]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
entered into RCS
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
98ccf8fe 26/* Provide required defaults for linker -e and -d switches. */
1bb87f28 27
d6f04508 28#define LINK_SPEC \
197a1140 29 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
30
31/* Special flags to the Sun-4 assembler when using pipe for input. */
32
33#define ASM_SPEC " %{pipe:-} %{fpic:-k} %{fPIC:-k}"
34
885d8175 35/* Define macros to distinguish architectures. */
e9136699 36#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 37
b1fc14e5
RS
38/* Prevent error on `-sun4' and `-target sun4' options. */
39/* This used to translate -dalign to -malign, but that is no good
40 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 41
b1fc14e5 42#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 43
d9ca49d5
JW
44#if 0
45/* Sparc ABI says that long double is 4 words.
46 ??? This doesn't work yet. */
47#define LONG_DOUBLE_TYPE_SIZE 128
48#endif
49
1bb87f28
JW
50#define PTRDIFF_TYPE "int"
51#define SIZE_TYPE "int"
52#define WCHAR_TYPE "short unsigned int"
53#define WCHAR_TYPE_SIZE 16
54
98ccf8fe
RK
55/* Omit frame pointer at high optimization levels. */
56
1bb87f28
JW
57#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
58{ \
59 if (OPTIMIZE >= 2) \
60 { \
61 flag_omit_frame_pointer = 1; \
1bb87f28
JW
62 } \
63}
64
65/* These compiler options take an argument. We ignore -target for now. */
66
67#define WORD_SWITCH_TAKES_ARG(STR) \
b4b05f16
JW
68 (!strcmp (STR, "Tdata") || !strcmp (STR, "Ttext") \
69 || !strcmp (STR, "Tbss") || !strcmp (STR, "include") \
1bb87f28 70 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
b1fc14e5 71 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
1bb87f28
JW
72
73/* Names to predefine in the preprocessor for this target machine. */
74
75#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
76
77/* Print subsidiary information on the compiler version in use. */
78
79#define TARGET_VERSION fprintf (stderr, " (sparc)");
80
81/* Generate DBX debugging information. */
82
83#define DBX_DEBUGGING_INFO
84
85/* Run-time compilation parameters selecting different hardware subsets. */
86
87extern int target_flags;
88
89/* Nonzero if we should generate code to use the fpu. */
90#define TARGET_FPU (target_flags & 1)
91
92/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
93 use fast return insns, but lose some generality. */
94#define TARGET_EPILOGUE (target_flags & 2)
95
b1fc14e5
RS
96/* Nonzero means that reference doublewords as if they were guaranteed
97 to be aligned...if they aren't, too bad for the user!
eadf0fe6 98 Like -dalign in Sun cc. */
b1fc14e5
RS
99#define TARGET_HOPE_ALIGN (target_flags & 16)
100
0be8e859
JW
101/* Nonzero means make sure all doubles are on 8-byte boundaries.
102 This option results in a calling convention that is incompatible with
103 every other sparc compiler in the world, and thus should only ever be
104 used for experimenting. Also, varargs won't work with it, but it doesn't
105 seem worth trying to fix. */
b1fc14e5 106#define TARGET_FORCE_ALIGN (target_flags & 32)
1bb87f28 107
885d8175
JW
108/* Nonzero means that we should generate code for a v8 sparc. */
109#define TARGET_V8 (target_flags & 64)
110
111/* Nonzero means that we should generate code for a sparclite. */
112#define TARGET_SPARCLITE (target_flags & 128)
113
1bb87f28
JW
114/* Macro to define tables used to set the flags.
115 This is a list in braces of pairs in braces,
116 each pair being { "NAME", VALUE }
117 where VALUE is the bits to set or minus the bits to clear.
118 An empty string NAME is used to identify the default VALUE. */
119
120#define TARGET_SWITCHES \
121 { {"fpu", 1}, \
122 {"soft-float", -1}, \
123 {"epilogue", 2}, \
124 {"no-epilogue", -2}, \
b1fc14e5
RS
125 {"hope-align", 16}, \
126 {"force-align", 48}, \
885d8175
JW
127 {"v8", 64}, \
128 {"no-v8", -64}, \
129 {"sparclite", 128}, \
130 {"no-sparclite", -128}, \
b1fc14e5 131 { "", TARGET_DEFAULT}}
1bb87f28
JW
132
133#define TARGET_DEFAULT 3
134\f
135/* target machine storage layout */
136
137/* Define this if most significant bit is lowest numbered
138 in instructions that operate on numbered bit-fields. */
139#define BITS_BIG_ENDIAN 1
140
141/* Define this if most significant byte of a word is the lowest numbered. */
142/* This is true on the SPARC. */
143#define BYTES_BIG_ENDIAN 1
144
145/* Define this if most significant word of a multiword number is the lowest
146 numbered. */
147/* Doubles are stored in memory with the high order word first. This
148 matters when cross-compiling. */
149#define WORDS_BIG_ENDIAN 1
150
b4ac57ab 151/* number of bits in an addressable storage unit */
1bb87f28
JW
152#define BITS_PER_UNIT 8
153
154/* Width in bits of a "word", which is the contents of a machine register.
155 Note that this is not necessarily the width of data type `int';
156 if using 16-bit ints on a 68000, this would still be 32.
157 But on a machine with 16-bit registers, this would be 16. */
158#define BITS_PER_WORD 32
159#define MAX_BITS_PER_WORD 32
160
161/* Width of a word, in units (bytes). */
162#define UNITS_PER_WORD 4
163
164/* Width in bits of a pointer.
165 See also the macro `Pmode' defined below. */
166#define POINTER_SIZE 32
167
168/* Allocation boundary (in *bits*) for storing arguments in argument list. */
169#define PARM_BOUNDARY 32
170
171/* Boundary (in *bits*) on which stack pointer should be aligned. */
172#define STACK_BOUNDARY 64
173
10d1b70f
JW
174/* ALIGN FRAMES on double word boundaries */
175
176#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
177
1bb87f28
JW
178/* Allocation boundary (in *bits*) for the code of a function. */
179#define FUNCTION_BOUNDARY 32
180
181/* Alignment of field after `int : 0' in a structure. */
182#define EMPTY_FIELD_BOUNDARY 32
183
184/* Every structure's size must be a multiple of this. */
185#define STRUCTURE_SIZE_BOUNDARY 8
186
187/* A bitfield declared as `int' forces `int' alignment for the struct. */
188#define PCC_BITFIELD_TYPE_MATTERS 1
189
190/* No data type wants to be aligned rounder than this. */
191#define BIGGEST_ALIGNMENT 64
192
77a02b01
JW
193/* The best alignment to use in cases where we have a choice. */
194#define FASTEST_ALIGNMENT 64
195
1bb87f28
JW
196/* Make strings word-aligned so strcpy from constants will be faster. */
197#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
198 ((TREE_CODE (EXP) == STRING_CST \
199 && (ALIGN) < FASTEST_ALIGNMENT) \
200 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
201
202/* Make arrays of chars word-aligned for the same reasons. */
203#define DATA_ALIGNMENT(TYPE, ALIGN) \
204 (TREE_CODE (TYPE) == ARRAY_TYPE \
205 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 206 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 207
b4ac57ab 208/* Set this nonzero if move instructions will actually fail to work
1bb87f28 209 when given unaligned data. */
b4ac57ab 210#define STRICT_ALIGNMENT 1
1bb87f28
JW
211
212/* Things that must be doubleword aligned cannot go in the text section,
213 because the linker fails to align the text section enough!
214 Put them in the data section. */
215#define MAX_TEXT_ALIGN 32
216
217#define SELECT_SECTION(T,RELOC) \
218{ \
219 if (TREE_CODE (T) == VAR_DECL) \
220 { \
221 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
222 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
223 && ! (flag_pic && (RELOC))) \
224 text_section (); \
225 else \
226 data_section (); \
227 } \
228 else if (TREE_CODE (T) == CONSTRUCTOR) \
229 { \
230 if (flag_pic != 0 && (RELOC) != 0) \
231 data_section (); \
232 } \
233 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
234 { \
235 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
236 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
237 data_section (); \
238 else \
239 text_section (); \
240 } \
241}
242
243/* Use text section for a constant
244 unless we need more alignment than that offers. */
245#define SELECT_RTX_SECTION(MODE, X) \
246{ \
247 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
248 && ! (flag_pic && symbolic_operand (X))) \
249 text_section (); \
250 else \
251 data_section (); \
252}
253\f
254/* Standard register usage. */
255
256/* Number of actual hardware registers.
257 The hardware registers are assigned numbers for the compiler
258 from 0 to just below FIRST_PSEUDO_REGISTER.
259 All registers that the compiler knows about must be given numbers,
260 even those that are not normally considered general registers.
261
262 SPARC has 32 integer registers and 32 floating point registers. */
263
264#define FIRST_PSEUDO_REGISTER 64
265
266/* 1 for registers that have pervasive standard uses
267 and are not available for the register allocator.
268 0 is used for the condition code and not to represent %g0, which is
269 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
270 g1 through g4 are free to use as temporaries.
271 g5 through g7 are reserved for the operating system. */
1bb87f28 272#define FIXED_REGISTERS \
d9ca49d5 273 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
274 0, 0, 0, 0, 0, 0, 1, 0, \
275 0, 0, 0, 0, 0, 0, 0, 0, \
276 0, 0, 0, 0, 0, 0, 1, 1, \
277 \
278 0, 0, 0, 0, 0, 0, 0, 0, \
279 0, 0, 0, 0, 0, 0, 0, 0, \
280 0, 0, 0, 0, 0, 0, 0, 0, \
281 0, 0, 0, 0, 0, 0, 0, 0}
282
283/* 1 for registers not available across function calls.
284 These must include the FIXED_REGISTERS and also any
285 registers that can be used without being saved.
286 The latter must include the registers where values are returned
287 and the register where structure-value addresses are passed.
288 Aside from that, you can include as many other registers as you like. */
289#define CALL_USED_REGISTERS \
290 {1, 1, 1, 1, 1, 1, 1, 1, \
291 1, 1, 1, 1, 1, 1, 1, 1, \
292 0, 0, 0, 0, 0, 0, 0, 0, \
293 0, 0, 0, 0, 0, 0, 1, 1, \
294 \
295 1, 1, 1, 1, 1, 1, 1, 1, \
296 1, 1, 1, 1, 1, 1, 1, 1, \
297 1, 1, 1, 1, 1, 1, 1, 1, \
298 1, 1, 1, 1, 1, 1, 1, 1}
299
300/* Return number of consecutive hard regs needed starting at reg REGNO
301 to hold something of mode MODE.
302 This is ordinarily the length in words of a value of mode MODE
303 but can be less for certain modes in special long registers.
304
305 On SPARC, ordinary registers hold 32 bits worth;
306 this means both integer and floating point registers.
307
308 We use vectors to keep this information about registers. */
309
310/* How many hard registers it takes to make a register of this mode. */
311extern int hard_regno_nregs[];
312
313#define HARD_REGNO_NREGS(REGNO, MODE) \
314 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
315
316/* Value is 1 if register/mode pair is acceptable on sparc. */
317extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
318
319/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
320 On SPARC, the cpu registers can hold any mode but the float registers
321 can only hold SFmode or DFmode. See sparc.c for how we
322 initialize this. */
323#define HARD_REGNO_MODE_OK(REGNO, MODE) \
324 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
325
326/* Value is 1 if it is a good idea to tie two pseudo registers
327 when one has mode MODE1 and one has mode MODE2.
328 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
329 for any hard reg, then this must be 0 for correct output. */
330#define MODES_TIEABLE_P(MODE1, MODE2) \
331 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
332
333/* Specify the registers used for certain standard purposes.
334 The values of these macros are register numbers. */
335
336/* SPARC pc isn't overloaded on a register that the compiler knows about. */
337/* #define PC_REGNUM */
338
339/* Register to use for pushing function arguments. */
340#define STACK_POINTER_REGNUM 14
341
342/* Actual top-of-stack address is 92 greater than the contents
343 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
344 for the ins and local registers, 4 byte for structure return address, and
345 24 bytes for the 6 register parameters. */
346#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
347
348/* Base register for access to local variables of the function. */
349#define FRAME_POINTER_REGNUM 30
350
351#if 0
352/* Register that is used for the return address. */
353#define RETURN_ADDR_REGNUM 15
354#endif
355
356/* Value should be nonzero if functions must have frame pointers.
357 Zero means the frame pointer need not be set up (and parms
358 may be accessed via the stack pointer) in functions that seem suitable.
359 This is computed in `reload', in reload1.c.
360
361 Used in flow.c, global-alloc.c, and reload1.c. */
362extern int leaf_function;
363
364#define FRAME_POINTER_REQUIRED \
a72cb8ec 365 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
366
367/* C statement to store the difference between the frame pointer
368 and the stack pointer values immediately after the function prologue.
369
370 Note, we always pretend that this is a leaf function because if
371 it's not, there's no point in trying to eliminate the
372 frame pointer. If it is a leaf function, we guessed right! */
373#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
374 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
375
376/* Base register for access to arguments of the function. */
377#define ARG_POINTER_REGNUM 30
378
379/* Register in which static-chain is passed to a function. */
380/* ??? */
381#define STATIC_CHAIN_REGNUM 1
382
383/* Register which holds offset table for position-independent
384 data references. */
385
386#define PIC_OFFSET_TABLE_REGNUM 23
387
388#define INITIALIZE_PIC initialize_pic ()
389#define FINALIZE_PIC finalize_pic ()
390
d9ca49d5 391/* Sparc ABI says that quad-precision floats and all structures are returned
dafe6cf1
RS
392 in memory. We go along regarding floats, but for structures
393 we follow GCC's normal policy. Use -fpcc-struct-value
394 if you want to follow the ABI. */
d9ca49d5 395#define RETURN_IN_MEMORY(TYPE) \
dafe6cf1 396 (TYPE_MODE (TYPE) == TFmode)
d9ca49d5 397
1bb87f28
JW
398/* Functions which return large structures get the address
399 to place the wanted value at offset 64 from the frame.
400 Must reserve 64 bytes for the in and local registers. */
401/* Used only in other #defines in this file. */
402#define STRUCT_VALUE_OFFSET 64
403
404#define STRUCT_VALUE \
405 gen_rtx (MEM, Pmode, \
406 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
407 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
408#define STRUCT_VALUE_INCOMING \
409 gen_rtx (MEM, Pmode, \
410 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
411 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
412\f
413/* Define the classes of registers for register constraints in the
414 machine description. Also define ranges of constants.
415
416 One of the classes must always be named ALL_REGS and include all hard regs.
417 If there is more than one class, another class must be named NO_REGS
418 and contain no registers.
419
420 The name GENERAL_REGS must be the name of a class (or an alias for
421 another name such as ALL_REGS). This is the class of registers
422 that is allowed by "g" or "r" in a register constraint.
423 Also, registers outside this class are allocated only when
424 instructions express preferences for them.
425
426 The classes must be numbered in nondecreasing order; that is,
427 a larger-numbered class must never be contained completely
428 in a smaller-numbered class.
429
430 For any two classes, it is very desirable that there be another
431 class that represents their union. */
432
433/* The SPARC has two kinds of registers, general and floating point. */
434
435enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
436
437#define N_REG_CLASSES (int) LIM_REG_CLASSES
438
439/* Give names of register classes as strings for dump file. */
440
441#define REG_CLASS_NAMES \
442 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
443
444/* Define which registers fit in which classes.
445 This is an initializer for a vector of HARD_REG_SET
446 of length N_REG_CLASSES. */
447
448#if 0 && defined (__GNUC__)
449#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
450#else
451#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
452#endif
453
454/* The same information, inverted:
455 Return the class number of the smallest class containing
456 reg number REGNO. This could be a conditional expression
457 or could index an array. */
458
459#define REGNO_REG_CLASS(REGNO) \
460 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
461
462/* This is the order in which to allocate registers
463 normally. */
464#define REG_ALLOC_ORDER \
b4ac57ab
RS
465{ 8, 9, 10, 11, 12, 13, 2, 3, \
466 15, 16, 17, 18, 19, 20, 21, 22, \
467 23, 24, 25, 26, 27, 28, 29, 31, \
1bb87f28
JW
468 32, 33, 34, 35, 36, 37, 38, 39, \
469 40, 41, 42, 43, 44, 45, 46, 47, \
470 48, 49, 50, 51, 52, 53, 54, 55, \
471 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 472 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
473
474/* This is the order in which to allocate registers for
475 leaf functions. If all registers can fit in the "i" registers,
476 then we have the possibility of having a leaf function. */
477#define REG_LEAF_ALLOC_ORDER \
478{ 2, 3, 24, 25, 26, 27, 28, 29, \
479 15, 8, 9, 10, 11, 12, 13, \
480 16, 17, 18, 19, 20, 21, 22, 23, \
481 32, 33, 34, 35, 36, 37, 38, 39, \
482 40, 41, 42, 43, 44, 45, 46, 47, \
483 48, 49, 50, 51, 52, 53, 54, 55, \
484 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 485 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
486
487#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
488
489#define LEAF_REGISTERS \
490{ 1, 1, 1, 1, 1, 1, 1, 1, \
491 0, 0, 0, 0, 0, 0, 1, 0, \
492 0, 0, 0, 0, 0, 0, 0, 0, \
493 1, 1, 1, 1, 1, 1, 0, 1, \
494 1, 1, 1, 1, 1, 1, 1, 1, \
495 1, 1, 1, 1, 1, 1, 1, 1, \
496 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 497 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
498
499extern char leaf_reg_remap[];
500#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
501extern char leaf_reg_backmap[];
502#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
503
504#define REG_USED_SO_FAR(REGNO) \
505 ((REGNO) >= 24 && (REGNO) < 30 \
506 ? (regs_ever_live[24] \
507 || regs_ever_live[25] \
508 || regs_ever_live[26] \
509 || regs_ever_live[27] \
510 || regs_ever_live[28] \
511 || regs_ever_live[29]) : 0)
512
513/* The class value for index registers, and the one for base regs. */
514#define INDEX_REG_CLASS GENERAL_REGS
515#define BASE_REG_CLASS GENERAL_REGS
516
517/* Get reg_class from a letter such as appears in the machine description. */
518
519#define REG_CLASS_FROM_LETTER(C) \
520 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
521
522/* The letters I, J, K, L and M in a register constraint string
523 can be used to stand for particular ranges of immediate operands.
524 This macro defines what the ranges are.
525 C is the letter, and VALUE is a constant value.
526 Return 1 if VALUE is in the range specified by C.
527
528 For SPARC, `I' is used for the range of constants an insn
529 can actually contain.
530 `J' is used for the range which is just zero (since that is R0).
531 `K' is used for the 5-bit operand of a compare insns. */
532
533#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
534
535#define CONST_OK_FOR_LETTER_P(VALUE, C) \
536 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
537 : (C) == 'J' ? (VALUE) == 0 \
538 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
539 : 0)
540
541/* Similar, but for floating constants, and defining letters G and H.
542 Here VALUE is the CONST_DOUBLE rtx itself. */
543
544#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
545 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
546 && CONST_DOUBLE_LOW (VALUE) == 0 \
547 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
548 : 0)
549
550/* Given an rtx X being reloaded into a reg required to be
551 in class CLASS, return the class of reg to actually use.
552 In general this is just CLASS; but on some machines
553 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
554/* We can't load constants into FP registers. We can't load any FP constant
555 if an 'E' constraint fails to match it. */
556#define PREFERRED_RELOAD_CLASS(X,CLASS) \
557 (CONSTANT_P (X) \
558 && ((CLASS) == FP_REGS \
559 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
560 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
561 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
562 ? NO_REGS : (CLASS))
1bb87f28
JW
563
564/* Return the register class of a scratch register needed to load IN into
565 a register of class CLASS in MODE.
566
567 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 568 into a register.
1bb87f28 569
ae51bd97
JW
570 Also, we need a temporary when loading/storing a HImode/QImode value
571 between memory and the FPU registers. This can happen when combine puts
572 a paradoxical subreg in a float/fix conversion insn. */
573
574#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
575 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
576 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
577 && (GET_CODE (IN) == MEM \
578 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
579 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
580
581#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
582 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
583 && (GET_CODE (IN) == MEM \
584 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
585 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 586
b924cef0
JW
587/* On SPARC it is not possible to directly move data between
588 GENERAL_REGS and FP_REGS. */
589#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
590 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
591 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 592
1bb87f28
JW
593/* Return the maximum number of consecutive registers
594 needed to represent mode MODE in a register of class CLASS. */
595/* On SPARC, this is the size of MODE in words. */
596#define CLASS_MAX_NREGS(CLASS, MODE) \
597 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
598\f
599/* Stack layout; function entry, exit and calling. */
600
601/* Define the number of register that can hold parameters.
602 These two macros are used only in other macro definitions below. */
603#define NPARM_REGS 6
604
605/* Define this if pushing a word on the stack
606 makes the stack pointer a smaller address. */
607#define STACK_GROWS_DOWNWARD
608
609/* Define this if the nominal address of the stack frame
610 is at the high-address end of the local variables;
611 that is, each additional local variable allocated
612 goes at a more negative offset in the frame. */
613#define FRAME_GROWS_DOWNWARD
614
615/* Offset within stack frame to start allocating local variables at.
616 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
617 first local allocated. Otherwise, it is the offset to the BEGINNING
618 of the first local allocated. */
619#define STARTING_FRAME_OFFSET (-16)
620
621/* If we generate an insn to push BYTES bytes,
622 this says how many the stack pointer really advances by.
623 On SPARC, don't define this because there are no push insns. */
624/* #define PUSH_ROUNDING(BYTES) */
625
626/* Offset of first parameter from the argument pointer register value.
627 This is 64 for the ins and locals, plus 4 for the struct-return reg
0be8e859
JW
628 even if this function isn't going to use it.
629 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
630 stack remains aligned. */
631#define FIRST_PARM_OFFSET(FNDECL) \
632 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
1bb87f28
JW
633
634/* When a parameter is passed in a register, stack space is still
635 allocated for it. */
636#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
637
638/* Keep the stack pointer constant throughout the function.
b4ac57ab 639 This is both an optimization and a necessity: longjmp
1bb87f28
JW
640 doesn't behave itself when the stack pointer moves within
641 the function! */
642#define ACCUMULATE_OUTGOING_ARGS
643
644/* Value is the number of bytes of arguments automatically
645 popped when returning from a subroutine call.
646 FUNTYPE is the data type of the function (as a tree),
647 or for a library call it is an identifier node for the subroutine name.
648 SIZE is the number of bytes of arguments passed on the stack. */
649
650#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
651
652/* Some subroutine macros specific to this machine. */
653#define BASE_RETURN_VALUE_REG(MODE) \
654 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
655#define BASE_OUTGOING_VALUE_REG(MODE) \
656 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
657#define BASE_PASSING_ARG_REG(MODE) (8)
658#define BASE_INCOMING_ARG_REG(MODE) (24)
659
660/* Define how to find the value returned by a function.
661 VALTYPE is the data type of the value (as a tree).
662 If the precise function being called is known, FUNC is its FUNCTION_DECL;
663 otherwise, FUNC is 0. */
664
665/* On SPARC the value is found in the first "output" register. */
666
667#define FUNCTION_VALUE(VALTYPE, FUNC) \
668 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
669
670/* But the called function leaves it in the first "input" register. */
671
672#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
673 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
674
675/* Define how to find the value returned by a library function
676 assuming the value has mode MODE. */
677
678#define LIBCALL_VALUE(MODE) \
679 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
680
681/* 1 if N is a possible register number for a function value
682 as seen by the caller.
683 On SPARC, the first "output" reg is used for integer values,
684 and the first floating point register is used for floating point values. */
685
686#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
687
688/* 1 if N is a possible register number for function argument passing.
689 On SPARC, these are the "output" registers. */
690
691#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
692\f
693/* Define a data type for recording info about an argument list
694 during the scan of that argument list. This data type should
695 hold all necessary information about the function itself
696 and about the args processed so far, enough to enable macros
697 such as FUNCTION_ARG to determine where the next arg should go.
698
699 On SPARC, this is a single integer, which is a number of words
700 of arguments scanned so far (including the invisible argument,
701 if any, which holds the structure-value-address).
702 Thus 7 or more means all following args should go on the stack. */
703
704#define CUMULATIVE_ARGS int
705
706#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
707 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
708
709/* Round a register number up to a proper boundary for an arg of mode MODE.
710 Note that we need an odd/even pair for a two-word arg,
711 since that will become 8-byte aligned when stored in memory. */
712#define ROUND_REG(X, MODE) \
713 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
714 ? ((X) + ! ((X) & 1)) : (X))
1bb87f28
JW
715
716/* Initialize a variable CUM of type CUMULATIVE_ARGS
717 for a call to a function whose data type is FNTYPE.
718 For a library call, FNTYPE is 0.
719
720 On SPARC, the offset always starts at 0: the first parm reg is always
721 the same reg. */
722
723#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
724
725/* Update the data in CUM to advance over an argument
726 of mode MODE and data type TYPE.
727 (TYPE is null for libcalls where that information may not be available.) */
728
729#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b1fc14e5
RS
730 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
731 + ((MODE) != BLKmode \
732 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
733 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
1bb87f28
JW
734
735/* Determine where to put an argument to a function.
736 Value is zero to push the argument on the stack,
737 or a hard register in which to store the argument.
738
739 MODE is the argument's machine mode.
740 TYPE is the data type of the argument (as a tree).
741 This is null for libcalls where that information may
742 not be available.
743 CUM is a variable of type CUMULATIVE_ARGS which gives info about
744 the preceding args and about the function being called.
745 NAMED is nonzero if this argument is a named parameter
746 (otherwise it is an extra parameter matching an ellipsis). */
747
748/* On SPARC the first six args are normally in registers
749 and the rest are pushed. Any arg that starts within the first 6 words
750 is at least partially passed in a register unless its data type forbids. */
751
752#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 753(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 754 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
755 && ((TYPE)==0 || (MODE) != BLKmode \
756 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
757 ? gen_rtx (REG, (MODE), \
758 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
759 : 0)
1bb87f28
JW
760
761/* Define where a function finds its arguments.
762 This is different from FUNCTION_ARG because of register windows. */
763
764#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 765(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 766 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
767 && ((TYPE)==0 || (MODE) != BLKmode \
768 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
769 ? gen_rtx (REG, (MODE), \
770 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
771 : 0)
1bb87f28
JW
772
773/* For an arg passed partly in registers and partly in memory,
774 this is the number of registers used.
775 For args passed entirely in registers or entirely in memory, zero.
776 Any arg that starts in the first 6 regs but won't entirely fit in them
777 needs partial registers on the Sparc. */
778
779#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b1fc14e5 780 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 781 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
782 && ((TYPE)==0 || (MODE) != BLKmode \
783 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
784 && (ROUND_REG ((CUM), (MODE)) \
1bb87f28
JW
785 + ((MODE) == BLKmode \
786 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
b1fc14e5
RS
787 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
788 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
1bb87f28
JW
789 : 0)
790
d9ca49d5
JW
791/* The SPARC ABI stipulates passing struct arguments (of any size) and
792 quad-precision floats by invisible reference. */
1bb87f28 793#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
794 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
795 || TREE_CODE (TYPE) == UNION_TYPE)) \
796 || (MODE == TFmode))
1bb87f28 797
b1fc14e5
RS
798/* If defined, a C expression that gives the alignment boundary, in
799 bits, of an argument with the specified mode and type. If it is
800 not defined, `PARM_BOUNDARY' is used for all arguments.
801
802 This definition does nothing special unless TARGET_FORCE_ALIGN;
803 in that case, it aligns each arg to the natural boundary. */
804
805#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
806 (! TARGET_FORCE_ALIGN \
807 ? PARM_BOUNDARY \
808 : (((TYPE) != 0) \
809 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
810 ? PARM_BOUNDARY \
811 : TYPE_ALIGN (TYPE)) \
812 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
813 ? PARM_BOUNDARY \
814 : GET_MODE_ALIGNMENT (MODE))))
815
1bb87f28
JW
816/* Define the information needed to generate branch and scc insns. This is
817 stored from the compare operation. Note that we can't use "rtx" here
818 since it hasn't been defined! */
819
820extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
821
822/* Define the function that build the compare insn for scc and bcc. */
823
824extern struct rtx_def *gen_compare_reg ();
825\f
4b69d2a3
RS
826/* Generate the special assembly code needed to tell the assembler whatever
827 it might need to know about the return value of a function.
828
829 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
830 information to the assembler relating to peephole optimization (done in
831 the assembler). */
832
833#define ASM_DECLARE_RESULT(FILE, RESULT) \
834 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
835
1bb87f28
JW
836/* Output the label for a function definition. */
837
4b69d2a3
RS
838#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
839do { \
840 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
841 ASM_OUTPUT_LABEL (FILE, NAME); \
842} while (0)
1bb87f28
JW
843
844/* Two views of the size of the current frame. */
845extern int actual_fsize;
846extern int apparent_fsize;
847
848/* This macro generates the assembly code for function entry.
849 FILE is a stdio stream to output the code to.
850 SIZE is an int: how many units of temporary storage to allocate.
851 Refer to the array `regs_ever_live' to determine which registers
852 to save; `regs_ever_live[I]' is nonzero if register number I
853 is ever used in the function. This macro is responsible for
854 knowing which registers should not be saved even if used. */
855
856/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
857 of memory. If any fpu reg is used in the function, we allocate
858 such a block here, at the bottom of the frame, just in case it's needed.
859
860 If this function is a leaf procedure, then we may choose not
861 to do a "save" insn. The decision about whether or not
862 to do this is made in regclass.c. */
863
864#define FUNCTION_PROLOGUE(FILE, SIZE) \
865 output_function_prologue (FILE, SIZE, leaf_function)
866
867/* Output assembler code to FILE to increment profiler label # LABELNO
868 for profiling a function entry. */
869
d2a8e680
RS
870#define FUNCTION_PROFILER(FILE, LABELNO) \
871 do { \
872 fputs ("\tsethi %hi(", (FILE)); \
873 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
874 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
875 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
876 fputs ("),%o0,%o0\n", (FILE)); \
877 } while (0)
1bb87f28
JW
878
879/* Output assembler code to FILE to initialize this source file's
880 basic block profiling info, if that has not already been done. */
d2a8e680
RS
881/* FIXME -- this does not parameterize how it generates labels (like the
882 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
883
884#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
885 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
886 (LABELNO), (LABELNO))
887
888/* Output assembler code to FILE to increment the entry-count for
889 the BLOCKNO'th basic block in this source file. */
890
891#define BLOCK_PROFILER(FILE, BLOCKNO) \
892{ \
893 int blockn = (BLOCKNO); \
894 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
895\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
896 4 * blockn, 4 * blockn, 4 * blockn); \
897}
898
899/* Output rtl to increment the entry-count for the LABELNO'th instrumented
900 arc in this source file. */
901
902#define ARC_PROFILER(ARCNO, INSERT_AFTER) \
903 output_arc_profiler (ARCNO, INSERT_AFTER)
904
905/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
906 the stack pointer does not matter. The value is tested only in
907 functions that have frame pointers.
908 No definition is equivalent to always zero. */
909
910extern int current_function_calls_alloca;
911extern int current_function_outgoing_args_size;
912
913#define EXIT_IGNORE_STACK \
914 (get_frame_size () != 0 \
915 || current_function_calls_alloca || current_function_outgoing_args_size)
916
917/* This macro generates the assembly code for function exit,
918 on machines that need it. If FUNCTION_EPILOGUE is not defined
919 then individual return instructions are generated for each
920 return statement. Args are same as for FUNCTION_PROLOGUE.
921
922 The function epilogue should not depend on the current stack pointer!
923 It should use the frame pointer only. This is mandatory because
924 of alloca; we also take advantage of it to omit stack adjustments
925 before returning. */
926
927/* This declaration is needed due to traditional/ANSI
928 incompatibilities which cannot be #ifdefed away
929 because they occur inside of macros. Sigh. */
930extern union tree_node *current_function_decl;
931
932#define FUNCTION_EPILOGUE(FILE, SIZE) \
ef8200df 933 output_function_epilogue (FILE, SIZE, leaf_function)
1bb87f28
JW
934
935#define DELAY_SLOTS_FOR_EPILOGUE 1
936#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
937 eligible_for_epilogue_delay (trial, slots_filled)
938
939/* Output assembler code for a block containing the constant parts
940 of a trampoline, leaving space for the variable parts. */
941
942/* On the sparc, the trampoline contains five instructions:
943 sethi #TOP_OF_FUNCTION,%g2
944 or #BOTTOM_OF_FUNCTION,%g2,%g2
945 sethi #TOP_OF_STATIC,%g1
946 jmp g2
947 or #BOTTOM_OF_STATIC,%g1,%g1 */
948#define TRAMPOLINE_TEMPLATE(FILE) \
949{ \
950 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
951 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
952 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
953 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
954 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
955}
956
957/* Length in units of the trampoline for entering a nested function. */
958
959#define TRAMPOLINE_SIZE 20
960
961/* Emit RTL insns to initialize the variable parts of a trampoline.
962 FNADDR is an RTX for the address of the function's pure code.
963 CXT is an RTX for the static chain value for the function.
964
965 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
966 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
967 (to store insns). This is a bit excessive. Perhaps a different
968 mechanism would be better here. */
969
970#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
971{ \
972 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
973 size_int (10), 0, 1); \
974 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
975 size_int (10), 0, 1); \
976 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
977 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
978 rtx g1_sethi = gen_rtx (HIGH, SImode, \
979 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
980 rtx g2_sethi = gen_rtx (HIGH, SImode, \
981 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
982 rtx g1_ori = gen_rtx (HIGH, SImode, \
983 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
984 rtx g2_ori = gen_rtx (HIGH, SImode, \
985 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
986 rtx tem = gen_reg_rtx (SImode); \
987 emit_move_insn (tem, g2_sethi); \
988 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
989 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
990 emit_move_insn (tem, g2_ori); \
991 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
992 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
993 emit_move_insn (tem, g1_sethi); \
994 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
995 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
996 emit_move_insn (tem, g1_ori); \
997 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
998 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
999}
1000
1001/* Emit code for a call to builtin_saveregs. We must emit USE insns which
1002 reference the 6 input registers. Ordinarily they are not call used
1003 registers, but they are for _builtin_saveregs, so we must make this
1004 explicit. */
1005
1006#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
1007 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
1008 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
1009 expand_call (exp, target, ignore))
1010\f
1011/* Addressing modes, and classification of registers for them. */
1012
1013/* #define HAVE_POST_INCREMENT */
1014/* #define HAVE_POST_DECREMENT */
1015
1016/* #define HAVE_PRE_DECREMENT */
1017/* #define HAVE_PRE_INCREMENT */
1018
1019/* Macros to check register numbers against specific register classes. */
1020
1021/* These assume that REGNO is a hard or pseudo reg number.
1022 They give nonzero only if REGNO is a hard reg of the suitable class
1023 or a pseudo reg currently allocated to a suitable hard reg.
1024 Since they use reg_renumber, they are safe only once reg_renumber
1025 has been allocated, which happens in local-alloc.c. */
1026
1027#define REGNO_OK_FOR_INDEX_P(REGNO) \
1028(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1029#define REGNO_OK_FOR_BASE_P(REGNO) \
1030(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1031#define REGNO_OK_FOR_FP_P(REGNO) \
1032(((REGNO) ^ 0x20) < 32 \
1033 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1034
1035/* Now macros that check whether X is a register and also,
1036 strictly, whether it is in a specified class.
1037
1038 These macros are specific to the SPARC, and may be used only
1039 in code for printing assembler insns and in conditions for
1040 define_optimization. */
1041
1042/* 1 if X is an fp register. */
1043
1044#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1045\f
1046/* Maximum number of registers that can appear in a valid memory address. */
1047
1048#define MAX_REGS_PER_ADDRESS 2
1049
1050/* Recognize any constant value that is a valid address. */
1051
1052#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1053
1054/* Nonzero if the constant value X is a legitimate general operand.
1055 Anything can be made to work except floating point constants. */
1056
1057#define LEGITIMATE_CONSTANT_P(X) \
1058 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1059
1060/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1061 and check its validity for a certain class.
1062 We have two alternate definitions for each of them.
1063 The usual definition accepts all pseudo regs; the other rejects
1064 them unless they have been allocated suitable hard regs.
1065 The symbol REG_OK_STRICT causes the latter definition to be used.
1066
1067 Most source files want to accept pseudo regs in the hope that
1068 they will get allocated to the class that the insn wants them to be in.
1069 Source files for reload pass need to be strict.
1070 After reload, it makes no difference, since pseudo regs have
1071 been eliminated by then. */
1072
1073/* Optional extra constraints for this machine. Borrowed from romp.h.
1074
1075 For the SPARC, `Q' means that this is a memory operand but not a
1076 symbolic memory operand. Note that an unassigned pseudo register
1077 is such a memory operand. Needed because reload will generate
1078 these things in insns and then not re-recognize the insns, causing
1079 constrain_operands to fail.
1080
1081 `R' handles the LO_SUM which can be an address for `Q'.
1082
1083 `S' handles constraints for calls. */
1084
1085#ifndef REG_OK_STRICT
1086
1087/* Nonzero if X is a hard reg that can be used as an index
1088 or if it is a pseudo reg. */
1089#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1090/* Nonzero if X is a hard reg that can be used as a base reg
1091 or if it is a pseudo reg. */
1092#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1093
1094#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1095 ((C) == 'Q' \
1096 ? ((GET_CODE (OP) == MEM \
1097 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1098 && ! symbolic_memory_operand (OP, VOIDmode)) \
1099 || (reload_in_progress && GET_CODE (OP) == REG \
1100 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
1101 : (C) == 'R' \
1102 ? (GET_CODE (OP) == LO_SUM \
1103 && GET_CODE (XEXP (OP, 0)) == REG \
1104 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1105 : (C) == 'S' \
1106 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1107 : (C) == 'T' \
1108 ? (mem_aligned_8 (OP)) \
1109 : (C) == 'U' \
1110 ? (register_ok_for_ldd (OP)) \
db5e449c 1111 : 0)
19858600 1112
1bb87f28
JW
1113#else
1114
1115/* Nonzero if X is a hard reg that can be used as an index. */
1116#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1117/* Nonzero if X is a hard reg that can be used as a base reg. */
1118#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1119
1120#define EXTRA_CONSTRAINT(OP, C) \
1121 ((C) == 'Q' ? \
1122 (GET_CODE (OP) == REG ? \
1123 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1124 && reg_renumber[REGNO (OP)] < 0) \
1125 : GET_CODE (OP) == MEM) \
1126 : ((C) == 'R' ? \
1127 (GET_CODE (OP) == LO_SUM \
1128 && GET_CODE (XEXP (OP, 0)) == REG \
1129 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1130 : ((C) == 'S' \
1131 ? (CONSTANT_P (OP) \
1132 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
19858600
JL
1133 || strict_memory_address_p (Pmode, OP)) \
1134 : ((C) == 'T' ? \
1135 mem_aligned_8 (OP) && strict_memory_address_p (Pmode, OP) \
1136 : ((C) == 'U' ? \
1137 register_ok_for_ldd (OP) : 0)))))
1bb87f28
JW
1138#endif
1139\f
1140/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1141 that is a valid memory address for an instruction.
1142 The MODE argument is the machine mode for the MEM expression
1143 that wants to use this address.
1144
1145 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1146 ordinarily. This changes a bit when generating PIC.
1147
1148 If you change this, execute "rm explow.o recog.o reload.o". */
1149
bec2e359
JW
1150#define RTX_OK_FOR_BASE_P(X) \
1151 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1152 || (GET_CODE (X) == SUBREG \
1153 && GET_CODE (SUBREG_REG (X)) == REG \
1154 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1155
1156#define RTX_OK_FOR_INDEX_P(X) \
1157 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1158 || (GET_CODE (X) == SUBREG \
1159 && GET_CODE (SUBREG_REG (X)) == REG \
1160 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1161
1162#define RTX_OK_FOR_OFFSET_P(X) \
1163 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1164
1bb87f28 1165#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1166{ if (RTX_OK_FOR_BASE_P (X)) \
1167 goto ADDR; \
1bb87f28
JW
1168 else if (GET_CODE (X) == PLUS) \
1169 { \
bec2e359
JW
1170 register rtx op0 = XEXP (X, 0); \
1171 register rtx op1 = XEXP (X, 1); \
1172 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1173 { \
bec2e359 1174 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1175 goto ADDR; \
1176 else if (flag_pic == 1 \
bec2e359
JW
1177 && GET_CODE (op1) != REG \
1178 && GET_CODE (op1) != LO_SUM \
1179 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1180 goto ADDR; \
1181 } \
bec2e359 1182 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1183 { \
bec2e359
JW
1184 if (RTX_OK_FOR_INDEX_P (op1) \
1185 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1186 goto ADDR; \
1187 } \
bec2e359 1188 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1189 { \
bec2e359
JW
1190 if (RTX_OK_FOR_INDEX_P (op0) \
1191 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1192 goto ADDR; \
1193 } \
1194 } \
bec2e359
JW
1195 else if (GET_CODE (X) == LO_SUM) \
1196 { \
1197 register rtx op0 = XEXP (X, 0); \
1198 register rtx op1 = XEXP (X, 1); \
1199 if (RTX_OK_FOR_BASE_P (op0) \
1200 && CONSTANT_P (op1)) \
1201 goto ADDR; \
1202 } \
1bb87f28
JW
1203 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1204 goto ADDR; \
1205}
1206\f
1207/* Try machine-dependent ways of modifying an illegitimate address
1208 to be legitimate. If we find one, return the new, valid address.
1209 This macro is used in only one place: `memory_address' in explow.c.
1210
1211 OLDX is the address as it was before break_out_memory_refs was called.
1212 In some cases it is useful to look at this to decide what needs to be done.
1213
1214 MODE and WIN are passed so that this macro can use
1215 GO_IF_LEGITIMATE_ADDRESS.
1216
1217 It is always safe for this macro to do nothing. It exists to recognize
1218 opportunities to optimize the output. */
1219
1220/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1221extern struct rtx_def *legitimize_pic_address ();
1222#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1223{ rtx sparc_x = (X); \
1224 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1225 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1226 force_operand (XEXP (X, 0), 0)); \
1227 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1228 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1229 force_operand (XEXP (X, 1), 0)); \
1230 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1231 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1232 XEXP (X, 1)); \
1233 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1234 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1235 force_operand (XEXP (X, 1), 0)); \
1236 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1237 goto WIN; \
1238 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1239 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1240 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1241 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1242 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1243 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1244 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1245 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1246 || GET_CODE (X) == LABEL_REF) \
1247 (X) = gen_rtx (LO_SUM, Pmode, \
1248 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1249 if (memory_address_p (MODE, X)) \
1250 goto WIN; }
1251
1252/* Go to LABEL if ADDR (a legitimate address expression)
1253 has an effect that depends on the machine mode it is used for.
1254 On the SPARC this is never true. */
1255
1256#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1257\f
1258/* Specify the machine mode that this machine uses
1259 for the index in the tablejump instruction. */
1260#define CASE_VECTOR_MODE SImode
1261
1262/* Define this if the tablejump instruction expects the table
1263 to contain offsets from the address of the table.
1264 Do not define this if the table should contain absolute addresses. */
1265/* #define CASE_VECTOR_PC_RELATIVE */
1266
1267/* Specify the tree operation to be used to convert reals to integers. */
1268#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1269
1270/* This is the kind of divide that is easiest to do in the general case. */
1271#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1272
1273/* Define this as 1 if `char' should by default be signed; else as 0. */
1274#define DEFAULT_SIGNED_CHAR 1
1275
1276/* Max number of bytes we can move from memory to memory
1277 in one reasonably fast instruction. */
2eef2ef1 1278#define MOVE_MAX 8
1bb87f28 1279
24e2a2bf
RS
1280/* This is the value of the error code EDOM for this machine,
1281 used by the sqrt instruction. */
1282#define TARGET_EDOM 33
1283
1284/* This is how to refer to the variable errno. */
1285#define GEN_ERRNO_RTX \
1286 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
1287
1bb87f28
JW
1288/* Define if normal loads of shorter-than-word items from memory clears
1289 the rest of the bigs in the register. */
1290#define BYTE_LOADS_ZERO_EXTEND
1291
1292/* Nonzero if access to memory by bytes is slow and undesirable.
1293 For RISC chips, it means that access to memory by bytes is no
1294 better than access by words when possible, so grab a whole word
1295 and maybe make use of that. */
1296#define SLOW_BYTE_ACCESS 1
1297
1298/* We assume that the store-condition-codes instructions store 0 for false
1299 and some other value for true. This is the value stored for true. */
1300
1301#define STORE_FLAG_VALUE 1
1302
1303/* When a prototype says `char' or `short', really pass an `int'. */
1304#define PROMOTE_PROTOTYPES
1305
1306/* Define if shifts truncate the shift count
1307 which implies one can omit a sign-extension or zero-extension
1308 of a shift count. */
1309#define SHIFT_COUNT_TRUNCATED
1310
1311/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1312 is done just by pretending it is already truncated. */
1313#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1314
1315/* Specify the machine mode that pointers have.
1316 After generation of rtl, the compiler makes no further distinction
1317 between pointers and any other objects of this machine mode. */
1318#define Pmode SImode
1319
b4ac57ab
RS
1320/* Generate calls to memcpy, memcmp and memset. */
1321#define TARGET_MEM_FUNCTIONS
1322
1bb87f28
JW
1323/* Add any extra modes needed to represent the condition code.
1324
1325 On the Sparc, we have a "no-overflow" mode which is used when an add or
1326 subtract insn is used to set the condition code. Different branches are
1327 used in this case for some operations.
1328
4d449554
JW
1329 We also have two modes to indicate that the relevant condition code is
1330 in the floating-point condition code register. One for comparisons which
1331 will generate an exception if the result is unordered (CCFPEmode) and
1332 one for comparisons which will never trap (CCFPmode). This really should
1333 be a separate register, but we don't want to go to 65 registers. */
1334#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1335
1336/* Define the names for the modes specified above. */
4d449554 1337#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1338
1339/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1340 return the mode to be used for the comparison. For floating-point,
1341 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1342 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1343 needed. */
679655e6 1344#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1345 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1346 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1347 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1348 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1349
1350/* A function address in a call instruction
1351 is a byte address (for indexing purposes)
1352 so give the MEM rtx a byte's mode. */
1353#define FUNCTION_MODE SImode
1354
1355/* Define this if addresses of constant functions
1356 shouldn't be put through pseudo regs where they can be cse'd.
1357 Desirable on machines where ordinary constants are expensive
1358 but a CALL with constant address is cheap. */
1359#define NO_FUNCTION_CSE
1360
1361/* alloca should avoid clobbering the old register save area. */
1362#define SETJMP_VIA_SAVE_AREA
1363
1364/* Define subroutines to call to handle multiply and divide.
1365 Use the subroutines that Sun's library provides.
1366 The `*' prevents an underscore from being prepended by the compiler. */
1367
1368#define DIVSI3_LIBCALL "*.div"
1369#define UDIVSI3_LIBCALL "*.udiv"
1370#define MODSI3_LIBCALL "*.rem"
1371#define UMODSI3_LIBCALL "*.urem"
1372/* .umul is a little faster than .mul. */
1373#define MULSI3_LIBCALL "*.umul"
1374
1375/* Compute the cost of computing a constant rtl expression RTX
1376 whose rtx-code is CODE. The body of this macro is a portion
1377 of a switch statement. If the code is computed here,
1378 return it with a return statement. Otherwise, break from the switch. */
1379
3bb22aee 1380#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28
JW
1381 case CONST_INT: \
1382 if (INTVAL (RTX) == 0) \
1383 return 0; \
1384 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1385 return 1; \
1386 case HIGH: \
1387 return 2; \
1388 case CONST: \
1389 case LABEL_REF: \
1390 case SYMBOL_REF: \
1391 return 4; \
1392 case CONST_DOUBLE: \
1393 if (GET_MODE (RTX) == DImode) \
1394 if ((XINT (RTX, 3) == 0 \
1395 && (unsigned) XINT (RTX, 2) < 0x1000) \
1396 || (XINT (RTX, 3) == -1 \
1397 && XINT (RTX, 2) < 0 \
1398 && XINT (RTX, 2) >= -0x1000)) \
1399 return 1; \
1400 return 8;
1401
1402/* SPARC offers addressing modes which are "as cheap as a register".
1403 See sparc.c (or gcc.texinfo) for details. */
1404
1405#define ADDRESS_COST(RTX) \
1406 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1407
1408/* Compute extra cost of moving data between one register class
1409 and another. */
1410#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1411 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1412 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1413
1414/* Provide the costs of a rtl expression. This is in the body of a
1415 switch on CODE. The purpose for the cost of MULT is to encourage
1416 `synth_mult' to find a synthetic multiply when reasonable.
1417
1418 If we need more than 12 insns to do a multiply, then go out-of-line,
1419 since the call overhead will be < 10% of the cost of the multiply. */
1420
3bb22aee 1421#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1422 case MULT: \
1423 return COSTS_N_INSNS (25); \
1424 case DIV: \
1425 case UDIV: \
1426 case MOD: \
1427 case UMOD: \
1428 return COSTS_N_INSNS (20); \
1429 /* Make FLOAT more expensive than CONST_DOUBLE, \
1430 so that cse will favor the latter. */ \
1431 case FLOAT: \
1432 return 19;
1433
1434/* Conditional branches with empty delay slots have a length of two. */
1435#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1436 if (GET_CODE (INSN) == CALL_INSN \
1437 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1438 LENGTH += 1;
1439\f
1440/* Control the assembler format that we output. */
1441
1442/* Output at beginning of assembler file. */
1443
1444#define ASM_FILE_START(file)
1445
1446/* Output to assembler file text saying following lines
1447 may contain character constants, extra white space, comments, etc. */
1448
1449#define ASM_APP_ON ""
1450
1451/* Output to assembler file text saying following lines
1452 no longer contain unusual constructs. */
1453
1454#define ASM_APP_OFF ""
1455
303d524a
JW
1456#define ASM_LONG ".word"
1457#define ASM_SHORT ".half"
1458#define ASM_BYTE_OP ".byte"
1459
1bb87f28
JW
1460/* Output before read-only data. */
1461
1462#define TEXT_SECTION_ASM_OP ".text"
1463
1464/* Output before writable data. */
1465
1466#define DATA_SECTION_ASM_OP ".data"
1467
1468/* How to refer to registers in assembler output.
1469 This sequence is indexed by compiler's hard-register-number (see above). */
1470
1471#define REGISTER_NAMES \
1472{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1473 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1474 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1475 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1476 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1477 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1478 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1479 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1480
ea3fa5f7
JW
1481/* Define additional names for use in asm clobbers and asm declarations.
1482
1483 We define the fake Condition Code register as an alias for reg 0 (which
1484 is our `condition code' register), so that condition codes can easily
1485 be clobbered by an asm. No such register actually exists. Condition
1486 codes are partly stored in the PSR and partly in the FSR. */
1487
0eb9f40e 1488#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1489
1bb87f28
JW
1490/* How to renumber registers for dbx and gdb. */
1491
1492#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1493
1494/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1495 since the length can run past this up to a continuation point. */
1496#define DBX_CONTIN_LENGTH 1500
1497
1498/* This is how to output a note to DBX telling it the line number
1499 to which the following sequence of instructions corresponds.
1500
1501 This is needed for SunOS 4.0, and should not hurt for 3.2
1502 versions either. */
1503#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1504 { static int sym_lineno = 1; \
1505 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1506 line, sym_lineno, sym_lineno); \
1507 sym_lineno += 1; }
1508
1509/* This is how to output the definition of a user-level label named NAME,
1510 such as the label on a static function or variable NAME. */
1511
1512#define ASM_OUTPUT_LABEL(FILE,NAME) \
1513 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1514
1515/* This is how to output a command to make the user-level label named NAME
1516 defined for reference from other files. */
1517
1518#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1519 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1520
1521/* This is how to output a reference to a user-level label named NAME.
1522 `assemble_name' uses this. */
1523
1524#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1525 fprintf (FILE, "_%s", NAME)
1526
d2a8e680 1527/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1528 PREFIX is the class of label and NUM is the number within the class. */
1529
1530#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1531 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1532
d2a8e680
RS
1533/* This is how to output a reference to an internal numbered label where
1534 PREFIX is the class of label and NUM is the number within the class. */
1535/* FIXME: This should be used throughout gcc, and documented in the texinfo
1536 files. There is no reason you should have to allocate a buffer and
1537 `sprintf' to reference an internal label (as opposed to defining it). */
1538
1539#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1540 fprintf (FILE, "%s%d", PREFIX, NUM)
1541
1bb87f28
JW
1542/* This is how to store into the string LABEL
1543 the symbol_ref name of an internal numbered label where
1544 PREFIX is the class of label and NUM is the number within the class.
1545 This is suitable for output with `assemble_name'. */
1546
1547#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1548 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1549
1550/* This is how to output an assembler line defining a `double' constant. */
1551
b1fc14e5
RS
1552/* Assemblers (both gas 1.35 and as in 4.0.3)
1553 seem to treat -0.0 as if it were 0.0.
1554 They reject 99e9999, but accept inf. */
1bb87f28
JW
1555#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1556 { \
303d524a
JW
1557 if (REAL_VALUE_ISINF (VALUE) \
1558 || REAL_VALUE_ISNAN (VALUE) \
1559 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1560 { \
303d524a
JW
1561 long t[2]; \
1562 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1563 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1564 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1565 } \
1566 else \
1567 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1568 }
1569
1570/* This is how to output an assembler line defining a `float' constant. */
1571
1572#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1573 { \
303d524a
JW
1574 if (REAL_VALUE_ISINF (VALUE) \
1575 || REAL_VALUE_ISNAN (VALUE) \
1576 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1577 { \
303d524a
JW
1578 long t; \
1579 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1580 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1581 } \
1582 else \
1583 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1584 }
1585
1586/* This is how to output an assembler line defining an `int' constant. */
1587
1588#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1589( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1590 output_addr_const (FILE, (VALUE)), \
1591 fprintf (FILE, "\n"))
1592
1593/* This is how to output an assembler line defining a DImode constant. */
1594#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1595 output_double_int (FILE, VALUE)
1596
1597/* Likewise for `char' and `short' constants. */
1598
1599#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1600( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1601 output_addr_const (FILE, (VALUE)), \
1602 fprintf (FILE, "\n"))
1603
1604#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1605( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1606 output_addr_const (FILE, (VALUE)), \
1607 fprintf (FILE, "\n"))
1608
1609/* This is how to output an assembler line for a numeric constant byte. */
1610
1611#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1612 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1613
1614/* This is how to output an element of a case-vector that is absolute. */
1615
1616#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1617do { \
1618 char label[30]; \
1619 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1620 fprintf (FILE, "\t.word\t"); \
1621 assemble_name (FILE, label); \
1622 fprintf (FILE, "\n"); \
1623} while (0)
1bb87f28
JW
1624
1625/* This is how to output an element of a case-vector that is relative.
1626 (SPARC uses such vectors only when generating PIC.) */
1627
4b69d2a3
RS
1628#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1629do { \
1630 char label[30]; \
1631 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1632 fprintf (FILE, "\t.word\t"); \
1633 assemble_name (FILE, label); \
1634 fprintf (FILE, "-1b\n"); \
1635} while (0)
1bb87f28
JW
1636
1637/* This is how to output an assembler line
1638 that says to advance the location counter
1639 to a multiple of 2**LOG bytes. */
1640
1641#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1642 if ((LOG) != 0) \
1643 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1644
1645#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1646 fprintf (FILE, "\t.skip %u\n", (SIZE))
1647
1648/* This says how to output an assembler line
1649 to define a global common symbol. */
1650
1651#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1652( fputs ("\t.global ", (FILE)), \
1653 assemble_name ((FILE), (NAME)), \
1654 fputs ("\n\t.common ", (FILE)), \
1655 assemble_name ((FILE), (NAME)), \
1656 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1657
1658/* This says how to output an assembler line
1659 to define a local common symbol. */
1660
1661#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1662( fputs ("\n\t.reserve ", (FILE)), \
1663 assemble_name ((FILE), (NAME)), \
1664 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1665
1666/* Store in OUTPUT a string (made with alloca) containing
1667 an assembler-name for a local static variable named NAME.
1668 LABELNO is an integer which is different for each call. */
1669
1670#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1671( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1672 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1673
1674/* Define the parentheses used to group arithmetic operations
1675 in assembler code. */
1676
1677#define ASM_OPEN_PAREN "("
1678#define ASM_CLOSE_PAREN ")"
1679
1680/* Define results of standard character escape sequences. */
1681#define TARGET_BELL 007
1682#define TARGET_BS 010
1683#define TARGET_TAB 011
1684#define TARGET_NEWLINE 012
1685#define TARGET_VT 013
1686#define TARGET_FF 014
1687#define TARGET_CR 015
1688
1689#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
837e5fe9
JW
1690 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' \
1691 || (CHAR) == '(')
1bb87f28
JW
1692
1693/* Print operand X (an rtx) in assembler syntax to file FILE.
1694 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1695 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1696
1697#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1698
1699/* Print a memory address as an operand to reference that memory location. */
1700
1701#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1702{ register rtx base, index = 0; \
1703 int offset = 0; \
1704 register rtx addr = ADDR; \
1705 if (GET_CODE (addr) == REG) \
1706 fputs (reg_names[REGNO (addr)], FILE); \
1707 else if (GET_CODE (addr) == PLUS) \
1708 { \
1709 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1710 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1711 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1712 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1713 else \
1714 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1715 fputs (reg_names[REGNO (base)], FILE); \
1716 if (index == 0) \
1717 fprintf (FILE, "%+d", offset); \
1718 else if (GET_CODE (index) == REG) \
1719 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1720 else if (GET_CODE (index) == SYMBOL_REF) \
1721 fputc ('+', FILE), output_addr_const (FILE, index); \
1722 else abort (); \
1723 } \
1724 else if (GET_CODE (addr) == MINUS \
1725 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1726 { \
1727 output_addr_const (FILE, XEXP (addr, 0)); \
1728 fputs ("-(", FILE); \
1729 output_addr_const (FILE, XEXP (addr, 1)); \
1730 fputs ("-.)", FILE); \
1731 } \
1732 else if (GET_CODE (addr) == LO_SUM) \
1733 { \
1734 output_operand (XEXP (addr, 0), 0); \
1735 fputs ("+%lo(", FILE); \
1736 output_address (XEXP (addr, 1)); \
1737 fputc (')', FILE); \
1738 } \
1739 else if (flag_pic && GET_CODE (addr) == CONST \
1740 && GET_CODE (XEXP (addr, 0)) == MINUS \
1741 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1742 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1743 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1744 { \
1745 addr = XEXP (addr, 0); \
1746 output_addr_const (FILE, XEXP (addr, 0)); \
1747 /* Group the args of the second CONST in parenthesis. */ \
1748 fputs ("-(", FILE); \
1749 /* Skip past the second CONST--it does nothing for us. */\
1750 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1751 /* Close the parenthesis. */ \
1752 fputc (')', FILE); \
1753 } \
1754 else \
1755 { \
1756 output_addr_const (FILE, addr); \
1757 } \
1758}
1759
1760/* Declare functions defined in sparc.c and used in templates. */
1761
1762extern char *singlemove_string ();
1763extern char *output_move_double ();
795068a4 1764extern char *output_move_quad ();
1bb87f28 1765extern char *output_fp_move_double ();
795068a4 1766extern char *output_fp_move_quad ();
1bb87f28
JW
1767extern char *output_block_move ();
1768extern char *output_scc_insn ();
1769extern char *output_cbranch ();
1770extern char *output_return ();
1bb87f28
JW
1771
1772/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1773
1774extern int flag_pic;
This page took 0.249117 seconds and 5 git commands to generate.