]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(CPP_SPEC): Fix typo.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
9a1c7cd7 37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 44
317417a2
JW
45#if 0
46/* ??? This fails because REAL_VALUE_TYPE is `double' making it impossible to
47 represent and output `long double' constants. This causes problems during
48 a bootstrap with enquire/float.h, and hence must be disabled for now.
49 To fix, we need to implement code for TFmode just like the existing XFmode
50 support in real.[ch]. */
95dea81f
JW
51/* Sparc ABI says that long double is 4 words. */
52
d9ca49d5 53#define LONG_DOUBLE_TYPE_SIZE 128
317417a2 54#endif
d9ca49d5 55
1bb87f28 56#define PTRDIFF_TYPE "int"
1ede52a6
RS
57/* In 2.4 it should work to delete this.
58 #define SIZE_TYPE "int" */
1bb87f28
JW
59#define WCHAR_TYPE "short unsigned int"
60#define WCHAR_TYPE_SIZE 16
61
98ccf8fe
RK
62/* Omit frame pointer at high optimization levels. */
63
1bb87f28
JW
64#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
65{ \
66 if (OPTIMIZE >= 2) \
67 { \
68 flag_omit_frame_pointer = 1; \
1bb87f28
JW
69 } \
70}
71
5b485d2c
JW
72/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
73 code into the rtl. Also, if we are profiling, we cannot eliminate
74 the frame pointer (because the return address will get smashed). */
75
76#define OVERRIDE_OPTIONS \
77 do { if (profile_flag || profile_block_flag) \
78 flag_omit_frame_pointer = 0, flag_pic = 0; } while (0)
79
1bb87f28
JW
80/* These compiler options take an argument. We ignore -target for now. */
81
82#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
83 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
84 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
85
86/* Names to predefine in the preprocessor for this target machine. */
87
f19c1a78
JW
88/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
89 new versions, which have an incompatible va-sparc.h file. This matters
90 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
91 wrong varargs file when it is compiled with a different version of gcc. */
92
93#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__"
1bb87f28
JW
94
95/* Print subsidiary information on the compiler version in use. */
96
97#define TARGET_VERSION fprintf (stderr, " (sparc)");
98
99/* Generate DBX debugging information. */
100
101#define DBX_DEBUGGING_INFO
102
103/* Run-time compilation parameters selecting different hardware subsets. */
104
105extern int target_flags;
106
107/* Nonzero if we should generate code to use the fpu. */
108#define TARGET_FPU (target_flags & 1)
109
110/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
111 use fast return insns, but lose some generality. */
112#define TARGET_EPILOGUE (target_flags & 2)
113
95dea81f
JW
114/* Nonzero if we should assume that double pointers might be unaligned.
115 This can happen when linking gcc compiled code with other compilers,
116 because the ABI only guarantees 4 byte alignment. */
117#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 118
885d8175
JW
119/* Nonzero means that we should generate code for a v8 sparc. */
120#define TARGET_V8 (target_flags & 64)
121
122/* Nonzero means that we should generate code for a sparclite. */
123#define TARGET_SPARCLITE (target_flags & 128)
124
5b485d2c 125/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
126 model, i.e. no save/restore instructions are generated, in the most
127 efficient manner. This code is not compatible with normal sparc code. */
128/* This is not a user selectable option yet, because it requires changes
129 that are not yet switchable via command line arguments. */
5b485d2c
JW
130#define TARGET_FRW (target_flags & 256)
131
9a1c7cd7
JW
132/* Nonzero means that we should generate code using a flat register window
133 model, i.e. no save/restore instructions are generated, but which is
134 compatible with normal sparc code. This is the same as above, except
135 that the frame pointer is %l6 instead of %fp. This code is not as efficient
136 as TARGET_FRW, because it has one less allocatable register. */
137/* This is not a user selectable option yet, because it requires changes
138 that are not yet switchable via command line arguments. */
139#define TARGET_FRW_COMPAT (target_flags & 512)
140
1bb87f28
JW
141/* Macro to define tables used to set the flags.
142 This is a list in braces of pairs in braces,
143 each pair being { "NAME", VALUE }
144 where VALUE is the bits to set or minus the bits to clear.
145 An empty string NAME is used to identify the default VALUE. */
146
147#define TARGET_SWITCHES \
148 { {"fpu", 1}, \
26c5587d
JW
149 {"no-fpu", -1}, \
150 {"hard-float", 1}, \
1bb87f28
JW
151 {"soft-float", -1}, \
152 {"epilogue", 2}, \
153 {"no-epilogue", -2}, \
95dea81f
JW
154 {"unaligned-doubles", 4}, \
155 {"no-unaligned-doubles", -4},\
885d8175
JW
156 {"v8", 64}, \
157 {"no-v8", -64}, \
158 {"sparclite", 128}, \
a66279da 159 {"sparclite", -1}, \
885d8175 160 {"no-sparclite", -128}, \
a66279da 161 {"no-sparclite", 1}, \
9a1c7cd7
JW
162/* {"frw", 256}, */ \
163/* {"no-frw", -256}, */ \
164/* {"frw-compat", 256+512}, */ \
165/* {"no-frw-compat", -(256+512)}, */ \
b1fc14e5 166 { "", TARGET_DEFAULT}}
1bb87f28
JW
167
168#define TARGET_DEFAULT 3
169\f
170/* target machine storage layout */
171
172/* Define this if most significant bit is lowest numbered
173 in instructions that operate on numbered bit-fields. */
174#define BITS_BIG_ENDIAN 1
175
176/* Define this if most significant byte of a word is the lowest numbered. */
177/* This is true on the SPARC. */
178#define BYTES_BIG_ENDIAN 1
179
180/* Define this if most significant word of a multiword number is the lowest
181 numbered. */
182/* Doubles are stored in memory with the high order word first. This
183 matters when cross-compiling. */
184#define WORDS_BIG_ENDIAN 1
185
b4ac57ab 186/* number of bits in an addressable storage unit */
1bb87f28
JW
187#define BITS_PER_UNIT 8
188
189/* Width in bits of a "word", which is the contents of a machine register.
190 Note that this is not necessarily the width of data type `int';
191 if using 16-bit ints on a 68000, this would still be 32.
192 But on a machine with 16-bit registers, this would be 16. */
193#define BITS_PER_WORD 32
194#define MAX_BITS_PER_WORD 32
195
196/* Width of a word, in units (bytes). */
197#define UNITS_PER_WORD 4
198
199/* Width in bits of a pointer.
200 See also the macro `Pmode' defined below. */
201#define POINTER_SIZE 32
202
203/* Allocation boundary (in *bits*) for storing arguments in argument list. */
204#define PARM_BOUNDARY 32
205
206/* Boundary (in *bits*) on which stack pointer should be aligned. */
207#define STACK_BOUNDARY 64
208
10d1b70f
JW
209/* ALIGN FRAMES on double word boundaries */
210
211#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
212
1bb87f28
JW
213/* Allocation boundary (in *bits*) for the code of a function. */
214#define FUNCTION_BOUNDARY 32
215
216/* Alignment of field after `int : 0' in a structure. */
217#define EMPTY_FIELD_BOUNDARY 32
218
219/* Every structure's size must be a multiple of this. */
220#define STRUCTURE_SIZE_BOUNDARY 8
221
222/* A bitfield declared as `int' forces `int' alignment for the struct. */
223#define PCC_BITFIELD_TYPE_MATTERS 1
224
225/* No data type wants to be aligned rounder than this. */
226#define BIGGEST_ALIGNMENT 64
227
77a02b01
JW
228/* The best alignment to use in cases where we have a choice. */
229#define FASTEST_ALIGNMENT 64
230
1bb87f28
JW
231/* Make strings word-aligned so strcpy from constants will be faster. */
232#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
233 ((TREE_CODE (EXP) == STRING_CST \
234 && (ALIGN) < FASTEST_ALIGNMENT) \
235 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
236
237/* Make arrays of chars word-aligned for the same reasons. */
238#define DATA_ALIGNMENT(TYPE, ALIGN) \
239 (TREE_CODE (TYPE) == ARRAY_TYPE \
240 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 241 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 242
b4ac57ab 243/* Set this nonzero if move instructions will actually fail to work
1bb87f28 244 when given unaligned data. */
b4ac57ab 245#define STRICT_ALIGNMENT 1
1bb87f28
JW
246
247/* Things that must be doubleword aligned cannot go in the text section,
248 because the linker fails to align the text section enough!
249 Put them in the data section. */
250#define MAX_TEXT_ALIGN 32
251
252#define SELECT_SECTION(T,RELOC) \
253{ \
254 if (TREE_CODE (T) == VAR_DECL) \
255 { \
256 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
257 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
258 && ! (flag_pic && (RELOC))) \
259 text_section (); \
260 else \
261 data_section (); \
262 } \
263 else if (TREE_CODE (T) == CONSTRUCTOR) \
264 { \
265 if (flag_pic != 0 && (RELOC) != 0) \
266 data_section (); \
267 } \
268 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
269 { \
270 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
271 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
272 data_section (); \
273 else \
274 text_section (); \
275 } \
276}
277
278/* Use text section for a constant
279 unless we need more alignment than that offers. */
280#define SELECT_RTX_SECTION(MODE, X) \
281{ \
282 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
283 && ! (flag_pic && symbolic_operand (X))) \
284 text_section (); \
285 else \
286 data_section (); \
287}
288\f
289/* Standard register usage. */
290
291/* Number of actual hardware registers.
292 The hardware registers are assigned numbers for the compiler
293 from 0 to just below FIRST_PSEUDO_REGISTER.
294 All registers that the compiler knows about must be given numbers,
295 even those that are not normally considered general registers.
296
297 SPARC has 32 integer registers and 32 floating point registers. */
298
299#define FIRST_PSEUDO_REGISTER 64
300
301/* 1 for registers that have pervasive standard uses
302 and are not available for the register allocator.
5b485d2c 303 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 304 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
305 g1 through g4 are free to use as temporaries.
306 g5 through g7 are reserved for the operating system. */
1bb87f28 307#define FIXED_REGISTERS \
d9ca49d5 308 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
309 0, 0, 0, 0, 0, 0, 1, 0, \
310 0, 0, 0, 0, 0, 0, 0, 0, \
311 0, 0, 0, 0, 0, 0, 1, 1, \
312 \
313 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0, \
315 0, 0, 0, 0, 0, 0, 0, 0, \
316 0, 0, 0, 0, 0, 0, 0, 0}
317
318/* 1 for registers not available across function calls.
319 These must include the FIXED_REGISTERS and also any
320 registers that can be used without being saved.
321 The latter must include the registers where values are returned
322 and the register where structure-value addresses are passed.
323 Aside from that, you can include as many other registers as you like. */
324#define CALL_USED_REGISTERS \
325 {1, 1, 1, 1, 1, 1, 1, 1, \
326 1, 1, 1, 1, 1, 1, 1, 1, \
327 0, 0, 0, 0, 0, 0, 0, 0, \
328 0, 0, 0, 0, 0, 0, 1, 1, \
329 \
330 1, 1, 1, 1, 1, 1, 1, 1, \
331 1, 1, 1, 1, 1, 1, 1, 1, \
332 1, 1, 1, 1, 1, 1, 1, 1, \
333 1, 1, 1, 1, 1, 1, 1, 1}
334
26c5587d
JW
335/* If !TARGET_FPU, then make the fp registers fixed so that they won't
336 be allocated. */
337
338#define CONDITIONAL_REGISTER_USAGE \
339do \
340 { \
341 if (! TARGET_FPU) \
342 { \
343 int regno; \
344 for (regno = 32; regno < 64; regno++) \
345 fixed_regs[regno] = 1; \
346 } \
347 } \
348while (0)
349
1bb87f28
JW
350/* Return number of consecutive hard regs needed starting at reg REGNO
351 to hold something of mode MODE.
352 This is ordinarily the length in words of a value of mode MODE
353 but can be less for certain modes in special long registers.
354
355 On SPARC, ordinary registers hold 32 bits worth;
356 this means both integer and floating point registers.
357
358 We use vectors to keep this information about registers. */
359
360/* How many hard registers it takes to make a register of this mode. */
361extern int hard_regno_nregs[];
362
363#define HARD_REGNO_NREGS(REGNO, MODE) \
364 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
365
366/* Value is 1 if register/mode pair is acceptable on sparc. */
367extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
368
369/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
370 On SPARC, the cpu registers can hold any mode but the float registers
371 can only hold SFmode or DFmode. See sparc.c for how we
372 initialize this. */
373#define HARD_REGNO_MODE_OK(REGNO, MODE) \
374 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
375
376/* Value is 1 if it is a good idea to tie two pseudo registers
377 when one has mode MODE1 and one has mode MODE2.
378 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
379 for any hard reg, then this must be 0 for correct output. */
380#define MODES_TIEABLE_P(MODE1, MODE2) \
381 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
382
383/* Specify the registers used for certain standard purposes.
384 The values of these macros are register numbers. */
385
386/* SPARC pc isn't overloaded on a register that the compiler knows about. */
387/* #define PC_REGNUM */
388
389/* Register to use for pushing function arguments. */
390#define STACK_POINTER_REGNUM 14
391
392/* Actual top-of-stack address is 92 greater than the contents
393 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
394 for the ins and local registers, 4 byte for structure return address, and
395 24 bytes for the 6 register parameters. */
396#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
397
398/* Base register for access to local variables of the function. */
399#define FRAME_POINTER_REGNUM 30
400
401#if 0
402/* Register that is used for the return address. */
403#define RETURN_ADDR_REGNUM 15
404#endif
405
406/* Value should be nonzero if functions must have frame pointers.
407 Zero means the frame pointer need not be set up (and parms
408 may be accessed via the stack pointer) in functions that seem suitable.
409 This is computed in `reload', in reload1.c.
410
c0524a34 411 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
412extern int leaf_function;
413
414#define FRAME_POINTER_REQUIRED \
a72cb8ec 415 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
416
417/* C statement to store the difference between the frame pointer
418 and the stack pointer values immediately after the function prologue.
419
420 Note, we always pretend that this is a leaf function because if
421 it's not, there's no point in trying to eliminate the
422 frame pointer. If it is a leaf function, we guessed right! */
423#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
424 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
425 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
426
427/* Base register for access to arguments of the function. */
428#define ARG_POINTER_REGNUM 30
429
430/* Register in which static-chain is passed to a function. */
431/* ??? */
432#define STATIC_CHAIN_REGNUM 1
433
434/* Register which holds offset table for position-independent
435 data references. */
436
437#define PIC_OFFSET_TABLE_REGNUM 23
438
439#define INITIALIZE_PIC initialize_pic ()
440#define FINALIZE_PIC finalize_pic ()
441
d9ca49d5 442/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 443 in memory. */
d9ca49d5 444#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 445 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 446
1bb87f28
JW
447/* Functions which return large structures get the address
448 to place the wanted value at offset 64 from the frame.
449 Must reserve 64 bytes for the in and local registers. */
450/* Used only in other #defines in this file. */
451#define STRUCT_VALUE_OFFSET 64
452
453#define STRUCT_VALUE \
454 gen_rtx (MEM, Pmode, \
455 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
456 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
457#define STRUCT_VALUE_INCOMING \
458 gen_rtx (MEM, Pmode, \
459 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
460 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
461\f
462/* Define the classes of registers for register constraints in the
463 machine description. Also define ranges of constants.
464
465 One of the classes must always be named ALL_REGS and include all hard regs.
466 If there is more than one class, another class must be named NO_REGS
467 and contain no registers.
468
469 The name GENERAL_REGS must be the name of a class (or an alias for
470 another name such as ALL_REGS). This is the class of registers
471 that is allowed by "g" or "r" in a register constraint.
472 Also, registers outside this class are allocated only when
473 instructions express preferences for them.
474
475 The classes must be numbered in nondecreasing order; that is,
476 a larger-numbered class must never be contained completely
477 in a smaller-numbered class.
478
479 For any two classes, it is very desirable that there be another
480 class that represents their union. */
481
482/* The SPARC has two kinds of registers, general and floating point. */
483
484enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
485
486#define N_REG_CLASSES (int) LIM_REG_CLASSES
487
488/* Give names of register classes as strings for dump file. */
489
490#define REG_CLASS_NAMES \
491 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
492
493/* Define which registers fit in which classes.
494 This is an initializer for a vector of HARD_REG_SET
495 of length N_REG_CLASSES. */
496
497#if 0 && defined (__GNUC__)
498#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
499#else
500#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
501#endif
502
503/* The same information, inverted:
504 Return the class number of the smallest class containing
505 reg number REGNO. This could be a conditional expression
506 or could index an array. */
507
508#define REGNO_REG_CLASS(REGNO) \
509 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
510
511/* This is the order in which to allocate registers
51f0e748
JW
512 normally.
513
514 We put %f0/%f1 last among the float registers, so as to make it more
515 likely that a pseduo-register which dies in the float return register
516 will get allocated to the float return register, thus saving a move
517 instruction at the end of the function. */
1bb87f28 518#define REG_ALLOC_ORDER \
b4ac57ab
RS
519{ 8, 9, 10, 11, 12, 13, 2, 3, \
520 15, 16, 17, 18, 19, 20, 21, 22, \
521 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 522 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
523 40, 41, 42, 43, 44, 45, 46, 47, \
524 48, 49, 50, 51, 52, 53, 54, 55, \
525 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 526 32, 33, \
4b69d2a3 527 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
528
529/* This is the order in which to allocate registers for
530 leaf functions. If all registers can fit in the "i" registers,
531 then we have the possibility of having a leaf function. */
532#define REG_LEAF_ALLOC_ORDER \
533{ 2, 3, 24, 25, 26, 27, 28, 29, \
534 15, 8, 9, 10, 11, 12, 13, \
535 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 536 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
537 40, 41, 42, 43, 44, 45, 46, 47, \
538 48, 49, 50, 51, 52, 53, 54, 55, \
539 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 540 32, 33, \
4b69d2a3 541 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
542
543#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
544
545#define LEAF_REGISTERS \
546{ 1, 1, 1, 1, 1, 1, 1, 1, \
547 0, 0, 0, 0, 0, 0, 1, 0, \
548 0, 0, 0, 0, 0, 0, 0, 0, \
549 1, 1, 1, 1, 1, 1, 0, 1, \
550 1, 1, 1, 1, 1, 1, 1, 1, \
551 1, 1, 1, 1, 1, 1, 1, 1, \
552 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 553 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
554
555extern char leaf_reg_remap[];
556#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
557extern char leaf_reg_backmap[];
558#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
559
1bb87f28
JW
560/* The class value for index registers, and the one for base regs. */
561#define INDEX_REG_CLASS GENERAL_REGS
562#define BASE_REG_CLASS GENERAL_REGS
563
564/* Get reg_class from a letter such as appears in the machine description. */
565
566#define REG_CLASS_FROM_LETTER(C) \
567 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
568
569/* The letters I, J, K, L and M in a register constraint string
570 can be used to stand for particular ranges of immediate operands.
571 This macro defines what the ranges are.
572 C is the letter, and VALUE is a constant value.
573 Return 1 if VALUE is in the range specified by C.
574
575 For SPARC, `I' is used for the range of constants an insn
576 can actually contain.
577 `J' is used for the range which is just zero (since that is R0).
9ad2c692 578 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
579
580#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
581
582#define CONST_OK_FOR_LETTER_P(VALUE, C) \
583 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
584 : (C) == 'J' ? (VALUE) == 0 \
585 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
586 : 0)
587
588/* Similar, but for floating constants, and defining letters G and H.
589 Here VALUE is the CONST_DOUBLE rtx itself. */
590
591#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
592 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
593 && CONST_DOUBLE_LOW (VALUE) == 0 \
594 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
595 : 0)
596
597/* Given an rtx X being reloaded into a reg required to be
598 in class CLASS, return the class of reg to actually use.
599 In general this is just CLASS; but on some machines
600 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
601/* We can't load constants into FP registers. We can't load any FP constant
602 if an 'E' constraint fails to match it. */
603#define PREFERRED_RELOAD_CLASS(X,CLASS) \
604 (CONSTANT_P (X) \
605 && ((CLASS) == FP_REGS \
606 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
607 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
608 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
609 ? NO_REGS : (CLASS))
1bb87f28
JW
610
611/* Return the register class of a scratch register needed to load IN into
612 a register of class CLASS in MODE.
613
614 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 615 into a register.
1bb87f28 616
ae51bd97
JW
617 Also, we need a temporary when loading/storing a HImode/QImode value
618 between memory and the FPU registers. This can happen when combine puts
619 a paradoxical subreg in a float/fix conversion insn. */
620
621#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
622 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
623 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
624 && (GET_CODE (IN) == MEM \
625 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
626 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
627
628#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
629 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
630 && (GET_CODE (IN) == MEM \
631 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
632 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 633
b924cef0
JW
634/* On SPARC it is not possible to directly move data between
635 GENERAL_REGS and FP_REGS. */
636#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
637 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
638 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 639
fe1f7f24
JW
640/* Return the stack location to use for secondary memory needed reloads. */
641#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
642 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, GEN_INT (-8)))
643
1bb87f28
JW
644/* Return the maximum number of consecutive registers
645 needed to represent mode MODE in a register of class CLASS. */
646/* On SPARC, this is the size of MODE in words. */
647#define CLASS_MAX_NREGS(CLASS, MODE) \
648 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
649\f
650/* Stack layout; function entry, exit and calling. */
651
652/* Define the number of register that can hold parameters.
653 These two macros are used only in other macro definitions below. */
654#define NPARM_REGS 6
655
656/* Define this if pushing a word on the stack
657 makes the stack pointer a smaller address. */
658#define STACK_GROWS_DOWNWARD
659
660/* Define this if the nominal address of the stack frame
661 is at the high-address end of the local variables;
662 that is, each additional local variable allocated
663 goes at a more negative offset in the frame. */
664#define FRAME_GROWS_DOWNWARD
665
666/* Offset within stack frame to start allocating local variables at.
667 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
668 first local allocated. Otherwise, it is the offset to the BEGINNING
669 of the first local allocated. */
1fe44568 670#define STARTING_FRAME_OFFSET (-8)
1bb87f28
JW
671
672/* If we generate an insn to push BYTES bytes,
673 this says how many the stack pointer really advances by.
674 On SPARC, don't define this because there are no push insns. */
675/* #define PUSH_ROUNDING(BYTES) */
676
677/* Offset of first parameter from the argument pointer register value.
678 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
679 even if this function isn't going to use it. */
680#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
681
682/* When a parameter is passed in a register, stack space is still
683 allocated for it. */
684#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
685
686/* Keep the stack pointer constant throughout the function.
b4ac57ab 687 This is both an optimization and a necessity: longjmp
1bb87f28
JW
688 doesn't behave itself when the stack pointer moves within
689 the function! */
690#define ACCUMULATE_OUTGOING_ARGS
691
692/* Value is the number of bytes of arguments automatically
693 popped when returning from a subroutine call.
694 FUNTYPE is the data type of the function (as a tree),
695 or for a library call it is an identifier node for the subroutine name.
696 SIZE is the number of bytes of arguments passed on the stack. */
697
698#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
699
5b485d2c
JW
700/* Some subroutine macros specific to this machine.
701 When !TARGET_FPU, put float return values in the general registers,
702 since we don't have any fp registers. */
1bb87f28 703#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 704 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 705#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
706 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
707 : (TARGET_FRW ? 8 : 24))
1bb87f28 708#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 709#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 710
92ea370b
TW
711/* Define this macro if the target machine has "register windows". This
712 C expression returns the register number as seen by the called function
713 corresponding to register number OUT as seen by the calling function.
714 Return OUT if register number OUT is not an outbound register. */
715
716#define INCOMING_REGNO(OUT) \
717 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
718
719/* Define this macro if the target machine has "register windows". This
720 C expression returns the register number as seen by the calling function
721 corresponding to register number IN as seen by the called function.
722 Return IN if register number IN is not an inbound register. */
723
724#define OUTGOING_REGNO(IN) \
725 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
726
1bb87f28
JW
727/* Define how to find the value returned by a function.
728 VALTYPE is the data type of the value (as a tree).
729 If the precise function being called is known, FUNC is its FUNCTION_DECL;
730 otherwise, FUNC is 0. */
731
732/* On SPARC the value is found in the first "output" register. */
733
734#define FUNCTION_VALUE(VALTYPE, FUNC) \
735 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
736
737/* But the called function leaves it in the first "input" register. */
738
739#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
740 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
741
742/* Define how to find the value returned by a library function
743 assuming the value has mode MODE. */
744
745#define LIBCALL_VALUE(MODE) \
746 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
747
748/* 1 if N is a possible register number for a function value
749 as seen by the caller.
750 On SPARC, the first "output" reg is used for integer values,
751 and the first floating point register is used for floating point values. */
752
753#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
754
755/* 1 if N is a possible register number for function argument passing.
756 On SPARC, these are the "output" registers. */
757
758#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
759\f
760/* Define a data type for recording info about an argument list
761 during the scan of that argument list. This data type should
762 hold all necessary information about the function itself
763 and about the args processed so far, enough to enable macros
764 such as FUNCTION_ARG to determine where the next arg should go.
765
766 On SPARC, this is a single integer, which is a number of words
767 of arguments scanned so far (including the invisible argument,
768 if any, which holds the structure-value-address).
769 Thus 7 or more means all following args should go on the stack. */
770
771#define CUMULATIVE_ARGS int
772
773#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
774 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
775
1bb87f28
JW
776/* Initialize a variable CUM of type CUMULATIVE_ARGS
777 for a call to a function whose data type is FNTYPE.
778 For a library call, FNTYPE is 0.
779
780 On SPARC, the offset always starts at 0: the first parm reg is always
781 the same reg. */
782
783#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
784
785/* Update the data in CUM to advance over an argument
786 of mode MODE and data type TYPE.
787 (TYPE is null for libcalls where that information may not be available.) */
788
789#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
790 ((CUM) += ((MODE) != BLKmode \
791 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
792 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
793
794/* Determine where to put an argument to a function.
795 Value is zero to push the argument on the stack,
796 or a hard register in which to store the argument.
797
798 MODE is the argument's machine mode.
799 TYPE is the data type of the argument (as a tree).
800 This is null for libcalls where that information may
801 not be available.
802 CUM is a variable of type CUMULATIVE_ARGS which gives info about
803 the preceding args and about the function being called.
804 NAMED is nonzero if this argument is a named parameter
805 (otherwise it is an extra parameter matching an ellipsis). */
806
807/* On SPARC the first six args are normally in registers
808 and the rest are pushed. Any arg that starts within the first 6 words
809 is at least partially passed in a register unless its data type forbids. */
810
811#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 812((CUM) < NPARM_REGS \
1bb87f28 813 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
814 && ((TYPE)==0 || (MODE) != BLKmode \
815 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 816 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 817 : 0)
1bb87f28
JW
818
819/* Define where a function finds its arguments.
820 This is different from FUNCTION_ARG because of register windows. */
821
822#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 823((CUM) < NPARM_REGS \
1bb87f28 824 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
825 && ((TYPE)==0 || (MODE) != BLKmode \
826 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 827 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 828 : 0)
1bb87f28
JW
829
830/* For an arg passed partly in registers and partly in memory,
831 this is the number of registers used.
832 For args passed entirely in registers or entirely in memory, zero.
833 Any arg that starts in the first 6 regs but won't entirely fit in them
834 needs partial registers on the Sparc. */
835
836#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 837 ((CUM) < NPARM_REGS \
1bb87f28 838 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
839 && ((TYPE)==0 || (MODE) != BLKmode \
840 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
841 && ((CUM) + ((MODE) == BLKmode \
842 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
843 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
844 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
845 : 0)
846
d9ca49d5
JW
847/* The SPARC ABI stipulates passing struct arguments (of any size) and
848 quad-precision floats by invisible reference. */
1bb87f28 849#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
850 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
851 || TREE_CODE (TYPE) == UNION_TYPE)) \
852 || (MODE == TFmode))
1bb87f28
JW
853
854/* Define the information needed to generate branch and scc insns. This is
855 stored from the compare operation. Note that we can't use "rtx" here
856 since it hasn't been defined! */
857
858extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
859
860/* Define the function that build the compare insn for scc and bcc. */
861
862extern struct rtx_def *gen_compare_reg ();
863\f
4b69d2a3
RS
864/* Generate the special assembly code needed to tell the assembler whatever
865 it might need to know about the return value of a function.
866
867 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
868 information to the assembler relating to peephole optimization (done in
869 the assembler). */
870
871#define ASM_DECLARE_RESULT(FILE, RESULT) \
872 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
873
1bb87f28
JW
874/* Output the label for a function definition. */
875
4b69d2a3
RS
876#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
877do { \
878 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
879 ASM_OUTPUT_LABEL (FILE, NAME); \
880} while (0)
1bb87f28
JW
881
882/* Two views of the size of the current frame. */
883extern int actual_fsize;
884extern int apparent_fsize;
885
886/* This macro generates the assembly code for function entry.
887 FILE is a stdio stream to output the code to.
888 SIZE is an int: how many units of temporary storage to allocate.
889 Refer to the array `regs_ever_live' to determine which registers
890 to save; `regs_ever_live[I]' is nonzero if register number I
891 is ever used in the function. This macro is responsible for
892 knowing which registers should not be saved even if used. */
893
894/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
895 of memory. If any fpu reg is used in the function, we allocate
896 such a block here, at the bottom of the frame, just in case it's needed.
897
898 If this function is a leaf procedure, then we may choose not
899 to do a "save" insn. The decision about whether or not
900 to do this is made in regclass.c. */
901
902#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
903 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
904 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
905
906/* Output assembler code to FILE to increment profiler label # LABELNO
907 for profiling a function entry. */
908
d2a8e680
RS
909#define FUNCTION_PROFILER(FILE, LABELNO) \
910 do { \
911 fputs ("\tsethi %hi(", (FILE)); \
912 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
913 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
914 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
915 fputs ("),%o0,%o0\n", (FILE)); \
916 } while (0)
1bb87f28
JW
917
918/* Output assembler code to FILE to initialize this source file's
919 basic block profiling info, if that has not already been done. */
d2a8e680
RS
920/* FIXME -- this does not parameterize how it generates labels (like the
921 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
922
923#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
924 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
925 (LABELNO), (LABELNO))
926
927/* Output assembler code to FILE to increment the entry-count for
928 the BLOCKNO'th basic block in this source file. */
929
930#define BLOCK_PROFILER(FILE, BLOCKNO) \
931{ \
932 int blockn = (BLOCKNO); \
933 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
934\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
935 4 * blockn, 4 * blockn, 4 * blockn); \
936}
937
1bb87f28
JW
938/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
939 the stack pointer does not matter. The value is tested only in
940 functions that have frame pointers.
941 No definition is equivalent to always zero. */
942
943extern int current_function_calls_alloca;
944extern int current_function_outgoing_args_size;
945
946#define EXIT_IGNORE_STACK \
947 (get_frame_size () != 0 \
948 || current_function_calls_alloca || current_function_outgoing_args_size)
949
950/* This macro generates the assembly code for function exit,
951 on machines that need it. If FUNCTION_EPILOGUE is not defined
952 then individual return instructions are generated for each
953 return statement. Args are same as for FUNCTION_PROLOGUE.
954
955 The function epilogue should not depend on the current stack pointer!
956 It should use the frame pointer only. This is mandatory because
957 of alloca; we also take advantage of it to omit stack adjustments
958 before returning. */
959
960/* This declaration is needed due to traditional/ANSI
961 incompatibilities which cannot be #ifdefed away
962 because they occur inside of macros. Sigh. */
963extern union tree_node *current_function_decl;
964
965#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
966 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
967 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 968
5b485d2c
JW
969#define DELAY_SLOTS_FOR_EPILOGUE \
970 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 971#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
972 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
973 : eligible_for_epilogue_delay (trial, slots_filled))
1bb87f28
JW
974
975/* Output assembler code for a block containing the constant parts
976 of a trampoline, leaving space for the variable parts. */
977
978/* On the sparc, the trampoline contains five instructions:
979 sethi #TOP_OF_FUNCTION,%g2
980 or #BOTTOM_OF_FUNCTION,%g2,%g2
981 sethi #TOP_OF_STATIC,%g1
982 jmp g2
983 or #BOTTOM_OF_STATIC,%g1,%g1 */
984#define TRAMPOLINE_TEMPLATE(FILE) \
985{ \
986 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
987 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
988 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
989 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
990 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
991}
992
993/* Length in units of the trampoline for entering a nested function. */
994
995#define TRAMPOLINE_SIZE 20
996
997/* Emit RTL insns to initialize the variable parts of a trampoline.
998 FNADDR is an RTX for the address of the function's pure code.
999 CXT is an RTX for the static chain value for the function.
1000
1001 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1002 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1003 (to store insns). This is a bit excessive. Perhaps a different
1004 mechanism would be better here. */
1005
1006#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1007{ \
1008 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1009 size_int (10), 0, 1); \
1010 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1011 size_int (10), 0, 1); \
1012 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1013 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1014 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1015 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1016 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1017 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1018 rtx g1_ori = gen_rtx (HIGH, SImode, \
1019 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1020 rtx g2_ori = gen_rtx (HIGH, SImode, \
1021 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1022 rtx tem = gen_reg_rtx (SImode); \
1023 emit_move_insn (tem, g2_sethi); \
1024 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1025 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
1026 emit_move_insn (tem, g2_ori); \
1027 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1028 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
1029 emit_move_insn (tem, g1_sethi); \
1030 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1031 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
1032 emit_move_insn (tem, g1_ori); \
1033 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1034 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1035}
1036
9a1c7cd7
JW
1037/* Generate necessary RTL for __builtin_saveregs().
1038 ARGLIST is the argument list; see expr.c. */
1039extern struct rtx_def *sparc_builtin_saveregs ();
1040#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1041
1042/* Generate RTL to flush the register windows so as to make arbitrary frames
1043 available. */
1044#define SETUP_FRAME_ADDRESSES() \
1045 emit_insn (gen_flush_register_windows ())
1046
1047/* Given an rtx for the address of a frame,
1048 return an rtx for the address of the word in the frame
1049 that holds the dynamic chain--the previous frame's address. */
1050#define DYNAMIC_CHAIN_ADDRESS(frame) \
1051 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1052
1053/* The return address isn't on the stack, it is in a register, so we can't
1054 access it from the current frame pointer. We can access it from the
1055 previous frame pointer though by reading a value from the register window
1056 save area. */
1057#define RETURN_ADDR_IN_PREVIOUS_FRAME
1058
1059/* The current return address is in %i7. The return address of anything
1060 farther back is in the register window save area at [%fp+60]. */
1061/* ??? This ignores the fact that the actual return address is +8 for normal
1062 returns, and +12 for structure returns. */
1063#define RETURN_ADDR_RTX(count, frame) \
1064 ((count == -1) \
1065 ? gen_rtx (REG, Pmode, 31) \
1066 : copy_to_reg (gen_rtx (MEM, Pmode, \
1067 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1068\f
1069/* Addressing modes, and classification of registers for them. */
1070
1071/* #define HAVE_POST_INCREMENT */
1072/* #define HAVE_POST_DECREMENT */
1073
1074/* #define HAVE_PRE_DECREMENT */
1075/* #define HAVE_PRE_INCREMENT */
1076
1077/* Macros to check register numbers against specific register classes. */
1078
1079/* These assume that REGNO is a hard or pseudo reg number.
1080 They give nonzero only if REGNO is a hard reg of the suitable class
1081 or a pseudo reg currently allocated to a suitable hard reg.
1082 Since they use reg_renumber, they are safe only once reg_renumber
1083 has been allocated, which happens in local-alloc.c. */
1084
1085#define REGNO_OK_FOR_INDEX_P(REGNO) \
1086(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1087#define REGNO_OK_FOR_BASE_P(REGNO) \
1088(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1089#define REGNO_OK_FOR_FP_P(REGNO) \
1090(((REGNO) ^ 0x20) < 32 \
1091 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1092
1093/* Now macros that check whether X is a register and also,
1094 strictly, whether it is in a specified class.
1095
1096 These macros are specific to the SPARC, and may be used only
1097 in code for printing assembler insns and in conditions for
1098 define_optimization. */
1099
1100/* 1 if X is an fp register. */
1101
1102#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1103\f
1104/* Maximum number of registers that can appear in a valid memory address. */
1105
1106#define MAX_REGS_PER_ADDRESS 2
1107
1108/* Recognize any constant value that is a valid address. */
1109
6eff269e
BK
1110#define CONSTANT_ADDRESS_P(X) \
1111 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1112 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1113 || GET_CODE (X) == HIGH)
1bb87f28
JW
1114
1115/* Nonzero if the constant value X is a legitimate general operand.
1116 Anything can be made to work except floating point constants. */
1117
1118#define LEGITIMATE_CONSTANT_P(X) \
1119 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1120
1121/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1122 and check its validity for a certain class.
1123 We have two alternate definitions for each of them.
1124 The usual definition accepts all pseudo regs; the other rejects
1125 them unless they have been allocated suitable hard regs.
1126 The symbol REG_OK_STRICT causes the latter definition to be used.
1127
1128 Most source files want to accept pseudo regs in the hope that
1129 they will get allocated to the class that the insn wants them to be in.
1130 Source files for reload pass need to be strict.
1131 After reload, it makes no difference, since pseudo regs have
1132 been eliminated by then. */
1133
1134/* Optional extra constraints for this machine. Borrowed from romp.h.
1135
1136 For the SPARC, `Q' means that this is a memory operand but not a
1137 symbolic memory operand. Note that an unassigned pseudo register
1138 is such a memory operand. Needed because reload will generate
1139 these things in insns and then not re-recognize the insns, causing
1140 constrain_operands to fail.
1141
1bb87f28
JW
1142 `S' handles constraints for calls. */
1143
1144#ifndef REG_OK_STRICT
1145
1146/* Nonzero if X is a hard reg that can be used as an index
1147 or if it is a pseudo reg. */
1148#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1149/* Nonzero if X is a hard reg that can be used as a base reg
1150 or if it is a pseudo reg. */
1151#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1152
1153#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1154 ((C) == 'Q' \
1155 ? ((GET_CODE (OP) == MEM \
1156 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1157 && ! symbolic_memory_operand (OP, VOIDmode)) \
1158 || (reload_in_progress && GET_CODE (OP) == REG \
1159 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
db5e449c
RS
1160 : (C) == 'S' \
1161 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1162 : (C) == 'T' \
1163 ? (mem_aligned_8 (OP)) \
1164 : (C) == 'U' \
1165 ? (register_ok_for_ldd (OP)) \
db5e449c 1166 : 0)
19858600 1167
1bb87f28
JW
1168#else
1169
1170/* Nonzero if X is a hard reg that can be used as an index. */
1171#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1172/* Nonzero if X is a hard reg that can be used as a base reg. */
1173#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1174
1175#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1176 ((C) == 'Q' \
1177 ? (GET_CODE (OP) == REG \
1178 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1179 && reg_renumber[REGNO (OP)] < 0) \
1180 : GET_CODE (OP) == MEM) \
1181 : (C) == 'S' \
1182 ? (CONSTANT_P (OP) \
1183 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0) \
1184 || strict_memory_address_p (Pmode, OP)) \
1185 : (C) == 'T' \
1186 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, OP) \
1187 : (C) == 'U' \
1188 ? register_ok_for_ldd (OP) : 0)
1bb87f28
JW
1189#endif
1190\f
1191/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1192 that is a valid memory address for an instruction.
1193 The MODE argument is the machine mode for the MEM expression
1194 that wants to use this address.
1195
1196 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1197 ordinarily. This changes a bit when generating PIC.
1198
1199 If you change this, execute "rm explow.o recog.o reload.o". */
1200
bec2e359
JW
1201#define RTX_OK_FOR_BASE_P(X) \
1202 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1203 || (GET_CODE (X) == SUBREG \
1204 && GET_CODE (SUBREG_REG (X)) == REG \
1205 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1206
1207#define RTX_OK_FOR_INDEX_P(X) \
1208 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1209 || (GET_CODE (X) == SUBREG \
1210 && GET_CODE (SUBREG_REG (X)) == REG \
1211 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1212
1213#define RTX_OK_FOR_OFFSET_P(X) \
1214 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1215
1bb87f28 1216#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1217{ if (RTX_OK_FOR_BASE_P (X)) \
1218 goto ADDR; \
1bb87f28
JW
1219 else if (GET_CODE (X) == PLUS) \
1220 { \
bec2e359
JW
1221 register rtx op0 = XEXP (X, 0); \
1222 register rtx op1 = XEXP (X, 1); \
1223 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1224 { \
bec2e359 1225 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1226 goto ADDR; \
1227 else if (flag_pic == 1 \
bec2e359
JW
1228 && GET_CODE (op1) != REG \
1229 && GET_CODE (op1) != LO_SUM \
1230 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1231 goto ADDR; \
1232 } \
bec2e359 1233 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1234 { \
bec2e359
JW
1235 if (RTX_OK_FOR_INDEX_P (op1) \
1236 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1237 goto ADDR; \
1238 } \
bec2e359 1239 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1240 { \
bec2e359
JW
1241 if (RTX_OK_FOR_INDEX_P (op0) \
1242 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1243 goto ADDR; \
1244 } \
1245 } \
bec2e359
JW
1246 else if (GET_CODE (X) == LO_SUM) \
1247 { \
1248 register rtx op0 = XEXP (X, 0); \
1249 register rtx op1 = XEXP (X, 1); \
1250 if (RTX_OK_FOR_BASE_P (op0) \
1251 && CONSTANT_P (op1)) \
1252 goto ADDR; \
1253 } \
1bb87f28
JW
1254 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1255 goto ADDR; \
1256}
1257\f
1258/* Try machine-dependent ways of modifying an illegitimate address
1259 to be legitimate. If we find one, return the new, valid address.
1260 This macro is used in only one place: `memory_address' in explow.c.
1261
1262 OLDX is the address as it was before break_out_memory_refs was called.
1263 In some cases it is useful to look at this to decide what needs to be done.
1264
1265 MODE and WIN are passed so that this macro can use
1266 GO_IF_LEGITIMATE_ADDRESS.
1267
1268 It is always safe for this macro to do nothing. It exists to recognize
1269 opportunities to optimize the output. */
1270
1271/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1272extern struct rtx_def *legitimize_pic_address ();
1273#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1274{ rtx sparc_x = (X); \
1275 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1276 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1277 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1278 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1279 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1280 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1281 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1282 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1283 XEXP (X, 1)); \
1284 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1285 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1286 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1287 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1288 goto WIN; \
1289 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1290 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1291 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1292 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1293 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1294 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1295 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1296 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1297 || GET_CODE (X) == LABEL_REF) \
1298 (X) = gen_rtx (LO_SUM, Pmode, \
1299 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1300 if (memory_address_p (MODE, X)) \
1301 goto WIN; }
1302
1303/* Go to LABEL if ADDR (a legitimate address expression)
1304 has an effect that depends on the machine mode it is used for.
1305 On the SPARC this is never true. */
1306
1307#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1308\f
1309/* Specify the machine mode that this machine uses
1310 for the index in the tablejump instruction. */
1311#define CASE_VECTOR_MODE SImode
1312
1313/* Define this if the tablejump instruction expects the table
1314 to contain offsets from the address of the table.
1315 Do not define this if the table should contain absolute addresses. */
1316/* #define CASE_VECTOR_PC_RELATIVE */
1317
1318/* Specify the tree operation to be used to convert reals to integers. */
1319#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1320
1321/* This is the kind of divide that is easiest to do in the general case. */
1322#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1323
1324/* Define this as 1 if `char' should by default be signed; else as 0. */
1325#define DEFAULT_SIGNED_CHAR 1
1326
1327/* Max number of bytes we can move from memory to memory
1328 in one reasonably fast instruction. */
2eef2ef1 1329#define MOVE_MAX 8
1bb87f28 1330
0fb5a69e 1331#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1332/* This is the value of the error code EDOM for this machine,
1333 used by the sqrt instruction. */
1334#define TARGET_EDOM 33
1335
1336/* This is how to refer to the variable errno. */
1337#define GEN_ERRNO_RTX \
1338 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1339#endif /* 0 */
24e2a2bf 1340
1bb87f28
JW
1341/* Define if normal loads of shorter-than-word items from memory clears
1342 the rest of the bigs in the register. */
1343#define BYTE_LOADS_ZERO_EXTEND
1344
1345/* Nonzero if access to memory by bytes is slow and undesirable.
1346 For RISC chips, it means that access to memory by bytes is no
1347 better than access by words when possible, so grab a whole word
1348 and maybe make use of that. */
1349#define SLOW_BYTE_ACCESS 1
1350
1351/* We assume that the store-condition-codes instructions store 0 for false
1352 and some other value for true. This is the value stored for true. */
1353
1354#define STORE_FLAG_VALUE 1
1355
1356/* When a prototype says `char' or `short', really pass an `int'. */
1357#define PROMOTE_PROTOTYPES
1358
1359/* Define if shifts truncate the shift count
1360 which implies one can omit a sign-extension or zero-extension
1361 of a shift count. */
1362#define SHIFT_COUNT_TRUNCATED
1363
1364/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1365 is done just by pretending it is already truncated. */
1366#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1367
1368/* Specify the machine mode that pointers have.
1369 After generation of rtl, the compiler makes no further distinction
1370 between pointers and any other objects of this machine mode. */
1371#define Pmode SImode
1372
b4ac57ab
RS
1373/* Generate calls to memcpy, memcmp and memset. */
1374#define TARGET_MEM_FUNCTIONS
1375
1bb87f28
JW
1376/* Add any extra modes needed to represent the condition code.
1377
1378 On the Sparc, we have a "no-overflow" mode which is used when an add or
1379 subtract insn is used to set the condition code. Different branches are
1380 used in this case for some operations.
1381
4d449554
JW
1382 We also have two modes to indicate that the relevant condition code is
1383 in the floating-point condition code register. One for comparisons which
1384 will generate an exception if the result is unordered (CCFPEmode) and
1385 one for comparisons which will never trap (CCFPmode). This really should
1386 be a separate register, but we don't want to go to 65 registers. */
1387#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1388
1389/* Define the names for the modes specified above. */
4d449554 1390#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1391
1392/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1393 return the mode to be used for the comparison. For floating-point,
1394 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1395 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1396 needed. */
679655e6 1397#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1398 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1399 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1400 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1401 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1402
1403/* A function address in a call instruction
1404 is a byte address (for indexing purposes)
1405 so give the MEM rtx a byte's mode. */
1406#define FUNCTION_MODE SImode
1407
1408/* Define this if addresses of constant functions
1409 shouldn't be put through pseudo regs where they can be cse'd.
1410 Desirable on machines where ordinary constants are expensive
1411 but a CALL with constant address is cheap. */
1412#define NO_FUNCTION_CSE
1413
1414/* alloca should avoid clobbering the old register save area. */
1415#define SETJMP_VIA_SAVE_AREA
1416
1417/* Define subroutines to call to handle multiply and divide.
1418 Use the subroutines that Sun's library provides.
1419 The `*' prevents an underscore from being prepended by the compiler. */
1420
1421#define DIVSI3_LIBCALL "*.div"
1422#define UDIVSI3_LIBCALL "*.udiv"
1423#define MODSI3_LIBCALL "*.rem"
1424#define UMODSI3_LIBCALL "*.urem"
1425/* .umul is a little faster than .mul. */
1426#define MULSI3_LIBCALL "*.umul"
1427
1428/* Compute the cost of computing a constant rtl expression RTX
1429 whose rtx-code is CODE. The body of this macro is a portion
1430 of a switch statement. If the code is computed here,
1431 return it with a return statement. Otherwise, break from the switch. */
1432
3bb22aee 1433#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1434 case CONST_INT: \
1bb87f28 1435 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1436 return 0; \
1bb87f28
JW
1437 case HIGH: \
1438 return 2; \
1439 case CONST: \
1440 case LABEL_REF: \
1441 case SYMBOL_REF: \
1442 return 4; \
1443 case CONST_DOUBLE: \
1444 if (GET_MODE (RTX) == DImode) \
1445 if ((XINT (RTX, 3) == 0 \
1446 && (unsigned) XINT (RTX, 2) < 0x1000) \
1447 || (XINT (RTX, 3) == -1 \
1448 && XINT (RTX, 2) < 0 \
1449 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1450 return 0; \
1bb87f28
JW
1451 return 8;
1452
1453/* SPARC offers addressing modes which are "as cheap as a register".
1454 See sparc.c (or gcc.texinfo) for details. */
1455
1456#define ADDRESS_COST(RTX) \
1457 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1458
1459/* Compute extra cost of moving data between one register class
1460 and another. */
1461#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1462 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1463 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1464
1465/* Provide the costs of a rtl expression. This is in the body of a
1466 switch on CODE. The purpose for the cost of MULT is to encourage
1467 `synth_mult' to find a synthetic multiply when reasonable.
1468
1469 If we need more than 12 insns to do a multiply, then go out-of-line,
1470 since the call overhead will be < 10% of the cost of the multiply. */
1471
3bb22aee 1472#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1473 case MULT: \
1474 return COSTS_N_INSNS (25); \
1475 case DIV: \
1476 case UDIV: \
1477 case MOD: \
1478 case UMOD: \
5b485d2c
JW
1479 return COSTS_N_INSNS (25); \
1480 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1481 so that cse will favor the latter. */ \
1482 case FLOAT: \
5b485d2c 1483 case FIX: \
1bb87f28
JW
1484 return 19;
1485
1486/* Conditional branches with empty delay slots have a length of two. */
1487#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1488 if (GET_CODE (INSN) == CALL_INSN \
1489 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1490 LENGTH += 1;
1491\f
1492/* Control the assembler format that we output. */
1493
1494/* Output at beginning of assembler file. */
1495
1496#define ASM_FILE_START(file)
1497
1498/* Output to assembler file text saying following lines
1499 may contain character constants, extra white space, comments, etc. */
1500
1501#define ASM_APP_ON ""
1502
1503/* Output to assembler file text saying following lines
1504 no longer contain unusual constructs. */
1505
1506#define ASM_APP_OFF ""
1507
303d524a
JW
1508#define ASM_LONG ".word"
1509#define ASM_SHORT ".half"
1510#define ASM_BYTE_OP ".byte"
1511
1bb87f28
JW
1512/* Output before read-only data. */
1513
1514#define TEXT_SECTION_ASM_OP ".text"
1515
1516/* Output before writable data. */
1517
1518#define DATA_SECTION_ASM_OP ".data"
1519
1520/* How to refer to registers in assembler output.
1521 This sequence is indexed by compiler's hard-register-number (see above). */
1522
1523#define REGISTER_NAMES \
1524{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1525 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1526 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1527 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1528 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1529 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1530 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1531 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1532
ea3fa5f7
JW
1533/* Define additional names for use in asm clobbers and asm declarations.
1534
1535 We define the fake Condition Code register as an alias for reg 0 (which
1536 is our `condition code' register), so that condition codes can easily
1537 be clobbered by an asm. No such register actually exists. Condition
1538 codes are partly stored in the PSR and partly in the FSR. */
1539
0eb9f40e 1540#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1541
1bb87f28
JW
1542/* How to renumber registers for dbx and gdb. */
1543
1544#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1545
1546/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1547 since the length can run past this up to a continuation point. */
1548#define DBX_CONTIN_LENGTH 1500
1549
1550/* This is how to output a note to DBX telling it the line number
1551 to which the following sequence of instructions corresponds.
1552
1553 This is needed for SunOS 4.0, and should not hurt for 3.2
1554 versions either. */
1555#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1556 { static int sym_lineno = 1; \
1557 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1558 line, sym_lineno, sym_lineno); \
1559 sym_lineno += 1; }
1560
1561/* This is how to output the definition of a user-level label named NAME,
1562 such as the label on a static function or variable NAME. */
1563
1564#define ASM_OUTPUT_LABEL(FILE,NAME) \
1565 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1566
1567/* This is how to output a command to make the user-level label named NAME
1568 defined for reference from other files. */
1569
1570#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1571 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1572
1573/* This is how to output a reference to a user-level label named NAME.
1574 `assemble_name' uses this. */
1575
1576#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1577 fprintf (FILE, "_%s", NAME)
1578
d2a8e680 1579/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1580 PREFIX is the class of label and NUM is the number within the class. */
1581
1582#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1583 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1584
d2a8e680
RS
1585/* This is how to output a reference to an internal numbered label where
1586 PREFIX is the class of label and NUM is the number within the class. */
1587/* FIXME: This should be used throughout gcc, and documented in the texinfo
1588 files. There is no reason you should have to allocate a buffer and
1589 `sprintf' to reference an internal label (as opposed to defining it). */
1590
1591#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1592 fprintf (FILE, "%s%d", PREFIX, NUM)
1593
1bb87f28
JW
1594/* This is how to store into the string LABEL
1595 the symbol_ref name of an internal numbered label where
1596 PREFIX is the class of label and NUM is the number within the class.
1597 This is suitable for output with `assemble_name'. */
1598
1599#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1600 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1601
1602/* This is how to output an assembler line defining a `double' constant. */
1603
b1fc14e5
RS
1604/* Assemblers (both gas 1.35 and as in 4.0.3)
1605 seem to treat -0.0 as if it were 0.0.
1606 They reject 99e9999, but accept inf. */
1bb87f28
JW
1607#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1608 { \
303d524a
JW
1609 if (REAL_VALUE_ISINF (VALUE) \
1610 || REAL_VALUE_ISNAN (VALUE) \
1611 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1612 { \
303d524a
JW
1613 long t[2]; \
1614 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1615 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1616 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1617 } \
1618 else \
1619 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1620 }
1621
1622/* This is how to output an assembler line defining a `float' constant. */
1623
1624#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1625 { \
303d524a
JW
1626 if (REAL_VALUE_ISINF (VALUE) \
1627 || REAL_VALUE_ISNAN (VALUE) \
1628 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1629 { \
303d524a
JW
1630 long t; \
1631 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1632 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1633 } \
1634 else \
1635 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1636 }
1637
0cd02cbb
DE
1638/* This is how to output an assembler line defining a `long double'
1639 constant. */
1640
1641#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1642 { \
1643 long t[4]; \
1644 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1645 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1646 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1647 }
1648
1bb87f28
JW
1649/* This is how to output an assembler line defining an `int' constant. */
1650
1651#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1652( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1653 output_addr_const (FILE, (VALUE)), \
1654 fprintf (FILE, "\n"))
1655
1656/* This is how to output an assembler line defining a DImode constant. */
1657#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1658 output_double_int (FILE, VALUE)
1659
1660/* Likewise for `char' and `short' constants. */
1661
1662#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1663( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1664 output_addr_const (FILE, (VALUE)), \
1665 fprintf (FILE, "\n"))
1666
1667#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1668( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1669 output_addr_const (FILE, (VALUE)), \
1670 fprintf (FILE, "\n"))
1671
1672/* This is how to output an assembler line for a numeric constant byte. */
1673
1674#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1675 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1676
1677/* This is how to output an element of a case-vector that is absolute. */
1678
1679#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1680do { \
1681 char label[30]; \
1682 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1683 fprintf (FILE, "\t.word\t"); \
1684 assemble_name (FILE, label); \
1685 fprintf (FILE, "\n"); \
1686} while (0)
1bb87f28
JW
1687
1688/* This is how to output an element of a case-vector that is relative.
1689 (SPARC uses such vectors only when generating PIC.) */
1690
4b69d2a3
RS
1691#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1692do { \
1693 char label[30]; \
1694 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1695 fprintf (FILE, "\t.word\t"); \
1696 assemble_name (FILE, label); \
1697 fprintf (FILE, "-1b\n"); \
1698} while (0)
1bb87f28
JW
1699
1700/* This is how to output an assembler line
1701 that says to advance the location counter
1702 to a multiple of 2**LOG bytes. */
1703
1704#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1705 if ((LOG) != 0) \
1706 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1707
1708#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1709 fprintf (FILE, "\t.skip %u\n", (SIZE))
1710
1711/* This says how to output an assembler line
1712 to define a global common symbol. */
1713
1714#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1715( fputs ("\t.global ", (FILE)), \
1716 assemble_name ((FILE), (NAME)), \
1717 fputs ("\n\t.common ", (FILE)), \
1718 assemble_name ((FILE), (NAME)), \
1719 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1720
1721/* This says how to output an assembler line
1722 to define a local common symbol. */
1723
1724#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1725( fputs ("\n\t.reserve ", (FILE)), \
1726 assemble_name ((FILE), (NAME)), \
1727 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1728
1729/* Store in OUTPUT a string (made with alloca) containing
1730 an assembler-name for a local static variable named NAME.
1731 LABELNO is an integer which is different for each call. */
1732
1733#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1734( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1735 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1736
c14f2655
RS
1737#define IDENT_ASM_OP ".ident"
1738
1739/* Output #ident as a .ident. */
1740
1741#define ASM_OUTPUT_IDENT(FILE, NAME) \
1742 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1743
1bb87f28
JW
1744/* Define the parentheses used to group arithmetic operations
1745 in assembler code. */
1746
1747#define ASM_OPEN_PAREN "("
1748#define ASM_CLOSE_PAREN ")"
1749
1750/* Define results of standard character escape sequences. */
1751#define TARGET_BELL 007
1752#define TARGET_BS 010
1753#define TARGET_TAB 011
1754#define TARGET_NEWLINE 012
1755#define TARGET_VT 013
1756#define TARGET_FF 014
1757#define TARGET_CR 015
1758
1759#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1760 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1761
1762/* Print operand X (an rtx) in assembler syntax to file FILE.
1763 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1764 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1765
1766#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1767
1768/* Print a memory address as an operand to reference that memory location. */
1769
1770#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1771{ register rtx base, index = 0; \
1772 int offset = 0; \
1773 register rtx addr = ADDR; \
1774 if (GET_CODE (addr) == REG) \
1775 fputs (reg_names[REGNO (addr)], FILE); \
1776 else if (GET_CODE (addr) == PLUS) \
1777 { \
1778 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1779 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1780 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1781 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1782 else \
1783 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1784 fputs (reg_names[REGNO (base)], FILE); \
1785 if (index == 0) \
1786 fprintf (FILE, "%+d", offset); \
1787 else if (GET_CODE (index) == REG) \
1788 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1789 else if (GET_CODE (index) == SYMBOL_REF) \
1790 fputc ('+', FILE), output_addr_const (FILE, index); \
1791 else abort (); \
1792 } \
1793 else if (GET_CODE (addr) == MINUS \
1794 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1795 { \
1796 output_addr_const (FILE, XEXP (addr, 0)); \
1797 fputs ("-(", FILE); \
1798 output_addr_const (FILE, XEXP (addr, 1)); \
1799 fputs ("-.)", FILE); \
1800 } \
1801 else if (GET_CODE (addr) == LO_SUM) \
1802 { \
1803 output_operand (XEXP (addr, 0), 0); \
1804 fputs ("+%lo(", FILE); \
1805 output_address (XEXP (addr, 1)); \
1806 fputc (')', FILE); \
1807 } \
1808 else if (flag_pic && GET_CODE (addr) == CONST \
1809 && GET_CODE (XEXP (addr, 0)) == MINUS \
1810 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1811 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1812 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1813 { \
1814 addr = XEXP (addr, 0); \
1815 output_addr_const (FILE, XEXP (addr, 0)); \
1816 /* Group the args of the second CONST in parenthesis. */ \
1817 fputs ("-(", FILE); \
1818 /* Skip past the second CONST--it does nothing for us. */\
1819 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1820 /* Close the parenthesis. */ \
1821 fputc (')', FILE); \
1822 } \
1823 else \
1824 { \
1825 output_addr_const (FILE, addr); \
1826 } \
1827}
1828
1829/* Declare functions defined in sparc.c and used in templates. */
1830
1831extern char *singlemove_string ();
1832extern char *output_move_double ();
795068a4 1833extern char *output_move_quad ();
1bb87f28 1834extern char *output_fp_move_double ();
795068a4 1835extern char *output_fp_move_quad ();
1bb87f28
JW
1836extern char *output_block_move ();
1837extern char *output_scc_insn ();
1838extern char *output_cbranch ();
1839extern char *output_return ();
1bb87f28
JW
1840
1841/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1842
1843extern int flag_pic;
This page took 0.324508 seconds and 5 git commands to generate.