]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
*** empty log message ***
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
98ccf8fe 26/* Provide required defaults for linker -e and -d switches. */
1bb87f28 27
d6f04508
RS
28#define LINK_SPEC \
29 "%{nostdlib:%{!e*:-e start}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
30
31/* Special flags to the Sun-4 assembler when using pipe for input. */
32
33#define ASM_SPEC " %{pipe:-} %{fpic:-k} %{fPIC:-k}"
34
b1fc14e5
RS
35/* Prevent error on `-sun4' and `-target sun4' options. */
36/* This used to translate -dalign to -malign, but that is no good
37 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 38
b1fc14e5 39#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28
JW
40
41#define PTRDIFF_TYPE "int"
42#define SIZE_TYPE "int"
43#define WCHAR_TYPE "short unsigned int"
44#define WCHAR_TYPE_SIZE 16
45
98ccf8fe
RK
46/* Omit frame pointer at high optimization levels. */
47
1bb87f28
JW
48#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
49{ \
50 if (OPTIMIZE >= 2) \
51 { \
52 flag_omit_frame_pointer = 1; \
1bb87f28
JW
53 } \
54}
55
56/* These compiler options take an argument. We ignore -target for now. */
57
58#define WORD_SWITCH_TAKES_ARG(STR) \
59 (!strcmp (STR, "Tdata") || !strcmp (STR, "include") \
60 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
b1fc14e5 61 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
1bb87f28
JW
62
63/* Names to predefine in the preprocessor for this target machine. */
64
65#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
66
67/* Print subsidiary information on the compiler version in use. */
68
69#define TARGET_VERSION fprintf (stderr, " (sparc)");
70
71/* Generate DBX debugging information. */
72
73#define DBX_DEBUGGING_INFO
74
75/* Run-time compilation parameters selecting different hardware subsets. */
76
77extern int target_flags;
78
79/* Nonzero if we should generate code to use the fpu. */
80#define TARGET_FPU (target_flags & 1)
81
82/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
83 use fast return insns, but lose some generality. */
84#define TARGET_EPILOGUE (target_flags & 2)
85
b1fc14e5
RS
86/* Nonzero means that reference doublewords as if they were guaranteed
87 to be aligned...if they aren't, too bad for the user!
eadf0fe6 88 Like -dalign in Sun cc. */
b1fc14e5
RS
89#define TARGET_HOPE_ALIGN (target_flags & 16)
90
91/* Nonzero means that make sure all doubles are on 8-byte boundaries. */
92#define TARGET_FORCE_ALIGN (target_flags & 32)
1bb87f28
JW
93
94/* Macro to define tables used to set the flags.
95 This is a list in braces of pairs in braces,
96 each pair being { "NAME", VALUE }
97 where VALUE is the bits to set or minus the bits to clear.
98 An empty string NAME is used to identify the default VALUE. */
99
100#define TARGET_SWITCHES \
101 { {"fpu", 1}, \
102 {"soft-float", -1}, \
103 {"epilogue", 2}, \
104 {"no-epilogue", -2}, \
b1fc14e5
RS
105 {"hope-align", 16}, \
106 {"force-align", 48}, \
107 { "", TARGET_DEFAULT}}
1bb87f28
JW
108
109#define TARGET_DEFAULT 3
110\f
111/* target machine storage layout */
112
113/* Define this if most significant bit is lowest numbered
114 in instructions that operate on numbered bit-fields. */
115#define BITS_BIG_ENDIAN 1
116
117/* Define this if most significant byte of a word is the lowest numbered. */
118/* This is true on the SPARC. */
119#define BYTES_BIG_ENDIAN 1
120
121/* Define this if most significant word of a multiword number is the lowest
122 numbered. */
123/* Doubles are stored in memory with the high order word first. This
124 matters when cross-compiling. */
125#define WORDS_BIG_ENDIAN 1
126
b4ac57ab 127/* number of bits in an addressable storage unit */
1bb87f28
JW
128#define BITS_PER_UNIT 8
129
130/* Width in bits of a "word", which is the contents of a machine register.
131 Note that this is not necessarily the width of data type `int';
132 if using 16-bit ints on a 68000, this would still be 32.
133 But on a machine with 16-bit registers, this would be 16. */
134#define BITS_PER_WORD 32
135#define MAX_BITS_PER_WORD 32
136
137/* Width of a word, in units (bytes). */
138#define UNITS_PER_WORD 4
139
140/* Width in bits of a pointer.
141 See also the macro `Pmode' defined below. */
142#define POINTER_SIZE 32
143
144/* Allocation boundary (in *bits*) for storing arguments in argument list. */
145#define PARM_BOUNDARY 32
146
147/* Boundary (in *bits*) on which stack pointer should be aligned. */
148#define STACK_BOUNDARY 64
149
150/* Allocation boundary (in *bits*) for the code of a function. */
151#define FUNCTION_BOUNDARY 32
152
153/* Alignment of field after `int : 0' in a structure. */
154#define EMPTY_FIELD_BOUNDARY 32
155
156/* Every structure's size must be a multiple of this. */
157#define STRUCTURE_SIZE_BOUNDARY 8
158
159/* A bitfield declared as `int' forces `int' alignment for the struct. */
160#define PCC_BITFIELD_TYPE_MATTERS 1
161
162/* No data type wants to be aligned rounder than this. */
163#define BIGGEST_ALIGNMENT 64
164
165/* Make strings word-aligned so strcpy from constants will be faster. */
166#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
167 (TREE_CODE (EXP) == STRING_CST \
168 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
169
170/* Make arrays of chars word-aligned for the same reasons. */
171#define DATA_ALIGNMENT(TYPE, ALIGN) \
172 (TREE_CODE (TYPE) == ARRAY_TYPE \
173 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
174 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
175
b4ac57ab 176/* Set this nonzero if move instructions will actually fail to work
1bb87f28 177 when given unaligned data. */
b4ac57ab 178#define STRICT_ALIGNMENT 1
1bb87f28
JW
179
180/* Things that must be doubleword aligned cannot go in the text section,
181 because the linker fails to align the text section enough!
182 Put them in the data section. */
183#define MAX_TEXT_ALIGN 32
184
185#define SELECT_SECTION(T,RELOC) \
186{ \
187 if (TREE_CODE (T) == VAR_DECL) \
188 { \
189 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
190 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
191 && ! (flag_pic && (RELOC))) \
192 text_section (); \
193 else \
194 data_section (); \
195 } \
196 else if (TREE_CODE (T) == CONSTRUCTOR) \
197 { \
198 if (flag_pic != 0 && (RELOC) != 0) \
199 data_section (); \
200 } \
201 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
202 { \
203 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
204 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
205 data_section (); \
206 else \
207 text_section (); \
208 } \
209}
210
211/* Use text section for a constant
212 unless we need more alignment than that offers. */
213#define SELECT_RTX_SECTION(MODE, X) \
214{ \
215 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
216 && ! (flag_pic && symbolic_operand (X))) \
217 text_section (); \
218 else \
219 data_section (); \
220}
221\f
222/* Standard register usage. */
223
224/* Number of actual hardware registers.
225 The hardware registers are assigned numbers for the compiler
226 from 0 to just below FIRST_PSEUDO_REGISTER.
227 All registers that the compiler knows about must be given numbers,
228 even those that are not normally considered general registers.
229
230 SPARC has 32 integer registers and 32 floating point registers. */
231
232#define FIRST_PSEUDO_REGISTER 64
233
234/* 1 for registers that have pervasive standard uses
235 and are not available for the register allocator.
236 0 is used for the condition code and not to represent %g0, which is
237 hardwired to 0, so reg 0 is *not* fixed.
238 2 and 3 are free to use as temporaries.
239 4 through 7 are expected to become usefully defined in the future.
240 Your milage may vary. */
241#define FIXED_REGISTERS \
242 {0, 0, 0, 0, 1, 1, 1, 1, \
243 0, 0, 0, 0, 0, 0, 1, 0, \
244 0, 0, 0, 0, 0, 0, 0, 0, \
245 0, 0, 0, 0, 0, 0, 1, 1, \
246 \
247 0, 0, 0, 0, 0, 0, 0, 0, \
248 0, 0, 0, 0, 0, 0, 0, 0, \
249 0, 0, 0, 0, 0, 0, 0, 0, \
250 0, 0, 0, 0, 0, 0, 0, 0}
251
252/* 1 for registers not available across function calls.
253 These must include the FIXED_REGISTERS and also any
254 registers that can be used without being saved.
255 The latter must include the registers where values are returned
256 and the register where structure-value addresses are passed.
257 Aside from that, you can include as many other registers as you like. */
258#define CALL_USED_REGISTERS \
259 {1, 1, 1, 1, 1, 1, 1, 1, \
260 1, 1, 1, 1, 1, 1, 1, 1, \
261 0, 0, 0, 0, 0, 0, 0, 0, \
262 0, 0, 0, 0, 0, 0, 1, 1, \
263 \
264 1, 1, 1, 1, 1, 1, 1, 1, \
265 1, 1, 1, 1, 1, 1, 1, 1, \
266 1, 1, 1, 1, 1, 1, 1, 1, \
267 1, 1, 1, 1, 1, 1, 1, 1}
268
269/* Return number of consecutive hard regs needed starting at reg REGNO
270 to hold something of mode MODE.
271 This is ordinarily the length in words of a value of mode MODE
272 but can be less for certain modes in special long registers.
273
274 On SPARC, ordinary registers hold 32 bits worth;
275 this means both integer and floating point registers.
276
277 We use vectors to keep this information about registers. */
278
279/* How many hard registers it takes to make a register of this mode. */
280extern int hard_regno_nregs[];
281
282#define HARD_REGNO_NREGS(REGNO, MODE) \
283 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
284
285/* Value is 1 if register/mode pair is acceptable on sparc. */
286extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
287
288/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
289 On SPARC, the cpu registers can hold any mode but the float registers
290 can only hold SFmode or DFmode. See sparc.c for how we
291 initialize this. */
292#define HARD_REGNO_MODE_OK(REGNO, MODE) \
293 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
294
295/* Value is 1 if it is a good idea to tie two pseudo registers
296 when one has mode MODE1 and one has mode MODE2.
297 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
298 for any hard reg, then this must be 0 for correct output. */
299#define MODES_TIEABLE_P(MODE1, MODE2) \
300 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
301
302/* Specify the registers used for certain standard purposes.
303 The values of these macros are register numbers. */
304
305/* SPARC pc isn't overloaded on a register that the compiler knows about. */
306/* #define PC_REGNUM */
307
308/* Register to use for pushing function arguments. */
309#define STACK_POINTER_REGNUM 14
310
311/* Actual top-of-stack address is 92 greater than the contents
312 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
313 for the ins and local registers, 4 byte for structure return address, and
314 24 bytes for the 6 register parameters. */
315#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
316
317/* Base register for access to local variables of the function. */
318#define FRAME_POINTER_REGNUM 30
319
320#if 0
321/* Register that is used for the return address. */
322#define RETURN_ADDR_REGNUM 15
323#endif
324
325/* Value should be nonzero if functions must have frame pointers.
326 Zero means the frame pointer need not be set up (and parms
327 may be accessed via the stack pointer) in functions that seem suitable.
328 This is computed in `reload', in reload1.c.
329
330 Used in flow.c, global-alloc.c, and reload1.c. */
331extern int leaf_function;
332
333#define FRAME_POINTER_REQUIRED \
a72cb8ec 334 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
335
336/* C statement to store the difference between the frame pointer
337 and the stack pointer values immediately after the function prologue.
338
339 Note, we always pretend that this is a leaf function because if
340 it's not, there's no point in trying to eliminate the
341 frame pointer. If it is a leaf function, we guessed right! */
342#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
343 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
344
345/* Base register for access to arguments of the function. */
346#define ARG_POINTER_REGNUM 30
347
348/* Register in which static-chain is passed to a function. */
349/* ??? */
350#define STATIC_CHAIN_REGNUM 1
351
352/* Register which holds offset table for position-independent
353 data references. */
354
355#define PIC_OFFSET_TABLE_REGNUM 23
356
357#define INITIALIZE_PIC initialize_pic ()
358#define FINALIZE_PIC finalize_pic ()
359
360/* Functions which return large structures get the address
361 to place the wanted value at offset 64 from the frame.
362 Must reserve 64 bytes for the in and local registers. */
363/* Used only in other #defines in this file. */
364#define STRUCT_VALUE_OFFSET 64
365
366#define STRUCT_VALUE \
367 gen_rtx (MEM, Pmode, \
368 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
369 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
370#define STRUCT_VALUE_INCOMING \
371 gen_rtx (MEM, Pmode, \
372 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
373 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
374\f
375/* Define the classes of registers for register constraints in the
376 machine description. Also define ranges of constants.
377
378 One of the classes must always be named ALL_REGS and include all hard regs.
379 If there is more than one class, another class must be named NO_REGS
380 and contain no registers.
381
382 The name GENERAL_REGS must be the name of a class (or an alias for
383 another name such as ALL_REGS). This is the class of registers
384 that is allowed by "g" or "r" in a register constraint.
385 Also, registers outside this class are allocated only when
386 instructions express preferences for them.
387
388 The classes must be numbered in nondecreasing order; that is,
389 a larger-numbered class must never be contained completely
390 in a smaller-numbered class.
391
392 For any two classes, it is very desirable that there be another
393 class that represents their union. */
394
395/* The SPARC has two kinds of registers, general and floating point. */
396
397enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
398
399#define N_REG_CLASSES (int) LIM_REG_CLASSES
400
401/* Give names of register classes as strings for dump file. */
402
403#define REG_CLASS_NAMES \
404 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
405
406/* Define which registers fit in which classes.
407 This is an initializer for a vector of HARD_REG_SET
408 of length N_REG_CLASSES. */
409
410#if 0 && defined (__GNUC__)
411#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
412#else
413#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
414#endif
415
416/* The same information, inverted:
417 Return the class number of the smallest class containing
418 reg number REGNO. This could be a conditional expression
419 or could index an array. */
420
421#define REGNO_REG_CLASS(REGNO) \
422 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
423
424/* This is the order in which to allocate registers
425 normally. */
426#define REG_ALLOC_ORDER \
b4ac57ab
RS
427{ 8, 9, 10, 11, 12, 13, 2, 3, \
428 15, 16, 17, 18, 19, 20, 21, 22, \
429 23, 24, 25, 26, 27, 28, 29, 31, \
1bb87f28
JW
430 32, 33, 34, 35, 36, 37, 38, 39, \
431 40, 41, 42, 43, 44, 45, 46, 47, \
432 48, 49, 50, 51, 52, 53, 54, 55, \
433 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 434 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
435
436/* This is the order in which to allocate registers for
437 leaf functions. If all registers can fit in the "i" registers,
438 then we have the possibility of having a leaf function. */
439#define REG_LEAF_ALLOC_ORDER \
440{ 2, 3, 24, 25, 26, 27, 28, 29, \
441 15, 8, 9, 10, 11, 12, 13, \
442 16, 17, 18, 19, 20, 21, 22, 23, \
443 32, 33, 34, 35, 36, 37, 38, 39, \
444 40, 41, 42, 43, 44, 45, 46, 47, \
445 48, 49, 50, 51, 52, 53, 54, 55, \
446 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 447 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
448
449#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
450
451#define LEAF_REGISTERS \
452{ 1, 1, 1, 1, 1, 1, 1, 1, \
453 0, 0, 0, 0, 0, 0, 1, 0, \
454 0, 0, 0, 0, 0, 0, 0, 0, \
455 1, 1, 1, 1, 1, 1, 0, 1, \
456 1, 1, 1, 1, 1, 1, 1, 1, \
457 1, 1, 1, 1, 1, 1, 1, 1, \
458 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 459 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
460
461extern char leaf_reg_remap[];
462#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
463extern char leaf_reg_backmap[];
464#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
465
466#define REG_USED_SO_FAR(REGNO) \
467 ((REGNO) >= 24 && (REGNO) < 30 \
468 ? (regs_ever_live[24] \
469 || regs_ever_live[25] \
470 || regs_ever_live[26] \
471 || regs_ever_live[27] \
472 || regs_ever_live[28] \
473 || regs_ever_live[29]) : 0)
474
475/* The class value for index registers, and the one for base regs. */
476#define INDEX_REG_CLASS GENERAL_REGS
477#define BASE_REG_CLASS GENERAL_REGS
478
479/* Get reg_class from a letter such as appears in the machine description. */
480
481#define REG_CLASS_FROM_LETTER(C) \
482 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
483
484/* The letters I, J, K, L and M in a register constraint string
485 can be used to stand for particular ranges of immediate operands.
486 This macro defines what the ranges are.
487 C is the letter, and VALUE is a constant value.
488 Return 1 if VALUE is in the range specified by C.
489
490 For SPARC, `I' is used for the range of constants an insn
491 can actually contain.
492 `J' is used for the range which is just zero (since that is R0).
493 `K' is used for the 5-bit operand of a compare insns. */
494
495#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
496
497#define CONST_OK_FOR_LETTER_P(VALUE, C) \
498 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
499 : (C) == 'J' ? (VALUE) == 0 \
500 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
501 : 0)
502
503/* Similar, but for floating constants, and defining letters G and H.
504 Here VALUE is the CONST_DOUBLE rtx itself. */
505
506#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
507 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
508 && CONST_DOUBLE_LOW (VALUE) == 0 \
509 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
510 : 0)
511
512/* Given an rtx X being reloaded into a reg required to be
513 in class CLASS, return the class of reg to actually use.
514 In general this is just CLASS; but on some machines
515 in some cases it is preferable to use a more restrictive class. */
516#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
517
518/* Return the register class of a scratch register needed to load IN into
519 a register of class CLASS in MODE.
520
521 On the SPARC, when PIC, we need a temporary when loading some addresses
522 into a register. */
523
524#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
525 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS : NO_REGS)
526
527/* Return the maximum number of consecutive registers
528 needed to represent mode MODE in a register of class CLASS. */
529/* On SPARC, this is the size of MODE in words. */
530#define CLASS_MAX_NREGS(CLASS, MODE) \
531 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
532\f
533/* Stack layout; function entry, exit and calling. */
534
535/* Define the number of register that can hold parameters.
536 These two macros are used only in other macro definitions below. */
537#define NPARM_REGS 6
538
539/* Define this if pushing a word on the stack
540 makes the stack pointer a smaller address. */
541#define STACK_GROWS_DOWNWARD
542
543/* Define this if the nominal address of the stack frame
544 is at the high-address end of the local variables;
545 that is, each additional local variable allocated
546 goes at a more negative offset in the frame. */
547#define FRAME_GROWS_DOWNWARD
548
549/* Offset within stack frame to start allocating local variables at.
550 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
551 first local allocated. Otherwise, it is the offset to the BEGINNING
552 of the first local allocated. */
553#define STARTING_FRAME_OFFSET (-16)
554
555/* If we generate an insn to push BYTES bytes,
556 this says how many the stack pointer really advances by.
557 On SPARC, don't define this because there are no push insns. */
558/* #define PUSH_ROUNDING(BYTES) */
559
560/* Offset of first parameter from the argument pointer register value.
561 This is 64 for the ins and locals, plus 4 for the struct-return reg
562 even if this function isn't going to use it. */
563#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
564
565/* Offset from top-of-stack address to location to store the
566 function parameter if it can't go in a register.
567 Addresses for following parameters are computed relative to this one. */
568#define FIRST_PARM_CALLER_OFFSET(FNDECL) \
569 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD - STACK_POINTER_OFFSET)
570
571/* When a parameter is passed in a register, stack space is still
572 allocated for it. */
573#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
574
575/* Keep the stack pointer constant throughout the function.
b4ac57ab 576 This is both an optimization and a necessity: longjmp
1bb87f28
JW
577 doesn't behave itself when the stack pointer moves within
578 the function! */
579#define ACCUMULATE_OUTGOING_ARGS
580
581/* Value is the number of bytes of arguments automatically
582 popped when returning from a subroutine call.
583 FUNTYPE is the data type of the function (as a tree),
584 or for a library call it is an identifier node for the subroutine name.
585 SIZE is the number of bytes of arguments passed on the stack. */
586
587#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
588
589/* Some subroutine macros specific to this machine. */
590#define BASE_RETURN_VALUE_REG(MODE) \
591 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
592#define BASE_OUTGOING_VALUE_REG(MODE) \
593 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
594#define BASE_PASSING_ARG_REG(MODE) (8)
595#define BASE_INCOMING_ARG_REG(MODE) (24)
596
597/* Define how to find the value returned by a function.
598 VALTYPE is the data type of the value (as a tree).
599 If the precise function being called is known, FUNC is its FUNCTION_DECL;
600 otherwise, FUNC is 0. */
601
602/* On SPARC the value is found in the first "output" register. */
603
604#define FUNCTION_VALUE(VALTYPE, FUNC) \
605 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
606
607/* But the called function leaves it in the first "input" register. */
608
609#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
610 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
611
612/* Define how to find the value returned by a library function
613 assuming the value has mode MODE. */
614
615#define LIBCALL_VALUE(MODE) \
616 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
617
618/* 1 if N is a possible register number for a function value
619 as seen by the caller.
620 On SPARC, the first "output" reg is used for integer values,
621 and the first floating point register is used for floating point values. */
622
623#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
624
625/* 1 if N is a possible register number for function argument passing.
626 On SPARC, these are the "output" registers. */
627
628#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
629\f
630/* Define a data type for recording info about an argument list
631 during the scan of that argument list. This data type should
632 hold all necessary information about the function itself
633 and about the args processed so far, enough to enable macros
634 such as FUNCTION_ARG to determine where the next arg should go.
635
636 On SPARC, this is a single integer, which is a number of words
637 of arguments scanned so far (including the invisible argument,
638 if any, which holds the structure-value-address).
639 Thus 7 or more means all following args should go on the stack. */
640
641#define CUMULATIVE_ARGS int
642
643#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
644 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
645
646/* Round a register number up to a proper boundary for an arg of mode MODE.
647 Note that we need an odd/even pair for a two-word arg,
648 since that will become 8-byte aligned when stored in memory. */
649#define ROUND_REG(X, MODE) \
650 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
651 ? ((X) + ! ((X) & 1)) : (X))
1bb87f28
JW
652
653/* Initialize a variable CUM of type CUMULATIVE_ARGS
654 for a call to a function whose data type is FNTYPE.
655 For a library call, FNTYPE is 0.
656
657 On SPARC, the offset always starts at 0: the first parm reg is always
658 the same reg. */
659
660#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
661
662/* Update the data in CUM to advance over an argument
663 of mode MODE and data type TYPE.
664 (TYPE is null for libcalls where that information may not be available.) */
665
666#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b1fc14e5
RS
667 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
668 + ((MODE) != BLKmode \
669 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
670 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
1bb87f28
JW
671
672/* Determine where to put an argument to a function.
673 Value is zero to push the argument on the stack,
674 or a hard register in which to store the argument.
675
676 MODE is the argument's machine mode.
677 TYPE is the data type of the argument (as a tree).
678 This is null for libcalls where that information may
679 not be available.
680 CUM is a variable of type CUMULATIVE_ARGS which gives info about
681 the preceding args and about the function being called.
682 NAMED is nonzero if this argument is a named parameter
683 (otherwise it is an extra parameter matching an ellipsis). */
684
685/* On SPARC the first six args are normally in registers
686 and the rest are pushed. Any arg that starts within the first 6 words
687 is at least partially passed in a register unless its data type forbids. */
688
689#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 690(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 691 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
692 && ((TYPE)==0 || (MODE) != BLKmode \
693 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
694 ? gen_rtx (REG, (MODE), \
695 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
696 : 0)
1bb87f28
JW
697
698/* Define where a function finds its arguments.
699 This is different from FUNCTION_ARG because of register windows. */
700
701#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 702(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 703 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
704 && ((TYPE)==0 || (MODE) != BLKmode \
705 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
706 ? gen_rtx (REG, (MODE), \
707 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
708 : 0)
1bb87f28
JW
709
710/* For an arg passed partly in registers and partly in memory,
711 this is the number of registers used.
712 For args passed entirely in registers or entirely in memory, zero.
713 Any arg that starts in the first 6 regs but won't entirely fit in them
714 needs partial registers on the Sparc. */
715
716#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b1fc14e5 717 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 718 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
719 && ((TYPE)==0 || (MODE) != BLKmode \
720 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
721 && (ROUND_REG ((CUM), (MODE)) \
1bb87f28
JW
722 + ((MODE) == BLKmode \
723 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
b1fc14e5
RS
724 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
725 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
1bb87f28
JW
726 : 0)
727
728/* The SPARC ABI stipulates passing struct arguments (of any size)
729 by invisible reference. */
1bb87f28
JW
730#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
731 (TYPE && (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE))
732
b1fc14e5
RS
733/* If defined, a C expression that gives the alignment boundary, in
734 bits, of an argument with the specified mode and type. If it is
735 not defined, `PARM_BOUNDARY' is used for all arguments.
736
737 This definition does nothing special unless TARGET_FORCE_ALIGN;
738 in that case, it aligns each arg to the natural boundary. */
739
740#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
741 (! TARGET_FORCE_ALIGN \
742 ? PARM_BOUNDARY \
743 : (((TYPE) != 0) \
744 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
745 ? PARM_BOUNDARY \
746 : TYPE_ALIGN (TYPE)) \
747 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
748 ? PARM_BOUNDARY \
749 : GET_MODE_ALIGNMENT (MODE))))
750
1bb87f28
JW
751/* Define the information needed to generate branch and scc insns. This is
752 stored from the compare operation. Note that we can't use "rtx" here
753 since it hasn't been defined! */
754
755extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
756
757/* Define the function that build the compare insn for scc and bcc. */
758
759extern struct rtx_def *gen_compare_reg ();
760\f
4b69d2a3
RS
761/* Generate the special assembly code needed to tell the assembler whatever
762 it might need to know about the return value of a function.
763
764 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
765 information to the assembler relating to peephole optimization (done in
766 the assembler). */
767
768#define ASM_DECLARE_RESULT(FILE, RESULT) \
769 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
770
1bb87f28
JW
771/* Output the label for a function definition. */
772
4b69d2a3
RS
773#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
774do { \
775 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
776 ASM_OUTPUT_LABEL (FILE, NAME); \
777} while (0)
1bb87f28
JW
778
779/* Two views of the size of the current frame. */
780extern int actual_fsize;
781extern int apparent_fsize;
782
783/* This macro generates the assembly code for function entry.
784 FILE is a stdio stream to output the code to.
785 SIZE is an int: how many units of temporary storage to allocate.
786 Refer to the array `regs_ever_live' to determine which registers
787 to save; `regs_ever_live[I]' is nonzero if register number I
788 is ever used in the function. This macro is responsible for
789 knowing which registers should not be saved even if used. */
790
791/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
792 of memory. If any fpu reg is used in the function, we allocate
793 such a block here, at the bottom of the frame, just in case it's needed.
794
795 If this function is a leaf procedure, then we may choose not
796 to do a "save" insn. The decision about whether or not
797 to do this is made in regclass.c. */
798
799#define FUNCTION_PROLOGUE(FILE, SIZE) \
800 output_function_prologue (FILE, SIZE, leaf_function)
801
802/* Output assembler code to FILE to increment profiler label # LABELNO
803 for profiling a function entry. */
804
805#define FUNCTION_PROFILER(FILE, LABELNO) \
806 fprintf (FILE, "\tsethi %%hi(LP%d),%%o0\n\tcall mcount\n\tor %%lo(LP%d),%%o0,%%o0\n", \
807 (LABELNO), (LABELNO))
808
809/* Output assembler code to FILE to initialize this source file's
810 basic block profiling info, if that has not already been done. */
811
812#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
813 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
814 (LABELNO), (LABELNO))
815
816/* Output assembler code to FILE to increment the entry-count for
817 the BLOCKNO'th basic block in this source file. */
818
819#define BLOCK_PROFILER(FILE, BLOCKNO) \
820{ \
821 int blockn = (BLOCKNO); \
822 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
823\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
824 4 * blockn, 4 * blockn, 4 * blockn); \
825}
826
827/* Output rtl to increment the entry-count for the LABELNO'th instrumented
828 arc in this source file. */
829
830#define ARC_PROFILER(ARCNO, INSERT_AFTER) \
831 output_arc_profiler (ARCNO, INSERT_AFTER)
832
833/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
834 the stack pointer does not matter. The value is tested only in
835 functions that have frame pointers.
836 No definition is equivalent to always zero. */
837
838extern int current_function_calls_alloca;
839extern int current_function_outgoing_args_size;
840
841#define EXIT_IGNORE_STACK \
842 (get_frame_size () != 0 \
843 || current_function_calls_alloca || current_function_outgoing_args_size)
844
845/* This macro generates the assembly code for function exit,
846 on machines that need it. If FUNCTION_EPILOGUE is not defined
847 then individual return instructions are generated for each
848 return statement. Args are same as for FUNCTION_PROLOGUE.
849
850 The function epilogue should not depend on the current stack pointer!
851 It should use the frame pointer only. This is mandatory because
852 of alloca; we also take advantage of it to omit stack adjustments
853 before returning. */
854
855/* This declaration is needed due to traditional/ANSI
856 incompatibilities which cannot be #ifdefed away
857 because they occur inside of macros. Sigh. */
858extern union tree_node *current_function_decl;
859
860#define FUNCTION_EPILOGUE(FILE, SIZE) \
ef8200df 861 output_function_epilogue (FILE, SIZE, leaf_function)
1bb87f28
JW
862
863#define DELAY_SLOTS_FOR_EPILOGUE 1
864#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
865 eligible_for_epilogue_delay (trial, slots_filled)
866
867/* Output assembler code for a block containing the constant parts
868 of a trampoline, leaving space for the variable parts. */
869
870/* On the sparc, the trampoline contains five instructions:
871 sethi #TOP_OF_FUNCTION,%g2
872 or #BOTTOM_OF_FUNCTION,%g2,%g2
873 sethi #TOP_OF_STATIC,%g1
874 jmp g2
875 or #BOTTOM_OF_STATIC,%g1,%g1 */
876#define TRAMPOLINE_TEMPLATE(FILE) \
877{ \
878 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
879 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
880 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
881 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
882 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
883}
884
885/* Length in units of the trampoline for entering a nested function. */
886
887#define TRAMPOLINE_SIZE 20
888
889/* Emit RTL insns to initialize the variable parts of a trampoline.
890 FNADDR is an RTX for the address of the function's pure code.
891 CXT is an RTX for the static chain value for the function.
892
893 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
894 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
895 (to store insns). This is a bit excessive. Perhaps a different
896 mechanism would be better here. */
897
898#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
899{ \
900 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
901 size_int (10), 0, 1); \
902 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
903 size_int (10), 0, 1); \
904 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
905 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
906 rtx g1_sethi = gen_rtx (HIGH, SImode, \
907 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
908 rtx g2_sethi = gen_rtx (HIGH, SImode, \
909 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
910 rtx g1_ori = gen_rtx (HIGH, SImode, \
911 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
912 rtx g2_ori = gen_rtx (HIGH, SImode, \
913 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
914 rtx tem = gen_reg_rtx (SImode); \
915 emit_move_insn (tem, g2_sethi); \
916 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
917 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
918 emit_move_insn (tem, g2_ori); \
919 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
920 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
921 emit_move_insn (tem, g1_sethi); \
922 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
923 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
924 emit_move_insn (tem, g1_ori); \
925 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
926 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
927}
928
929/* Emit code for a call to builtin_saveregs. We must emit USE insns which
930 reference the 6 input registers. Ordinarily they are not call used
931 registers, but they are for _builtin_saveregs, so we must make this
932 explicit. */
933
934#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
935 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
936 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
937 expand_call (exp, target, ignore))
938\f
939/* Addressing modes, and classification of registers for them. */
940
941/* #define HAVE_POST_INCREMENT */
942/* #define HAVE_POST_DECREMENT */
943
944/* #define HAVE_PRE_DECREMENT */
945/* #define HAVE_PRE_INCREMENT */
946
947/* Macros to check register numbers against specific register classes. */
948
949/* These assume that REGNO is a hard or pseudo reg number.
950 They give nonzero only if REGNO is a hard reg of the suitable class
951 or a pseudo reg currently allocated to a suitable hard reg.
952 Since they use reg_renumber, they are safe only once reg_renumber
953 has been allocated, which happens in local-alloc.c. */
954
955#define REGNO_OK_FOR_INDEX_P(REGNO) \
956(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
957#define REGNO_OK_FOR_BASE_P(REGNO) \
958(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
959#define REGNO_OK_FOR_FP_P(REGNO) \
960(((REGNO) ^ 0x20) < 32 \
961 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
962
963/* Now macros that check whether X is a register and also,
964 strictly, whether it is in a specified class.
965
966 These macros are specific to the SPARC, and may be used only
967 in code for printing assembler insns and in conditions for
968 define_optimization. */
969
970/* 1 if X is an fp register. */
971
972#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
973\f
974/* Maximum number of registers that can appear in a valid memory address. */
975
976#define MAX_REGS_PER_ADDRESS 2
977
978/* Recognize any constant value that is a valid address. */
979
980#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
981
982/* Nonzero if the constant value X is a legitimate general operand.
983 Anything can be made to work except floating point constants. */
984
985#define LEGITIMATE_CONSTANT_P(X) \
986 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
987
988/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
989 and check its validity for a certain class.
990 We have two alternate definitions for each of them.
991 The usual definition accepts all pseudo regs; the other rejects
992 them unless they have been allocated suitable hard regs.
993 The symbol REG_OK_STRICT causes the latter definition to be used.
994
995 Most source files want to accept pseudo regs in the hope that
996 they will get allocated to the class that the insn wants them to be in.
997 Source files for reload pass need to be strict.
998 After reload, it makes no difference, since pseudo regs have
999 been eliminated by then. */
1000
1001/* Optional extra constraints for this machine. Borrowed from romp.h.
1002
1003 For the SPARC, `Q' means that this is a memory operand but not a
1004 symbolic memory operand. Note that an unassigned pseudo register
1005 is such a memory operand. Needed because reload will generate
1006 these things in insns and then not re-recognize the insns, causing
1007 constrain_operands to fail.
1008
1009 `R' handles the LO_SUM which can be an address for `Q'.
1010
1011 `S' handles constraints for calls. */
1012
1013#ifndef REG_OK_STRICT
1014
1015/* Nonzero if X is a hard reg that can be used as an index
1016 or if it is a pseudo reg. */
1017#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1018/* Nonzero if X is a hard reg that can be used as a base reg
1019 or if it is a pseudo reg. */
1020#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1021
1022#define EXTRA_CONSTRAINT(OP, C) \
1023 ((C) == 'Q' ? \
1024 ((GET_CODE (OP) == MEM \
1025 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1026 && ! symbolic_memory_operand (OP, VOIDmode))) \
1027 : ((C) == 'R' ? \
1028 (GET_CODE (OP) == LO_SUM \
1029 && GET_CODE (XEXP (OP, 0)) == REG \
1030 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1031 : ((C) == 'S' \
1032 ? CONSTANT_P (OP) || memory_address_p (Pmode, OP) : 0)))
1033
1034#else
1035
1036/* Nonzero if X is a hard reg that can be used as an index. */
1037#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1038/* Nonzero if X is a hard reg that can be used as a base reg. */
1039#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1040
1041#define EXTRA_CONSTRAINT(OP, C) \
1042 ((C) == 'Q' ? \
1043 (GET_CODE (OP) == REG ? \
1044 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1045 && reg_renumber[REGNO (OP)] < 0) \
1046 : GET_CODE (OP) == MEM) \
1047 : ((C) == 'R' ? \
1048 (GET_CODE (OP) == LO_SUM \
1049 && GET_CODE (XEXP (OP, 0)) == REG \
1050 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1051 : ((C) == 'S' \
1052 ? (CONSTANT_P (OP) \
1053 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
1054 || strict_memory_address_p (Pmode, OP)) : 0)))
1055#endif
1056\f
1057/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1058 that is a valid memory address for an instruction.
1059 The MODE argument is the machine mode for the MEM expression
1060 that wants to use this address.
1061
1062 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1063 ordinarily. This changes a bit when generating PIC.
1064
1065 If you change this, execute "rm explow.o recog.o reload.o". */
1066
1067#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1068{ if (GET_CODE (X) == REG) \
1069 { if (REG_OK_FOR_BASE_P (X)) goto ADDR; } \
1070 else if (GET_CODE (X) == PLUS) \
1071 { \
1072 if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
1073 { \
1074 if (GET_CODE (XEXP (X, 1)) == REG \
1075 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1076 goto ADDR; \
1077 else if (flag_pic == 1 \
1078 && GET_CODE (XEXP (X, 1)) != REG \
1079 && GET_CODE (XEXP (X, 1)) != LO_SUM \
1080 && GET_CODE (XEXP (X, 1)) != MEM) \
1081 goto ADDR; \
1082 } \
1083 else if (GET_CODE (XEXP (X, 0)) == REG \
1084 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1085 { \
1086 if (GET_CODE (XEXP (X, 1)) == REG \
1087 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1088 goto ADDR; \
1089 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1090 && INTVAL (XEXP (X, 1)) >= -0x1000 \
1091 && INTVAL (XEXP (X, 1)) < 0x1000) \
1092 goto ADDR; \
1093 } \
1094 else if (GET_CODE (XEXP (X, 1)) == REG \
1095 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1096 { \
1097 if (GET_CODE (XEXP (X, 0)) == REG \
1098 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1099 goto ADDR; \
1100 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1101 && INTVAL (XEXP (X, 0)) >= -0x1000 \
1102 && INTVAL (XEXP (X, 0)) < 0x1000) \
1103 goto ADDR; \
1104 } \
1105 } \
1106 else if (GET_CODE (X) == LO_SUM \
1107 && GET_CODE (XEXP (X, 0)) == REG \
1108 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1109 && CONSTANT_P (XEXP (X, 1))) \
1110 goto ADDR; \
1111 else if (GET_CODE (X) == LO_SUM \
1112 && GET_CODE (XEXP (X, 0)) == SUBREG \
1113 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1114 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1115 && CONSTANT_P (XEXP (X, 1))) \
1116 goto ADDR; \
1117 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1118 goto ADDR; \
1119}
1120\f
1121/* Try machine-dependent ways of modifying an illegitimate address
1122 to be legitimate. If we find one, return the new, valid address.
1123 This macro is used in only one place: `memory_address' in explow.c.
1124
1125 OLDX is the address as it was before break_out_memory_refs was called.
1126 In some cases it is useful to look at this to decide what needs to be done.
1127
1128 MODE and WIN are passed so that this macro can use
1129 GO_IF_LEGITIMATE_ADDRESS.
1130
1131 It is always safe for this macro to do nothing. It exists to recognize
1132 opportunities to optimize the output. */
1133
1134/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1135extern struct rtx_def *legitimize_pic_address ();
1136#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1137{ rtx sparc_x = (X); \
1138 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1139 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1140 force_operand (XEXP (X, 0), 0)); \
1141 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1142 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1143 force_operand (XEXP (X, 1), 0)); \
1144 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1145 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1146 XEXP (X, 1)); \
1147 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1148 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1149 force_operand (XEXP (X, 1), 0)); \
1150 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1151 goto WIN; \
1152 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1153 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1154 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1155 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1156 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1157 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1158 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1159 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1160 || GET_CODE (X) == LABEL_REF) \
1161 (X) = gen_rtx (LO_SUM, Pmode, \
1162 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1163 if (memory_address_p (MODE, X)) \
1164 goto WIN; }
1165
1166/* Go to LABEL if ADDR (a legitimate address expression)
1167 has an effect that depends on the machine mode it is used for.
1168 On the SPARC this is never true. */
1169
1170#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1171\f
1172/* Specify the machine mode that this machine uses
1173 for the index in the tablejump instruction. */
1174#define CASE_VECTOR_MODE SImode
1175
1176/* Define this if the tablejump instruction expects the table
1177 to contain offsets from the address of the table.
1178 Do not define this if the table should contain absolute addresses. */
1179/* #define CASE_VECTOR_PC_RELATIVE */
1180
1181/* Specify the tree operation to be used to convert reals to integers. */
1182#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1183
1184/* This is the kind of divide that is easiest to do in the general case. */
1185#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1186
1187/* Define this as 1 if `char' should by default be signed; else as 0. */
1188#define DEFAULT_SIGNED_CHAR 1
1189
1190/* Max number of bytes we can move from memory to memory
1191 in one reasonably fast instruction. */
1192#define MOVE_MAX 4
1193
1194/* Define if normal loads of shorter-than-word items from memory clears
1195 the rest of the bigs in the register. */
1196#define BYTE_LOADS_ZERO_EXTEND
1197
1198/* Nonzero if access to memory by bytes is slow and undesirable.
1199 For RISC chips, it means that access to memory by bytes is no
1200 better than access by words when possible, so grab a whole word
1201 and maybe make use of that. */
1202#define SLOW_BYTE_ACCESS 1
1203
1204/* We assume that the store-condition-codes instructions store 0 for false
1205 and some other value for true. This is the value stored for true. */
1206
1207#define STORE_FLAG_VALUE 1
1208
1209/* When a prototype says `char' or `short', really pass an `int'. */
1210#define PROMOTE_PROTOTYPES
1211
1212/* Define if shifts truncate the shift count
1213 which implies one can omit a sign-extension or zero-extension
1214 of a shift count. */
1215#define SHIFT_COUNT_TRUNCATED
1216
1217/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1218 is done just by pretending it is already truncated. */
1219#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1220
1221/* Specify the machine mode that pointers have.
1222 After generation of rtl, the compiler makes no further distinction
1223 between pointers and any other objects of this machine mode. */
1224#define Pmode SImode
1225
b4ac57ab
RS
1226/* Generate calls to memcpy, memcmp and memset. */
1227#define TARGET_MEM_FUNCTIONS
1228
1bb87f28
JW
1229/* Add any extra modes needed to represent the condition code.
1230
1231 On the Sparc, we have a "no-overflow" mode which is used when an add or
1232 subtract insn is used to set the condition code. Different branches are
1233 used in this case for some operations.
1234
1235 We also have a mode to indicate that the relevant condition code is
1236 in the floating-point condition code. This really should be a separate
1237 register, but we don't want to go to 65 registers. */
1238#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
1239
1240/* Define the names for the modes specified above. */
1241#define EXTRA_CC_NAMES "CC_NOOV", "CCFP"
1242
1243/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1244 return the mode to be used for the comparison. For floating-point, CCFPmode
1245 should be used. CC_NOOVmode should be used when the first operand is a
1246 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1247 needed. */
1248#define SELECT_CC_MODE(OP,X) \
1249 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
1250 : (GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1251 ? CC_NOOVmode : CCmode)
1252
1253/* A function address in a call instruction
1254 is a byte address (for indexing purposes)
1255 so give the MEM rtx a byte's mode. */
1256#define FUNCTION_MODE SImode
1257
1258/* Define this if addresses of constant functions
1259 shouldn't be put through pseudo regs where they can be cse'd.
1260 Desirable on machines where ordinary constants are expensive
1261 but a CALL with constant address is cheap. */
1262#define NO_FUNCTION_CSE
1263
1264/* alloca should avoid clobbering the old register save area. */
1265#define SETJMP_VIA_SAVE_AREA
1266
1267/* Define subroutines to call to handle multiply and divide.
1268 Use the subroutines that Sun's library provides.
1269 The `*' prevents an underscore from being prepended by the compiler. */
1270
1271#define DIVSI3_LIBCALL "*.div"
1272#define UDIVSI3_LIBCALL "*.udiv"
1273#define MODSI3_LIBCALL "*.rem"
1274#define UMODSI3_LIBCALL "*.urem"
1275/* .umul is a little faster than .mul. */
1276#define MULSI3_LIBCALL "*.umul"
1277
1278/* Compute the cost of computing a constant rtl expression RTX
1279 whose rtx-code is CODE. The body of this macro is a portion
1280 of a switch statement. If the code is computed here,
1281 return it with a return statement. Otherwise, break from the switch. */
1282
1283#define CONST_COSTS(RTX,CODE) \
1284 case CONST_INT: \
1285 if (INTVAL (RTX) == 0) \
1286 return 0; \
1287 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1288 return 1; \
1289 case HIGH: \
1290 return 2; \
1291 case CONST: \
1292 case LABEL_REF: \
1293 case SYMBOL_REF: \
1294 return 4; \
1295 case CONST_DOUBLE: \
1296 if (GET_MODE (RTX) == DImode) \
1297 if ((XINT (RTX, 3) == 0 \
1298 && (unsigned) XINT (RTX, 2) < 0x1000) \
1299 || (XINT (RTX, 3) == -1 \
1300 && XINT (RTX, 2) < 0 \
1301 && XINT (RTX, 2) >= -0x1000)) \
1302 return 1; \
1303 return 8;
1304
1305/* SPARC offers addressing modes which are "as cheap as a register".
1306 See sparc.c (or gcc.texinfo) for details. */
1307
1308#define ADDRESS_COST(RTX) \
1309 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1310
1311/* Compute extra cost of moving data between one register class
1312 and another. */
1313#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1314 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1315 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1316
1317/* Provide the costs of a rtl expression. This is in the body of a
1318 switch on CODE. The purpose for the cost of MULT is to encourage
1319 `synth_mult' to find a synthetic multiply when reasonable.
1320
1321 If we need more than 12 insns to do a multiply, then go out-of-line,
1322 since the call overhead will be < 10% of the cost of the multiply. */
1323
1324#define RTX_COSTS(X,CODE) \
1325 case MULT: \
1326 return COSTS_N_INSNS (25); \
1327 case DIV: \
1328 case UDIV: \
1329 case MOD: \
1330 case UMOD: \
1331 return COSTS_N_INSNS (20); \
1332 /* Make FLOAT more expensive than CONST_DOUBLE, \
1333 so that cse will favor the latter. */ \
1334 case FLOAT: \
1335 return 19;
1336
1337/* Conditional branches with empty delay slots have a length of two. */
1338#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1339 if (GET_CODE (INSN) == CALL_INSN \
1340 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1341 LENGTH += 1;
1342\f
1343/* Control the assembler format that we output. */
1344
1345/* Output at beginning of assembler file. */
1346
1347#define ASM_FILE_START(file)
1348
1349/* Output to assembler file text saying following lines
1350 may contain character constants, extra white space, comments, etc. */
1351
1352#define ASM_APP_ON ""
1353
1354/* Output to assembler file text saying following lines
1355 no longer contain unusual constructs. */
1356
1357#define ASM_APP_OFF ""
1358
1359/* Output before read-only data. */
1360
1361#define TEXT_SECTION_ASM_OP ".text"
1362
1363/* Output before writable data. */
1364
1365#define DATA_SECTION_ASM_OP ".data"
1366
1367/* How to refer to registers in assembler output.
1368 This sequence is indexed by compiler's hard-register-number (see above). */
1369
1370#define REGISTER_NAMES \
1371{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1372 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1373 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1374 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1375 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1376 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1377 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1378 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1379
1380/* How to renumber registers for dbx and gdb. */
1381
1382#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1383
1384/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1385 since the length can run past this up to a continuation point. */
1386#define DBX_CONTIN_LENGTH 1500
1387
1388/* This is how to output a note to DBX telling it the line number
1389 to which the following sequence of instructions corresponds.
1390
1391 This is needed for SunOS 4.0, and should not hurt for 3.2
1392 versions either. */
1393#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1394 { static int sym_lineno = 1; \
1395 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1396 line, sym_lineno, sym_lineno); \
1397 sym_lineno += 1; }
1398
1399/* This is how to output the definition of a user-level label named NAME,
1400 such as the label on a static function or variable NAME. */
1401
1402#define ASM_OUTPUT_LABEL(FILE,NAME) \
1403 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1404
1405/* This is how to output a command to make the user-level label named NAME
1406 defined for reference from other files. */
1407
1408#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1409 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1410
1411/* This is how to output a reference to a user-level label named NAME.
1412 `assemble_name' uses this. */
1413
1414#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1415 fprintf (FILE, "_%s", NAME)
1416
1417/* This is how to output an internal numbered label where
1418 PREFIX is the class of label and NUM is the number within the class. */
1419
1420#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1421 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1422
1423/* This is how to store into the string LABEL
1424 the symbol_ref name of an internal numbered label where
1425 PREFIX is the class of label and NUM is the number within the class.
1426 This is suitable for output with `assemble_name'. */
1427
1428#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1429 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1430
1431/* This is how to output an assembler line defining a `double' constant. */
1432
b1fc14e5
RS
1433/* Assemblers (both gas 1.35 and as in 4.0.3)
1434 seem to treat -0.0 as if it were 0.0.
1435 They reject 99e9999, but accept inf. */
1bb87f28
JW
1436#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1437 { \
1438 if (REAL_VALUE_ISINF (VALUE)) \
b1fc14e5
RS
1439 fprintf (FILE, "\t.double 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1440 else if (REAL_VALUE_ISNAN (VALUE) \
1441 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28
JW
1442 { \
1443 union { double d; long l[2];} t; \
1444 t.d = (VALUE); \
1445 fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", t.l[0], t.l[1]); \
1446 } \
1447 else \
1448 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1449 }
1450
1451/* This is how to output an assembler line defining a `float' constant. */
1452
1453#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1454 { \
1455 if (REAL_VALUE_ISINF (VALUE)) \
b1fc14e5
RS
1456 fprintf (FILE, "\t.single 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1457 else if (REAL_VALUE_ISNAN (VALUE) \
1458 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28
JW
1459 { \
1460 union { float f; long l;} t; \
1461 t.f = (VALUE); \
1462 fprintf (FILE, "\t.word 0x%lx\n", t.l); \
1463 } \
1464 else \
1465 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1466 }
1467
1468/* This is how to output an assembler line defining an `int' constant. */
1469
1470#define ASM_OUTPUT_INT(FILE,VALUE) \
1471( fprintf (FILE, "\t.word "), \
1472 output_addr_const (FILE, (VALUE)), \
1473 fprintf (FILE, "\n"))
1474
1475/* This is how to output an assembler line defining a DImode constant. */
1476#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1477 output_double_int (FILE, VALUE)
1478
1479/* Likewise for `char' and `short' constants. */
1480
1481#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1482( fprintf (FILE, "\t.half "), \
1483 output_addr_const (FILE, (VALUE)), \
1484 fprintf (FILE, "\n"))
1485
1486#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1487( fprintf (FILE, "\t.byte "), \
1488 output_addr_const (FILE, (VALUE)), \
1489 fprintf (FILE, "\n"))
1490
1491/* This is how to output an assembler line for a numeric constant byte. */
1492
1493#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1494 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1495
1496/* This is how to output an element of a case-vector that is absolute. */
1497
1498#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1499do { \
1500 char label[30]; \
1501 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1502 fprintf (FILE, "\t.word\t"); \
1503 assemble_name (FILE, label); \
1504 fprintf (FILE, "\n"); \
1505} while (0)
1bb87f28
JW
1506
1507/* This is how to output an element of a case-vector that is relative.
1508 (SPARC uses such vectors only when generating PIC.) */
1509
4b69d2a3
RS
1510#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1511do { \
1512 char label[30]; \
1513 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1514 fprintf (FILE, "\t.word\t"); \
1515 assemble_name (FILE, label); \
1516 fprintf (FILE, "-1b\n"); \
1517} while (0)
1bb87f28
JW
1518
1519/* This is how to output an assembler line
1520 that says to advance the location counter
1521 to a multiple of 2**LOG bytes. */
1522
1523#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1524 if ((LOG) != 0) \
1525 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1526
1527#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1528 fprintf (FILE, "\t.skip %u\n", (SIZE))
1529
1530/* This says how to output an assembler line
1531 to define a global common symbol. */
1532
1533#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1534( fputs ("\t.global ", (FILE)), \
1535 assemble_name ((FILE), (NAME)), \
1536 fputs ("\n\t.common ", (FILE)), \
1537 assemble_name ((FILE), (NAME)), \
1538 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1539
1540/* This says how to output an assembler line
1541 to define a local common symbol. */
1542
1543#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1544( fputs ("\n\t.reserve ", (FILE)), \
1545 assemble_name ((FILE), (NAME)), \
1546 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1547
1548/* Store in OUTPUT a string (made with alloca) containing
1549 an assembler-name for a local static variable named NAME.
1550 LABELNO is an integer which is different for each call. */
1551
1552#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1553( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1554 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1555
1556/* Define the parentheses used to group arithmetic operations
1557 in assembler code. */
1558
1559#define ASM_OPEN_PAREN "("
1560#define ASM_CLOSE_PAREN ")"
1561
1562/* Define results of standard character escape sequences. */
1563#define TARGET_BELL 007
1564#define TARGET_BS 010
1565#define TARGET_TAB 011
1566#define TARGET_NEWLINE 012
1567#define TARGET_VT 013
1568#define TARGET_FF 014
1569#define TARGET_CR 015
1570
1571#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1572 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1573
1574/* Print operand X (an rtx) in assembler syntax to file FILE.
1575 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1576 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1577
1578#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1579
1580/* Print a memory address as an operand to reference that memory location. */
1581
1582#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1583{ register rtx base, index = 0; \
1584 int offset = 0; \
1585 register rtx addr = ADDR; \
1586 if (GET_CODE (addr) == REG) \
1587 fputs (reg_names[REGNO (addr)], FILE); \
1588 else if (GET_CODE (addr) == PLUS) \
1589 { \
1590 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1591 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1592 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1593 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1594 else \
1595 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1596 fputs (reg_names[REGNO (base)], FILE); \
1597 if (index == 0) \
1598 fprintf (FILE, "%+d", offset); \
1599 else if (GET_CODE (index) == REG) \
1600 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1601 else if (GET_CODE (index) == SYMBOL_REF) \
1602 fputc ('+', FILE), output_addr_const (FILE, index); \
1603 else abort (); \
1604 } \
1605 else if (GET_CODE (addr) == MINUS \
1606 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1607 { \
1608 output_addr_const (FILE, XEXP (addr, 0)); \
1609 fputs ("-(", FILE); \
1610 output_addr_const (FILE, XEXP (addr, 1)); \
1611 fputs ("-.)", FILE); \
1612 } \
1613 else if (GET_CODE (addr) == LO_SUM) \
1614 { \
1615 output_operand (XEXP (addr, 0), 0); \
1616 fputs ("+%lo(", FILE); \
1617 output_address (XEXP (addr, 1)); \
1618 fputc (')', FILE); \
1619 } \
1620 else if (flag_pic && GET_CODE (addr) == CONST \
1621 && GET_CODE (XEXP (addr, 0)) == MINUS \
1622 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1623 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1624 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1625 { \
1626 addr = XEXP (addr, 0); \
1627 output_addr_const (FILE, XEXP (addr, 0)); \
1628 /* Group the args of the second CONST in parenthesis. */ \
1629 fputs ("-(", FILE); \
1630 /* Skip past the second CONST--it does nothing for us. */\
1631 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1632 /* Close the parenthesis. */ \
1633 fputc (')', FILE); \
1634 } \
1635 else \
1636 { \
1637 output_addr_const (FILE, addr); \
1638 } \
1639}
1640
1641/* Declare functions defined in sparc.c and used in templates. */
1642
1643extern char *singlemove_string ();
1644extern char *output_move_double ();
1645extern char *output_fp_move_double ();
1646extern char *output_block_move ();
1647extern char *output_scc_insn ();
1648extern char *output_cbranch ();
1649extern char *output_return ();
1650extern char *output_floatsisf2 ();
1651extern char *output_floatsidf2 ();
1652
1653/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1654
1655extern int flag_pic;
This page took 0.212809 seconds and 5 git commands to generate.