]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
entered into RCS
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
98ccf8fe 26/* Provide required defaults for linker -e and -d switches. */
1bb87f28 27
d6f04508 28#define LINK_SPEC \
197a1140 29 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
30
31/* Special flags to the Sun-4 assembler when using pipe for input. */
32
33#define ASM_SPEC " %{pipe:-} %{fpic:-k} %{fPIC:-k}"
34
885d8175
JW
35/* Define macros to distinguish architectures. */
36#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparcv8__}"
37
b1fc14e5
RS
38/* Prevent error on `-sun4' and `-target sun4' options. */
39/* This used to translate -dalign to -malign, but that is no good
40 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 41
b1fc14e5 42#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 43
d9ca49d5
JW
44#if 0
45/* Sparc ABI says that long double is 4 words.
46 ??? This doesn't work yet. */
47#define LONG_DOUBLE_TYPE_SIZE 128
48#endif
49
1bb87f28
JW
50#define PTRDIFF_TYPE "int"
51#define SIZE_TYPE "int"
52#define WCHAR_TYPE "short unsigned int"
53#define WCHAR_TYPE_SIZE 16
54
98ccf8fe
RK
55/* Omit frame pointer at high optimization levels. */
56
1bb87f28
JW
57#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
58{ \
59 if (OPTIMIZE >= 2) \
60 { \
61 flag_omit_frame_pointer = 1; \
1bb87f28
JW
62 } \
63}
64
65/* These compiler options take an argument. We ignore -target for now. */
66
67#define WORD_SWITCH_TAKES_ARG(STR) \
68 (!strcmp (STR, "Tdata") || !strcmp (STR, "include") \
69 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
b1fc14e5 70 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
1bb87f28
JW
71
72/* Names to predefine in the preprocessor for this target machine. */
73
74#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
75
76/* Print subsidiary information on the compiler version in use. */
77
78#define TARGET_VERSION fprintf (stderr, " (sparc)");
79
80/* Generate DBX debugging information. */
81
82#define DBX_DEBUGGING_INFO
83
84/* Run-time compilation parameters selecting different hardware subsets. */
85
86extern int target_flags;
87
88/* Nonzero if we should generate code to use the fpu. */
89#define TARGET_FPU (target_flags & 1)
90
91/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
92 use fast return insns, but lose some generality. */
93#define TARGET_EPILOGUE (target_flags & 2)
94
b1fc14e5
RS
95/* Nonzero means that reference doublewords as if they were guaranteed
96 to be aligned...if they aren't, too bad for the user!
eadf0fe6 97 Like -dalign in Sun cc. */
b1fc14e5
RS
98#define TARGET_HOPE_ALIGN (target_flags & 16)
99
0be8e859
JW
100/* Nonzero means make sure all doubles are on 8-byte boundaries.
101 This option results in a calling convention that is incompatible with
102 every other sparc compiler in the world, and thus should only ever be
103 used for experimenting. Also, varargs won't work with it, but it doesn't
104 seem worth trying to fix. */
b1fc14e5 105#define TARGET_FORCE_ALIGN (target_flags & 32)
1bb87f28 106
885d8175
JW
107/* Nonzero means that we should generate code for a v8 sparc. */
108#define TARGET_V8 (target_flags & 64)
109
110/* Nonzero means that we should generate code for a sparclite. */
111#define TARGET_SPARCLITE (target_flags & 128)
112
1bb87f28
JW
113/* Macro to define tables used to set the flags.
114 This is a list in braces of pairs in braces,
115 each pair being { "NAME", VALUE }
116 where VALUE is the bits to set or minus the bits to clear.
117 An empty string NAME is used to identify the default VALUE. */
118
119#define TARGET_SWITCHES \
120 { {"fpu", 1}, \
121 {"soft-float", -1}, \
122 {"epilogue", 2}, \
123 {"no-epilogue", -2}, \
b1fc14e5
RS
124 {"hope-align", 16}, \
125 {"force-align", 48}, \
885d8175
JW
126 {"v8", 64}, \
127 {"no-v8", -64}, \
128 {"sparclite", 128}, \
129 {"no-sparclite", -128}, \
b1fc14e5 130 { "", TARGET_DEFAULT}}
1bb87f28
JW
131
132#define TARGET_DEFAULT 3
133\f
134/* target machine storage layout */
135
136/* Define this if most significant bit is lowest numbered
137 in instructions that operate on numbered bit-fields. */
138#define BITS_BIG_ENDIAN 1
139
140/* Define this if most significant byte of a word is the lowest numbered. */
141/* This is true on the SPARC. */
142#define BYTES_BIG_ENDIAN 1
143
144/* Define this if most significant word of a multiword number is the lowest
145 numbered. */
146/* Doubles are stored in memory with the high order word first. This
147 matters when cross-compiling. */
148#define WORDS_BIG_ENDIAN 1
149
b4ac57ab 150/* number of bits in an addressable storage unit */
1bb87f28
JW
151#define BITS_PER_UNIT 8
152
153/* Width in bits of a "word", which is the contents of a machine register.
154 Note that this is not necessarily the width of data type `int';
155 if using 16-bit ints on a 68000, this would still be 32.
156 But on a machine with 16-bit registers, this would be 16. */
157#define BITS_PER_WORD 32
158#define MAX_BITS_PER_WORD 32
159
160/* Width of a word, in units (bytes). */
161#define UNITS_PER_WORD 4
162
163/* Width in bits of a pointer.
164 See also the macro `Pmode' defined below. */
165#define POINTER_SIZE 32
166
167/* Allocation boundary (in *bits*) for storing arguments in argument list. */
168#define PARM_BOUNDARY 32
169
170/* Boundary (in *bits*) on which stack pointer should be aligned. */
171#define STACK_BOUNDARY 64
172
10d1b70f
JW
173/* ALIGN FRAMES on double word boundaries */
174
175#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
176
1bb87f28
JW
177/* Allocation boundary (in *bits*) for the code of a function. */
178#define FUNCTION_BOUNDARY 32
179
180/* Alignment of field after `int : 0' in a structure. */
181#define EMPTY_FIELD_BOUNDARY 32
182
183/* Every structure's size must be a multiple of this. */
184#define STRUCTURE_SIZE_BOUNDARY 8
185
186/* A bitfield declared as `int' forces `int' alignment for the struct. */
187#define PCC_BITFIELD_TYPE_MATTERS 1
188
189/* No data type wants to be aligned rounder than this. */
190#define BIGGEST_ALIGNMENT 64
191
77a02b01
JW
192/* The best alignment to use in cases where we have a choice. */
193#define FASTEST_ALIGNMENT 64
194
1bb87f28
JW
195/* Make strings word-aligned so strcpy from constants will be faster. */
196#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
197 ((TREE_CODE (EXP) == STRING_CST \
198 && (ALIGN) < FASTEST_ALIGNMENT) \
199 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
200
201/* Make arrays of chars word-aligned for the same reasons. */
202#define DATA_ALIGNMENT(TYPE, ALIGN) \
203 (TREE_CODE (TYPE) == ARRAY_TYPE \
204 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 205 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 206
b4ac57ab 207/* Set this nonzero if move instructions will actually fail to work
1bb87f28 208 when given unaligned data. */
b4ac57ab 209#define STRICT_ALIGNMENT 1
1bb87f28
JW
210
211/* Things that must be doubleword aligned cannot go in the text section,
212 because the linker fails to align the text section enough!
213 Put them in the data section. */
214#define MAX_TEXT_ALIGN 32
215
216#define SELECT_SECTION(T,RELOC) \
217{ \
218 if (TREE_CODE (T) == VAR_DECL) \
219 { \
220 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
221 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
222 && ! (flag_pic && (RELOC))) \
223 text_section (); \
224 else \
225 data_section (); \
226 } \
227 else if (TREE_CODE (T) == CONSTRUCTOR) \
228 { \
229 if (flag_pic != 0 && (RELOC) != 0) \
230 data_section (); \
231 } \
232 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
233 { \
234 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
235 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
236 data_section (); \
237 else \
238 text_section (); \
239 } \
240}
241
242/* Use text section for a constant
243 unless we need more alignment than that offers. */
244#define SELECT_RTX_SECTION(MODE, X) \
245{ \
246 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
247 && ! (flag_pic && symbolic_operand (X))) \
248 text_section (); \
249 else \
250 data_section (); \
251}
252\f
253/* Standard register usage. */
254
255/* Number of actual hardware registers.
256 The hardware registers are assigned numbers for the compiler
257 from 0 to just below FIRST_PSEUDO_REGISTER.
258 All registers that the compiler knows about must be given numbers,
259 even those that are not normally considered general registers.
260
261 SPARC has 32 integer registers and 32 floating point registers. */
262
263#define FIRST_PSEUDO_REGISTER 64
264
265/* 1 for registers that have pervasive standard uses
266 and are not available for the register allocator.
267 0 is used for the condition code and not to represent %g0, which is
268 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
269 g1 through g4 are free to use as temporaries.
270 g5 through g7 are reserved for the operating system. */
1bb87f28 271#define FIXED_REGISTERS \
d9ca49d5 272 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
273 0, 0, 0, 0, 0, 0, 1, 0, \
274 0, 0, 0, 0, 0, 0, 0, 0, \
275 0, 0, 0, 0, 0, 0, 1, 1, \
276 \
277 0, 0, 0, 0, 0, 0, 0, 0, \
278 0, 0, 0, 0, 0, 0, 0, 0, \
279 0, 0, 0, 0, 0, 0, 0, 0, \
280 0, 0, 0, 0, 0, 0, 0, 0}
281
282/* 1 for registers not available across function calls.
283 These must include the FIXED_REGISTERS and also any
284 registers that can be used without being saved.
285 The latter must include the registers where values are returned
286 and the register where structure-value addresses are passed.
287 Aside from that, you can include as many other registers as you like. */
288#define CALL_USED_REGISTERS \
289 {1, 1, 1, 1, 1, 1, 1, 1, \
290 1, 1, 1, 1, 1, 1, 1, 1, \
291 0, 0, 0, 0, 0, 0, 0, 0, \
292 0, 0, 0, 0, 0, 0, 1, 1, \
293 \
294 1, 1, 1, 1, 1, 1, 1, 1, \
295 1, 1, 1, 1, 1, 1, 1, 1, \
296 1, 1, 1, 1, 1, 1, 1, 1, \
297 1, 1, 1, 1, 1, 1, 1, 1}
298
299/* Return number of consecutive hard regs needed starting at reg REGNO
300 to hold something of mode MODE.
301 This is ordinarily the length in words of a value of mode MODE
302 but can be less for certain modes in special long registers.
303
304 On SPARC, ordinary registers hold 32 bits worth;
305 this means both integer and floating point registers.
306
307 We use vectors to keep this information about registers. */
308
309/* How many hard registers it takes to make a register of this mode. */
310extern int hard_regno_nregs[];
311
312#define HARD_REGNO_NREGS(REGNO, MODE) \
313 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
314
315/* Value is 1 if register/mode pair is acceptable on sparc. */
316extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
317
318/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
319 On SPARC, the cpu registers can hold any mode but the float registers
320 can only hold SFmode or DFmode. See sparc.c for how we
321 initialize this. */
322#define HARD_REGNO_MODE_OK(REGNO, MODE) \
323 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
324
325/* Value is 1 if it is a good idea to tie two pseudo registers
326 when one has mode MODE1 and one has mode MODE2.
327 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
328 for any hard reg, then this must be 0 for correct output. */
329#define MODES_TIEABLE_P(MODE1, MODE2) \
330 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
331
332/* Specify the registers used for certain standard purposes.
333 The values of these macros are register numbers. */
334
335/* SPARC pc isn't overloaded on a register that the compiler knows about. */
336/* #define PC_REGNUM */
337
338/* Register to use for pushing function arguments. */
339#define STACK_POINTER_REGNUM 14
340
341/* Actual top-of-stack address is 92 greater than the contents
342 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
343 for the ins and local registers, 4 byte for structure return address, and
344 24 bytes for the 6 register parameters. */
345#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
346
347/* Base register for access to local variables of the function. */
348#define FRAME_POINTER_REGNUM 30
349
350#if 0
351/* Register that is used for the return address. */
352#define RETURN_ADDR_REGNUM 15
353#endif
354
355/* Value should be nonzero if functions must have frame pointers.
356 Zero means the frame pointer need not be set up (and parms
357 may be accessed via the stack pointer) in functions that seem suitable.
358 This is computed in `reload', in reload1.c.
359
360 Used in flow.c, global-alloc.c, and reload1.c. */
361extern int leaf_function;
362
363#define FRAME_POINTER_REQUIRED \
a72cb8ec 364 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
365
366/* C statement to store the difference between the frame pointer
367 and the stack pointer values immediately after the function prologue.
368
369 Note, we always pretend that this is a leaf function because if
370 it's not, there's no point in trying to eliminate the
371 frame pointer. If it is a leaf function, we guessed right! */
372#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
373 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
374
375/* Base register for access to arguments of the function. */
376#define ARG_POINTER_REGNUM 30
377
378/* Register in which static-chain is passed to a function. */
379/* ??? */
380#define STATIC_CHAIN_REGNUM 1
381
382/* Register which holds offset table for position-independent
383 data references. */
384
385#define PIC_OFFSET_TABLE_REGNUM 23
386
387#define INITIALIZE_PIC initialize_pic ()
388#define FINALIZE_PIC finalize_pic ()
389
d9ca49d5 390/* Sparc ABI says that quad-precision floats and all structures are returned
dafe6cf1
RS
391 in memory. We go along regarding floats, but for structures
392 we follow GCC's normal policy. Use -fpcc-struct-value
393 if you want to follow the ABI. */
d9ca49d5 394#define RETURN_IN_MEMORY(TYPE) \
dafe6cf1 395 (TYPE_MODE (TYPE) == TFmode)
d9ca49d5 396
1bb87f28
JW
397/* Functions which return large structures get the address
398 to place the wanted value at offset 64 from the frame.
399 Must reserve 64 bytes for the in and local registers. */
400/* Used only in other #defines in this file. */
401#define STRUCT_VALUE_OFFSET 64
402
403#define STRUCT_VALUE \
404 gen_rtx (MEM, Pmode, \
405 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
406 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
407#define STRUCT_VALUE_INCOMING \
408 gen_rtx (MEM, Pmode, \
409 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
410 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
411\f
412/* Define the classes of registers for register constraints in the
413 machine description. Also define ranges of constants.
414
415 One of the classes must always be named ALL_REGS and include all hard regs.
416 If there is more than one class, another class must be named NO_REGS
417 and contain no registers.
418
419 The name GENERAL_REGS must be the name of a class (or an alias for
420 another name such as ALL_REGS). This is the class of registers
421 that is allowed by "g" or "r" in a register constraint.
422 Also, registers outside this class are allocated only when
423 instructions express preferences for them.
424
425 The classes must be numbered in nondecreasing order; that is,
426 a larger-numbered class must never be contained completely
427 in a smaller-numbered class.
428
429 For any two classes, it is very desirable that there be another
430 class that represents their union. */
431
432/* The SPARC has two kinds of registers, general and floating point. */
433
434enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
435
436#define N_REG_CLASSES (int) LIM_REG_CLASSES
437
438/* Give names of register classes as strings for dump file. */
439
440#define REG_CLASS_NAMES \
441 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
442
443/* Define which registers fit in which classes.
444 This is an initializer for a vector of HARD_REG_SET
445 of length N_REG_CLASSES. */
446
447#if 0 && defined (__GNUC__)
448#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
449#else
450#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
451#endif
452
453/* The same information, inverted:
454 Return the class number of the smallest class containing
455 reg number REGNO. This could be a conditional expression
456 or could index an array. */
457
458#define REGNO_REG_CLASS(REGNO) \
459 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
460
461/* This is the order in which to allocate registers
462 normally. */
463#define REG_ALLOC_ORDER \
b4ac57ab
RS
464{ 8, 9, 10, 11, 12, 13, 2, 3, \
465 15, 16, 17, 18, 19, 20, 21, 22, \
466 23, 24, 25, 26, 27, 28, 29, 31, \
1bb87f28
JW
467 32, 33, 34, 35, 36, 37, 38, 39, \
468 40, 41, 42, 43, 44, 45, 46, 47, \
469 48, 49, 50, 51, 52, 53, 54, 55, \
470 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 471 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
472
473/* This is the order in which to allocate registers for
474 leaf functions. If all registers can fit in the "i" registers,
475 then we have the possibility of having a leaf function. */
476#define REG_LEAF_ALLOC_ORDER \
477{ 2, 3, 24, 25, 26, 27, 28, 29, \
478 15, 8, 9, 10, 11, 12, 13, \
479 16, 17, 18, 19, 20, 21, 22, 23, \
480 32, 33, 34, 35, 36, 37, 38, 39, \
481 40, 41, 42, 43, 44, 45, 46, 47, \
482 48, 49, 50, 51, 52, 53, 54, 55, \
483 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 484 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
485
486#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
487
488#define LEAF_REGISTERS \
489{ 1, 1, 1, 1, 1, 1, 1, 1, \
490 0, 0, 0, 0, 0, 0, 1, 0, \
491 0, 0, 0, 0, 0, 0, 0, 0, \
492 1, 1, 1, 1, 1, 1, 0, 1, \
493 1, 1, 1, 1, 1, 1, 1, 1, \
494 1, 1, 1, 1, 1, 1, 1, 1, \
495 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 496 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
497
498extern char leaf_reg_remap[];
499#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
500extern char leaf_reg_backmap[];
501#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
502
503#define REG_USED_SO_FAR(REGNO) \
504 ((REGNO) >= 24 && (REGNO) < 30 \
505 ? (regs_ever_live[24] \
506 || regs_ever_live[25] \
507 || regs_ever_live[26] \
508 || regs_ever_live[27] \
509 || regs_ever_live[28] \
510 || regs_ever_live[29]) : 0)
511
512/* The class value for index registers, and the one for base regs. */
513#define INDEX_REG_CLASS GENERAL_REGS
514#define BASE_REG_CLASS GENERAL_REGS
515
516/* Get reg_class from a letter such as appears in the machine description. */
517
518#define REG_CLASS_FROM_LETTER(C) \
519 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
520
521/* The letters I, J, K, L and M in a register constraint string
522 can be used to stand for particular ranges of immediate operands.
523 This macro defines what the ranges are.
524 C is the letter, and VALUE is a constant value.
525 Return 1 if VALUE is in the range specified by C.
526
527 For SPARC, `I' is used for the range of constants an insn
528 can actually contain.
529 `J' is used for the range which is just zero (since that is R0).
530 `K' is used for the 5-bit operand of a compare insns. */
531
532#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
533
534#define CONST_OK_FOR_LETTER_P(VALUE, C) \
535 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
536 : (C) == 'J' ? (VALUE) == 0 \
537 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
538 : 0)
539
540/* Similar, but for floating constants, and defining letters G and H.
541 Here VALUE is the CONST_DOUBLE rtx itself. */
542
543#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
544 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
545 && CONST_DOUBLE_LOW (VALUE) == 0 \
546 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
547 : 0)
548
549/* Given an rtx X being reloaded into a reg required to be
550 in class CLASS, return the class of reg to actually use.
551 In general this is just CLASS; but on some machines
552 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
553/* We can't load constants into FP registers. We can't load any FP constant
554 if an 'E' constraint fails to match it. */
555#define PREFERRED_RELOAD_CLASS(X,CLASS) \
556 (CONSTANT_P (X) \
557 && ((CLASS) == FP_REGS \
558 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
559 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
560 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
561 ? NO_REGS : (CLASS))
1bb87f28
JW
562
563/* Return the register class of a scratch register needed to load IN into
564 a register of class CLASS in MODE.
565
566 On the SPARC, when PIC, we need a temporary when loading some addresses
567 into a register. */
568
569#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
570 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS : NO_REGS)
571
572/* Return the maximum number of consecutive registers
573 needed to represent mode MODE in a register of class CLASS. */
574/* On SPARC, this is the size of MODE in words. */
575#define CLASS_MAX_NREGS(CLASS, MODE) \
576 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
577\f
578/* Stack layout; function entry, exit and calling. */
579
580/* Define the number of register that can hold parameters.
581 These two macros are used only in other macro definitions below. */
582#define NPARM_REGS 6
583
584/* Define this if pushing a word on the stack
585 makes the stack pointer a smaller address. */
586#define STACK_GROWS_DOWNWARD
587
588/* Define this if the nominal address of the stack frame
589 is at the high-address end of the local variables;
590 that is, each additional local variable allocated
591 goes at a more negative offset in the frame. */
592#define FRAME_GROWS_DOWNWARD
593
594/* Offset within stack frame to start allocating local variables at.
595 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
596 first local allocated. Otherwise, it is the offset to the BEGINNING
597 of the first local allocated. */
598#define STARTING_FRAME_OFFSET (-16)
599
600/* If we generate an insn to push BYTES bytes,
601 this says how many the stack pointer really advances by.
602 On SPARC, don't define this because there are no push insns. */
603/* #define PUSH_ROUNDING(BYTES) */
604
605/* Offset of first parameter from the argument pointer register value.
606 This is 64 for the ins and locals, plus 4 for the struct-return reg
0be8e859
JW
607 even if this function isn't going to use it.
608 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
609 stack remains aligned. */
610#define FIRST_PARM_OFFSET(FNDECL) \
611 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
1bb87f28
JW
612
613/* When a parameter is passed in a register, stack space is still
614 allocated for it. */
615#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
616
617/* Keep the stack pointer constant throughout the function.
b4ac57ab 618 This is both an optimization and a necessity: longjmp
1bb87f28
JW
619 doesn't behave itself when the stack pointer moves within
620 the function! */
621#define ACCUMULATE_OUTGOING_ARGS
622
623/* Value is the number of bytes of arguments automatically
624 popped when returning from a subroutine call.
625 FUNTYPE is the data type of the function (as a tree),
626 or for a library call it is an identifier node for the subroutine name.
627 SIZE is the number of bytes of arguments passed on the stack. */
628
629#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
630
631/* Some subroutine macros specific to this machine. */
632#define BASE_RETURN_VALUE_REG(MODE) \
633 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
634#define BASE_OUTGOING_VALUE_REG(MODE) \
635 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
636#define BASE_PASSING_ARG_REG(MODE) (8)
637#define BASE_INCOMING_ARG_REG(MODE) (24)
638
639/* Define how to find the value returned by a function.
640 VALTYPE is the data type of the value (as a tree).
641 If the precise function being called is known, FUNC is its FUNCTION_DECL;
642 otherwise, FUNC is 0. */
643
644/* On SPARC the value is found in the first "output" register. */
645
646#define FUNCTION_VALUE(VALTYPE, FUNC) \
647 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
648
649/* But the called function leaves it in the first "input" register. */
650
651#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
652 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
653
654/* Define how to find the value returned by a library function
655 assuming the value has mode MODE. */
656
657#define LIBCALL_VALUE(MODE) \
658 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
659
660/* 1 if N is a possible register number for a function value
661 as seen by the caller.
662 On SPARC, the first "output" reg is used for integer values,
663 and the first floating point register is used for floating point values. */
664
665#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
666
667/* 1 if N is a possible register number for function argument passing.
668 On SPARC, these are the "output" registers. */
669
670#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
671\f
672/* Define a data type for recording info about an argument list
673 during the scan of that argument list. This data type should
674 hold all necessary information about the function itself
675 and about the args processed so far, enough to enable macros
676 such as FUNCTION_ARG to determine where the next arg should go.
677
678 On SPARC, this is a single integer, which is a number of words
679 of arguments scanned so far (including the invisible argument,
680 if any, which holds the structure-value-address).
681 Thus 7 or more means all following args should go on the stack. */
682
683#define CUMULATIVE_ARGS int
684
685#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
686 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
687
688/* Round a register number up to a proper boundary for an arg of mode MODE.
689 Note that we need an odd/even pair for a two-word arg,
690 since that will become 8-byte aligned when stored in memory. */
691#define ROUND_REG(X, MODE) \
692 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
693 ? ((X) + ! ((X) & 1)) : (X))
1bb87f28
JW
694
695/* Initialize a variable CUM of type CUMULATIVE_ARGS
696 for a call to a function whose data type is FNTYPE.
697 For a library call, FNTYPE is 0.
698
699 On SPARC, the offset always starts at 0: the first parm reg is always
700 the same reg. */
701
702#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
703
704/* Update the data in CUM to advance over an argument
705 of mode MODE and data type TYPE.
706 (TYPE is null for libcalls where that information may not be available.) */
707
708#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b1fc14e5
RS
709 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
710 + ((MODE) != BLKmode \
711 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
712 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
1bb87f28
JW
713
714/* Determine where to put an argument to a function.
715 Value is zero to push the argument on the stack,
716 or a hard register in which to store the argument.
717
718 MODE is the argument's machine mode.
719 TYPE is the data type of the argument (as a tree).
720 This is null for libcalls where that information may
721 not be available.
722 CUM is a variable of type CUMULATIVE_ARGS which gives info about
723 the preceding args and about the function being called.
724 NAMED is nonzero if this argument is a named parameter
725 (otherwise it is an extra parameter matching an ellipsis). */
726
727/* On SPARC the first six args are normally in registers
728 and the rest are pushed. Any arg that starts within the first 6 words
729 is at least partially passed in a register unless its data type forbids. */
730
731#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 732(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 733 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
734 && ((TYPE)==0 || (MODE) != BLKmode \
735 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
736 ? gen_rtx (REG, (MODE), \
737 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
738 : 0)
1bb87f28
JW
739
740/* Define where a function finds its arguments.
741 This is different from FUNCTION_ARG because of register windows. */
742
743#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 744(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 745 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
746 && ((TYPE)==0 || (MODE) != BLKmode \
747 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
748 ? gen_rtx (REG, (MODE), \
749 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
750 : 0)
1bb87f28
JW
751
752/* For an arg passed partly in registers and partly in memory,
753 this is the number of registers used.
754 For args passed entirely in registers or entirely in memory, zero.
755 Any arg that starts in the first 6 regs but won't entirely fit in them
756 needs partial registers on the Sparc. */
757
758#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b1fc14e5 759 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 760 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
761 && ((TYPE)==0 || (MODE) != BLKmode \
762 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
763 && (ROUND_REG ((CUM), (MODE)) \
1bb87f28
JW
764 + ((MODE) == BLKmode \
765 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
b1fc14e5
RS
766 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
767 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
1bb87f28
JW
768 : 0)
769
d9ca49d5
JW
770/* The SPARC ABI stipulates passing struct arguments (of any size) and
771 quad-precision floats by invisible reference. */
1bb87f28 772#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
773 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
774 || TREE_CODE (TYPE) == UNION_TYPE)) \
775 || (MODE == TFmode))
1bb87f28 776
b1fc14e5
RS
777/* If defined, a C expression that gives the alignment boundary, in
778 bits, of an argument with the specified mode and type. If it is
779 not defined, `PARM_BOUNDARY' is used for all arguments.
780
781 This definition does nothing special unless TARGET_FORCE_ALIGN;
782 in that case, it aligns each arg to the natural boundary. */
783
784#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
785 (! TARGET_FORCE_ALIGN \
786 ? PARM_BOUNDARY \
787 : (((TYPE) != 0) \
788 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
789 ? PARM_BOUNDARY \
790 : TYPE_ALIGN (TYPE)) \
791 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
792 ? PARM_BOUNDARY \
793 : GET_MODE_ALIGNMENT (MODE))))
794
1bb87f28
JW
795/* Define the information needed to generate branch and scc insns. This is
796 stored from the compare operation. Note that we can't use "rtx" here
797 since it hasn't been defined! */
798
799extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
800
801/* Define the function that build the compare insn for scc and bcc. */
802
803extern struct rtx_def *gen_compare_reg ();
804\f
4b69d2a3
RS
805/* Generate the special assembly code needed to tell the assembler whatever
806 it might need to know about the return value of a function.
807
808 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
809 information to the assembler relating to peephole optimization (done in
810 the assembler). */
811
812#define ASM_DECLARE_RESULT(FILE, RESULT) \
813 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
814
1bb87f28
JW
815/* Output the label for a function definition. */
816
4b69d2a3
RS
817#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
818do { \
819 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
820 ASM_OUTPUT_LABEL (FILE, NAME); \
821} while (0)
1bb87f28
JW
822
823/* Two views of the size of the current frame. */
824extern int actual_fsize;
825extern int apparent_fsize;
826
827/* This macro generates the assembly code for function entry.
828 FILE is a stdio stream to output the code to.
829 SIZE is an int: how many units of temporary storage to allocate.
830 Refer to the array `regs_ever_live' to determine which registers
831 to save; `regs_ever_live[I]' is nonzero if register number I
832 is ever used in the function. This macro is responsible for
833 knowing which registers should not be saved even if used. */
834
835/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
836 of memory. If any fpu reg is used in the function, we allocate
837 such a block here, at the bottom of the frame, just in case it's needed.
838
839 If this function is a leaf procedure, then we may choose not
840 to do a "save" insn. The decision about whether or not
841 to do this is made in regclass.c. */
842
843#define FUNCTION_PROLOGUE(FILE, SIZE) \
844 output_function_prologue (FILE, SIZE, leaf_function)
845
846/* Output assembler code to FILE to increment profiler label # LABELNO
847 for profiling a function entry. */
848
d2a8e680
RS
849#define FUNCTION_PROFILER(FILE, LABELNO) \
850 do { \
851 fputs ("\tsethi %hi(", (FILE)); \
852 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
853 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
854 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
855 fputs ("),%o0,%o0\n", (FILE)); \
856 } while (0)
1bb87f28
JW
857
858/* Output assembler code to FILE to initialize this source file's
859 basic block profiling info, if that has not already been done. */
d2a8e680
RS
860/* FIXME -- this does not parameterize how it generates labels (like the
861 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
862
863#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
864 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
865 (LABELNO), (LABELNO))
866
867/* Output assembler code to FILE to increment the entry-count for
868 the BLOCKNO'th basic block in this source file. */
869
870#define BLOCK_PROFILER(FILE, BLOCKNO) \
871{ \
872 int blockn = (BLOCKNO); \
873 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
874\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
875 4 * blockn, 4 * blockn, 4 * blockn); \
876}
877
878/* Output rtl to increment the entry-count for the LABELNO'th instrumented
879 arc in this source file. */
880
881#define ARC_PROFILER(ARCNO, INSERT_AFTER) \
882 output_arc_profiler (ARCNO, INSERT_AFTER)
883
884/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
885 the stack pointer does not matter. The value is tested only in
886 functions that have frame pointers.
887 No definition is equivalent to always zero. */
888
889extern int current_function_calls_alloca;
890extern int current_function_outgoing_args_size;
891
892#define EXIT_IGNORE_STACK \
893 (get_frame_size () != 0 \
894 || current_function_calls_alloca || current_function_outgoing_args_size)
895
896/* This macro generates the assembly code for function exit,
897 on machines that need it. If FUNCTION_EPILOGUE is not defined
898 then individual return instructions are generated for each
899 return statement. Args are same as for FUNCTION_PROLOGUE.
900
901 The function epilogue should not depend on the current stack pointer!
902 It should use the frame pointer only. This is mandatory because
903 of alloca; we also take advantage of it to omit stack adjustments
904 before returning. */
905
906/* This declaration is needed due to traditional/ANSI
907 incompatibilities which cannot be #ifdefed away
908 because they occur inside of macros. Sigh. */
909extern union tree_node *current_function_decl;
910
911#define FUNCTION_EPILOGUE(FILE, SIZE) \
ef8200df 912 output_function_epilogue (FILE, SIZE, leaf_function)
1bb87f28
JW
913
914#define DELAY_SLOTS_FOR_EPILOGUE 1
915#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
916 eligible_for_epilogue_delay (trial, slots_filled)
917
918/* Output assembler code for a block containing the constant parts
919 of a trampoline, leaving space for the variable parts. */
920
921/* On the sparc, the trampoline contains five instructions:
922 sethi #TOP_OF_FUNCTION,%g2
923 or #BOTTOM_OF_FUNCTION,%g2,%g2
924 sethi #TOP_OF_STATIC,%g1
925 jmp g2
926 or #BOTTOM_OF_STATIC,%g1,%g1 */
927#define TRAMPOLINE_TEMPLATE(FILE) \
928{ \
929 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
930 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
931 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
932 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
933 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
934}
935
936/* Length in units of the trampoline for entering a nested function. */
937
938#define TRAMPOLINE_SIZE 20
939
940/* Emit RTL insns to initialize the variable parts of a trampoline.
941 FNADDR is an RTX for the address of the function's pure code.
942 CXT is an RTX for the static chain value for the function.
943
944 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
945 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
946 (to store insns). This is a bit excessive. Perhaps a different
947 mechanism would be better here. */
948
949#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
950{ \
951 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
952 size_int (10), 0, 1); \
953 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
954 size_int (10), 0, 1); \
955 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
956 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
957 rtx g1_sethi = gen_rtx (HIGH, SImode, \
958 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
959 rtx g2_sethi = gen_rtx (HIGH, SImode, \
960 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
961 rtx g1_ori = gen_rtx (HIGH, SImode, \
962 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
963 rtx g2_ori = gen_rtx (HIGH, SImode, \
964 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
965 rtx tem = gen_reg_rtx (SImode); \
966 emit_move_insn (tem, g2_sethi); \
967 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
968 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
969 emit_move_insn (tem, g2_ori); \
970 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
971 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
972 emit_move_insn (tem, g1_sethi); \
973 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
974 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
975 emit_move_insn (tem, g1_ori); \
976 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
977 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
978}
979
980/* Emit code for a call to builtin_saveregs. We must emit USE insns which
981 reference the 6 input registers. Ordinarily they are not call used
982 registers, but they are for _builtin_saveregs, so we must make this
983 explicit. */
984
985#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
986 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
987 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
988 expand_call (exp, target, ignore))
989\f
990/* Addressing modes, and classification of registers for them. */
991
992/* #define HAVE_POST_INCREMENT */
993/* #define HAVE_POST_DECREMENT */
994
995/* #define HAVE_PRE_DECREMENT */
996/* #define HAVE_PRE_INCREMENT */
997
998/* Macros to check register numbers against specific register classes. */
999
1000/* These assume that REGNO is a hard or pseudo reg number.
1001 They give nonzero only if REGNO is a hard reg of the suitable class
1002 or a pseudo reg currently allocated to a suitable hard reg.
1003 Since they use reg_renumber, they are safe only once reg_renumber
1004 has been allocated, which happens in local-alloc.c. */
1005
1006#define REGNO_OK_FOR_INDEX_P(REGNO) \
1007(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1008#define REGNO_OK_FOR_BASE_P(REGNO) \
1009(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1010#define REGNO_OK_FOR_FP_P(REGNO) \
1011(((REGNO) ^ 0x20) < 32 \
1012 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1013
1014/* Now macros that check whether X is a register and also,
1015 strictly, whether it is in a specified class.
1016
1017 These macros are specific to the SPARC, and may be used only
1018 in code for printing assembler insns and in conditions for
1019 define_optimization. */
1020
1021/* 1 if X is an fp register. */
1022
1023#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1024\f
1025/* Maximum number of registers that can appear in a valid memory address. */
1026
1027#define MAX_REGS_PER_ADDRESS 2
1028
1029/* Recognize any constant value that is a valid address. */
1030
1031#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1032
1033/* Nonzero if the constant value X is a legitimate general operand.
1034 Anything can be made to work except floating point constants. */
1035
1036#define LEGITIMATE_CONSTANT_P(X) \
1037 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1038
1039/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1040 and check its validity for a certain class.
1041 We have two alternate definitions for each of them.
1042 The usual definition accepts all pseudo regs; the other rejects
1043 them unless they have been allocated suitable hard regs.
1044 The symbol REG_OK_STRICT causes the latter definition to be used.
1045
1046 Most source files want to accept pseudo regs in the hope that
1047 they will get allocated to the class that the insn wants them to be in.
1048 Source files for reload pass need to be strict.
1049 After reload, it makes no difference, since pseudo regs have
1050 been eliminated by then. */
1051
1052/* Optional extra constraints for this machine. Borrowed from romp.h.
1053
1054 For the SPARC, `Q' means that this is a memory operand but not a
1055 symbolic memory operand. Note that an unassigned pseudo register
1056 is such a memory operand. Needed because reload will generate
1057 these things in insns and then not re-recognize the insns, causing
1058 constrain_operands to fail.
1059
1060 `R' handles the LO_SUM which can be an address for `Q'.
1061
1062 `S' handles constraints for calls. */
1063
1064#ifndef REG_OK_STRICT
1065
1066/* Nonzero if X is a hard reg that can be used as an index
1067 or if it is a pseudo reg. */
1068#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1069/* Nonzero if X is a hard reg that can be used as a base reg
1070 or if it is a pseudo reg. */
1071#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1072
1073#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1074 ((C) == 'Q' \
1075 ? ((GET_CODE (OP) == MEM \
1076 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1077 && ! symbolic_memory_operand (OP, VOIDmode)) \
1078 || (reload_in_progress && GET_CODE (OP) == REG \
1079 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
1080 : (C) == 'R' \
1081 ? (GET_CODE (OP) == LO_SUM \
1082 && GET_CODE (XEXP (OP, 0)) == REG \
1083 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1084 : (C) == 'S' \
1085 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
1086 : 0)
1bb87f28
JW
1087
1088#else
1089
1090/* Nonzero if X is a hard reg that can be used as an index. */
1091#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1092/* Nonzero if X is a hard reg that can be used as a base reg. */
1093#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1094
1095#define EXTRA_CONSTRAINT(OP, C) \
1096 ((C) == 'Q' ? \
1097 (GET_CODE (OP) == REG ? \
1098 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1099 && reg_renumber[REGNO (OP)] < 0) \
1100 : GET_CODE (OP) == MEM) \
1101 : ((C) == 'R' ? \
1102 (GET_CODE (OP) == LO_SUM \
1103 && GET_CODE (XEXP (OP, 0)) == REG \
1104 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1105 : ((C) == 'S' \
1106 ? (CONSTANT_P (OP) \
1107 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
1108 || strict_memory_address_p (Pmode, OP)) : 0)))
1109#endif
1110\f
1111/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1112 that is a valid memory address for an instruction.
1113 The MODE argument is the machine mode for the MEM expression
1114 that wants to use this address.
1115
1116 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1117 ordinarily. This changes a bit when generating PIC.
1118
1119 If you change this, execute "rm explow.o recog.o reload.o". */
1120
bec2e359
JW
1121#define RTX_OK_FOR_BASE_P(X) \
1122 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1123 || (GET_CODE (X) == SUBREG \
1124 && GET_CODE (SUBREG_REG (X)) == REG \
1125 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1126
1127#define RTX_OK_FOR_INDEX_P(X) \
1128 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1129 || (GET_CODE (X) == SUBREG \
1130 && GET_CODE (SUBREG_REG (X)) == REG \
1131 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1132
1133#define RTX_OK_FOR_OFFSET_P(X) \
1134 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1135
1bb87f28 1136#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1137{ if (RTX_OK_FOR_BASE_P (X)) \
1138 goto ADDR; \
1bb87f28
JW
1139 else if (GET_CODE (X) == PLUS) \
1140 { \
bec2e359
JW
1141 register rtx op0 = XEXP (X, 0); \
1142 register rtx op1 = XEXP (X, 1); \
1143 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1144 { \
bec2e359 1145 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1146 goto ADDR; \
1147 else if (flag_pic == 1 \
bec2e359
JW
1148 && GET_CODE (op1) != REG \
1149 && GET_CODE (op1) != LO_SUM \
1150 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1151 goto ADDR; \
1152 } \
bec2e359 1153 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1154 { \
bec2e359
JW
1155 if (RTX_OK_FOR_INDEX_P (op1) \
1156 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1157 goto ADDR; \
1158 } \
bec2e359 1159 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1160 { \
bec2e359
JW
1161 if (RTX_OK_FOR_INDEX_P (op0) \
1162 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1163 goto ADDR; \
1164 } \
1165 } \
bec2e359
JW
1166 else if (GET_CODE (X) == LO_SUM) \
1167 { \
1168 register rtx op0 = XEXP (X, 0); \
1169 register rtx op1 = XEXP (X, 1); \
1170 if (RTX_OK_FOR_BASE_P (op0) \
1171 && CONSTANT_P (op1)) \
1172 goto ADDR; \
1173 } \
1bb87f28
JW
1174 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1175 goto ADDR; \
1176}
1177\f
1178/* Try machine-dependent ways of modifying an illegitimate address
1179 to be legitimate. If we find one, return the new, valid address.
1180 This macro is used in only one place: `memory_address' in explow.c.
1181
1182 OLDX is the address as it was before break_out_memory_refs was called.
1183 In some cases it is useful to look at this to decide what needs to be done.
1184
1185 MODE and WIN are passed so that this macro can use
1186 GO_IF_LEGITIMATE_ADDRESS.
1187
1188 It is always safe for this macro to do nothing. It exists to recognize
1189 opportunities to optimize the output. */
1190
1191/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1192extern struct rtx_def *legitimize_pic_address ();
1193#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1194{ rtx sparc_x = (X); \
1195 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1196 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1197 force_operand (XEXP (X, 0), 0)); \
1198 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1199 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1200 force_operand (XEXP (X, 1), 0)); \
1201 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1202 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1203 XEXP (X, 1)); \
1204 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1205 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1206 force_operand (XEXP (X, 1), 0)); \
1207 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1208 goto WIN; \
1209 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1210 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1211 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1212 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1213 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1214 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1215 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1216 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1217 || GET_CODE (X) == LABEL_REF) \
1218 (X) = gen_rtx (LO_SUM, Pmode, \
1219 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1220 if (memory_address_p (MODE, X)) \
1221 goto WIN; }
1222
1223/* Go to LABEL if ADDR (a legitimate address expression)
1224 has an effect that depends on the machine mode it is used for.
1225 On the SPARC this is never true. */
1226
1227#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1228\f
1229/* Specify the machine mode that this machine uses
1230 for the index in the tablejump instruction. */
1231#define CASE_VECTOR_MODE SImode
1232
1233/* Define this if the tablejump instruction expects the table
1234 to contain offsets from the address of the table.
1235 Do not define this if the table should contain absolute addresses. */
1236/* #define CASE_VECTOR_PC_RELATIVE */
1237
1238/* Specify the tree operation to be used to convert reals to integers. */
1239#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1240
1241/* This is the kind of divide that is easiest to do in the general case. */
1242#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1243
1244/* Define this as 1 if `char' should by default be signed; else as 0. */
1245#define DEFAULT_SIGNED_CHAR 1
1246
1247/* Max number of bytes we can move from memory to memory
1248 in one reasonably fast instruction. */
2eef2ef1 1249#define MOVE_MAX 8
1bb87f28 1250
24e2a2bf
RS
1251/* This is the value of the error code EDOM for this machine,
1252 used by the sqrt instruction. */
1253#define TARGET_EDOM 33
1254
1255/* This is how to refer to the variable errno. */
1256#define GEN_ERRNO_RTX \
1257 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
1258
1bb87f28
JW
1259/* Define if normal loads of shorter-than-word items from memory clears
1260 the rest of the bigs in the register. */
1261#define BYTE_LOADS_ZERO_EXTEND
1262
1263/* Nonzero if access to memory by bytes is slow and undesirable.
1264 For RISC chips, it means that access to memory by bytes is no
1265 better than access by words when possible, so grab a whole word
1266 and maybe make use of that. */
1267#define SLOW_BYTE_ACCESS 1
1268
1269/* We assume that the store-condition-codes instructions store 0 for false
1270 and some other value for true. This is the value stored for true. */
1271
1272#define STORE_FLAG_VALUE 1
1273
1274/* When a prototype says `char' or `short', really pass an `int'. */
1275#define PROMOTE_PROTOTYPES
1276
1277/* Define if shifts truncate the shift count
1278 which implies one can omit a sign-extension or zero-extension
1279 of a shift count. */
1280#define SHIFT_COUNT_TRUNCATED
1281
1282/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1283 is done just by pretending it is already truncated. */
1284#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1285
1286/* Specify the machine mode that pointers have.
1287 After generation of rtl, the compiler makes no further distinction
1288 between pointers and any other objects of this machine mode. */
1289#define Pmode SImode
1290
b4ac57ab
RS
1291/* Generate calls to memcpy, memcmp and memset. */
1292#define TARGET_MEM_FUNCTIONS
1293
1bb87f28
JW
1294/* Add any extra modes needed to represent the condition code.
1295
1296 On the Sparc, we have a "no-overflow" mode which is used when an add or
1297 subtract insn is used to set the condition code. Different branches are
1298 used in this case for some operations.
1299
4d449554
JW
1300 We also have two modes to indicate that the relevant condition code is
1301 in the floating-point condition code register. One for comparisons which
1302 will generate an exception if the result is unordered (CCFPEmode) and
1303 one for comparisons which will never trap (CCFPmode). This really should
1304 be a separate register, but we don't want to go to 65 registers. */
1305#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1306
1307/* Define the names for the modes specified above. */
4d449554 1308#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1309
1310/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1311 return the mode to be used for the comparison. For floating-point,
1312 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1313 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1314 needed. */
679655e6 1315#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1316 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1317 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1318 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1319 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1320
1321/* A function address in a call instruction
1322 is a byte address (for indexing purposes)
1323 so give the MEM rtx a byte's mode. */
1324#define FUNCTION_MODE SImode
1325
1326/* Define this if addresses of constant functions
1327 shouldn't be put through pseudo regs where they can be cse'd.
1328 Desirable on machines where ordinary constants are expensive
1329 but a CALL with constant address is cheap. */
1330#define NO_FUNCTION_CSE
1331
1332/* alloca should avoid clobbering the old register save area. */
1333#define SETJMP_VIA_SAVE_AREA
1334
1335/* Define subroutines to call to handle multiply and divide.
1336 Use the subroutines that Sun's library provides.
1337 The `*' prevents an underscore from being prepended by the compiler. */
1338
1339#define DIVSI3_LIBCALL "*.div"
1340#define UDIVSI3_LIBCALL "*.udiv"
1341#define MODSI3_LIBCALL "*.rem"
1342#define UMODSI3_LIBCALL "*.urem"
1343/* .umul is a little faster than .mul. */
1344#define MULSI3_LIBCALL "*.umul"
1345
1346/* Compute the cost of computing a constant rtl expression RTX
1347 whose rtx-code is CODE. The body of this macro is a portion
1348 of a switch statement. If the code is computed here,
1349 return it with a return statement. Otherwise, break from the switch. */
1350
3bb22aee 1351#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28
JW
1352 case CONST_INT: \
1353 if (INTVAL (RTX) == 0) \
1354 return 0; \
1355 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1356 return 1; \
1357 case HIGH: \
1358 return 2; \
1359 case CONST: \
1360 case LABEL_REF: \
1361 case SYMBOL_REF: \
1362 return 4; \
1363 case CONST_DOUBLE: \
1364 if (GET_MODE (RTX) == DImode) \
1365 if ((XINT (RTX, 3) == 0 \
1366 && (unsigned) XINT (RTX, 2) < 0x1000) \
1367 || (XINT (RTX, 3) == -1 \
1368 && XINT (RTX, 2) < 0 \
1369 && XINT (RTX, 2) >= -0x1000)) \
1370 return 1; \
1371 return 8;
1372
1373/* SPARC offers addressing modes which are "as cheap as a register".
1374 See sparc.c (or gcc.texinfo) for details. */
1375
1376#define ADDRESS_COST(RTX) \
1377 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1378
1379/* Compute extra cost of moving data between one register class
1380 and another. */
1381#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1382 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1383 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1384
1385/* Provide the costs of a rtl expression. This is in the body of a
1386 switch on CODE. The purpose for the cost of MULT is to encourage
1387 `synth_mult' to find a synthetic multiply when reasonable.
1388
1389 If we need more than 12 insns to do a multiply, then go out-of-line,
1390 since the call overhead will be < 10% of the cost of the multiply. */
1391
3bb22aee 1392#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1393 case MULT: \
1394 return COSTS_N_INSNS (25); \
1395 case DIV: \
1396 case UDIV: \
1397 case MOD: \
1398 case UMOD: \
1399 return COSTS_N_INSNS (20); \
1400 /* Make FLOAT more expensive than CONST_DOUBLE, \
1401 so that cse will favor the latter. */ \
1402 case FLOAT: \
1403 return 19;
1404
1405/* Conditional branches with empty delay slots have a length of two. */
1406#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1407 if (GET_CODE (INSN) == CALL_INSN \
1408 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1409 LENGTH += 1;
1410\f
1411/* Control the assembler format that we output. */
1412
1413/* Output at beginning of assembler file. */
1414
1415#define ASM_FILE_START(file)
1416
1417/* Output to assembler file text saying following lines
1418 may contain character constants, extra white space, comments, etc. */
1419
1420#define ASM_APP_ON ""
1421
1422/* Output to assembler file text saying following lines
1423 no longer contain unusual constructs. */
1424
1425#define ASM_APP_OFF ""
1426
1427/* Output before read-only data. */
1428
1429#define TEXT_SECTION_ASM_OP ".text"
1430
1431/* Output before writable data. */
1432
1433#define DATA_SECTION_ASM_OP ".data"
1434
1435/* How to refer to registers in assembler output.
1436 This sequence is indexed by compiler's hard-register-number (see above). */
1437
1438#define REGISTER_NAMES \
1439{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1440 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1441 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1442 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1443 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1444 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1445 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1446 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1447
ea3fa5f7
JW
1448/* Define additional names for use in asm clobbers and asm declarations.
1449
1450 We define the fake Condition Code register as an alias for reg 0 (which
1451 is our `condition code' register), so that condition codes can easily
1452 be clobbered by an asm. No such register actually exists. Condition
1453 codes are partly stored in the PSR and partly in the FSR. */
1454
0eb9f40e 1455#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1456
1bb87f28
JW
1457/* How to renumber registers for dbx and gdb. */
1458
1459#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1460
1461/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1462 since the length can run past this up to a continuation point. */
1463#define DBX_CONTIN_LENGTH 1500
1464
1465/* This is how to output a note to DBX telling it the line number
1466 to which the following sequence of instructions corresponds.
1467
1468 This is needed for SunOS 4.0, and should not hurt for 3.2
1469 versions either. */
1470#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1471 { static int sym_lineno = 1; \
1472 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1473 line, sym_lineno, sym_lineno); \
1474 sym_lineno += 1; }
1475
1476/* This is how to output the definition of a user-level label named NAME,
1477 such as the label on a static function or variable NAME. */
1478
1479#define ASM_OUTPUT_LABEL(FILE,NAME) \
1480 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1481
1482/* This is how to output a command to make the user-level label named NAME
1483 defined for reference from other files. */
1484
1485#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1486 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1487
1488/* This is how to output a reference to a user-level label named NAME.
1489 `assemble_name' uses this. */
1490
1491#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1492 fprintf (FILE, "_%s", NAME)
1493
d2a8e680 1494/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1495 PREFIX is the class of label and NUM is the number within the class. */
1496
1497#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1498 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1499
d2a8e680
RS
1500/* This is how to output a reference to an internal numbered label where
1501 PREFIX is the class of label and NUM is the number within the class. */
1502/* FIXME: This should be used throughout gcc, and documented in the texinfo
1503 files. There is no reason you should have to allocate a buffer and
1504 `sprintf' to reference an internal label (as opposed to defining it). */
1505
1506#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1507 fprintf (FILE, "%s%d", PREFIX, NUM)
1508
1bb87f28
JW
1509/* This is how to store into the string LABEL
1510 the symbol_ref name of an internal numbered label where
1511 PREFIX is the class of label and NUM is the number within the class.
1512 This is suitable for output with `assemble_name'. */
1513
1514#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1515 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1516
1517/* This is how to output an assembler line defining a `double' constant. */
1518
b1fc14e5
RS
1519/* Assemblers (both gas 1.35 and as in 4.0.3)
1520 seem to treat -0.0 as if it were 0.0.
1521 They reject 99e9999, but accept inf. */
1bb87f28
JW
1522#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1523 { \
1524 if (REAL_VALUE_ISINF (VALUE)) \
b1fc14e5
RS
1525 fprintf (FILE, "\t.double 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1526 else if (REAL_VALUE_ISNAN (VALUE) \
1527 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28
JW
1528 { \
1529 union { double d; long l[2];} t; \
1530 t.d = (VALUE); \
1531 fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", t.l[0], t.l[1]); \
1532 } \
1533 else \
1534 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1535 }
1536
1537/* This is how to output an assembler line defining a `float' constant. */
1538
1539#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1540 { \
1541 if (REAL_VALUE_ISINF (VALUE)) \
b1fc14e5
RS
1542 fprintf (FILE, "\t.single 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1543 else if (REAL_VALUE_ISNAN (VALUE) \
1544 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28
JW
1545 { \
1546 union { float f; long l;} t; \
1547 t.f = (VALUE); \
1548 fprintf (FILE, "\t.word 0x%lx\n", t.l); \
1549 } \
1550 else \
1551 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1552 }
1553
1554/* This is how to output an assembler line defining an `int' constant. */
1555
1556#define ASM_OUTPUT_INT(FILE,VALUE) \
1557( fprintf (FILE, "\t.word "), \
1558 output_addr_const (FILE, (VALUE)), \
1559 fprintf (FILE, "\n"))
1560
1561/* This is how to output an assembler line defining a DImode constant. */
1562#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1563 output_double_int (FILE, VALUE)
1564
1565/* Likewise for `char' and `short' constants. */
1566
1567#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1568( fprintf (FILE, "\t.half "), \
1569 output_addr_const (FILE, (VALUE)), \
1570 fprintf (FILE, "\n"))
1571
1572#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1573( fprintf (FILE, "\t.byte "), \
1574 output_addr_const (FILE, (VALUE)), \
1575 fprintf (FILE, "\n"))
1576
1577/* This is how to output an assembler line for a numeric constant byte. */
1578
1579#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1580 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1581
1582/* This is how to output an element of a case-vector that is absolute. */
1583
1584#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1585do { \
1586 char label[30]; \
1587 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1588 fprintf (FILE, "\t.word\t"); \
1589 assemble_name (FILE, label); \
1590 fprintf (FILE, "\n"); \
1591} while (0)
1bb87f28
JW
1592
1593/* This is how to output an element of a case-vector that is relative.
1594 (SPARC uses such vectors only when generating PIC.) */
1595
4b69d2a3
RS
1596#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1597do { \
1598 char label[30]; \
1599 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1600 fprintf (FILE, "\t.word\t"); \
1601 assemble_name (FILE, label); \
1602 fprintf (FILE, "-1b\n"); \
1603} while (0)
1bb87f28
JW
1604
1605/* This is how to output an assembler line
1606 that says to advance the location counter
1607 to a multiple of 2**LOG bytes. */
1608
1609#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1610 if ((LOG) != 0) \
1611 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1612
1613#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1614 fprintf (FILE, "\t.skip %u\n", (SIZE))
1615
1616/* This says how to output an assembler line
1617 to define a global common symbol. */
1618
1619#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1620( fputs ("\t.global ", (FILE)), \
1621 assemble_name ((FILE), (NAME)), \
1622 fputs ("\n\t.common ", (FILE)), \
1623 assemble_name ((FILE), (NAME)), \
1624 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1625
1626/* This says how to output an assembler line
1627 to define a local common symbol. */
1628
1629#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1630( fputs ("\n\t.reserve ", (FILE)), \
1631 assemble_name ((FILE), (NAME)), \
1632 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1633
1634/* Store in OUTPUT a string (made with alloca) containing
1635 an assembler-name for a local static variable named NAME.
1636 LABELNO is an integer which is different for each call. */
1637
1638#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1639( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1640 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1641
1642/* Define the parentheses used to group arithmetic operations
1643 in assembler code. */
1644
1645#define ASM_OPEN_PAREN "("
1646#define ASM_CLOSE_PAREN ")"
1647
1648/* Define results of standard character escape sequences. */
1649#define TARGET_BELL 007
1650#define TARGET_BS 010
1651#define TARGET_TAB 011
1652#define TARGET_NEWLINE 012
1653#define TARGET_VT 013
1654#define TARGET_FF 014
1655#define TARGET_CR 015
1656
1657#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
837e5fe9
JW
1658 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' \
1659 || (CHAR) == '(')
1bb87f28
JW
1660
1661/* Print operand X (an rtx) in assembler syntax to file FILE.
1662 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1663 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1664
1665#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1666
1667/* Print a memory address as an operand to reference that memory location. */
1668
1669#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1670{ register rtx base, index = 0; \
1671 int offset = 0; \
1672 register rtx addr = ADDR; \
1673 if (GET_CODE (addr) == REG) \
1674 fputs (reg_names[REGNO (addr)], FILE); \
1675 else if (GET_CODE (addr) == PLUS) \
1676 { \
1677 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1678 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1679 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1680 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1681 else \
1682 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1683 fputs (reg_names[REGNO (base)], FILE); \
1684 if (index == 0) \
1685 fprintf (FILE, "%+d", offset); \
1686 else if (GET_CODE (index) == REG) \
1687 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1688 else if (GET_CODE (index) == SYMBOL_REF) \
1689 fputc ('+', FILE), output_addr_const (FILE, index); \
1690 else abort (); \
1691 } \
1692 else if (GET_CODE (addr) == MINUS \
1693 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1694 { \
1695 output_addr_const (FILE, XEXP (addr, 0)); \
1696 fputs ("-(", FILE); \
1697 output_addr_const (FILE, XEXP (addr, 1)); \
1698 fputs ("-.)", FILE); \
1699 } \
1700 else if (GET_CODE (addr) == LO_SUM) \
1701 { \
1702 output_operand (XEXP (addr, 0), 0); \
1703 fputs ("+%lo(", FILE); \
1704 output_address (XEXP (addr, 1)); \
1705 fputc (')', FILE); \
1706 } \
1707 else if (flag_pic && GET_CODE (addr) == CONST \
1708 && GET_CODE (XEXP (addr, 0)) == MINUS \
1709 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1710 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1711 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1712 { \
1713 addr = XEXP (addr, 0); \
1714 output_addr_const (FILE, XEXP (addr, 0)); \
1715 /* Group the args of the second CONST in parenthesis. */ \
1716 fputs ("-(", FILE); \
1717 /* Skip past the second CONST--it does nothing for us. */\
1718 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1719 /* Close the parenthesis. */ \
1720 fputc (')', FILE); \
1721 } \
1722 else \
1723 { \
1724 output_addr_const (FILE, addr); \
1725 } \
1726}
1727
1728/* Declare functions defined in sparc.c and used in templates. */
1729
1730extern char *singlemove_string ();
1731extern char *output_move_double ();
795068a4 1732extern char *output_move_quad ();
1bb87f28 1733extern char *output_fp_move_double ();
795068a4 1734extern char *output_fp_move_quad ();
1bb87f28
JW
1735extern char *output_block_move ();
1736extern char *output_scc_insn ();
1737extern char *output_cbranch ();
1738extern char *output_return ();
1739extern char *output_floatsisf2 ();
1740extern char *output_floatsidf2 ();
795068a4 1741extern char *output_floatsitf2 ();
1bb87f28
JW
1742
1743/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1744
1745extern int flag_pic;
This page took 0.238384 seconds and 5 git commands to generate.