]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
Comment fixes.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
9a1c7cd7 37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 44
317417a2
JW
45#if 0
46/* ??? This fails because REAL_VALUE_TYPE is `double' making it impossible to
47 represent and output `long double' constants. This causes problems during
48 a bootstrap with enquire/float.h, and hence must be disabled for now.
49 To fix, we need to implement code for TFmode just like the existing XFmode
50 support in real.[ch]. */
95dea81f
JW
51/* Sparc ABI says that long double is 4 words. */
52
d9ca49d5 53#define LONG_DOUBLE_TYPE_SIZE 128
317417a2 54#endif
d9ca49d5 55
1bb87f28
JW
56#define PTRDIFF_TYPE "int"
57#define SIZE_TYPE "int"
58#define WCHAR_TYPE "short unsigned int"
59#define WCHAR_TYPE_SIZE 16
60
98ccf8fe
RK
61/* Omit frame pointer at high optimization levels. */
62
1bb87f28
JW
63#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
64{ \
65 if (OPTIMIZE >= 2) \
66 { \
67 flag_omit_frame_pointer = 1; \
1bb87f28
JW
68 } \
69}
70
5b485d2c
JW
71/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
72 code into the rtl. Also, if we are profiling, we cannot eliminate
73 the frame pointer (because the return address will get smashed). */
74
75#define OVERRIDE_OPTIONS \
76 do { if (profile_flag || profile_block_flag) \
77 flag_omit_frame_pointer = 0, flag_pic = 0; } while (0)
78
1bb87f28
JW
79/* These compiler options take an argument. We ignore -target for now. */
80
81#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
82 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
83 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
84
85/* Names to predefine in the preprocessor for this target machine. */
86
f19c1a78
JW
87/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
88 new versions, which have an incompatible va-sparc.h file. This matters
89 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
90 wrong varargs file when it is compiled with a different version of gcc. */
91
92#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__"
1bb87f28
JW
93
94/* Print subsidiary information on the compiler version in use. */
95
96#define TARGET_VERSION fprintf (stderr, " (sparc)");
97
98/* Generate DBX debugging information. */
99
100#define DBX_DEBUGGING_INFO
101
102/* Run-time compilation parameters selecting different hardware subsets. */
103
104extern int target_flags;
105
106/* Nonzero if we should generate code to use the fpu. */
107#define TARGET_FPU (target_flags & 1)
108
109/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
110 use fast return insns, but lose some generality. */
111#define TARGET_EPILOGUE (target_flags & 2)
112
95dea81f
JW
113/* Nonzero if we should assume that double pointers might be unaligned.
114 This can happen when linking gcc compiled code with other compilers,
115 because the ABI only guarantees 4 byte alignment. */
116#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 117
885d8175
JW
118/* Nonzero means that we should generate code for a v8 sparc. */
119#define TARGET_V8 (target_flags & 64)
120
121/* Nonzero means that we should generate code for a sparclite. */
122#define TARGET_SPARCLITE (target_flags & 128)
123
5b485d2c 124/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
125 model, i.e. no save/restore instructions are generated, in the most
126 efficient manner. This code is not compatible with normal sparc code. */
127/* This is not a user selectable option yet, because it requires changes
128 that are not yet switchable via command line arguments. */
5b485d2c
JW
129#define TARGET_FRW (target_flags & 256)
130
9a1c7cd7
JW
131/* Nonzero means that we should generate code using a flat register window
132 model, i.e. no save/restore instructions are generated, but which is
133 compatible with normal sparc code. This is the same as above, except
134 that the frame pointer is %l6 instead of %fp. This code is not as efficient
135 as TARGET_FRW, because it has one less allocatable register. */
136/* This is not a user selectable option yet, because it requires changes
137 that are not yet switchable via command line arguments. */
138#define TARGET_FRW_COMPAT (target_flags & 512)
139
1bb87f28
JW
140/* Macro to define tables used to set the flags.
141 This is a list in braces of pairs in braces,
142 each pair being { "NAME", VALUE }
143 where VALUE is the bits to set or minus the bits to clear.
144 An empty string NAME is used to identify the default VALUE. */
145
146#define TARGET_SWITCHES \
147 { {"fpu", 1}, \
26c5587d
JW
148 {"no-fpu", -1}, \
149 {"hard-float", 1}, \
1bb87f28
JW
150 {"soft-float", -1}, \
151 {"epilogue", 2}, \
152 {"no-epilogue", -2}, \
95dea81f
JW
153 {"unaligned-doubles", 4}, \
154 {"no-unaligned-doubles", -4},\
885d8175
JW
155 {"v8", 64}, \
156 {"no-v8", -64}, \
157 {"sparclite", 128}, \
a66279da 158 {"sparclite", -1}, \
885d8175 159 {"no-sparclite", -128}, \
a66279da 160 {"no-sparclite", 1}, \
9a1c7cd7
JW
161/* {"frw", 256}, */ \
162/* {"no-frw", -256}, */ \
163/* {"frw-compat", 256+512}, */ \
164/* {"no-frw-compat", -(256+512)}, */ \
b1fc14e5 165 { "", TARGET_DEFAULT}}
1bb87f28
JW
166
167#define TARGET_DEFAULT 3
168\f
169/* target machine storage layout */
170
171/* Define this if most significant bit is lowest numbered
172 in instructions that operate on numbered bit-fields. */
173#define BITS_BIG_ENDIAN 1
174
175/* Define this if most significant byte of a word is the lowest numbered. */
176/* This is true on the SPARC. */
177#define BYTES_BIG_ENDIAN 1
178
179/* Define this if most significant word of a multiword number is the lowest
180 numbered. */
181/* Doubles are stored in memory with the high order word first. This
182 matters when cross-compiling. */
183#define WORDS_BIG_ENDIAN 1
184
b4ac57ab 185/* number of bits in an addressable storage unit */
1bb87f28
JW
186#define BITS_PER_UNIT 8
187
188/* Width in bits of a "word", which is the contents of a machine register.
189 Note that this is not necessarily the width of data type `int';
190 if using 16-bit ints on a 68000, this would still be 32.
191 But on a machine with 16-bit registers, this would be 16. */
192#define BITS_PER_WORD 32
193#define MAX_BITS_PER_WORD 32
194
195/* Width of a word, in units (bytes). */
196#define UNITS_PER_WORD 4
197
198/* Width in bits of a pointer.
199 See also the macro `Pmode' defined below. */
200#define POINTER_SIZE 32
201
202/* Allocation boundary (in *bits*) for storing arguments in argument list. */
203#define PARM_BOUNDARY 32
204
205/* Boundary (in *bits*) on which stack pointer should be aligned. */
206#define STACK_BOUNDARY 64
207
10d1b70f
JW
208/* ALIGN FRAMES on double word boundaries */
209
210#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
211
1bb87f28
JW
212/* Allocation boundary (in *bits*) for the code of a function. */
213#define FUNCTION_BOUNDARY 32
214
215/* Alignment of field after `int : 0' in a structure. */
216#define EMPTY_FIELD_BOUNDARY 32
217
218/* Every structure's size must be a multiple of this. */
219#define STRUCTURE_SIZE_BOUNDARY 8
220
221/* A bitfield declared as `int' forces `int' alignment for the struct. */
222#define PCC_BITFIELD_TYPE_MATTERS 1
223
224/* No data type wants to be aligned rounder than this. */
225#define BIGGEST_ALIGNMENT 64
226
77a02b01
JW
227/* The best alignment to use in cases where we have a choice. */
228#define FASTEST_ALIGNMENT 64
229
1bb87f28
JW
230/* Make strings word-aligned so strcpy from constants will be faster. */
231#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
232 ((TREE_CODE (EXP) == STRING_CST \
233 && (ALIGN) < FASTEST_ALIGNMENT) \
234 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
235
236/* Make arrays of chars word-aligned for the same reasons. */
237#define DATA_ALIGNMENT(TYPE, ALIGN) \
238 (TREE_CODE (TYPE) == ARRAY_TYPE \
239 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 240 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 241
b4ac57ab 242/* Set this nonzero if move instructions will actually fail to work
1bb87f28 243 when given unaligned data. */
b4ac57ab 244#define STRICT_ALIGNMENT 1
1bb87f28
JW
245
246/* Things that must be doubleword aligned cannot go in the text section,
247 because the linker fails to align the text section enough!
248 Put them in the data section. */
249#define MAX_TEXT_ALIGN 32
250
251#define SELECT_SECTION(T,RELOC) \
252{ \
253 if (TREE_CODE (T) == VAR_DECL) \
254 { \
255 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
256 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
257 && ! (flag_pic && (RELOC))) \
258 text_section (); \
259 else \
260 data_section (); \
261 } \
262 else if (TREE_CODE (T) == CONSTRUCTOR) \
263 { \
264 if (flag_pic != 0 && (RELOC) != 0) \
265 data_section (); \
266 } \
267 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
268 { \
269 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
270 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
271 data_section (); \
272 else \
273 text_section (); \
274 } \
275}
276
277/* Use text section for a constant
278 unless we need more alignment than that offers. */
279#define SELECT_RTX_SECTION(MODE, X) \
280{ \
281 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
282 && ! (flag_pic && symbolic_operand (X))) \
283 text_section (); \
284 else \
285 data_section (); \
286}
287\f
288/* Standard register usage. */
289
290/* Number of actual hardware registers.
291 The hardware registers are assigned numbers for the compiler
292 from 0 to just below FIRST_PSEUDO_REGISTER.
293 All registers that the compiler knows about must be given numbers,
294 even those that are not normally considered general registers.
295
296 SPARC has 32 integer registers and 32 floating point registers. */
297
298#define FIRST_PSEUDO_REGISTER 64
299
300/* 1 for registers that have pervasive standard uses
301 and are not available for the register allocator.
5b485d2c 302 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 303 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
304 g1 through g4 are free to use as temporaries.
305 g5 through g7 are reserved for the operating system. */
1bb87f28 306#define FIXED_REGISTERS \
d9ca49d5 307 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
308 0, 0, 0, 0, 0, 0, 1, 0, \
309 0, 0, 0, 0, 0, 0, 0, 0, \
310 0, 0, 0, 0, 0, 0, 1, 1, \
311 \
312 0, 0, 0, 0, 0, 0, 0, 0, \
313 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0, \
315 0, 0, 0, 0, 0, 0, 0, 0}
316
317/* 1 for registers not available across function calls.
318 These must include the FIXED_REGISTERS and also any
319 registers that can be used without being saved.
320 The latter must include the registers where values are returned
321 and the register where structure-value addresses are passed.
322 Aside from that, you can include as many other registers as you like. */
323#define CALL_USED_REGISTERS \
324 {1, 1, 1, 1, 1, 1, 1, 1, \
325 1, 1, 1, 1, 1, 1, 1, 1, \
326 0, 0, 0, 0, 0, 0, 0, 0, \
327 0, 0, 0, 0, 0, 0, 1, 1, \
328 \
329 1, 1, 1, 1, 1, 1, 1, 1, \
330 1, 1, 1, 1, 1, 1, 1, 1, \
331 1, 1, 1, 1, 1, 1, 1, 1, \
332 1, 1, 1, 1, 1, 1, 1, 1}
333
26c5587d
JW
334/* If !TARGET_FPU, then make the fp registers fixed so that they won't
335 be allocated. */
336
337#define CONDITIONAL_REGISTER_USAGE \
338do \
339 { \
340 if (! TARGET_FPU) \
341 { \
342 int regno; \
343 for (regno = 32; regno < 64; regno++) \
344 fixed_regs[regno] = 1; \
345 } \
346 } \
347while (0)
348
1bb87f28
JW
349/* Return number of consecutive hard regs needed starting at reg REGNO
350 to hold something of mode MODE.
351 This is ordinarily the length in words of a value of mode MODE
352 but can be less for certain modes in special long registers.
353
354 On SPARC, ordinary registers hold 32 bits worth;
355 this means both integer and floating point registers.
356
357 We use vectors to keep this information about registers. */
358
359/* How many hard registers it takes to make a register of this mode. */
360extern int hard_regno_nregs[];
361
362#define HARD_REGNO_NREGS(REGNO, MODE) \
363 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
364
365/* Value is 1 if register/mode pair is acceptable on sparc. */
366extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
367
368/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
369 On SPARC, the cpu registers can hold any mode but the float registers
370 can only hold SFmode or DFmode. See sparc.c for how we
371 initialize this. */
372#define HARD_REGNO_MODE_OK(REGNO, MODE) \
373 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
374
375/* Value is 1 if it is a good idea to tie two pseudo registers
376 when one has mode MODE1 and one has mode MODE2.
377 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
378 for any hard reg, then this must be 0 for correct output. */
379#define MODES_TIEABLE_P(MODE1, MODE2) \
380 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
381
382/* Specify the registers used for certain standard purposes.
383 The values of these macros are register numbers. */
384
385/* SPARC pc isn't overloaded on a register that the compiler knows about. */
386/* #define PC_REGNUM */
387
388/* Register to use for pushing function arguments. */
389#define STACK_POINTER_REGNUM 14
390
391/* Actual top-of-stack address is 92 greater than the contents
392 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
393 for the ins and local registers, 4 byte for structure return address, and
394 24 bytes for the 6 register parameters. */
395#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
396
397/* Base register for access to local variables of the function. */
398#define FRAME_POINTER_REGNUM 30
399
400#if 0
401/* Register that is used for the return address. */
402#define RETURN_ADDR_REGNUM 15
403#endif
404
405/* Value should be nonzero if functions must have frame pointers.
406 Zero means the frame pointer need not be set up (and parms
407 may be accessed via the stack pointer) in functions that seem suitable.
408 This is computed in `reload', in reload1.c.
409
c0524a34 410 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
411extern int leaf_function;
412
413#define FRAME_POINTER_REQUIRED \
a72cb8ec 414 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
415
416/* C statement to store the difference between the frame pointer
417 and the stack pointer values immediately after the function prologue.
418
419 Note, we always pretend that this is a leaf function because if
420 it's not, there's no point in trying to eliminate the
421 frame pointer. If it is a leaf function, we guessed right! */
422#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
423 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
424 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
425
426/* Base register for access to arguments of the function. */
427#define ARG_POINTER_REGNUM 30
428
429/* Register in which static-chain is passed to a function. */
430/* ??? */
431#define STATIC_CHAIN_REGNUM 1
432
433/* Register which holds offset table for position-independent
434 data references. */
435
436#define PIC_OFFSET_TABLE_REGNUM 23
437
438#define INITIALIZE_PIC initialize_pic ()
439#define FINALIZE_PIC finalize_pic ()
440
d9ca49d5 441/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 442 in memory. */
d9ca49d5 443#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 444 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 445
1bb87f28
JW
446/* Functions which return large structures get the address
447 to place the wanted value at offset 64 from the frame.
448 Must reserve 64 bytes for the in and local registers. */
449/* Used only in other #defines in this file. */
450#define STRUCT_VALUE_OFFSET 64
451
452#define STRUCT_VALUE \
453 gen_rtx (MEM, Pmode, \
454 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
455 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
456#define STRUCT_VALUE_INCOMING \
457 gen_rtx (MEM, Pmode, \
458 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
459 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
460\f
461/* Define the classes of registers for register constraints in the
462 machine description. Also define ranges of constants.
463
464 One of the classes must always be named ALL_REGS and include all hard regs.
465 If there is more than one class, another class must be named NO_REGS
466 and contain no registers.
467
468 The name GENERAL_REGS must be the name of a class (or an alias for
469 another name such as ALL_REGS). This is the class of registers
470 that is allowed by "g" or "r" in a register constraint.
471 Also, registers outside this class are allocated only when
472 instructions express preferences for them.
473
474 The classes must be numbered in nondecreasing order; that is,
475 a larger-numbered class must never be contained completely
476 in a smaller-numbered class.
477
478 For any two classes, it is very desirable that there be another
479 class that represents their union. */
480
481/* The SPARC has two kinds of registers, general and floating point. */
482
483enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
484
485#define N_REG_CLASSES (int) LIM_REG_CLASSES
486
487/* Give names of register classes as strings for dump file. */
488
489#define REG_CLASS_NAMES \
490 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
491
492/* Define which registers fit in which classes.
493 This is an initializer for a vector of HARD_REG_SET
494 of length N_REG_CLASSES. */
495
496#if 0 && defined (__GNUC__)
497#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
498#else
499#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
500#endif
501
502/* The same information, inverted:
503 Return the class number of the smallest class containing
504 reg number REGNO. This could be a conditional expression
505 or could index an array. */
506
507#define REGNO_REG_CLASS(REGNO) \
508 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
509
510/* This is the order in which to allocate registers
51f0e748
JW
511 normally.
512
513 We put %f0/%f1 last among the float registers, so as to make it more
514 likely that a pseduo-register which dies in the float return register
515 will get allocated to the float return register, thus saving a move
516 instruction at the end of the function. */
1bb87f28 517#define REG_ALLOC_ORDER \
b4ac57ab
RS
518{ 8, 9, 10, 11, 12, 13, 2, 3, \
519 15, 16, 17, 18, 19, 20, 21, 22, \
520 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 521 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
522 40, 41, 42, 43, 44, 45, 46, 47, \
523 48, 49, 50, 51, 52, 53, 54, 55, \
524 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 525 32, 33, \
4b69d2a3 526 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
527
528/* This is the order in which to allocate registers for
529 leaf functions. If all registers can fit in the "i" registers,
530 then we have the possibility of having a leaf function. */
531#define REG_LEAF_ALLOC_ORDER \
532{ 2, 3, 24, 25, 26, 27, 28, 29, \
533 15, 8, 9, 10, 11, 12, 13, \
534 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 535 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
536 40, 41, 42, 43, 44, 45, 46, 47, \
537 48, 49, 50, 51, 52, 53, 54, 55, \
538 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 539 32, 33, \
4b69d2a3 540 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
541
542#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
543
544#define LEAF_REGISTERS \
545{ 1, 1, 1, 1, 1, 1, 1, 1, \
546 0, 0, 0, 0, 0, 0, 1, 0, \
547 0, 0, 0, 0, 0, 0, 0, 0, \
548 1, 1, 1, 1, 1, 1, 0, 1, \
549 1, 1, 1, 1, 1, 1, 1, 1, \
550 1, 1, 1, 1, 1, 1, 1, 1, \
551 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 552 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
553
554extern char leaf_reg_remap[];
555#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
556extern char leaf_reg_backmap[];
557#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
558
1bb87f28
JW
559/* The class value for index registers, and the one for base regs. */
560#define INDEX_REG_CLASS GENERAL_REGS
561#define BASE_REG_CLASS GENERAL_REGS
562
563/* Get reg_class from a letter such as appears in the machine description. */
564
565#define REG_CLASS_FROM_LETTER(C) \
566 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
567
568/* The letters I, J, K, L and M in a register constraint string
569 can be used to stand for particular ranges of immediate operands.
570 This macro defines what the ranges are.
571 C is the letter, and VALUE is a constant value.
572 Return 1 if VALUE is in the range specified by C.
573
574 For SPARC, `I' is used for the range of constants an insn
575 can actually contain.
576 `J' is used for the range which is just zero (since that is R0).
9ad2c692 577 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
578
579#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
580
581#define CONST_OK_FOR_LETTER_P(VALUE, C) \
582 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
583 : (C) == 'J' ? (VALUE) == 0 \
584 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
585 : 0)
586
587/* Similar, but for floating constants, and defining letters G and H.
588 Here VALUE is the CONST_DOUBLE rtx itself. */
589
590#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
591 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
592 && CONST_DOUBLE_LOW (VALUE) == 0 \
593 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
594 : 0)
595
596/* Given an rtx X being reloaded into a reg required to be
597 in class CLASS, return the class of reg to actually use.
598 In general this is just CLASS; but on some machines
599 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
600/* We can't load constants into FP registers. We can't load any FP constant
601 if an 'E' constraint fails to match it. */
602#define PREFERRED_RELOAD_CLASS(X,CLASS) \
603 (CONSTANT_P (X) \
604 && ((CLASS) == FP_REGS \
605 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
606 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
607 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
608 ? NO_REGS : (CLASS))
1bb87f28
JW
609
610/* Return the register class of a scratch register needed to load IN into
611 a register of class CLASS in MODE.
612
613 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 614 into a register.
1bb87f28 615
ae51bd97
JW
616 Also, we need a temporary when loading/storing a HImode/QImode value
617 between memory and the FPU registers. This can happen when combine puts
618 a paradoxical subreg in a float/fix conversion insn. */
619
620#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
621 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
622 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
623 && (GET_CODE (IN) == MEM \
624 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
625 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
626
627#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
628 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
629 && (GET_CODE (IN) == MEM \
630 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
631 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 632
b924cef0
JW
633/* On SPARC it is not possible to directly move data between
634 GENERAL_REGS and FP_REGS. */
635#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
636 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
637 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 638
fe1f7f24
JW
639/* Return the stack location to use for secondary memory needed reloads. */
640#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
641 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, GEN_INT (-8)))
642
1bb87f28
JW
643/* Return the maximum number of consecutive registers
644 needed to represent mode MODE in a register of class CLASS. */
645/* On SPARC, this is the size of MODE in words. */
646#define CLASS_MAX_NREGS(CLASS, MODE) \
647 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
648\f
649/* Stack layout; function entry, exit and calling. */
650
651/* Define the number of register that can hold parameters.
652 These two macros are used only in other macro definitions below. */
653#define NPARM_REGS 6
654
655/* Define this if pushing a word on the stack
656 makes the stack pointer a smaller address. */
657#define STACK_GROWS_DOWNWARD
658
659/* Define this if the nominal address of the stack frame
660 is at the high-address end of the local variables;
661 that is, each additional local variable allocated
662 goes at a more negative offset in the frame. */
663#define FRAME_GROWS_DOWNWARD
664
665/* Offset within stack frame to start allocating local variables at.
666 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
667 first local allocated. Otherwise, it is the offset to the BEGINNING
668 of the first local allocated. */
1fe44568 669#define STARTING_FRAME_OFFSET (-8)
1bb87f28
JW
670
671/* If we generate an insn to push BYTES bytes,
672 this says how many the stack pointer really advances by.
673 On SPARC, don't define this because there are no push insns. */
674/* #define PUSH_ROUNDING(BYTES) */
675
676/* Offset of first parameter from the argument pointer register value.
677 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
678 even if this function isn't going to use it. */
679#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
680
681/* When a parameter is passed in a register, stack space is still
682 allocated for it. */
683#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
684
685/* Keep the stack pointer constant throughout the function.
b4ac57ab 686 This is both an optimization and a necessity: longjmp
1bb87f28
JW
687 doesn't behave itself when the stack pointer moves within
688 the function! */
689#define ACCUMULATE_OUTGOING_ARGS
690
691/* Value is the number of bytes of arguments automatically
692 popped when returning from a subroutine call.
693 FUNTYPE is the data type of the function (as a tree),
694 or for a library call it is an identifier node for the subroutine name.
695 SIZE is the number of bytes of arguments passed on the stack. */
696
697#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
698
5b485d2c
JW
699/* Some subroutine macros specific to this machine.
700 When !TARGET_FPU, put float return values in the general registers,
701 since we don't have any fp registers. */
1bb87f28 702#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 703 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 704#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
705 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
706 : (TARGET_FRW ? 8 : 24))
1bb87f28 707#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 708#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 709
92ea370b
TW
710/* Define this macro if the target machine has "register windows". This
711 C expression returns the register number as seen by the called function
712 corresponding to register number OUT as seen by the calling function.
713 Return OUT if register number OUT is not an outbound register. */
714
715#define INCOMING_REGNO(OUT) \
716 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
717
718/* Define this macro if the target machine has "register windows". This
719 C expression returns the register number as seen by the calling function
720 corresponding to register number IN as seen by the called function.
721 Return IN if register number IN is not an inbound register. */
722
723#define OUTGOING_REGNO(IN) \
724 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
725
1bb87f28
JW
726/* Define how to find the value returned by a function.
727 VALTYPE is the data type of the value (as a tree).
728 If the precise function being called is known, FUNC is its FUNCTION_DECL;
729 otherwise, FUNC is 0. */
730
731/* On SPARC the value is found in the first "output" register. */
732
733#define FUNCTION_VALUE(VALTYPE, FUNC) \
734 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
735
736/* But the called function leaves it in the first "input" register. */
737
738#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
739 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
740
741/* Define how to find the value returned by a library function
742 assuming the value has mode MODE. */
743
744#define LIBCALL_VALUE(MODE) \
745 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
746
747/* 1 if N is a possible register number for a function value
748 as seen by the caller.
749 On SPARC, the first "output" reg is used for integer values,
750 and the first floating point register is used for floating point values. */
751
752#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
753
754/* 1 if N is a possible register number for function argument passing.
755 On SPARC, these are the "output" registers. */
756
757#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
758\f
759/* Define a data type for recording info about an argument list
760 during the scan of that argument list. This data type should
761 hold all necessary information about the function itself
762 and about the args processed so far, enough to enable macros
763 such as FUNCTION_ARG to determine where the next arg should go.
764
765 On SPARC, this is a single integer, which is a number of words
766 of arguments scanned so far (including the invisible argument,
767 if any, which holds the structure-value-address).
768 Thus 7 or more means all following args should go on the stack. */
769
770#define CUMULATIVE_ARGS int
771
772#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
773 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
774
1bb87f28
JW
775/* Initialize a variable CUM of type CUMULATIVE_ARGS
776 for a call to a function whose data type is FNTYPE.
777 For a library call, FNTYPE is 0.
778
779 On SPARC, the offset always starts at 0: the first parm reg is always
780 the same reg. */
781
782#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
783
784/* Update the data in CUM to advance over an argument
785 of mode MODE and data type TYPE.
786 (TYPE is null for libcalls where that information may not be available.) */
787
788#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
789 ((CUM) += ((MODE) != BLKmode \
790 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
791 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
792
793/* Determine where to put an argument to a function.
794 Value is zero to push the argument on the stack,
795 or a hard register in which to store the argument.
796
797 MODE is the argument's machine mode.
798 TYPE is the data type of the argument (as a tree).
799 This is null for libcalls where that information may
800 not be available.
801 CUM is a variable of type CUMULATIVE_ARGS which gives info about
802 the preceding args and about the function being called.
803 NAMED is nonzero if this argument is a named parameter
804 (otherwise it is an extra parameter matching an ellipsis). */
805
806/* On SPARC the first six args are normally in registers
807 and the rest are pushed. Any arg that starts within the first 6 words
808 is at least partially passed in a register unless its data type forbids. */
809
810#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 811((CUM) < NPARM_REGS \
1bb87f28 812 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
813 && ((TYPE)==0 || (MODE) != BLKmode \
814 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 815 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 816 : 0)
1bb87f28
JW
817
818/* Define where a function finds its arguments.
819 This is different from FUNCTION_ARG because of register windows. */
820
821#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 822((CUM) < NPARM_REGS \
1bb87f28 823 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
824 && ((TYPE)==0 || (MODE) != BLKmode \
825 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 826 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 827 : 0)
1bb87f28
JW
828
829/* For an arg passed partly in registers and partly in memory,
830 this is the number of registers used.
831 For args passed entirely in registers or entirely in memory, zero.
832 Any arg that starts in the first 6 regs but won't entirely fit in them
833 needs partial registers on the Sparc. */
834
835#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 836 ((CUM) < NPARM_REGS \
1bb87f28 837 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
838 && ((TYPE)==0 || (MODE) != BLKmode \
839 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
840 && ((CUM) + ((MODE) == BLKmode \
841 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
842 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
843 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
844 : 0)
845
d9ca49d5
JW
846/* The SPARC ABI stipulates passing struct arguments (of any size) and
847 quad-precision floats by invisible reference. */
1bb87f28 848#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
849 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
850 || TREE_CODE (TYPE) == UNION_TYPE)) \
851 || (MODE == TFmode))
1bb87f28
JW
852
853/* Define the information needed to generate branch and scc insns. This is
854 stored from the compare operation. Note that we can't use "rtx" here
855 since it hasn't been defined! */
856
857extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
858
859/* Define the function that build the compare insn for scc and bcc. */
860
861extern struct rtx_def *gen_compare_reg ();
862\f
4b69d2a3
RS
863/* Generate the special assembly code needed to tell the assembler whatever
864 it might need to know about the return value of a function.
865
866 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
867 information to the assembler relating to peephole optimization (done in
868 the assembler). */
869
870#define ASM_DECLARE_RESULT(FILE, RESULT) \
871 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
872
1bb87f28
JW
873/* Output the label for a function definition. */
874
4b69d2a3
RS
875#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
876do { \
877 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
878 ASM_OUTPUT_LABEL (FILE, NAME); \
879} while (0)
1bb87f28
JW
880
881/* Two views of the size of the current frame. */
882extern int actual_fsize;
883extern int apparent_fsize;
884
885/* This macro generates the assembly code for function entry.
886 FILE is a stdio stream to output the code to.
887 SIZE is an int: how many units of temporary storage to allocate.
888 Refer to the array `regs_ever_live' to determine which registers
889 to save; `regs_ever_live[I]' is nonzero if register number I
890 is ever used in the function. This macro is responsible for
891 knowing which registers should not be saved even if used. */
892
893/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
894 of memory. If any fpu reg is used in the function, we allocate
895 such a block here, at the bottom of the frame, just in case it's needed.
896
897 If this function is a leaf procedure, then we may choose not
898 to do a "save" insn. The decision about whether or not
899 to do this is made in regclass.c. */
900
901#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
902 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
903 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
904
905/* Output assembler code to FILE to increment profiler label # LABELNO
906 for profiling a function entry. */
907
d2a8e680
RS
908#define FUNCTION_PROFILER(FILE, LABELNO) \
909 do { \
910 fputs ("\tsethi %hi(", (FILE)); \
911 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
912 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
913 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
914 fputs ("),%o0,%o0\n", (FILE)); \
915 } while (0)
1bb87f28
JW
916
917/* Output assembler code to FILE to initialize this source file's
918 basic block profiling info, if that has not already been done. */
d2a8e680
RS
919/* FIXME -- this does not parameterize how it generates labels (like the
920 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
921
922#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
923 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
924 (LABELNO), (LABELNO))
925
926/* Output assembler code to FILE to increment the entry-count for
927 the BLOCKNO'th basic block in this source file. */
928
929#define BLOCK_PROFILER(FILE, BLOCKNO) \
930{ \
931 int blockn = (BLOCKNO); \
932 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
933\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
934 4 * blockn, 4 * blockn, 4 * blockn); \
935}
936
1bb87f28
JW
937/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
938 the stack pointer does not matter. The value is tested only in
939 functions that have frame pointers.
940 No definition is equivalent to always zero. */
941
942extern int current_function_calls_alloca;
943extern int current_function_outgoing_args_size;
944
945#define EXIT_IGNORE_STACK \
946 (get_frame_size () != 0 \
947 || current_function_calls_alloca || current_function_outgoing_args_size)
948
949/* This macro generates the assembly code for function exit,
950 on machines that need it. If FUNCTION_EPILOGUE is not defined
951 then individual return instructions are generated for each
952 return statement. Args are same as for FUNCTION_PROLOGUE.
953
954 The function epilogue should not depend on the current stack pointer!
955 It should use the frame pointer only. This is mandatory because
956 of alloca; we also take advantage of it to omit stack adjustments
957 before returning. */
958
959/* This declaration is needed due to traditional/ANSI
960 incompatibilities which cannot be #ifdefed away
961 because they occur inside of macros. Sigh. */
962extern union tree_node *current_function_decl;
963
964#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
965 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
966 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 967
5b485d2c
JW
968#define DELAY_SLOTS_FOR_EPILOGUE \
969 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 970#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
971 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
972 : eligible_for_epilogue_delay (trial, slots_filled))
1bb87f28
JW
973
974/* Output assembler code for a block containing the constant parts
975 of a trampoline, leaving space for the variable parts. */
976
977/* On the sparc, the trampoline contains five instructions:
978 sethi #TOP_OF_FUNCTION,%g2
979 or #BOTTOM_OF_FUNCTION,%g2,%g2
980 sethi #TOP_OF_STATIC,%g1
981 jmp g2
982 or #BOTTOM_OF_STATIC,%g1,%g1 */
983#define TRAMPOLINE_TEMPLATE(FILE) \
984{ \
985 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
986 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
987 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
988 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
989 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
990}
991
992/* Length in units of the trampoline for entering a nested function. */
993
994#define TRAMPOLINE_SIZE 20
995
996/* Emit RTL insns to initialize the variable parts of a trampoline.
997 FNADDR is an RTX for the address of the function's pure code.
998 CXT is an RTX for the static chain value for the function.
999
1000 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1001 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1002 (to store insns). This is a bit excessive. Perhaps a different
1003 mechanism would be better here. */
1004
1005#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1006{ \
1007 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1008 size_int (10), 0, 1); \
1009 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1010 size_int (10), 0, 1); \
1011 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1012 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1013 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1014 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1015 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1016 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1017 rtx g1_ori = gen_rtx (HIGH, SImode, \
1018 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1019 rtx g2_ori = gen_rtx (HIGH, SImode, \
1020 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1021 rtx tem = gen_reg_rtx (SImode); \
1022 emit_move_insn (tem, g2_sethi); \
1023 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1024 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
1025 emit_move_insn (tem, g2_ori); \
1026 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1027 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
1028 emit_move_insn (tem, g1_sethi); \
1029 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1030 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
1031 emit_move_insn (tem, g1_ori); \
1032 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1033 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1034}
1035
9a1c7cd7
JW
1036/* Generate necessary RTL for __builtin_saveregs().
1037 ARGLIST is the argument list; see expr.c. */
1038extern struct rtx_def *sparc_builtin_saveregs ();
1039#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1040
1041/* Generate RTL to flush the register windows so as to make arbitrary frames
1042 available. */
1043#define SETUP_FRAME_ADDRESSES() \
1044 emit_insn (gen_flush_register_windows ())
1045
1046/* Given an rtx for the address of a frame,
1047 return an rtx for the address of the word in the frame
1048 that holds the dynamic chain--the previous frame's address. */
1049#define DYNAMIC_CHAIN_ADDRESS(frame) \
1050 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1051
1052/* The return address isn't on the stack, it is in a register, so we can't
1053 access it from the current frame pointer. We can access it from the
1054 previous frame pointer though by reading a value from the register window
1055 save area. */
1056#define RETURN_ADDR_IN_PREVIOUS_FRAME
1057
1058/* The current return address is in %i7. The return address of anything
1059 farther back is in the register window save area at [%fp+60]. */
1060/* ??? This ignores the fact that the actual return address is +8 for normal
1061 returns, and +12 for structure returns. */
1062#define RETURN_ADDR_RTX(count, frame) \
1063 ((count == -1) \
1064 ? gen_rtx (REG, Pmode, 31) \
1065 : copy_to_reg (gen_rtx (MEM, Pmode, \
1066 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1067\f
1068/* Addressing modes, and classification of registers for them. */
1069
1070/* #define HAVE_POST_INCREMENT */
1071/* #define HAVE_POST_DECREMENT */
1072
1073/* #define HAVE_PRE_DECREMENT */
1074/* #define HAVE_PRE_INCREMENT */
1075
1076/* Macros to check register numbers against specific register classes. */
1077
1078/* These assume that REGNO is a hard or pseudo reg number.
1079 They give nonzero only if REGNO is a hard reg of the suitable class
1080 or a pseudo reg currently allocated to a suitable hard reg.
1081 Since they use reg_renumber, they are safe only once reg_renumber
1082 has been allocated, which happens in local-alloc.c. */
1083
1084#define REGNO_OK_FOR_INDEX_P(REGNO) \
1085(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1086#define REGNO_OK_FOR_BASE_P(REGNO) \
1087(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1088#define REGNO_OK_FOR_FP_P(REGNO) \
1089(((REGNO) ^ 0x20) < 32 \
1090 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1091
1092/* Now macros that check whether X is a register and also,
1093 strictly, whether it is in a specified class.
1094
1095 These macros are specific to the SPARC, and may be used only
1096 in code for printing assembler insns and in conditions for
1097 define_optimization. */
1098
1099/* 1 if X is an fp register. */
1100
1101#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1102\f
1103/* Maximum number of registers that can appear in a valid memory address. */
1104
1105#define MAX_REGS_PER_ADDRESS 2
1106
1107/* Recognize any constant value that is a valid address. */
1108
6eff269e
BK
1109#define CONSTANT_ADDRESS_P(X) \
1110 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1111 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1112 || GET_CODE (X) == HIGH)
1bb87f28
JW
1113
1114/* Nonzero if the constant value X is a legitimate general operand.
1115 Anything can be made to work except floating point constants. */
1116
1117#define LEGITIMATE_CONSTANT_P(X) \
1118 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1119
1120/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1121 and check its validity for a certain class.
1122 We have two alternate definitions for each of them.
1123 The usual definition accepts all pseudo regs; the other rejects
1124 them unless they have been allocated suitable hard regs.
1125 The symbol REG_OK_STRICT causes the latter definition to be used.
1126
1127 Most source files want to accept pseudo regs in the hope that
1128 they will get allocated to the class that the insn wants them to be in.
1129 Source files for reload pass need to be strict.
1130 After reload, it makes no difference, since pseudo regs have
1131 been eliminated by then. */
1132
1133/* Optional extra constraints for this machine. Borrowed from romp.h.
1134
1135 For the SPARC, `Q' means that this is a memory operand but not a
1136 symbolic memory operand. Note that an unassigned pseudo register
1137 is such a memory operand. Needed because reload will generate
1138 these things in insns and then not re-recognize the insns, causing
1139 constrain_operands to fail.
1140
1bb87f28
JW
1141 `S' handles constraints for calls. */
1142
1143#ifndef REG_OK_STRICT
1144
1145/* Nonzero if X is a hard reg that can be used as an index
1146 or if it is a pseudo reg. */
1147#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1148/* Nonzero if X is a hard reg that can be used as a base reg
1149 or if it is a pseudo reg. */
1150#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1151
1152#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1153 ((C) == 'Q' \
1154 ? ((GET_CODE (OP) == MEM \
1155 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1156 && ! symbolic_memory_operand (OP, VOIDmode)) \
1157 || (reload_in_progress && GET_CODE (OP) == REG \
1158 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
db5e449c
RS
1159 : (C) == 'S' \
1160 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1161 : (C) == 'T' \
1162 ? (mem_aligned_8 (OP)) \
1163 : (C) == 'U' \
1164 ? (register_ok_for_ldd (OP)) \
db5e449c 1165 : 0)
19858600 1166
1bb87f28
JW
1167#else
1168
1169/* Nonzero if X is a hard reg that can be used as an index. */
1170#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1171/* Nonzero if X is a hard reg that can be used as a base reg. */
1172#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1173
1174#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1175 ((C) == 'Q' \
1176 ? (GET_CODE (OP) == REG \
1177 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1178 && reg_renumber[REGNO (OP)] < 0) \
1179 : GET_CODE (OP) == MEM) \
1180 : (C) == 'S' \
1181 ? (CONSTANT_P (OP) \
1182 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0) \
1183 || strict_memory_address_p (Pmode, OP)) \
1184 : (C) == 'T' \
1185 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, OP) \
1186 : (C) == 'U' \
1187 ? register_ok_for_ldd (OP) : 0)
1bb87f28
JW
1188#endif
1189\f
1190/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1191 that is a valid memory address for an instruction.
1192 The MODE argument is the machine mode for the MEM expression
1193 that wants to use this address.
1194
1195 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1196 ordinarily. This changes a bit when generating PIC.
1197
1198 If you change this, execute "rm explow.o recog.o reload.o". */
1199
bec2e359
JW
1200#define RTX_OK_FOR_BASE_P(X) \
1201 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1202 || (GET_CODE (X) == SUBREG \
1203 && GET_CODE (SUBREG_REG (X)) == REG \
1204 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1205
1206#define RTX_OK_FOR_INDEX_P(X) \
1207 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1208 || (GET_CODE (X) == SUBREG \
1209 && GET_CODE (SUBREG_REG (X)) == REG \
1210 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1211
1212#define RTX_OK_FOR_OFFSET_P(X) \
1213 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1214
1bb87f28 1215#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1216{ if (RTX_OK_FOR_BASE_P (X)) \
1217 goto ADDR; \
1bb87f28
JW
1218 else if (GET_CODE (X) == PLUS) \
1219 { \
bec2e359
JW
1220 register rtx op0 = XEXP (X, 0); \
1221 register rtx op1 = XEXP (X, 1); \
1222 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1223 { \
bec2e359 1224 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1225 goto ADDR; \
1226 else if (flag_pic == 1 \
bec2e359
JW
1227 && GET_CODE (op1) != REG \
1228 && GET_CODE (op1) != LO_SUM \
1229 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1230 goto ADDR; \
1231 } \
bec2e359 1232 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1233 { \
bec2e359
JW
1234 if (RTX_OK_FOR_INDEX_P (op1) \
1235 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1236 goto ADDR; \
1237 } \
bec2e359 1238 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1239 { \
bec2e359
JW
1240 if (RTX_OK_FOR_INDEX_P (op0) \
1241 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1242 goto ADDR; \
1243 } \
1244 } \
bec2e359
JW
1245 else if (GET_CODE (X) == LO_SUM) \
1246 { \
1247 register rtx op0 = XEXP (X, 0); \
1248 register rtx op1 = XEXP (X, 1); \
1249 if (RTX_OK_FOR_BASE_P (op0) \
1250 && CONSTANT_P (op1)) \
1251 goto ADDR; \
1252 } \
1bb87f28
JW
1253 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1254 goto ADDR; \
1255}
1256\f
1257/* Try machine-dependent ways of modifying an illegitimate address
1258 to be legitimate. If we find one, return the new, valid address.
1259 This macro is used in only one place: `memory_address' in explow.c.
1260
1261 OLDX is the address as it was before break_out_memory_refs was called.
1262 In some cases it is useful to look at this to decide what needs to be done.
1263
1264 MODE and WIN are passed so that this macro can use
1265 GO_IF_LEGITIMATE_ADDRESS.
1266
1267 It is always safe for this macro to do nothing. It exists to recognize
1268 opportunities to optimize the output. */
1269
1270/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1271extern struct rtx_def *legitimize_pic_address ();
1272#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1273{ rtx sparc_x = (X); \
1274 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1275 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1276 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1277 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1278 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1279 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1280 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1281 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1282 XEXP (X, 1)); \
1283 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1284 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1285 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1286 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1287 goto WIN; \
1288 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1289 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1290 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1291 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1292 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1293 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1294 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1295 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1296 || GET_CODE (X) == LABEL_REF) \
1297 (X) = gen_rtx (LO_SUM, Pmode, \
1298 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1299 if (memory_address_p (MODE, X)) \
1300 goto WIN; }
1301
1302/* Go to LABEL if ADDR (a legitimate address expression)
1303 has an effect that depends on the machine mode it is used for.
1304 On the SPARC this is never true. */
1305
1306#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1307\f
1308/* Specify the machine mode that this machine uses
1309 for the index in the tablejump instruction. */
1310#define CASE_VECTOR_MODE SImode
1311
1312/* Define this if the tablejump instruction expects the table
1313 to contain offsets from the address of the table.
1314 Do not define this if the table should contain absolute addresses. */
1315/* #define CASE_VECTOR_PC_RELATIVE */
1316
1317/* Specify the tree operation to be used to convert reals to integers. */
1318#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1319
1320/* This is the kind of divide that is easiest to do in the general case. */
1321#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1322
1323/* Define this as 1 if `char' should by default be signed; else as 0. */
1324#define DEFAULT_SIGNED_CHAR 1
1325
1326/* Max number of bytes we can move from memory to memory
1327 in one reasonably fast instruction. */
2eef2ef1 1328#define MOVE_MAX 8
1bb87f28 1329
0fb5a69e 1330#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1331/* This is the value of the error code EDOM for this machine,
1332 used by the sqrt instruction. */
1333#define TARGET_EDOM 33
1334
1335/* This is how to refer to the variable errno. */
1336#define GEN_ERRNO_RTX \
1337 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1338#endif /* 0 */
24e2a2bf 1339
1bb87f28
JW
1340/* Define if normal loads of shorter-than-word items from memory clears
1341 the rest of the bigs in the register. */
1342#define BYTE_LOADS_ZERO_EXTEND
1343
1344/* Nonzero if access to memory by bytes is slow and undesirable.
1345 For RISC chips, it means that access to memory by bytes is no
1346 better than access by words when possible, so grab a whole word
1347 and maybe make use of that. */
1348#define SLOW_BYTE_ACCESS 1
1349
1350/* We assume that the store-condition-codes instructions store 0 for false
1351 and some other value for true. This is the value stored for true. */
1352
1353#define STORE_FLAG_VALUE 1
1354
1355/* When a prototype says `char' or `short', really pass an `int'. */
1356#define PROMOTE_PROTOTYPES
1357
1358/* Define if shifts truncate the shift count
1359 which implies one can omit a sign-extension or zero-extension
1360 of a shift count. */
1361#define SHIFT_COUNT_TRUNCATED
1362
1363/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1364 is done just by pretending it is already truncated. */
1365#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1366
1367/* Specify the machine mode that pointers have.
1368 After generation of rtl, the compiler makes no further distinction
1369 between pointers and any other objects of this machine mode. */
1370#define Pmode SImode
1371
b4ac57ab
RS
1372/* Generate calls to memcpy, memcmp and memset. */
1373#define TARGET_MEM_FUNCTIONS
1374
1bb87f28
JW
1375/* Add any extra modes needed to represent the condition code.
1376
1377 On the Sparc, we have a "no-overflow" mode which is used when an add or
1378 subtract insn is used to set the condition code. Different branches are
1379 used in this case for some operations.
1380
4d449554
JW
1381 We also have two modes to indicate that the relevant condition code is
1382 in the floating-point condition code register. One for comparisons which
1383 will generate an exception if the result is unordered (CCFPEmode) and
1384 one for comparisons which will never trap (CCFPmode). This really should
1385 be a separate register, but we don't want to go to 65 registers. */
1386#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1387
1388/* Define the names for the modes specified above. */
4d449554 1389#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1390
1391/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1392 return the mode to be used for the comparison. For floating-point,
1393 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1394 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1395 needed. */
679655e6 1396#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1397 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1398 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1399 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1400 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1401
1402/* A function address in a call instruction
1403 is a byte address (for indexing purposes)
1404 so give the MEM rtx a byte's mode. */
1405#define FUNCTION_MODE SImode
1406
1407/* Define this if addresses of constant functions
1408 shouldn't be put through pseudo regs where they can be cse'd.
1409 Desirable on machines where ordinary constants are expensive
1410 but a CALL with constant address is cheap. */
1411#define NO_FUNCTION_CSE
1412
1413/* alloca should avoid clobbering the old register save area. */
1414#define SETJMP_VIA_SAVE_AREA
1415
1416/* Define subroutines to call to handle multiply and divide.
1417 Use the subroutines that Sun's library provides.
1418 The `*' prevents an underscore from being prepended by the compiler. */
1419
1420#define DIVSI3_LIBCALL "*.div"
1421#define UDIVSI3_LIBCALL "*.udiv"
1422#define MODSI3_LIBCALL "*.rem"
1423#define UMODSI3_LIBCALL "*.urem"
1424/* .umul is a little faster than .mul. */
1425#define MULSI3_LIBCALL "*.umul"
1426
1427/* Compute the cost of computing a constant rtl expression RTX
1428 whose rtx-code is CODE. The body of this macro is a portion
1429 of a switch statement. If the code is computed here,
1430 return it with a return statement. Otherwise, break from the switch. */
1431
3bb22aee 1432#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1433 case CONST_INT: \
1bb87f28 1434 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1435 return 0; \
1bb87f28
JW
1436 case HIGH: \
1437 return 2; \
1438 case CONST: \
1439 case LABEL_REF: \
1440 case SYMBOL_REF: \
1441 return 4; \
1442 case CONST_DOUBLE: \
1443 if (GET_MODE (RTX) == DImode) \
1444 if ((XINT (RTX, 3) == 0 \
1445 && (unsigned) XINT (RTX, 2) < 0x1000) \
1446 || (XINT (RTX, 3) == -1 \
1447 && XINT (RTX, 2) < 0 \
1448 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1449 return 0; \
1bb87f28
JW
1450 return 8;
1451
1452/* SPARC offers addressing modes which are "as cheap as a register".
1453 See sparc.c (or gcc.texinfo) for details. */
1454
1455#define ADDRESS_COST(RTX) \
1456 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1457
1458/* Compute extra cost of moving data between one register class
1459 and another. */
1460#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1461 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1462 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1463
1464/* Provide the costs of a rtl expression. This is in the body of a
1465 switch on CODE. The purpose for the cost of MULT is to encourage
1466 `synth_mult' to find a synthetic multiply when reasonable.
1467
1468 If we need more than 12 insns to do a multiply, then go out-of-line,
1469 since the call overhead will be < 10% of the cost of the multiply. */
1470
3bb22aee 1471#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1472 case MULT: \
1473 return COSTS_N_INSNS (25); \
1474 case DIV: \
1475 case UDIV: \
1476 case MOD: \
1477 case UMOD: \
5b485d2c
JW
1478 return COSTS_N_INSNS (25); \
1479 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1480 so that cse will favor the latter. */ \
1481 case FLOAT: \
5b485d2c 1482 case FIX: \
1bb87f28
JW
1483 return 19;
1484
1485/* Conditional branches with empty delay slots have a length of two. */
1486#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1487 if (GET_CODE (INSN) == CALL_INSN \
1488 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1489 LENGTH += 1;
1490\f
1491/* Control the assembler format that we output. */
1492
1493/* Output at beginning of assembler file. */
1494
1495#define ASM_FILE_START(file)
1496
1497/* Output to assembler file text saying following lines
1498 may contain character constants, extra white space, comments, etc. */
1499
1500#define ASM_APP_ON ""
1501
1502/* Output to assembler file text saying following lines
1503 no longer contain unusual constructs. */
1504
1505#define ASM_APP_OFF ""
1506
303d524a
JW
1507#define ASM_LONG ".word"
1508#define ASM_SHORT ".half"
1509#define ASM_BYTE_OP ".byte"
1510
1bb87f28
JW
1511/* Output before read-only data. */
1512
1513#define TEXT_SECTION_ASM_OP ".text"
1514
1515/* Output before writable data. */
1516
1517#define DATA_SECTION_ASM_OP ".data"
1518
1519/* How to refer to registers in assembler output.
1520 This sequence is indexed by compiler's hard-register-number (see above). */
1521
1522#define REGISTER_NAMES \
1523{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1524 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1525 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1526 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1527 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1528 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1529 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1530 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1531
ea3fa5f7
JW
1532/* Define additional names for use in asm clobbers and asm declarations.
1533
1534 We define the fake Condition Code register as an alias for reg 0 (which
1535 is our `condition code' register), so that condition codes can easily
1536 be clobbered by an asm. No such register actually exists. Condition
1537 codes are partly stored in the PSR and partly in the FSR. */
1538
0eb9f40e 1539#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1540
1bb87f28
JW
1541/* How to renumber registers for dbx and gdb. */
1542
1543#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1544
1545/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1546 since the length can run past this up to a continuation point. */
1547#define DBX_CONTIN_LENGTH 1500
1548
1549/* This is how to output a note to DBX telling it the line number
1550 to which the following sequence of instructions corresponds.
1551
1552 This is needed for SunOS 4.0, and should not hurt for 3.2
1553 versions either. */
1554#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1555 { static int sym_lineno = 1; \
1556 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1557 line, sym_lineno, sym_lineno); \
1558 sym_lineno += 1; }
1559
1560/* This is how to output the definition of a user-level label named NAME,
1561 such as the label on a static function or variable NAME. */
1562
1563#define ASM_OUTPUT_LABEL(FILE,NAME) \
1564 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1565
1566/* This is how to output a command to make the user-level label named NAME
1567 defined for reference from other files. */
1568
1569#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1570 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1571
1572/* This is how to output a reference to a user-level label named NAME.
1573 `assemble_name' uses this. */
1574
1575#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1576 fprintf (FILE, "_%s", NAME)
1577
d2a8e680 1578/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1579 PREFIX is the class of label and NUM is the number within the class. */
1580
1581#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1582 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1583
d2a8e680
RS
1584/* This is how to output a reference to an internal numbered label where
1585 PREFIX is the class of label and NUM is the number within the class. */
1586/* FIXME: This should be used throughout gcc, and documented in the texinfo
1587 files. There is no reason you should have to allocate a buffer and
1588 `sprintf' to reference an internal label (as opposed to defining it). */
1589
1590#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1591 fprintf (FILE, "%s%d", PREFIX, NUM)
1592
1bb87f28
JW
1593/* This is how to store into the string LABEL
1594 the symbol_ref name of an internal numbered label where
1595 PREFIX is the class of label and NUM is the number within the class.
1596 This is suitable for output with `assemble_name'. */
1597
1598#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1599 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1600
1601/* This is how to output an assembler line defining a `double' constant. */
1602
b1fc14e5
RS
1603/* Assemblers (both gas 1.35 and as in 4.0.3)
1604 seem to treat -0.0 as if it were 0.0.
1605 They reject 99e9999, but accept inf. */
1bb87f28
JW
1606#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1607 { \
303d524a
JW
1608 if (REAL_VALUE_ISINF (VALUE) \
1609 || REAL_VALUE_ISNAN (VALUE) \
1610 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1611 { \
303d524a
JW
1612 long t[2]; \
1613 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1614 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1615 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1616 } \
1617 else \
1618 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1619 }
1620
1621/* This is how to output an assembler line defining a `float' constant. */
1622
1623#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1624 { \
303d524a
JW
1625 if (REAL_VALUE_ISINF (VALUE) \
1626 || REAL_VALUE_ISNAN (VALUE) \
1627 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1628 { \
303d524a
JW
1629 long t; \
1630 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1631 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1632 } \
1633 else \
1634 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1635 }
1636
0cd02cbb
DE
1637/* This is how to output an assembler line defining a `long double'
1638 constant. */
1639
1640#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1641 { \
1642 long t[4]; \
1643 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1644 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1645 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1646 }
1647
1bb87f28
JW
1648/* This is how to output an assembler line defining an `int' constant. */
1649
1650#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1651( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1652 output_addr_const (FILE, (VALUE)), \
1653 fprintf (FILE, "\n"))
1654
1655/* This is how to output an assembler line defining a DImode constant. */
1656#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1657 output_double_int (FILE, VALUE)
1658
1659/* Likewise for `char' and `short' constants. */
1660
1661#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1662( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1663 output_addr_const (FILE, (VALUE)), \
1664 fprintf (FILE, "\n"))
1665
1666#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1667( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1668 output_addr_const (FILE, (VALUE)), \
1669 fprintf (FILE, "\n"))
1670
1671/* This is how to output an assembler line for a numeric constant byte. */
1672
1673#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1674 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1675
1676/* This is how to output an element of a case-vector that is absolute. */
1677
1678#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1679do { \
1680 char label[30]; \
1681 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1682 fprintf (FILE, "\t.word\t"); \
1683 assemble_name (FILE, label); \
1684 fprintf (FILE, "\n"); \
1685} while (0)
1bb87f28
JW
1686
1687/* This is how to output an element of a case-vector that is relative.
1688 (SPARC uses such vectors only when generating PIC.) */
1689
4b69d2a3
RS
1690#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1691do { \
1692 char label[30]; \
1693 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1694 fprintf (FILE, "\t.word\t"); \
1695 assemble_name (FILE, label); \
1696 fprintf (FILE, "-1b\n"); \
1697} while (0)
1bb87f28
JW
1698
1699/* This is how to output an assembler line
1700 that says to advance the location counter
1701 to a multiple of 2**LOG bytes. */
1702
1703#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1704 if ((LOG) != 0) \
1705 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1706
1707#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1708 fprintf (FILE, "\t.skip %u\n", (SIZE))
1709
1710/* This says how to output an assembler line
1711 to define a global common symbol. */
1712
1713#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1714( fputs ("\t.global ", (FILE)), \
1715 assemble_name ((FILE), (NAME)), \
1716 fputs ("\n\t.common ", (FILE)), \
1717 assemble_name ((FILE), (NAME)), \
1718 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1719
1720/* This says how to output an assembler line
1721 to define a local common symbol. */
1722
1723#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1724( fputs ("\n\t.reserve ", (FILE)), \
1725 assemble_name ((FILE), (NAME)), \
1726 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1727
1728/* Store in OUTPUT a string (made with alloca) containing
1729 an assembler-name for a local static variable named NAME.
1730 LABELNO is an integer which is different for each call. */
1731
1732#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1733( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1734 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1735
c14f2655
RS
1736#define IDENT_ASM_OP ".ident"
1737
1738/* Output #ident as a .ident. */
1739
1740#define ASM_OUTPUT_IDENT(FILE, NAME) \
1741 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1742
1bb87f28
JW
1743/* Define the parentheses used to group arithmetic operations
1744 in assembler code. */
1745
1746#define ASM_OPEN_PAREN "("
1747#define ASM_CLOSE_PAREN ")"
1748
1749/* Define results of standard character escape sequences. */
1750#define TARGET_BELL 007
1751#define TARGET_BS 010
1752#define TARGET_TAB 011
1753#define TARGET_NEWLINE 012
1754#define TARGET_VT 013
1755#define TARGET_FF 014
1756#define TARGET_CR 015
1757
1758#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1759 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1760
1761/* Print operand X (an rtx) in assembler syntax to file FILE.
1762 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1763 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1764
1765#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1766
1767/* Print a memory address as an operand to reference that memory location. */
1768
1769#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1770{ register rtx base, index = 0; \
1771 int offset = 0; \
1772 register rtx addr = ADDR; \
1773 if (GET_CODE (addr) == REG) \
1774 fputs (reg_names[REGNO (addr)], FILE); \
1775 else if (GET_CODE (addr) == PLUS) \
1776 { \
1777 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1778 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1779 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1780 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1781 else \
1782 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1783 fputs (reg_names[REGNO (base)], FILE); \
1784 if (index == 0) \
1785 fprintf (FILE, "%+d", offset); \
1786 else if (GET_CODE (index) == REG) \
1787 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1788 else if (GET_CODE (index) == SYMBOL_REF) \
1789 fputc ('+', FILE), output_addr_const (FILE, index); \
1790 else abort (); \
1791 } \
1792 else if (GET_CODE (addr) == MINUS \
1793 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1794 { \
1795 output_addr_const (FILE, XEXP (addr, 0)); \
1796 fputs ("-(", FILE); \
1797 output_addr_const (FILE, XEXP (addr, 1)); \
1798 fputs ("-.)", FILE); \
1799 } \
1800 else if (GET_CODE (addr) == LO_SUM) \
1801 { \
1802 output_operand (XEXP (addr, 0), 0); \
1803 fputs ("+%lo(", FILE); \
1804 output_address (XEXP (addr, 1)); \
1805 fputc (')', FILE); \
1806 } \
1807 else if (flag_pic && GET_CODE (addr) == CONST \
1808 && GET_CODE (XEXP (addr, 0)) == MINUS \
1809 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1810 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1811 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1812 { \
1813 addr = XEXP (addr, 0); \
1814 output_addr_const (FILE, XEXP (addr, 0)); \
1815 /* Group the args of the second CONST in parenthesis. */ \
1816 fputs ("-(", FILE); \
1817 /* Skip past the second CONST--it does nothing for us. */\
1818 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1819 /* Close the parenthesis. */ \
1820 fputc (')', FILE); \
1821 } \
1822 else \
1823 { \
1824 output_addr_const (FILE, addr); \
1825 } \
1826}
1827
1828/* Declare functions defined in sparc.c and used in templates. */
1829
1830extern char *singlemove_string ();
1831extern char *output_move_double ();
795068a4 1832extern char *output_move_quad ();
1bb87f28 1833extern char *output_fp_move_double ();
795068a4 1834extern char *output_fp_move_quad ();
1bb87f28
JW
1835extern char *output_block_move ();
1836extern char *output_scc_insn ();
1837extern char *output_cbranch ();
1838extern char *output_return ();
1bb87f28
JW
1839
1840/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1841
1842extern int flag_pic;
This page took 0.365793 seconds and 5 git commands to generate.