]> gcc.gnu.org Git - gcc.git/blame - gcc/convert.c
re PR sanitizer/64344 ([UBSAN] ICE with -fsanitize=float-cast-overflow [ICE in -fsani...
[gcc.git] / gcc / convert.c
CommitLineData
5e6908ea 1/* Utility routines for data type conversion for GCC.
5624e564 2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
76e616db 3
1322177d 4This file is part of GCC.
76e616db 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
76e616db 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
76e616db
BK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
76e616db
BK
19
20
21/* These routines are somewhat language-independent utility function
0f41302f 22 intended to be called by the language-specific convert () functions. */
76e616db
BK
23
24#include "config.h"
c5c76735 25#include "system.h"
4977bab6
ZW
26#include "coretypes.h"
27#include "tm.h"
76e616db 28#include "tree.h"
d8a2d370 29#include "stor-layout.h"
76e616db
BK
30#include "flags.h"
31#include "convert.h"
718f9c0f 32#include "diagnostic-core.h"
d33d9e47 33#include "target.h"
b0c48229 34#include "langhooks.h"
9b2b7279 35#include "builtins.h"
85a16bf8 36#include "ubsan.h"
76e616db 37
0a931ce5 38/* Convert EXPR to some pointer or reference type TYPE.
98c76e3c 39 EXPR must be pointer, reference, integer, enumeral, or literal zero;
0f41302f 40 in other cases error is called. */
76e616db
BK
41
42tree
159b3be1 43convert_to_pointer (tree type, tree expr)
76e616db 44{
db3927fb 45 location_t loc = EXPR_LOCATION (expr);
0a931ce5
RS
46 if (TREE_TYPE (expr) == type)
47 return expr;
48
f5963e61 49 switch (TREE_CODE (TREE_TYPE (expr)))
76e616db 50 {
f5963e61
JL
51 case POINTER_TYPE:
52 case REFERENCE_TYPE:
09e881c9
BE
53 {
54 /* If the pointers point to different address spaces, conversion needs
55 to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
56 addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
57 addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
58
59 if (to_as == from_as)
60 return fold_build1_loc (loc, NOP_EXPR, type, expr);
61 else
62 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, expr);
63 }
f5963e61
JL
64
65 case INTEGER_TYPE:
66 case ENUMERAL_TYPE:
67 case BOOLEAN_TYPE:
cf157324
OH
68 {
69 /* If the input precision differs from the target pointer type
70 precision, first convert the input expression to an integer type of
71 the target precision. Some targets, e.g. VMS, need several pointer
72 sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
73 unsigned int pprec = TYPE_PRECISION (type);
74 unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
75
76 if (eprec != pprec)
77 expr = fold_build1_loc (loc, NOP_EXPR,
78 lang_hooks.types.type_for_size (pprec, 0),
79 expr);
80 }
76e616db 81
cf157324 82 return fold_build1_loc (loc, CONVERT_EXPR, type, expr);
76e616db 83
f5963e61
JL
84 default:
85 error ("cannot convert to a pointer type");
86 return convert_to_pointer (type, integer_zero_node);
87 }
76e616db
BK
88}
89
4977bab6 90
76e616db
BK
91/* Convert EXPR to some floating-point type TYPE.
92
0f996086 93 EXPR must be float, fixed-point, integer, or enumeral;
0f41302f 94 in other cases error is called. */
76e616db
BK
95
96tree
159b3be1 97convert_to_real (tree type, tree expr)
76e616db 98{
27a6aa72 99 enum built_in_function fcode = builtin_mathfn_code (expr);
4977bab6
ZW
100 tree itype = TREE_TYPE (expr);
101
c05eeebc
JJ
102 if (TREE_CODE (expr) == COMPOUND_EXPR)
103 {
104 tree t = convert_to_real (type, TREE_OPERAND (expr, 1));
105 if (t == TREE_OPERAND (expr, 1))
106 return expr;
107 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
108 TREE_OPERAND (expr, 0), t);
109 }
110
4b207444
JH
111 /* Disable until we figure out how to decide whether the functions are
112 present in runtime. */
4977bab6 113 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
78bd5210 114 if (optimize
4977bab6
ZW
115 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
116 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
117 {
b3810360
KG
118 switch (fcode)
119 {
120#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
1fb7e3af 121 CASE_MATHFN (COSH)
b3810360 122 CASE_MATHFN (EXP)
1fb7e3af
KG
123 CASE_MATHFN (EXP10)
124 CASE_MATHFN (EXP2)
f060a261 125 CASE_MATHFN (EXPM1)
1fb7e3af
KG
126 CASE_MATHFN (GAMMA)
127 CASE_MATHFN (J0)
128 CASE_MATHFN (J1)
129 CASE_MATHFN (LGAMMA)
1fb7e3af 130 CASE_MATHFN (POW10)
1fb7e3af 131 CASE_MATHFN (SINH)
1fb7e3af
KG
132 CASE_MATHFN (TGAMMA)
133 CASE_MATHFN (Y0)
134 CASE_MATHFN (Y1)
f060a261
RG
135 /* The above functions may set errno differently with float
136 input or output so this transformation is not safe with
137 -fmath-errno. */
138 if (flag_errno_math)
139 break;
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (ERF)
149 CASE_MATHFN (ERFC)
f060a261
RG
150 CASE_MATHFN (LOG)
151 CASE_MATHFN (LOG10)
152 CASE_MATHFN (LOG2)
153 CASE_MATHFN (LOG1P)
f060a261 154 CASE_MATHFN (SIN)
f060a261
RG
155 CASE_MATHFN (TAN)
156 CASE_MATHFN (TANH)
247dbcf4
CH
157 /* The above functions are not safe to do this conversion. */
158 if (!flag_unsafe_math_optimizations)
159 break;
160 CASE_MATHFN (SQRT)
161 CASE_MATHFN (FABS)
162 CASE_MATHFN (LOGB)
b3810360 163#undef CASE_MATHFN
4977bab6 164 {
5039610b 165 tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
b3810360
KG
166 tree newtype = type;
167
168 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
169 the both as the safe type for operation. */
170 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
171 newtype = TREE_TYPE (arg0);
172
247dbcf4
CH
173 /* We consider to convert
174
175 (T1) sqrtT2 ((T2) exprT3)
176 to
177 (T1) sqrtT4 ((T4) exprT3)
178
179 , where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0),
180 and T4 is NEWTYPE. All those types are of floating point types.
181 T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion
182 is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of
183 T2 and T4. See the following URL for a reference:
184 http://stackoverflow.com/questions/9235456/determining-
185 floating-point-square-root
186 */
187 if ((fcode == BUILT_IN_SQRT || fcode == BUILT_IN_SQRTL)
188 && !flag_unsafe_math_optimizations)
189 {
190 /* The following conversion is unsafe even the precision condition
191 below is satisfied:
192
193 (float) sqrtl ((long double) double_val) -> (float) sqrt (double_val)
194 */
195 if (TYPE_MODE (type) != TYPE_MODE (newtype))
196 break;
197
198 int p1 = REAL_MODE_FORMAT (TYPE_MODE (itype))->p;
199 int p2 = REAL_MODE_FORMAT (TYPE_MODE (newtype))->p;
200 if (p1 < p2 * 2 + 2)
201 break;
202 }
203
b3810360
KG
204 /* Be careful about integer to fp conversions.
205 These may overflow still. */
206 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
207 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
208 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
209 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
247dbcf4 210 {
b3810360
KG
211 tree fn = mathfn_built_in (newtype, fcode);
212
213 if (fn)
214 {
5039610b
SL
215 tree arg = fold (convert_to_real (newtype, arg0));
216 expr = build_call_expr (fn, 1, arg);
b3810360
KG
217 if (newtype == type)
218 return expr;
219 }
220 }
4977bab6 221 }
b3810360
KG
222 default:
223 break;
4977bab6
ZW
224 }
225 }
5e8b5b08
EB
226 if (optimize
227 && (((fcode == BUILT_IN_FLOORL
228 || fcode == BUILT_IN_CEILL
229 || fcode == BUILT_IN_ROUNDL
230 || fcode == BUILT_IN_RINTL
231 || fcode == BUILT_IN_TRUNCL
232 || fcode == BUILT_IN_NEARBYINTL)
233 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
234 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
235 || ((fcode == BUILT_IN_FLOOR
236 || fcode == BUILT_IN_CEIL
237 || fcode == BUILT_IN_ROUND
238 || fcode == BUILT_IN_RINT
239 || fcode == BUILT_IN_TRUNC
240 || fcode == BUILT_IN_NEARBYINT)
241 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
242 {
243 tree fn = mathfn_built_in (type, fcode);
244
245 if (fn)
246 {
5039610b 247 tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
5e8b5b08
EB
248
249 /* Make sure (type)arg0 is an extension, otherwise we could end up
250 changing (float)floor(double d) into floorf((float)d), which is
251 incorrect because (float)d uses round-to-nearest and can round
252 up to the next integer. */
253 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
5039610b 254 return build_call_expr (fn, 1, fold (convert_to_real (type, arg)));
5e8b5b08
EB
255 }
256 }
4977bab6
ZW
257
258 /* Propagate the cast into the operation. */
259 if (itype != type && FLOAT_TYPE_P (type))
260 switch (TREE_CODE (expr))
261 {
4f76e46b 262 /* Convert (float)-x into -(float)x. This is safe for
18b0ea8f 263 round-to-nearest rounding mode when the inner type is float. */
4977bab6
ZW
264 case ABS_EXPR:
265 case NEGATE_EXPR:
4f76e46b 266 if (!flag_rounding_math
18b0ea8f
MM
267 && FLOAT_TYPE_P (itype)
268 && TYPE_PRECISION (type) < TYPE_PRECISION (itype))
b1a6f8db
JH
269 return build1 (TREE_CODE (expr), type,
270 fold (convert_to_real (type,
271 TREE_OPERAND (expr, 0))));
272 break;
beb235f8 273 /* Convert (outertype)((innertype0)a+(innertype1)b)
4977bab6
ZW
274 into ((newtype)a+(newtype)b) where newtype
275 is the widest mode from all of these. */
276 case PLUS_EXPR:
277 case MINUS_EXPR:
278 case MULT_EXPR:
279 case RDIV_EXPR:
280 {
281 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
282 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
283
284 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
20ded7a6
JM
285 && FLOAT_TYPE_P (TREE_TYPE (arg1))
286 && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
4977bab6
ZW
287 {
288 tree newtype = type;
15ed7b52
JG
289
290 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
20ded7a6
JM
291 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode
292 || TYPE_MODE (type) == SDmode)
15ed7b52
JG
293 newtype = dfloat32_type_node;
294 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
20ded7a6
JM
295 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode
296 || TYPE_MODE (type) == DDmode)
15ed7b52
JG
297 newtype = dfloat64_type_node;
298 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
20ded7a6
JM
299 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode
300 || TYPE_MODE (type) == TDmode)
15ed7b52
JG
301 newtype = dfloat128_type_node;
302 if (newtype == dfloat32_type_node
303 || newtype == dfloat64_type_node
304 || newtype == dfloat128_type_node)
305 {
306 expr = build2 (TREE_CODE (expr), newtype,
307 fold (convert_to_real (newtype, arg0)),
308 fold (convert_to_real (newtype, arg1)));
309 if (newtype == type)
310 return expr;
311 break;
312 }
313
4977bab6
ZW
314 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
315 newtype = TREE_TYPE (arg0);
316 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
317 newtype = TREE_TYPE (arg1);
20ded7a6
JM
318 /* Sometimes this transformation is safe (cannot
319 change results through affecting double rounding
320 cases) and sometimes it is not. If NEWTYPE is
321 wider than TYPE, e.g. (float)((long double)double
322 + (long double)double) converted to
323 (float)(double + double), the transformation is
324 unsafe regardless of the details of the types
325 involved; double rounding can arise if the result
326 of NEWTYPE arithmetic is a NEWTYPE value half way
327 between two representable TYPE values but the
328 exact value is sufficiently different (in the
329 right direction) for this difference to be
330 visible in ITYPE arithmetic. If NEWTYPE is the
331 same as TYPE, however, the transformation may be
332 safe depending on the types involved: it is safe
333 if the ITYPE has strictly more than twice as many
334 mantissa bits as TYPE, can represent infinities
335 and NaNs if the TYPE can, and has sufficient
336 exponent range for the product or ratio of two
337 values representable in the TYPE to be within the
338 range of normal values of ITYPE. */
339 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
340 && (flag_unsafe_math_optimizations
341 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
342 && real_can_shorten_arithmetic (TYPE_MODE (itype),
8ce94e44
JM
343 TYPE_MODE (type))
344 && !excess_precision_type (newtype))))
4977bab6 345 {
3244e67d
RS
346 expr = build2 (TREE_CODE (expr), newtype,
347 fold (convert_to_real (newtype, arg0)),
348 fold (convert_to_real (newtype, arg1)));
4977bab6
ZW
349 if (newtype == type)
350 return expr;
351 }
352 }
353 }
354 break;
355 default:
356 break;
357 }
358
f5963e61
JL
359 switch (TREE_CODE (TREE_TYPE (expr)))
360 {
361 case REAL_TYPE:
5fc89bfd
JJ
362 /* Ignore the conversion if we don't need to store intermediate
363 results and neither type is a decimal float. */
364 return build1 ((flag_float_store
365 || DECIMAL_FLOAT_TYPE_P (type)
366 || DECIMAL_FLOAT_TYPE_P (itype))
367 ? CONVERT_EXPR : NOP_EXPR, type, expr);
f5963e61
JL
368
369 case INTEGER_TYPE:
370 case ENUMERAL_TYPE:
371 case BOOLEAN_TYPE:
f5963e61
JL
372 return build1 (FLOAT_EXPR, type, expr);
373
0f996086
CF
374 case FIXED_POINT_TYPE:
375 return build1 (FIXED_CONVERT_EXPR, type, expr);
376
f5963e61
JL
377 case COMPLEX_TYPE:
378 return convert (type,
987b67bc
KH
379 fold_build1 (REALPART_EXPR,
380 TREE_TYPE (TREE_TYPE (expr)), expr));
f5963e61
JL
381
382 case POINTER_TYPE:
383 case REFERENCE_TYPE:
384 error ("pointer value used where a floating point value was expected");
385 return convert_to_real (type, integer_zero_node);
386
387 default:
388 error ("aggregate value used where a float was expected");
389 return convert_to_real (type, integer_zero_node);
390 }
76e616db
BK
391}
392
393/* Convert EXPR to some integer (or enum) type TYPE.
394
0f996086
CF
395 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
396 fixed-point or vector; in other cases error is called.
76e616db
BK
397
398 The result of this is always supposed to be a newly created tree node
399 not in use in any existing structure. */
400
401tree
159b3be1 402convert_to_integer (tree type, tree expr)
76e616db 403{
f5963e61
JL
404 enum tree_code ex_form = TREE_CODE (expr);
405 tree intype = TREE_TYPE (expr);
a5e0cd1d
MG
406 unsigned int inprec = element_precision (intype);
407 unsigned int outprec = element_precision (type);
85a16bf8 408 location_t loc = EXPR_LOCATION (expr);
76e616db 409
9c4cb3a3
MM
410 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
411 be. Consider `enum E = { a, b = (enum E) 3 };'. */
d0f062fb 412 if (!COMPLETE_TYPE_P (type))
9c4cb3a3
MM
413 {
414 error ("conversion to incomplete type");
415 return error_mark_node;
416 }
417
c05eeebc
JJ
418 if (ex_form == COMPOUND_EXPR)
419 {
420 tree t = convert_to_integer (type, TREE_OPERAND (expr, 1));
421 if (t == TREE_OPERAND (expr, 1))
422 return expr;
423 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
424 TREE_OPERAND (expr, 0), t);
425 }
426
332d782c
KG
427 /* Convert e.g. (long)round(d) -> lround(d). */
428 /* If we're converting to char, we may encounter differing behavior
429 between converting from double->char vs double->long->char.
430 We're in "undefined" territory but we prefer to be conservative,
431 so only proceed in "unsafe" math mode. */
432 if (optimize
433 && (flag_unsafe_math_optimizations
d2be4368
KG
434 || (long_integer_type_node
435 && outprec >= TYPE_PRECISION (long_integer_type_node))))
332d782c
KG
436 {
437 tree s_expr = strip_float_extensions (expr);
438 tree s_intype = TREE_TYPE (s_expr);
439 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
440 tree fn = 0;
b8698a0f 441
332d782c
KG
442 switch (fcode)
443 {
ea6a6627 444 CASE_FLT_FN (BUILT_IN_CEIL):
1c432a0c 445 /* Only convert in ISO C99 mode. */
d33d9e47 446 if (!targetm.libc_has_function (function_c99_misc))
1c432a0c 447 break;
6c32ee74
UB
448 if (outprec < TYPE_PRECISION (integer_type_node)
449 || (outprec == TYPE_PRECISION (integer_type_node)
738764ef 450 && !TYPE_UNSIGNED (type)))
6c32ee74
UB
451 fn = mathfn_built_in (s_intype, BUILT_IN_ICEIL);
452 else if (outprec == TYPE_PRECISION (long_integer_type_node)
453 && !TYPE_UNSIGNED (type))
f94b1661 454 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
738764ef
RS
455 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
456 && !TYPE_UNSIGNED (type))
457 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
f94b1661
UB
458 break;
459
ea6a6627 460 CASE_FLT_FN (BUILT_IN_FLOOR):
1c432a0c 461 /* Only convert in ISO C99 mode. */
d33d9e47 462 if (!targetm.libc_has_function (function_c99_misc))
1c432a0c 463 break;
6c32ee74
UB
464 if (outprec < TYPE_PRECISION (integer_type_node)
465 || (outprec == TYPE_PRECISION (integer_type_node)
738764ef 466 && !TYPE_UNSIGNED (type)))
6c32ee74
UB
467 fn = mathfn_built_in (s_intype, BUILT_IN_IFLOOR);
468 else if (outprec == TYPE_PRECISION (long_integer_type_node)
469 && !TYPE_UNSIGNED (type))
d8b42d06 470 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
738764ef
RS
471 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
472 && !TYPE_UNSIGNED (type))
473 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
d8b42d06
UB
474 break;
475
ea6a6627 476 CASE_FLT_FN (BUILT_IN_ROUND):
25be91ac
KT
477 /* Only convert in ISO C99 mode and with -fno-math-errno. */
478 if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
44782c0c 479 break;
6c32ee74
UB
480 if (outprec < TYPE_PRECISION (integer_type_node)
481 || (outprec == TYPE_PRECISION (integer_type_node)
738764ef 482 && !TYPE_UNSIGNED (type)))
6c32ee74
UB
483 fn = mathfn_built_in (s_intype, BUILT_IN_IROUND);
484 else if (outprec == TYPE_PRECISION (long_integer_type_node)
485 && !TYPE_UNSIGNED (type))
332d782c 486 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
738764ef
RS
487 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
488 && !TYPE_UNSIGNED (type))
489 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
332d782c
KG
490 break;
491
65bda21f
KG
492 CASE_FLT_FN (BUILT_IN_NEARBYINT):
493 /* Only convert nearbyint* if we can ignore math exceptions. */
332d782c
KG
494 if (flag_trapping_math)
495 break;
496 /* ... Fall through ... */
65bda21f 497 CASE_FLT_FN (BUILT_IN_RINT):
371e764d
KT
498 /* Only convert in ISO C99 mode and with -fno-math-errno. */
499 if (!targetm.libc_has_function (function_c99_misc) || flag_errno_math)
44782c0c 500 break;
6c32ee74
UB
501 if (outprec < TYPE_PRECISION (integer_type_node)
502 || (outprec == TYPE_PRECISION (integer_type_node)
738764ef 503 && !TYPE_UNSIGNED (type)))
6c32ee74 504 fn = mathfn_built_in (s_intype, BUILT_IN_IRINT);
44782c0c 505 else if (outprec == TYPE_PRECISION (long_integer_type_node)
6c32ee74 506 && !TYPE_UNSIGNED (type))
738764ef
RS
507 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
508 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
509 && !TYPE_UNSIGNED (type))
510 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
332d782c 511 break;
2ec76fdb 512
ea6a6627 513 CASE_FLT_FN (BUILT_IN_TRUNC):
5039610b 514 return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0));
2ec76fdb 515
332d782c
KG
516 default:
517 break;
518 }
b8698a0f 519
332d782c
KG
520 if (fn)
521 {
5039610b 522 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
332d782c
KG
523 return convert_to_integer (type, newexpr);
524 }
525 }
526
2c2f70e1
UB
527 /* Convert (int)logb(d) -> ilogb(d). */
528 if (optimize
529 && flag_unsafe_math_optimizations
530 && !flag_trapping_math && !flag_errno_math && flag_finite_math_only
531 && integer_type_node
532 && (outprec > TYPE_PRECISION (integer_type_node)
533 || (outprec == TYPE_PRECISION (integer_type_node)
534 && !TYPE_UNSIGNED (type))))
535 {
536 tree s_expr = strip_float_extensions (expr);
537 tree s_intype = TREE_TYPE (s_expr);
538 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
539 tree fn = 0;
b8698a0f 540
2c2f70e1
UB
541 switch (fcode)
542 {
543 CASE_FLT_FN (BUILT_IN_LOGB):
544 fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
545 break;
546
547 default:
548 break;
549 }
550
551 if (fn)
552 {
553 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
554 return convert_to_integer (type, newexpr);
555 }
556 }
557
f5963e61 558 switch (TREE_CODE (intype))
76e616db 559 {
f5963e61
JL
560 case POINTER_TYPE:
561 case REFERENCE_TYPE:
76e616db 562 if (integer_zerop (expr))
97471d8f
RS
563 return build_int_cst (type, 0);
564
c767899e
OH
565 /* Convert to an unsigned integer of the correct width first, and from
566 there widen/truncate to the required type. Some targets support the
567 coexistence of multiple valid pointer sizes, so fetch the one we need
568 from the type. */
97471d8f 569 expr = fold_build1 (CONVERT_EXPR,
c767899e
OH
570 lang_hooks.types.type_for_size
571 (TYPE_PRECISION (intype), 0),
97471d8f 572 expr);
e7a6c127 573 return fold_convert (type, expr);
76e616db 574
f5963e61
JL
575 case INTEGER_TYPE:
576 case ENUMERAL_TYPE:
577 case BOOLEAN_TYPE:
6175f578 578 case OFFSET_TYPE:
f5963e61 579 /* If this is a logical operation, which just returns 0 or 1, we can
a338ab5a 580 change the type of the expression. */
76e616db 581
6615c446 582 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
76e616db 583 {
5dfa45d0 584 expr = copy_node (expr);
76e616db
BK
585 TREE_TYPE (expr) = type;
586 return expr;
587 }
f5963e61 588
f5963e61
JL
589 /* If we are widening the type, put in an explicit conversion.
590 Similarly if we are not changing the width. After this, we know
591 we are truncating EXPR. */
592
76e616db 593 else if (outprec >= inprec)
4b0d3cbe
MM
594 {
595 enum tree_code code;
596
597 /* If the precision of the EXPR's type is K bits and the
598 destination mode has more bits, and the sign is changing,
599 it is not safe to use a NOP_EXPR. For example, suppose
600 that EXPR's type is a 3-bit unsigned integer type, the
601 TYPE is a 3-bit signed integer type, and the machine mode
602 for the types is 8-bit QImode. In that case, the
603 conversion necessitates an explicit sign-extension. In
604 the signed-to-unsigned case the high-order bits have to
605 be cleared. */
8df83eae 606 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
4b0d3cbe 607 && (TYPE_PRECISION (TREE_TYPE (expr))
69660a70 608 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (expr)))))
4b0d3cbe
MM
609 code = CONVERT_EXPR;
610 else
611 code = NOP_EXPR;
612
007a787d 613 return fold_build1 (code, type, expr);
4b0d3cbe 614 }
76e616db 615
1c013b45
RK
616 /* If TYPE is an enumeral type or a type with a precision less
617 than the number of bits in its mode, do the conversion to the
618 type corresponding to its mode, then do a nop conversion
619 to TYPE. */
620 else if (TREE_CODE (type) == ENUMERAL_TYPE
69660a70 621 || outprec != GET_MODE_PRECISION (TYPE_MODE (type)))
1c013b45 622 return build1 (NOP_EXPR, type,
ae2bcd98 623 convert (lang_hooks.types.type_for_mode
8df83eae 624 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
1c013b45
RK
625 expr));
626
ab29fdfc
RK
627 /* Here detect when we can distribute the truncation down past some
628 arithmetic. For example, if adding two longs and converting to an
629 int, we can equally well convert both to ints and then add.
630 For the operations handled here, such truncation distribution
631 is always safe.
632 It is desirable in these cases:
633 1) when truncating down to full-word from a larger size
634 2) when truncating takes no work.
635 3) when at least one operand of the arithmetic has been extended
636 (as by C's default conversions). In this case we need two conversions
637 if we do the arithmetic as already requested, so we might as well
638 truncate both and then combine. Perhaps that way we need only one.
639
640 Note that in general we cannot do the arithmetic in a type
641 shorter than the desired result of conversion, even if the operands
642 are both extended from a shorter type, because they might overflow
643 if combined in that type. The exceptions to this--the times when
644 two narrow values can be combined in their narrow type even to
645 make a wider result--are handled by "shorten" in build_binary_op. */
76e616db
BK
646
647 switch (ex_form)
648 {
649 case RSHIFT_EXPR:
650 /* We can pass truncation down through right shifting
651 when the shift count is a nonpositive constant. */
652 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
da6d971d 653 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
76e616db
BK
654 goto trunc1;
655 break;
656
657 case LSHIFT_EXPR:
658 /* We can pass truncation down through left shifting
43e4a9d8
EB
659 when the shift count is a nonnegative constant and
660 the target type is unsigned. */
76e616db 661 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
ab29fdfc 662 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
8df83eae 663 && TYPE_UNSIGNED (type)
76e616db
BK
664 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
665 {
666 /* If shift count is less than the width of the truncated type,
667 really shift. */
668 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
669 /* In this case, shifting is like multiplication. */
670 goto trunc1;
671 else
d9a9c5a7
RK
672 {
673 /* If it is >= that width, result is zero.
674 Handling this with trunc1 would give the wrong result:
675 (int) ((long long) a << 32) is well defined (as 0)
676 but (int) a << 32 is undefined and would get a
677 warning. */
678
e7a6c127 679 tree t = build_int_cst (type, 0);
d9a9c5a7
RK
680
681 /* If the original expression had side-effects, we must
682 preserve it. */
683 if (TREE_SIDE_EFFECTS (expr))
3244e67d 684 return build2 (COMPOUND_EXPR, type, expr, t);
d9a9c5a7
RK
685 else
686 return t;
687 }
76e616db
BK
688 }
689 break;
690
d977cb9c
RG
691 case TRUNC_DIV_EXPR:
692 {
693 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
694 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
695
696 /* Don't distribute unless the output precision is at least as big
697 as the actual inputs and it has the same signedness. */
698 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
699 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
700 /* If signedness of arg0 and arg1 don't match,
701 we can't necessarily find a type to compare them in. */
702 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
703 == TYPE_UNSIGNED (TREE_TYPE (arg1)))
704 /* Do not change the sign of the division. */
705 && (TYPE_UNSIGNED (TREE_TYPE (expr))
706 == TYPE_UNSIGNED (TREE_TYPE (arg0)))
707 /* Either require unsigned division or a division by
708 a constant that is not -1. */
709 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
710 || (TREE_CODE (arg1) == INTEGER_CST
711 && !integer_all_onesp (arg1))))
712 goto trunc1;
713 break;
714 }
715
76e616db
BK
716 case MAX_EXPR:
717 case MIN_EXPR:
718 case MULT_EXPR:
719 {
720 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
721 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
722
723 /* Don't distribute unless the output precision is at least as big
724 as the actual inputs. Otherwise, the comparison of the
725 truncated values will be wrong. */
726 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
727 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
728 /* If signedness of arg0 and arg1 don't match,
729 we can't necessarily find a type to compare them in. */
8df83eae
RK
730 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
731 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
76e616db
BK
732 goto trunc1;
733 break;
734 }
735
736 case PLUS_EXPR:
737 case MINUS_EXPR:
738 case BIT_AND_EXPR:
739 case BIT_IOR_EXPR:
740 case BIT_XOR_EXPR:
76e616db
BK
741 trunc1:
742 {
743 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
744 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
745
a2d5091a
JM
746 /* Do not try to narrow operands of pointer subtraction;
747 that will interfere with other folding. */
748 if (ex_form == MINUS_EXPR
749 && CONVERT_EXPR_P (arg0)
750 && CONVERT_EXPR_P (arg1)
751 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
752 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))))
753 break;
754
76e616db
BK
755 if (outprec >= BITS_PER_WORD
756 || TRULY_NOOP_TRUNCATION (outprec, inprec)
757 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
758 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
759 {
760 /* Do the arithmetic in type TYPEX,
761 then convert result to TYPE. */
b3694847 762 tree typex = type;
76e616db
BK
763
764 /* Can't do arithmetic in enumeral types
765 so use an integer type that will hold the values. */
766 if (TREE_CODE (typex) == ENUMERAL_TYPE)
bcfee578
EB
767 typex
768 = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
769 TYPE_UNSIGNED (typex));
76e616db
BK
770
771 /* But now perhaps TYPEX is as wide as INPREC.
772 In that case, do nothing special here.
773 (Otherwise would recurse infinitely in convert. */
774 if (TYPE_PRECISION (typex) != inprec)
775 {
776 /* Don't do unsigned arithmetic where signed was wanted,
777 or vice versa.
3cc247a8 778 Exception: if both of the original operands were
159b3be1 779 unsigned then we can safely do the work as unsigned.
43e4a9d8
EB
780 Exception: shift operations take their type solely
781 from the first argument.
782 Exception: the LSHIFT_EXPR case above requires that
783 we perform this operation unsigned lest we produce
784 signed-overflow undefinedness.
76e616db
BK
785 And we may need to do it as unsigned
786 if we truncate to the original size. */
8df83eae
RK
787 if (TYPE_UNSIGNED (TREE_TYPE (expr))
788 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
789 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
43e4a9d8
EB
790 || ex_form == LSHIFT_EXPR
791 || ex_form == RSHIFT_EXPR
792 || ex_form == LROTATE_EXPR
793 || ex_form == RROTATE_EXPR))
4a2ab192
KH
794 || ex_form == LSHIFT_EXPR
795 /* If we have !flag_wrapv, and either ARG0 or
796 ARG1 is of a signed type, we have to do
dfb88126
RG
797 PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
798 type in case the operation in outprec precision
799 could overflow. Otherwise, we would introduce
4a2ab192 800 signed-overflow undefinedness. */
eeef0e45
ILT
801 || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
802 || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
dfb88126
RG
803 && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
804 > outprec)
805 || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
806 > outprec))
4a2ab192 807 && (ex_form == PLUS_EXPR
dfb88126
RG
808 || ex_form == MINUS_EXPR
809 || ex_form == MULT_EXPR)))
bcfee578
EB
810 {
811 if (!TYPE_UNSIGNED (typex))
812 typex = unsigned_type_for (typex);
813 }
ceef8ce4 814 else
bcfee578
EB
815 {
816 if (TYPE_UNSIGNED (typex))
817 typex = signed_type_for (typex);
818 }
76e616db 819 return convert (type,
987b67bc
KH
820 fold_build2 (ex_form, typex,
821 convert (typex, arg0),
822 convert (typex, arg1)));
76e616db
BK
823 }
824 }
825 }
826 break;
827
828 case NEGATE_EXPR:
829 case BIT_NOT_EXPR:
d283912a
RS
830 /* This is not correct for ABS_EXPR,
831 since we must test the sign before truncation. */
76e616db 832 {
bcfee578
EB
833 /* Do the arithmetic in type TYPEX,
834 then convert result to TYPE. */
835 tree typex = type;
836
837 /* Can't do arithmetic in enumeral types
838 so use an integer type that will hold the values. */
839 if (TREE_CODE (typex) == ENUMERAL_TYPE)
840 typex
841 = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
842 TYPE_UNSIGNED (typex));
843
844 if (!TYPE_UNSIGNED (typex))
845 typex = unsigned_type_for (typex);
1f6f3d15
ILT
846 return convert (type,
847 fold_build1 (ex_form, typex,
848 convert (typex,
849 TREE_OPERAND (expr, 0))));
76e616db
BK
850 }
851
d822570f 852 CASE_CONVERT:
3767c0fd
R
853 /* Don't introduce a
854 "can't convert between vector values of different size" error. */
855 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
856 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
857 != GET_MODE_SIZE (TYPE_MODE (type))))
858 break;
76e616db
BK
859 /* If truncating after truncating, might as well do all at once.
860 If truncating after extending, we may get rid of wasted work. */
861 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
862
863 case COND_EXPR:
f5963e61 864 /* It is sometimes worthwhile to push the narrowing down through
5ccde5a0
JJ
865 the conditional and never loses. A COND_EXPR may have a throw
866 as one operand, which then has void type. Just leave void
867 operands as they are. */
987b67bc 868 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
5ccde5a0
JJ
869 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
870 ? TREE_OPERAND (expr, 1)
871 : convert (type, TREE_OPERAND (expr, 1)),
872 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
873 ? TREE_OPERAND (expr, 2)
874 : convert (type, TREE_OPERAND (expr, 2)));
76e616db 875
31031edd
JL
876 default:
877 break;
76e616db
BK
878 }
879
c53153e7
JH
880 /* When parsing long initializers, we might end up with a lot of casts.
881 Shortcut this. */
882 if (TREE_CODE (expr) == INTEGER_CST)
883 return fold_convert (type, expr);
0b87eff5 884 return build1 (CONVERT_EXPR, type, expr);
76e616db 885
f5963e61 886 case REAL_TYPE:
6a7253a4
MP
887 if (flag_sanitize & SANITIZE_FLOAT_CAST
888 && current_function_decl != NULL_TREE
889 && !lookup_attribute ("no_sanitize_undefined",
890 DECL_ATTRIBUTES (current_function_decl)))
85a16bf8
MP
891 {
892 expr = save_expr (expr);
e5341100 893 tree check = ubsan_instrument_float_cast (loc, type, expr, expr);
85a16bf8
MP
894 expr = build1 (FIX_TRUNC_EXPR, type, expr);
895 if (check == NULL)
896 return expr;
897 return fold_build2 (COMPOUND_EXPR, TREE_TYPE (expr), check, expr);
898 }
899 else
900 return build1 (FIX_TRUNC_EXPR, type, expr);
76e616db 901
0f996086
CF
902 case FIXED_POINT_TYPE:
903 return build1 (FIXED_CONVERT_EXPR, type, expr);
904
f5963e61
JL
905 case COMPLEX_TYPE:
906 return convert (type,
987b67bc
KH
907 fold_build1 (REALPART_EXPR,
908 TREE_TYPE (TREE_TYPE (expr)), expr));
0b127821 909
0b4565c9 910 case VECTOR_TYPE:
3a021db2 911 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
0b4565c9 912 {
d8a07487 913 error ("can%'t convert between vector values of different size");
0b4565c9
BS
914 return error_mark_node;
915 }
4d3c798d 916 return build1 (VIEW_CONVERT_EXPR, type, expr);
0b4565c9 917
f5963e61
JL
918 default:
919 error ("aggregate value used where an integer was expected");
920 return convert (type, integer_zero_node);
921 }
76e616db 922}
0b127821
RS
923
924/* Convert EXPR to the complex type TYPE in the usual ways. */
925
926tree
159b3be1 927convert_to_complex (tree type, tree expr)
0b127821 928{
0b127821 929 tree subtype = TREE_TYPE (type);
159b3be1 930
f5963e61 931 switch (TREE_CODE (TREE_TYPE (expr)))
0b127821 932 {
f5963e61 933 case REAL_TYPE:
0f996086 934 case FIXED_POINT_TYPE:
f5963e61
JL
935 case INTEGER_TYPE:
936 case ENUMERAL_TYPE:
937 case BOOLEAN_TYPE:
3244e67d
RS
938 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
939 convert (subtype, integer_zero_node));
0b127821 940
f5963e61
JL
941 case COMPLEX_TYPE:
942 {
943 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
944
945 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
946 return expr;
c05eeebc
JJ
947 else if (TREE_CODE (expr) == COMPOUND_EXPR)
948 {
949 tree t = convert_to_complex (type, TREE_OPERAND (expr, 1));
950 if (t == TREE_OPERAND (expr, 1))
951 return expr;
952 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR,
953 TREE_TYPE (t), TREE_OPERAND (expr, 0), t);
954 }
f5963e61 955 else if (TREE_CODE (expr) == COMPLEX_EXPR)
987b67bc
KH
956 return fold_build2 (COMPLEX_EXPR, type,
957 convert (subtype, TREE_OPERAND (expr, 0)),
958 convert (subtype, TREE_OPERAND (expr, 1)));
f5963e61
JL
959 else
960 {
961 expr = save_expr (expr);
962 return
987b67bc
KH
963 fold_build2 (COMPLEX_EXPR, type,
964 convert (subtype,
965 fold_build1 (REALPART_EXPR,
966 TREE_TYPE (TREE_TYPE (expr)),
967 expr)),
968 convert (subtype,
969 fold_build1 (IMAGPART_EXPR,
970 TREE_TYPE (TREE_TYPE (expr)),
971 expr)));
f5963e61
JL
972 }
973 }
0b127821 974
f5963e61
JL
975 case POINTER_TYPE:
976 case REFERENCE_TYPE:
977 error ("pointer value used where a complex was expected");
978 return convert_to_complex (type, integer_zero_node);
979
980 default:
981 error ("aggregate value used where a complex was expected");
982 return convert_to_complex (type, integer_zero_node);
983 }
0b127821 984}
0b4565c9
BS
985
986/* Convert EXPR to the vector type TYPE in the usual ways. */
987
988tree
159b3be1 989convert_to_vector (tree type, tree expr)
0b4565c9 990{
0b4565c9
BS
991 switch (TREE_CODE (TREE_TYPE (expr)))
992 {
993 case INTEGER_TYPE:
994 case VECTOR_TYPE:
3a021db2 995 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
0b4565c9 996 {
d8a07487 997 error ("can%'t convert between vector values of different size");
0b4565c9
BS
998 return error_mark_node;
999 }
4d3c798d 1000 return build1 (VIEW_CONVERT_EXPR, type, expr);
0b4565c9
BS
1001
1002 default:
d8a07487 1003 error ("can%'t convert value to a vector");
273d67e7 1004 return error_mark_node;
0b4565c9
BS
1005 }
1006}
0f996086
CF
1007
1008/* Convert EXPR to some fixed-point type TYPE.
1009
1010 EXPR must be fixed-point, float, integer, or enumeral;
1011 in other cases error is called. */
1012
1013tree
1014convert_to_fixed (tree type, tree expr)
1015{
1016 if (integer_zerop (expr))
1017 {
1018 tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
1019 return fixed_zero_node;
1020 }
1021 else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
1022 {
1023 tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
1024 return fixed_one_node;
1025 }
1026
1027 switch (TREE_CODE (TREE_TYPE (expr)))
1028 {
1029 case FIXED_POINT_TYPE:
1030 case INTEGER_TYPE:
1031 case ENUMERAL_TYPE:
1032 case BOOLEAN_TYPE:
1033 case REAL_TYPE:
1034 return build1 (FIXED_CONVERT_EXPR, type, expr);
1035
1036 case COMPLEX_TYPE:
1037 return convert (type,
1038 fold_build1 (REALPART_EXPR,
1039 TREE_TYPE (TREE_TYPE (expr)), expr));
1040
1041 default:
1042 error ("aggregate value used where a fixed-point was expected");
1043 return error_mark_node;
1044 }
1045}
This page took 4.247555 seconds and 5 git commands to generate.