]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(RETURN_IN_MEMORY): Delete struct and union references.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
9a1c7cd7 37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 44
d9ca49d5
JW
45#if 0
46/* Sparc ABI says that long double is 4 words.
47 ??? This doesn't work yet. */
48#define LONG_DOUBLE_TYPE_SIZE 128
49#endif
50
1bb87f28
JW
51#define PTRDIFF_TYPE "int"
52#define SIZE_TYPE "int"
53#define WCHAR_TYPE "short unsigned int"
54#define WCHAR_TYPE_SIZE 16
55
98ccf8fe
RK
56/* Omit frame pointer at high optimization levels. */
57
1bb87f28
JW
58#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
59{ \
60 if (OPTIMIZE >= 2) \
61 { \
62 flag_omit_frame_pointer = 1; \
1bb87f28
JW
63 } \
64}
65
5b485d2c
JW
66/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
67 code into the rtl. Also, if we are profiling, we cannot eliminate
68 the frame pointer (because the return address will get smashed). */
69
70#define OVERRIDE_OPTIONS \
71 do { if (profile_flag || profile_block_flag) \
72 flag_omit_frame_pointer = 0, flag_pic = 0; } while (0)
73
1bb87f28
JW
74/* These compiler options take an argument. We ignore -target for now. */
75
76#define WORD_SWITCH_TAKES_ARG(STR) \
b4b05f16
JW
77 (!strcmp (STR, "Tdata") || !strcmp (STR, "Ttext") \
78 || !strcmp (STR, "Tbss") || !strcmp (STR, "include") \
1bb87f28 79 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
b1fc14e5 80 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
1bb87f28
JW
81
82/* Names to predefine in the preprocessor for this target machine. */
83
f19c1a78
JW
84/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
85 new versions, which have an incompatible va-sparc.h file. This matters
86 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
87 wrong varargs file when it is compiled with a different version of gcc. */
88
89#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__"
1bb87f28
JW
90
91/* Print subsidiary information on the compiler version in use. */
92
93#define TARGET_VERSION fprintf (stderr, " (sparc)");
94
95/* Generate DBX debugging information. */
96
97#define DBX_DEBUGGING_INFO
98
99/* Run-time compilation parameters selecting different hardware subsets. */
100
101extern int target_flags;
102
103/* Nonzero if we should generate code to use the fpu. */
104#define TARGET_FPU (target_flags & 1)
105
106/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
107 use fast return insns, but lose some generality. */
108#define TARGET_EPILOGUE (target_flags & 2)
109
b1fc14e5
RS
110/* Nonzero means that reference doublewords as if they were guaranteed
111 to be aligned...if they aren't, too bad for the user!
eadf0fe6 112 Like -dalign in Sun cc. */
b1fc14e5
RS
113#define TARGET_HOPE_ALIGN (target_flags & 16)
114
0be8e859
JW
115/* Nonzero means make sure all doubles are on 8-byte boundaries.
116 This option results in a calling convention that is incompatible with
117 every other sparc compiler in the world, and thus should only ever be
118 used for experimenting. Also, varargs won't work with it, but it doesn't
119 seem worth trying to fix. */
b1fc14e5 120#define TARGET_FORCE_ALIGN (target_flags & 32)
1bb87f28 121
885d8175
JW
122/* Nonzero means that we should generate code for a v8 sparc. */
123#define TARGET_V8 (target_flags & 64)
124
125/* Nonzero means that we should generate code for a sparclite. */
126#define TARGET_SPARCLITE (target_flags & 128)
127
5b485d2c 128/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
129 model, i.e. no save/restore instructions are generated, in the most
130 efficient manner. This code is not compatible with normal sparc code. */
131/* This is not a user selectable option yet, because it requires changes
132 that are not yet switchable via command line arguments. */
5b485d2c
JW
133#define TARGET_FRW (target_flags & 256)
134
9a1c7cd7
JW
135/* Nonzero means that we should generate code using a flat register window
136 model, i.e. no save/restore instructions are generated, but which is
137 compatible with normal sparc code. This is the same as above, except
138 that the frame pointer is %l6 instead of %fp. This code is not as efficient
139 as TARGET_FRW, because it has one less allocatable register. */
140/* This is not a user selectable option yet, because it requires changes
141 that are not yet switchable via command line arguments. */
142#define TARGET_FRW_COMPAT (target_flags & 512)
143
1bb87f28
JW
144/* Macro to define tables used to set the flags.
145 This is a list in braces of pairs in braces,
146 each pair being { "NAME", VALUE }
147 where VALUE is the bits to set or minus the bits to clear.
148 An empty string NAME is used to identify the default VALUE. */
149
150#define TARGET_SWITCHES \
151 { {"fpu", 1}, \
26c5587d
JW
152 {"no-fpu", -1}, \
153 {"hard-float", 1}, \
1bb87f28
JW
154 {"soft-float", -1}, \
155 {"epilogue", 2}, \
156 {"no-epilogue", -2}, \
b1fc14e5
RS
157 {"hope-align", 16}, \
158 {"force-align", 48}, \
885d8175
JW
159 {"v8", 64}, \
160 {"no-v8", -64}, \
161 {"sparclite", 128}, \
a66279da 162 {"sparclite", -1}, \
885d8175 163 {"no-sparclite", -128}, \
a66279da 164 {"no-sparclite", 1}, \
9a1c7cd7
JW
165/* {"frw", 256}, */ \
166/* {"no-frw", -256}, */ \
167/* {"frw-compat", 256+512}, */ \
168/* {"no-frw-compat", -(256+512)}, */ \
b1fc14e5 169 { "", TARGET_DEFAULT}}
1bb87f28
JW
170
171#define TARGET_DEFAULT 3
172\f
173/* target machine storage layout */
174
175/* Define this if most significant bit is lowest numbered
176 in instructions that operate on numbered bit-fields. */
177#define BITS_BIG_ENDIAN 1
178
179/* Define this if most significant byte of a word is the lowest numbered. */
180/* This is true on the SPARC. */
181#define BYTES_BIG_ENDIAN 1
182
183/* Define this if most significant word of a multiword number is the lowest
184 numbered. */
185/* Doubles are stored in memory with the high order word first. This
186 matters when cross-compiling. */
187#define WORDS_BIG_ENDIAN 1
188
b4ac57ab 189/* number of bits in an addressable storage unit */
1bb87f28
JW
190#define BITS_PER_UNIT 8
191
192/* Width in bits of a "word", which is the contents of a machine register.
193 Note that this is not necessarily the width of data type `int';
194 if using 16-bit ints on a 68000, this would still be 32.
195 But on a machine with 16-bit registers, this would be 16. */
196#define BITS_PER_WORD 32
197#define MAX_BITS_PER_WORD 32
198
199/* Width of a word, in units (bytes). */
200#define UNITS_PER_WORD 4
201
202/* Width in bits of a pointer.
203 See also the macro `Pmode' defined below. */
204#define POINTER_SIZE 32
205
206/* Allocation boundary (in *bits*) for storing arguments in argument list. */
207#define PARM_BOUNDARY 32
208
209/* Boundary (in *bits*) on which stack pointer should be aligned. */
210#define STACK_BOUNDARY 64
211
10d1b70f
JW
212/* ALIGN FRAMES on double word boundaries */
213
214#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
215
1bb87f28
JW
216/* Allocation boundary (in *bits*) for the code of a function. */
217#define FUNCTION_BOUNDARY 32
218
219/* Alignment of field after `int : 0' in a structure. */
220#define EMPTY_FIELD_BOUNDARY 32
221
222/* Every structure's size must be a multiple of this. */
223#define STRUCTURE_SIZE_BOUNDARY 8
224
225/* A bitfield declared as `int' forces `int' alignment for the struct. */
226#define PCC_BITFIELD_TYPE_MATTERS 1
227
228/* No data type wants to be aligned rounder than this. */
229#define BIGGEST_ALIGNMENT 64
230
77a02b01
JW
231/* The best alignment to use in cases where we have a choice. */
232#define FASTEST_ALIGNMENT 64
233
1bb87f28
JW
234/* Make strings word-aligned so strcpy from constants will be faster. */
235#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
236 ((TREE_CODE (EXP) == STRING_CST \
237 && (ALIGN) < FASTEST_ALIGNMENT) \
238 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
239
240/* Make arrays of chars word-aligned for the same reasons. */
241#define DATA_ALIGNMENT(TYPE, ALIGN) \
242 (TREE_CODE (TYPE) == ARRAY_TYPE \
243 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 244 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 245
b4ac57ab 246/* Set this nonzero if move instructions will actually fail to work
1bb87f28 247 when given unaligned data. */
b4ac57ab 248#define STRICT_ALIGNMENT 1
1bb87f28
JW
249
250/* Things that must be doubleword aligned cannot go in the text section,
251 because the linker fails to align the text section enough!
252 Put them in the data section. */
253#define MAX_TEXT_ALIGN 32
254
255#define SELECT_SECTION(T,RELOC) \
256{ \
257 if (TREE_CODE (T) == VAR_DECL) \
258 { \
259 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
260 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
261 && ! (flag_pic && (RELOC))) \
262 text_section (); \
263 else \
264 data_section (); \
265 } \
266 else if (TREE_CODE (T) == CONSTRUCTOR) \
267 { \
268 if (flag_pic != 0 && (RELOC) != 0) \
269 data_section (); \
270 } \
271 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
272 { \
273 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
274 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
275 data_section (); \
276 else \
277 text_section (); \
278 } \
279}
280
281/* Use text section for a constant
282 unless we need more alignment than that offers. */
283#define SELECT_RTX_SECTION(MODE, X) \
284{ \
285 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
286 && ! (flag_pic && symbolic_operand (X))) \
287 text_section (); \
288 else \
289 data_section (); \
290}
291\f
292/* Standard register usage. */
293
294/* Number of actual hardware registers.
295 The hardware registers are assigned numbers for the compiler
296 from 0 to just below FIRST_PSEUDO_REGISTER.
297 All registers that the compiler knows about must be given numbers,
298 even those that are not normally considered general registers.
299
300 SPARC has 32 integer registers and 32 floating point registers. */
301
302#define FIRST_PSEUDO_REGISTER 64
303
304/* 1 for registers that have pervasive standard uses
305 and are not available for the register allocator.
5b485d2c 306 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 307 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
308 g1 through g4 are free to use as temporaries.
309 g5 through g7 are reserved for the operating system. */
1bb87f28 310#define FIXED_REGISTERS \
d9ca49d5 311 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
312 0, 0, 0, 0, 0, 0, 1, 0, \
313 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 1, 1, \
315 \
316 0, 0, 0, 0, 0, 0, 0, 0, \
317 0, 0, 0, 0, 0, 0, 0, 0, \
318 0, 0, 0, 0, 0, 0, 0, 0, \
319 0, 0, 0, 0, 0, 0, 0, 0}
320
321/* 1 for registers not available across function calls.
322 These must include the FIXED_REGISTERS and also any
323 registers that can be used without being saved.
324 The latter must include the registers where values are returned
325 and the register where structure-value addresses are passed.
326 Aside from that, you can include as many other registers as you like. */
327#define CALL_USED_REGISTERS \
328 {1, 1, 1, 1, 1, 1, 1, 1, \
329 1, 1, 1, 1, 1, 1, 1, 1, \
330 0, 0, 0, 0, 0, 0, 0, 0, \
331 0, 0, 0, 0, 0, 0, 1, 1, \
332 \
333 1, 1, 1, 1, 1, 1, 1, 1, \
334 1, 1, 1, 1, 1, 1, 1, 1, \
335 1, 1, 1, 1, 1, 1, 1, 1, \
336 1, 1, 1, 1, 1, 1, 1, 1}
337
26c5587d
JW
338/* If !TARGET_FPU, then make the fp registers fixed so that they won't
339 be allocated. */
340
341#define CONDITIONAL_REGISTER_USAGE \
342do \
343 { \
344 if (! TARGET_FPU) \
345 { \
346 int regno; \
347 for (regno = 32; regno < 64; regno++) \
348 fixed_regs[regno] = 1; \
349 } \
350 } \
351while (0)
352
1bb87f28
JW
353/* Return number of consecutive hard regs needed starting at reg REGNO
354 to hold something of mode MODE.
355 This is ordinarily the length in words of a value of mode MODE
356 but can be less for certain modes in special long registers.
357
358 On SPARC, ordinary registers hold 32 bits worth;
359 this means both integer and floating point registers.
360
361 We use vectors to keep this information about registers. */
362
363/* How many hard registers it takes to make a register of this mode. */
364extern int hard_regno_nregs[];
365
366#define HARD_REGNO_NREGS(REGNO, MODE) \
367 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
368
369/* Value is 1 if register/mode pair is acceptable on sparc. */
370extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
371
372/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
373 On SPARC, the cpu registers can hold any mode but the float registers
374 can only hold SFmode or DFmode. See sparc.c for how we
375 initialize this. */
376#define HARD_REGNO_MODE_OK(REGNO, MODE) \
377 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
378
379/* Value is 1 if it is a good idea to tie two pseudo registers
380 when one has mode MODE1 and one has mode MODE2.
381 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
382 for any hard reg, then this must be 0 for correct output. */
383#define MODES_TIEABLE_P(MODE1, MODE2) \
384 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
385
386/* Specify the registers used for certain standard purposes.
387 The values of these macros are register numbers. */
388
389/* SPARC pc isn't overloaded on a register that the compiler knows about. */
390/* #define PC_REGNUM */
391
392/* Register to use for pushing function arguments. */
393#define STACK_POINTER_REGNUM 14
394
395/* Actual top-of-stack address is 92 greater than the contents
396 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
397 for the ins and local registers, 4 byte for structure return address, and
398 24 bytes for the 6 register parameters. */
399#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
400
401/* Base register for access to local variables of the function. */
402#define FRAME_POINTER_REGNUM 30
403
404#if 0
405/* Register that is used for the return address. */
406#define RETURN_ADDR_REGNUM 15
407#endif
408
409/* Value should be nonzero if functions must have frame pointers.
410 Zero means the frame pointer need not be set up (and parms
411 may be accessed via the stack pointer) in functions that seem suitable.
412 This is computed in `reload', in reload1.c.
413
c0524a34 414 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
415extern int leaf_function;
416
417#define FRAME_POINTER_REQUIRED \
a72cb8ec 418 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
419
420/* C statement to store the difference between the frame pointer
421 and the stack pointer values immediately after the function prologue.
422
423 Note, we always pretend that this is a leaf function because if
424 it's not, there's no point in trying to eliminate the
425 frame pointer. If it is a leaf function, we guessed right! */
426#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
427 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
428 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
429
430/* Base register for access to arguments of the function. */
431#define ARG_POINTER_REGNUM 30
432
433/* Register in which static-chain is passed to a function. */
434/* ??? */
435#define STATIC_CHAIN_REGNUM 1
436
437/* Register which holds offset table for position-independent
438 data references. */
439
440#define PIC_OFFSET_TABLE_REGNUM 23
441
442#define INITIALIZE_PIC initialize_pic ()
443#define FINALIZE_PIC finalize_pic ()
444
d9ca49d5 445/* Sparc ABI says that quad-precision floats and all structures are returned
dafe6cf1
RS
446 in memory. We go along regarding floats, but for structures
447 we follow GCC's normal policy. Use -fpcc-struct-value
448 if you want to follow the ABI. */
d9ca49d5 449#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 450 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 451
1bb87f28
JW
452/* Functions which return large structures get the address
453 to place the wanted value at offset 64 from the frame.
454 Must reserve 64 bytes for the in and local registers. */
455/* Used only in other #defines in this file. */
456#define STRUCT_VALUE_OFFSET 64
457
458#define STRUCT_VALUE \
459 gen_rtx (MEM, Pmode, \
460 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
461 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
462#define STRUCT_VALUE_INCOMING \
463 gen_rtx (MEM, Pmode, \
464 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
465 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
466\f
467/* Define the classes of registers for register constraints in the
468 machine description. Also define ranges of constants.
469
470 One of the classes must always be named ALL_REGS and include all hard regs.
471 If there is more than one class, another class must be named NO_REGS
472 and contain no registers.
473
474 The name GENERAL_REGS must be the name of a class (or an alias for
475 another name such as ALL_REGS). This is the class of registers
476 that is allowed by "g" or "r" in a register constraint.
477 Also, registers outside this class are allocated only when
478 instructions express preferences for them.
479
480 The classes must be numbered in nondecreasing order; that is,
481 a larger-numbered class must never be contained completely
482 in a smaller-numbered class.
483
484 For any two classes, it is very desirable that there be another
485 class that represents their union. */
486
487/* The SPARC has two kinds of registers, general and floating point. */
488
489enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
490
491#define N_REG_CLASSES (int) LIM_REG_CLASSES
492
493/* Give names of register classes as strings for dump file. */
494
495#define REG_CLASS_NAMES \
496 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
497
498/* Define which registers fit in which classes.
499 This is an initializer for a vector of HARD_REG_SET
500 of length N_REG_CLASSES. */
501
502#if 0 && defined (__GNUC__)
503#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
504#else
505#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
506#endif
507
508/* The same information, inverted:
509 Return the class number of the smallest class containing
510 reg number REGNO. This could be a conditional expression
511 or could index an array. */
512
513#define REGNO_REG_CLASS(REGNO) \
514 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
515
516/* This is the order in which to allocate registers
517 normally. */
518#define REG_ALLOC_ORDER \
b4ac57ab
RS
519{ 8, 9, 10, 11, 12, 13, 2, 3, \
520 15, 16, 17, 18, 19, 20, 21, 22, \
521 23, 24, 25, 26, 27, 28, 29, 31, \
1bb87f28
JW
522 32, 33, 34, 35, 36, 37, 38, 39, \
523 40, 41, 42, 43, 44, 45, 46, 47, \
524 48, 49, 50, 51, 52, 53, 54, 55, \
525 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 526 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
527
528/* This is the order in which to allocate registers for
529 leaf functions. If all registers can fit in the "i" registers,
530 then we have the possibility of having a leaf function. */
531#define REG_LEAF_ALLOC_ORDER \
532{ 2, 3, 24, 25, 26, 27, 28, 29, \
533 15, 8, 9, 10, 11, 12, 13, \
534 16, 17, 18, 19, 20, 21, 22, 23, \
535 32, 33, 34, 35, 36, 37, 38, 39, \
536 40, 41, 42, 43, 44, 45, 46, 47, \
537 48, 49, 50, 51, 52, 53, 54, 55, \
538 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 539 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
540
541#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
542
543#define LEAF_REGISTERS \
544{ 1, 1, 1, 1, 1, 1, 1, 1, \
545 0, 0, 0, 0, 0, 0, 1, 0, \
546 0, 0, 0, 0, 0, 0, 0, 0, \
547 1, 1, 1, 1, 1, 1, 0, 1, \
548 1, 1, 1, 1, 1, 1, 1, 1, \
549 1, 1, 1, 1, 1, 1, 1, 1, \
550 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 551 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
552
553extern char leaf_reg_remap[];
554#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
555extern char leaf_reg_backmap[];
556#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
557
1bb87f28
JW
558/* The class value for index registers, and the one for base regs. */
559#define INDEX_REG_CLASS GENERAL_REGS
560#define BASE_REG_CLASS GENERAL_REGS
561
562/* Get reg_class from a letter such as appears in the machine description. */
563
564#define REG_CLASS_FROM_LETTER(C) \
565 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
566
567/* The letters I, J, K, L and M in a register constraint string
568 can be used to stand for particular ranges of immediate operands.
569 This macro defines what the ranges are.
570 C is the letter, and VALUE is a constant value.
571 Return 1 if VALUE is in the range specified by C.
572
573 For SPARC, `I' is used for the range of constants an insn
574 can actually contain.
575 `J' is used for the range which is just zero (since that is R0).
9ad2c692 576 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
577
578#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
579
580#define CONST_OK_FOR_LETTER_P(VALUE, C) \
581 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
582 : (C) == 'J' ? (VALUE) == 0 \
583 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
584 : 0)
585
586/* Similar, but for floating constants, and defining letters G and H.
587 Here VALUE is the CONST_DOUBLE rtx itself. */
588
589#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
590 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
591 && CONST_DOUBLE_LOW (VALUE) == 0 \
592 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
593 : 0)
594
595/* Given an rtx X being reloaded into a reg required to be
596 in class CLASS, return the class of reg to actually use.
597 In general this is just CLASS; but on some machines
598 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
599/* We can't load constants into FP registers. We can't load any FP constant
600 if an 'E' constraint fails to match it. */
601#define PREFERRED_RELOAD_CLASS(X,CLASS) \
602 (CONSTANT_P (X) \
603 && ((CLASS) == FP_REGS \
604 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
605 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
606 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
607 ? NO_REGS : (CLASS))
1bb87f28
JW
608
609/* Return the register class of a scratch register needed to load IN into
610 a register of class CLASS in MODE.
611
612 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 613 into a register.
1bb87f28 614
ae51bd97
JW
615 Also, we need a temporary when loading/storing a HImode/QImode value
616 between memory and the FPU registers. This can happen when combine puts
617 a paradoxical subreg in a float/fix conversion insn. */
618
619#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
620 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
621 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
622 && (GET_CODE (IN) == MEM \
623 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
624 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
625
626#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
627 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
628 && (GET_CODE (IN) == MEM \
629 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
630 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 631
b924cef0
JW
632/* On SPARC it is not possible to directly move data between
633 GENERAL_REGS and FP_REGS. */
634#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
635 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
636 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 637
fe1f7f24
JW
638/* Return the stack location to use for secondary memory needed reloads. */
639#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
640 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, GEN_INT (-8)))
641
1bb87f28
JW
642/* Return the maximum number of consecutive registers
643 needed to represent mode MODE in a register of class CLASS. */
644/* On SPARC, this is the size of MODE in words. */
645#define CLASS_MAX_NREGS(CLASS, MODE) \
646 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
647\f
648/* Stack layout; function entry, exit and calling. */
649
650/* Define the number of register that can hold parameters.
651 These two macros are used only in other macro definitions below. */
652#define NPARM_REGS 6
653
654/* Define this if pushing a word on the stack
655 makes the stack pointer a smaller address. */
656#define STACK_GROWS_DOWNWARD
657
658/* Define this if the nominal address of the stack frame
659 is at the high-address end of the local variables;
660 that is, each additional local variable allocated
661 goes at a more negative offset in the frame. */
662#define FRAME_GROWS_DOWNWARD
663
664/* Offset within stack frame to start allocating local variables at.
665 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
666 first local allocated. Otherwise, it is the offset to the BEGINNING
667 of the first local allocated. */
1fe44568 668#define STARTING_FRAME_OFFSET (-8)
1bb87f28
JW
669
670/* If we generate an insn to push BYTES bytes,
671 this says how many the stack pointer really advances by.
672 On SPARC, don't define this because there are no push insns. */
673/* #define PUSH_ROUNDING(BYTES) */
674
675/* Offset of first parameter from the argument pointer register value.
676 This is 64 for the ins and locals, plus 4 for the struct-return reg
0be8e859
JW
677 even if this function isn't going to use it.
678 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
679 stack remains aligned. */
680#define FIRST_PARM_OFFSET(FNDECL) \
681 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
1bb87f28
JW
682
683/* When a parameter is passed in a register, stack space is still
684 allocated for it. */
685#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
686
687/* Keep the stack pointer constant throughout the function.
b4ac57ab 688 This is both an optimization and a necessity: longjmp
1bb87f28
JW
689 doesn't behave itself when the stack pointer moves within
690 the function! */
691#define ACCUMULATE_OUTGOING_ARGS
692
693/* Value is the number of bytes of arguments automatically
694 popped when returning from a subroutine call.
695 FUNTYPE is the data type of the function (as a tree),
696 or for a library call it is an identifier node for the subroutine name.
697 SIZE is the number of bytes of arguments passed on the stack. */
698
699#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
700
5b485d2c
JW
701/* Some subroutine macros specific to this machine.
702 When !TARGET_FPU, put float return values in the general registers,
703 since we don't have any fp registers. */
1bb87f28 704#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 705 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 706#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
707 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
708 : (TARGET_FRW ? 8 : 24))
1bb87f28 709#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 710#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 711
92ea370b
TW
712/* Define this macro if the target machine has "register windows". This
713 C expression returns the register number as seen by the called function
714 corresponding to register number OUT as seen by the calling function.
715 Return OUT if register number OUT is not an outbound register. */
716
717#define INCOMING_REGNO(OUT) \
718 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
719
720/* Define this macro if the target machine has "register windows". This
721 C expression returns the register number as seen by the calling function
722 corresponding to register number IN as seen by the called function.
723 Return IN if register number IN is not an inbound register. */
724
725#define OUTGOING_REGNO(IN) \
726 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
727
1bb87f28
JW
728/* Define how to find the value returned by a function.
729 VALTYPE is the data type of the value (as a tree).
730 If the precise function being called is known, FUNC is its FUNCTION_DECL;
731 otherwise, FUNC is 0. */
732
733/* On SPARC the value is found in the first "output" register. */
734
735#define FUNCTION_VALUE(VALTYPE, FUNC) \
736 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
737
738/* But the called function leaves it in the first "input" register. */
739
740#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
741 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
742
743/* Define how to find the value returned by a library function
744 assuming the value has mode MODE. */
745
746#define LIBCALL_VALUE(MODE) \
747 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
748
749/* 1 if N is a possible register number for a function value
750 as seen by the caller.
751 On SPARC, the first "output" reg is used for integer values,
752 and the first floating point register is used for floating point values. */
753
754#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
755
756/* 1 if N is a possible register number for function argument passing.
757 On SPARC, these are the "output" registers. */
758
759#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
760\f
761/* Define a data type for recording info about an argument list
762 during the scan of that argument list. This data type should
763 hold all necessary information about the function itself
764 and about the args processed so far, enough to enable macros
765 such as FUNCTION_ARG to determine where the next arg should go.
766
767 On SPARC, this is a single integer, which is a number of words
768 of arguments scanned so far (including the invisible argument,
769 if any, which holds the structure-value-address).
770 Thus 7 or more means all following args should go on the stack. */
771
772#define CUMULATIVE_ARGS int
773
774#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
775 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
776
777/* Round a register number up to a proper boundary for an arg of mode MODE.
778 Note that we need an odd/even pair for a two-word arg,
779 since that will become 8-byte aligned when stored in memory. */
780#define ROUND_REG(X, MODE) \
781 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
782 ? ((X) + ! ((X) & 1)) : (X))
1bb87f28
JW
783
784/* Initialize a variable CUM of type CUMULATIVE_ARGS
785 for a call to a function whose data type is FNTYPE.
786 For a library call, FNTYPE is 0.
787
788 On SPARC, the offset always starts at 0: the first parm reg is always
789 the same reg. */
790
791#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
792
793/* Update the data in CUM to advance over an argument
794 of mode MODE and data type TYPE.
795 (TYPE is null for libcalls where that information may not be available.) */
796
797#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b1fc14e5
RS
798 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
799 + ((MODE) != BLKmode \
800 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
801 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
1bb87f28
JW
802
803/* Determine where to put an argument to a function.
804 Value is zero to push the argument on the stack,
805 or a hard register in which to store the argument.
806
807 MODE is the argument's machine mode.
808 TYPE is the data type of the argument (as a tree).
809 This is null for libcalls where that information may
810 not be available.
811 CUM is a variable of type CUMULATIVE_ARGS which gives info about
812 the preceding args and about the function being called.
813 NAMED is nonzero if this argument is a named parameter
814 (otherwise it is an extra parameter matching an ellipsis). */
815
816/* On SPARC the first six args are normally in registers
817 and the rest are pushed. Any arg that starts within the first 6 words
818 is at least partially passed in a register unless its data type forbids. */
819
820#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 821(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 822 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
823 && ((TYPE)==0 || (MODE) != BLKmode \
824 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
825 ? gen_rtx (REG, (MODE), \
826 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
827 : 0)
1bb87f28
JW
828
829/* Define where a function finds its arguments.
830 This is different from FUNCTION_ARG because of register windows. */
831
832#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 833(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 834 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
835 && ((TYPE)==0 || (MODE) != BLKmode \
836 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
837 ? gen_rtx (REG, (MODE), \
838 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
839 : 0)
1bb87f28
JW
840
841/* For an arg passed partly in registers and partly in memory,
842 this is the number of registers used.
843 For args passed entirely in registers or entirely in memory, zero.
844 Any arg that starts in the first 6 regs but won't entirely fit in them
845 needs partial registers on the Sparc. */
846
847#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b1fc14e5 848 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 849 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
850 && ((TYPE)==0 || (MODE) != BLKmode \
851 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
852 && (ROUND_REG ((CUM), (MODE)) \
1bb87f28
JW
853 + ((MODE) == BLKmode \
854 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
b1fc14e5
RS
855 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
856 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
1bb87f28
JW
857 : 0)
858
d9ca49d5
JW
859/* The SPARC ABI stipulates passing struct arguments (of any size) and
860 quad-precision floats by invisible reference. */
1bb87f28 861#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
862 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
863 || TREE_CODE (TYPE) == UNION_TYPE)) \
864 || (MODE == TFmode))
1bb87f28 865
b1fc14e5
RS
866/* If defined, a C expression that gives the alignment boundary, in
867 bits, of an argument with the specified mode and type. If it is
868 not defined, `PARM_BOUNDARY' is used for all arguments.
869
870 This definition does nothing special unless TARGET_FORCE_ALIGN;
871 in that case, it aligns each arg to the natural boundary. */
872
873#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
874 (! TARGET_FORCE_ALIGN \
875 ? PARM_BOUNDARY \
876 : (((TYPE) != 0) \
877 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
878 ? PARM_BOUNDARY \
879 : TYPE_ALIGN (TYPE)) \
880 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
881 ? PARM_BOUNDARY \
882 : GET_MODE_ALIGNMENT (MODE))))
883
1bb87f28
JW
884/* Define the information needed to generate branch and scc insns. This is
885 stored from the compare operation. Note that we can't use "rtx" here
886 since it hasn't been defined! */
887
888extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
889
890/* Define the function that build the compare insn for scc and bcc. */
891
892extern struct rtx_def *gen_compare_reg ();
893\f
4b69d2a3
RS
894/* Generate the special assembly code needed to tell the assembler whatever
895 it might need to know about the return value of a function.
896
897 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
898 information to the assembler relating to peephole optimization (done in
899 the assembler). */
900
901#define ASM_DECLARE_RESULT(FILE, RESULT) \
902 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
903
1bb87f28
JW
904/* Output the label for a function definition. */
905
4b69d2a3
RS
906#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
907do { \
908 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
909 ASM_OUTPUT_LABEL (FILE, NAME); \
910} while (0)
1bb87f28
JW
911
912/* Two views of the size of the current frame. */
913extern int actual_fsize;
914extern int apparent_fsize;
915
916/* This macro generates the assembly code for function entry.
917 FILE is a stdio stream to output the code to.
918 SIZE is an int: how many units of temporary storage to allocate.
919 Refer to the array `regs_ever_live' to determine which registers
920 to save; `regs_ever_live[I]' is nonzero if register number I
921 is ever used in the function. This macro is responsible for
922 knowing which registers should not be saved even if used. */
923
924/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
925 of memory. If any fpu reg is used in the function, we allocate
926 such a block here, at the bottom of the frame, just in case it's needed.
927
928 If this function is a leaf procedure, then we may choose not
929 to do a "save" insn. The decision about whether or not
930 to do this is made in regclass.c. */
931
932#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
933 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
934 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
935
936/* Output assembler code to FILE to increment profiler label # LABELNO
937 for profiling a function entry. */
938
d2a8e680
RS
939#define FUNCTION_PROFILER(FILE, LABELNO) \
940 do { \
941 fputs ("\tsethi %hi(", (FILE)); \
942 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
943 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
944 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
945 fputs ("),%o0,%o0\n", (FILE)); \
946 } while (0)
1bb87f28
JW
947
948/* Output assembler code to FILE to initialize this source file's
949 basic block profiling info, if that has not already been done. */
d2a8e680
RS
950/* FIXME -- this does not parameterize how it generates labels (like the
951 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
952
953#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
954 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
955 (LABELNO), (LABELNO))
956
957/* Output assembler code to FILE to increment the entry-count for
958 the BLOCKNO'th basic block in this source file. */
959
960#define BLOCK_PROFILER(FILE, BLOCKNO) \
961{ \
962 int blockn = (BLOCKNO); \
963 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
964\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
965 4 * blockn, 4 * blockn, 4 * blockn); \
966}
967
1bb87f28
JW
968/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
969 the stack pointer does not matter. The value is tested only in
970 functions that have frame pointers.
971 No definition is equivalent to always zero. */
972
973extern int current_function_calls_alloca;
974extern int current_function_outgoing_args_size;
975
976#define EXIT_IGNORE_STACK \
977 (get_frame_size () != 0 \
978 || current_function_calls_alloca || current_function_outgoing_args_size)
979
980/* This macro generates the assembly code for function exit,
981 on machines that need it. If FUNCTION_EPILOGUE is not defined
982 then individual return instructions are generated for each
983 return statement. Args are same as for FUNCTION_PROLOGUE.
984
985 The function epilogue should not depend on the current stack pointer!
986 It should use the frame pointer only. This is mandatory because
987 of alloca; we also take advantage of it to omit stack adjustments
988 before returning. */
989
990/* This declaration is needed due to traditional/ANSI
991 incompatibilities which cannot be #ifdefed away
992 because they occur inside of macros. Sigh. */
993extern union tree_node *current_function_decl;
994
995#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
996 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
997 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 998
5b485d2c
JW
999#define DELAY_SLOTS_FOR_EPILOGUE \
1000 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 1001#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
1002 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
1003 : eligible_for_epilogue_delay (trial, slots_filled))
1bb87f28
JW
1004
1005/* Output assembler code for a block containing the constant parts
1006 of a trampoline, leaving space for the variable parts. */
1007
1008/* On the sparc, the trampoline contains five instructions:
1009 sethi #TOP_OF_FUNCTION,%g2
1010 or #BOTTOM_OF_FUNCTION,%g2,%g2
1011 sethi #TOP_OF_STATIC,%g1
1012 jmp g2
1013 or #BOTTOM_OF_STATIC,%g1,%g1 */
1014#define TRAMPOLINE_TEMPLATE(FILE) \
1015{ \
1016 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1017 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1018 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1019 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
1020 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1021}
1022
1023/* Length in units of the trampoline for entering a nested function. */
1024
1025#define TRAMPOLINE_SIZE 20
1026
1027/* Emit RTL insns to initialize the variable parts of a trampoline.
1028 FNADDR is an RTX for the address of the function's pure code.
1029 CXT is an RTX for the static chain value for the function.
1030
1031 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1032 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1033 (to store insns). This is a bit excessive. Perhaps a different
1034 mechanism would be better here. */
1035
1036#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1037{ \
1038 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1039 size_int (10), 0, 1); \
1040 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1041 size_int (10), 0, 1); \
1042 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1043 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1044 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1045 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1046 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1047 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1048 rtx g1_ori = gen_rtx (HIGH, SImode, \
1049 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1050 rtx g2_ori = gen_rtx (HIGH, SImode, \
1051 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1052 rtx tem = gen_reg_rtx (SImode); \
1053 emit_move_insn (tem, g2_sethi); \
1054 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1055 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
1056 emit_move_insn (tem, g2_ori); \
1057 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1058 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
1059 emit_move_insn (tem, g1_sethi); \
1060 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1061 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
1062 emit_move_insn (tem, g1_ori); \
1063 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1064 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1065}
1066
9a1c7cd7
JW
1067/* Generate necessary RTL for __builtin_saveregs().
1068 ARGLIST is the argument list; see expr.c. */
1069extern struct rtx_def *sparc_builtin_saveregs ();
1070#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1071
1072/* Generate RTL to flush the register windows so as to make arbitrary frames
1073 available. */
1074#define SETUP_FRAME_ADDRESSES() \
1075 emit_insn (gen_flush_register_windows ())
1076
1077/* Given an rtx for the address of a frame,
1078 return an rtx for the address of the word in the frame
1079 that holds the dynamic chain--the previous frame's address. */
1080#define DYNAMIC_CHAIN_ADDRESS(frame) \
1081 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1082
1083/* The return address isn't on the stack, it is in a register, so we can't
1084 access it from the current frame pointer. We can access it from the
1085 previous frame pointer though by reading a value from the register window
1086 save area. */
1087#define RETURN_ADDR_IN_PREVIOUS_FRAME
1088
1089/* The current return address is in %i7. The return address of anything
1090 farther back is in the register window save area at [%fp+60]. */
1091/* ??? This ignores the fact that the actual return address is +8 for normal
1092 returns, and +12 for structure returns. */
1093#define RETURN_ADDR_RTX(count, frame) \
1094 ((count == -1) \
1095 ? gen_rtx (REG, Pmode, 31) \
1096 : copy_to_reg (gen_rtx (MEM, Pmode, \
1097 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1098\f
1099/* Addressing modes, and classification of registers for them. */
1100
1101/* #define HAVE_POST_INCREMENT */
1102/* #define HAVE_POST_DECREMENT */
1103
1104/* #define HAVE_PRE_DECREMENT */
1105/* #define HAVE_PRE_INCREMENT */
1106
1107/* Macros to check register numbers against specific register classes. */
1108
1109/* These assume that REGNO is a hard or pseudo reg number.
1110 They give nonzero only if REGNO is a hard reg of the suitable class
1111 or a pseudo reg currently allocated to a suitable hard reg.
1112 Since they use reg_renumber, they are safe only once reg_renumber
1113 has been allocated, which happens in local-alloc.c. */
1114
1115#define REGNO_OK_FOR_INDEX_P(REGNO) \
1116(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1117#define REGNO_OK_FOR_BASE_P(REGNO) \
1118(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1119#define REGNO_OK_FOR_FP_P(REGNO) \
1120(((REGNO) ^ 0x20) < 32 \
1121 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1122
1123/* Now macros that check whether X is a register and also,
1124 strictly, whether it is in a specified class.
1125
1126 These macros are specific to the SPARC, and may be used only
1127 in code for printing assembler insns and in conditions for
1128 define_optimization. */
1129
1130/* 1 if X is an fp register. */
1131
1132#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1133\f
1134/* Maximum number of registers that can appear in a valid memory address. */
1135
1136#define MAX_REGS_PER_ADDRESS 2
1137
1138/* Recognize any constant value that is a valid address. */
1139
1140#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1141
1142/* Nonzero if the constant value X is a legitimate general operand.
1143 Anything can be made to work except floating point constants. */
1144
1145#define LEGITIMATE_CONSTANT_P(X) \
1146 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1147
1148/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1149 and check its validity for a certain class.
1150 We have two alternate definitions for each of them.
1151 The usual definition accepts all pseudo regs; the other rejects
1152 them unless they have been allocated suitable hard regs.
1153 The symbol REG_OK_STRICT causes the latter definition to be used.
1154
1155 Most source files want to accept pseudo regs in the hope that
1156 they will get allocated to the class that the insn wants them to be in.
1157 Source files for reload pass need to be strict.
1158 After reload, it makes no difference, since pseudo regs have
1159 been eliminated by then. */
1160
1161/* Optional extra constraints for this machine. Borrowed from romp.h.
1162
1163 For the SPARC, `Q' means that this is a memory operand but not a
1164 symbolic memory operand. Note that an unassigned pseudo register
1165 is such a memory operand. Needed because reload will generate
1166 these things in insns and then not re-recognize the insns, causing
1167 constrain_operands to fail.
1168
1bb87f28
JW
1169 `S' handles constraints for calls. */
1170
1171#ifndef REG_OK_STRICT
1172
1173/* Nonzero if X is a hard reg that can be used as an index
1174 or if it is a pseudo reg. */
1175#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1176/* Nonzero if X is a hard reg that can be used as a base reg
1177 or if it is a pseudo reg. */
1178#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1179
1180#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1181 ((C) == 'Q' \
1182 ? ((GET_CODE (OP) == MEM \
1183 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1184 && ! symbolic_memory_operand (OP, VOIDmode)) \
1185 || (reload_in_progress && GET_CODE (OP) == REG \
1186 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
db5e449c
RS
1187 : (C) == 'S' \
1188 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1189 : (C) == 'T' \
1190 ? (mem_aligned_8 (OP)) \
1191 : (C) == 'U' \
1192 ? (register_ok_for_ldd (OP)) \
db5e449c 1193 : 0)
19858600 1194
1bb87f28
JW
1195#else
1196
1197/* Nonzero if X is a hard reg that can be used as an index. */
1198#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1199/* Nonzero if X is a hard reg that can be used as a base reg. */
1200#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1201
1202#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1203 ((C) == 'Q' \
1204 ? (GET_CODE (OP) == REG \
1205 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1206 && reg_renumber[REGNO (OP)] < 0) \
1207 : GET_CODE (OP) == MEM) \
1208 : (C) == 'S' \
1209 ? (CONSTANT_P (OP) \
1210 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0) \
1211 || strict_memory_address_p (Pmode, OP)) \
1212 : (C) == 'T' \
1213 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, OP) \
1214 : (C) == 'U' \
1215 ? register_ok_for_ldd (OP) : 0)
1bb87f28
JW
1216#endif
1217\f
1218/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1219 that is a valid memory address for an instruction.
1220 The MODE argument is the machine mode for the MEM expression
1221 that wants to use this address.
1222
1223 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1224 ordinarily. This changes a bit when generating PIC.
1225
1226 If you change this, execute "rm explow.o recog.o reload.o". */
1227
bec2e359
JW
1228#define RTX_OK_FOR_BASE_P(X) \
1229 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1230 || (GET_CODE (X) == SUBREG \
1231 && GET_CODE (SUBREG_REG (X)) == REG \
1232 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1233
1234#define RTX_OK_FOR_INDEX_P(X) \
1235 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1236 || (GET_CODE (X) == SUBREG \
1237 && GET_CODE (SUBREG_REG (X)) == REG \
1238 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1239
1240#define RTX_OK_FOR_OFFSET_P(X) \
1241 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1242
1bb87f28 1243#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1244{ if (RTX_OK_FOR_BASE_P (X)) \
1245 goto ADDR; \
1bb87f28
JW
1246 else if (GET_CODE (X) == PLUS) \
1247 { \
bec2e359
JW
1248 register rtx op0 = XEXP (X, 0); \
1249 register rtx op1 = XEXP (X, 1); \
1250 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1251 { \
bec2e359 1252 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1253 goto ADDR; \
1254 else if (flag_pic == 1 \
bec2e359
JW
1255 && GET_CODE (op1) != REG \
1256 && GET_CODE (op1) != LO_SUM \
1257 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1258 goto ADDR; \
1259 } \
bec2e359 1260 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1261 { \
bec2e359
JW
1262 if (RTX_OK_FOR_INDEX_P (op1) \
1263 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1264 goto ADDR; \
1265 } \
bec2e359 1266 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1267 { \
bec2e359
JW
1268 if (RTX_OK_FOR_INDEX_P (op0) \
1269 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1270 goto ADDR; \
1271 } \
1272 } \
bec2e359
JW
1273 else if (GET_CODE (X) == LO_SUM) \
1274 { \
1275 register rtx op0 = XEXP (X, 0); \
1276 register rtx op1 = XEXP (X, 1); \
1277 if (RTX_OK_FOR_BASE_P (op0) \
1278 && CONSTANT_P (op1)) \
1279 goto ADDR; \
1280 } \
1bb87f28
JW
1281 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1282 goto ADDR; \
1283}
1284\f
1285/* Try machine-dependent ways of modifying an illegitimate address
1286 to be legitimate. If we find one, return the new, valid address.
1287 This macro is used in only one place: `memory_address' in explow.c.
1288
1289 OLDX is the address as it was before break_out_memory_refs was called.
1290 In some cases it is useful to look at this to decide what needs to be done.
1291
1292 MODE and WIN are passed so that this macro can use
1293 GO_IF_LEGITIMATE_ADDRESS.
1294
1295 It is always safe for this macro to do nothing. It exists to recognize
1296 opportunities to optimize the output. */
1297
1298/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1299extern struct rtx_def *legitimize_pic_address ();
1300#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1301{ rtx sparc_x = (X); \
1302 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1303 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1304 force_operand (XEXP (X, 0), 0)); \
1305 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1306 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1307 force_operand (XEXP (X, 1), 0)); \
1308 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1309 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1310 XEXP (X, 1)); \
1311 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1312 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1313 force_operand (XEXP (X, 1), 0)); \
1314 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1315 goto WIN; \
1316 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1317 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1318 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1319 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1320 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1321 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1322 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1323 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1324 || GET_CODE (X) == LABEL_REF) \
1325 (X) = gen_rtx (LO_SUM, Pmode, \
1326 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1327 if (memory_address_p (MODE, X)) \
1328 goto WIN; }
1329
1330/* Go to LABEL if ADDR (a legitimate address expression)
1331 has an effect that depends on the machine mode it is used for.
1332 On the SPARC this is never true. */
1333
1334#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1335\f
1336/* Specify the machine mode that this machine uses
1337 for the index in the tablejump instruction. */
1338#define CASE_VECTOR_MODE SImode
1339
1340/* Define this if the tablejump instruction expects the table
1341 to contain offsets from the address of the table.
1342 Do not define this if the table should contain absolute addresses. */
1343/* #define CASE_VECTOR_PC_RELATIVE */
1344
1345/* Specify the tree operation to be used to convert reals to integers. */
1346#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1347
1348/* This is the kind of divide that is easiest to do in the general case. */
1349#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1350
1351/* Define this as 1 if `char' should by default be signed; else as 0. */
1352#define DEFAULT_SIGNED_CHAR 1
1353
1354/* Max number of bytes we can move from memory to memory
1355 in one reasonably fast instruction. */
2eef2ef1 1356#define MOVE_MAX 8
1bb87f28 1357
0fb5a69e 1358#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1359/* This is the value of the error code EDOM for this machine,
1360 used by the sqrt instruction. */
1361#define TARGET_EDOM 33
1362
1363/* This is how to refer to the variable errno. */
1364#define GEN_ERRNO_RTX \
1365 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1366#endif /* 0 */
24e2a2bf 1367
1bb87f28
JW
1368/* Define if normal loads of shorter-than-word items from memory clears
1369 the rest of the bigs in the register. */
1370#define BYTE_LOADS_ZERO_EXTEND
1371
1372/* Nonzero if access to memory by bytes is slow and undesirable.
1373 For RISC chips, it means that access to memory by bytes is no
1374 better than access by words when possible, so grab a whole word
1375 and maybe make use of that. */
1376#define SLOW_BYTE_ACCESS 1
1377
1378/* We assume that the store-condition-codes instructions store 0 for false
1379 and some other value for true. This is the value stored for true. */
1380
1381#define STORE_FLAG_VALUE 1
1382
1383/* When a prototype says `char' or `short', really pass an `int'. */
1384#define PROMOTE_PROTOTYPES
1385
1386/* Define if shifts truncate the shift count
1387 which implies one can omit a sign-extension or zero-extension
1388 of a shift count. */
1389#define SHIFT_COUNT_TRUNCATED
1390
1391/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1392 is done just by pretending it is already truncated. */
1393#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1394
1395/* Specify the machine mode that pointers have.
1396 After generation of rtl, the compiler makes no further distinction
1397 between pointers and any other objects of this machine mode. */
1398#define Pmode SImode
1399
b4ac57ab
RS
1400/* Generate calls to memcpy, memcmp and memset. */
1401#define TARGET_MEM_FUNCTIONS
1402
1bb87f28
JW
1403/* Add any extra modes needed to represent the condition code.
1404
1405 On the Sparc, we have a "no-overflow" mode which is used when an add or
1406 subtract insn is used to set the condition code. Different branches are
1407 used in this case for some operations.
1408
4d449554
JW
1409 We also have two modes to indicate that the relevant condition code is
1410 in the floating-point condition code register. One for comparisons which
1411 will generate an exception if the result is unordered (CCFPEmode) and
1412 one for comparisons which will never trap (CCFPmode). This really should
1413 be a separate register, but we don't want to go to 65 registers. */
1414#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1415
1416/* Define the names for the modes specified above. */
4d449554 1417#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1418
1419/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1420 return the mode to be used for the comparison. For floating-point,
1421 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1422 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1423 needed. */
679655e6 1424#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1425 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1426 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1427 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1428 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1429
1430/* A function address in a call instruction
1431 is a byte address (for indexing purposes)
1432 so give the MEM rtx a byte's mode. */
1433#define FUNCTION_MODE SImode
1434
1435/* Define this if addresses of constant functions
1436 shouldn't be put through pseudo regs where they can be cse'd.
1437 Desirable on machines where ordinary constants are expensive
1438 but a CALL with constant address is cheap. */
1439#define NO_FUNCTION_CSE
1440
1441/* alloca should avoid clobbering the old register save area. */
1442#define SETJMP_VIA_SAVE_AREA
1443
1444/* Define subroutines to call to handle multiply and divide.
1445 Use the subroutines that Sun's library provides.
1446 The `*' prevents an underscore from being prepended by the compiler. */
1447
1448#define DIVSI3_LIBCALL "*.div"
1449#define UDIVSI3_LIBCALL "*.udiv"
1450#define MODSI3_LIBCALL "*.rem"
1451#define UMODSI3_LIBCALL "*.urem"
1452/* .umul is a little faster than .mul. */
1453#define MULSI3_LIBCALL "*.umul"
1454
1455/* Compute the cost of computing a constant rtl expression RTX
1456 whose rtx-code is CODE. The body of this macro is a portion
1457 of a switch statement. If the code is computed here,
1458 return it with a return statement. Otherwise, break from the switch. */
1459
3bb22aee 1460#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1461 case CONST_INT: \
1bb87f28 1462 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1463 return 0; \
1bb87f28
JW
1464 case HIGH: \
1465 return 2; \
1466 case CONST: \
1467 case LABEL_REF: \
1468 case SYMBOL_REF: \
1469 return 4; \
1470 case CONST_DOUBLE: \
1471 if (GET_MODE (RTX) == DImode) \
1472 if ((XINT (RTX, 3) == 0 \
1473 && (unsigned) XINT (RTX, 2) < 0x1000) \
1474 || (XINT (RTX, 3) == -1 \
1475 && XINT (RTX, 2) < 0 \
1476 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1477 return 0; \
1bb87f28
JW
1478 return 8;
1479
1480/* SPARC offers addressing modes which are "as cheap as a register".
1481 See sparc.c (or gcc.texinfo) for details. */
1482
1483#define ADDRESS_COST(RTX) \
1484 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1485
1486/* Compute extra cost of moving data between one register class
1487 and another. */
1488#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1489 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1490 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1491
1492/* Provide the costs of a rtl expression. This is in the body of a
1493 switch on CODE. The purpose for the cost of MULT is to encourage
1494 `synth_mult' to find a synthetic multiply when reasonable.
1495
1496 If we need more than 12 insns to do a multiply, then go out-of-line,
1497 since the call overhead will be < 10% of the cost of the multiply. */
1498
3bb22aee 1499#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1500 case MULT: \
1501 return COSTS_N_INSNS (25); \
1502 case DIV: \
1503 case UDIV: \
1504 case MOD: \
1505 case UMOD: \
5b485d2c
JW
1506 return COSTS_N_INSNS (25); \
1507 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1508 so that cse will favor the latter. */ \
1509 case FLOAT: \
5b485d2c 1510 case FIX: \
1bb87f28
JW
1511 return 19;
1512
1513/* Conditional branches with empty delay slots have a length of two. */
1514#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1515 if (GET_CODE (INSN) == CALL_INSN \
1516 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1517 LENGTH += 1;
1518\f
1519/* Control the assembler format that we output. */
1520
1521/* Output at beginning of assembler file. */
1522
1523#define ASM_FILE_START(file)
1524
1525/* Output to assembler file text saying following lines
1526 may contain character constants, extra white space, comments, etc. */
1527
1528#define ASM_APP_ON ""
1529
1530/* Output to assembler file text saying following lines
1531 no longer contain unusual constructs. */
1532
1533#define ASM_APP_OFF ""
1534
303d524a
JW
1535#define ASM_LONG ".word"
1536#define ASM_SHORT ".half"
1537#define ASM_BYTE_OP ".byte"
1538
1bb87f28
JW
1539/* Output before read-only data. */
1540
1541#define TEXT_SECTION_ASM_OP ".text"
1542
1543/* Output before writable data. */
1544
1545#define DATA_SECTION_ASM_OP ".data"
1546
1547/* How to refer to registers in assembler output.
1548 This sequence is indexed by compiler's hard-register-number (see above). */
1549
1550#define REGISTER_NAMES \
1551{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1552 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1553 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1554 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1555 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1556 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1557 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1558 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1559
ea3fa5f7
JW
1560/* Define additional names for use in asm clobbers and asm declarations.
1561
1562 We define the fake Condition Code register as an alias for reg 0 (which
1563 is our `condition code' register), so that condition codes can easily
1564 be clobbered by an asm. No such register actually exists. Condition
1565 codes are partly stored in the PSR and partly in the FSR. */
1566
0eb9f40e 1567#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1568
1bb87f28
JW
1569/* How to renumber registers for dbx and gdb. */
1570
1571#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1572
1573/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1574 since the length can run past this up to a continuation point. */
1575#define DBX_CONTIN_LENGTH 1500
1576
1577/* This is how to output a note to DBX telling it the line number
1578 to which the following sequence of instructions corresponds.
1579
1580 This is needed for SunOS 4.0, and should not hurt for 3.2
1581 versions either. */
1582#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1583 { static int sym_lineno = 1; \
1584 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1585 line, sym_lineno, sym_lineno); \
1586 sym_lineno += 1; }
1587
1588/* This is how to output the definition of a user-level label named NAME,
1589 such as the label on a static function or variable NAME. */
1590
1591#define ASM_OUTPUT_LABEL(FILE,NAME) \
1592 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1593
1594/* This is how to output a command to make the user-level label named NAME
1595 defined for reference from other files. */
1596
1597#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1598 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1599
1600/* This is how to output a reference to a user-level label named NAME.
1601 `assemble_name' uses this. */
1602
1603#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1604 fprintf (FILE, "_%s", NAME)
1605
d2a8e680 1606/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1607 PREFIX is the class of label and NUM is the number within the class. */
1608
1609#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1610 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1611
d2a8e680
RS
1612/* This is how to output a reference to an internal numbered label where
1613 PREFIX is the class of label and NUM is the number within the class. */
1614/* FIXME: This should be used throughout gcc, and documented in the texinfo
1615 files. There is no reason you should have to allocate a buffer and
1616 `sprintf' to reference an internal label (as opposed to defining it). */
1617
1618#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1619 fprintf (FILE, "%s%d", PREFIX, NUM)
1620
1bb87f28
JW
1621/* This is how to store into the string LABEL
1622 the symbol_ref name of an internal numbered label where
1623 PREFIX is the class of label and NUM is the number within the class.
1624 This is suitable for output with `assemble_name'. */
1625
1626#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1627 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1628
1629/* This is how to output an assembler line defining a `double' constant. */
1630
b1fc14e5
RS
1631/* Assemblers (both gas 1.35 and as in 4.0.3)
1632 seem to treat -0.0 as if it were 0.0.
1633 They reject 99e9999, but accept inf. */
1bb87f28
JW
1634#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1635 { \
303d524a
JW
1636 if (REAL_VALUE_ISINF (VALUE) \
1637 || REAL_VALUE_ISNAN (VALUE) \
1638 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1639 { \
303d524a
JW
1640 long t[2]; \
1641 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1642 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1643 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1644 } \
1645 else \
1646 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1647 }
1648
1649/* This is how to output an assembler line defining a `float' constant. */
1650
1651#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1652 { \
303d524a
JW
1653 if (REAL_VALUE_ISINF (VALUE) \
1654 || REAL_VALUE_ISNAN (VALUE) \
1655 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1656 { \
303d524a
JW
1657 long t; \
1658 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1659 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1660 } \
1661 else \
1662 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1663 }
1664
1665/* This is how to output an assembler line defining an `int' constant. */
1666
1667#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1668( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1669 output_addr_const (FILE, (VALUE)), \
1670 fprintf (FILE, "\n"))
1671
1672/* This is how to output an assembler line defining a DImode constant. */
1673#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1674 output_double_int (FILE, VALUE)
1675
1676/* Likewise for `char' and `short' constants. */
1677
1678#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1679( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1680 output_addr_const (FILE, (VALUE)), \
1681 fprintf (FILE, "\n"))
1682
1683#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1684( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1685 output_addr_const (FILE, (VALUE)), \
1686 fprintf (FILE, "\n"))
1687
1688/* This is how to output an assembler line for a numeric constant byte. */
1689
1690#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1691 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1692
1693/* This is how to output an element of a case-vector that is absolute. */
1694
1695#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1696do { \
1697 char label[30]; \
1698 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1699 fprintf (FILE, "\t.word\t"); \
1700 assemble_name (FILE, label); \
1701 fprintf (FILE, "\n"); \
1702} while (0)
1bb87f28
JW
1703
1704/* This is how to output an element of a case-vector that is relative.
1705 (SPARC uses such vectors only when generating PIC.) */
1706
4b69d2a3
RS
1707#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1708do { \
1709 char label[30]; \
1710 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1711 fprintf (FILE, "\t.word\t"); \
1712 assemble_name (FILE, label); \
1713 fprintf (FILE, "-1b\n"); \
1714} while (0)
1bb87f28
JW
1715
1716/* This is how to output an assembler line
1717 that says to advance the location counter
1718 to a multiple of 2**LOG bytes. */
1719
1720#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1721 if ((LOG) != 0) \
1722 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1723
1724#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1725 fprintf (FILE, "\t.skip %u\n", (SIZE))
1726
1727/* This says how to output an assembler line
1728 to define a global common symbol. */
1729
1730#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1731( fputs ("\t.global ", (FILE)), \
1732 assemble_name ((FILE), (NAME)), \
1733 fputs ("\n\t.common ", (FILE)), \
1734 assemble_name ((FILE), (NAME)), \
1735 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1736
1737/* This says how to output an assembler line
1738 to define a local common symbol. */
1739
1740#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1741( fputs ("\n\t.reserve ", (FILE)), \
1742 assemble_name ((FILE), (NAME)), \
1743 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1744
1745/* Store in OUTPUT a string (made with alloca) containing
1746 an assembler-name for a local static variable named NAME.
1747 LABELNO is an integer which is different for each call. */
1748
1749#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1750( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1751 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1752
c14f2655
RS
1753#define IDENT_ASM_OP ".ident"
1754
1755/* Output #ident as a .ident. */
1756
1757#define ASM_OUTPUT_IDENT(FILE, NAME) \
1758 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1759
1bb87f28
JW
1760/* Define the parentheses used to group arithmetic operations
1761 in assembler code. */
1762
1763#define ASM_OPEN_PAREN "("
1764#define ASM_CLOSE_PAREN ")"
1765
1766/* Define results of standard character escape sequences. */
1767#define TARGET_BELL 007
1768#define TARGET_BS 010
1769#define TARGET_TAB 011
1770#define TARGET_NEWLINE 012
1771#define TARGET_VT 013
1772#define TARGET_FF 014
1773#define TARGET_CR 015
1774
1775#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1776 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1777
1778/* Print operand X (an rtx) in assembler syntax to file FILE.
1779 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1780 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1781
1782#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1783
1784/* Print a memory address as an operand to reference that memory location. */
1785
1786#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1787{ register rtx base, index = 0; \
1788 int offset = 0; \
1789 register rtx addr = ADDR; \
1790 if (GET_CODE (addr) == REG) \
1791 fputs (reg_names[REGNO (addr)], FILE); \
1792 else if (GET_CODE (addr) == PLUS) \
1793 { \
1794 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1795 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1796 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1797 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1798 else \
1799 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1800 fputs (reg_names[REGNO (base)], FILE); \
1801 if (index == 0) \
1802 fprintf (FILE, "%+d", offset); \
1803 else if (GET_CODE (index) == REG) \
1804 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1805 else if (GET_CODE (index) == SYMBOL_REF) \
1806 fputc ('+', FILE), output_addr_const (FILE, index); \
1807 else abort (); \
1808 } \
1809 else if (GET_CODE (addr) == MINUS \
1810 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1811 { \
1812 output_addr_const (FILE, XEXP (addr, 0)); \
1813 fputs ("-(", FILE); \
1814 output_addr_const (FILE, XEXP (addr, 1)); \
1815 fputs ("-.)", FILE); \
1816 } \
1817 else if (GET_CODE (addr) == LO_SUM) \
1818 { \
1819 output_operand (XEXP (addr, 0), 0); \
1820 fputs ("+%lo(", FILE); \
1821 output_address (XEXP (addr, 1)); \
1822 fputc (')', FILE); \
1823 } \
1824 else if (flag_pic && GET_CODE (addr) == CONST \
1825 && GET_CODE (XEXP (addr, 0)) == MINUS \
1826 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1827 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1828 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1829 { \
1830 addr = XEXP (addr, 0); \
1831 output_addr_const (FILE, XEXP (addr, 0)); \
1832 /* Group the args of the second CONST in parenthesis. */ \
1833 fputs ("-(", FILE); \
1834 /* Skip past the second CONST--it does nothing for us. */\
1835 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1836 /* Close the parenthesis. */ \
1837 fputc (')', FILE); \
1838 } \
1839 else \
1840 { \
1841 output_addr_const (FILE, addr); \
1842 } \
1843}
1844
1845/* Declare functions defined in sparc.c and used in templates. */
1846
1847extern char *singlemove_string ();
1848extern char *output_move_double ();
795068a4 1849extern char *output_move_quad ();
1bb87f28 1850extern char *output_fp_move_double ();
795068a4 1851extern char *output_fp_move_quad ();
1bb87f28
JW
1852extern char *output_block_move ();
1853extern char *output_scc_insn ();
1854extern char *output_cbranch ();
1855extern char *output_return ();
1bb87f28
JW
1856
1857/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1858
1859extern int flag_pic;
This page took 0.308579 seconds and 5 git commands to generate.