]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(simple_if): Save stmt_count, and print empty body warning here.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
9a1c7cd7 37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 44
317417a2
JW
45#if 0
46/* ??? This fails because REAL_VALUE_TYPE is `double' making it impossible to
47 represent and output `long double' constants. This causes problems during
48 a bootstrap with enquire/float.h, and hence must be disabled for now.
49 To fix, we need to implement code for TFmode just like the existing XFmode
50 support in real.[ch]. */
95dea81f
JW
51/* Sparc ABI says that long double is 4 words. */
52
d9ca49d5 53#define LONG_DOUBLE_TYPE_SIZE 128
317417a2 54#endif
d9ca49d5 55
1bb87f28 56#define PTRDIFF_TYPE "int"
1ede52a6
RS
57/* In 2.4 it should work to delete this.
58 #define SIZE_TYPE "int" */
1bb87f28
JW
59#define WCHAR_TYPE "short unsigned int"
60#define WCHAR_TYPE_SIZE 16
61
98ccf8fe
RK
62/* Omit frame pointer at high optimization levels. */
63
1bb87f28
JW
64#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
65{ \
66 if (OPTIMIZE >= 2) \
67 { \
68 flag_omit_frame_pointer = 1; \
1bb87f28
JW
69 } \
70}
71
5b485d2c
JW
72/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
73 code into the rtl. Also, if we are profiling, we cannot eliminate
74 the frame pointer (because the return address will get smashed). */
75
76#define OVERRIDE_OPTIONS \
77 do { if (profile_flag || profile_block_flag) \
78 flag_omit_frame_pointer = 0, flag_pic = 0; } while (0)
79
1bb87f28
JW
80/* These compiler options take an argument. We ignore -target for now. */
81
82#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
83 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
84 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
85
86/* Names to predefine in the preprocessor for this target machine. */
87
f19c1a78
JW
88/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
89 new versions, which have an incompatible va-sparc.h file. This matters
90 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
91 wrong varargs file when it is compiled with a different version of gcc. */
92
93#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__"
1bb87f28
JW
94
95/* Print subsidiary information on the compiler version in use. */
96
97#define TARGET_VERSION fprintf (stderr, " (sparc)");
98
99/* Generate DBX debugging information. */
100
101#define DBX_DEBUGGING_INFO
102
103/* Run-time compilation parameters selecting different hardware subsets. */
104
105extern int target_flags;
106
107/* Nonzero if we should generate code to use the fpu. */
108#define TARGET_FPU (target_flags & 1)
109
110/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
111 use fast return insns, but lose some generality. */
112#define TARGET_EPILOGUE (target_flags & 2)
113
95dea81f
JW
114/* Nonzero if we should assume that double pointers might be unaligned.
115 This can happen when linking gcc compiled code with other compilers,
116 because the ABI only guarantees 4 byte alignment. */
117#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 118
885d8175
JW
119/* Nonzero means that we should generate code for a v8 sparc. */
120#define TARGET_V8 (target_flags & 64)
121
122/* Nonzero means that we should generate code for a sparclite. */
123#define TARGET_SPARCLITE (target_flags & 128)
124
5b485d2c 125/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
126 model, i.e. no save/restore instructions are generated, in the most
127 efficient manner. This code is not compatible with normal sparc code. */
128/* This is not a user selectable option yet, because it requires changes
129 that are not yet switchable via command line arguments. */
5b485d2c
JW
130#define TARGET_FRW (target_flags & 256)
131
9a1c7cd7
JW
132/* Nonzero means that we should generate code using a flat register window
133 model, i.e. no save/restore instructions are generated, but which is
134 compatible with normal sparc code. This is the same as above, except
135 that the frame pointer is %l6 instead of %fp. This code is not as efficient
136 as TARGET_FRW, because it has one less allocatable register. */
137/* This is not a user selectable option yet, because it requires changes
138 that are not yet switchable via command line arguments. */
139#define TARGET_FRW_COMPAT (target_flags & 512)
140
1bb87f28
JW
141/* Macro to define tables used to set the flags.
142 This is a list in braces of pairs in braces,
143 each pair being { "NAME", VALUE }
144 where VALUE is the bits to set or minus the bits to clear.
145 An empty string NAME is used to identify the default VALUE. */
146
147#define TARGET_SWITCHES \
148 { {"fpu", 1}, \
26c5587d
JW
149 {"no-fpu", -1}, \
150 {"hard-float", 1}, \
1bb87f28
JW
151 {"soft-float", -1}, \
152 {"epilogue", 2}, \
153 {"no-epilogue", -2}, \
95dea81f
JW
154 {"unaligned-doubles", 4}, \
155 {"no-unaligned-doubles", -4},\
885d8175
JW
156 {"v8", 64}, \
157 {"no-v8", -64}, \
158 {"sparclite", 128}, \
a66279da 159 {"sparclite", -1}, \
885d8175 160 {"no-sparclite", -128}, \
a66279da 161 {"no-sparclite", 1}, \
9a1c7cd7
JW
162/* {"frw", 256}, */ \
163/* {"no-frw", -256}, */ \
164/* {"frw-compat", 256+512}, */ \
165/* {"no-frw-compat", -(256+512)}, */ \
b1fc14e5 166 { "", TARGET_DEFAULT}}
1bb87f28
JW
167
168#define TARGET_DEFAULT 3
169\f
170/* target machine storage layout */
171
172/* Define this if most significant bit is lowest numbered
173 in instructions that operate on numbered bit-fields. */
174#define BITS_BIG_ENDIAN 1
175
176/* Define this if most significant byte of a word is the lowest numbered. */
177/* This is true on the SPARC. */
178#define BYTES_BIG_ENDIAN 1
179
180/* Define this if most significant word of a multiword number is the lowest
181 numbered. */
182/* Doubles are stored in memory with the high order word first. This
183 matters when cross-compiling. */
184#define WORDS_BIG_ENDIAN 1
185
b4ac57ab 186/* number of bits in an addressable storage unit */
1bb87f28
JW
187#define BITS_PER_UNIT 8
188
189/* Width in bits of a "word", which is the contents of a machine register.
190 Note that this is not necessarily the width of data type `int';
191 if using 16-bit ints on a 68000, this would still be 32.
192 But on a machine with 16-bit registers, this would be 16. */
193#define BITS_PER_WORD 32
194#define MAX_BITS_PER_WORD 32
195
196/* Width of a word, in units (bytes). */
197#define UNITS_PER_WORD 4
198
199/* Width in bits of a pointer.
200 See also the macro `Pmode' defined below. */
201#define POINTER_SIZE 32
202
203/* Allocation boundary (in *bits*) for storing arguments in argument list. */
204#define PARM_BOUNDARY 32
205
206/* Boundary (in *bits*) on which stack pointer should be aligned. */
207#define STACK_BOUNDARY 64
208
10d1b70f
JW
209/* ALIGN FRAMES on double word boundaries */
210
211#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
212
1bb87f28
JW
213/* Allocation boundary (in *bits*) for the code of a function. */
214#define FUNCTION_BOUNDARY 32
215
216/* Alignment of field after `int : 0' in a structure. */
217#define EMPTY_FIELD_BOUNDARY 32
218
219/* Every structure's size must be a multiple of this. */
220#define STRUCTURE_SIZE_BOUNDARY 8
221
222/* A bitfield declared as `int' forces `int' alignment for the struct. */
223#define PCC_BITFIELD_TYPE_MATTERS 1
224
225/* No data type wants to be aligned rounder than this. */
226#define BIGGEST_ALIGNMENT 64
227
77a02b01
JW
228/* The best alignment to use in cases where we have a choice. */
229#define FASTEST_ALIGNMENT 64
230
1bb87f28
JW
231/* Make strings word-aligned so strcpy from constants will be faster. */
232#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
233 ((TREE_CODE (EXP) == STRING_CST \
234 && (ALIGN) < FASTEST_ALIGNMENT) \
235 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
236
237/* Make arrays of chars word-aligned for the same reasons. */
238#define DATA_ALIGNMENT(TYPE, ALIGN) \
239 (TREE_CODE (TYPE) == ARRAY_TYPE \
240 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 241 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 242
b4ac57ab 243/* Set this nonzero if move instructions will actually fail to work
1bb87f28 244 when given unaligned data. */
b4ac57ab 245#define STRICT_ALIGNMENT 1
1bb87f28
JW
246
247/* Things that must be doubleword aligned cannot go in the text section,
248 because the linker fails to align the text section enough!
249 Put them in the data section. */
250#define MAX_TEXT_ALIGN 32
251
252#define SELECT_SECTION(T,RELOC) \
253{ \
254 if (TREE_CODE (T) == VAR_DECL) \
255 { \
256 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
257 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
258 && ! (flag_pic && (RELOC))) \
259 text_section (); \
260 else \
261 data_section (); \
262 } \
263 else if (TREE_CODE (T) == CONSTRUCTOR) \
264 { \
265 if (flag_pic != 0 && (RELOC) != 0) \
266 data_section (); \
267 } \
268 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
269 { \
270 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
271 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
272 data_section (); \
273 else \
274 text_section (); \
275 } \
276}
277
278/* Use text section for a constant
279 unless we need more alignment than that offers. */
280#define SELECT_RTX_SECTION(MODE, X) \
281{ \
282 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
283 && ! (flag_pic && symbolic_operand (X))) \
284 text_section (); \
285 else \
286 data_section (); \
287}
288\f
289/* Standard register usage. */
290
291/* Number of actual hardware registers.
292 The hardware registers are assigned numbers for the compiler
293 from 0 to just below FIRST_PSEUDO_REGISTER.
294 All registers that the compiler knows about must be given numbers,
295 even those that are not normally considered general registers.
296
297 SPARC has 32 integer registers and 32 floating point registers. */
298
299#define FIRST_PSEUDO_REGISTER 64
300
301/* 1 for registers that have pervasive standard uses
302 and are not available for the register allocator.
5b485d2c 303 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 304 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
305 g1 through g4 are free to use as temporaries.
306 g5 through g7 are reserved for the operating system. */
1bb87f28 307#define FIXED_REGISTERS \
d9ca49d5 308 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
309 0, 0, 0, 0, 0, 0, 1, 0, \
310 0, 0, 0, 0, 0, 0, 0, 0, \
311 0, 0, 0, 0, 0, 0, 1, 1, \
312 \
313 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0, \
315 0, 0, 0, 0, 0, 0, 0, 0, \
316 0, 0, 0, 0, 0, 0, 0, 0}
317
318/* 1 for registers not available across function calls.
319 These must include the FIXED_REGISTERS and also any
320 registers that can be used without being saved.
321 The latter must include the registers where values are returned
322 and the register where structure-value addresses are passed.
323 Aside from that, you can include as many other registers as you like. */
324#define CALL_USED_REGISTERS \
325 {1, 1, 1, 1, 1, 1, 1, 1, \
326 1, 1, 1, 1, 1, 1, 1, 1, \
327 0, 0, 0, 0, 0, 0, 0, 0, \
328 0, 0, 0, 0, 0, 0, 1, 1, \
329 \
330 1, 1, 1, 1, 1, 1, 1, 1, \
331 1, 1, 1, 1, 1, 1, 1, 1, \
332 1, 1, 1, 1, 1, 1, 1, 1, \
333 1, 1, 1, 1, 1, 1, 1, 1}
334
26c5587d
JW
335/* If !TARGET_FPU, then make the fp registers fixed so that they won't
336 be allocated. */
337
338#define CONDITIONAL_REGISTER_USAGE \
339do \
340 { \
341 if (! TARGET_FPU) \
342 { \
343 int regno; \
344 for (regno = 32; regno < 64; regno++) \
345 fixed_regs[regno] = 1; \
346 } \
347 } \
348while (0)
349
1bb87f28
JW
350/* Return number of consecutive hard regs needed starting at reg REGNO
351 to hold something of mode MODE.
352 This is ordinarily the length in words of a value of mode MODE
353 but can be less for certain modes in special long registers.
354
355 On SPARC, ordinary registers hold 32 bits worth;
356 this means both integer and floating point registers.
357
358 We use vectors to keep this information about registers. */
359
360/* How many hard registers it takes to make a register of this mode. */
361extern int hard_regno_nregs[];
362
363#define HARD_REGNO_NREGS(REGNO, MODE) \
364 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
365
366/* Value is 1 if register/mode pair is acceptable on sparc. */
367extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
368
369/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
370 On SPARC, the cpu registers can hold any mode but the float registers
371 can only hold SFmode or DFmode. See sparc.c for how we
372 initialize this. */
373#define HARD_REGNO_MODE_OK(REGNO, MODE) \
374 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
375
376/* Value is 1 if it is a good idea to tie two pseudo registers
377 when one has mode MODE1 and one has mode MODE2.
378 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
379 for any hard reg, then this must be 0 for correct output. */
380#define MODES_TIEABLE_P(MODE1, MODE2) \
381 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
382
383/* Specify the registers used for certain standard purposes.
384 The values of these macros are register numbers. */
385
386/* SPARC pc isn't overloaded on a register that the compiler knows about. */
387/* #define PC_REGNUM */
388
389/* Register to use for pushing function arguments. */
390#define STACK_POINTER_REGNUM 14
391
392/* Actual top-of-stack address is 92 greater than the contents
393 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
394 for the ins and local registers, 4 byte for structure return address, and
395 24 bytes for the 6 register parameters. */
396#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
397
398/* Base register for access to local variables of the function. */
399#define FRAME_POINTER_REGNUM 30
400
401#if 0
402/* Register that is used for the return address. */
403#define RETURN_ADDR_REGNUM 15
404#endif
405
406/* Value should be nonzero if functions must have frame pointers.
407 Zero means the frame pointer need not be set up (and parms
408 may be accessed via the stack pointer) in functions that seem suitable.
409 This is computed in `reload', in reload1.c.
410
c0524a34 411 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
412extern int leaf_function;
413
414#define FRAME_POINTER_REQUIRED \
a72cb8ec 415 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
416
417/* C statement to store the difference between the frame pointer
418 and the stack pointer values immediately after the function prologue.
419
420 Note, we always pretend that this is a leaf function because if
421 it's not, there's no point in trying to eliminate the
422 frame pointer. If it is a leaf function, we guessed right! */
423#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
424 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
425 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
426
427/* Base register for access to arguments of the function. */
428#define ARG_POINTER_REGNUM 30
429
430/* Register in which static-chain is passed to a function. */
431/* ??? */
432#define STATIC_CHAIN_REGNUM 1
433
434/* Register which holds offset table for position-independent
435 data references. */
436
437#define PIC_OFFSET_TABLE_REGNUM 23
438
439#define INITIALIZE_PIC initialize_pic ()
440#define FINALIZE_PIC finalize_pic ()
441
d9ca49d5 442/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 443 in memory. */
d9ca49d5 444#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 445 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 446
1bb87f28
JW
447/* Functions which return large structures get the address
448 to place the wanted value at offset 64 from the frame.
449 Must reserve 64 bytes for the in and local registers. */
450/* Used only in other #defines in this file. */
451#define STRUCT_VALUE_OFFSET 64
452
453#define STRUCT_VALUE \
454 gen_rtx (MEM, Pmode, \
455 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
456 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
457#define STRUCT_VALUE_INCOMING \
458 gen_rtx (MEM, Pmode, \
459 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
460 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
461\f
462/* Define the classes of registers for register constraints in the
463 machine description. Also define ranges of constants.
464
465 One of the classes must always be named ALL_REGS and include all hard regs.
466 If there is more than one class, another class must be named NO_REGS
467 and contain no registers.
468
469 The name GENERAL_REGS must be the name of a class (or an alias for
470 another name such as ALL_REGS). This is the class of registers
471 that is allowed by "g" or "r" in a register constraint.
472 Also, registers outside this class are allocated only when
473 instructions express preferences for them.
474
475 The classes must be numbered in nondecreasing order; that is,
476 a larger-numbered class must never be contained completely
477 in a smaller-numbered class.
478
479 For any two classes, it is very desirable that there be another
480 class that represents their union. */
481
482/* The SPARC has two kinds of registers, general and floating point. */
483
484enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
485
486#define N_REG_CLASSES (int) LIM_REG_CLASSES
487
488/* Give names of register classes as strings for dump file. */
489
490#define REG_CLASS_NAMES \
491 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
492
493/* Define which registers fit in which classes.
494 This is an initializer for a vector of HARD_REG_SET
495 of length N_REG_CLASSES. */
496
497#if 0 && defined (__GNUC__)
498#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
499#else
500#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
501#endif
502
503/* The same information, inverted:
504 Return the class number of the smallest class containing
505 reg number REGNO. This could be a conditional expression
506 or could index an array. */
507
508#define REGNO_REG_CLASS(REGNO) \
509 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
510
511/* This is the order in which to allocate registers
51f0e748
JW
512 normally.
513
514 We put %f0/%f1 last among the float registers, so as to make it more
515 likely that a pseduo-register which dies in the float return register
516 will get allocated to the float return register, thus saving a move
517 instruction at the end of the function. */
1bb87f28 518#define REG_ALLOC_ORDER \
b4ac57ab
RS
519{ 8, 9, 10, 11, 12, 13, 2, 3, \
520 15, 16, 17, 18, 19, 20, 21, 22, \
521 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 522 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
523 40, 41, 42, 43, 44, 45, 46, 47, \
524 48, 49, 50, 51, 52, 53, 54, 55, \
525 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 526 32, 33, \
4b69d2a3 527 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
528
529/* This is the order in which to allocate registers for
530 leaf functions. If all registers can fit in the "i" registers,
531 then we have the possibility of having a leaf function. */
532#define REG_LEAF_ALLOC_ORDER \
533{ 2, 3, 24, 25, 26, 27, 28, 29, \
534 15, 8, 9, 10, 11, 12, 13, \
535 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 536 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
537 40, 41, 42, 43, 44, 45, 46, 47, \
538 48, 49, 50, 51, 52, 53, 54, 55, \
539 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 540 32, 33, \
4b69d2a3 541 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
542
543#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
544
545#define LEAF_REGISTERS \
546{ 1, 1, 1, 1, 1, 1, 1, 1, \
547 0, 0, 0, 0, 0, 0, 1, 0, \
548 0, 0, 0, 0, 0, 0, 0, 0, \
549 1, 1, 1, 1, 1, 1, 0, 1, \
550 1, 1, 1, 1, 1, 1, 1, 1, \
551 1, 1, 1, 1, 1, 1, 1, 1, \
552 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 553 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
554
555extern char leaf_reg_remap[];
556#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
557extern char leaf_reg_backmap[];
558#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
559
1bb87f28
JW
560/* The class value for index registers, and the one for base regs. */
561#define INDEX_REG_CLASS GENERAL_REGS
562#define BASE_REG_CLASS GENERAL_REGS
563
564/* Get reg_class from a letter such as appears in the machine description. */
565
566#define REG_CLASS_FROM_LETTER(C) \
567 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
568
569/* The letters I, J, K, L and M in a register constraint string
570 can be used to stand for particular ranges of immediate operands.
571 This macro defines what the ranges are.
572 C is the letter, and VALUE is a constant value.
573 Return 1 if VALUE is in the range specified by C.
574
575 For SPARC, `I' is used for the range of constants an insn
576 can actually contain.
577 `J' is used for the range which is just zero (since that is R0).
9ad2c692 578 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
579
580#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
581
582#define CONST_OK_FOR_LETTER_P(VALUE, C) \
583 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
584 : (C) == 'J' ? (VALUE) == 0 \
585 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
586 : 0)
587
588/* Similar, but for floating constants, and defining letters G and H.
589 Here VALUE is the CONST_DOUBLE rtx itself. */
590
591#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
592 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
593 && CONST_DOUBLE_LOW (VALUE) == 0 \
594 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
595 : 0)
596
597/* Given an rtx X being reloaded into a reg required to be
598 in class CLASS, return the class of reg to actually use.
599 In general this is just CLASS; but on some machines
600 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
601/* We can't load constants into FP registers. We can't load any FP constant
602 if an 'E' constraint fails to match it. */
603#define PREFERRED_RELOAD_CLASS(X,CLASS) \
604 (CONSTANT_P (X) \
605 && ((CLASS) == FP_REGS \
606 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
607 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
608 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
609 ? NO_REGS : (CLASS))
1bb87f28
JW
610
611/* Return the register class of a scratch register needed to load IN into
612 a register of class CLASS in MODE.
613
614 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 615 into a register.
1bb87f28 616
ae51bd97
JW
617 Also, we need a temporary when loading/storing a HImode/QImode value
618 between memory and the FPU registers. This can happen when combine puts
619 a paradoxical subreg in a float/fix conversion insn. */
620
621#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
622 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
623 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
624 && (GET_CODE (IN) == MEM \
625 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
626 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
627
628#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
629 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
630 && (GET_CODE (IN) == MEM \
631 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
632 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 633
b924cef0
JW
634/* On SPARC it is not possible to directly move data between
635 GENERAL_REGS and FP_REGS. */
636#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
637 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
638 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 639
fe1f7f24
JW
640/* Return the stack location to use for secondary memory needed reloads. */
641#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
642 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, GEN_INT (-8)))
643
1bb87f28
JW
644/* Return the maximum number of consecutive registers
645 needed to represent mode MODE in a register of class CLASS. */
646/* On SPARC, this is the size of MODE in words. */
647#define CLASS_MAX_NREGS(CLASS, MODE) \
648 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
649\f
650/* Stack layout; function entry, exit and calling. */
651
652/* Define the number of register that can hold parameters.
653 These two macros are used only in other macro definitions below. */
654#define NPARM_REGS 6
655
656/* Define this if pushing a word on the stack
657 makes the stack pointer a smaller address. */
658#define STACK_GROWS_DOWNWARD
659
660/* Define this if the nominal address of the stack frame
661 is at the high-address end of the local variables;
662 that is, each additional local variable allocated
663 goes at a more negative offset in the frame. */
664#define FRAME_GROWS_DOWNWARD
665
666/* Offset within stack frame to start allocating local variables at.
667 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
668 first local allocated. Otherwise, it is the offset to the BEGINNING
669 of the first local allocated. */
1fe44568 670#define STARTING_FRAME_OFFSET (-8)
1bb87f28
JW
671
672/* If we generate an insn to push BYTES bytes,
673 this says how many the stack pointer really advances by.
674 On SPARC, don't define this because there are no push insns. */
675/* #define PUSH_ROUNDING(BYTES) */
676
677/* Offset of first parameter from the argument pointer register value.
678 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
679 even if this function isn't going to use it. */
680#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
681
682/* When a parameter is passed in a register, stack space is still
683 allocated for it. */
684#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
685
686/* Keep the stack pointer constant throughout the function.
b4ac57ab 687 This is both an optimization and a necessity: longjmp
1bb87f28
JW
688 doesn't behave itself when the stack pointer moves within
689 the function! */
690#define ACCUMULATE_OUTGOING_ARGS
691
692/* Value is the number of bytes of arguments automatically
693 popped when returning from a subroutine call.
694 FUNTYPE is the data type of the function (as a tree),
695 or for a library call it is an identifier node for the subroutine name.
696 SIZE is the number of bytes of arguments passed on the stack. */
697
698#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
699
5b485d2c
JW
700/* Some subroutine macros specific to this machine.
701 When !TARGET_FPU, put float return values in the general registers,
702 since we don't have any fp registers. */
1bb87f28 703#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 704 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 705#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
706 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
707 : (TARGET_FRW ? 8 : 24))
1bb87f28 708#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 709#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 710
92ea370b
TW
711/* Define this macro if the target machine has "register windows". This
712 C expression returns the register number as seen by the called function
713 corresponding to register number OUT as seen by the calling function.
714 Return OUT if register number OUT is not an outbound register. */
715
716#define INCOMING_REGNO(OUT) \
717 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
718
719/* Define this macro if the target machine has "register windows". This
720 C expression returns the register number as seen by the calling function
721 corresponding to register number IN as seen by the called function.
722 Return IN if register number IN is not an inbound register. */
723
724#define OUTGOING_REGNO(IN) \
725 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
726
1bb87f28
JW
727/* Define how to find the value returned by a function.
728 VALTYPE is the data type of the value (as a tree).
729 If the precise function being called is known, FUNC is its FUNCTION_DECL;
730 otherwise, FUNC is 0. */
731
732/* On SPARC the value is found in the first "output" register. */
733
734#define FUNCTION_VALUE(VALTYPE, FUNC) \
735 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
736
737/* But the called function leaves it in the first "input" register. */
738
739#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
740 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
741
742/* Define how to find the value returned by a library function
743 assuming the value has mode MODE. */
744
745#define LIBCALL_VALUE(MODE) \
746 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
747
748/* 1 if N is a possible register number for a function value
749 as seen by the caller.
750 On SPARC, the first "output" reg is used for integer values,
751 and the first floating point register is used for floating point values. */
752
753#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
754
755/* 1 if N is a possible register number for function argument passing.
756 On SPARC, these are the "output" registers. */
757
758#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
759\f
760/* Define a data type for recording info about an argument list
761 during the scan of that argument list. This data type should
762 hold all necessary information about the function itself
763 and about the args processed so far, enough to enable macros
764 such as FUNCTION_ARG to determine where the next arg should go.
765
766 On SPARC, this is a single integer, which is a number of words
767 of arguments scanned so far (including the invisible argument,
768 if any, which holds the structure-value-address).
769 Thus 7 or more means all following args should go on the stack. */
770
771#define CUMULATIVE_ARGS int
772
773#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
774 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
775
1bb87f28
JW
776/* Initialize a variable CUM of type CUMULATIVE_ARGS
777 for a call to a function whose data type is FNTYPE.
778 For a library call, FNTYPE is 0.
779
780 On SPARC, the offset always starts at 0: the first parm reg is always
781 the same reg. */
782
783#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
784
785/* Update the data in CUM to advance over an argument
786 of mode MODE and data type TYPE.
787 (TYPE is null for libcalls where that information may not be available.) */
788
789#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
790 ((CUM) += ((MODE) != BLKmode \
791 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
792 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
793
794/* Determine where to put an argument to a function.
795 Value is zero to push the argument on the stack,
796 or a hard register in which to store the argument.
797
798 MODE is the argument's machine mode.
799 TYPE is the data type of the argument (as a tree).
800 This is null for libcalls where that information may
801 not be available.
802 CUM is a variable of type CUMULATIVE_ARGS which gives info about
803 the preceding args and about the function being called.
804 NAMED is nonzero if this argument is a named parameter
805 (otherwise it is an extra parameter matching an ellipsis). */
806
807/* On SPARC the first six args are normally in registers
808 and the rest are pushed. Any arg that starts within the first 6 words
809 is at least partially passed in a register unless its data type forbids. */
810
811#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 812((CUM) < NPARM_REGS \
1bb87f28 813 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
814 && ((TYPE)==0 || (MODE) != BLKmode \
815 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 816 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 817 : 0)
1bb87f28
JW
818
819/* Define where a function finds its arguments.
820 This is different from FUNCTION_ARG because of register windows. */
821
822#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 823((CUM) < NPARM_REGS \
1bb87f28 824 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
825 && ((TYPE)==0 || (MODE) != BLKmode \
826 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 827 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 828 : 0)
1bb87f28
JW
829
830/* For an arg passed partly in registers and partly in memory,
831 this is the number of registers used.
832 For args passed entirely in registers or entirely in memory, zero.
833 Any arg that starts in the first 6 regs but won't entirely fit in them
834 needs partial registers on the Sparc. */
835
836#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 837 ((CUM) < NPARM_REGS \
1bb87f28 838 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
839 && ((TYPE)==0 || (MODE) != BLKmode \
840 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
841 && ((CUM) + ((MODE) == BLKmode \
842 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
843 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
844 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
845 : 0)
846
d9ca49d5
JW
847/* The SPARC ABI stipulates passing struct arguments (of any size) and
848 quad-precision floats by invisible reference. */
1bb87f28 849#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
850 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
851 || TREE_CODE (TYPE) == UNION_TYPE)) \
852 || (MODE == TFmode))
1bb87f28
JW
853
854/* Define the information needed to generate branch and scc insns. This is
855 stored from the compare operation. Note that we can't use "rtx" here
856 since it hasn't been defined! */
857
858extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
859
860/* Define the function that build the compare insn for scc and bcc. */
861
862extern struct rtx_def *gen_compare_reg ();
863\f
4b69d2a3
RS
864/* Generate the special assembly code needed to tell the assembler whatever
865 it might need to know about the return value of a function.
866
867 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
868 information to the assembler relating to peephole optimization (done in
869 the assembler). */
870
871#define ASM_DECLARE_RESULT(FILE, RESULT) \
872 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
873
1bb87f28
JW
874/* Output the label for a function definition. */
875
4b69d2a3
RS
876#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
877do { \
878 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
879 ASM_OUTPUT_LABEL (FILE, NAME); \
880} while (0)
1bb87f28
JW
881
882/* Two views of the size of the current frame. */
883extern int actual_fsize;
884extern int apparent_fsize;
885
886/* This macro generates the assembly code for function entry.
887 FILE is a stdio stream to output the code to.
888 SIZE is an int: how many units of temporary storage to allocate.
889 Refer to the array `regs_ever_live' to determine which registers
890 to save; `regs_ever_live[I]' is nonzero if register number I
891 is ever used in the function. This macro is responsible for
892 knowing which registers should not be saved even if used. */
893
894/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
895 of memory. If any fpu reg is used in the function, we allocate
896 such a block here, at the bottom of the frame, just in case it's needed.
897
898 If this function is a leaf procedure, then we may choose not
899 to do a "save" insn. The decision about whether or not
900 to do this is made in regclass.c. */
901
902#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
903 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
904 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
905
906/* Output assembler code to FILE to increment profiler label # LABELNO
907 for profiling a function entry. */
908
d2a8e680
RS
909#define FUNCTION_PROFILER(FILE, LABELNO) \
910 do { \
911 fputs ("\tsethi %hi(", (FILE)); \
912 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
913 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
914 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
915 fputs ("),%o0,%o0\n", (FILE)); \
916 } while (0)
1bb87f28
JW
917
918/* Output assembler code to FILE to initialize this source file's
919 basic block profiling info, if that has not already been done. */
d2a8e680
RS
920/* FIXME -- this does not parameterize how it generates labels (like the
921 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
922
923#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
924 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
925 (LABELNO), (LABELNO))
926
927/* Output assembler code to FILE to increment the entry-count for
928 the BLOCKNO'th basic block in this source file. */
929
930#define BLOCK_PROFILER(FILE, BLOCKNO) \
931{ \
932 int blockn = (BLOCKNO); \
933 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
934\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
935 4 * blockn, 4 * blockn, 4 * blockn); \
936}
937
1bb87f28
JW
938/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
939 the stack pointer does not matter. The value is tested only in
940 functions that have frame pointers.
941 No definition is equivalent to always zero. */
942
943extern int current_function_calls_alloca;
944extern int current_function_outgoing_args_size;
945
946#define EXIT_IGNORE_STACK \
947 (get_frame_size () != 0 \
948 || current_function_calls_alloca || current_function_outgoing_args_size)
949
950/* This macro generates the assembly code for function exit,
951 on machines that need it. If FUNCTION_EPILOGUE is not defined
952 then individual return instructions are generated for each
953 return statement. Args are same as for FUNCTION_PROLOGUE.
954
955 The function epilogue should not depend on the current stack pointer!
956 It should use the frame pointer only. This is mandatory because
957 of alloca; we also take advantage of it to omit stack adjustments
958 before returning. */
959
960/* This declaration is needed due to traditional/ANSI
961 incompatibilities which cannot be #ifdefed away
962 because they occur inside of macros. Sigh. */
963extern union tree_node *current_function_decl;
964
965#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
966 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
967 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 968
5b485d2c
JW
969#define DELAY_SLOTS_FOR_EPILOGUE \
970 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 971#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
972 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
973 : eligible_for_epilogue_delay (trial, slots_filled))
1bb87f28
JW
974
975/* Output assembler code for a block containing the constant parts
976 of a trampoline, leaving space for the variable parts. */
977
978/* On the sparc, the trampoline contains five instructions:
979 sethi #TOP_OF_FUNCTION,%g2
980 or #BOTTOM_OF_FUNCTION,%g2,%g2
981 sethi #TOP_OF_STATIC,%g1
982 jmp g2
983 or #BOTTOM_OF_STATIC,%g1,%g1 */
984#define TRAMPOLINE_TEMPLATE(FILE) \
985{ \
986 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
987 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
988 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
989 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
990 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
991}
992
993/* Length in units of the trampoline for entering a nested function. */
994
995#define TRAMPOLINE_SIZE 20
996
997/* Emit RTL insns to initialize the variable parts of a trampoline.
998 FNADDR is an RTX for the address of the function's pure code.
999 CXT is an RTX for the static chain value for the function.
1000
1001 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1002 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1003 (to store insns). This is a bit excessive. Perhaps a different
1004 mechanism would be better here. */
1005
1006#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1007{ \
1008 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1009 size_int (10), 0, 1); \
1010 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1011 size_int (10), 0, 1); \
1012 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1013 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1014 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1015 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1016 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1017 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1018 rtx g1_ori = gen_rtx (HIGH, SImode, \
1019 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1020 rtx g2_ori = gen_rtx (HIGH, SImode, \
1021 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1022 rtx tem = gen_reg_rtx (SImode); \
1023 emit_move_insn (tem, g2_sethi); \
1024 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1025 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
1026 emit_move_insn (tem, g2_ori); \
1027 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1028 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
1029 emit_move_insn (tem, g1_sethi); \
1030 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1031 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
1032 emit_move_insn (tem, g1_ori); \
1033 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1034 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1035}
1036
9a1c7cd7
JW
1037/* Generate necessary RTL for __builtin_saveregs().
1038 ARGLIST is the argument list; see expr.c. */
1039extern struct rtx_def *sparc_builtin_saveregs ();
1040#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1041
1042/* Generate RTL to flush the register windows so as to make arbitrary frames
1043 available. */
1044#define SETUP_FRAME_ADDRESSES() \
1045 emit_insn (gen_flush_register_windows ())
1046
1047/* Given an rtx for the address of a frame,
1048 return an rtx for the address of the word in the frame
1049 that holds the dynamic chain--the previous frame's address. */
1050#define DYNAMIC_CHAIN_ADDRESS(frame) \
1051 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1052
1053/* The return address isn't on the stack, it is in a register, so we can't
1054 access it from the current frame pointer. We can access it from the
1055 previous frame pointer though by reading a value from the register window
1056 save area. */
1057#define RETURN_ADDR_IN_PREVIOUS_FRAME
1058
1059/* The current return address is in %i7. The return address of anything
1060 farther back is in the register window save area at [%fp+60]. */
1061/* ??? This ignores the fact that the actual return address is +8 for normal
1062 returns, and +12 for structure returns. */
1063#define RETURN_ADDR_RTX(count, frame) \
1064 ((count == -1) \
1065 ? gen_rtx (REG, Pmode, 31) \
1066 : copy_to_reg (gen_rtx (MEM, Pmode, \
1067 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1068\f
1069/* Addressing modes, and classification of registers for them. */
1070
1071/* #define HAVE_POST_INCREMENT */
1072/* #define HAVE_POST_DECREMENT */
1073
1074/* #define HAVE_PRE_DECREMENT */
1075/* #define HAVE_PRE_INCREMENT */
1076
1077/* Macros to check register numbers against specific register classes. */
1078
1079/* These assume that REGNO is a hard or pseudo reg number.
1080 They give nonzero only if REGNO is a hard reg of the suitable class
1081 or a pseudo reg currently allocated to a suitable hard reg.
1082 Since they use reg_renumber, they are safe only once reg_renumber
1083 has been allocated, which happens in local-alloc.c. */
1084
1085#define REGNO_OK_FOR_INDEX_P(REGNO) \
1086(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1087#define REGNO_OK_FOR_BASE_P(REGNO) \
1088(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1089#define REGNO_OK_FOR_FP_P(REGNO) \
1090(((REGNO) ^ 0x20) < 32 \
1091 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1092
1093/* Now macros that check whether X is a register and also,
1094 strictly, whether it is in a specified class.
1095
1096 These macros are specific to the SPARC, and may be used only
1097 in code for printing assembler insns and in conditions for
1098 define_optimization. */
1099
1100/* 1 if X is an fp register. */
1101
1102#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1103\f
1104/* Maximum number of registers that can appear in a valid memory address. */
1105
1106#define MAX_REGS_PER_ADDRESS 2
1107
1108/* Recognize any constant value that is a valid address. */
1109
6eff269e
BK
1110#define CONSTANT_ADDRESS_P(X) \
1111 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1112 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1113 || GET_CODE (X) == HIGH)
1bb87f28
JW
1114
1115/* Nonzero if the constant value X is a legitimate general operand.
1116 Anything can be made to work except floating point constants. */
1117
1118#define LEGITIMATE_CONSTANT_P(X) \
1119 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1120
1121/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1122 and check its validity for a certain class.
1123 We have two alternate definitions for each of them.
1124 The usual definition accepts all pseudo regs; the other rejects
1125 them unless they have been allocated suitable hard regs.
1126 The symbol REG_OK_STRICT causes the latter definition to be used.
1127
1128 Most source files want to accept pseudo regs in the hope that
1129 they will get allocated to the class that the insn wants them to be in.
1130 Source files for reload pass need to be strict.
1131 After reload, it makes no difference, since pseudo regs have
1132 been eliminated by then. */
1133
1134/* Optional extra constraints for this machine. Borrowed from romp.h.
1135
1136 For the SPARC, `Q' means that this is a memory operand but not a
1137 symbolic memory operand. Note that an unassigned pseudo register
1138 is such a memory operand. Needed because reload will generate
1139 these things in insns and then not re-recognize the insns, causing
1140 constrain_operands to fail.
1141
1bb87f28
JW
1142 `S' handles constraints for calls. */
1143
1144#ifndef REG_OK_STRICT
1145
1146/* Nonzero if X is a hard reg that can be used as an index
1147 or if it is a pseudo reg. */
1148#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1149/* Nonzero if X is a hard reg that can be used as a base reg
1150 or if it is a pseudo reg. */
1151#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1152
1153#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1154 ((C) == 'Q' \
1155 ? ((GET_CODE (OP) == MEM \
1156 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1157 && ! symbolic_memory_operand (OP, VOIDmode)) \
1158 || (reload_in_progress && GET_CODE (OP) == REG \
1159 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
db5e449c
RS
1160 : (C) == 'S' \
1161 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1162 : (C) == 'T' \
1163 ? (mem_aligned_8 (OP)) \
1164 : (C) == 'U' \
1165 ? (register_ok_for_ldd (OP)) \
db5e449c 1166 : 0)
19858600 1167
1bb87f28
JW
1168#else
1169
1170/* Nonzero if X is a hard reg that can be used as an index. */
1171#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1172/* Nonzero if X is a hard reg that can be used as a base reg. */
1173#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1174
1175#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1176 ((C) == 'Q' \
1177 ? (GET_CODE (OP) == REG \
1178 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1179 && reg_renumber[REGNO (OP)] < 0) \
1180 : GET_CODE (OP) == MEM) \
1181 : (C) == 'S' \
1182 ? (CONSTANT_P (OP) \
1183 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0) \
1184 || strict_memory_address_p (Pmode, OP)) \
1185 : (C) == 'T' \
b165d471 1186 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
9ad2c692 1187 : (C) == 'U' \
b165d471
JW
1188 ? (GET_CODE (OP) == REG \
1189 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1190 || reg_renumber[REGNO (OP)] > 0) \
1191 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
1192#endif
1193\f
1194/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1195 that is a valid memory address for an instruction.
1196 The MODE argument is the machine mode for the MEM expression
1197 that wants to use this address.
1198
1199 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1200 ordinarily. This changes a bit when generating PIC.
1201
1202 If you change this, execute "rm explow.o recog.o reload.o". */
1203
bec2e359
JW
1204#define RTX_OK_FOR_BASE_P(X) \
1205 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1206 || (GET_CODE (X) == SUBREG \
1207 && GET_CODE (SUBREG_REG (X)) == REG \
1208 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1209
1210#define RTX_OK_FOR_INDEX_P(X) \
1211 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1212 || (GET_CODE (X) == SUBREG \
1213 && GET_CODE (SUBREG_REG (X)) == REG \
1214 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1215
1216#define RTX_OK_FOR_OFFSET_P(X) \
1217 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1218
1bb87f28 1219#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1220{ if (RTX_OK_FOR_BASE_P (X)) \
1221 goto ADDR; \
1bb87f28
JW
1222 else if (GET_CODE (X) == PLUS) \
1223 { \
bec2e359
JW
1224 register rtx op0 = XEXP (X, 0); \
1225 register rtx op1 = XEXP (X, 1); \
1226 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1227 { \
bec2e359 1228 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1229 goto ADDR; \
1230 else if (flag_pic == 1 \
bec2e359
JW
1231 && GET_CODE (op1) != REG \
1232 && GET_CODE (op1) != LO_SUM \
1233 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1234 goto ADDR; \
1235 } \
bec2e359 1236 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1237 { \
bec2e359
JW
1238 if (RTX_OK_FOR_INDEX_P (op1) \
1239 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1240 goto ADDR; \
1241 } \
bec2e359 1242 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1243 { \
bec2e359
JW
1244 if (RTX_OK_FOR_INDEX_P (op0) \
1245 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1246 goto ADDR; \
1247 } \
1248 } \
bec2e359
JW
1249 else if (GET_CODE (X) == LO_SUM) \
1250 { \
1251 register rtx op0 = XEXP (X, 0); \
1252 register rtx op1 = XEXP (X, 1); \
1253 if (RTX_OK_FOR_BASE_P (op0) \
1254 && CONSTANT_P (op1)) \
1255 goto ADDR; \
1256 } \
1bb87f28
JW
1257 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1258 goto ADDR; \
1259}
1260\f
1261/* Try machine-dependent ways of modifying an illegitimate address
1262 to be legitimate. If we find one, return the new, valid address.
1263 This macro is used in only one place: `memory_address' in explow.c.
1264
1265 OLDX is the address as it was before break_out_memory_refs was called.
1266 In some cases it is useful to look at this to decide what needs to be done.
1267
1268 MODE and WIN are passed so that this macro can use
1269 GO_IF_LEGITIMATE_ADDRESS.
1270
1271 It is always safe for this macro to do nothing. It exists to recognize
1272 opportunities to optimize the output. */
1273
1274/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1275extern struct rtx_def *legitimize_pic_address ();
1276#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1277{ rtx sparc_x = (X); \
1278 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1279 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1280 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1281 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1282 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1283 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1284 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1285 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1286 XEXP (X, 1)); \
1287 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1288 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1289 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1290 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1291 goto WIN; \
1292 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1293 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1294 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1295 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1296 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1297 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1298 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1299 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1300 || GET_CODE (X) == LABEL_REF) \
1301 (X) = gen_rtx (LO_SUM, Pmode, \
1302 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1303 if (memory_address_p (MODE, X)) \
1304 goto WIN; }
1305
1306/* Go to LABEL if ADDR (a legitimate address expression)
1307 has an effect that depends on the machine mode it is used for.
1308 On the SPARC this is never true. */
1309
1310#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1311\f
1312/* Specify the machine mode that this machine uses
1313 for the index in the tablejump instruction. */
1314#define CASE_VECTOR_MODE SImode
1315
1316/* Define this if the tablejump instruction expects the table
1317 to contain offsets from the address of the table.
1318 Do not define this if the table should contain absolute addresses. */
1319/* #define CASE_VECTOR_PC_RELATIVE */
1320
1321/* Specify the tree operation to be used to convert reals to integers. */
1322#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1323
1324/* This is the kind of divide that is easiest to do in the general case. */
1325#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1326
1327/* Define this as 1 if `char' should by default be signed; else as 0. */
1328#define DEFAULT_SIGNED_CHAR 1
1329
1330/* Max number of bytes we can move from memory to memory
1331 in one reasonably fast instruction. */
2eef2ef1 1332#define MOVE_MAX 8
1bb87f28 1333
0fb5a69e 1334#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1335/* This is the value of the error code EDOM for this machine,
1336 used by the sqrt instruction. */
1337#define TARGET_EDOM 33
1338
1339/* This is how to refer to the variable errno. */
1340#define GEN_ERRNO_RTX \
1341 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1342#endif /* 0 */
24e2a2bf 1343
1bb87f28
JW
1344/* Define if normal loads of shorter-than-word items from memory clears
1345 the rest of the bigs in the register. */
1346#define BYTE_LOADS_ZERO_EXTEND
1347
1348/* Nonzero if access to memory by bytes is slow and undesirable.
1349 For RISC chips, it means that access to memory by bytes is no
1350 better than access by words when possible, so grab a whole word
1351 and maybe make use of that. */
1352#define SLOW_BYTE_ACCESS 1
1353
1354/* We assume that the store-condition-codes instructions store 0 for false
1355 and some other value for true. This is the value stored for true. */
1356
1357#define STORE_FLAG_VALUE 1
1358
1359/* When a prototype says `char' or `short', really pass an `int'. */
1360#define PROMOTE_PROTOTYPES
1361
1362/* Define if shifts truncate the shift count
1363 which implies one can omit a sign-extension or zero-extension
1364 of a shift count. */
1365#define SHIFT_COUNT_TRUNCATED
1366
1367/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1368 is done just by pretending it is already truncated. */
1369#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1370
1371/* Specify the machine mode that pointers have.
1372 After generation of rtl, the compiler makes no further distinction
1373 between pointers and any other objects of this machine mode. */
1374#define Pmode SImode
1375
b4ac57ab
RS
1376/* Generate calls to memcpy, memcmp and memset. */
1377#define TARGET_MEM_FUNCTIONS
1378
1bb87f28
JW
1379/* Add any extra modes needed to represent the condition code.
1380
1381 On the Sparc, we have a "no-overflow" mode which is used when an add or
1382 subtract insn is used to set the condition code. Different branches are
1383 used in this case for some operations.
1384
4d449554
JW
1385 We also have two modes to indicate that the relevant condition code is
1386 in the floating-point condition code register. One for comparisons which
1387 will generate an exception if the result is unordered (CCFPEmode) and
1388 one for comparisons which will never trap (CCFPmode). This really should
1389 be a separate register, but we don't want to go to 65 registers. */
1390#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1391
1392/* Define the names for the modes specified above. */
4d449554 1393#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1394
1395/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1396 return the mode to be used for the comparison. For floating-point,
1397 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1398 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1399 needed. */
679655e6 1400#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1401 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1402 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1403 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1404 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1405
1406/* A function address in a call instruction
1407 is a byte address (for indexing purposes)
1408 so give the MEM rtx a byte's mode. */
1409#define FUNCTION_MODE SImode
1410
1411/* Define this if addresses of constant functions
1412 shouldn't be put through pseudo regs where they can be cse'd.
1413 Desirable on machines where ordinary constants are expensive
1414 but a CALL with constant address is cheap. */
1415#define NO_FUNCTION_CSE
1416
1417/* alloca should avoid clobbering the old register save area. */
1418#define SETJMP_VIA_SAVE_AREA
1419
1420/* Define subroutines to call to handle multiply and divide.
1421 Use the subroutines that Sun's library provides.
1422 The `*' prevents an underscore from being prepended by the compiler. */
1423
1424#define DIVSI3_LIBCALL "*.div"
1425#define UDIVSI3_LIBCALL "*.udiv"
1426#define MODSI3_LIBCALL "*.rem"
1427#define UMODSI3_LIBCALL "*.urem"
1428/* .umul is a little faster than .mul. */
1429#define MULSI3_LIBCALL "*.umul"
1430
1431/* Compute the cost of computing a constant rtl expression RTX
1432 whose rtx-code is CODE. The body of this macro is a portion
1433 of a switch statement. If the code is computed here,
1434 return it with a return statement. Otherwise, break from the switch. */
1435
3bb22aee 1436#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1437 case CONST_INT: \
1bb87f28 1438 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1439 return 0; \
1bb87f28
JW
1440 case HIGH: \
1441 return 2; \
1442 case CONST: \
1443 case LABEL_REF: \
1444 case SYMBOL_REF: \
1445 return 4; \
1446 case CONST_DOUBLE: \
1447 if (GET_MODE (RTX) == DImode) \
1448 if ((XINT (RTX, 3) == 0 \
1449 && (unsigned) XINT (RTX, 2) < 0x1000) \
1450 || (XINT (RTX, 3) == -1 \
1451 && XINT (RTX, 2) < 0 \
1452 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1453 return 0; \
1bb87f28
JW
1454 return 8;
1455
1456/* SPARC offers addressing modes which are "as cheap as a register".
1457 See sparc.c (or gcc.texinfo) for details. */
1458
1459#define ADDRESS_COST(RTX) \
1460 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1461
1462/* Compute extra cost of moving data between one register class
1463 and another. */
1464#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1465 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1466 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1467
1468/* Provide the costs of a rtl expression. This is in the body of a
1469 switch on CODE. The purpose for the cost of MULT is to encourage
1470 `synth_mult' to find a synthetic multiply when reasonable.
1471
1472 If we need more than 12 insns to do a multiply, then go out-of-line,
1473 since the call overhead will be < 10% of the cost of the multiply. */
1474
3bb22aee 1475#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 1476 case MULT: \
6ffeae97 1477 return TARGET_V8 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
1478 case DIV: \
1479 case UDIV: \
1480 case MOD: \
1481 case UMOD: \
5b485d2c
JW
1482 return COSTS_N_INSNS (25); \
1483 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1484 so that cse will favor the latter. */ \
1485 case FLOAT: \
5b485d2c 1486 case FIX: \
1bb87f28
JW
1487 return 19;
1488
1489/* Conditional branches with empty delay slots have a length of two. */
1490#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1491 if (GET_CODE (INSN) == CALL_INSN \
1492 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1493 LENGTH += 1;
1494\f
1495/* Control the assembler format that we output. */
1496
1497/* Output at beginning of assembler file. */
1498
1499#define ASM_FILE_START(file)
1500
1501/* Output to assembler file text saying following lines
1502 may contain character constants, extra white space, comments, etc. */
1503
1504#define ASM_APP_ON ""
1505
1506/* Output to assembler file text saying following lines
1507 no longer contain unusual constructs. */
1508
1509#define ASM_APP_OFF ""
1510
303d524a
JW
1511#define ASM_LONG ".word"
1512#define ASM_SHORT ".half"
1513#define ASM_BYTE_OP ".byte"
1514
1bb87f28
JW
1515/* Output before read-only data. */
1516
1517#define TEXT_SECTION_ASM_OP ".text"
1518
1519/* Output before writable data. */
1520
1521#define DATA_SECTION_ASM_OP ".data"
1522
1523/* How to refer to registers in assembler output.
1524 This sequence is indexed by compiler's hard-register-number (see above). */
1525
1526#define REGISTER_NAMES \
1527{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1528 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1529 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1530 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1531 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1532 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1533 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1534 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1535
ea3fa5f7
JW
1536/* Define additional names for use in asm clobbers and asm declarations.
1537
1538 We define the fake Condition Code register as an alias for reg 0 (which
1539 is our `condition code' register), so that condition codes can easily
1540 be clobbered by an asm. No such register actually exists. Condition
1541 codes are partly stored in the PSR and partly in the FSR. */
1542
0eb9f40e 1543#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1544
1bb87f28
JW
1545/* How to renumber registers for dbx and gdb. */
1546
1547#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1548
1549/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1550 since the length can run past this up to a continuation point. */
1551#define DBX_CONTIN_LENGTH 1500
1552
1553/* This is how to output a note to DBX telling it the line number
1554 to which the following sequence of instructions corresponds.
1555
1556 This is needed for SunOS 4.0, and should not hurt for 3.2
1557 versions either. */
1558#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1559 { static int sym_lineno = 1; \
1560 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1561 line, sym_lineno, sym_lineno); \
1562 sym_lineno += 1; }
1563
1564/* This is how to output the definition of a user-level label named NAME,
1565 such as the label on a static function or variable NAME. */
1566
1567#define ASM_OUTPUT_LABEL(FILE,NAME) \
1568 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1569
1570/* This is how to output a command to make the user-level label named NAME
1571 defined for reference from other files. */
1572
1573#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1574 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1575
1576/* This is how to output a reference to a user-level label named NAME.
1577 `assemble_name' uses this. */
1578
1579#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1580 fprintf (FILE, "_%s", NAME)
1581
d2a8e680 1582/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1583 PREFIX is the class of label and NUM is the number within the class. */
1584
1585#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1586 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1587
d2a8e680
RS
1588/* This is how to output a reference to an internal numbered label where
1589 PREFIX is the class of label and NUM is the number within the class. */
1590/* FIXME: This should be used throughout gcc, and documented in the texinfo
1591 files. There is no reason you should have to allocate a buffer and
1592 `sprintf' to reference an internal label (as opposed to defining it). */
1593
1594#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1595 fprintf (FILE, "%s%d", PREFIX, NUM)
1596
1bb87f28
JW
1597/* This is how to store into the string LABEL
1598 the symbol_ref name of an internal numbered label where
1599 PREFIX is the class of label and NUM is the number within the class.
1600 This is suitable for output with `assemble_name'. */
1601
1602#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1603 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1604
1605/* This is how to output an assembler line defining a `double' constant. */
1606
b1fc14e5
RS
1607/* Assemblers (both gas 1.35 and as in 4.0.3)
1608 seem to treat -0.0 as if it were 0.0.
1609 They reject 99e9999, but accept inf. */
1bb87f28
JW
1610#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1611 { \
303d524a
JW
1612 if (REAL_VALUE_ISINF (VALUE) \
1613 || REAL_VALUE_ISNAN (VALUE) \
1614 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1615 { \
303d524a
JW
1616 long t[2]; \
1617 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1618 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1619 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1620 } \
1621 else \
1622 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1623 }
1624
1625/* This is how to output an assembler line defining a `float' constant. */
1626
1627#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1628 { \
303d524a
JW
1629 if (REAL_VALUE_ISINF (VALUE) \
1630 || REAL_VALUE_ISNAN (VALUE) \
1631 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1632 { \
303d524a
JW
1633 long t; \
1634 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1635 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1636 } \
1637 else \
1638 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1639 }
1640
0cd02cbb
DE
1641/* This is how to output an assembler line defining a `long double'
1642 constant. */
1643
1644#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1645 { \
1646 long t[4]; \
1647 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1648 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1649 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1650 }
1651
1bb87f28
JW
1652/* This is how to output an assembler line defining an `int' constant. */
1653
1654#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1655( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1656 output_addr_const (FILE, (VALUE)), \
1657 fprintf (FILE, "\n"))
1658
1659/* This is how to output an assembler line defining a DImode constant. */
1660#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1661 output_double_int (FILE, VALUE)
1662
1663/* Likewise for `char' and `short' constants. */
1664
1665#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1666( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1667 output_addr_const (FILE, (VALUE)), \
1668 fprintf (FILE, "\n"))
1669
1670#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1671( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1672 output_addr_const (FILE, (VALUE)), \
1673 fprintf (FILE, "\n"))
1674
1675/* This is how to output an assembler line for a numeric constant byte. */
1676
1677#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1678 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1679
1680/* This is how to output an element of a case-vector that is absolute. */
1681
1682#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1683do { \
1684 char label[30]; \
1685 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1686 fprintf (FILE, "\t.word\t"); \
1687 assemble_name (FILE, label); \
1688 fprintf (FILE, "\n"); \
1689} while (0)
1bb87f28
JW
1690
1691/* This is how to output an element of a case-vector that is relative.
1692 (SPARC uses such vectors only when generating PIC.) */
1693
4b69d2a3
RS
1694#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1695do { \
1696 char label[30]; \
1697 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1698 fprintf (FILE, "\t.word\t"); \
1699 assemble_name (FILE, label); \
1700 fprintf (FILE, "-1b\n"); \
1701} while (0)
1bb87f28
JW
1702
1703/* This is how to output an assembler line
1704 that says to advance the location counter
1705 to a multiple of 2**LOG bytes. */
1706
1707#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1708 if ((LOG) != 0) \
1709 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1710
1711#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1712 fprintf (FILE, "\t.skip %u\n", (SIZE))
1713
1714/* This says how to output an assembler line
1715 to define a global common symbol. */
1716
1717#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1718( fputs ("\t.global ", (FILE)), \
1719 assemble_name ((FILE), (NAME)), \
1720 fputs ("\n\t.common ", (FILE)), \
1721 assemble_name ((FILE), (NAME)), \
1722 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1723
1724/* This says how to output an assembler line
1725 to define a local common symbol. */
1726
1727#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1728( fputs ("\n\t.reserve ", (FILE)), \
1729 assemble_name ((FILE), (NAME)), \
1730 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1731
1732/* Store in OUTPUT a string (made with alloca) containing
1733 an assembler-name for a local static variable named NAME.
1734 LABELNO is an integer which is different for each call. */
1735
1736#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1737( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1738 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1739
c14f2655
RS
1740#define IDENT_ASM_OP ".ident"
1741
1742/* Output #ident as a .ident. */
1743
1744#define ASM_OUTPUT_IDENT(FILE, NAME) \
1745 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1746
1bb87f28
JW
1747/* Define the parentheses used to group arithmetic operations
1748 in assembler code. */
1749
1750#define ASM_OPEN_PAREN "("
1751#define ASM_CLOSE_PAREN ")"
1752
1753/* Define results of standard character escape sequences. */
1754#define TARGET_BELL 007
1755#define TARGET_BS 010
1756#define TARGET_TAB 011
1757#define TARGET_NEWLINE 012
1758#define TARGET_VT 013
1759#define TARGET_FF 014
1760#define TARGET_CR 015
1761
1762#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1763 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1764
1765/* Print operand X (an rtx) in assembler syntax to file FILE.
1766 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1767 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1768
1769#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1770
1771/* Print a memory address as an operand to reference that memory location. */
1772
1773#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1774{ register rtx base, index = 0; \
1775 int offset = 0; \
1776 register rtx addr = ADDR; \
1777 if (GET_CODE (addr) == REG) \
1778 fputs (reg_names[REGNO (addr)], FILE); \
1779 else if (GET_CODE (addr) == PLUS) \
1780 { \
1781 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1782 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1783 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1784 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1785 else \
1786 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1787 fputs (reg_names[REGNO (base)], FILE); \
1788 if (index == 0) \
1789 fprintf (FILE, "%+d", offset); \
1790 else if (GET_CODE (index) == REG) \
1791 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1792 else if (GET_CODE (index) == SYMBOL_REF) \
1793 fputc ('+', FILE), output_addr_const (FILE, index); \
1794 else abort (); \
1795 } \
1796 else if (GET_CODE (addr) == MINUS \
1797 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1798 { \
1799 output_addr_const (FILE, XEXP (addr, 0)); \
1800 fputs ("-(", FILE); \
1801 output_addr_const (FILE, XEXP (addr, 1)); \
1802 fputs ("-.)", FILE); \
1803 } \
1804 else if (GET_CODE (addr) == LO_SUM) \
1805 { \
1806 output_operand (XEXP (addr, 0), 0); \
1807 fputs ("+%lo(", FILE); \
1808 output_address (XEXP (addr, 1)); \
1809 fputc (')', FILE); \
1810 } \
1811 else if (flag_pic && GET_CODE (addr) == CONST \
1812 && GET_CODE (XEXP (addr, 0)) == MINUS \
1813 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1814 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1815 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1816 { \
1817 addr = XEXP (addr, 0); \
1818 output_addr_const (FILE, XEXP (addr, 0)); \
1819 /* Group the args of the second CONST in parenthesis. */ \
1820 fputs ("-(", FILE); \
1821 /* Skip past the second CONST--it does nothing for us. */\
1822 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1823 /* Close the parenthesis. */ \
1824 fputc (')', FILE); \
1825 } \
1826 else \
1827 { \
1828 output_addr_const (FILE, addr); \
1829 } \
1830}
1831
1832/* Declare functions defined in sparc.c and used in templates. */
1833
1834extern char *singlemove_string ();
1835extern char *output_move_double ();
795068a4 1836extern char *output_move_quad ();
1bb87f28 1837extern char *output_fp_move_double ();
795068a4 1838extern char *output_fp_move_quad ();
1bb87f28
JW
1839extern char *output_block_move ();
1840extern char *output_scc_insn ();
1841extern char *output_cbranch ();
1842extern char *output_return ();
1bb87f28
JW
1843
1844/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1845
1846extern int flag_pic;
This page took 0.339193 seconds and 5 git commands to generate.