]> gcc.gnu.org Git - gcc.git/blame - gcc/df-core.c
pass current function to opt_pass::gate ()
[gcc.git] / gcc / df-core.c
CommitLineData
4d779342 1/* Allocation for dataflow support routines.
23a5b65a 2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
b8698a0f 3 Originally contributed by Michael P. Hayes
4d779342
DB
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify it under
11the terms of the GNU General Public License as published by the Free
9dcd6f09 12Software Foundation; either version 3, or (at your option) any later
4d779342
DB
13version.
14
15GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16WARRANTY; without even the implied warranty of MERCHANTABILITY or
17FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18for more details.
19
20You should have received a copy of the GNU General Public License
9dcd6f09
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
4d779342
DB
23
24/*
25OVERVIEW:
26
27The files in this collection (df*.c,df.h) provide a general framework
28for solving dataflow problems. The global dataflow is performed using
29a good implementation of iterative dataflow analysis.
30
31The file df-problems.c provides problem instance for the most common
32dataflow problems: reaching defs, upward exposed uses, live variables,
33uninitialized variables, def-use chains, and use-def chains. However,
34the interface allows other dataflow problems to be defined as well.
35
6fb5fa3c
DB
36Dataflow analysis is available in most of the rtl backend (the parts
37between pass_df_initialize and pass_df_finish). It is quite likely
38that these boundaries will be expanded in the future. The only
39requirement is that there be a correct control flow graph.
4d779342 40
6fb5fa3c
DB
41There are three variations of the live variable problem that are
42available whenever dataflow is available. The LR problem finds the
43areas that can reach a use of a variable, the UR problems finds the
fa10beec 44areas that can be reached from a definition of a variable. The LIVE
b8698a0f 45problem finds the intersection of these two areas.
4d779342 46
6fb5fa3c
DB
47There are several optional problems. These can be enabled when they
48are needed and disabled when they are not needed.
4d779342 49
6fb5fa3c
DB
50Dataflow problems are generally solved in three layers. The bottom
51layer is called scanning where a data structure is built for each rtl
52insn that describes the set of defs and uses of that insn. Scanning
53is generally kept up to date, i.e. as the insns changes, the scanned
54version of that insn changes also. There are various mechanisms for
55making this happen and are described in the INCREMENTAL SCANNING
56section.
4d779342 57
6fb5fa3c 58In the middle layer, basic blocks are scanned to produce transfer
fa10beec 59functions which describe the effects of that block on the global
6fb5fa3c 60dataflow solution. The transfer functions are only rebuilt if the
b8698a0f 61some instruction within the block has changed.
4d779342 62
6fb5fa3c 63The top layer is the dataflow solution itself. The dataflow solution
0d52bcc1 64is computed by using an efficient iterative solver and the transfer
6fb5fa3c
DB
65functions. The dataflow solution must be recomputed whenever the
66control changes or if one of the transfer function changes.
4d779342
DB
67
68
6fb5fa3c 69USAGE:
4d779342 70
6fb5fa3c 71Here is an example of using the dataflow routines.
4d779342 72
05c219bb 73 df_[chain,live,note,rd]_add_problem (flags);
4d779342 74
6fb5fa3c 75 df_set_blocks (blocks);
4d779342 76
6fb5fa3c 77 df_analyze ();
4d779342 78
6fb5fa3c 79 df_dump (stderr);
4d779342 80
0d475361 81 df_finish_pass (false);
4d779342 82
05c219bb 83DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
6fb5fa3c
DB
84instance to struct df_problem, to the set of problems solved in this
85instance of df. All calls to add a problem for a given instance of df
86must occur before the first call to DF_ANALYZE.
4d779342
DB
87
88Problems can be dependent on other problems. For instance, solving
d1c78882 89def-use or use-def chains is dependent on solving reaching
c0220ea4 90definitions. As long as these dependencies are listed in the problem
4d779342
DB
91definition, the order of adding the problems is not material.
92Otherwise, the problems will be solved in the order of calls to
93df_add_problem. Note that it is not necessary to have a problem. In
94that case, df will just be used to do the scanning.
95
96
97
98DF_SET_BLOCKS is an optional call used to define a region of the
99function on which the analysis will be performed. The normal case is
100to analyze the entire function and no call to df_set_blocks is made.
6fb5fa3c
DB
101DF_SET_BLOCKS only effects the blocks that are effected when computing
102the transfer functions and final solution. The insn level information
103is always kept up to date.
4d779342
DB
104
105When a subset is given, the analysis behaves as if the function only
106contains those blocks and any edges that occur directly between the
107blocks in the set. Care should be taken to call df_set_blocks right
c0220ea4 108before the call to analyze in order to eliminate the possibility that
4d779342
DB
109optimizations that reorder blocks invalidate the bitvector.
110
6fb5fa3c
DB
111DF_ANALYZE causes all of the defined problems to be (re)solved. When
112DF_ANALYZE is completes, the IN and OUT sets for each basic block
113contain the computer information. The DF_*_BB_INFO macros can be used
0a41f3b2 114to access these bitvectors. All deferred rescannings are down before
0d52bcc1 115the transfer functions are recomputed.
4d779342
DB
116
117DF_DUMP can then be called to dump the information produce to some
6fb5fa3c
DB
118file. This calls DF_DUMP_START, to print the information that is not
119basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120for each block to print the basic specific information. These parts
121can all be called separately as part of a larger dump function.
122
123
124DF_FINISH_PASS causes df_remove_problem to be called on all of the
125optional problems. It also causes any insns whose scanning has been
0a41f3b2 126deferred to be rescanned as well as clears all of the changeable flags.
6fb5fa3c
DB
127Setting the pass manager TODO_df_finish flag causes this function to
128be run. However, the pass manager will call df_finish_pass AFTER the
129pass dumping has been done, so if you want to see the results of the
130optional problems in the pass dumps, use the TODO flag rather than
131calling the function yourself.
132
133INCREMENTAL SCANNING
134
135There are four ways of doing the incremental scanning:
136
1371) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
142
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
cea618ac 146 upon even after changes have been made to the instructions. This
6fb5fa3c
DB
147 technique is contra indicated in several cases:
148
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
155
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
165
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
168
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
171
0d52bcc1 1722) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
6fb5fa3c
DB
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
177
178 This is the technique of choice if either 1a, 1b, or 1c are issues
ecb7f6de
PB
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
182
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and for_each_rtx instead of using the DF data. This
185 can be said to fall under case 1c.
6fb5fa3c
DB
186
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
0a41f3b2 189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
6fb5fa3c
DB
190 be rescanned.
191
ecb7f6de
PB
1923) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
6fb5fa3c
DB
198
1994) Do it yourself - In this mechanism, the pass updates the insns
6ed3da00 200 itself using the low level df primitives. Currently no pass does
6fb5fa3c 201 this, but it has the advantage that it is quite efficient given
b8698a0f 202 that the pass generally has exact knowledge of what it is changing.
6fb5fa3c
DB
203
204DATA STRUCTURES
4d779342
DB
205
206Scanning produces a `struct df_ref' data structure (ref) is allocated
207for every register reference (def or use) and this records the insn
208and bb the ref is found within. The refs are linked together in
209chains of uses and defs for each insn and for each register. Each ref
210also has a chain field that links all the use refs for a def or all
211the def refs for a use. This is used to create use-def or def-use
212chains.
213
214Different optimizations have different needs. Ultimately, only
215register allocation and schedulers should be using the bitmaps
216produced for the live register and uninitialized register problems.
217The rest of the backend should be upgraded to using and maintaining
218the linked information such as def use or use def chains.
219
220
4d779342
DB
221PHILOSOPHY:
222
223While incremental bitmaps are not worthwhile to maintain, incremental
224chains may be perfectly reasonable. The fastest way to build chains
225from scratch or after significant modifications is to build reaching
226definitions (RD) and build the chains from this.
227
228However, general algorithms for maintaining use-def or def-use chains
229are not practical. The amount of work to recompute the chain any
230chain after an arbitrary change is large. However, with a modest
231amount of work it is generally possible to have the application that
232uses the chains keep them up to date. The high level knowledge of
233what is really happening is essential to crafting efficient
234incremental algorithms.
235
236As for the bit vector problems, there is no interface to give a set of
237blocks over with to resolve the iteration. In general, restarting a
238dataflow iteration is difficult and expensive. Again, the best way to
6fc0bb99 239keep the dataflow information up to data (if this is really what is
4d779342
DB
240needed) it to formulate a problem specific solution.
241
242There are fine grained calls for creating and deleting references from
243instructions in df-scan.c. However, these are not currently connected
244to the engine that resolves the dataflow equations.
245
246
247DATA STRUCTURES:
248
b8698a0f 249The basic object is a DF_REF (reference) and this may either be a
4d779342
DB
250DEF (definition) or a USE of a register.
251
252These are linked into a variety of lists; namely reg-def, reg-use,
253insn-def, insn-use, def-use, and use-def lists. For example, the
254reg-def lists contain all the locations that define a given register
255while the insn-use lists contain all the locations that use a
256register.
257
258Note that the reg-def and reg-use chains are generally short for
259pseudos and long for the hard registers.
260
6fb5fa3c
DB
261ACCESSING INSNS:
262
50e94c7e
SB
2631) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
266
2672) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
278
2793) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
6fb5fa3c 286
4d779342
DB
287ACCESSING REFS:
288
289There are 4 ways to obtain access to refs:
290
2911) References are divided into two categories, REAL and ARTIFICIAL.
292
b8698a0f 293 REAL refs are associated with instructions.
4d779342
DB
294
295 ARTIFICIAL refs are associated with basic blocks. The heads of
6fb5fa3c 296 these lists can be accessed by calling df_get_artificial_defs or
b8698a0f
L
297 df_get_artificial_uses for the particular basic block.
298
912f2dac
DB
299 Artificial defs and uses occur both at the beginning and ends of blocks.
300
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
308
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
313
c0220ea4 314 Artificial defs occur at the end of the entry block. These arise
912f2dac 315 from registers that are live at entry to the function.
4d779342 316
b8698a0f 3172) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
6fb5fa3c 318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
4d779342 319
6fb5fa3c
DB
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
b8698a0f 324 treated like uses. If it is not set they are ignored.
6fb5fa3c
DB
325
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
4d779342
DB
332
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
335
3363) If def-use or use-def chains are built, these can be traversed to
6fb5fa3c
DB
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
4d779342
DB
340
3414) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
6fb5fa3c
DB
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
b8698a0f 349 df_analyze or df_reorganize_defs or df_reorganize_uses.
4d779342
DB
350
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
354
4d779342 355NOTES:
b8698a0f 356
4d779342
DB
357Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358both a use and a def. These are both marked read/write to show that they
359are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360will generate a use of reg 42 followed by a def of reg 42 (both marked
361read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362generates a use of reg 41 then a def of reg 41 (both marked read/write),
363even though reg 41 is decremented before it is used for the memory
364address in this second example.
365
366A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367for which the number of word_mode units covered by the outer mode is
fa10beec 368smaller than that covered by the inner mode, invokes a read-modify-write
4d779342
DB
369operation. We generate both a use and a def and again mark them
370read/write.
371
372Paradoxical subreg writes do not leave a trace of the old content, so they
b8698a0f 373are write-only operations.
4d779342
DB
374*/
375
376
377#include "config.h"
378#include "system.h"
379#include "coretypes.h"
380#include "tm.h"
381#include "rtl.h"
382#include "tm_p.h"
383#include "insn-config.h"
384#include "recog.h"
385#include "function.h"
386#include "regs.h"
4d779342
DB
387#include "alloc-pool.h"
388#include "flags.h"
389#include "hard-reg-set.h"
390#include "basic-block.h"
391#include "sbitmap.h"
392#include "bitmap.h"
4d779342
DB
393#include "df.h"
394#include "tree-pass.h"
185082a7 395#include "params.h"
7be64667 396#include "cfgloop.h"
4d779342 397
23249ac4 398static void *df_get_bb_info (struct dataflow *, unsigned int);
30cb87a0 399static void df_set_bb_info (struct dataflow *, unsigned int, void *);
e285df08 400static void df_clear_bb_info (struct dataflow *, unsigned int);
6fb5fa3c
DB
401#ifdef DF_DEBUG_CFG
402static void df_set_clean_cfg (void);
403#endif
4d779342 404
532aafad
SB
405/* The obstack on which regsets are allocated. */
406struct bitmap_obstack reg_obstack;
407
6fb5fa3c
DB
408/* An obstack for bitmap not related to specific dataflow problems.
409 This obstack should e.g. be used for bitmaps with a short life time
410 such as temporary bitmaps. */
4d779342 411
6fb5fa3c 412bitmap_obstack df_bitmap_obstack;
4d779342 413
4d779342 414
6fb5fa3c
DB
415/*----------------------------------------------------------------------------
416 Functions to create, destroy and manipulate an instance of df.
417----------------------------------------------------------------------------*/
418
f12c802a 419struct df_d *df;
4d779342 420
6fb5fa3c 421/* Add PROBLEM (and any dependent problems) to the DF instance. */
4d779342 422
6fb5fa3c
DB
423void
424df_add_problem (struct df_problem *problem)
4d779342
DB
425{
426 struct dataflow *dflow;
6fb5fa3c 427 int i;
4d779342
DB
428
429 /* First try to add the dependent problem. */
6fb5fa3c
DB
430 if (problem->dependent_problem)
431 df_add_problem (problem->dependent_problem);
4d779342
DB
432
433 /* Check to see if this problem has already been defined. If it
434 has, just return that instance, if not, add it to the end of the
435 vector. */
436 dflow = df->problems_by_index[problem->id];
437 if (dflow)
6fb5fa3c 438 return;
4d779342
DB
439
440 /* Make a new one and add it to the end. */
5ed6ace5 441 dflow = XCNEW (struct dataflow);
4d779342 442 dflow->problem = problem;
6fb5fa3c
DB
443 dflow->computed = false;
444 dflow->solutions_dirty = true;
4d779342
DB
445 df->problems_by_index[dflow->problem->id] = dflow;
446
6fb5fa3c
DB
447 /* Keep the defined problems ordered by index. This solves the
448 problem that RI will use the information from UREC if UREC has
449 been defined, or from LIVE if LIVE is defined and otherwise LR.
450 However for this to work, the computation of RI must be pushed
451 after which ever of those problems is defined, but we do not
452 require any of those except for LR to have actually been
b8698a0f 453 defined. */
6fb5fa3c
DB
454 df->num_problems_defined++;
455 for (i = df->num_problems_defined - 2; i >= 0; i--)
456 {
457 if (problem->id < df->problems_in_order[i]->problem->id)
458 df->problems_in_order[i+1] = df->problems_in_order[i];
459 else
460 {
461 df->problems_in_order[i+1] = dflow;
462 return;
463 }
464 }
465 df->problems_in_order[0] = dflow;
4d779342
DB
466}
467
468
23249ac4
DB
469/* Set the MASK flags in the DFLOW problem. The old flags are
470 returned. If a flag is not allowed to be changed this will fail if
471 checking is enabled. */
81f40b79 472int
bbbbb16a 473df_set_flags (int changeable_flags)
23249ac4 474{
81f40b79 475 int old_flags = df->changeable_flags;
6fb5fa3c 476 df->changeable_flags |= changeable_flags;
23249ac4
DB
477 return old_flags;
478}
479
6fb5fa3c 480
23249ac4
DB
481/* Clear the MASK flags in the DFLOW problem. The old flags are
482 returned. If a flag is not allowed to be changed this will fail if
483 checking is enabled. */
81f40b79 484int
bbbbb16a 485df_clear_flags (int changeable_flags)
23249ac4 486{
81f40b79 487 int old_flags = df->changeable_flags;
6fb5fa3c 488 df->changeable_flags &= ~changeable_flags;
23249ac4
DB
489 return old_flags;
490}
491
6fb5fa3c 492
4d779342
DB
493/* Set the blocks that are to be considered for analysis. If this is
494 not called or is called with null, the entire function in
495 analyzed. */
496
b8698a0f 497void
6fb5fa3c 498df_set_blocks (bitmap blocks)
4d779342
DB
499{
500 if (blocks)
501 {
6fb5fa3c
DB
502 if (dump_file)
503 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
3b8266e2
KZ
504 if (df->blocks_to_analyze)
505 {
89a95777
KZ
506 /* This block is called to change the focus from one subset
507 to another. */
3b8266e2 508 int p;
a7e3698d
JH
509 bitmap_head diff;
510 bitmap_initialize (&diff, &df_bitmap_obstack);
511 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
89a95777 512 for (p = 0; p < df->num_problems_defined; p++)
3b8266e2
KZ
513 {
514 struct dataflow *dflow = df->problems_in_order[p];
89a95777 515 if (dflow->optional_p && dflow->problem->reset_fun)
6fb5fa3c 516 dflow->problem->reset_fun (df->blocks_to_analyze);
89a95777 517 else if (dflow->problem->free_blocks_on_set_blocks)
3b8266e2
KZ
518 {
519 bitmap_iterator bi;
520 unsigned int bb_index;
b8698a0f 521
a7e3698d 522 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
3b8266e2 523 {
06e28de2 524 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
30cb87a0
KZ
525 if (bb)
526 {
6fb5fa3c 527 void *bb_info = df_get_bb_info (dflow, bb_index);
e285df08
JH
528 dflow->problem->free_bb_fun (bb, bb_info);
529 df_clear_bb_info (dflow, bb_index);
30cb87a0 530 }
3b8266e2
KZ
531 }
532 }
533 }
534
a7e3698d 535 bitmap_clear (&diff);
3b8266e2
KZ
536 }
537 else
30cb87a0 538 {
89a95777
KZ
539 /* This block of code is executed to change the focus from
540 the entire function to a subset. */
a7e3698d
JH
541 bitmap_head blocks_to_reset;
542 bool initialized = false;
89a95777
KZ
543 int p;
544 for (p = 0; p < df->num_problems_defined; p++)
30cb87a0 545 {
89a95777
KZ
546 struct dataflow *dflow = df->problems_in_order[p];
547 if (dflow->optional_p && dflow->problem->reset_fun)
30cb87a0 548 {
a7e3698d 549 if (!initialized)
30cb87a0 550 {
89a95777 551 basic_block bb;
a7e3698d 552 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
04a90bec 553 FOR_ALL_BB_FN (bb, cfun)
30cb87a0 554 {
a7e3698d 555 bitmap_set_bit (&blocks_to_reset, bb->index);
30cb87a0 556 }
30cb87a0 557 }
a7e3698d 558 dflow->problem->reset_fun (&blocks_to_reset);
30cb87a0 559 }
30cb87a0 560 }
a7e3698d
JH
561 if (initialized)
562 bitmap_clear (&blocks_to_reset);
89a95777 563
6fb5fa3c 564 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
30cb87a0 565 }
4d779342 566 bitmap_copy (df->blocks_to_analyze, blocks);
6fb5fa3c 567 df->analyze_subset = true;
4d779342
DB
568 }
569 else
570 {
89a95777
KZ
571 /* This block is executed to reset the focus to the entire
572 function. */
6fb5fa3c 573 if (dump_file)
89a95777 574 fprintf (dump_file, "clearing blocks_to_analyze\n");
4d779342
DB
575 if (df->blocks_to_analyze)
576 {
577 BITMAP_FREE (df->blocks_to_analyze);
578 df->blocks_to_analyze = NULL;
579 }
6fb5fa3c 580 df->analyze_subset = false;
4d779342 581 }
6fb5fa3c
DB
582
583 /* Setting the blocks causes the refs to be unorganized since only
584 the refs in the blocks are seen. */
585 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
586 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
587 df_mark_solutions_dirty ();
4d779342
DB
588}
589
590
6fb5fa3c
DB
591/* Delete a DFLOW problem (and any problems that depend on this
592 problem). */
23249ac4
DB
593
594void
6fb5fa3c 595df_remove_problem (struct dataflow *dflow)
23249ac4 596{
6fb5fa3c 597 struct df_problem *problem;
23249ac4 598 int i;
6fb5fa3c
DB
599
600 if (!dflow)
601 return;
602
603 problem = dflow->problem;
604 gcc_assert (problem->remove_problem_fun);
605
6fb5fa3c 606 /* Delete any problems that depended on this problem first. */
89a95777 607 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
608 if (df->problems_in_order[i]->problem->dependent_problem == problem)
609 df_remove_problem (df->problems_in_order[i]);
610
611 /* Now remove this problem. */
89a95777 612 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
613 if (df->problems_in_order[i] == dflow)
614 {
615 int j;
616 for (j = i + 1; j < df->num_problems_defined; j++)
617 df->problems_in_order[j-1] = df->problems_in_order[j];
7039a415 618 df->problems_in_order[j-1] = NULL;
6fb5fa3c
DB
619 df->num_problems_defined--;
620 break;
621 }
622
623 (problem->remove_problem_fun) ();
624 df->problems_by_index[problem->id] = NULL;
625}
626
627
05c219bb
PB
628/* Remove all of the problems that are not permanent. Scanning, LR
629 and (at -O2 or higher) LIVE are permanent, the rest are removable.
630 Also clear all of the changeable_flags. */
6fb5fa3c
DB
631
632void
0d475361 633df_finish_pass (bool verify ATTRIBUTE_UNUSED)
6fb5fa3c
DB
634{
635 int i;
636 int removed = 0;
637
3089f8b5 638#ifdef ENABLE_DF_CHECKING
a46edbff 639 int saved_flags;
6fb5fa3c
DB
640#endif
641
642 if (!df)
643 return;
644
645 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
646 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
647
3089f8b5 648#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
649 saved_flags = df->changeable_flags;
650#endif
651
89a95777 652 for (i = 0; i < df->num_problems_defined; i++)
23249ac4
DB
653 {
654 struct dataflow *dflow = df->problems_in_order[i];
6fb5fa3c
DB
655 struct df_problem *problem = dflow->problem;
656
89a95777
KZ
657 if (dflow->optional_p)
658 {
659 gcc_assert (problem->remove_problem_fun);
660 (problem->remove_problem_fun) ();
661 df->problems_in_order[i] = NULL;
662 df->problems_by_index[problem->id] = NULL;
663 removed++;
664 }
6fb5fa3c
DB
665 }
666 df->num_problems_defined -= removed;
667
668 /* Clear all of the flags. */
669 df->changeable_flags = 0;
670 df_process_deferred_rescans ();
671
672 /* Set the focus back to the whole function. */
673 if (df->blocks_to_analyze)
674 {
675 BITMAP_FREE (df->blocks_to_analyze);
676 df->blocks_to_analyze = NULL;
677 df_mark_solutions_dirty ();
678 df->analyze_subset = false;
23249ac4 679 }
6fb5fa3c 680
3089f8b5 681#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
682 /* Verification will fail in DF_NO_INSN_RESCAN. */
683 if (!(saved_flags & DF_NO_INSN_RESCAN))
684 {
685 df_lr_verify_transfer_functions ();
686 if (df_live)
687 df_live_verify_transfer_functions ();
688 }
689
690#ifdef DF_DEBUG_CFG
691 df_set_clean_cfg ();
692#endif
693#endif
0d475361
PB
694
695#ifdef ENABLE_CHECKING
696 if (verify)
697 df->changeable_flags |= DF_VERIFY_SCHEDULED;
698#endif
6fb5fa3c
DB
699}
700
701
702/* Set up the dataflow instance for the entire back end. */
703
704static unsigned int
705rest_of_handle_df_initialize (void)
706{
707 gcc_assert (!df);
f12c802a 708 df = XCNEW (struct df_d);
6fb5fa3c
DB
709 df->changeable_flags = 0;
710
711 bitmap_obstack_initialize (&df_bitmap_obstack);
712
713 /* Set this to a conservative value. Stack_ptr_mod will compute it
714 correctly later. */
416ff32e 715 crtl->sp_is_unchanging = 0;
6fb5fa3c
DB
716
717 df_scan_add_problem ();
718 df_scan_alloc (NULL);
719
720 /* These three problems are permanent. */
721 df_lr_add_problem ();
89a95777 722 if (optimize > 1)
6fb5fa3c
DB
723 df_live_add_problem ();
724
8b1c6fd7
DM
725 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
726 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
727 df->n_blocks = post_order_compute (df->postorder, true, true);
728 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
729 gcc_assert (df->n_blocks == df->n_blocks_inverted);
730
225ccc68 731 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
6fb5fa3c
DB
732
733 df_hard_reg_init ();
734 /* After reload, some ports add certain bits to regs_ever_live so
735 this cannot be reset. */
736 df_compute_regs_ever_live (true);
737 df_scan_blocks ();
738 df_compute_regs_ever_live (false);
739 return 0;
740}
741
742
27a4cd48
DM
743namespace {
744
745const pass_data pass_data_df_initialize_opt =
6fb5fa3c 746{
27a4cd48
DM
747 RTL_PASS, /* type */
748 "dfinit", /* name */
749 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
750 true, /* has_execute */
751 TV_DF_SCAN, /* tv_id */
752 0, /* properties_required */
753 0, /* properties_provided */
754 0, /* properties_destroyed */
755 0, /* todo_flags_start */
756 0, /* todo_flags_finish */
6fb5fa3c
DB
757};
758
27a4cd48
DM
759class pass_df_initialize_opt : public rtl_opt_pass
760{
761public:
c3284718
RS
762 pass_df_initialize_opt (gcc::context *ctxt)
763 : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
27a4cd48
DM
764 {}
765
766 /* opt_pass methods: */
1a3d085c 767 virtual bool gate (function *) { return optimize > 0; }
27a4cd48
DM
768 unsigned int execute () { return rest_of_handle_df_initialize (); }
769
770}; // class pass_df_initialize_opt
771
772} // anon namespace
773
774rtl_opt_pass *
775make_pass_df_initialize_opt (gcc::context *ctxt)
776{
777 return new pass_df_initialize_opt (ctxt);
778}
779
6fb5fa3c 780
27a4cd48
DM
781namespace {
782
783const pass_data pass_data_df_initialize_no_opt =
6fb5fa3c 784{
27a4cd48
DM
785 RTL_PASS, /* type */
786 "no-opt dfinit", /* name */
787 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
788 true, /* has_execute */
789 TV_DF_SCAN, /* tv_id */
790 0, /* properties_required */
791 0, /* properties_provided */
792 0, /* properties_destroyed */
793 0, /* todo_flags_start */
794 0, /* todo_flags_finish */
6fb5fa3c
DB
795};
796
27a4cd48
DM
797class pass_df_initialize_no_opt : public rtl_opt_pass
798{
799public:
c3284718
RS
800 pass_df_initialize_no_opt (gcc::context *ctxt)
801 : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
27a4cd48
DM
802 {}
803
804 /* opt_pass methods: */
1a3d085c 805 virtual bool gate (function *) { return optimize == 0; }
27a4cd48
DM
806 unsigned int execute () { return rest_of_handle_df_initialize (); }
807
808}; // class pass_df_initialize_no_opt
809
810} // anon namespace
811
812rtl_opt_pass *
813make_pass_df_initialize_no_opt (gcc::context *ctxt)
814{
815 return new pass_df_initialize_no_opt (ctxt);
816}
817
6fb5fa3c 818
4d779342
DB
819/* Free all the dataflow info and the DF structure. This should be
820 called from the df_finish macro which also NULLs the parm. */
821
6fb5fa3c
DB
822static unsigned int
823rest_of_handle_df_finish (void)
4d779342
DB
824{
825 int i;
826
6fb5fa3c
DB
827 gcc_assert (df);
828
4d779342 829 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
830 {
831 struct dataflow *dflow = df->problems_in_order[i];
b8698a0f 832 dflow->problem->free_fun ();
6fb5fa3c 833 }
4d779342 834
04695783
JM
835 free (df->postorder);
836 free (df->postorder_inverted);
6fb5fa3c 837 free (df->hard_regs_live_count);
4d779342 838 free (df);
6fb5fa3c
DB
839 df = NULL;
840
841 bitmap_obstack_release (&df_bitmap_obstack);
842 return 0;
4d779342
DB
843}
844
6fb5fa3c 845
27a4cd48
DM
846namespace {
847
848const pass_data pass_data_df_finish =
6fb5fa3c 849{
27a4cd48
DM
850 RTL_PASS, /* type */
851 "dfinish", /* name */
852 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
853 true, /* has_execute */
854 TV_NONE, /* tv_id */
855 0, /* properties_required */
856 0, /* properties_provided */
857 0, /* properties_destroyed */
858 0, /* todo_flags_start */
859 0, /* todo_flags_finish */
6fb5fa3c
DB
860};
861
27a4cd48
DM
862class pass_df_finish : public rtl_opt_pass
863{
864public:
c3284718
RS
865 pass_df_finish (gcc::context *ctxt)
866 : rtl_opt_pass (pass_data_df_finish, ctxt)
27a4cd48
DM
867 {}
868
869 /* opt_pass methods: */
870 unsigned int execute () { return rest_of_handle_df_finish (); }
871
872}; // class pass_df_finish
873
874} // anon namespace
875
876rtl_opt_pass *
877make_pass_df_finish (gcc::context *ctxt)
878{
879 return new pass_df_finish (ctxt);
880}
881
6fb5fa3c
DB
882
883
884
4d779342
DB
885\f
886/*----------------------------------------------------------------------------
887 The general data flow analysis engine.
888----------------------------------------------------------------------------*/
889
50b2e859
JH
890/* Return time BB when it was visited for last time. */
891#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
4d779342 892
6fb5fa3c 893/* Helper function for df_worklist_dataflow.
b8698a0f 894 Propagate the dataflow forward.
6fb5fa3c
DB
895 Given a BB_INDEX, do the dataflow propagation
896 and set bits on for successors in PENDING
50b2e859
JH
897 if the out set of the dataflow has changed.
898
899 AGE specify time when BB was visited last time.
900 AGE of 0 means we are visiting for first time and need to
901 compute transfer function to initialize datastructures.
902 Otherwise we re-do transfer function only if something change
903 while computing confluence functions.
904 We need to compute confluence only of basic block that are younger
905 then last visit of the BB.
906
907 Return true if BB info has changed. This is always the case
908 in the first visit. */
4d779342 909
1a0f3fa1 910static bool
6fb5fa3c
DB
911df_worklist_propagate_forward (struct dataflow *dataflow,
912 unsigned bb_index,
913 unsigned *bbindex_to_postorder,
914 bitmap pending,
1a0f3fa1 915 sbitmap considered,
50b2e859 916 ptrdiff_t age)
4d779342 917{
4d779342
DB
918 edge e;
919 edge_iterator ei;
06e28de2 920 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 921 bool changed = !age;
4d779342 922
6fb5fa3c 923 /* Calculate <conf_op> of incoming edges. */
4d779342
DB
924 if (EDGE_COUNT (bb->preds) > 0)
925 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 926 {
50b2e859 927 if (age <= BB_LAST_CHANGE_AGE (e->src)
d7c028c0 928 && bitmap_bit_p (considered, e->src->index))
1a0f3fa1 929 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 930 }
e45dcf9c 931 else if (dataflow->problem->con_fun_0)
50b2e859 932 dataflow->problem->con_fun_0 (bb);
6fb5fa3c 933
1a0f3fa1
JH
934 if (changed
935 && dataflow->problem->trans_fun (bb_index))
4d779342 936 {
b8698a0f 937 /* The out set of this block has changed.
6fb5fa3c
DB
938 Propagate to the outgoing blocks. */
939 FOR_EACH_EDGE (e, ei, bb->succs)
940 {
941 unsigned ob_index = e->dest->index;
942
d7c028c0 943 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
944 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
945 }
1a0f3fa1 946 return true;
4d779342 947 }
1a0f3fa1 948 return false;
4d779342
DB
949}
950
6fb5fa3c
DB
951
952/* Helper function for df_worklist_dataflow.
953 Propagate the dataflow backward. */
954
1a0f3fa1 955static bool
6fb5fa3c
DB
956df_worklist_propagate_backward (struct dataflow *dataflow,
957 unsigned bb_index,
958 unsigned *bbindex_to_postorder,
959 bitmap pending,
1a0f3fa1 960 sbitmap considered,
50b2e859 961 ptrdiff_t age)
4d779342 962{
4d779342
DB
963 edge e;
964 edge_iterator ei;
06e28de2 965 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1a0f3fa1 966 bool changed = !age;
4d779342 967
6fb5fa3c 968 /* Calculate <conf_op> of incoming edges. */
4d779342 969 if (EDGE_COUNT (bb->succs) > 0)
6fb5fa3c 970 FOR_EACH_EDGE (e, ei, bb->succs)
b8698a0f 971 {
50b2e859 972 if (age <= BB_LAST_CHANGE_AGE (e->dest)
d7c028c0 973 && bitmap_bit_p (considered, e->dest->index))
1a0f3fa1 974 changed |= dataflow->problem->con_fun_n (e);
b8698a0f 975 }
e45dcf9c 976 else if (dataflow->problem->con_fun_0)
50b2e859 977 dataflow->problem->con_fun_0 (bb);
4d779342 978
1a0f3fa1
JH
979 if (changed
980 && dataflow->problem->trans_fun (bb_index))
4d779342 981 {
b8698a0f 982 /* The out set of this block has changed.
6fb5fa3c
DB
983 Propagate to the outgoing blocks. */
984 FOR_EACH_EDGE (e, ei, bb->preds)
985 {
986 unsigned ob_index = e->src->index;
987
d7c028c0 988 if (bitmap_bit_p (considered, ob_index))
6fb5fa3c
DB
989 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
990 }
1a0f3fa1 991 return true;
4d779342 992 }
1a0f3fa1 993 return false;
4d779342
DB
994}
995
50b2e859
JH
996/* Main dataflow solver loop.
997
998 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
999 need to visit.
1000 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
688010ba 1001 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
50b2e859
JH
1002 PENDING will be freed.
1003
1004 The worklists are bitmaps indexed by postorder positions.
1005
1006 The function implements standard algorithm for dataflow solving with two
1007 worklists (we are processing WORKLIST and storing new BBs to visit in
1008 PENDING).
185082a7 1009
50b2e859
JH
1010 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1011 and when it was last visited (stored in last_visit_age). This avoids need
1012 to re-do confluence function for edges to basic blocks whose source
1013 did not change since destination was visited last time. */
185082a7 1014
b8698a0f 1015static void
185082a7
SP
1016df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1017 bitmap pending,
1018 sbitmap considered,
1019 int *blocks_in_postorder,
1a0f3fa1
JH
1020 unsigned *bbindex_to_postorder,
1021 int n_blocks)
185082a7
SP
1022{
1023 enum df_flow_dir dir = dataflow->problem->dir;
1024 int dcount = 0;
1025 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
50b2e859 1026 int age = 0;
1a0f3fa1 1027 bool changed;
6e1aa848 1028 vec<int> last_visit_age = vNULL;
50b2e859 1029 int prev_age;
1a0f3fa1
JH
1030 basic_block bb;
1031 int i;
1032
9771b263 1033 last_visit_age.safe_grow_cleared (n_blocks);
185082a7
SP
1034
1035 /* Double-queueing. Worklist is for the current iteration,
1036 and pending is for the next. */
1037 while (!bitmap_empty_p (pending))
1038 {
1a0f3fa1
JH
1039 bitmap_iterator bi;
1040 unsigned int index;
1041
185082a7
SP
1042 /* Swap pending and worklist. */
1043 bitmap temp = worklist;
1044 worklist = pending;
1045 pending = temp;
1046
1a0f3fa1 1047 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
185082a7 1048 {
185082a7
SP
1049 unsigned bb_index;
1050 dcount++;
1051
50b2e859 1052 bitmap_clear_bit (pending, index);
185082a7 1053 bb_index = blocks_in_postorder[index];
06e28de2 1054 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
9771b263 1055 prev_age = last_visit_age[index];
185082a7 1056 if (dir == DF_FORWARD)
1a0f3fa1
JH
1057 changed = df_worklist_propagate_forward (dataflow, bb_index,
1058 bbindex_to_postorder,
1059 pending, considered,
1060 prev_age);
b8698a0f 1061 else
1a0f3fa1
JH
1062 changed = df_worklist_propagate_backward (dataflow, bb_index,
1063 bbindex_to_postorder,
1064 pending, considered,
1065 prev_age);
9771b263 1066 last_visit_age[index] = ++age;
1a0f3fa1 1067 if (changed)
50b2e859 1068 bb->aux = (void *)(ptrdiff_t)age;
185082a7 1069 }
1a0f3fa1 1070 bitmap_clear (worklist);
185082a7 1071 }
1a0f3fa1 1072 for (i = 0; i < n_blocks; i++)
06e28de2 1073 BASIC_BLOCK_FOR_FN (cfun, blocks_in_postorder[i])->aux = NULL;
185082a7
SP
1074
1075 BITMAP_FREE (worklist);
1076 BITMAP_FREE (pending);
9771b263 1077 last_visit_age.release ();
185082a7
SP
1078
1079 /* Dump statistics. */
1080 if (dump_file)
1081 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1082 "n_basic_blocks %d n_edges %d"
1083 " count %d (%5.2g)\n",
dc936fb2 1084 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
0cae8d31 1085 dcount, dcount / (float)n_basic_blocks_for_fn (cfun));
185082a7
SP
1086}
1087
6fb5fa3c 1088/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
b8698a0f 1089 with "n"-th bit representing the n-th block in the reverse-postorder order.
240b5cea
SB
1090 The solver is a double-queue algorithm similar to the "double stack" solver
1091 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1092 The only significant difference is that the worklist in this implementation
1093 is always sorted in RPO of the CFG visiting direction. */
4d779342 1094
b8698a0f 1095void
6fb5fa3c
DB
1096df_worklist_dataflow (struct dataflow *dataflow,
1097 bitmap blocks_to_consider,
1098 int *blocks_in_postorder,
1099 int n_blocks)
4d779342 1100{
6fb5fa3c 1101 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
8b1c6fd7 1102 sbitmap considered = sbitmap_alloc (last_basic_block_for_fn (cfun));
4d779342 1103 bitmap_iterator bi;
6fb5fa3c
DB
1104 unsigned int *bbindex_to_postorder;
1105 int i;
1106 unsigned int index;
1107 enum df_flow_dir dir = dataflow->problem->dir;
4d779342 1108
6fb5fa3c 1109 gcc_assert (dir != DF_NONE);
4d779342 1110
6fb5fa3c 1111 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
8b1c6fd7
DM
1112 bbindex_to_postorder = XNEWVEC (unsigned int,
1113 last_basic_block_for_fn (cfun));
4d779342 1114
6fb5fa3c 1115 /* Initialize the array to an out-of-bound value. */
8b1c6fd7
DM
1116 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1117 bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
23249ac4 1118
6fb5fa3c 1119 /* Initialize the considered map. */
f61e445a 1120 bitmap_clear (considered);
6fb5fa3c 1121 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
4d779342 1122 {
d7c028c0 1123 bitmap_set_bit (considered, index);
4d779342
DB
1124 }
1125
6fb5fa3c 1126 /* Initialize the mapping of block index to postorder. */
4d779342
DB
1127 for (i = 0; i < n_blocks; i++)
1128 {
6fb5fa3c
DB
1129 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1130 /* Add all blocks to the worklist. */
1131 bitmap_set_bit (pending, i);
1132 }
4d779342 1133
185082a7 1134 /* Initialize the problem. */
6fb5fa3c
DB
1135 if (dataflow->problem->init_fun)
1136 dataflow->problem->init_fun (blocks_to_consider);
4d779342 1137
240b5cea
SB
1138 /* Solve it. */
1139 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1140 blocks_in_postorder,
1a0f3fa1
JH
1141 bbindex_to_postorder,
1142 n_blocks);
4d779342 1143 sbitmap_free (considered);
6fb5fa3c 1144 free (bbindex_to_postorder);
4d779342
DB
1145}
1146
1147
1148/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1149 the order of the remaining entries. Returns the length of the resulting
1150 list. */
1151
1152static unsigned
1153df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1154{
1155 unsigned act, last;
1156
1157 for (act = 0, last = 0; act < len; act++)
1158 if (bitmap_bit_p (blocks, list[act]))
1159 list[last++] = list[act];
1160
1161 return last;
1162}
1163
1164
b8698a0f 1165/* Execute dataflow analysis on a single dataflow problem.
4d779342 1166
4d779342
DB
1167 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1168 examined or will be computed. For calls from DF_ANALYZE, this is
b8698a0f 1169 the set of blocks that has been passed to DF_SET_BLOCKS.
4d779342
DB
1170*/
1171
23249ac4 1172void
b8698a0f
L
1173df_analyze_problem (struct dataflow *dflow,
1174 bitmap blocks_to_consider,
6fb5fa3c 1175 int *postorder, int n_blocks)
4d779342 1176{
6fb5fa3c
DB
1177 timevar_push (dflow->problem->tv_id);
1178
e7f96023
JH
1179 /* (Re)Allocate the datastructures necessary to solve the problem. */
1180 if (dflow->problem->alloc_fun)
1181 dflow->problem->alloc_fun (blocks_to_consider);
1182
3089f8b5 1183#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1184 if (dflow->problem->verify_start_fun)
1185 dflow->problem->verify_start_fun ();
1186#endif
1187
6fb5fa3c 1188 /* Set up the problem and compute the local information. */
e45dcf9c 1189 if (dflow->problem->local_compute_fun)
6fb5fa3c 1190 dflow->problem->local_compute_fun (blocks_to_consider);
4d779342
DB
1191
1192 /* Solve the equations. */
e45dcf9c 1193 if (dflow->problem->dataflow_fun)
6fb5fa3c
DB
1194 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1195 postorder, n_blocks);
4d779342
DB
1196
1197 /* Massage the solution. */
e45dcf9c 1198 if (dflow->problem->finalize_fun)
6fb5fa3c
DB
1199 dflow->problem->finalize_fun (blocks_to_consider);
1200
3089f8b5 1201#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1202 if (dflow->problem->verify_end_fun)
1203 dflow->problem->verify_end_fun ();
1204#endif
1205
1206 timevar_pop (dflow->problem->tv_id);
1207
1208 dflow->computed = true;
4d779342
DB
1209}
1210
1211
7be64667 1212/* Analyze dataflow info. */
4d779342 1213
7be64667
RB
1214static void
1215df_analyze_1 (void)
4d779342 1216{
6fb5fa3c 1217 int i;
b8698a0f 1218
6fb5fa3c
DB
1219 /* These should be the same. */
1220 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1221
1222 /* We need to do this before the df_verify_all because this is
1223 not kept incrementally up to date. */
1224 df_compute_regs_ever_live (false);
1225 df_process_deferred_rescans ();
1226
6fb5fa3c
DB
1227 if (dump_file)
1228 fprintf (dump_file, "df_analyze called\n");
3089f8b5 1229
0d475361
PB
1230#ifndef ENABLE_DF_CHECKING
1231 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1232#endif
1233 df_verify ();
6fb5fa3c 1234
7be64667
RB
1235 /* Skip over the DF_SCAN problem. */
1236 for (i = 1; i < df->num_problems_defined; i++)
1237 {
1238 struct dataflow *dflow = df->problems_in_order[i];
1239 if (dflow->solutions_dirty)
1240 {
1241 if (dflow->problem->dir == DF_FORWARD)
1242 df_analyze_problem (dflow,
1243 df->blocks_to_analyze,
1244 df->postorder_inverted,
1245 df->n_blocks_inverted);
1246 else
1247 df_analyze_problem (dflow,
1248 df->blocks_to_analyze,
1249 df->postorder,
1250 df->n_blocks);
1251 }
1252 }
1253
1254 if (!df->analyze_subset)
1255 {
1256 BITMAP_FREE (df->blocks_to_analyze);
1257 df->blocks_to_analyze = NULL;
1258 }
1259
1260#ifdef DF_DEBUG_CFG
1261 df_set_clean_cfg ();
1262#endif
1263}
1264
1265/* Analyze dataflow info. */
1266
1267void
1268df_analyze (void)
1269{
1270 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1271 int i;
1272
1273 free (df->postorder);
1274 free (df->postorder_inverted);
1275 df->postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
1276 df->postorder_inverted = XNEWVEC (int, last_basic_block_for_fn (cfun));
1277 df->n_blocks = post_order_compute (df->postorder, true, true);
1278 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1279
6fb5fa3c
DB
1280 for (i = 0; i < df->n_blocks; i++)
1281 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1282
1283#ifdef ENABLE_CHECKING
1284 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1285 the ENTRY block. */
1286 for (i = 0; i < df->n_blocks_inverted; i++)
1287 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1288#endif
4d779342
DB
1289
1290 /* Make sure that we have pruned any unreachable blocks from these
1291 sets. */
6fb5fa3c 1292 if (df->analyze_subset)
4d779342 1293 {
4d779342 1294 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
b8698a0f 1295 df->n_blocks = df_prune_to_subcfg (df->postorder,
6fb5fa3c 1296 df->n_blocks, df->blocks_to_analyze);
b8698a0f 1297 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
7be64667
RB
1298 df->n_blocks_inverted,
1299 df->blocks_to_analyze);
4d779342
DB
1300 BITMAP_FREE (current_all_blocks);
1301 }
1302 else
1303 {
4d779342
DB
1304 df->blocks_to_analyze = current_all_blocks;
1305 current_all_blocks = NULL;
1306 }
1307
7be64667
RB
1308 df_analyze_1 ();
1309}
1310
1311/* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1312 Returns the number of blocks which is always loop->num_nodes. */
1313
1314static int
1315loop_post_order_compute (int *post_order, struct loop *loop)
1316{
1317 edge_iterator *stack;
1318 int sp;
1319 int post_order_num = 0;
1320 bitmap visited;
1321
1322 /* Allocate stack for back-tracking up CFG. */
1323 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1324 sp = 0;
1325
1326 /* Allocate bitmap to track nodes that have been visited. */
1327 visited = BITMAP_ALLOC (NULL);
1328
1329 /* Push the first edge on to the stack. */
1330 stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1331
1332 while (sp)
6fb5fa3c 1333 {
7be64667
RB
1334 edge_iterator ei;
1335 basic_block src;
1336 basic_block dest;
1337
1338 /* Look at the edge on the top of the stack. */
1339 ei = stack[sp - 1];
1340 src = ei_edge (ei)->src;
1341 dest = ei_edge (ei)->dest;
1342
1343 /* Check if the edge destination has been visited yet and mark it
1344 if not so. */
1345 if (flow_bb_inside_loop_p (loop, dest)
1346 && bitmap_set_bit (visited, dest->index))
1347 {
1348 if (EDGE_COUNT (dest->succs) > 0)
1349 /* Since the DEST node has been visited for the first
1350 time, check its successors. */
1351 stack[sp++] = ei_start (dest->succs);
1352 else
1353 post_order[post_order_num++] = dest->index;
1354 }
1355 else
1356 {
1357 if (ei_one_before_end_p (ei)
1358 && src != loop_preheader_edge (loop)->src)
1359 post_order[post_order_num++] = src->index;
1360
1361 if (!ei_one_before_end_p (ei))
1362 ei_next (&stack[sp - 1]);
1363 else
1364 sp--;
1365 }
6fb5fa3c 1366 }
4d779342 1367
7be64667
RB
1368 free (stack);
1369 BITMAP_FREE (visited);
1370
1371 return post_order_num;
1372}
1373
1374/* Compute the reverse top sort order of the inverted sub-CFG specified
1375 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1376
1377static int
1378loop_inverted_post_order_compute (int *post_order, struct loop *loop)
1379{
1380 basic_block bb;
1381 edge_iterator *stack;
1382 int sp;
1383 int post_order_num = 0;
1384 bitmap visited;
1385
1386 /* Allocate stack for back-tracking up CFG. */
1387 stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1388 sp = 0;
1389
1390 /* Allocate bitmap to track nodes that have been visited. */
1391 visited = BITMAP_ALLOC (NULL);
1392
1393 /* Put all latches into the initial work list. In theory we'd want
1394 to start from loop exits but then we'd have the special case of
1395 endless loops. It doesn't really matter for DF iteration order and
1396 handling latches last is probably even better. */
1397 stack[sp++] = ei_start (loop->header->preds);
1398 bitmap_set_bit (visited, loop->header->index);
1399
1400 /* The inverted traversal loop. */
1401 while (sp)
4d779342 1402 {
7be64667
RB
1403 edge_iterator ei;
1404 basic_block pred;
1405
1406 /* Look at the edge on the top of the stack. */
1407 ei = stack[sp - 1];
1408 bb = ei_edge (ei)->dest;
1409 pred = ei_edge (ei)->src;
1410
1411 /* Check if the predecessor has been visited yet and mark it
1412 if not so. */
1413 if (flow_bb_inside_loop_p (loop, pred)
1414 && bitmap_set_bit (visited, pred->index))
1415 {
1416 if (EDGE_COUNT (pred->preds) > 0)
1417 /* Since the predecessor node has been visited for the first
1418 time, check its predecessors. */
1419 stack[sp++] = ei_start (pred->preds);
1420 else
1421 post_order[post_order_num++] = pred->index;
1422 }
1423 else
1424 {
1425 if (flow_bb_inside_loop_p (loop, bb)
1426 && ei_one_before_end_p (ei))
1427 post_order[post_order_num++] = bb->index;
1428
1429 if (!ei_one_before_end_p (ei))
1430 ei_next (&stack[sp - 1]);
1431 else
1432 sp--;
1433 }
4d779342
DB
1434 }
1435
7be64667
RB
1436 free (stack);
1437 BITMAP_FREE (visited);
1438 return post_order_num;
1439}
1440
1441
1442/* Analyze dataflow info for the basic blocks contained in LOOP. */
1443
1444void
1445df_analyze_loop (struct loop *loop)
1446{
1447 free (df->postorder);
1448 free (df->postorder_inverted);
1449
1450 df->postorder = XNEWVEC (int, loop->num_nodes);
1451 df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1452 df->n_blocks = loop_post_order_compute (df->postorder, loop);
1453 df->n_blocks_inverted
1454 = loop_inverted_post_order_compute (df->postorder_inverted, loop);
1455 gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1456 gcc_assert ((unsigned) df->n_blocks_inverted == loop->num_nodes);
1457
1458 bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1459 for (int i = 0; i < df->n_blocks; ++i)
1460 bitmap_set_bit (blocks, df->postorder[i]);
1461 df_set_blocks (blocks);
1462 BITMAP_FREE (blocks);
1463
1464 df_analyze_1 ();
6fb5fa3c
DB
1465}
1466
1467
1468/* Return the number of basic blocks from the last call to df_analyze. */
1469
b8698a0f 1470int
6fb5fa3c
DB
1471df_get_n_blocks (enum df_flow_dir dir)
1472{
1473 gcc_assert (dir != DF_NONE);
1474
1475 if (dir == DF_FORWARD)
1476 {
1477 gcc_assert (df->postorder_inverted);
1478 return df->n_blocks_inverted;
1479 }
1480
1481 gcc_assert (df->postorder);
1482 return df->n_blocks;
1483}
1484
1485
b8698a0f 1486/* Return a pointer to the array of basic blocks in the reverse postorder.
6fb5fa3c
DB
1487 Depending on the direction of the dataflow problem,
1488 it returns either the usual reverse postorder array
1489 or the reverse postorder of inverted traversal. */
1490int *
1491df_get_postorder (enum df_flow_dir dir)
1492{
1493 gcc_assert (dir != DF_NONE);
1494
1495 if (dir == DF_FORWARD)
1496 {
1497 gcc_assert (df->postorder_inverted);
1498 return df->postorder_inverted;
1499 }
1500 gcc_assert (df->postorder);
1501 return df->postorder;
4d779342
DB
1502}
1503
b8698a0f 1504static struct df_problem user_problem;
6fb5fa3c 1505static struct dataflow user_dflow;
4d779342 1506
6fb5fa3c
DB
1507/* Interface for calling iterative dataflow with user defined
1508 confluence and transfer functions. All that is necessary is to
1509 supply DIR, a direction, CONF_FUN_0, a confluence function for
1510 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1511 confluence function, TRANS_FUN, the basic block transfer function,
1512 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1513 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1514
1515void
1516df_simple_dataflow (enum df_flow_dir dir,
1517 df_init_function init_fun,
1518 df_confluence_function_0 con_fun_0,
1519 df_confluence_function_n con_fun_n,
1520 df_transfer_function trans_fun,
1521 bitmap blocks, int * postorder, int n_blocks)
1522{
1523 memset (&user_problem, 0, sizeof (struct df_problem));
1524 user_problem.dir = dir;
1525 user_problem.init_fun = init_fun;
1526 user_problem.con_fun_0 = con_fun_0;
1527 user_problem.con_fun_n = con_fun_n;
1528 user_problem.trans_fun = trans_fun;
1529 user_dflow.problem = &user_problem;
1530 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1531}
1532
b8698a0f 1533
4d779342
DB
1534\f
1535/*----------------------------------------------------------------------------
1536 Functions to support limited incremental change.
1537----------------------------------------------------------------------------*/
1538
1539
1540/* Get basic block info. */
1541
1542static void *
1543df_get_bb_info (struct dataflow *dflow, unsigned int index)
1544{
6fb5fa3c
DB
1545 if (dflow->block_info == NULL)
1546 return NULL;
1547 if (index >= dflow->block_info_size)
1548 return NULL;
e285df08
JH
1549 return (void *)((char *)dflow->block_info
1550 + index * dflow->problem->block_info_elt_size);
4d779342
DB
1551}
1552
1553
1554/* Set basic block info. */
1555
1556static void
b8698a0f 1557df_set_bb_info (struct dataflow *dflow, unsigned int index,
4d779342
DB
1558 void *bb_info)
1559{
6fb5fa3c 1560 gcc_assert (dflow->block_info);
e285df08
JH
1561 memcpy ((char *)dflow->block_info
1562 + index * dflow->problem->block_info_elt_size,
1563 bb_info, dflow->problem->block_info_elt_size);
1564}
1565
1566
1567/* Clear basic block info. */
1568
1569static void
1570df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1571{
1572 gcc_assert (dflow->block_info);
1573 gcc_assert (dflow->block_info_size > index);
1574 memset ((char *)dflow->block_info
1575 + index * dflow->problem->block_info_elt_size,
1576 0, dflow->problem->block_info_elt_size);
4d779342
DB
1577}
1578
1579
6fb5fa3c
DB
1580/* Mark the solutions as being out of date. */
1581
b8698a0f 1582void
6fb5fa3c
DB
1583df_mark_solutions_dirty (void)
1584{
1585 if (df)
1586 {
b8698a0f 1587 int p;
6fb5fa3c
DB
1588 for (p = 1; p < df->num_problems_defined; p++)
1589 df->problems_in_order[p]->solutions_dirty = true;
1590 }
1591}
1592
1593
1594/* Return true if BB needs it's transfer functions recomputed. */
1595
b8698a0f 1596bool
6fb5fa3c
DB
1597df_get_bb_dirty (basic_block bb)
1598{
65e0a0f3
JJ
1599 return bitmap_bit_p ((df_live
1600 ? df_live : df_lr)->out_of_date_transfer_functions,
1601 bb->index);
6fb5fa3c
DB
1602}
1603
1604
1605/* Mark BB as needing it's transfer functions as being out of
1606 date. */
1607
b8698a0f 1608void
6fb5fa3c
DB
1609df_set_bb_dirty (basic_block bb)
1610{
4ec5d4f5 1611 bb->flags |= BB_MODIFIED;
6fb5fa3c
DB
1612 if (df)
1613 {
b8698a0f 1614 int p;
6fb5fa3c
DB
1615 for (p = 1; p < df->num_problems_defined; p++)
1616 {
1617 struct dataflow *dflow = df->problems_in_order[p];
1618 if (dflow->out_of_date_transfer_functions)
1619 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1620 }
1621 df_mark_solutions_dirty ();
1622 }
1623}
1624
1625
e285df08
JH
1626/* Grow the bb_info array. */
1627
1628void
1629df_grow_bb_info (struct dataflow *dflow)
1630{
8b1c6fd7 1631 unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
e285df08
JH
1632 if (dflow->block_info_size < new_size)
1633 {
1634 new_size += new_size / 4;
1635 dflow->block_info
1636 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1637 new_size
1638 * dflow->problem->block_info_elt_size);
1639 memset ((char *)dflow->block_info
1640 + dflow->block_info_size
1641 * dflow->problem->block_info_elt_size,
1642 0,
1643 (new_size - dflow->block_info_size)
1644 * dflow->problem->block_info_elt_size);
1645 dflow->block_info_size = new_size;
1646 }
1647}
1648
c23cd1d6 1649
6fb5fa3c
DB
1650/* Clear the dirty bits. This is called from places that delete
1651 blocks. */
1652static void
1653df_clear_bb_dirty (basic_block bb)
1654{
b8698a0f 1655 int p;
6fb5fa3c
DB
1656 for (p = 1; p < df->num_problems_defined; p++)
1657 {
1658 struct dataflow *dflow = df->problems_in_order[p];
1659 if (dflow->out_of_date_transfer_functions)
1660 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1661 }
1662}
e285df08 1663
4d779342
DB
1664/* Called from the rtl_compact_blocks to reorganize the problems basic
1665 block info. */
1666
b8698a0f 1667void
6fb5fa3c 1668df_compact_blocks (void)
4d779342
DB
1669{
1670 int i, p;
1671 basic_block bb;
e285df08 1672 void *problem_temps;
a7e3698d 1673 bitmap_head tmp;
4d779342 1674
a7e3698d 1675 bitmap_initialize (&tmp, &df_bitmap_obstack);
4d779342
DB
1676 for (p = 0; p < df->num_problems_defined; p++)
1677 {
1678 struct dataflow *dflow = df->problems_in_order[p];
6fb5fa3c
DB
1679
1680 /* Need to reorganize the out_of_date_transfer_functions for the
1681 dflow problem. */
1682 if (dflow->out_of_date_transfer_functions)
1683 {
a7e3698d 1684 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
6fb5fa3c 1685 bitmap_clear (dflow->out_of_date_transfer_functions);
a7e3698d 1686 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
6fb5fa3c 1687 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
a7e3698d 1688 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
6fb5fa3c
DB
1689 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1690
1691 i = NUM_FIXED_BLOCKS;
11cd3bed 1692 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1693 {
a7e3698d 1694 if (bitmap_bit_p (&tmp, bb->index))
6fb5fa3c
DB
1695 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1696 i++;
1697 }
1698 }
1699
1700 /* Now shuffle the block info for the problem. */
e45dcf9c 1701 if (dflow->problem->free_bb_fun)
4d779342 1702 {
8b1c6fd7
DM
1703 int size = (last_basic_block_for_fn (cfun)
1704 * dflow->problem->block_info_elt_size);
e285df08 1705 problem_temps = XNEWVAR (char, size);
4d779342
DB
1706 df_grow_bb_info (dflow);
1707 memcpy (problem_temps, dflow->block_info, size);
1708
1709 /* Copy the bb info from the problem tmps to the proper
1710 place in the block_info vector. Null out the copied
6fb5fa3c 1711 item. The entry and exit blocks never move. */
4d779342 1712 i = NUM_FIXED_BLOCKS;
11cd3bed 1713 FOR_EACH_BB_FN (bb, cfun)
4d779342 1714 {
e285df08
JH
1715 df_set_bb_info (dflow, i,
1716 (char *)problem_temps
1717 + bb->index * dflow->problem->block_info_elt_size);
4d779342
DB
1718 i++;
1719 }
e285df08
JH
1720 memset ((char *)dflow->block_info
1721 + i * dflow->problem->block_info_elt_size, 0,
8b1c6fd7 1722 (last_basic_block_for_fn (cfun) - i)
e285df08 1723 * dflow->problem->block_info_elt_size);
f75aa51c 1724 free (problem_temps);
4d779342
DB
1725 }
1726 }
1727
6fb5fa3c
DB
1728 /* Shuffle the bits in the basic_block indexed arrays. */
1729
1730 if (df->blocks_to_analyze)
1731 {
a7e3698d 1732 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
6fb5fa3c 1733 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
a7e3698d 1734 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
6fb5fa3c 1735 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
a7e3698d 1736 bitmap_copy (&tmp, df->blocks_to_analyze);
6fb5fa3c
DB
1737 bitmap_clear (df->blocks_to_analyze);
1738 i = NUM_FIXED_BLOCKS;
11cd3bed 1739 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 1740 {
a7e3698d 1741 if (bitmap_bit_p (&tmp, bb->index))
6fb5fa3c
DB
1742 bitmap_set_bit (df->blocks_to_analyze, i);
1743 i++;
1744 }
1745 }
1746
a7e3698d 1747 bitmap_clear (&tmp);
6fb5fa3c 1748
4d779342 1749 i = NUM_FIXED_BLOCKS;
11cd3bed 1750 FOR_EACH_BB_FN (bb, cfun)
4d779342 1751 {
557c4b49 1752 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
4d779342
DB
1753 bb->index = i;
1754 i++;
1755 }
1756
0cae8d31 1757 gcc_assert (i == n_basic_blocks_for_fn (cfun));
4d779342 1758
8b1c6fd7 1759 for (; i < last_basic_block_for_fn (cfun); i++)
557c4b49 1760 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
6fb5fa3c
DB
1761
1762#ifdef DF_DEBUG_CFG
1763 if (!df_lr->solutions_dirty)
1764 df_set_clean_cfg ();
1765#endif
4d779342
DB
1766}
1767
1768
6fb5fa3c 1769/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
4d779342
DB
1770 block. There is no excuse for people to do this kind of thing. */
1771
b8698a0f 1772void
6fb5fa3c 1773df_bb_replace (int old_index, basic_block new_block)
4d779342 1774{
6fb5fa3c 1775 int new_block_index = new_block->index;
4d779342
DB
1776 int p;
1777
6fb5fa3c
DB
1778 if (dump_file)
1779 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1780
1781 gcc_assert (df);
06e28de2 1782 gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
6fb5fa3c 1783
4d779342
DB
1784 for (p = 0; p < df->num_problems_defined; p++)
1785 {
1786 struct dataflow *dflow = df->problems_in_order[p];
1787 if (dflow->block_info)
1788 {
4d779342 1789 df_grow_bb_info (dflow);
b8698a0f 1790 df_set_bb_info (dflow, old_index,
6fb5fa3c 1791 df_get_bb_info (dflow, new_block_index));
4d779342
DB
1792 }
1793 }
1794
6fb5fa3c 1795 df_clear_bb_dirty (new_block);
557c4b49 1796 SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
4d779342 1797 new_block->index = old_index;
06e28de2 1798 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
557c4b49 1799 SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
6fb5fa3c
DB
1800}
1801
1802
1803/* Free all of the per basic block dataflow from all of the problems.
1804 This is typically called before a basic block is deleted and the
1805 problem will be reanalyzed. */
1806
1807void
1808df_bb_delete (int bb_index)
1809{
06e28de2 1810 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
6fb5fa3c
DB
1811 int i;
1812
1813 if (!df)
1814 return;
b8698a0f 1815
6fb5fa3c
DB
1816 for (i = 0; i < df->num_problems_defined; i++)
1817 {
1818 struct dataflow *dflow = df->problems_in_order[i];
1819 if (dflow->problem->free_bb_fun)
1820 {
1821 void *bb_info = df_get_bb_info (dflow, bb_index);
1822 if (bb_info)
1823 {
b8698a0f 1824 dflow->problem->free_bb_fun (bb, bb_info);
e285df08 1825 df_clear_bb_info (dflow, bb_index);
6fb5fa3c
DB
1826 }
1827 }
1828 }
1829 df_clear_bb_dirty (bb);
1830 df_mark_solutions_dirty ();
1831}
1832
1833
1834/* Verify that there is a place for everything and everything is in
1835 its place. This is too expensive to run after every pass in the
1836 mainline. However this is an excellent debugging tool if the
6ed3da00 1837 dataflow information is not being updated properly. You can just
6fb5fa3c
DB
1838 sprinkle calls in until you find the place that is changing an
1839 underlying structure without calling the proper updating
0d52bcc1 1840 routine. */
6fb5fa3c
DB
1841
1842void
1843df_verify (void)
1844{
1845 df_scan_verify ();
0d475361 1846#ifdef ENABLE_DF_CHECKING
6fb5fa3c
DB
1847 df_lr_verify_transfer_functions ();
1848 if (df_live)
1849 df_live_verify_transfer_functions ();
0d475361 1850#endif
6fb5fa3c
DB
1851}
1852
1853#ifdef DF_DEBUG_CFG
1854
1855/* Compute an array of ints that describes the cfg. This can be used
1856 to discover places where the cfg is modified by the appropriate
1857 calls have not been made to the keep df informed. The internals of
1858 this are unexciting, the key is that two instances of this can be
1859 compared to see if any changes have been made to the cfg. */
1860
1861static int *
1862df_compute_cfg_image (void)
1863{
1864 basic_block bb;
0cae8d31 1865 int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
6fb5fa3c
DB
1866 int i;
1867 int * map;
1868
04a90bec 1869 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1870 {
1871 size += EDGE_COUNT (bb->succs);
1872 }
1873
1874 map = XNEWVEC (int, size);
1875 map[0] = size;
1876 i = 1;
04a90bec 1877 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
1878 {
1879 edge_iterator ei;
1880 edge e;
1881
1882 map[i++] = bb->index;
1883 FOR_EACH_EDGE (e, ei, bb->succs)
1884 map[i++] = e->dest->index;
1885 map[i++] = -1;
1886 }
1887 map[i] = -1;
1888 return map;
1889}
1890
1891static int *saved_cfg = NULL;
1892
1893
1894/* This function compares the saved version of the cfg with the
1895 current cfg and aborts if the two are identical. The function
1896 silently returns if the cfg has been marked as dirty or the two are
1897 the same. */
1898
1899void
1900df_check_cfg_clean (void)
1901{
1902 int *new_map;
1903
1904 if (!df)
1905 return;
1906
1907 if (df_lr->solutions_dirty)
1908 return;
1909
b8698a0f 1910 if (saved_cfg == NULL)
6fb5fa3c
DB
1911 return;
1912
1913 new_map = df_compute_cfg_image ();
1914 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1915 free (new_map);
4d779342
DB
1916}
1917
6fb5fa3c
DB
1918
1919/* This function builds a cfg fingerprint and squirrels it away in
1920 saved_cfg. */
1921
1922static void
1923df_set_clean_cfg (void)
1924{
04695783 1925 free (saved_cfg);
6fb5fa3c
DB
1926 saved_cfg = df_compute_cfg_image ();
1927}
1928
1929#endif /* DF_DEBUG_CFG */
4d779342
DB
1930/*----------------------------------------------------------------------------
1931 PUBLIC INTERFACES TO QUERY INFORMATION.
1932----------------------------------------------------------------------------*/
1933
1934
4d779342
DB
1935/* Return first def of REGNO within BB. */
1936
b8698a0f 1937df_ref
6fb5fa3c 1938df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
4d779342
DB
1939{
1940 rtx insn;
57512f53 1941 df_ref *def_rec;
a1b53177 1942 unsigned int uid;
4d779342
DB
1943
1944 FOR_BB_INSNS (bb, insn)
1945 {
a1b53177
SB
1946 if (!INSN_P (insn))
1947 continue;
1948
1949 uid = INSN_UID (insn);
6fb5fa3c
DB
1950 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1951 {
57512f53 1952 df_ref def = *def_rec;
6fb5fa3c
DB
1953 if (DF_REF_REGNO (def) == regno)
1954 return def;
1955 }
4d779342
DB
1956 }
1957 return NULL;
1958}
1959
1960
1961/* Return last def of REGNO within BB. */
1962
b8698a0f 1963df_ref
6fb5fa3c 1964df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
4d779342
DB
1965{
1966 rtx insn;
57512f53 1967 df_ref *def_rec;
a1b53177 1968 unsigned int uid;
4d779342
DB
1969
1970 FOR_BB_INSNS_REVERSE (bb, insn)
1971 {
a1b53177
SB
1972 if (!INSN_P (insn))
1973 continue;
4d779342 1974
a1b53177 1975 uid = INSN_UID (insn);
6fb5fa3c
DB
1976 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1977 {
57512f53 1978 df_ref def = *def_rec;
6fb5fa3c
DB
1979 if (DF_REF_REGNO (def) == regno)
1980 return def;
1981 }
4d779342
DB
1982 }
1983
1984 return NULL;
1985}
1986
4d779342
DB
1987/* Finds the reference corresponding to the definition of REG in INSN.
1988 DF is the dataflow object. */
1989
b8698a0f 1990df_ref
6fb5fa3c 1991df_find_def (rtx insn, rtx reg)
4d779342
DB
1992{
1993 unsigned int uid;
57512f53 1994 df_ref *def_rec;
4d779342
DB
1995
1996 if (GET_CODE (reg) == SUBREG)
1997 reg = SUBREG_REG (reg);
1998 gcc_assert (REG_P (reg));
1999
2000 uid = INSN_UID (insn);
6fb5fa3c
DB
2001 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2002 {
57512f53 2003 df_ref def = *def_rec;
226e378f 2004 if (DF_REF_REGNO (def) == REGNO (reg))
6fb5fa3c
DB
2005 return def;
2006 }
4d779342
DB
2007
2008 return NULL;
2009}
2010
2011
b8698a0f 2012/* Return true if REG is defined in INSN, zero otherwise. */
4d779342
DB
2013
2014bool
6fb5fa3c 2015df_reg_defined (rtx insn, rtx reg)
4d779342 2016{
6fb5fa3c 2017 return df_find_def (insn, reg) != NULL;
4d779342 2018}
b8698a0f 2019
4d779342
DB
2020
2021/* Finds the reference corresponding to the use of REG in INSN.
2022 DF is the dataflow object. */
b8698a0f
L
2023
2024df_ref
6fb5fa3c 2025df_find_use (rtx insn, rtx reg)
4d779342
DB
2026{
2027 unsigned int uid;
57512f53 2028 df_ref *use_rec;
4d779342
DB
2029
2030 if (GET_CODE (reg) == SUBREG)
2031 reg = SUBREG_REG (reg);
2032 gcc_assert (REG_P (reg));
2033
2034 uid = INSN_UID (insn);
6fb5fa3c
DB
2035 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2036 {
57512f53 2037 df_ref use = *use_rec;
226e378f 2038 if (DF_REF_REGNO (use) == REGNO (reg))
6fb5fa3c 2039 return use;
b8698a0f 2040 }
6fb5fa3c
DB
2041 if (df->changeable_flags & DF_EQ_NOTES)
2042 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
2043 {
57512f53 2044 df_ref use = *use_rec;
226e378f 2045 if (DF_REF_REGNO (use) == REGNO (reg))
b8698a0f 2046 return use;
6fb5fa3c 2047 }
4d779342
DB
2048 return NULL;
2049}
2050
2051
b8698a0f 2052/* Return true if REG is referenced in INSN, zero otherwise. */
4d779342
DB
2053
2054bool
6fb5fa3c 2055df_reg_used (rtx insn, rtx reg)
4d779342 2056{
6fb5fa3c 2057 return df_find_use (insn, reg) != NULL;
4d779342 2058}
b8698a0f 2059
4d779342
DB
2060\f
2061/*----------------------------------------------------------------------------
2062 Debugging and printing functions.
2063----------------------------------------------------------------------------*/
2064
532aafad
SB
2065/* Write information about registers and basic blocks into FILE.
2066 This is part of making a debugging dump. */
2067
2068void
2069dump_regset (regset r, FILE *outf)
2070{
2071 unsigned i;
2072 reg_set_iterator rsi;
2073
2074 if (r == NULL)
2075 {
2076 fputs (" (nil)", outf);
2077 return;
2078 }
2079
2080 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2081 {
2082 fprintf (outf, " %d", i);
2083 if (i < FIRST_PSEUDO_REGISTER)
2084 fprintf (outf, " [%s]",
2085 reg_names[i]);
2086 }
2087}
2088
2089/* Print a human-readable representation of R on the standard error
2090 stream. This function is designed to be used from within the
2091 debugger. */
2092extern void debug_regset (regset);
2093DEBUG_FUNCTION void
2094debug_regset (regset r)
2095{
2096 dump_regset (r, stderr);
2097 putc ('\n', stderr);
2098}
6fb5fa3c
DB
2099
2100/* Write information about registers and basic blocks into FILE.
2101 This is part of making a debugging dump. */
2102
2103void
2104df_print_regset (FILE *file, bitmap r)
2105{
2106 unsigned int i;
2107 bitmap_iterator bi;
2108
2109 if (r == NULL)
2110 fputs (" (nil)", file);
2111 else
2112 {
2113 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2114 {
2115 fprintf (file, " %d", i);
2116 if (i < FIRST_PSEUDO_REGISTER)
2117 fprintf (file, " [%s]", reg_names[i]);
2118 }
2119 }
2120 fprintf (file, "\n");
2121}
2122
2123
cc806ac1
RS
2124/* Write information about registers and basic blocks into FILE. The
2125 bitmap is in the form used by df_byte_lr. This is part of making a
2126 debugging dump. */
2127
2128void
8d074192 2129df_print_word_regset (FILE *file, bitmap r)
cc806ac1
RS
2130{
2131 unsigned int max_reg = max_reg_num ();
cc806ac1
RS
2132
2133 if (r == NULL)
2134 fputs (" (nil)", file);
2135 else
2136 {
2137 unsigned int i;
8d074192 2138 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
cc806ac1 2139 {
8d074192
BS
2140 bool found = (bitmap_bit_p (r, 2 * i)
2141 || bitmap_bit_p (r, 2 * i + 1));
2142 if (found)
cc806ac1 2143 {
8d074192
BS
2144 int word;
2145 const char * sep = "";
2146 fprintf (file, " %d", i);
2147 fprintf (file, "(");
2148 for (word = 0; word < 2; word++)
2149 if (bitmap_bit_p (r, 2 * i + word))
2150 {
2151 fprintf (file, "%s%d", sep, word);
2152 sep = ", ";
2153 }
2154 fprintf (file, ")");
cc806ac1 2155 }
cc806ac1
RS
2156 }
2157 }
2158 fprintf (file, "\n");
2159}
2160
2161
4d779342 2162/* Dump dataflow info. */
ffd640ed 2163
4d779342 2164void
6fb5fa3c
DB
2165df_dump (FILE *file)
2166{
2167 basic_block bb;
2168 df_dump_start (file);
2169
04a90bec 2170 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2171 {
2172 df_print_bb_index (bb, file);
2173 df_dump_top (bb, file);
2174 df_dump_bottom (bb, file);
2175 }
2176
2177 fprintf (file, "\n");
2178}
2179
2180
ffd640ed
KZ
2181/* Dump dataflow info for df->blocks_to_analyze. */
2182
2183void
2184df_dump_region (FILE *file)
2185{
2186 if (df->blocks_to_analyze)
2187 {
2188 bitmap_iterator bi;
2189 unsigned int bb_index;
2190
2191 fprintf (file, "\n\nstarting region dump\n");
2192 df_dump_start (file);
b8698a0f
L
2193
2194 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
ffd640ed 2195 {
06e28de2 2196 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
7b19209f 2197 dump_bb (file, bb, 0, TDF_DETAILS);
ffd640ed
KZ
2198 }
2199 fprintf (file, "\n");
2200 }
b8698a0f 2201 else
ffd640ed
KZ
2202 df_dump (file);
2203}
2204
2205
6fb5fa3c
DB
2206/* Dump the introductory information for each problem defined. */
2207
2208void
2209df_dump_start (FILE *file)
4d779342
DB
2210{
2211 int i;
2212
23249ac4 2213 if (!df || !file)
4d779342
DB
2214 return;
2215
2216 fprintf (file, "\n\n%s\n", current_function_name ());
2217 fprintf (file, "\nDataflow summary:\n");
6fb5fa3c
DB
2218 if (df->blocks_to_analyze)
2219 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2220 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
4d779342
DB
2221
2222 for (i = 0; i < df->num_problems_defined; i++)
6fb5fa3c
DB
2223 {
2224 struct dataflow *dflow = df->problems_in_order[i];
2225 if (dflow->computed)
2226 {
2227 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2228 if (fun)
c3284718 2229 fun (file);
6fb5fa3c
DB
2230 }
2231 }
2232}
4d779342 2233
6fb5fa3c 2234
7b19209f
SB
2235/* Dump the top or bottom of the block information for BB. */
2236static void
2237df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
6fb5fa3c
DB
2238{
2239 int i;
2240
2241 if (!df || !file)
2242 return;
2243
2244 for (i = 0; i < df->num_problems_defined; i++)
2245 {
2246 struct dataflow *dflow = df->problems_in_order[i];
2247 if (dflow->computed)
2248 {
7b19209f
SB
2249 df_dump_bb_problem_function bbfun;
2250
2251 if (top)
2252 bbfun = dflow->problem->dump_top_fun;
2253 else
2254 bbfun = dflow->problem->dump_bottom_fun;
2255
6fb5fa3c 2256 if (bbfun)
b8698a0f 2257 bbfun (bb, file);
6fb5fa3c
DB
2258 }
2259 }
2260}
2261
7b19209f
SB
2262/* Dump the top of the block information for BB. */
2263
2264void
2265df_dump_top (basic_block bb, FILE *file)
2266{
2267 df_dump_bb_problem_data (bb, file, /*top=*/true);
2268}
6fb5fa3c 2269
b8698a0f 2270/* Dump the bottom of the block information for BB. */
6fb5fa3c
DB
2271
2272void
2273df_dump_bottom (basic_block bb, FILE *file)
7b19209f
SB
2274{
2275 df_dump_bb_problem_data (bb, file, /*top=*/false);
2276}
2277
2278
2279/* Dump information about INSN just before or after dumping INSN itself. */
2280static void
2281df_dump_insn_problem_data (const_rtx insn, FILE *file, bool top)
6fb5fa3c
DB
2282{
2283 int i;
2284
2285 if (!df || !file)
2286 return;
2287
2288 for (i = 0; i < df->num_problems_defined; i++)
2289 {
2290 struct dataflow *dflow = df->problems_in_order[i];
2291 if (dflow->computed)
2292 {
7b19209f
SB
2293 df_dump_insn_problem_function insnfun;
2294
2295 if (top)
2296 insnfun = dflow->problem->dump_insn_top_fun;
2297 else
2298 insnfun = dflow->problem->dump_insn_bottom_fun;
2299
2300 if (insnfun)
2301 insnfun (insn, file);
6fb5fa3c
DB
2302 }
2303 }
4d779342
DB
2304}
2305
7b19209f
SB
2306/* Dump information about INSN before dumping INSN itself. */
2307
2308void
2309df_dump_insn_top (const_rtx insn, FILE *file)
2310{
2311 df_dump_insn_problem_data (insn, file, /*top=*/true);
2312}
2313
2314/* Dump information about INSN after dumping INSN itself. */
2315
2316void
2317df_dump_insn_bottom (const_rtx insn, FILE *file)
2318{
2319 df_dump_insn_problem_data (insn, file, /*top=*/false);
2320}
2321
4d779342 2322
885c9b5d
EB
2323static void
2324df_ref_dump (df_ref ref, FILE *file)
2325{
2326 fprintf (file, "%c%d(%d)",
2327 DF_REF_REG_DEF_P (ref)
2328 ? 'd'
2329 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2330 DF_REF_ID (ref),
2331 DF_REF_REGNO (ref));
2332}
2333
4d779342 2334void
57512f53 2335df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
4d779342
DB
2336{
2337 fprintf (file, "{ ");
6fb5fa3c 2338 while (*ref_rec)
4d779342 2339 {
57512f53 2340 df_ref ref = *ref_rec;
885c9b5d 2341 df_ref_dump (ref, file);
4d779342 2342 if (follow_chain)
23249ac4 2343 df_chain_dump (DF_REF_CHAIN (ref), file);
6fb5fa3c 2344 ref_rec++;
4d779342
DB
2345 }
2346 fprintf (file, "}");
2347}
2348
2349
2350/* Dump either a ref-def or reg-use chain. */
2351
2352void
57512f53 2353df_regs_chain_dump (df_ref ref, FILE *file)
4d779342
DB
2354{
2355 fprintf (file, "{ ");
2356 while (ref)
2357 {
885c9b5d 2358 df_ref_dump (ref, file);
57512f53 2359 ref = DF_REF_NEXT_REG (ref);
4d779342
DB
2360 }
2361 fprintf (file, "}");
2362}
2363
2364
23249ac4 2365static void
6fb5fa3c 2366df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
4d779342 2367{
6fb5fa3c 2368 while (*mws)
23249ac4 2369 {
b8698a0f 2370 fprintf (file, "mw %c r[%d..%d]\n",
57512f53 2371 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
6fb5fa3c
DB
2372 (*mws)->start_regno, (*mws)->end_regno);
2373 mws++;
23249ac4
DB
2374 }
2375}
2376
2377
b8698a0f
L
2378static void
2379df_insn_uid_debug (unsigned int uid,
23249ac4
DB
2380 bool follow_chain, FILE *file)
2381{
6fb5fa3c
DB
2382 fprintf (file, "insn %d luid %d",
2383 uid, DF_INSN_UID_LUID (uid));
4d779342 2384
6fb5fa3c 2385 if (DF_INSN_UID_DEFS (uid))
23249ac4
DB
2386 {
2387 fprintf (file, " defs ");
6fb5fa3c 2388 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
23249ac4
DB
2389 }
2390
6fb5fa3c 2391 if (DF_INSN_UID_USES (uid))
23249ac4
DB
2392 {
2393 fprintf (file, " uses ");
6fb5fa3c
DB
2394 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2395 }
2396
2397 if (DF_INSN_UID_EQ_USES (uid))
2398 {
2399 fprintf (file, " eq uses ");
2400 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
23249ac4
DB
2401 }
2402
6fb5fa3c 2403 if (DF_INSN_UID_MWS (uid))
23249ac4
DB
2404 {
2405 fprintf (file, " mws ");
6fb5fa3c 2406 df_mws_dump (DF_INSN_UID_MWS (uid), file);
23249ac4 2407 }
4d779342
DB
2408 fprintf (file, "\n");
2409}
2410
23249ac4 2411
24e47c76 2412DEBUG_FUNCTION void
6fb5fa3c 2413df_insn_debug (rtx insn, bool follow_chain, FILE *file)
23249ac4 2414{
6fb5fa3c 2415 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
23249ac4
DB
2416}
2417
24e47c76 2418DEBUG_FUNCTION void
6fb5fa3c 2419df_insn_debug_regno (rtx insn, FILE *file)
4d779342 2420{
50e94c7e 2421 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4d779342
DB
2422
2423 fprintf (file, "insn %d bb %d luid %d defs ",
50e94c7e
SB
2424 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2425 DF_INSN_INFO_LUID (insn_info));
2426 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
b8698a0f 2427
4d779342 2428 fprintf (file, " uses ");
50e94c7e 2429 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
6fb5fa3c
DB
2430
2431 fprintf (file, " eq_uses ");
50e94c7e 2432 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
4d779342
DB
2433 fprintf (file, "\n");
2434}
2435
24e47c76 2436DEBUG_FUNCTION void
6fb5fa3c 2437df_regno_debug (unsigned int regno, FILE *file)
4d779342
DB
2438{
2439 fprintf (file, "reg %d defs ", regno);
6fb5fa3c 2440 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
4d779342 2441 fprintf (file, " uses ");
6fb5fa3c
DB
2442 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2443 fprintf (file, " eq_uses ");
2444 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
4d779342
DB
2445 fprintf (file, "\n");
2446}
2447
2448
24e47c76 2449DEBUG_FUNCTION void
57512f53 2450df_ref_debug (df_ref ref, FILE *file)
4d779342
DB
2451{
2452 fprintf (file, "%c%d ",
2453 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2454 DF_REF_ID (ref));
a3f1cee4 2455 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
4d779342
DB
2456 DF_REF_REGNO (ref),
2457 DF_REF_BBNO (ref),
57512f53 2458 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
6fb5fa3c
DB
2459 DF_REF_FLAGS (ref),
2460 DF_REF_TYPE (ref));
2461 if (DF_REF_LOC (ref))
8588f797
AO
2462 {
2463 if (flag_dump_noaddr)
2464 fprintf (file, "loc #(#) chain ");
2465 else
2466 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2467 (void *)*DF_REF_LOC (ref));
2468 }
6fb5fa3c
DB
2469 else
2470 fprintf (file, "chain ");
23249ac4 2471 df_chain_dump (DF_REF_CHAIN (ref), file);
4d779342
DB
2472 fprintf (file, "\n");
2473}
2474\f
2475/* Functions for debugging from GDB. */
2476
24e47c76 2477DEBUG_FUNCTION void
4d779342
DB
2478debug_df_insn (rtx insn)
2479{
6fb5fa3c 2480 df_insn_debug (insn, true, stderr);
4d779342
DB
2481 debug_rtx (insn);
2482}
2483
2484
24e47c76 2485DEBUG_FUNCTION void
4d779342
DB
2486debug_df_reg (rtx reg)
2487{
6fb5fa3c 2488 df_regno_debug (REGNO (reg), stderr);
4d779342
DB
2489}
2490
2491
24e47c76 2492DEBUG_FUNCTION void
4d779342
DB
2493debug_df_regno (unsigned int regno)
2494{
6fb5fa3c 2495 df_regno_debug (regno, stderr);
4d779342
DB
2496}
2497
2498
24e47c76 2499DEBUG_FUNCTION void
57512f53 2500debug_df_ref (df_ref ref)
4d779342 2501{
23249ac4 2502 df_ref_debug (ref, stderr);
4d779342
DB
2503}
2504
2505
24e47c76 2506DEBUG_FUNCTION void
4d779342
DB
2507debug_df_defno (unsigned int defno)
2508{
6fb5fa3c 2509 df_ref_debug (DF_DEFS_GET (defno), stderr);
4d779342
DB
2510}
2511
2512
24e47c76 2513DEBUG_FUNCTION void
4d779342
DB
2514debug_df_useno (unsigned int defno)
2515{
6fb5fa3c 2516 df_ref_debug (DF_USES_GET (defno), stderr);
4d779342
DB
2517}
2518
2519
24e47c76 2520DEBUG_FUNCTION void
4d779342
DB
2521debug_df_chain (struct df_link *link)
2522{
23249ac4 2523 df_chain_dump (link, stderr);
4d779342
DB
2524 fputc ('\n', stderr);
2525}
This page took 2.513054 seconds and 5 git commands to generate.