]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(emit_move_insn): If splitting up into individual words and X is a push_operand...
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28 1/* Definitions of target machine for GNU compiler, for Sun SPARC.
b331b745 2 Copyright (C) 1987, 1988, 1989, 1992, 1994 Free Software Foundation, Inc.
1bb87f28 3 Contributed by Michael Tiemann (tiemann@cygnus.com).
7a6cf439
DE
4 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
1bb87f28
JW
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING. If not, write to
21the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
7a6cf439
DE
26/* Sparc64 support has been added by trying to allow for a day when one
27 compiler can handle both v8 and v9. There are a few cases where this
28 isn't doable, but keep them to a minimum! Two macros are used to help out:
29 TARGET_V9 is used to select (at runtime) !v9-ness or v9-ness.
30 SPARCV9 is defined when compiling for sparc64 only.
31 In places where it is possible to choose between the two at runtime, use
32 TARGET_V9. In places where it is currently not possible to select
33 between the two at runtime use SPARCV9. Again, keep uses of SPARCV9 to a
34 minimum. No attempt is made to support both v8 and v9 in the v9 compiler.
35
36 If a combination v8/v9 compiler is too slow, it should always be possible
37 to #define TARGET_V9 as 0 (and potentially other v9-only options), and
38 #undef SPARCV9. */
39
bef8d8c7
JW
40/* What architecture we're compiling for. This must coincide with the
41 `arch_type' attribute in the .md file. The names were chosen to avoid
42 potential misunderstandings with the various 32 bit flavors (v7, v8, etc.):
43 if we used ARCH_V9 then we'd want to use something like ARCH_V8 but that
44 could be misleading and ARCH_NOTV9 sounds klunky. */
45enum arch_type { ARCH_32BIT, ARCH_64BIT };
46extern enum arch_type sparc_arch_type;
7a6cf439
DE
47
48/* Names to predefine in the preprocessor for this target machine. */
49
50/* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
51 the right varags.h file when bootstrapping. */
52
53#ifdef SPARCV9
54#define CPP_PREDEFINES \
55 "-Dsparc -Dsun -Dunix -D__sparc_v9__ \
56 -Asystem(unix) -Asystem(bsd) -Acpu(sparc64) -Amachine(sparc64)"
57#else
58#define CPP_PREDEFINES \
59 "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
857458c4 60 -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
7a6cf439
DE
61#endif
62
68d69835 63#define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
1bb87f28 64
98ccf8fe 65/* Provide required defaults for linker -e and -d switches. */
1bb87f28 66
d6f04508 67#define LINK_SPEC \
68d69835
JM
68 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
69 %{assert*} %{shared:-assert pure-text}"
1bb87f28
JW
70
71/* Special flags to the Sun-4 assembler when using pipe for input. */
72
b877b5ab 73#define ASM_SPEC " %| %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}}"
1bb87f28 74
885d8175 75/* Define macros to distinguish architectures. */
857458c4
DE
76
77#ifdef SPARCV9
78#define CPP_SPEC "\
79%{mint64:-D__INT_MAX__=9223372036854775807LL -D__LONG_MAX__=9223372036854775807LL} \
80%{mlong64:-D__LONG_MAX__=9223372036854775807LL} \
81"
82#else
7a6cf439
DE
83#define CPP_SPEC "\
84%{msparclite:-D__sparclite__} \
85%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
86%{mv8:-D__sparc_v8__} \
bef8d8c7 87%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
7a6cf439 88"
857458c4 89#endif
885d8175 90
b1fc14e5
RS
91/* Prevent error on `-sun4' and `-target sun4' options. */
92/* This used to translate -dalign to -malign, but that is no good
93 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 94
b1fc14e5 95#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 96
857458c4
DE
97#ifdef SPARCV9
98#define PTRDIFF_TYPE "long long int"
99#define SIZE_TYPE "long long unsigned int"
100#else
101#define PTRDIFF_TYPE "int"
102/* In 2.4 it should work to delete this.
103 #define SIZE_TYPE "int" */
104#endif
7a6cf439
DE
105
106/* ??? This should be 32 bits for v9 but what can we do? */
1bb87f28
JW
107#define WCHAR_TYPE "short unsigned int"
108#define WCHAR_TYPE_SIZE 16
7a6cf439 109#define MAX_WCHAR_TYPE_SIZE 16
1bb87f28 110
4f074454
RK
111/* Show we can debug even without a frame pointer. */
112#define CAN_DEBUG_WITHOUT_FP
1bb87f28 113
5b485d2c
JW
114/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
115 code into the rtl. Also, if we are profiling, we cannot eliminate
116 the frame pointer (because the return address will get smashed). */
117
7a6cf439
DE
118void sparc_override_options ();
119
5b485d2c 120#define OVERRIDE_OPTIONS \
7a6cf439
DE
121 do { \
122 if (profile_flag || profile_block_flag) \
123 { \
124 if (flag_pic) \
125 { \
126 char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC"; \
127 warning ("%s and profiling conflict: disabling %s", \
128 pic_string, pic_string); \
129 flag_pic = 0; \
130 } \
131 flag_omit_frame_pointer = 0; \
132 } \
133 SUBTARGET_OVERRIDE_OPTIONS \
134 sparc_override_options (); \
135 } while (0)
84ab3bfb
JW
136
137/* This is meant to be redefined in the host dependent files */
138#define SUBTARGET_OVERRIDE_OPTIONS
5b485d2c 139
1bb87f28
JW
140/* These compiler options take an argument. We ignore -target for now. */
141
142#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
143 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
144 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28 145
1bb87f28
JW
146/* Print subsidiary information on the compiler version in use. */
147
148#define TARGET_VERSION fprintf (stderr, " (sparc)");
149
150/* Generate DBX debugging information. */
151
152#define DBX_DEBUGGING_INFO
7a6cf439 153\f
1bb87f28
JW
154/* Run-time compilation parameters selecting different hardware subsets. */
155
156extern int target_flags;
157
158/* Nonzero if we should generate code to use the fpu. */
7a6cf439
DE
159#define MASK_FPU 1
160#define TARGET_FPU (target_flags & MASK_FPU)
1bb87f28
JW
161
162/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
163 use fast return insns, but lose some generality. */
7a6cf439
DE
164#define MASK_EPILOGUE 2
165#define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
1bb87f28 166
95dea81f
JW
167/* Nonzero if we should assume that double pointers might be unaligned.
168 This can happen when linking gcc compiled code with other compilers,
169 because the ABI only guarantees 4 byte alignment. */
7a6cf439
DE
170#define MASK_UNALIGNED_DOUBLES 4
171#define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
172
bef8d8c7
JW
173/* ??? Bits 0x18 are currently unused. */
174
175/* Nonzero means we should schedule code for the TMS390Z55 SuperSparc chip. */
176#define MASK_SUPERSPARC 0x20
177#define TARGET_SUPERSPARC (target_flags & MASK_SUPERSPARC)
1bb87f28 178
885d8175 179/* Nonzero means that we should generate code for a v8 sparc. */
7a6cf439
DE
180#define MASK_V8 0x40
181#define TARGET_V8 (target_flags & MASK_V8)
885d8175 182
bc9e02ae
JW
183/* Nonzero means that we should generate code for a sparclite.
184 This enables the sparclite specific instructions, but does not affect
185 whether FPU instructions are emitted. */
7a6cf439
DE
186#define MASK_SPARCLITE 0x80
187#define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
885d8175 188
5b485d2c 189/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
190 model, i.e. no save/restore instructions are generated, in the most
191 efficient manner. This code is not compatible with normal sparc code. */
192/* This is not a user selectable option yet, because it requires changes
193 that are not yet switchable via command line arguments. */
5c56efde 194/* ??? This flag is deprecated and may disappear at some point. */
7a6cf439
DE
195#define MASK_FRW 0x100
196#define TARGET_FRW (target_flags & MASK_FRW)
5b485d2c 197
9a1c7cd7
JW
198/* Nonzero means that we should generate code using a flat register window
199 model, i.e. no save/restore instructions are generated, but which is
200 compatible with normal sparc code. This is the same as above, except
5c56efde
DE
201 that the frame pointer is %i7 instead of %fp. */
202/* ??? This use to be named TARGET_FRW_COMPAT. At some point TARGET_FRW will
203 go away, but until that time only use this one when necessary.
204 -mflat sets both. */
7a6cf439
DE
205#define MASK_FLAT 0x200
206#define TARGET_FLAT (target_flags & MASK_FLAT)
9a1c7cd7 207
34ad7aaf 208/* Nonzero means use the registers that the Sparc ABI reserves for
7a6cf439
DE
209 application software. This is the default for v8, but not v9. */
210#define MASK_APP_REGS 0x400
211#define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
34ad7aaf 212
8248e2bc
JW
213/* Option to select how quad word floating point is implemented.
214 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
215 Otherwise, we use the SPARC ABI quad library functions. */
7a6cf439
DE
216#define MASK_HARD_QUAD 0x800
217#define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
218
219/* Nonzero if we're compiling for 64 bit sparc. */
220#define MASK_V9 0x1000
221#define TARGET_V9 (target_flags & MASK_V9)
222
223/* Nonzero if ints are 64 bits.
224 This automatically implies longs are 64 bits too.
225 This option is for v9 only. */
226#define MASK_INT64 0x2000
227#define TARGET_INT64 (target_flags & MASK_INT64)
228
229/* Nonzero if longs are 64 bits.
230 This option is for v9 only. */
231#define MASK_LONG64 0x4000
232#define TARGET_LONG64 (target_flags & MASK_LONG64)
233
234/* Nonzero if pointers are 64 bits.
857458c4
DE
235 This is not a user selectable option, though it may be one day -
236 so it is used to determine pointer size instead of an architecture flag. */
7a6cf439
DE
237#define MASK_PTR64 0x8000
238#define TARGET_PTR64 (target_flags & MASK_PTR64)
239
240/* Nonzero if we are generating code to be tested in a 32 bit environment.
241 Hence, we assume the upper 32 bits of symbolic addresses are zero, and
242 avoid generating %uhi and %ulo terms.
243 Pointers are still 64 bits though! This option is for v9 only. */
2454c8d4 244/* ??? This option is deprecated. Try to use -mmedlow. */
7a6cf439
DE
245#define MASK_ENV32 0x10000
246#define TARGET_ENV32 (target_flags & MASK_ENV32)
247
248/* Memory models.
249 Two memory models are supported:
250 TARGET_MEDLOW: 32 bit address space, top 32 bits = 0
857458c4 251 (pointers still 64 bits)
7a6cf439
DE
252 TARGET_MEDANY: 32 bit address space, data segment loaded anywhere
253 (use %g4 as offset).
254 TARGET_FULLANY: not supported yet.
255 These options are for v9 only. All mask values are nonzero so the v8
256 compiler can assume this stuff won't interfere. */
257#define MASK_MEDLOW 0x20000
258#define MASK_MEDANY 0x40000
259#define MASK_FULLANY 0x60000
260#define MASK_CODE_MODEL (MASK_MEDLOW + MASK_MEDANY)
261#define TARGET_MEDLOW ((target_flags & MASK_CODE_MODEL) == MASK_MEDLOW)
262#define TARGET_MEDANY ((target_flags & MASK_CODE_MODEL) == MASK_MEDANY)
263#define TARGET_FULLANY ((target_flags & MASK_CODE_MODEL) == MASK_FULLANY)
264
265/* ??? There are hardcoded references to this reg in the .md file. */
266#define MEDANY_BASE_REG "%g4"
267
268/* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
269 adding 2047 to %sp. This option is for v9 only and is the default. */
270#define MASK_STACK_BIAS 0x80000
271#define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
8248e2bc 272
1bb87f28
JW
273/* Macro to define tables used to set the flags.
274 This is a list in braces of pairs in braces,
275 each pair being { "NAME", VALUE }
276 where VALUE is the bits to set or minus the bits to clear.
277 An empty string NAME is used to identify the default VALUE. */
278
bc9e02ae 279/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
7a6cf439 280 The Fujitsu MB86934 is the recent sparclite chip, with an fpu.
bc9e02ae
JW
281 We use -mf930 and -mf934 options to choose which.
282 ??? These should perhaps be -mcpu= options. */
283
1bb87f28 284#define TARGET_SWITCHES \
7a6cf439
DE
285 { {"fpu", MASK_FPU}, \
286 {"no-fpu", -MASK_FPU}, \
287 {"hard-float", MASK_FPU}, \
288 {"soft-float", -MASK_FPU}, \
289 {"epilogue", MASK_EPILOGUE}, \
290 {"no-epilogue", -MASK_EPILOGUE}, \
291 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES}, \
292 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES}, \
bef8d8c7
JW
293 {"supersparc", MASK_SUPERSPARC+MASK_V8}, \
294 {"cypress", -MASK_SUPERSPARC-MASK_V8}, \
7a6cf439
DE
295 {"v8", MASK_V8}, \
296 {"no-v8", -MASK_V8}, \
297 {"sparclite", MASK_SPARCLITE}, \
298 {"no-sparclite", -MASK_SPARCLITE}, \
299 {"f930", MASK_SPARCLITE}, \
300 {"f930", -MASK_FPU}, \
301 {"f934", MASK_SPARCLITE}, \
302 {"flat", MASK_FRW+MASK_FLAT}, \
303 {"no-flat", -(MASK_FRW+MASK_FLAT)}, \
304 {"app-regs", MASK_APP_REGS}, \
305 {"no-app-regs", -MASK_APP_REGS}, \
306 {"hard-quad-float", MASK_HARD_QUAD}, \
307 {"soft-quad-float", -MASK_HARD_QUAD}, \
308 SUBTARGET_SWITCHES \
309 V9_SWITCHES \
b1fc14e5 310 { "", TARGET_DEFAULT}}
1bb87f28 311
7a6cf439 312#define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
84ab3bfb
JW
313
314/* This is meant to be redefined in the host dependent files */
315#define SUBTARGET_SWITCHES
1bb87f28 316
7a6cf439
DE
317/* ??? Until we support a combination v8/v9 compiler, the v9 specific options
318 are only defined for the v9 compiler. */
7a6cf439
DE
319#ifdef SPARCV9
320#define V9_SWITCHES \
fa653e40 321/* {"v9", MASK_V9}, */ \
7a6cf439
DE
322 {"int64", MASK_INT64+MASK_LONG64}, \
323 {"int32", -MASK_INT64}, \
fa653e40
DE
324 {"int32", MASK_LONG64}, \
325 {"long64", -MASK_INT64}, \
7a6cf439 326 {"long64", MASK_LONG64}, \
fa653e40
DE
327 {"long32", -(MASK_INT64+MASK_LONG64)}, \
328/* {"ptr64", MASK_PTR64}, */ \
329/* {"ptr32", -MASK_PTR64}, */ \
7a6cf439 330 {"stack-bias", MASK_STACK_BIAS}, \
2454c8d4
JW
331 {"no-stack-bias", -MASK_STACK_BIAS}, \
332 {"medlow", -MASK_CODE_MODEL}, \
333 {"medlow", MASK_MEDLOW}, \
334 {"medany", -MASK_CODE_MODEL}, \
335 {"medany", MASK_MEDANY},
7a6cf439
DE
336#else
337#define V9_SWITCHES
360b1451 338#endif
7a6cf439
DE
339\f
340/* target machine storage layout */
341
d667538b
JW
342/* Define for cross-compilation to a sparc target with no TFmode from a host
343 with a different float format (e.g. VAX). */
344#define REAL_ARITHMETIC
345
1bb87f28
JW
346/* Define this if most significant bit is lowest numbered
347 in instructions that operate on numbered bit-fields. */
348#define BITS_BIG_ENDIAN 1
349
350/* Define this if most significant byte of a word is the lowest numbered. */
351/* This is true on the SPARC. */
352#define BYTES_BIG_ENDIAN 1
353
354/* Define this if most significant word of a multiword number is the lowest
355 numbered. */
356/* Doubles are stored in memory with the high order word first. This
357 matters when cross-compiling. */
358#define WORDS_BIG_ENDIAN 1
359
b4ac57ab 360/* number of bits in an addressable storage unit */
1bb87f28
JW
361#define BITS_PER_UNIT 8
362
363/* Width in bits of a "word", which is the contents of a machine register.
364 Note that this is not necessarily the width of data type `int';
365 if using 16-bit ints on a 68000, this would still be 32.
366 But on a machine with 16-bit registers, this would be 16. */
7a6cf439
DE
367#define BITS_PER_WORD (TARGET_V9 ? 64 : 32)
368#define MAX_BITS_PER_WORD 64
1bb87f28
JW
369
370/* Width of a word, in units (bytes). */
7a6cf439
DE
371#define UNITS_PER_WORD (TARGET_V9 ? 8 : 4)
372#define MAX_UNITS_PER_WORD 8
373
374/* Now define the sizes of the C data types. */
375
376#define SHORT_TYPE_SIZE 16
377#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
378#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
379#define LONG_LONG_TYPE_SIZE 64
380#define FLOAT_TYPE_SIZE 32
381#define DOUBLE_TYPE_SIZE 64
382
383#define MAX_INT_TYPE_SIZE 64
384#define MAX_LONG_TYPE_SIZE 64
385
386#ifdef SPARCV9
387/* ??? This does not work in SunOS 4.x, so it is not enabled here.
388 Instead, it is enabled in sol2.h, because it does work under Solaris. */
389/* Define for support of TFmode long double and REAL_ARITHMETIC.
390 Sparc ABI says that long double is 4 words. */
391#define LONG_DOUBLE_TYPE_SIZE 128
392#endif
1bb87f28
JW
393
394/* Width in bits of a pointer.
395 See also the macro `Pmode' defined below. */
7a6cf439 396#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
1bb87f28
JW
397
398/* Allocation boundary (in *bits*) for storing arguments in argument list. */
7a6cf439 399#define PARM_BOUNDARY (TARGET_V9 ? 64 : 32)
1bb87f28
JW
400
401/* Boundary (in *bits*) on which stack pointer should be aligned. */
7a6cf439 402#define STACK_BOUNDARY (TARGET_V9 ? 128 : 64)
1bb87f28 403
10d1b70f
JW
404/* ALIGN FRAMES on double word boundaries */
405
7a6cf439
DE
406#define SPARC_STACK_ALIGN(LOC) \
407 (TARGET_V9 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
10d1b70f 408
1bb87f28
JW
409/* Allocation boundary (in *bits*) for the code of a function. */
410#define FUNCTION_BOUNDARY 32
411
412/* Alignment of field after `int : 0' in a structure. */
7a6cf439
DE
413/* ??? Should this be based on TARGET_INT64? */
414#define EMPTY_FIELD_BOUNDARY (TARGET_V9 ? 64 : 32)
1bb87f28
JW
415
416/* Every structure's size must be a multiple of this. */
417#define STRUCTURE_SIZE_BOUNDARY 8
418
419/* A bitfield declared as `int' forces `int' alignment for the struct. */
420#define PCC_BITFIELD_TYPE_MATTERS 1
421
422/* No data type wants to be aligned rounder than this. */
7a6cf439 423#define BIGGEST_ALIGNMENT (TARGET_V9 ? 128 : 64)
1bb87f28 424
77a02b01
JW
425/* The best alignment to use in cases where we have a choice. */
426#define FASTEST_ALIGNMENT 64
427
1bb87f28
JW
428/* Make strings word-aligned so strcpy from constants will be faster. */
429#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
430 ((TREE_CODE (EXP) == STRING_CST \
431 && (ALIGN) < FASTEST_ALIGNMENT) \
432 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
433
434/* Make arrays of chars word-aligned for the same reasons. */
435#define DATA_ALIGNMENT(TYPE, ALIGN) \
436 (TREE_CODE (TYPE) == ARRAY_TYPE \
437 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 438 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 439
b4ac57ab 440/* Set this nonzero if move instructions will actually fail to work
1bb87f28 441 when given unaligned data. */
b4ac57ab 442#define STRICT_ALIGNMENT 1
1bb87f28
JW
443
444/* Things that must be doubleword aligned cannot go in the text section,
445 because the linker fails to align the text section enough!
7a6cf439 446 Put them in the data section. This macro is only used in this file. */
1bb87f28
JW
447#define MAX_TEXT_ALIGN 32
448
68d69835
JM
449/* This forces all variables and constants to the data section when PIC.
450 This is because the SunOS 4 shared library scheme thinks everything in
451 text is a function, and patches the address to point to a loader stub. */
452/* This is defined to zero for every system which doesn't use the a.out object
453 file format. */
454#ifndef SUNOS4_SHARED_LIBRARIES
455#define SUNOS4_SHARED_LIBRARIES 0
456#endif
457
7a6cf439 458/* This is defined differently for v9 in a cover file. */
1bb87f28
JW
459#define SELECT_SECTION(T,RELOC) \
460{ \
461 if (TREE_CODE (T) == VAR_DECL) \
462 { \
463 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
ed8969fa
JW
464 && DECL_INITIAL (T) \
465 && (DECL_INITIAL (T) == error_mark_node \
466 || TREE_CONSTANT (DECL_INITIAL (T))) \
1bb87f28 467 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
68d69835 468 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
1bb87f28
JW
469 text_section (); \
470 else \
471 data_section (); \
472 } \
473 else if (TREE_CODE (T) == CONSTRUCTOR) \
474 { \
68d69835 475 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
1bb87f28
JW
476 data_section (); \
477 } \
478 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
479 { \
480 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
68d69835
JM
481 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
482 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
1bb87f28
JW
483 data_section (); \
484 else \
485 text_section (); \
486 } \
487}
488
489/* Use text section for a constant
490 unless we need more alignment than that offers. */
7a6cf439 491/* This is defined differently for v9 in a cover file. */
1bb87f28
JW
492#define SELECT_RTX_SECTION(MODE, X) \
493{ \
494 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
68d69835 495 && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES))) \
1bb87f28
JW
496 text_section (); \
497 else \
498 data_section (); \
499}
500\f
501/* Standard register usage. */
502
503/* Number of actual hardware registers.
504 The hardware registers are assigned numbers for the compiler
505 from 0 to just below FIRST_PSEUDO_REGISTER.
506 All registers that the compiler knows about must be given numbers,
507 even those that are not normally considered general registers.
508
7a6cf439
DE
509 SPARC has 32 integer registers and 32 floating point registers.
510 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
511 accessible. We still account for them to simplify register computations
512 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
513 32+32+32+4 == 100.
514 Register 0 is used as the integer condition code register. */
1bb87f28 515
7a6cf439
DE
516#ifdef SPARCV9
517#define FIRST_PSEUDO_REGISTER 100
518#else
1bb87f28 519#define FIRST_PSEUDO_REGISTER 64
7a6cf439 520#endif
1bb87f28
JW
521
522/* 1 for registers that have pervasive standard uses
523 and are not available for the register allocator.
5b485d2c 524 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 525 hardwired to 0, so reg 0 is *not* fixed.
7a6cf439 526 On non-v9 systems:
34ad7aaf
JW
527 g1 is free to use as temporary.
528 g2-g4 are reserved for applications. Gcc normally uses them as
529 temporaries, but this can be disabled via the -mno-app-regs option.
7a6cf439
DE
530 g5 through g7 are reserved for the operating system.
531 On v9 systems:
532 g1 and g5 are free to use as temporaries.
533 g2-g4 are reserved for applications (the compiler will not normally use
534 them, but they can be used as temporaries with -mapp-regs).
535 g6-g7 are reserved for the operating system.
536 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
537 currently be a fixed register until this pattern is rewritten.
538 Register 1 is also used when restoring call-preserved registers in large
539 stack frames. */
540
541#ifdef SPARCV9
542#define FIXED_REGISTERS \
543 {0, 1, 1, 1, 1, 0, 1, 1, \
544 0, 0, 0, 0, 0, 0, 1, 0, \
545 0, 0, 0, 0, 0, 0, 0, 0, \
546 0, 0, 0, 0, 0, 0, 1, 1, \
547 \
548 0, 0, 0, 0, 0, 0, 0, 0, \
549 0, 0, 0, 0, 0, 0, 0, 0, \
550 0, 0, 0, 0, 0, 0, 0, 0, \
551 0, 0, 0, 0, 0, 0, 0, 0, \
552 \
553 0, 0, 0, 0, 0, 0, 0, 0, \
554 0, 0, 0, 0, 0, 0, 0, 0, \
555 0, 0, 0, 0, 0, 0, 0, 0, \
556 0, 0, 0, 0, 0, 0, 0, 0, \
557 \
558 0, 0, 0, 0}
559#else
1bb87f28 560#define FIXED_REGISTERS \
d9ca49d5 561 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
562 0, 0, 0, 0, 0, 0, 1, 0, \
563 0, 0, 0, 0, 0, 0, 0, 0, \
564 0, 0, 0, 0, 0, 0, 1, 1, \
565 \
566 0, 0, 0, 0, 0, 0, 0, 0, \
567 0, 0, 0, 0, 0, 0, 0, 0, \
568 0, 0, 0, 0, 0, 0, 0, 0, \
569 0, 0, 0, 0, 0, 0, 0, 0}
7a6cf439 570#endif
1bb87f28
JW
571
572/* 1 for registers not available across function calls.
573 These must include the FIXED_REGISTERS and also any
574 registers that can be used without being saved.
575 The latter must include the registers where values are returned
576 and the register where structure-value addresses are passed.
577 Aside from that, you can include as many other registers as you like. */
7a6cf439
DE
578
579#ifdef SPARCV9
580#define CALL_USED_REGISTERS \
581 {1, 1, 1, 1, 1, 1, 1, 1, \
582 1, 1, 1, 1, 1, 1, 1, 1, \
583 0, 0, 0, 0, 0, 0, 0, 0, \
584 0, 0, 0, 0, 0, 0, 1, 1, \
585 \
586 1, 1, 1, 1, 1, 1, 1, 1, \
587 1, 1, 1, 1, 1, 1, 1, 1, \
588 0, 0, 0, 0, 0, 0, 0, 0, \
589 0, 0, 0, 0, 0, 0, 0, 0, \
590 \
591 0, 0, 0, 0, 0, 0, 0, 0, \
592 0, 0, 0, 0, 0, 0, 0, 0, \
593 1, 1, 1, 1, 1, 1, 1, 1, \
594 1, 1, 1, 1, 1, 1, 1, 1, \
595 \
596 1, 1, 1, 1}
597#else
1bb87f28
JW
598#define CALL_USED_REGISTERS \
599 {1, 1, 1, 1, 1, 1, 1, 1, \
600 1, 1, 1, 1, 1, 1, 1, 1, \
601 0, 0, 0, 0, 0, 0, 0, 0, \
602 0, 0, 0, 0, 0, 0, 1, 1, \
603 \
604 1, 1, 1, 1, 1, 1, 1, 1, \
605 1, 1, 1, 1, 1, 1, 1, 1, \
606 1, 1, 1, 1, 1, 1, 1, 1, \
607 1, 1, 1, 1, 1, 1, 1, 1}
7a6cf439 608#endif
1bb87f28 609
26c5587d 610/* If !TARGET_FPU, then make the fp registers fixed so that they won't
7a6cf439 611 be allocated. On v9, also make the fp cc regs fixed. */
26c5587d
JW
612
613#define CONDITIONAL_REGISTER_USAGE \
614do \
615 { \
616 if (! TARGET_FPU) \
617 { \
618 int regno; \
7a6cf439 619 for (regno = 32; regno < FIRST_PSEUDO_REGISTER; regno++) \
26c5587d
JW
620 fixed_regs[regno] = 1; \
621 } \
34ad7aaf
JW
622 if (! TARGET_APP_REGS) \
623 { \
624 fixed_regs[2] = 1; \
625 fixed_regs[3] = 1; \
626 fixed_regs[4] = 1; \
627 } \
7a6cf439
DE
628 else \
629 { \
630 fixed_regs[2] = 0; \
631 fixed_regs[3] = 0; \
2454c8d4 632 fixed_regs[4] = TARGET_MEDANY != 0; \
7a6cf439 633 } \
5c56efde
DE
634 if (TARGET_FLAT) \
635 { \
636 /* Let the compiler believe the frame pointer is still \
637 %fp, but output it as %i7. */ \
638 fixed_regs[31] = 1; \
639 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
640 /* ??? This is a hack to disable leaf functions. */ \
641 global_regs[7] = 1; \
642 } \
9ee6230c
JW
643 if (profile_block_flag) \
644 { \
645 /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \
646 uses them. */ \
647 fixed_regs[1] = 1; \
648 fixed_regs[2] = 1; \
649 } \
26c5587d
JW
650 } \
651while (0)
652
1bb87f28
JW
653/* Return number of consecutive hard regs needed starting at reg REGNO
654 to hold something of mode MODE.
655 This is ordinarily the length in words of a value of mode MODE
656 but can be less for certain modes in special long registers.
657
658 On SPARC, ordinary registers hold 32 bits worth;
659 this means both integer and floating point registers.
7a6cf439
DE
660 On v9, integer regs hold 64 bits worth; floating point regs hold
661 32 bits worth (this includes the new fp regs as even the odd ones are
662 included in the hard register count). */
1bb87f28 663
7a6cf439
DE
664#define HARD_REGNO_NREGS(REGNO, MODE) \
665 (TARGET_V9 \
666 ? ((REGNO) < 32 \
667 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
668 : (GET_MODE_SIZE (MODE) + 3) / 4) \
669 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1bb87f28
JW
670
671/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
923a8d06 672 See sparc.c for how we initialize this. */
7a6cf439
DE
673extern int *hard_regno_mode_classes;
674extern int sparc_mode_class[];
1bb87f28 675#define HARD_REGNO_MODE_OK(REGNO, MODE) \
7a6cf439 676 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1bb87f28
JW
677
678/* Value is 1 if it is a good idea to tie two pseudo registers
679 when one has mode MODE1 and one has mode MODE2.
680 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
7a6cf439
DE
681 for any hard reg, then this must be 0 for correct output.
682
683 For V9: SFmode can't be combined with other float modes, because they can't
684 be allocated to the %d registers. Also, DFmode won't fit in odd %f
685 registers, but SFmode will. */
1bb87f28 686#define MODES_TIEABLE_P(MODE1, MODE2) \
7a6cf439
DE
687 ((MODE1) == (MODE2) \
688 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
689 && (! TARGET_V9 \
690 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
691 || (MODE1 != SFmode && MODE2 != SFmode)))))
1bb87f28
JW
692
693/* Specify the registers used for certain standard purposes.
694 The values of these macros are register numbers. */
695
696/* SPARC pc isn't overloaded on a register that the compiler knows about. */
697/* #define PC_REGNUM */
698
699/* Register to use for pushing function arguments. */
700#define STACK_POINTER_REGNUM 14
701
7a6cf439
DE
702/* Actual top-of-stack address is 92/136 greater than the contents of the
703 stack pointer register for !v9/v9. That is:
704 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
705 address, and 24 bytes for the 6 register parameters.
706 - v9: 128 bytes for the in and local registers + 8 bytes reserved. */
1bb87f28
JW
707#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
708
7a6cf439
DE
709/* The stack bias (amount by which the hardware register is offset by). */
710#define SPARC_STACK_BIAS (TARGET_STACK_BIAS ? 2047 : 0)
711
1bb87f28
JW
712/* Base register for access to local variables of the function. */
713#define FRAME_POINTER_REGNUM 30
714
715#if 0
716/* Register that is used for the return address. */
717#define RETURN_ADDR_REGNUM 15
718#endif
719
720/* Value should be nonzero if functions must have frame pointers.
721 Zero means the frame pointer need not be set up (and parms
722 may be accessed via the stack pointer) in functions that seem suitable.
723 This is computed in `reload', in reload1.c.
a061b9fa 724 Used in flow.c, global.c, and reload1.c.
1bb87f28 725
a061b9fa
DE
726 Being a non-leaf function does not mean a frame pointer is needed in the
727 flat window model. However, the debugger won't be able to backtrace through
728 us with out it. */
1bb87f28 729#define FRAME_POINTER_REQUIRED \
a061b9fa
DE
730 (TARGET_FRW ? (current_function_calls_alloca || current_function_varargs \
731 || !leaf_function_p ()) \
5c56efde 732 : ! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
733
734/* C statement to store the difference between the frame pointer
735 and the stack pointer values immediately after the function prologue.
736
737 Note, we always pretend that this is a leaf function because if
738 it's not, there's no point in trying to eliminate the
739 frame pointer. If it is a leaf function, we guessed right! */
740#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5c56efde 741 ((VAR) = (TARGET_FRW ? sparc_flat_compute_frame_size (get_frame_size ()) \
5b485d2c 742 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
743
744/* Base register for access to arguments of the function. */
5c56efde 745#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1bb87f28 746
6098b63e 747/* Register in which static-chain is passed to a function. This must
7a6cf439
DE
748 not be a register used by the prologue.
749 ??? v9: Since %g2 is reserved but %g5 is available, perhaps use %g5. */
6098b63e 750#define STATIC_CHAIN_REGNUM 2
1bb87f28
JW
751
752/* Register which holds offset table for position-independent
753 data references. */
754
755#define PIC_OFFSET_TABLE_REGNUM 23
756
757#define INITIALIZE_PIC initialize_pic ()
758#define FINALIZE_PIC finalize_pic ()
759
d9ca49d5 760/* Sparc ABI says that quad-precision floats and all structures are returned
7a6cf439
DE
761 in memory.
762 For v9, all aggregates are returned in memory. */
686667bf
JW
763#define RETURN_IN_MEMORY(TYPE) \
764 (TYPE_MODE (TYPE) == BLKmode \
765 || (! TARGET_V9 && (TYPE_MODE (TYPE) == TFmode \
766 || TYPE_MODE (TYPE) == TCmode)))
d9ca49d5 767
1bb87f28
JW
768/* Functions which return large structures get the address
769 to place the wanted value at offset 64 from the frame.
7a6cf439
DE
770 Must reserve 64 bytes for the in and local registers.
771 v9: Functions which return large structures get the address to place the
772 wanted value from an invisible first argument. */
1bb87f28
JW
773/* Used only in other #defines in this file. */
774#define STRUCT_VALUE_OFFSET 64
775
776#define STRUCT_VALUE \
7a6cf439
DE
777 (TARGET_V9 \
778 ? 0 \
779 : gen_rtx (MEM, Pmode, \
780 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
781 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
1bb87f28 782#define STRUCT_VALUE_INCOMING \
7a6cf439
DE
783 (TARGET_V9 \
784 ? 0 \
785 : gen_rtx (MEM, Pmode, \
786 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
787 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
1bb87f28
JW
788\f
789/* Define the classes of registers for register constraints in the
790 machine description. Also define ranges of constants.
791
792 One of the classes must always be named ALL_REGS and include all hard regs.
793 If there is more than one class, another class must be named NO_REGS
794 and contain no registers.
795
796 The name GENERAL_REGS must be the name of a class (or an alias for
797 another name such as ALL_REGS). This is the class of registers
798 that is allowed by "g" or "r" in a register constraint.
799 Also, registers outside this class are allocated only when
800 instructions express preferences for them.
801
802 The classes must be numbered in nondecreasing order; that is,
803 a larger-numbered class must never be contained completely
804 in a smaller-numbered class.
805
806 For any two classes, it is very desirable that there be another
807 class that represents their union. */
808
7a6cf439 809/* The SPARC has two kinds of registers, general and floating point.
24b63396
JW
810
811 For v9 we must distinguish between the upper and lower floating point
812 registers because the upper ones can't hold SFmode values.
813 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
814 satisfying a group need for a class will also satisfy a single need for
815 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
816 regs.
817
818 It is important that one class contains all the general and all the standard
819 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
820 because reg_class_record() will bias the selection in favor of fp regs,
821 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
822 because FP_REGS > GENERAL_REGS.
823
824 It is also important that one class contain all the general and all the
825 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
826 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
827 allocate_reload_reg() to bypass it causing an abort because the compiler
828 thinks it doesn't have a spill reg when in fact it does.
829
7a6cf439
DE
830 v9 also has 4 floating point condition code registers. Since we don't
831 have a class that is the union of FPCC_REGS with either of the others,
832 it is important that it appear first. Otherwise the compiler will die
833 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
834 constraints. */
7a6cf439
DE
835
836#ifdef SPARCV9
24b63396
JW
837enum reg_class { NO_REGS, FPCC_REGS, GENERAL_REGS, FP_REGS, EXTRA_FP_REGS,
838 GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
7a6cf439
DE
839 ALL_REGS, LIM_REG_CLASSES };
840#else
1bb87f28 841enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
7a6cf439 842#endif
1bb87f28
JW
843
844#define N_REG_CLASSES (int) LIM_REG_CLASSES
845
846/* Give names of register classes as strings for dump file. */
847
7a6cf439 848#ifdef SPARCV9
1bb87f28 849#define REG_CLASS_NAMES \
24b63396
JW
850 { "NO_REGS", "FPCC_REGS", "GENERAL_REGS", "FP_REGS", "EXTRA_FP_REGS", \
851 "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", "ALL_REGS" }
7a6cf439
DE
852#else
853#define REG_CLASS_NAMES \
24b63396 854 { "NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
7a6cf439 855#endif
1bb87f28
JW
856
857/* Define which registers fit in which classes.
858 This is an initializer for a vector of HARD_REG_SET
859 of length N_REG_CLASSES. */
860
7a6cf439
DE
861#ifdef SPARCV9
862#define REG_CLASS_CONTENTS \
24b63396
JW
863 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {-2, 0, 0, 0}, \
864 {0, -1, 0, 0}, {0, -1, -1, 0}, {-2, -1, 0, 0}, {-2, -1, -1, 0}, \
865 {-2, -1, -1, 0xf}}
7a6cf439 866#else
1bb87f28
JW
867#if 0 && defined (__GNUC__)
868#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
869#else
870#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
871#endif
7a6cf439 872#endif
1bb87f28
JW
873
874/* The same information, inverted:
875 Return the class number of the smallest class containing
876 reg number REGNO. This could be a conditional expression
877 or could index an array. */
878
7a6cf439 879#ifdef SPARCV9
24b63396
JW
880#define REGNO_REG_CLASS(REGNO) \
881 ((REGNO) == 0 ? NO_REGS \
882 : (REGNO) < 32 ? GENERAL_REGS \
883 : (REGNO) < 64 ? FP_REGS \
884 : (REGNO) < 96 ? EXTRA_FP_REGS \
885 : FPCC_REGS)
7a6cf439 886#else
1bb87f28
JW
887#define REGNO_REG_CLASS(REGNO) \
888 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
7a6cf439 889#endif
1bb87f28 890
7a6cf439 891/* This is the order in which to allocate registers normally.
51f0e748
JW
892
893 We put %f0/%f1 last among the float registers, so as to make it more
6a4bb1fa 894 likely that a pseudo-register which dies in the float return register
51f0e748 895 will get allocated to the float return register, thus saving a move
7a6cf439
DE
896 instruction at the end of the function.
897
898 On v9, the float registers are ordered a little "funny" because some
899 of them (%f16-%f47) are call-preserved. */
900#ifdef SPARCV9
901#define REG_ALLOC_ORDER \
902{ 8, 9, 10, 11, 12, 13, \
903 15, 16, 17, 18, 19, 20, 21, 22, \
904 23, 24, 25, 26, 27, 28, 29, 31, \
905 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
906 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
907 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
908 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
909 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
910 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
911 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
912 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
913 32, 33, /* %f0,%f1 */ \
914 96, 97, 98, 99, /* %fcc0-3 */ \
915 1, 5, 2, 3, 4, 6, 7, 0, 14, 30}
916#else
1bb87f28 917#define REG_ALLOC_ORDER \
b4ac57ab
RS
918{ 8, 9, 10, 11, 12, 13, 2, 3, \
919 15, 16, 17, 18, 19, 20, 21, 22, \
920 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 921 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
922 40, 41, 42, 43, 44, 45, 46, 47, \
923 48, 49, 50, 51, 52, 53, 54, 55, \
924 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 925 32, 33, \
4b69d2a3 926 1, 4, 5, 6, 7, 0, 14, 30}
7a6cf439 927#endif
1bb87f28
JW
928
929/* This is the order in which to allocate registers for
930 leaf functions. If all registers can fit in the "i" registers,
7a6cf439
DE
931 then we have the possibility of having a leaf function.
932 v9: The floating point registers are ordered a little "funny" because some
933 of them (%f16-%f47) are call-preserved. */
934#ifdef SPARCV9
935#define REG_LEAF_ALLOC_ORDER \
936{ 24, 25, 26, 27, 28, 29, \
937 15, 8, 9, 10, 11, 12, 13, \
938 16, 17, 18, 19, 20, 21, 22, 23, \
939 34, 35, 36, 37, 38, 39, \
940 40, 41, 42, 43, 44, 45, 46, 47, \
941 80, 81, 82, 83, 84, 85, 86, 87, \
942 88, 89, 90, 91, 92, 93, 94, 95, \
943 48, 49, 50, 51, 52, 53, 54, 55, \
944 56, 57, 58, 59, 60, 61, 62, 63, \
945 64, 65, 66, 67, 68, 69, 70, 71, \
946 72, 73, 74, 75, 76, 77, 78, 79, \
947 32, 33, \
948 96, 97, 98, 99, \
949 1, 5, 2, 3, 4, 6, 7, 0, 14, 30, 31}
950#else
1bb87f28
JW
951#define REG_LEAF_ALLOC_ORDER \
952{ 2, 3, 24, 25, 26, 27, 28, 29, \
953 15, 8, 9, 10, 11, 12, 13, \
954 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 955 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
956 40, 41, 42, 43, 44, 45, 46, 47, \
957 48, 49, 50, 51, 52, 53, 54, 55, \
958 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 959 32, 33, \
4b69d2a3 960 1, 4, 5, 6, 7, 0, 14, 30, 31}
7a6cf439 961#endif
1bb87f28
JW
962
963#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
964
5c56efde
DE
965/* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
966 -mflat is used. Function only_leaf_regs_used will return 0 if a global
967 register is used and is not permitted in a leaf function. We make %g7
968 a global reg if -mflat and voila. Since %g7 is a system register and is
969 fixed it won't be used by gcc anyway. */
7a6cf439
DE
970#ifdef SPARCV9
971#define LEAF_REGISTERS \
972{ 1, 1, 1, 1, 1, 1, 1, 0, \
973 0, 0, 0, 0, 0, 0, 1, 0, \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975 1, 1, 1, 1, 1, 1, 0, 1, \
976 1, 1, 1, 1, 1, 1, 1, 1, \
977 1, 1, 1, 1, 1, 1, 1, 1, \
978 1, 1, 1, 1, 1, 1, 1, 1, \
979 1, 1, 1, 1, 1, 1, 1, 1, \
980 1, 1, 1, 1, 1, 1, 1, 1, \
981 1, 1, 1, 1, 1, 1, 1, 1, \
982 1, 1, 1, 1, 1, 1, 1, 1, \
983 1, 1, 1, 1, 1, 1, 1, 1, \
984 1, 1, 1, 1}
985#else
1bb87f28 986#define LEAF_REGISTERS \
5c56efde 987{ 1, 1, 1, 1, 1, 1, 1, 0, \
1bb87f28
JW
988 0, 0, 0, 0, 0, 0, 1, 0, \
989 0, 0, 0, 0, 0, 0, 0, 0, \
990 1, 1, 1, 1, 1, 1, 0, 1, \
991 1, 1, 1, 1, 1, 1, 1, 1, \
992 1, 1, 1, 1, 1, 1, 1, 1, \
993 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 994 1, 1, 1, 1, 1, 1, 1, 1}
7a6cf439 995#endif
1bb87f28
JW
996
997extern char leaf_reg_remap[];
998#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1bb87f28 999
1bb87f28
JW
1000/* The class value for index registers, and the one for base regs. */
1001#define INDEX_REG_CLASS GENERAL_REGS
1002#define BASE_REG_CLASS GENERAL_REGS
1003
24b63396
JW
1004/* Local macro to handle the two v9 classes of FP regs. */
1005#ifdef SPARCV9
1006#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1007#else
1008#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS)
1009#endif
1010
1bb87f28
JW
1011/* Get reg_class from a letter such as appears in the machine description. */
1012
7a6cf439
DE
1013#ifdef SPARCV9
1014#define REG_CLASS_FROM_LETTER(C) \
24b63396
JW
1015 ((C) == 'f' ? FP_REGS \
1016 : (C) == 'e' ? EXTRA_FP_REGS \
1017 : (C) == 'c' ? FPCC_REGS \
1018 : NO_REGS)
7a6cf439 1019#else
24b63396
JW
1020/* Coerce v9's 'e' class to 'f', so we can use 'e' in the .md file for
1021 v8 and v9. */
1bb87f28 1022#define REG_CLASS_FROM_LETTER(C) \
24b63396 1023 ((C) == 'f' ? FP_REGS : (C) == 'e' ? FP_REGS : NO_REGS)
7a6cf439 1024#endif
1bb87f28
JW
1025
1026/* The letters I, J, K, L and M in a register constraint string
1027 can be used to stand for particular ranges of immediate operands.
1028 This macro defines what the ranges are.
1029 C is the letter, and VALUE is a constant value.
1030 Return 1 if VALUE is in the range specified by C.
1031
1032 For SPARC, `I' is used for the range of constants an insn
1033 can actually contain.
1034 `J' is used for the range which is just zero (since that is R0).
9ad2c692 1035 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
1036
1037#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
1038
1039#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1040 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
1041 : (C) == 'J' ? (VALUE) == 0 \
1042 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
1043 : 0)
1044
1045/* Similar, but for floating constants, and defining letters G and H.
1046 Here VALUE is the CONST_DOUBLE rtx itself. */
1047
1048#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
96f69de5 1049 ((C) == 'G' ? fp_zero_operand (VALUE) \
1bb87f28
JW
1050 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1051 : 0)
1052
1053/* Given an rtx X being reloaded into a reg required to be
1054 in class CLASS, return the class of reg to actually use.
1055 In general this is just CLASS; but on some machines
1056 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
1057/* We can't load constants into FP registers. We can't load any FP constant
1058 if an 'E' constraint fails to match it. */
1059#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1060 (CONSTANT_P (X) \
24b63396 1061 && (FP_REG_CLASS_P (CLASS) \
2b9a9aea
JW
1062 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1063 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
1064 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
1065 ? NO_REGS : (CLASS))
1bb87f28
JW
1066
1067/* Return the register class of a scratch register needed to load IN into
1068 a register of class CLASS in MODE.
1069
1070 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 1071 into a register.
1bb87f28 1072
ae51bd97
JW
1073 Also, we need a temporary when loading/storing a HImode/QImode value
1074 between memory and the FPU registers. This can happen when combine puts
1075 a paradoxical subreg in a float/fix conversion insn. */
1076
1077#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
24b63396
JW
1078 ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
1079 && (GET_CODE (IN) == MEM \
1080 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1081 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
ae51bd97
JW
1082
1083#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
24b63396
JW
1084 ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
1085 && (GET_CODE (IN) == MEM \
1086 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1087 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
1bb87f28 1088
b924cef0
JW
1089/* On SPARC it is not possible to directly move data between
1090 GENERAL_REGS and FP_REGS. */
24b63396
JW
1091#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1092 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
b924cef0 1093
55be783d
JW
1094/* Return the stack location to use for secondary memory needed reloads.
1095 We want to use the reserved location just below the frame pointer.
1096 However, we must ensure that there is a frame, so use assign_stack_local
1097 if the frame size is zero. */
fe1f7f24 1098#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
55be783d
JW
1099 (get_frame_size () == 0 \
1100 ? assign_stack_local (mode, GET_MODE_SIZE (mode), 0) \
1101 : gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
1102 GEN_INT (STARTING_FRAME_OFFSET))))
fe1f7f24 1103
7a6cf439
DE
1104/* Get_secondary_mem widens it's argument to BITS_PER_WORD which loses on v9
1105 because the movsi and movsf patterns don't handle r/f moves.
1106 For v8 we copy the default definition. */
1107#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1108 (TARGET_V9 \
1109 ? (GET_MODE_BITSIZE (mode) < 32 \
1110 ? mode_for_size (32, GET_MODE_CLASS (mode), 0) \
1111 : MODE) \
1112 : (GET_MODE_BITSIZE (mode) < BITS_PER_WORD \
1113 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0) \
1114 : MODE))
1115
1bb87f28
JW
1116/* Return the maximum number of consecutive registers
1117 needed to represent mode MODE in a register of class CLASS. */
1118/* On SPARC, this is the size of MODE in words. */
1119#define CLASS_MAX_NREGS(CLASS, MODE) \
24b63396 1120 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
7a6cf439 1121 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1bb87f28
JW
1122\f
1123/* Stack layout; function entry, exit and calling. */
1124
1125/* Define the number of register that can hold parameters.
7a6cf439
DE
1126 These two macros are used only in other macro definitions below.
1127 MODE is the mode of the argument.
1128 !v9: All args are passed in %o0-%o5.
1129 v9: Non-float args are passed in %o0-5 and float args are passed in
1130 %f0-%f15. */
1131#define NPARM_REGS(MODE) \
1132 (TARGET_V9 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 16 : 6) : 6)
1bb87f28
JW
1133
1134/* Define this if pushing a word on the stack
1135 makes the stack pointer a smaller address. */
1136#define STACK_GROWS_DOWNWARD
1137
1138/* Define this if the nominal address of the stack frame
1139 is at the high-address end of the local variables;
1140 that is, each additional local variable allocated
1141 goes at a more negative offset in the frame. */
1142#define FRAME_GROWS_DOWNWARD
1143
1144/* Offset within stack frame to start allocating local variables at.
1145 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1146 first local allocated. Otherwise, it is the offset to the BEGINNING
1147 of the first local allocated. */
7238ce3a
JW
1148/* This allows space for one TFmode floating point value. */
1149#define STARTING_FRAME_OFFSET \
7a6cf439
DE
1150 (TARGET_V9 ? (SPARC_STACK_BIAS - 16) \
1151 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1bb87f28
JW
1152
1153/* If we generate an insn to push BYTES bytes,
1154 this says how many the stack pointer really advances by.
1155 On SPARC, don't define this because there are no push insns. */
1156/* #define PUSH_ROUNDING(BYTES) */
1157
1158/* Offset of first parameter from the argument pointer register value.
7a6cf439
DE
1159 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1160 even if this function isn't going to use it.
1161 v9: This is 128 for the ins and locals, plus a reserved space of 8. */
1162#define FIRST_PARM_OFFSET(FNDECL) \
1163 (TARGET_V9 ? (SPARC_STACK_BIAS + 136) \
1164 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1bb87f28
JW
1165
1166/* When a parameter is passed in a register, stack space is still
1167 allocated for it. */
7a6cf439
DE
1168#ifndef SPARCV9
1169#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS (SImode) * UNITS_PER_WORD)
1170#endif
1bb87f28
JW
1171
1172/* Keep the stack pointer constant throughout the function.
b4ac57ab 1173 This is both an optimization and a necessity: longjmp
1bb87f28
JW
1174 doesn't behave itself when the stack pointer moves within
1175 the function! */
1176#define ACCUMULATE_OUTGOING_ARGS
1177
1178/* Value is the number of bytes of arguments automatically
1179 popped when returning from a subroutine call.
1180 FUNTYPE is the data type of the function (as a tree),
1181 or for a library call it is an identifier node for the subroutine name.
1182 SIZE is the number of bytes of arguments passed on the stack. */
1183
1184#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
1185
5b485d2c
JW
1186/* Some subroutine macros specific to this machine.
1187 When !TARGET_FPU, put float return values in the general registers,
1188 since we don't have any fp registers. */
1bb87f28 1189#define BASE_RETURN_VALUE_REG(MODE) \
7a6cf439
DE
1190 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
1191 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1bb87f28 1192#define BASE_OUTGOING_VALUE_REG(MODE) \
7a6cf439
DE
1193 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
1194 : TARGET_FRW ? 8 : 24) \
1195 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1196 : (TARGET_FRW ? 8 : 24)))
1197#define BASE_PASSING_ARG_REG(MODE) \
1198 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
1199 : (8))
1200#define BASE_INCOMING_ARG_REG(MODE) \
1201 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
1202 : TARGET_FRW ? 8 : 24) \
1203 : (TARGET_FRW ? 8 : 24))
1bb87f28 1204
92ea370b
TW
1205/* Define this macro if the target machine has "register windows". This
1206 C expression returns the register number as seen by the called function
1207 corresponding to register number OUT as seen by the calling function.
1208 Return OUT if register number OUT is not an outbound register. */
1209
1210#define INCOMING_REGNO(OUT) \
1211 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1212
1213/* Define this macro if the target machine has "register windows". This
1214 C expression returns the register number as seen by the calling function
1215 corresponding to register number IN as seen by the called function.
1216 Return IN if register number IN is not an inbound register. */
1217
1218#define OUTGOING_REGNO(IN) \
1219 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1220
1bb87f28
JW
1221/* Define how to find the value returned by a function.
1222 VALTYPE is the data type of the value (as a tree).
1223 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1224 otherwise, FUNC is 0. */
1225
1226/* On SPARC the value is found in the first "output" register. */
1227
1228#define FUNCTION_VALUE(VALTYPE, FUNC) \
1229 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1230
1231/* But the called function leaves it in the first "input" register. */
1232
1233#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1234 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
1235
1236/* Define how to find the value returned by a library function
1237 assuming the value has mode MODE. */
1238
1239#define LIBCALL_VALUE(MODE) \
1240 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
1241
1242/* 1 if N is a possible register number for a function value
1243 as seen by the caller.
1244 On SPARC, the first "output" reg is used for integer values,
1245 and the first floating point register is used for floating point values. */
1246
1247#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1248
34aaacec
JW
1249/* Define the size of space to allocate for the return value of an
1250 untyped_call. */
1251
1252#define APPLY_RESULT_SIZE 16
1253
1bb87f28 1254/* 1 if N is a possible register number for function argument passing.
7a6cf439 1255 On SPARC, these are the "output" registers. v9 also uses %f0-%f15. */
1bb87f28 1256
7a6cf439
DE
1257#define FUNCTION_ARG_REGNO_P(N) \
1258 (TARGET_V9 ? (((N) < 14 && (N) > 7) || (N) > 31 && (N) < 48) \
1259 : ((N) < 14 && (N) > 7))
1bb87f28
JW
1260\f
1261/* Define a data type for recording info about an argument list
1262 during the scan of that argument list. This data type should
1263 hold all necessary information about the function itself
1264 and about the args processed so far, enough to enable macros
1265 such as FUNCTION_ARG to determine where the next arg should go.
1266
7a6cf439 1267 On SPARC (!v9), this is a single integer, which is a number of words
1bb87f28
JW
1268 of arguments scanned so far (including the invisible argument,
1269 if any, which holds the structure-value-address).
7a6cf439
DE
1270 Thus 7 or more means all following args should go on the stack.
1271
1272 For v9, we record how many of each type has been passed. Different
1273 types get passed differently.
1274
1275 - Float args are passed in %f0-15, after which they go to the stack
1276 where floats and doubles are passed 8 byte aligned and long doubles
1277 are passed 16 byte aligned.
1278 - All aggregates are passed by reference. The callee copies
1279 the structure if necessary, except if stdarg/varargs and the struct
1280 matches the ellipse in which case the caller makes a copy.
1281 - Any non-float argument might be split between memory and reg %o5.
1282 ??? I don't think this can ever happen now that structs are no
1283 longer passed in regs.
1284
1285 For v9 return values:
1286
1287 - For all aggregates, the caller allocates space for the return value,
1288 and passes the pointer as an implicit first argument, which is
1289 allocated like all other arguments.
1290 - The unimp instruction stuff for structure returns is gone. */
1291
1292#ifdef SPARCV9
1293enum sparc_arg_class { SPARC_ARG_INT = 0, SPARC_ARG_FLOAT = 1 };
1294struct sparc_args {
1295 int arg_count[2]; /* must be int! (for __builtin_args_info) */
1296};
1297#define CUMULATIVE_ARGS struct sparc_args
1298
1299/* Return index into CUMULATIVE_ARGS. */
1300
1301#define GET_SPARC_ARG_CLASS(MODE) \
1302 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? SPARC_ARG_FLOAT : SPARC_ARG_INT)
1bb87f28 1303
7a6cf439
DE
1304/* Round a register number up to a proper boundary for an arg of mode MODE.
1305 This macro is only used in this file.
1306
1307 The "& (0x10000 - ...)" is used to round up to the next appropriate reg. */
1308
1309#define ROUND_REG(CUM, MODE) \
1310 (GET_MODE_CLASS (MODE) != MODE_FLOAT \
1311 ? (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1312 : ((CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1313 + GET_MODE_UNIT_SIZE (MODE) / 4 - 1) \
1314 & (0x10000 - GET_MODE_UNIT_SIZE (MODE) / 4))
1315
1316#define ROUND_ADVANCE(SIZE) \
1317 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1318
1319#else /* ! SPARCV9 */
1bb87f28
JW
1320#define CUMULATIVE_ARGS int
1321
7a6cf439
DE
1322#define ROUND_REG(CUM, MODE) (CUM)
1323
1bb87f28 1324#define ROUND_ADVANCE(SIZE) \
b1fc14e5 1325 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
7a6cf439 1326#endif /* ! SPARCV9 */
b1fc14e5 1327
1bb87f28
JW
1328/* Initialize a variable CUM of type CUMULATIVE_ARGS
1329 for a call to a function whose data type is FNTYPE.
1330 For a library call, FNTYPE is 0.
1331
1332 On SPARC, the offset always starts at 0: the first parm reg is always
1333 the same reg. */
1334
7a6cf439
DE
1335#ifdef SPARCV9
1336extern int sparc_arg_count,sparc_n_named_args;
1337#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
1338 do { \
1339 (CUM).arg_count[(int) SPARC_ARG_INT] = 0; \
1340 (CUM).arg_count[(int) SPARC_ARG_FLOAT] = 0; \
1341 sparc_arg_count = 0; \
1342 sparc_n_named_args = \
1343 ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE) \
1344 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) \
1345 + (TREE_CODE (TREE_TYPE (FNTYPE)) == RECORD_TYPE \
1346 || TREE_CODE (TREE_TYPE (FNTYPE)) == UNION_TYPE)) \
1347 /* Can't tell, treat 'em all as named. */ \
1348 : 10000); \
1349 } while (0)
1350#else
1bb87f28 1351#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
7a6cf439 1352#endif
1bb87f28
JW
1353
1354/* Update the data in CUM to advance over an argument
1355 of mode MODE and data type TYPE.
1356 (TYPE is null for libcalls where that information may not be available.) */
1357
7a6cf439
DE
1358#ifdef SPARCV9
1359#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1360 do { \
1361 (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] = \
1362 ROUND_REG ((CUM), (MODE)) \
1363 + (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1364 ? GET_MODE_SIZE (MODE) / 4 \
1365 : ROUND_ADVANCE ((MODE) == BLKmode \
1366 ? GET_MODE_SIZE (Pmode) \
1367 : GET_MODE_SIZE (MODE))); \
1368 sparc_arg_count++; \
1369 } while (0)
1370#else
1bb87f28 1371#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
1372 ((CUM) += ((MODE) != BLKmode \
1373 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1374 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
7a6cf439
DE
1375#endif
1376
1377/* Return boolean indicating arg of mode MODE will be passed in a reg.
1378 This macro is only used in this file. */
1379
1380#ifdef SPARCV9
1381#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1382 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE) \
1383 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1384 && ((TYPE)==0 || (MODE) != BLKmode))
1385#else
1386#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1387 ((CUM) < NPARM_REGS (SImode) \
1388 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1389 && ((TYPE)==0 || (MODE) != BLKmode \
1390 || (TYPE_ALIGN (TYPE) % PARM_BOUNDARY == 0)))
1391#endif
1bb87f28
JW
1392
1393/* Determine where to put an argument to a function.
1394 Value is zero to push the argument on the stack,
1395 or a hard register in which to store the argument.
1396
1397 MODE is the argument's machine mode.
1398 TYPE is the data type of the argument (as a tree).
1399 This is null for libcalls where that information may
1400 not be available.
1401 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1402 the preceding args and about the function being called.
1403 NAMED is nonzero if this argument is a named parameter
1404 (otherwise it is an extra parameter matching an ellipsis). */
1405
1406/* On SPARC the first six args are normally in registers
1407 and the rest are pushed. Any arg that starts within the first 6 words
7a6cf439
DE
1408 is at least partially passed in a register unless its data type forbids.
1409 For v9, the first 6 int args are passed in regs and the first N
1410 float args are passed in regs (where N is such that %f0-15 are filled).
1411 The rest are pushed. Any arg that starts within the first 6 words
1bb87f28
JW
1412 is at least partially passed in a register unless its data type forbids. */
1413
1414#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1415 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1416 ? gen_rtx (REG, (MODE), \
1417 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1418 : 0)
1bb87f28
JW
1419
1420/* Define where a function finds its arguments.
1421 This is different from FUNCTION_ARG because of register windows. */
1422
1423#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1424 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1425 ? gen_rtx (REG, (MODE), \
1426 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1427 : 0)
1bb87f28
JW
1428
1429/* For an arg passed partly in registers and partly in memory,
1430 this is the number of registers used.
1431 For args passed entirely in registers or entirely in memory, zero.
1432 Any arg that starts in the first 6 regs but won't entirely fit in them
7a6cf439
DE
1433 needs partial registers on the Sparc (!v9). On v9, there are no arguments
1434 that are passed partially in registers (??? complex values?). */
1bb87f28 1435
7a6cf439 1436#ifndef SPARCV9
1bb87f28 1437#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1438 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1439 && ((CUM) + ((MODE) == BLKmode \
1440 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1441 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS (SImode) > 0)\
1442 ? (NPARM_REGS (SImode) - (CUM)) \
1bb87f28 1443 : 0)
7a6cf439 1444#endif
1bb87f28 1445
d9ca49d5 1446/* The SPARC ABI stipulates passing struct arguments (of any size) and
7a6cf439 1447 (!v9) quad-precision floats by invisible reference.
87ac3809 1448 For Pascal, also pass arrays by reference. */
1bb87f28 1449#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5 1450 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
87ac3809
JW
1451 || TREE_CODE (TYPE) == UNION_TYPE \
1452 || TREE_CODE (TYPE) == ARRAY_TYPE)) \
7a6cf439
DE
1453 || (!TARGET_V9 && MODE == TFmode))
1454
1455/* A C expression that indicates when it is the called function's
1456 responsibility to make copies of arguments passed by reference.
1457 If the callee can determine that the argument won't be modified, it can
1458 avoid the copy. */
1459/* ??? We'd love to be able to use NAMED here. Unfortunately, it doesn't
1460 include the last named argument so we keep track of the args ourselves. */
1461
1462#ifdef SPARCV9
1463#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1464 (sparc_arg_count < sparc_n_named_args)
1465#endif
1466\f
1467/* Initialize data used by insn expanders. This is called from
1468 init_emit, once for each function, before code is generated.
1469 For v9, clear the temp slot used by float/int DImode conversions.
1470 ??? There is the 16 bytes at [%fp-16], however we'd like to delete this
1471 space at some point.
1472 ??? Use assign_stack_temp? */
1473
1474extern void sparc64_init_expanders ();
1475extern struct rtx_def *sparc64_fpconv_stack_temp ();
1476#ifdef SPARCV9
1477#define INIT_EXPANDERS sparc64_init_expanders ()
1478#endif
1bb87f28
JW
1479
1480/* Define the information needed to generate branch and scc insns. This is
1481 stored from the compare operation. Note that we can't use "rtx" here
1482 since it hasn't been defined! */
1483
1484extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1485
1486/* Define the function that build the compare insn for scc and bcc. */
1487
1488extern struct rtx_def *gen_compare_reg ();
7a6cf439
DE
1489
1490/* This function handles all v9 scc insns */
1491
1492extern int gen_v9_scc ();
1493
1494/* ??? This is a hack until conditional move support is complete. */
1495#define HAVE_conditional_move (TARGET_V9)
1bb87f28 1496\f
4b69d2a3
RS
1497/* Generate the special assembly code needed to tell the assembler whatever
1498 it might need to know about the return value of a function.
1499
1500 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1501 information to the assembler relating to peephole optimization (done in
1502 the assembler). */
1503
1504#define ASM_DECLARE_RESULT(FILE, RESULT) \
1505 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
1506
1bb87f28
JW
1507/* Output the label for a function definition. */
1508
4b69d2a3
RS
1509#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1510do { \
1511 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1512 ASM_OUTPUT_LABEL (FILE, NAME); \
1513} while (0)
1bb87f28 1514
1bb87f28
JW
1515/* This macro generates the assembly code for function entry.
1516 FILE is a stdio stream to output the code to.
1517 SIZE is an int: how many units of temporary storage to allocate.
1518 Refer to the array `regs_ever_live' to determine which registers
1519 to save; `regs_ever_live[I]' is nonzero if register number I
1520 is ever used in the function. This macro is responsible for
1521 knowing which registers should not be saved even if used. */
1522
1523/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
1524 of memory. If any fpu reg is used in the function, we allocate
1525 such a block here, at the bottom of the frame, just in case it's needed.
1526
1527 If this function is a leaf procedure, then we may choose not
1528 to do a "save" insn. The decision about whether or not
1529 to do this is made in regclass.c. */
1530
a061b9fa 1531extern int leaf_function;
1bb87f28 1532#define FUNCTION_PROLOGUE(FILE, SIZE) \
5c56efde 1533 (TARGET_FRW ? sparc_flat_output_function_prologue (FILE, SIZE) \
5b485d2c 1534 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
1535
1536/* Output assembler code to FILE to increment profiler label # LABELNO
1537 for profiling a function entry. */
1538
d2a8e680
RS
1539#define FUNCTION_PROFILER(FILE, LABELNO) \
1540 do { \
1541 fputs ("\tsethi %hi(", (FILE)); \
1542 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
7a6cf439
DE
1543 fputs ("),%o0\n", (FILE)); \
1544 if (TARGET_MEDANY) \
1545 fprintf (FILE, "\tadd %%o0,%s,%%o0\n", \
1546 MEDANY_BASE_REG); \
1547 fputs ("\tcall mcount\n\tadd %lo(", (FILE)); \
d2a8e680
RS
1548 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
1549 fputs ("),%o0,%o0\n", (FILE)); \
1550 } while (0)
1bb87f28
JW
1551
1552/* Output assembler code to FILE to initialize this source file's
1553 basic block profiling info, if that has not already been done. */
1554
1555#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
7a6cf439
DE
1556 do { \
1557 if (TARGET_MEDANY) \
1558 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tld [%s+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%s,%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
1559 MEDANY_BASE_REG, (LABELNO), MEDANY_BASE_REG, (LABELNO)); \
1560 else \
1561 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
1562 (LABELNO), (LABELNO)); \
1563 } while (0)
1bb87f28
JW
1564
1565/* Output assembler code to FILE to increment the entry-count for
1566 the BLOCKNO'th basic block in this source file. */
1567
1568#define BLOCK_PROFILER(FILE, BLOCKNO) \
7a6cf439
DE
1569{ \
1570 int blockn = (BLOCKNO); \
1571 if (TARGET_MEDANY) \
1572 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tor %%g1,%%lo(LPBX2+%d),%%g1\n\tld [%%g1+%s],%%g2\n\tadd %%g2,1,%%g2\n\tst %%g2,[%%g1+%s]\n", \
1573 4 * blockn, 4 * blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \
1574 else \
1575 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
1576\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
1577 4 * blockn, 4 * blockn, 4 * blockn); \
1bb87f28
JW
1578}
1579
1bb87f28
JW
1580/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1581 the stack pointer does not matter. The value is tested only in
1582 functions that have frame pointers.
1583 No definition is equivalent to always zero. */
1584
1585extern int current_function_calls_alloca;
1586extern int current_function_outgoing_args_size;
1587
1588#define EXIT_IGNORE_STACK \
1589 (get_frame_size () != 0 \
1590 || current_function_calls_alloca || current_function_outgoing_args_size)
1591
1592/* This macro generates the assembly code for function exit,
1593 on machines that need it. If FUNCTION_EPILOGUE is not defined
1594 then individual return instructions are generated for each
1595 return statement. Args are same as for FUNCTION_PROLOGUE.
1596
1597 The function epilogue should not depend on the current stack pointer!
1598 It should use the frame pointer only. This is mandatory because
1599 of alloca; we also take advantage of it to omit stack adjustments
1600 before returning. */
1601
1602/* This declaration is needed due to traditional/ANSI
1603 incompatibilities which cannot be #ifdefed away
1604 because they occur inside of macros. Sigh. */
1605extern union tree_node *current_function_decl;
1606
1607#define FUNCTION_EPILOGUE(FILE, SIZE) \
5c56efde 1608 (TARGET_FRW ? sparc_flat_output_function_epilogue (FILE, SIZE) \
5b485d2c 1609 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 1610
5b485d2c 1611#define DELAY_SLOTS_FOR_EPILOGUE \
5c56efde 1612 (TARGET_FRW ? sparc_flat_epilogue_delay_slots () : 1)
1bb87f28 1613#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5c56efde 1614 (TARGET_FRW ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
5b485d2c 1615 : eligible_for_epilogue_delay (trial, slots_filled))
6a4bb1fa 1616\f
1bb87f28
JW
1617/* Output assembler code for a block containing the constant parts
1618 of a trampoline, leaving space for the variable parts. */
1619
1620/* On the sparc, the trampoline contains five instructions:
6098b63e
RK
1621 sethi #TOP_OF_FUNCTION,%g1
1622 or #BOTTOM_OF_FUNCTION,%g1,%g1
1623 sethi #TOP_OF_STATIC,%g2
1624 jmp g1
1625 or #BOTTOM_OF_STATIC,%g2,%g2 */
1bb87f28
JW
1626#define TRAMPOLINE_TEMPLATE(FILE) \
1627{ \
1628 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1629 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1630 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
6098b63e 1631 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
1bb87f28
JW
1632 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1633}
1634
1635/* Length in units of the trampoline for entering a nested function. */
1636
1637#define TRAMPOLINE_SIZE 20
1638
1639/* Emit RTL insns to initialize the variable parts of a trampoline.
1640 FNADDR is an RTX for the address of the function's pure code.
7a6cf439 1641 CXT is an RTX for the static chain value for the function. */
1bb87f28 1642
7a6cf439
DE
1643void sparc_initialize_trampoline ();
1644void sparc64_initialize_trampoline ();
1645#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1646 do { \
1647 if (TARGET_V9) \
1648 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1649 else \
1650 sparc_initialize_trampoline (TRAMP, FNADDR, CXT); \
1651 } while (0)
6a4bb1fa 1652\f
9a1c7cd7
JW
1653/* Generate necessary RTL for __builtin_saveregs().
1654 ARGLIST is the argument list; see expr.c. */
1655extern struct rtx_def *sparc_builtin_saveregs ();
1656#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1657
1658/* Generate RTL to flush the register windows so as to make arbitrary frames
1659 available. */
1660#define SETUP_FRAME_ADDRESSES() \
1661 emit_insn (gen_flush_register_windows ())
1662
1663/* Given an rtx for the address of a frame,
1664 return an rtx for the address of the word in the frame
7a6cf439
DE
1665 that holds the dynamic chain--the previous frame's address.
1666 ??? -mflat support? */
953fe179 1667#define DYNAMIC_CHAIN_ADDRESS(frame) \
7a6cf439 1668 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 14 * UNITS_PER_WORD))
953fe179
JW
1669
1670/* The return address isn't on the stack, it is in a register, so we can't
1671 access it from the current frame pointer. We can access it from the
1672 previous frame pointer though by reading a value from the register window
1673 save area. */
1674#define RETURN_ADDR_IN_PREVIOUS_FRAME
1675
1676/* The current return address is in %i7. The return address of anything
1677 farther back is in the register window save area at [%fp+60]. */
1678/* ??? This ignores the fact that the actual return address is +8 for normal
1679 returns, and +12 for structure returns. */
1680#define RETURN_ADDR_RTX(count, frame) \
1681 ((count == -1) \
1682 ? gen_rtx (REG, Pmode, 31) \
1683 : copy_to_reg (gen_rtx (MEM, Pmode, \
7a6cf439 1684 memory_address (Pmode, plus_constant (frame, 15 * UNITS_PER_WORD)))))
1bb87f28
JW
1685\f
1686/* Addressing modes, and classification of registers for them. */
1687
1688/* #define HAVE_POST_INCREMENT */
1689/* #define HAVE_POST_DECREMENT */
1690
1691/* #define HAVE_PRE_DECREMENT */
1692/* #define HAVE_PRE_INCREMENT */
1693
1694/* Macros to check register numbers against specific register classes. */
1695
1696/* These assume that REGNO is a hard or pseudo reg number.
1697 They give nonzero only if REGNO is a hard reg of the suitable class
1698 or a pseudo reg currently allocated to a suitable hard reg.
1699 Since they use reg_renumber, they are safe only once reg_renumber
1700 has been allocated, which happens in local-alloc.c. */
1701
1702#define REGNO_OK_FOR_INDEX_P(REGNO) \
1703(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1704#define REGNO_OK_FOR_BASE_P(REGNO) \
1705(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1706#define REGNO_OK_FOR_FP_P(REGNO) \
7a6cf439
DE
1707 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? 64 : 32)) \
1708 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? 64 : 32)))
1709#define REGNO_OK_FOR_CCFP_P(REGNO) \
1710 (TARGET_V9 \
1711 && ((unsigned) (REGNO) - 96 < 4) || ((unsigned) reg_renumber[REGNO] - 96 < 4))
1bb87f28
JW
1712
1713/* Now macros that check whether X is a register and also,
1714 strictly, whether it is in a specified class.
1715
1716 These macros are specific to the SPARC, and may be used only
1717 in code for printing assembler insns and in conditions for
1718 define_optimization. */
1719
1720/* 1 if X is an fp register. */
1721
1722#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1723\f
1724/* Maximum number of registers that can appear in a valid memory address. */
1725
1726#define MAX_REGS_PER_ADDRESS 2
1727
7aca9b9c
JW
1728/* Recognize any constant value that is a valid address.
1729 When PIC, we do not accept an address that would require a scratch reg
1730 to load into a register. */
1bb87f28 1731
6eff269e
BK
1732#define CONSTANT_ADDRESS_P(X) \
1733 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
7aca9b9c
JW
1734 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1735 || (GET_CODE (X) == CONST \
1736 && ! (flag_pic && pic_address_needs_scratch (X))))
1737
1738/* Define this, so that when PIC, reload won't try to reload invalid
1739 addresses which require two reload registers. */
1740
1741#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
1bb87f28
JW
1742
1743/* Nonzero if the constant value X is a legitimate general operand.
1744 Anything can be made to work except floating point constants. */
1745
1746#define LEGITIMATE_CONSTANT_P(X) \
1747 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1748
1749/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1750 and check its validity for a certain class.
1751 We have two alternate definitions for each of them.
1752 The usual definition accepts all pseudo regs; the other rejects
1753 them unless they have been allocated suitable hard regs.
1754 The symbol REG_OK_STRICT causes the latter definition to be used.
1755
1756 Most source files want to accept pseudo regs in the hope that
1757 they will get allocated to the class that the insn wants them to be in.
1758 Source files for reload pass need to be strict.
1759 After reload, it makes no difference, since pseudo regs have
1760 been eliminated by then. */
1761
1762/* Optional extra constraints for this machine. Borrowed from romp.h.
1763
1764 For the SPARC, `Q' means that this is a memory operand but not a
1765 symbolic memory operand. Note that an unassigned pseudo register
1766 is such a memory operand. Needed because reload will generate
1767 these things in insns and then not re-recognize the insns, causing
1768 constrain_operands to fail.
1769
7a6cf439 1770 `S' handles constraints for calls. ??? So where is it? */
1bb87f28
JW
1771
1772#ifndef REG_OK_STRICT
1773
1774/* Nonzero if X is a hard reg that can be used as an index
1775 or if it is a pseudo reg. */
7a6cf439
DE
1776#define REG_OK_FOR_INDEX_P(X) \
1777 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
1bb87f28
JW
1778/* Nonzero if X is a hard reg that can be used as a base reg
1779 or if it is a pseudo reg. */
7a6cf439
DE
1780#define REG_OK_FOR_BASE_P(X) \
1781 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
1782
1783/* 'T', 'U' are for aligned memory loads which aren't needed for v9. */
1bb87f28
JW
1784
1785#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1786 ((C) == 'Q' \
1787 ? ((GET_CODE (OP) == MEM \
7a6cf439 1788 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
db5e449c
RS
1789 && ! symbolic_memory_operand (OP, VOIDmode)) \
1790 || (reload_in_progress && GET_CODE (OP) == REG \
1791 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
7a6cf439 1792 : ! TARGET_V9 && (C) == 'T' \
19858600 1793 ? (mem_aligned_8 (OP)) \
7a6cf439 1794 : ! TARGET_V9 && (C) == 'U' \
19858600 1795 ? (register_ok_for_ldd (OP)) \
db5e449c 1796 : 0)
19858600 1797
1bb87f28
JW
1798#else
1799
1800/* Nonzero if X is a hard reg that can be used as an index. */
1801#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1802/* Nonzero if X is a hard reg that can be used as a base reg. */
1803#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1804
1805#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1806 ((C) == 'Q' \
1807 ? (GET_CODE (OP) == REG \
1808 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1809 && reg_renumber[REGNO (OP)] < 0) \
1810 : GET_CODE (OP) == MEM) \
7a6cf439 1811 : ! TARGET_V9 && (C) == 'T' \
b165d471 1812 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
7a6cf439 1813 : ! TARGET_V9 && (C) == 'U' \
b165d471
JW
1814 ? (GET_CODE (OP) == REG \
1815 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1816 || reg_renumber[REGNO (OP)] > 0) \
1817 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
1818#endif
1819\f
1820/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1821 that is a valid memory address for an instruction.
1822 The MODE argument is the machine mode for the MEM expression
1823 that wants to use this address.
1824
1825 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1826 ordinarily. This changes a bit when generating PIC.
1827
1828 If you change this, execute "rm explow.o recog.o reload.o". */
1829
bec2e359
JW
1830#define RTX_OK_FOR_BASE_P(X) \
1831 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1832 || (GET_CODE (X) == SUBREG \
1833 && GET_CODE (SUBREG_REG (X)) == REG \
1834 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1835
1836#define RTX_OK_FOR_INDEX_P(X) \
1837 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1838 || (GET_CODE (X) == SUBREG \
1839 && GET_CODE (SUBREG_REG (X)) == REG \
1840 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1841
1842#define RTX_OK_FOR_OFFSET_P(X) \
1843 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1844
1bb87f28 1845#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1846{ if (RTX_OK_FOR_BASE_P (X)) \
1847 goto ADDR; \
1bb87f28
JW
1848 else if (GET_CODE (X) == PLUS) \
1849 { \
bec2e359
JW
1850 register rtx op0 = XEXP (X, 0); \
1851 register rtx op1 = XEXP (X, 1); \
1852 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1853 { \
bec2e359 1854 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1855 goto ADDR; \
1856 else if (flag_pic == 1 \
bec2e359
JW
1857 && GET_CODE (op1) != REG \
1858 && GET_CODE (op1) != LO_SUM \
7aca9b9c
JW
1859 && GET_CODE (op1) != MEM \
1860 && (GET_CODE (op1) != CONST_INT \
1861 || SMALL_INT (op1))) \
1bb87f28
JW
1862 goto ADDR; \
1863 } \
bec2e359 1864 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1865 { \
bec2e359
JW
1866 if (RTX_OK_FOR_INDEX_P (op1) \
1867 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1868 goto ADDR; \
1869 } \
bec2e359 1870 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1871 { \
bec2e359
JW
1872 if (RTX_OK_FOR_INDEX_P (op0) \
1873 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1874 goto ADDR; \
1875 } \
1876 } \
bec2e359
JW
1877 else if (GET_CODE (X) == LO_SUM) \
1878 { \
1879 register rtx op0 = XEXP (X, 0); \
1880 register rtx op1 = XEXP (X, 1); \
1881 if (RTX_OK_FOR_BASE_P (op0) \
2f0da906
JW
1882 && CONSTANT_P (op1) \
1883 /* We can't allow TFmode, because an offset \
1884 greater than or equal to the alignment (8) \
1885 may cause the LO_SUM to overflow. */ \
1886 && MODE != TFmode) \
bec2e359
JW
1887 goto ADDR; \
1888 } \
1bb87f28
JW
1889 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1890 goto ADDR; \
1891}
1892\f
1893/* Try machine-dependent ways of modifying an illegitimate address
1894 to be legitimate. If we find one, return the new, valid address.
1895 This macro is used in only one place: `memory_address' in explow.c.
1896
1897 OLDX is the address as it was before break_out_memory_refs was called.
1898 In some cases it is useful to look at this to decide what needs to be done.
1899
1900 MODE and WIN are passed so that this macro can use
1901 GO_IF_LEGITIMATE_ADDRESS.
1902
1903 It is always safe for this macro to do nothing. It exists to recognize
1904 opportunities to optimize the output. */
1905
1906/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1907extern struct rtx_def *legitimize_pic_address ();
1908#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1909{ rtx sparc_x = (X); \
1910 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1911 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1912 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1913 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1914 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1915 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1916 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1917 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1918 XEXP (X, 1)); \
1919 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1920 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1921 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1922 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1923 goto WIN; \
7aca9b9c 1924 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
1bb87f28
JW
1925 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1926 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1927 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1928 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1929 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1930 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1931 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1932 || GET_CODE (X) == LABEL_REF) \
1933 (X) = gen_rtx (LO_SUM, Pmode, \
1934 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1935 if (memory_address_p (MODE, X)) \
1936 goto WIN; }
1937
1938/* Go to LABEL if ADDR (a legitimate address expression)
1939 has an effect that depends on the machine mode it is used for.
1940 On the SPARC this is never true. */
1941
1942#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
7a6cf439
DE
1943
1944/* If we are referencing a function make the SYMBOL_REF special.
1945 In the Medium/Anywhere code model, %g4 points to the data segment so we
1946 must not add it to function addresses. */
1947
1948#define ENCODE_SECTION_INFO(DECL) \
1949 do { \
1950 if (TARGET_MEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
1951 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
1952 } while (0)
1bb87f28
JW
1953\f
1954/* Specify the machine mode that this machine uses
1955 for the index in the tablejump instruction. */
7a6cf439 1956#define CASE_VECTOR_MODE Pmode
1bb87f28
JW
1957
1958/* Define this if the tablejump instruction expects the table
1959 to contain offsets from the address of the table.
1960 Do not define this if the table should contain absolute addresses. */
1961/* #define CASE_VECTOR_PC_RELATIVE */
1962
1963/* Specify the tree operation to be used to convert reals to integers. */
1964#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1965
1966/* This is the kind of divide that is easiest to do in the general case. */
1967#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1968
1969/* Define this as 1 if `char' should by default be signed; else as 0. */
1970#define DEFAULT_SIGNED_CHAR 1
1971
1972/* Max number of bytes we can move from memory to memory
1973 in one reasonably fast instruction. */
2eef2ef1 1974#define MOVE_MAX 8
1bb87f28 1975
0fb5a69e 1976#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1977/* This is the value of the error code EDOM for this machine,
1978 used by the sqrt instruction. */
1979#define TARGET_EDOM 33
1980
1981/* This is how to refer to the variable errno. */
1982#define GEN_ERRNO_RTX \
1983 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1984#endif /* 0 */
24e2a2bf 1985
9a63901f
RK
1986/* Define if operations between registers always perform the operation
1987 on the full register even if a narrower mode is specified. */
1988#define WORD_REGISTER_OPERATIONS
1989
1990/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1991 will either zero-extend or sign-extend. The value of this macro should
1992 be the code that says which one of the two operations is implicitly
1993 done, NIL if none. */
1994#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1bb87f28
JW
1995
1996/* Nonzero if access to memory by bytes is slow and undesirable.
1997 For RISC chips, it means that access to memory by bytes is no
1998 better than access by words when possible, so grab a whole word
1999 and maybe make use of that. */
2000#define SLOW_BYTE_ACCESS 1
2001
2002/* We assume that the store-condition-codes instructions store 0 for false
2003 and some other value for true. This is the value stored for true. */
2004
2005#define STORE_FLAG_VALUE 1
2006
2007/* When a prototype says `char' or `short', really pass an `int'. */
2008#define PROMOTE_PROTOTYPES
2009
d969caf8
RK
2010/* Define this to be nonzero if shift instructions ignore all but the low-order
2011 few bits. */
2012#define SHIFT_COUNT_TRUNCATED 1
1bb87f28
JW
2013
2014/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2015 is done just by pretending it is already truncated. */
2016#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2017
2018/* Specify the machine mode that pointers have.
2019 After generation of rtl, the compiler makes no further distinction
2020 between pointers and any other objects of this machine mode. */
7a6cf439 2021#define Pmode (TARGET_PTR64 ? DImode : SImode)
1bb87f28 2022
b4ac57ab
RS
2023/* Generate calls to memcpy, memcmp and memset. */
2024#define TARGET_MEM_FUNCTIONS
2025
1bb87f28
JW
2026/* Add any extra modes needed to represent the condition code.
2027
2028 On the Sparc, we have a "no-overflow" mode which is used when an add or
2029 subtract insn is used to set the condition code. Different branches are
2030 used in this case for some operations.
2031
4d449554
JW
2032 We also have two modes to indicate that the relevant condition code is
2033 in the floating-point condition code register. One for comparisons which
2034 will generate an exception if the result is unordered (CCFPEmode) and
2035 one for comparisons which will never trap (CCFPmode). This really should
7a6cf439
DE
2036 be a separate register, but we don't want to go to 65 registers.
2037
2038 CCXmode and CCX_NOOVmode are only used by v9. */
2039
2040#define EXTRA_CC_MODES CCXmode, CC_NOOVmode, CCX_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
2041
2042/* Define the names for the modes specified above. */
7a6cf439
DE
2043
2044#define EXTRA_CC_NAMES "CCX", "CC_NOOV", "CCX_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
2045
2046/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
2047 return the mode to be used for the comparison. For floating-point,
2048 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
922bd191
JW
2049 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2050 processing is needed. */
679655e6 2051#define SELECT_CC_MODE(OP,X,Y) \
4d449554 2052 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
922bd191
JW
2053 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2054 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2055 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
7a6cf439
DE
2056 ? (TARGET_V9 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \
2057 : (TARGET_V9 && GET_MODE (X) == DImode ? CCXmode : CCmode)))
1bb87f28 2058
b331b745
RK
2059/* Return non-zero if SELECT_CC_MODE will never return MODE for a
2060 floating point inequality comparison. */
2061
2062#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
2063
1bb87f28
JW
2064/* A function address in a call instruction
2065 is a byte address (for indexing purposes)
2066 so give the MEM rtx a byte's mode. */
2067#define FUNCTION_MODE SImode
2068
2069/* Define this if addresses of constant functions
2070 shouldn't be put through pseudo regs where they can be cse'd.
2071 Desirable on machines where ordinary constants are expensive
2072 but a CALL with constant address is cheap. */
2073#define NO_FUNCTION_CSE
2074
2075/* alloca should avoid clobbering the old register save area. */
2076#define SETJMP_VIA_SAVE_AREA
2077
2078/* Define subroutines to call to handle multiply and divide.
2079 Use the subroutines that Sun's library provides.
2080 The `*' prevents an underscore from being prepended by the compiler. */
2081
2082#define DIVSI3_LIBCALL "*.div"
2083#define UDIVSI3_LIBCALL "*.udiv"
2084#define MODSI3_LIBCALL "*.rem"
2085#define UMODSI3_LIBCALL "*.urem"
2086/* .umul is a little faster than .mul. */
2087#define MULSI3_LIBCALL "*.umul"
2088
8248e2bc
JW
2089/* Define library calls for quad FP operations. These are all part of the
2090 SPARC ABI. */
b3f741ed
JW
2091#define ADDTF3_LIBCALL "_Q_add"
2092#define SUBTF3_LIBCALL "_Q_sub"
2093#define MULTF3_LIBCALL "_Q_mul"
2094#define DIVTF3_LIBCALL "_Q_div"
b3f741ed
JW
2095#define FLOATSITF2_LIBCALL "_Q_itoq"
2096#define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2097#define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2098#define EXTENDSFTF2_LIBCALL "_Q_stoq"
2099#define TRUNCTFSF2_LIBCALL "_Q_qtos"
2100#define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2101#define TRUNCTFDF2_LIBCALL "_Q_qtod"
2102#define EQTF2_LIBCALL "_Q_feq"
2103#define NETF2_LIBCALL "_Q_fne"
2104#define GTTF2_LIBCALL "_Q_fgt"
2105#define GETF2_LIBCALL "_Q_fge"
2106#define LTTF2_LIBCALL "_Q_flt"
2107#define LETF2_LIBCALL "_Q_fle"
8248e2bc 2108
78e9b5df
JW
2109/* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2110 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2111 and the compiler will notice and try to use the TFmode sqrt instruction
2112 for calls to the builtin function sqrt, but this fails. */
2113#define INIT_TARGET_OPTABS \
2114 do { \
2115 INIT_SUBTARGET_OPTABS; \
2116 if (TARGET_FPU) \
2117 sqrt_optab->handlers[(int) TFmode].libfunc = gen_rtx (SYMBOL_REF, Pmode, "_Q_sqrt"); \
2118 } while (0)
2119
2120/* This is meant to be redefined in the host dependent files */
2121#define INIT_SUBTARGET_OPTABS
2122
1bb87f28
JW
2123/* Compute the cost of computing a constant rtl expression RTX
2124 whose rtx-code is CODE. The body of this macro is a portion
2125 of a switch statement. If the code is computed here,
2126 return it with a return statement. Otherwise, break from the switch. */
2127
3bb22aee 2128#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 2129 case CONST_INT: \
1bb87f28 2130 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 2131 return 0; \
1bb87f28
JW
2132 case HIGH: \
2133 return 2; \
2134 case CONST: \
2135 case LABEL_REF: \
2136 case SYMBOL_REF: \
2137 return 4; \
2138 case CONST_DOUBLE: \
2139 if (GET_MODE (RTX) == DImode) \
2140 if ((XINT (RTX, 3) == 0 \
2141 && (unsigned) XINT (RTX, 2) < 0x1000) \
2142 || (XINT (RTX, 3) == -1 \
2143 && XINT (RTX, 2) < 0 \
2144 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 2145 return 0; \
1bb87f28
JW
2146 return 8;
2147
a0a74fda 2148/* Compute the cost of an address. For the sparc, all valid addresses are
7a6cf439
DE
2149 the same cost.
2150 ??? Is this true for v9? */
1bb87f28 2151
a0a74fda 2152#define ADDRESS_COST(RTX) 1
1bb87f28
JW
2153
2154/* Compute extra cost of moving data between one register class
7a6cf439
DE
2155 and another.
2156 ??? v9: We ignore FPCC_REGS on the assumption they'll never be seen. */
1bb87f28 2157#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
24b63396
JW
2158 (((FP_REG_CLASS_P (CLASS1) && (CLASS2) == GENERAL_REGS) \
2159 || ((CLASS1) == GENERAL_REGS && FP_REG_CLASS_P (CLASS2))) ? 6 : 2)
1bb87f28
JW
2160
2161/* Provide the costs of a rtl expression. This is in the body of a
2162 switch on CODE. The purpose for the cost of MULT is to encourage
2163 `synth_mult' to find a synthetic multiply when reasonable.
2164
2165 If we need more than 12 insns to do a multiply, then go out-of-line,
2166 since the call overhead will be < 10% of the cost of the multiply. */
2167
3bb22aee 2168#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 2169 case MULT: \
7a6cf439 2170 return (TARGET_V8 || TARGET_V9) ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
2171 case DIV: \
2172 case UDIV: \
2173 case MOD: \
2174 case UMOD: \
5b485d2c
JW
2175 return COSTS_N_INSNS (25); \
2176 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
2177 so that cse will favor the latter. */ \
2178 case FLOAT: \
5b485d2c 2179 case FIX: \
1bb87f28
JW
2180 return 19;
2181
bef8d8c7
JW
2182/* Adjust the cost of dependencies. */
2183#define ADJUST_COST(INSN,LINK,DEP,COST) \
2184 if (TARGET_SUPERSPARC) \
2185 (COST) = supersparc_adjust_cost (INSN, LINK, DEP, COST)
2186
1bb87f28
JW
2187/* Conditional branches with empty delay slots have a length of two. */
2188#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2189 if (GET_CODE (INSN) == CALL_INSN \
2190 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2191 LENGTH += 1;
2192\f
2193/* Control the assembler format that we output. */
2194
2195/* Output at beginning of assembler file. */
2196
2197#define ASM_FILE_START(file)
2198
2199/* Output to assembler file text saying following lines
2200 may contain character constants, extra white space, comments, etc. */
2201
2202#define ASM_APP_ON ""
2203
2204/* Output to assembler file text saying following lines
2205 no longer contain unusual constructs. */
2206
2207#define ASM_APP_OFF ""
2208
7a6cf439
DE
2209/* ??? Try to make the style consistent here (_OP?). */
2210
2211#define ASM_LONGLONG ".xword"
303d524a
JW
2212#define ASM_LONG ".word"
2213#define ASM_SHORT ".half"
2214#define ASM_BYTE_OP ".byte"
7a6cf439
DE
2215#define ASM_FLOAT ".single"
2216#define ASM_DOUBLE ".double"
2217#define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
303d524a 2218
1bb87f28
JW
2219/* Output before read-only data. */
2220
2221#define TEXT_SECTION_ASM_OP ".text"
2222
2223/* Output before writable data. */
2224
2225#define DATA_SECTION_ASM_OP ".data"
2226
2227/* How to refer to registers in assembler output.
2228 This sequence is indexed by compiler's hard-register-number (see above). */
2229
7a6cf439
DE
2230#ifdef SPARCV9
2231#define REGISTER_NAMES \
2232{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2233 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2234 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2235 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2236 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2237 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2238 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2239 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2240 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2241 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2242 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2243 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2244 "%fcc0", "%fcc1", "%fcc2", "%fcc3"}
2245#else
1bb87f28
JW
2246#define REGISTER_NAMES \
2247{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2248 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2249 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2250 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2251 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2252 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2253 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2254 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
7a6cf439 2255#endif
1bb87f28 2256
ea3fa5f7
JW
2257/* Define additional names for use in asm clobbers and asm declarations.
2258
2259 We define the fake Condition Code register as an alias for reg 0 (which
2260 is our `condition code' register), so that condition codes can easily
2261 be clobbered by an asm. No such register actually exists. Condition
2262 codes are partly stored in the PSR and partly in the FSR. */
2263
0eb9f40e 2264#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 2265
1bb87f28
JW
2266/* How to renumber registers for dbx and gdb. */
2267
2268#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2269
2270/* On Sun 4, this limit is 2048. We use 1500 to be safe,
2271 since the length can run past this up to a continuation point. */
2272#define DBX_CONTIN_LENGTH 1500
2273
2274/* This is how to output a note to DBX telling it the line number
2275 to which the following sequence of instructions corresponds.
2276
2277 This is needed for SunOS 4.0, and should not hurt for 3.2
2278 versions either. */
2279#define ASM_OUTPUT_SOURCE_LINE(file, line) \
2280 { static int sym_lineno = 1; \
2281 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2282 line, sym_lineno, sym_lineno); \
2283 sym_lineno += 1; }
2284
2285/* This is how to output the definition of a user-level label named NAME,
2286 such as the label on a static function or variable NAME. */
2287
2288#define ASM_OUTPUT_LABEL(FILE,NAME) \
2289 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2290
2291/* This is how to output a command to make the user-level label named NAME
2292 defined for reference from other files. */
2293
2294#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2295 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2296
2297/* This is how to output a reference to a user-level label named NAME.
2298 `assemble_name' uses this. */
2299
2300#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2301 fprintf (FILE, "_%s", NAME)
2302
d2a8e680 2303/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
2304 PREFIX is the class of label and NUM is the number within the class. */
2305
2306#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2307 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2308
d2a8e680
RS
2309/* This is how to output a reference to an internal numbered label where
2310 PREFIX is the class of label and NUM is the number within the class. */
2311/* FIXME: This should be used throughout gcc, and documented in the texinfo
2312 files. There is no reason you should have to allocate a buffer and
2313 `sprintf' to reference an internal label (as opposed to defining it). */
2314
2315#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
2316 fprintf (FILE, "%s%d", PREFIX, NUM)
2317
1bb87f28
JW
2318/* This is how to store into the string LABEL
2319 the symbol_ref name of an internal numbered label where
2320 PREFIX is the class of label and NUM is the number within the class.
2321 This is suitable for output with `assemble_name'. */
2322
2323#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2324 sprintf (LABEL, "*%s%d", PREFIX, NUM)
2325
2326/* This is how to output an assembler line defining a `double' constant. */
2327
2328#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2329 { \
2e7ac77c
JW
2330 long t[2]; \
2331 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2332 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2333 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
2334 }
2335
2336/* This is how to output an assembler line defining a `float' constant. */
2337
2338#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2339 { \
2e7ac77c
JW
2340 long t; \
2341 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2342 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
2343 } \
1bb87f28 2344
0cd02cbb
DE
2345/* This is how to output an assembler line defining a `long double'
2346 constant. */
2347
2348#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2349 { \
2350 long t[4]; \
2351 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2352 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2353 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
2354 }
2355
1bb87f28
JW
2356/* This is how to output an assembler line defining an `int' constant. */
2357
2358#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 2359( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
2360 output_addr_const (FILE, (VALUE)), \
2361 fprintf (FILE, "\n"))
2362
2363/* This is how to output an assembler line defining a DImode constant. */
2364#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2365 output_double_int (FILE, VALUE)
2366
2367/* Likewise for `char' and `short' constants. */
2368
2369#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 2370( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
2371 output_addr_const (FILE, (VALUE)), \
2372 fprintf (FILE, "\n"))
2373
2374#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 2375( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
2376 output_addr_const (FILE, (VALUE)), \
2377 fprintf (FILE, "\n"))
2378
2379/* This is how to output an assembler line for a numeric constant byte. */
2380
2381#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 2382 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
2383
2384/* This is how to output an element of a case-vector that is absolute. */
2385
2386#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
2387do { \
2388 char label[30]; \
2389 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
7a6cf439
DE
2390 if (Pmode == SImode) \
2391 fprintf (FILE, "\t.word\t"); \
2392 else if (TARGET_ENV32) \
2393 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2394 else \
2395 fprintf (FILE, "\t.xword\t"); \
4b69d2a3
RS
2396 assemble_name (FILE, label); \
2397 fprintf (FILE, "\n"); \
2398} while (0)
1bb87f28
JW
2399
2400/* This is how to output an element of a case-vector that is relative.
2401 (SPARC uses such vectors only when generating PIC.) */
2402
4b69d2a3
RS
2403#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2404do { \
2405 char label[30]; \
2406 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
7a6cf439
DE
2407 if (Pmode == SImode) \
2408 fprintf (FILE, "\t.word\t"); \
2409 else if (TARGET_ENV32) \
2410 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2411 else \
2412 fprintf (FILE, "\t.xword\t"); \
4b69d2a3
RS
2413 assemble_name (FILE, label); \
2414 fprintf (FILE, "-1b\n"); \
2415} while (0)
1bb87f28
JW
2416
2417/* This is how to output an assembler line
2418 that says to advance the location counter
2419 to a multiple of 2**LOG bytes. */
2420
2421#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2422 if ((LOG) != 0) \
2423 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2424
2425#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2426 fprintf (FILE, "\t.skip %u\n", (SIZE))
2427
2428/* This says how to output an assembler line
2429 to define a global common symbol. */
2430
2431#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
b277ceaf 2432( fputs ("\t.common ", (FILE)), \
1bb87f28 2433 assemble_name ((FILE), (NAME)), \
b277ceaf 2434 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
1bb87f28 2435
b277ceaf
JW
2436/* This says how to output an assembler line to define a local common
2437 symbol. */
1bb87f28 2438
b277ceaf
JW
2439#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2440( fputs ("\t.reserve ", (FILE)), \
2441 assemble_name ((FILE), (NAME)), \
2442 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2443 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1bb87f28
JW
2444
2445/* Store in OUTPUT a string (made with alloca) containing
2446 an assembler-name for a local static variable named NAME.
2447 LABELNO is an integer which is different for each call. */
2448
2449#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2450( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2451 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2452
c14f2655
RS
2453#define IDENT_ASM_OP ".ident"
2454
2455/* Output #ident as a .ident. */
2456
2457#define ASM_OUTPUT_IDENT(FILE, NAME) \
2458 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
2459
1bb87f28
JW
2460/* Define the parentheses used to group arithmetic operations
2461 in assembler code. */
2462
2463#define ASM_OPEN_PAREN "("
2464#define ASM_CLOSE_PAREN ")"
2465
2466/* Define results of standard character escape sequences. */
2467#define TARGET_BELL 007
2468#define TARGET_BS 010
2469#define TARGET_TAB 011
2470#define TARGET_NEWLINE 012
2471#define TARGET_VT 013
2472#define TARGET_FF 014
2473#define TARGET_CR 015
2474
2475#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 2476 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
2477
2478/* Print operand X (an rtx) in assembler syntax to file FILE.
2479 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2480 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2481
2482#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2483
2484/* Print a memory address as an operand to reference that memory location. */
2485
2486#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2487{ register rtx base, index = 0; \
2488 int offset = 0; \
2489 register rtx addr = ADDR; \
2490 if (GET_CODE (addr) == REG) \
2491 fputs (reg_names[REGNO (addr)], FILE); \
2492 else if (GET_CODE (addr) == PLUS) \
2493 { \
2494 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2495 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2496 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2497 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2498 else \
2499 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2500 fputs (reg_names[REGNO (base)], FILE); \
2501 if (index == 0) \
2502 fprintf (FILE, "%+d", offset); \
2503 else if (GET_CODE (index) == REG) \
2504 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2505 else if (GET_CODE (index) == SYMBOL_REF) \
2506 fputc ('+', FILE), output_addr_const (FILE, index); \
2507 else abort (); \
2508 } \
2509 else if (GET_CODE (addr) == MINUS \
2510 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2511 { \
2512 output_addr_const (FILE, XEXP (addr, 0)); \
2513 fputs ("-(", FILE); \
2514 output_addr_const (FILE, XEXP (addr, 1)); \
2515 fputs ("-.)", FILE); \
2516 } \
2517 else if (GET_CODE (addr) == LO_SUM) \
2518 { \
2519 output_operand (XEXP (addr, 0), 0); \
2520 fputs ("+%lo(", FILE); \
2521 output_address (XEXP (addr, 1)); \
2522 fputc (')', FILE); \
2523 } \
2524 else if (flag_pic && GET_CODE (addr) == CONST \
2525 && GET_CODE (XEXP (addr, 0)) == MINUS \
2526 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2527 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2528 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2529 { \
2530 addr = XEXP (addr, 0); \
2531 output_addr_const (FILE, XEXP (addr, 0)); \
2532 /* Group the args of the second CONST in parenthesis. */ \
2533 fputs ("-(", FILE); \
2534 /* Skip past the second CONST--it does nothing for us. */\
2535 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2536 /* Close the parenthesis. */ \
2537 fputc (')', FILE); \
2538 } \
2539 else \
2540 { \
2541 output_addr_const (FILE, addr); \
2542 } \
2543}
2544
2545/* Declare functions defined in sparc.c and used in templates. */
2546
2547extern char *singlemove_string ();
2548extern char *output_move_double ();
795068a4 2549extern char *output_move_quad ();
1bb87f28 2550extern char *output_fp_move_double ();
795068a4 2551extern char *output_fp_move_quad ();
1bb87f28
JW
2552extern char *output_block_move ();
2553extern char *output_scc_insn ();
2554extern char *output_cbranch ();
7a6cf439 2555extern char *output_v9branch ();
1bb87f28 2556extern char *output_return ();
1bb87f28
JW
2557
2558/* Defined in flags.h, but insn-emit.c does not include flags.h. */
2559
2560extern int flag_pic;
This page took 0.526489 seconds and 5 git commands to generate.