 /* Allocate bitmap to track nodes that have been visited. */
1331 visited = BITMAP_ALLOC (NULL);
1332
1333 /* Push the first edge on to the stack. */
1334 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1335
1336 while (sp)
6fb5fa3c 1337 {
7be64667
RB
1338 edge_iterator ei;
1339 basic_block src;
1340 basic_block dest;
1341
1342 /* Look at the edge on the top of the stack. */
1343 ei = stack[sp - 1];
1344 src = ei_edge (ei)->src;
1345 dest = ei_edge (ei)->dest;
1346
1347 /* Check if the edge destination has been visited yet and mark it
1348 if not so. */
1349 if (flow_bb_inside_loop_p (loop, dest)
1350 && bitmap_set_bit (visited, dest->index))
1351 {
1352 if (EDGE_COUNT (dest->succs) > 0)
1353 /* Since the DEST node has been visited for the first
1354 time, check its successors. */
1355 stack[sp++] = ei_start (dest->succs);
1356 else
1357 post_order[post_order_num++] = dest->index;
1358 }
1359 else
1360 {
1361 if (ei_one_before_end_p (ei)
1362 && src != loop_preheader_edge (loop)->src)
1363 post_order[post_order_num++] = src->index;
1364
1365 if (!ei_one_before_end_p (ei))
1366 ei_next (&stack[sp - 1]);
1367 else
1368 sp--;
1369 }
6fb5fa3c 1370 }
4d779342 1371
7be64667
RB
1372 free (stack);
1373 BITMAP_FREE (visited);
1374
1375 return post_order_num;
1376}
1377
1378/* Compute the reverse top sort order of the inverted sub-CFG specified
1379 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1380
1381static int
1382loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1383{
1384 basic_block bb;
1385 edge_iterator *stack;
1386 int sp;
1387 int post_order_num = 0;
1388 bitmap visited;
1389
1390 /* Allocate stack for back-tracking up CFG. */
1391 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1392 sp = 0;
1393
1394 /* Allocate bitmap to track nodes that have been visited. */
1395 visited = BITMAP_ALLOC (NULL);
1396
1397 /* Put all latches into the initial work list. In theory we'd want
1398 to start from loop exits but then we'd have the special case of
1399 endless loops. It doesn't really matter for DF iteration order and
1400 handling latches last is probably even better. */
1401 stack[sp++] = ei_start (loop->header->preds);
1402 bitmap_set_bit (visited, loop->header->index);
1403
1404 /* The inverted traversal loop. */
1405 while (sp)
4d779342 1406 {
7be64667
RB
1407 edge_iterator ei;
1408 basic_block pred;
1409
1410 /* Look at the edge on the top of the stack. */
1411 ei = stack[sp - 1];
1412 bb = ei_edge (ei)->dest;
1413 pred = ei_edge (ei)->src;
1414
1415 /* Check if the predecessor has been visited yet and mark it
1416 if not so. */
1417 if (flow_bb_inside_loop_p (loop, pred)
1418 && bitmap_set_bit (visited, pred->index))
1419 {
1420 if (EDGE_COUNT (pred->preds) > 0)
1421 /* Since the predecessor node has been visited for the first
1422 time, check its predecessors. */
1423 stack[sp++] = ei_start (pred->preds);
1424 else
1425 post_order[post_order_num++] = pred->index;
1426 }
1427 else
1428 {
1429 if (flow_bb_inside_loop_p (loop, bb)
1430 && ei_one_before_end_p (ei))
1431 post_order[post_order_num++] = bb->index;
1432
1433 if (!ei_one_before_end_p (ei))
1434 ei_next (&stack[sp - 1]);
1435 else
1436 sp--;
1437 }
4d779342
DB
1438 }
1439
7be64667
RB
1440 free (stack);
1441 BITMAP_FREE (visited);
1442 return post_order_num;
1443}
1444
1445
1446/* Analyze dataflow info for the basic blocks contained in LOOP. */
1447
1448void
1449df_analyze_loop (struct loop *loop)
1450{
1451 free (df->postorder);
1452 free (df->postorder_inverted);
1453
1454 df->postorder = XNEWVEC (int, loop->num_nodes);
1455 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1456 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1457 df->n_blocks_inverted
1458 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1459 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1460 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1461
1462 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1463 for (int i = 0; i < df->n_blocks; ++i)
1464 bitmap_set_bit (blocks, df->postorder[i]);
1465 df_set_blocks (blocks);
1466 BITMAP_FREE (blocks);
1467
1468 df_analyze_1 ();
6fb5fa3c
DB
1469}
1470
1471
1472/* Return the number of basic blocks from the last call to df_analyze. */
1473
b8698a0f 1474int
6fb5fa3c
DB
1475df_get_n_blocks (enum df_flow_dir dir)
1476{
1477 gcc_assert (dir != DF_NONE);
1478
1479 if (dir == DF_FORWARD)
1480 {
1481 gcc_assert (df->postorder_inverted);
1482 return df->n_blocks_inverted;
1483 }
1484
1485 gcc_assert (df->postorder);
1486 return df->n_blocks;
1487}
1488
1489
b8698a0f 1490/* Return a pointer to the array of basic blocks in the reverse postorder.
6fb5fa3c
DB
1491 Depending on the direction of the dataflow problem,
1492 it returns either the usual reverse postorder array
1493 or the reverse postorder of inverted traversal. */
1494int *
1495df_get_postorder (enum df_flow_dir dir)
1496{
1497 gcc_assert (dir != DF_NONE);
1498
1499 if (dir == DF_FORWARD)
1500 {
1501 gcc_assert (df->postorder_inverted);
1502 return df->postorder_inverted;
1503 }
1504 gcc_assert (df->postorder);
1505 return df->postorder;
4d779342
DB
1506}
1507
b8698a0f 1508static struct df_problem user_problem;
6fb5fa3c 1509static struct dataflow user_dflow;
4d779342 1510
6fb5fa3c
DB
1511/* Interface for calling iterative dataflow with user defined
1512 confluence and transfer functions. All that is necessary is to
1513 supply DIR, a direction, CONF_FUN_0, a confluence function for
1514 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1515 confluence function, TRANS_FUN, the basic block transfer function,
1516 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1517 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1518
1519void
1520df_simple_dataflow (enum df_flow_dir dir,
1521 df_init_function init_fun,
1522 df_confluence_function_0 con_fun_0,
1523 df_confluence_function_n con_fun_n,
1524 df_transfer_function trans_fun,
1525 bitmap blocks, int * postorder, int n_blocks)
1526{
1527 memset (&user_problem, 0, sizeof (struct df_problem));
1528 user_problem.dir = dir;
1529 user_problem.init_fun = init_fun;
1530 user_problem.con_fun_0 = con_fun_0;
1531 user_problem.con_fun_n = con_fun_n;
1532 user_problem.trans_fun = trans_fun;
1533 user_dflow.problem = &user_problem;
1534 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1535}
1536
b8698a0f 1537
4d779342
DB
1538\f
1539/*----------------------------------------------------------------------------
1540 Functions to support limited incremental change.
1541----------------------------------------------------------------------------*/
1542
1543
1544/* Get basic block info. */
1545
1546static void *
1547df_get_bb_info (struct dataflow *dflow, unsigned int index)
1548{
6fb5fa3c
DB
1549 if (dflow->block_info == NULL)
1550 return NULL;
1551 if (index >= dflow->block_info_size)
1552 return NULL;
e285df08
JH
1553 return (void *)((char *)dflow->block_info
1554 + index * dflow->problem->block_info_elt_size);
4d779342
DB
1555}
1556
1557
1558/* Set basic block info. */
1559
1560static void
b8698a0f 1561df_set_bb_info (struct dataflow *dflow, unsigned int index,
4d779342
DB
1562 void *bb_info)
1563{
6fb5fa3c 1564 gcc_assert (dflow->block_info);
e285df08
JH
1565 memcpy ((char *)dflow->block_info
1566 + index * dflow->problem->block_info_elt_size,
1567 bb_info, dflow->problem->block_info_elt_size);
1568}
1569
1570
1571/* Clear basic block info. */
1572
1573static void
1574df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1575{
1576 gcc_assert (dflow->block_info);
1577 gcc_assert (dflow->block_info_size > index);
1578 memset ((char *)dflow->block_info
1579 + index * dflow->problem->block_info_elt_size,
1580 0, dflow->problem->block_info_elt_size);
4d779342
DB
1581}
1582
1583
6fb5fa3c
DB
1584/* Mark the solutions as being out of date. */
1585
b8698a0f 1586void
6fb5fa3c
DB
1587df_mark_solutions_dirty (void)
1588{
1589 if (df)
1590 {
b8698a0f 1591 int p;
6fb5fa3c
DB
1592 for (p = 1; p < df->num_problems_defined; p++)
1593 df->problems_in_order[p]->solutions_dirty = true;
1594 }
1595}
1596
1597
1598/* Return true if BB needs it's transfer functions recomputed. */
1599
b8698a0f 1600bool
6fb5fa3c
DB
1601df_get_bb_dirty (basic_block bb)
1602{
65e0a0f3
JJ
1603 return bitmap_bit_p ((df_live
1604 ? df_live : df_lr)->out_of_date_transfer_functions,
1605 bb->index);
6fb5fa3c
DB
1606}
1607
1608
1609/* Mark BB as needing it's transfer functions as being out of
1610 date. */
1611
b8698a0f 1612void
6fb5fa3c
DB
1613df_set_bb_dirty (basic_block bb)
1614{
4ec5d4f5 1615 bb->flags |= BB_MODIFIED;
6fb5fa3c
DB
1616 if (df)
1617 {
b8698a0f 1618 int p;
6fb5fa3c
DB
1619 for (p = 1; p < df->num_problems_defined; p++)
1620 {
1621 struct dataflow *dflow = df->problems_in_order[p];
1622 if (dflow->out_of_date_transfer_functions)
1623 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1624 }
1625 df_mark_solutions_dirty ();
1626 }
1627}
1628
1629
e285df08
JH
1630/* Grow the bb_info array. */
1631
1632void
1633df_grow_bb_info (struct dataflow *dflow)
1634{
8b1c6fd7 1635 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
e285df08
JH
1636 if (dflow->block_info_size < new_size)
1637 {
1638 new_size += new_size / 4;
1639 dflow->block_info
1640 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1641 new_size
1642 * dflow->problem->block_info_elt_size);
1643 memset ((char *)dflow->block_info
1644 + dflow->block_info_size
1645 * dflow->problem->block_info_elt_size,
1646 0,
1647 (new_size - dflow->block_info_size)
1648 * dflow->problem->block_info_elt_size);
1649 dflow->block_info_size = new_size;
1650 }
1651}
1652
c23cd1d6 1653
6fb5fa3c
DB
1654/* Clear the dirty bits. This is called from places that delete
1655 blocks. */
1656static void
1657df_clear_bb_dirty (basic_block bb)
1658{
b8698a0f 1659 int p;
6fb5fa3c
DB
1660 for (p = 1; p < df->num_problems_defined; p++)
1661 {
1662 struct dataflow *dflow = df->problems_in_order[p];
1663 if (dflow->out_of_date_transfer_functions)
1664 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1665 }
1666}
e285df08 1667
4d779342
DB
1668/* Called from the rtl_compact_blocks to reorganize the problems basic
1669 block info. */
1670
b8698a0f 1671void
6fb5fa3c 1672df_compact_blocks (void)
4d779342
DB
1673{
1674 int i, p;
1675 basic_block bb;
e285df08 1676 void *problem_temps;
a7e3698d 1677 bitmap_head tmp;
4d779342 1678
a7e3698d 1679 bitmap_initialize (&tmp, &df_bitmap_obstack);
4d779342
DB
1680 for (p = 0; p < df->num_problems_defined; p++)
1681 {
1682 struct dataflow *dflow = df->problems_in_order[p];
6fb5fa3c
DB
1683
1684 /* Need to reorganize the out_of_date_transfer_functions for the
1685 dflow problem. */
1686 if (dflow->out_of_date_transfer_functions)
1687 {
a7e3698d 1688 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
6fb5fa3c 1689 bitmap_clear (dflow->out_of_date_transfer_functions);
a7e3698d 1690 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
6fb5fa3c 1691 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
a7e3698d 1692 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
6fb5fa3c
DB
1693 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1694
1695 i = NUM_FIXED_BLOCKS;
11cd3bed 1696 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1697 {
a7e3698d 1698 if (bitmap_bit_p (&tmp, bb->index))
6fb5fa3c
DB
1699 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1700 i++;
1701 }
1702 }
1703
1704 /* Now shuffle the block info for the problem. */
e45dcf9c 1705 if (dflow->problem->free_bb_fun)
4d779342 1706 {
8b1c6fd7
DM
1707 int size = (last_basic_block_for_fn (cfun)
1708 * dflow->problem->block_info_elt_size);
e285df08 1709 problem_temps = XNEWVAR (char, size);
4d779342
DB
1710 df_grow_bb_info (dflow);
1711 memcpy (problem_temps, dflow->block_info, size);
1712
1713 /* Copy the bb info from the problem tmps to the proper
1714 place in the block_info vector. Null out the copied
6fb5fa3c 1715 item. The entry and exit blocks never move. */
4d779342 1716 i = NUM_FIXED_BLOCKS;
11cd3bed 1717 FOR_EACH_BB_FN (bb, cfun)
4d779342 1718 {
e285df08
JH
1719 df_set_bb_info (dflow, i,
1720 (char *)problem_temps
1721 + bb->index * dflow->problem->block_info_elt_size);
4d779342
DB
1722 i++;
1723 }
e285df08
JH
1724 memset ((char *)dflow->block_info
1725 + i * dflow->problem->block_info_elt_size, 0,
8b1c6fd7 1726 (last_basic_block_for_fn (cfun) - i)
e285df08 1727 * dflow->problem->block_info_elt_size);
f75aa51c 1728 free (problem_temps);
4d779342
DB
1729 }
1730 }
1731
6fb5fa3c
DB
1732 /* Shuffle the bits in the basic_block indexed arrays. */
1733
1734 if (df->blocks_to_analyze)
1735 {
a7e3698d 1736 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
6fb5fa3c 1737 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
a7e3698d 1738 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
6fb5fa3c 1739 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
a7e3698d 1740 bitmap_copy (&tmp, df->blocks_to_analyze);
6fb5fa3c
DB
1741 bitmap_clear (df->blocks_to_analyze);
1742 i = NUM_FIXED_BLOCKS;
11cd3bed 1743 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1744 {
a7e3698d 1745 if (bitmap_bit_p (&tmp, bb->index))
6fb5fa3c
DB
1746 bitmap_set_bit (df->blocks_to_analyze, i);
1747 i++;
1748 }
1749 }
1750
a7e3698d 1751 bitmap_clear (&tmp);
6fb5fa3c 1752
4d779342 1753 i = NUM_FIXED_BLOCKS;
11cd3bed 1754 FOR_EACH_BB_FN (bb, cfun)
4d779342 1755 {
557c4b49 1756 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
4d779342
DB
1757 bb->index = i;
1758 i++;
1759 }
1760
0cae8d31 1761 gcc_assert (i == n_basic_blocks_for_fn (cfun));
4d779342 1762
8b1c6fd7 1763 for (; i < last_basic_block_for_fn (cfun); i++)
557c4b49 1764 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
6fb5fa3c
DB
1765
1766#ifdef DF_DEBUG_CFG
1767 if (!df_lr->solutions_dirty)
1768 df_set_clean_cfg ();
1769#endif
4d779342
DB
1770}
1771
1772
6fb5fa3c 1773/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
4d779342
DB
1774 block. There is no excuse for people to do this kind of thing. */
1775
b8698a0f 1776void
6fb5fa3c 1777df_bb_replace (int old_index, basic_block new_block)
4d779342 1778{
6fb5fa3c 1779 int new_block_index = new_block->index;
4d779342
DB
1780 int p;
1781
6fb5fa3c
DB
1782 if (dump_file)
1783 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1784
1785 gcc_assert (df);
06e28de2 1786 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
6fb5fa3c 1787
4d779342
DB
1788 for (p = 0; p < df->num_problems_defined; p++)
1789 {
1790 struct dataflow *dflow = df->problems_in_order[p];
1791 if (dflow->block_info)
1792 {
4d779342 1793 df_grow_bb_info (dflow);
b8698a0f 1794 df_set_bb_info (dflow, old_index,
6fb5fa3c 1795 df_get_bb_info (dflow, new_block_index));
4d779342
DB
1796 }
1797 }
1798
6fb5fa3c 1799 df_clear_bb_dirty (new_block);
557c4b49 1800 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
4d779342 1801 new_block->index = old_index;
06e28de2 1802 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
557c4b49 1803 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
6fb5fa3c
DB
1804}
1805
1806
1807/* Free all of the per basic block dataflow from all of the problems.
1808 This is typically called before a basic block is deleted and the
1809 problem will be reanalyzed. */
1810
1811void
1812df_bb_delete (int bb_index)
1813{
06e28de2 1814 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
6fb5fa3c
DB
1815 int i;
1816
1817 if (!df)
1818 return;
b8698a0f 1819
6fb5fa3c
DB
1820 for (i = 0; i < df->num_problems_defined; i++)
1821 {
1822 struct dataflow *dflow = df->problems_in_order[i];
1823 if (dflow->problem->free_bb_fun)
1824 {
1825 void *bb_info = df_get_bb_info (dflow, bb_index);
1826 if (bb_info)
1827 {
b8698a0f 1828 dflow->problem->free_bb_fun (bb, bb_info);
e285df08 1829 df_clear_bb_info (dflow, bb_index);
6fb5fa3c
DB
1830 }
1831 }
1832 }
1833 df_clear_bb_dirty (bb);
1834 df_mark_solutions_dirty ();
1835}
1836
1837
1838/* Verify that there is a place for everything and everything is in
1839 its place. This is too expensive to run after every pass in the
1840 mainline. However this is an excellent debugging tool if the
6ed3da00 1841 dataflow information is not being updated properly. You can just
6fb5fa3c
DB
1842 sprinkle calls in until you find the place that is changing an
1843 underlying structure without calling the proper updating
0d52bcc1 1844 routine. */
6fb5fa3c
DB
1845
1846void
1847df_verify (void)
1848{
1849 df_scan_verify ();
0d475361 1850#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1851 df_lr_verify_transfer_functions ();
1852 if (df_live)
1853 df_live_verify_transfer_functions ();
0d475361 1854#endif
6fb5fa3c
DB
1855}
1856
1857#ifdef DF_DEBUG_CFG
1858
1859/* Compute an array of ints that describes the cfg. This can be used
1860 to discover places where the cfg is modified by the appropriate
1861 calls have not been made to the keep df informed. The internals of
1862 this are unexciting, the key is that two instances of this can be
1863 compared to see if any changes have been made to the cfg. */
1864
1865static int *
1866df_compute_cfg_image (void)
1867{
1868 basic_block bb;
0cae8d31 1869 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
6fb5fa3c
DB
1870 int i;
1871 int * map;
1872
04a90bec 1873 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1874 {
1875 size += EDGE_COUNT (bb->succs);
1876 }
1877
1878 map = XNEWVEC (int, size);
1879 map[0] = size;
1880 i = 1;
04a90bec 1881 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1882 {
1883 edge_iterator ei;
1884 edge e;
1885
1886 map[i++] = bb->index;
1887 FOR_EACH_EDGE (e, ei, bb->succs)
1888 map[i++] = e->dest->index;
1889 map[i++] = -1;
1890 }
1891 map[i] = -1;
1892 return map;
1893}
1894
1895static int *saved_cfg = NULL;
1896
1897
1898/* This function compares the saved version of the cfg with the
1899 current cfg and aborts if the two are identical. The function
1900 silently returns if the cfg has been marked as dirty or the two are
1901 the same. */
1902
1903void
1904df_check_cfg_clean (void)
1905{
1906 int *new_map;
1907
1908 if (!df)
1909 return;
1910
1911 if (df_lr->solutions_dirty)
1912 return;
1913
b8698a0f 1914 if (saved_cfg == NULL)
6fb5fa3c
DB
1915 return;
1916
1917 new_map = df_compute_cfg_image ();
1918 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1919 free (new_map);
4d779342
DB
1920}
1921
6fb5fa3c
DB
1922
1923/* This function builds a cfg fingerprint and squirrels it away in
1924 saved_cfg. */
1925
1926static void
1927df_set_clean_cfg (void)
1928{
04695783 1929 free (saved_cfg);
6fb5fa3c
DB
1930 saved_cfg = df_compute_cfg_image ();
1931}
1932
1933#endif /* DF_DEBUG_CFG */
4d779342
DB
1934/*----------------------------------------------------------------------------
1935 PUBLIC INTERFACES TO QUERY INFORMATION.
1936----------------------------------------------------------------------------*/
1937
1938
4d779342
DB
1939/* Return first def of REGNO within BB. */
1940
b8698a0f 1941df_ref
6fb5fa3c 1942df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
4d779342 1943{
dd3eed93 1944 rtx_insn *insn;
bfac633a 1945 df_ref def;
4d779342
DB
1946
1947 FOR_BB_INSNS (bb, insn)
1948 {
a1b53177
SB
1949 if (!INSN_P (insn))
1950 continue;
1951
bfac633a
RS
1952 FOR_EACH_INSN_DEF (def, insn)
1953 if (DF_REF_REGNO (def) == regno)
1954 return def;
4d779342
DB
1955 }
1956 return NULL;
1957}
1958
1959
1960/* Return last def of REGNO within BB. */
1961
b8698a0f 1962df_ref
6fb5fa3c 1963df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
4d779342 1964{
dd3eed93 1965 rtx_insn *insn;
bfac633a 1966 df_ref def;
4d779342
DB
1967
1968 FOR_BB_INSNS_REVERSE (bb, insn)
1969 {
a1b53177
SB
1970 if (!INSN_P (insn))
1971 continue;
4d779342 1972
bfac633a
RS
1973 FOR_EACH_INSN_DEF (def, insn)
1974 if (DF_REF_REGNO (def) == regno)
1975 return def;
4d779342
DB
1976 }
1977
1978 return NULL;
1979}
1980
4d779342
DB
1981/* Finds the reference corresponding to the definition of REG in INSN.
1982 DF is the dataflow object. */
1983
b8698a0f 1984df_ref
b2908ba6 1985df_find_def (rtx_insn *insn, rtx reg)
4d779342 1986{
bfac633a 1987 df_ref def;
4d779342
DB
1988
1989 if (GET_CODE (reg) == SUBREG)
1990 reg = SUBREG_REG (reg);
1991 gcc_assert (REG_P (reg));
1992
bfac633a
RS
1993 FOR_EACH_INSN_DEF (def, insn)
1994 if (DF_REF_REGNO (def) == REGNO (reg))
1995 return def;
4d779342
DB
1996
1997 return NULL;
1998}
1999
2000
b8698a0f 2001/* Return true if REG is defined in INSN, zero otherwise. */
4d779342
DB
2002
2003bool
b2908ba6 2004df_reg_defined (rtx_insn *insn, rtx reg)
4d779342 2005{
6fb5fa3c 2006 return df_find_def (insn, reg) != NULL;
4d779342 2007}
b8698a0f 2008
4d779342
DB
2009
2010/* Finds the reference corresponding to the use of REG in INSN.
2011 DF is the dataflow object. */
b8698a0f
L
2012
2013df_ref
b2908ba6 2014df_find_use (rtx_insn *insn, rtx reg)
4d779342 2015{
bfac633a 2016 df_ref use;
4d779342
DB
2017
2018 if (GET_CODE (reg) == SUBREG)
2019 reg = SUBREG_REG (reg);
2020 gcc_assert (REG_P (reg));
2021
bfac633a
RS
2022 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2023 FOR_EACH_INSN_INFO_USE (use, insn_info)
2024 if (DF_REF_REGNO (use) == REGNO (reg))
2025 return use;
2026 if (df->changeable_flags & DF_EQ_NOTES)
2027 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
226e378f 2028 if (DF_REF_REGNO (use) == REGNO (reg))
6fb5fa3c 2029 return use;
4d779342
DB
2030 return NULL;
2031}
2032
2033
b8698a0f 2034/* Return true if REG is referenced in INSN, zero otherwise. */
4d779342
DB
2035
2036bool
b2908ba6 2037df_reg_used (rtx_insn *insn, rtx reg)
4d779342 2038{
6fb5fa3c 2039 return df_find_use (insn, reg) != NULL;
4d779342 2040}
b8698a0f 2041
4d779342
DB
2042\f
2043/*----------------------------------------------------------------------------
2044 Debugging and printing functions.
2045----------------------------------------------------------------------------*/
2046
532aafad
SB
2047/* Write information about registers and basic blocks into FILE.
2048 This is part of making a debugging dump. */
2049
2050void
2051dump_regset (regset r, FILE *outf)
2052{
2053 unsigned i;
2054 reg_set_iterator rsi;
2055
2056 if (r == NULL)
2057 {
2058 fputs (" (nil)", outf);
2059 return;
2060 }
2061
2062 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2063 {
2064 fprintf (outf, " %d", i);
2065 if (i < FIRST_PSEUDO_REGISTER)
2066 fprintf (outf, " [%s]",
2067 reg_names[i]);
2068 }
2069}
2070
2071/* Print a human-readable representation of R on the standard error
2072 stream. This function is designed to be used from within the
2073 debugger. */
2074extern void debug_regset (regset);
2075DEBUG_FUNCTION void
2076debug_regset (regset r)
2077{
2078 dump_regset (r, stderr);
2079 putc ('\n', stderr);
2080}
6fb5fa3c
DB
2081
2082/* Write information about registers and basic blocks into FILE.
2083 This is part of making a debugging dump. */
2084
2085void
2086df_print_regset (FILE *file, bitmap r)
2087{
2088 unsigned int i;
2089 bitmap_iterator bi;
2090
2091 if (r == NULL)
2092 fputs (" (nil)", file);
2093 else
2094 {
2095 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2096 {
2097 fprintf (file, " %d", i);
2098 if (i < FIRST_PSEUDO_REGISTER)
2099 fprintf (file, " [%s]", reg_names[i]);
2100 }
2101 }
2102 fprintf (file, "\n");
2103}
2104
2105
cc806ac1
RS
2106/* Write information about registers and basic blocks into FILE. The
2107 bitmap is in the form used by df_byte_lr. This is part of making a
2108 debugging dump. */
2109
2110void
8d074192 2111df_print_word_regset (FILE *file, bitmap r)
cc806ac1
RS
2112{
2113 unsigned int max_reg = max_reg_num ();
cc806ac1
RS
2114
2115 if (r == NULL)
2116 fputs (" (nil)", file);
2117 else
2118 {
2119 unsigned int i;
8d074192 2120 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
cc806ac1 2121 {
8d074192
BS
2122 bool found = (bitmap_bit_p (r, 2 * i)
2123 || bitmap_bit_p (r, 2 * i + 1));
2124 if (found)
cc806ac1 2125 {
8d074192
BS
2126 int word;
2127 const char * sep = "";
2128 fprintf (file, " %d", i);
2129 fprintf (file, "(");
2130 for (word = 0; word < 2; word++)
2131 if (bitmap_bit_p (r, 2 * i + word))
2132 {
2133 fprintf (file, "%s%d", sep, word);
2134 sep = ", ";
2135 }
2136 fprintf (file, ")");
cc806ac1 2137 }
cc806ac1
RS
2138 }
2139 }
2140 fprintf (file, "\n");
2141}
2142
2143
4d779342 2144/* Dump dataflow info. */
ffd640ed 2145
4d779342 2146void
6fb5fa3c
DB
2147df_dump (FILE *file)
2148{
2149 basic_block bb;
2150 df_dump_start (file);
2151
04a90bec 2152 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2153 {
2154 df_print_bb_index (bb, file);
2155 df_dump_top (bb, file);
2156 df_dump_bottom (bb, file);
2157 }
2158
2159 fprintf (file, "\n");
2160}
2161
2162
ffd640ed
KZ
2163/* Dump dataflow info for df->blocks_to_analyze. */
2164
2165void
2166df_dump_region (FILE *file)
2167{
2168 if (df->blocks_to_analyze)
2169 {
2170 bitmap_iterator bi;
2171 unsigned int bb_index;
2172
2173 fprintf (file, "\n\nstarting region dump\n");
2174 df_dump_start (file);
b8698a0f
L
2175
2176 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
ffd640ed 2177 {
06e28de2 2178 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
7b19209f 2179 dump_bb (file, bb, 0, TDF_DETAILS);
ffd640ed
KZ
2180 }
2181 fprintf (file, "\n");
2182 }
b8698a0f 2183 else
ffd640ed
KZ
2184 df_dump (file);
2185}
2186
2187
6fb5fa3c
DB
2188/* Dump the introductory information for each problem defined. */
2189
2190void
2191df_dump_start (FILE *file)
4d779342
DB
2192{
2193 int i;
2194
23249ac4 2195 if (!df || !file)
4d779342
DB
2196 return;
2197
2198 fprintf (file, "\n\n%s\n", current_function_name ());
2199 fprintf (file, "\nDataflow summary:\n");
6fb5fa3c
DB
2200 if (df->blocks_to_analyze)
2201 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2202 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
4d779342
DB
2203
2204 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
2205 {
2206 struct dataflow *dflow = df->problems_in_order[i];
2207 if (dflow->computed)
2208 {
2209 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2210 if (fun)
c3284718 2211 fun (file);
6fb5fa3c
DB
2212 }
2213 }
2214}
4d779342 2215
6fb5fa3c 2216
7b19209f
SB
2217/* Dump the top or bottom of the block information for BB. */
2218static void
2219df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
6fb5fa3c
DB
2220{
2221 int i;
2222
2223 if (!df || !file)
2224 return;
2225
2226 for (i = 0; i < df->num_problems_defined; i++)
2227 {
2228 struct dataflow *dflow = df->problems_in_order[i];
2229 if (dflow->computed)
2230 {
7b19209f
SB
2231 df_dump_bb_problem_function bbfun;
2232
2233 if (top)
2234 bbfun = dflow->problem->dump_top_fun;
2235 else
2236 bbfun = dflow->problem->dump_bottom_fun;
2237
6fb5fa3c 2238 if (bbfun)
b8698a0f 2239 bbfun (bb, file);
6fb5fa3c
DB
2240 }
2241 }
2242}
2243
7b19209f
SB
2244/* Dump the top of the block information for BB. */
2245
2246void
2247df_dump_top (basic_block bb, FILE *file)
2248{
2249 df_dump_bb_problem_data (bb, file, /*top=*/true);
2250}
6fb5fa3c 2251
b8698a0f 2252/* Dump the bottom of the block information for BB. */
6fb5fa3c
DB
2253
2254void
2255df_dump_bottom (basic_block bb, FILE *file)
7b19209f
SB
2256{
2257 df_dump_bb_problem_data (bb, file, /*top=*/false);
2258}
2259
2260
2261/* Dump information about INSN just before or after dumping INSN itself. */
2262static void
b2908ba6 2263df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
6fb5fa3c
DB
2264{
2265 int i;
2266
2267 if (!df || !file)
2268 return;
2269
2270 for (i = 0; i < df->num_problems_defined; i++)
2271 {
2272 struct dataflow *dflow = df->problems_in_order[i];
2273 if (dflow->computed)
2274 {
7b19209f
SB
2275 df_dump_insn_problem_function insnfun;
2276
2277 if (top)
2278 insnfun = dflow->problem->dump_insn_top_fun;
2279 else
2280 insnfun = dflow->problem->dump_insn_bottom_fun;
2281
2282 if (insnfun)
2283 insnfun (insn, file);
6fb5fa3c
DB
2284 }
2285 }
4d779342
DB
2286}
2287
7b19209f
SB
2288/* Dump information about INSN before dumping INSN itself. */
2289
2290void
b2908ba6 2291df_dump_insn_top (const rtx_insn *insn, FILE *file)
7b19209f
SB
2292{
2293 df_dump_insn_problem_data (insn, file, /*top=*/true);
2294}
2295
2296/* Dump information about INSN after dumping INSN itself. */
2297
2298void
b2908ba6 2299df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
7b19209f
SB
2300{
2301 df_dump_insn_problem_data (insn, file, /*top=*/false);
2302}
2303
4d779342 2304
885c9b5d
EB
2305static void
2306df_ref_dump (df_ref ref, FILE *file)
2307{
2308 fprintf (file, "%c%d(%d)",
2309 DF_REF_REG_DEF_P (ref)
2310 ? 'd'
2311 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2312 DF_REF_ID (ref),
2313 DF_REF_REGNO (ref));
2314}
2315
4d779342 2316void
b512946c 2317df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
4d779342
DB
2318{
2319 fprintf (file, "{ ");
b512946c 2320 for (; ref; ref = DF_REF_NEXT_LOC (ref))
4d779342 2321 {
885c9b5d 2322 df_ref_dump (ref, file);
4d779342 2323 if (follow_chain)
23249ac4 2324 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2325 }
2326 fprintf (file, "}");
2327}
2328
2329
2330/* Dump either a ref-def or reg-use chain. */
2331
2332void
57512f53 2333df_regs_chain_dump (df_ref ref, FILE *file)
4d779342
DB
2334{
2335 fprintf (file, "{ ");
2336 while (ref)
2337 {
885c9b5d 2338 df_ref_dump (ref, file);
57512f53 2339 ref = DF_REF_NEXT_REG (ref);
4d779342
DB
2340 }
2341 fprintf (file, "}");
2342}
2343
2344
23249ac4 2345static void
b512946c 2346df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
4d779342 2347{
b512946c
RS
2348 for (; mws; mws = DF_MWS_NEXT (mws))
2349 fprintf (file, "mw %c r[%d..%d]\n",
2350 DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2351 mws->start_regno, mws->end_regno);
23249ac4
DB
2352}
2353
2354
b8698a0f
L
2355static void
2356df_insn_uid_debug (unsigned int uid,
23249ac4
DB
2357 bool follow_chain, FILE *file)
2358{
6fb5fa3c
DB
2359 fprintf (file, "insn %d luid %d",
2360 uid, DF_INSN_UID_LUID (uid));
4d779342 2361
6fb5fa3c 2362 if (DF_INSN_UID_DEFS (uid))
23249ac4
DB
2363 {
2364 fprintf (file, " defs ");
6fb5fa3c 2365 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
23249ac4
DB
2366 }
2367
6fb5fa3c 2368 if (DF_INSN_UID_USES (uid))
23249ac4
DB
2369 {
2370 fprintf (file, " uses ");
6fb5fa3c
DB
2371 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2372 }
2373
2374 if (DF_INSN_UID_EQ_USES (uid))
2375 {
2376 fprintf (file, " eq uses ");
2377 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
23249ac4
DB
2378 }
2379
6fb5fa3c 2380 if (DF_INSN_UID_MWS (uid))
23249ac4
DB
2381 {
2382 fprintf (file, " mws ");
6fb5fa3c 2383 df_mws_dump (DF_INSN_UID_MWS (uid), file);
23249ac4 2384 }
4d779342
DB
2385 fprintf (file, "\n");
2386}
2387
23249ac4 2388
24e47c76 2389DEBUG_FUNCTION void
b2908ba6 2390df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
23249ac4 2391{
6fb5fa3c 2392 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
23249ac4
DB
2393}
2394
24e47c76 2395DEBUG_FUNCTION void
b2908ba6 2396df_insn_debug_regno (rtx_insn *insn, FILE *file)
4d779342 2397{
50e94c7e 2398 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4d779342
DB
2399
2400 fprintf (file, "insn %d bb %d luid %d defs ",
50e94c7e
SB
2401 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2402 DF_INSN_INFO_LUID (insn_info));
2403 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
b8698a0f 2404
4d779342 2405 fprintf (file, " uses ");
50e94c7e 2406 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
6fb5fa3c
DB
2407
2408 fprintf (file, " eq_uses ");
50e94c7e 2409 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
4d779342
DB
2410 fprintf (file, "\n");
2411}
2412
24e47c76 2413DEBUG_FUNCTION void
6fb5fa3c 2414df_regno_debug (unsigned int regno, FILE *file)
4d779342
DB
2415{
2416 fprintf (file, "reg %d defs ", regno);
6fb5fa3c 2417 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
4d779342 2418 fprintf (file, " uses ");
6fb5fa3c
DB
2419 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2420 fprintf (file, " eq_uses ");
2421 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
4d779342
DB
2422 fprintf (file, "\n");
2423}
2424
2425
24e47c76 2426DEBUG_FUNCTION void
57512f53 2427df_ref_debug (df_ref ref, FILE *file)
4d779342
DB
2428{
2429 fprintf (file, "%c%d ",
2430 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2431 DF_REF_ID (ref));
a3f1cee4 2432 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
4d779342
DB
2433 DF_REF_REGNO (ref),
2434 DF_REF_BBNO (ref),
57512f53 2435 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
6fb5fa3c
DB
2436 DF_REF_FLAGS (ref),
2437 DF_REF_TYPE (ref));
2438 if (DF_REF_LOC (ref))
8588f797
AO
2439 {
2440 if (flag_dump_noaddr)
2441 fprintf (file, "loc #(#) chain ");
2442 else
2443 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2444 (void *)*DF_REF_LOC (ref));
2445 }
6fb5fa3c
DB
2446 else
2447 fprintf (file, "chain ");
23249ac4 2448 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2449 fprintf (file, "\n");
2450}
2451\f
2452/* Functions for debugging from GDB. */
2453
24e47c76 2454DEBUG_FUNCTION void
b2908ba6 2455debug_df_insn (rtx_insn *insn)
4d779342 2456{
6fb5fa3c 2457 df_insn_debug (insn, true, stderr);
4d779342
DB
2458 debug_rtx (insn);
2459}
2460
2461
24e47c76 2462DEBUG_FUNCTION void
4d779342
DB
2463debug_df_reg (rtx reg)
2464{
6fb5fa3c 2465 df_regno_debug (REGNO (reg), stderr);
4d779342
DB
2466}
2467
2468
24e47c76 2469DEBUG_FUNCTION void
4d779342
DB
2470debug_df_regno (unsigned int regno)
2471{
6fb5fa3c 2472 df_regno_debug (regno, stderr);
4d779342
DB
2473}
2474
2475
24e47c76 2476DEBUG_FUNCTION void
57512f53 2477debug_df_ref (df_ref ref)
4d779342 2478{
23249ac4 2479 df_ref_debug (ref, stderr);
4d779342
DB
2480}
2481
2482
24e47c76 2483DEBUG_FUNCTION void
4d779342
DB
2484debug_df_defno (unsigned int defno)
2485{
6fb5fa3c 2486 df_ref_debug (DF_DEFS_GET (defno), stderr);
4d779342
DB
2487}
2488
2489
24e47c76 2490DEBUG_FUNCTION void
4d779342
DB
2491debug_df_useno (unsigned int defno)
2492{
6fb5fa3c 2493 df_ref_debug (DF_USES_GET (defno), stderr);
4d779342
DB
2494}
2495
2496
24e47c76 2497DEBUG_FUNCTION void
4d779342
DB
2498debug_df_chain (struct df_link *link)
2499{
23249ac4 2500 df_chain_dump (link, stderr);
4d779342
DB
2501 fputc ('\n', stderr);
2502}
This page took 2.936411 seconds and 5 git commands to generate.