]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(store_expr): Don't return TEMP if it's a MEM.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
9a1c7cd7 37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28
JW
44
45#define PTRDIFF_TYPE "int"
1ede52a6
RS
46/* In 2.4 it should work to delete this.
47 #define SIZE_TYPE "int" */
1bb87f28
JW
48#define WCHAR_TYPE "short unsigned int"
49#define WCHAR_TYPE_SIZE 16
50
98ccf8fe
RK
51/* Omit frame pointer at high optimization levels. */
52
1bb87f28
JW
53#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
54{ \
55 if (OPTIMIZE >= 2) \
56 { \
57 flag_omit_frame_pointer = 1; \
1bb87f28
JW
58 } \
59}
60
5b485d2c
JW
61/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
62 code into the rtl. Also, if we are profiling, we cannot eliminate
63 the frame pointer (because the return address will get smashed). */
64
65#define OVERRIDE_OPTIONS \
84ab3bfb
JW
66{ \
67 if (profile_flag || profile_block_flag) \
68 flag_omit_frame_pointer = 0, flag_pic = 0; \
69 SUBTARGET_OVERRIDE_OPTIONS \
70 }
71
72/* This is meant to be redefined in the host dependent files */
73#define SUBTARGET_OVERRIDE_OPTIONS
5b485d2c 74
1bb87f28
JW
75/* These compiler options take an argument. We ignore -target for now. */
76
77#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
78 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
79 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
80
81/* Names to predefine in the preprocessor for this target machine. */
82
f19c1a78
JW
83/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
84 new versions, which have an incompatible va-sparc.h file. This matters
85 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
86 wrong varargs file when it is compiled with a different version of gcc. */
87
88#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__"
1bb87f28
JW
89
90/* Print subsidiary information on the compiler version in use. */
91
92#define TARGET_VERSION fprintf (stderr, " (sparc)");
93
94/* Generate DBX debugging information. */
95
96#define DBX_DEBUGGING_INFO
97
98/* Run-time compilation parameters selecting different hardware subsets. */
99
100extern int target_flags;
101
102/* Nonzero if we should generate code to use the fpu. */
103#define TARGET_FPU (target_flags & 1)
104
105/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
106 use fast return insns, but lose some generality. */
107#define TARGET_EPILOGUE (target_flags & 2)
108
95dea81f
JW
109/* Nonzero if we should assume that double pointers might be unaligned.
110 This can happen when linking gcc compiled code with other compilers,
111 because the ABI only guarantees 4 byte alignment. */
112#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 113
885d8175
JW
114/* Nonzero means that we should generate code for a v8 sparc. */
115#define TARGET_V8 (target_flags & 64)
116
117/* Nonzero means that we should generate code for a sparclite. */
118#define TARGET_SPARCLITE (target_flags & 128)
119
5b485d2c 120/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
121 model, i.e. no save/restore instructions are generated, in the most
122 efficient manner. This code is not compatible with normal sparc code. */
123/* This is not a user selectable option yet, because it requires changes
124 that are not yet switchable via command line arguments. */
5b485d2c
JW
125#define TARGET_FRW (target_flags & 256)
126
9a1c7cd7
JW
127/* Nonzero means that we should generate code using a flat register window
128 model, i.e. no save/restore instructions are generated, but which is
129 compatible with normal sparc code. This is the same as above, except
130 that the frame pointer is %l6 instead of %fp. This code is not as efficient
131 as TARGET_FRW, because it has one less allocatable register. */
132/* This is not a user selectable option yet, because it requires changes
133 that are not yet switchable via command line arguments. */
134#define TARGET_FRW_COMPAT (target_flags & 512)
135
1bb87f28
JW
136/* Macro to define tables used to set the flags.
137 This is a list in braces of pairs in braces,
138 each pair being { "NAME", VALUE }
139 where VALUE is the bits to set or minus the bits to clear.
140 An empty string NAME is used to identify the default VALUE. */
141
142#define TARGET_SWITCHES \
143 { {"fpu", 1}, \
26c5587d
JW
144 {"no-fpu", -1}, \
145 {"hard-float", 1}, \
1bb87f28
JW
146 {"soft-float", -1}, \
147 {"epilogue", 2}, \
148 {"no-epilogue", -2}, \
95dea81f
JW
149 {"unaligned-doubles", 4}, \
150 {"no-unaligned-doubles", -4},\
885d8175
JW
151 {"v8", 64}, \
152 {"no-v8", -64}, \
153 {"sparclite", 128}, \
a66279da 154 {"sparclite", -1}, \
885d8175 155 {"no-sparclite", -128}, \
a66279da 156 {"no-sparclite", 1}, \
9a1c7cd7
JW
157/* {"frw", 256}, */ \
158/* {"no-frw", -256}, */ \
159/* {"frw-compat", 256+512}, */ \
160/* {"no-frw-compat", -(256+512)}, */ \
84ab3bfb 161 SUBTARGET_SWITCHES \
b1fc14e5 162 { "", TARGET_DEFAULT}}
1bb87f28
JW
163
164#define TARGET_DEFAULT 3
84ab3bfb
JW
165
166/* This is meant to be redefined in the host dependent files */
167#define SUBTARGET_SWITCHES
1bb87f28
JW
168\f
169/* target machine storage layout */
170
d667538b
JW
171#if 0
172/* ??? This fails because REAL_VALUE_TYPE is `double' making it impossible to
173 represent and output `long double' constants. This causes problems during
174 a bootstrap with enquire/float.h, and hence must be disabled for now.
175 To fix, we need to implement code for TFmode just like the existing XFmode
176 support in real.[ch]. */
177/* Define for support of TFmode long double and REAL_ARITHMETIC.
178 Sparc ABI says that long double is 4 words. */
179#define LONG_DOUBLE_TYPE_SIZE 128
180#endif
181
182/* Define for cross-compilation to a sparc target with no TFmode from a host
183 with a different float format (e.g. VAX). */
184#define REAL_ARITHMETIC
185
1bb87f28
JW
186/* Define this if most significant bit is lowest numbered
187 in instructions that operate on numbered bit-fields. */
188#define BITS_BIG_ENDIAN 1
189
190/* Define this if most significant byte of a word is the lowest numbered. */
191/* This is true on the SPARC. */
192#define BYTES_BIG_ENDIAN 1
193
194/* Define this if most significant word of a multiword number is the lowest
195 numbered. */
196/* Doubles are stored in memory with the high order word first. This
197 matters when cross-compiling. */
198#define WORDS_BIG_ENDIAN 1
199
b4ac57ab 200/* number of bits in an addressable storage unit */
1bb87f28
JW
201#define BITS_PER_UNIT 8
202
203/* Width in bits of a "word", which is the contents of a machine register.
204 Note that this is not necessarily the width of data type `int';
205 if using 16-bit ints on a 68000, this would still be 32.
206 But on a machine with 16-bit registers, this would be 16. */
207#define BITS_PER_WORD 32
208#define MAX_BITS_PER_WORD 32
209
210/* Width of a word, in units (bytes). */
211#define UNITS_PER_WORD 4
212
213/* Width in bits of a pointer.
214 See also the macro `Pmode' defined below. */
215#define POINTER_SIZE 32
216
217/* Allocation boundary (in *bits*) for storing arguments in argument list. */
218#define PARM_BOUNDARY 32
219
220/* Boundary (in *bits*) on which stack pointer should be aligned. */
221#define STACK_BOUNDARY 64
222
10d1b70f
JW
223/* ALIGN FRAMES on double word boundaries */
224
225#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
226
1bb87f28
JW
227/* Allocation boundary (in *bits*) for the code of a function. */
228#define FUNCTION_BOUNDARY 32
229
230/* Alignment of field after `int : 0' in a structure. */
231#define EMPTY_FIELD_BOUNDARY 32
232
233/* Every structure's size must be a multiple of this. */
234#define STRUCTURE_SIZE_BOUNDARY 8
235
236/* A bitfield declared as `int' forces `int' alignment for the struct. */
237#define PCC_BITFIELD_TYPE_MATTERS 1
238
239/* No data type wants to be aligned rounder than this. */
240#define BIGGEST_ALIGNMENT 64
241
77a02b01
JW
242/* The best alignment to use in cases where we have a choice. */
243#define FASTEST_ALIGNMENT 64
244
1bb87f28
JW
245/* Make strings word-aligned so strcpy from constants will be faster. */
246#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
247 ((TREE_CODE (EXP) == STRING_CST \
248 && (ALIGN) < FASTEST_ALIGNMENT) \
249 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
250
251/* Make arrays of chars word-aligned for the same reasons. */
252#define DATA_ALIGNMENT(TYPE, ALIGN) \
253 (TREE_CODE (TYPE) == ARRAY_TYPE \
254 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 255 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 256
b4ac57ab 257/* Set this nonzero if move instructions will actually fail to work
1bb87f28 258 when given unaligned data. */
b4ac57ab 259#define STRICT_ALIGNMENT 1
1bb87f28
JW
260
261/* Things that must be doubleword aligned cannot go in the text section,
262 because the linker fails to align the text section enough!
263 Put them in the data section. */
264#define MAX_TEXT_ALIGN 32
265
266#define SELECT_SECTION(T,RELOC) \
267{ \
268 if (TREE_CODE (T) == VAR_DECL) \
269 { \
270 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
271 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
272 && ! (flag_pic && (RELOC))) \
273 text_section (); \
274 else \
275 data_section (); \
276 } \
277 else if (TREE_CODE (T) == CONSTRUCTOR) \
278 { \
279 if (flag_pic != 0 && (RELOC) != 0) \
280 data_section (); \
281 } \
282 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
283 { \
284 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
285 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
286 data_section (); \
287 else \
288 text_section (); \
289 } \
290}
291
292/* Use text section for a constant
293 unless we need more alignment than that offers. */
294#define SELECT_RTX_SECTION(MODE, X) \
295{ \
296 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
297 && ! (flag_pic && symbolic_operand (X))) \
298 text_section (); \
299 else \
300 data_section (); \
301}
302\f
303/* Standard register usage. */
304
305/* Number of actual hardware registers.
306 The hardware registers are assigned numbers for the compiler
307 from 0 to just below FIRST_PSEUDO_REGISTER.
308 All registers that the compiler knows about must be given numbers,
309 even those that are not normally considered general registers.
310
311 SPARC has 32 integer registers and 32 floating point registers. */
312
313#define FIRST_PSEUDO_REGISTER 64
314
315/* 1 for registers that have pervasive standard uses
316 and are not available for the register allocator.
5b485d2c 317 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 318 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
319 g1 through g4 are free to use as temporaries.
320 g5 through g7 are reserved for the operating system. */
1bb87f28 321#define FIXED_REGISTERS \
d9ca49d5 322 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
323 0, 0, 0, 0, 0, 0, 1, 0, \
324 0, 0, 0, 0, 0, 0, 0, 0, \
325 0, 0, 0, 0, 0, 0, 1, 1, \
326 \
327 0, 0, 0, 0, 0, 0, 0, 0, \
328 0, 0, 0, 0, 0, 0, 0, 0, \
329 0, 0, 0, 0, 0, 0, 0, 0, \
330 0, 0, 0, 0, 0, 0, 0, 0}
331
332/* 1 for registers not available across function calls.
333 These must include the FIXED_REGISTERS and also any
334 registers that can be used without being saved.
335 The latter must include the registers where values are returned
336 and the register where structure-value addresses are passed.
337 Aside from that, you can include as many other registers as you like. */
338#define CALL_USED_REGISTERS \
339 {1, 1, 1, 1, 1, 1, 1, 1, \
340 1, 1, 1, 1, 1, 1, 1, 1, \
341 0, 0, 0, 0, 0, 0, 0, 0, \
342 0, 0, 0, 0, 0, 0, 1, 1, \
343 \
344 1, 1, 1, 1, 1, 1, 1, 1, \
345 1, 1, 1, 1, 1, 1, 1, 1, \
346 1, 1, 1, 1, 1, 1, 1, 1, \
347 1, 1, 1, 1, 1, 1, 1, 1}
348
26c5587d
JW
349/* If !TARGET_FPU, then make the fp registers fixed so that they won't
350 be allocated. */
351
352#define CONDITIONAL_REGISTER_USAGE \
353do \
354 { \
355 if (! TARGET_FPU) \
356 { \
357 int regno; \
358 for (regno = 32; regno < 64; regno++) \
359 fixed_regs[regno] = 1; \
360 } \
361 } \
362while (0)
363
1bb87f28
JW
364/* Return number of consecutive hard regs needed starting at reg REGNO
365 to hold something of mode MODE.
366 This is ordinarily the length in words of a value of mode MODE
367 but can be less for certain modes in special long registers.
368
369 On SPARC, ordinary registers hold 32 bits worth;
370 this means both integer and floating point registers.
371
372 We use vectors to keep this information about registers. */
373
374/* How many hard registers it takes to make a register of this mode. */
375extern int hard_regno_nregs[];
376
377#define HARD_REGNO_NREGS(REGNO, MODE) \
378 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
379
380/* Value is 1 if register/mode pair is acceptable on sparc. */
381extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
382
383/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
384 On SPARC, the cpu registers can hold any mode but the float registers
385 can only hold SFmode or DFmode. See sparc.c for how we
386 initialize this. */
387#define HARD_REGNO_MODE_OK(REGNO, MODE) \
388 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
389
390/* Value is 1 if it is a good idea to tie two pseudo registers
391 when one has mode MODE1 and one has mode MODE2.
392 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
393 for any hard reg, then this must be 0 for correct output. */
394#define MODES_TIEABLE_P(MODE1, MODE2) \
395 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
396
397/* Specify the registers used for certain standard purposes.
398 The values of these macros are register numbers. */
399
400/* SPARC pc isn't overloaded on a register that the compiler knows about. */
401/* #define PC_REGNUM */
402
403/* Register to use for pushing function arguments. */
404#define STACK_POINTER_REGNUM 14
405
406/* Actual top-of-stack address is 92 greater than the contents
407 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
408 for the ins and local registers, 4 byte for structure return address, and
409 24 bytes for the 6 register parameters. */
410#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
411
412/* Base register for access to local variables of the function. */
413#define FRAME_POINTER_REGNUM 30
414
415#if 0
416/* Register that is used for the return address. */
417#define RETURN_ADDR_REGNUM 15
418#endif
419
420/* Value should be nonzero if functions must have frame pointers.
421 Zero means the frame pointer need not be set up (and parms
422 may be accessed via the stack pointer) in functions that seem suitable.
423 This is computed in `reload', in reload1.c.
424
c0524a34 425 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
426extern int leaf_function;
427
428#define FRAME_POINTER_REQUIRED \
a72cb8ec 429 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
430
431/* C statement to store the difference between the frame pointer
432 and the stack pointer values immediately after the function prologue.
433
434 Note, we always pretend that this is a leaf function because if
435 it's not, there's no point in trying to eliminate the
436 frame pointer. If it is a leaf function, we guessed right! */
437#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
438 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
439 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
440
441/* Base register for access to arguments of the function. */
442#define ARG_POINTER_REGNUM 30
443
444/* Register in which static-chain is passed to a function. */
445/* ??? */
446#define STATIC_CHAIN_REGNUM 1
447
448/* Register which holds offset table for position-independent
449 data references. */
450
451#define PIC_OFFSET_TABLE_REGNUM 23
452
453#define INITIALIZE_PIC initialize_pic ()
454#define FINALIZE_PIC finalize_pic ()
455
d9ca49d5 456/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 457 in memory. */
d9ca49d5 458#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 459 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 460
1bb87f28
JW
461/* Functions which return large structures get the address
462 to place the wanted value at offset 64 from the frame.
463 Must reserve 64 bytes for the in and local registers. */
464/* Used only in other #defines in this file. */
465#define STRUCT_VALUE_OFFSET 64
466
467#define STRUCT_VALUE \
468 gen_rtx (MEM, Pmode, \
469 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
470 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
471#define STRUCT_VALUE_INCOMING \
472 gen_rtx (MEM, Pmode, \
473 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
474 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
475\f
476/* Define the classes of registers for register constraints in the
477 machine description. Also define ranges of constants.
478
479 One of the classes must always be named ALL_REGS and include all hard regs.
480 If there is more than one class, another class must be named NO_REGS
481 and contain no registers.
482
483 The name GENERAL_REGS must be the name of a class (or an alias for
484 another name such as ALL_REGS). This is the class of registers
485 that is allowed by "g" or "r" in a register constraint.
486 Also, registers outside this class are allocated only when
487 instructions express preferences for them.
488
489 The classes must be numbered in nondecreasing order; that is,
490 a larger-numbered class must never be contained completely
491 in a smaller-numbered class.
492
493 For any two classes, it is very desirable that there be another
494 class that represents their union. */
495
496/* The SPARC has two kinds of registers, general and floating point. */
497
498enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
499
500#define N_REG_CLASSES (int) LIM_REG_CLASSES
501
502/* Give names of register classes as strings for dump file. */
503
504#define REG_CLASS_NAMES \
505 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
506
507/* Define which registers fit in which classes.
508 This is an initializer for a vector of HARD_REG_SET
509 of length N_REG_CLASSES. */
510
511#if 0 && defined (__GNUC__)
512#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
513#else
514#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
515#endif
516
517/* The same information, inverted:
518 Return the class number of the smallest class containing
519 reg number REGNO. This could be a conditional expression
520 or could index an array. */
521
522#define REGNO_REG_CLASS(REGNO) \
523 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
524
525/* This is the order in which to allocate registers
51f0e748
JW
526 normally.
527
528 We put %f0/%f1 last among the float registers, so as to make it more
529 likely that a pseduo-register which dies in the float return register
530 will get allocated to the float return register, thus saving a move
531 instruction at the end of the function. */
1bb87f28 532#define REG_ALLOC_ORDER \
b4ac57ab
RS
533{ 8, 9, 10, 11, 12, 13, 2, 3, \
534 15, 16, 17, 18, 19, 20, 21, 22, \
535 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 536 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
537 40, 41, 42, 43, 44, 45, 46, 47, \
538 48, 49, 50, 51, 52, 53, 54, 55, \
539 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 540 32, 33, \
4b69d2a3 541 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
542
543/* This is the order in which to allocate registers for
544 leaf functions. If all registers can fit in the "i" registers,
545 then we have the possibility of having a leaf function. */
546#define REG_LEAF_ALLOC_ORDER \
547{ 2, 3, 24, 25, 26, 27, 28, 29, \
548 15, 8, 9, 10, 11, 12, 13, \
549 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 550 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
551 40, 41, 42, 43, 44, 45, 46, 47, \
552 48, 49, 50, 51, 52, 53, 54, 55, \
553 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 554 32, 33, \
4b69d2a3 555 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
556
557#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
558
559#define LEAF_REGISTERS \
560{ 1, 1, 1, 1, 1, 1, 1, 1, \
561 0, 0, 0, 0, 0, 0, 1, 0, \
562 0, 0, 0, 0, 0, 0, 0, 0, \
563 1, 1, 1, 1, 1, 1, 0, 1, \
564 1, 1, 1, 1, 1, 1, 1, 1, \
565 1, 1, 1, 1, 1, 1, 1, 1, \
566 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 567 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
568
569extern char leaf_reg_remap[];
570#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
571extern char leaf_reg_backmap[];
572#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
573
1bb87f28
JW
574/* The class value for index registers, and the one for base regs. */
575#define INDEX_REG_CLASS GENERAL_REGS
576#define BASE_REG_CLASS GENERAL_REGS
577
578/* Get reg_class from a letter such as appears in the machine description. */
579
580#define REG_CLASS_FROM_LETTER(C) \
581 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
582
583/* The letters I, J, K, L and M in a register constraint string
584 can be used to stand for particular ranges of immediate operands.
585 This macro defines what the ranges are.
586 C is the letter, and VALUE is a constant value.
587 Return 1 if VALUE is in the range specified by C.
588
589 For SPARC, `I' is used for the range of constants an insn
590 can actually contain.
591 `J' is used for the range which is just zero (since that is R0).
9ad2c692 592 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
593
594#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
595
596#define CONST_OK_FOR_LETTER_P(VALUE, C) \
597 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
598 : (C) == 'J' ? (VALUE) == 0 \
599 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
600 : 0)
601
602/* Similar, but for floating constants, and defining letters G and H.
603 Here VALUE is the CONST_DOUBLE rtx itself. */
604
605#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
96f69de5 606 ((C) == 'G' ? fp_zero_operand (VALUE) \
1bb87f28
JW
607 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
608 : 0)
609
610/* Given an rtx X being reloaded into a reg required to be
611 in class CLASS, return the class of reg to actually use.
612 In general this is just CLASS; but on some machines
613 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
614/* We can't load constants into FP registers. We can't load any FP constant
615 if an 'E' constraint fails to match it. */
616#define PREFERRED_RELOAD_CLASS(X,CLASS) \
617 (CONSTANT_P (X) \
618 && ((CLASS) == FP_REGS \
619 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
620 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
621 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
622 ? NO_REGS : (CLASS))
1bb87f28
JW
623
624/* Return the register class of a scratch register needed to load IN into
625 a register of class CLASS in MODE.
626
627 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 628 into a register.
1bb87f28 629
ae51bd97
JW
630 Also, we need a temporary when loading/storing a HImode/QImode value
631 between memory and the FPU registers. This can happen when combine puts
632 a paradoxical subreg in a float/fix conversion insn. */
633
634#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
635 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
636 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
637 && (GET_CODE (IN) == MEM \
638 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
639 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
640
641#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
642 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
643 && (GET_CODE (IN) == MEM \
644 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
645 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 646
b924cef0
JW
647/* On SPARC it is not possible to directly move data between
648 GENERAL_REGS and FP_REGS. */
649#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
650 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
651 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 652
fe1f7f24
JW
653/* Return the stack location to use for secondary memory needed reloads. */
654#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
15f67e06
JW
655 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
656 GEN_INT (STARTING_FRAME_OFFSET)))
fe1f7f24 657
1bb87f28
JW
658/* Return the maximum number of consecutive registers
659 needed to represent mode MODE in a register of class CLASS. */
660/* On SPARC, this is the size of MODE in words. */
661#define CLASS_MAX_NREGS(CLASS, MODE) \
662 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
663\f
664/* Stack layout; function entry, exit and calling. */
665
666/* Define the number of register that can hold parameters.
667 These two macros are used only in other macro definitions below. */
668#define NPARM_REGS 6
669
670/* Define this if pushing a word on the stack
671 makes the stack pointer a smaller address. */
672#define STACK_GROWS_DOWNWARD
673
674/* Define this if the nominal address of the stack frame
675 is at the high-address end of the local variables;
676 that is, each additional local variable allocated
677 goes at a more negative offset in the frame. */
678#define FRAME_GROWS_DOWNWARD
679
680/* Offset within stack frame to start allocating local variables at.
681 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
682 first local allocated. Otherwise, it is the offset to the BEGINNING
683 of the first local allocated. */
15f67e06
JW
684/* This is 16 to allow space for one TFmode floating point value. */
685#define STARTING_FRAME_OFFSET (-16)
1bb87f28
JW
686
687/* If we generate an insn to push BYTES bytes,
688 this says how many the stack pointer really advances by.
689 On SPARC, don't define this because there are no push insns. */
690/* #define PUSH_ROUNDING(BYTES) */
691
692/* Offset of first parameter from the argument pointer register value.
693 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
694 even if this function isn't going to use it. */
695#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
696
697/* When a parameter is passed in a register, stack space is still
698 allocated for it. */
699#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
700
701/* Keep the stack pointer constant throughout the function.
b4ac57ab 702 This is both an optimization and a necessity: longjmp
1bb87f28
JW
703 doesn't behave itself when the stack pointer moves within
704 the function! */
705#define ACCUMULATE_OUTGOING_ARGS
706
707/* Value is the number of bytes of arguments automatically
708 popped when returning from a subroutine call.
709 FUNTYPE is the data type of the function (as a tree),
710 or for a library call it is an identifier node for the subroutine name.
711 SIZE is the number of bytes of arguments passed on the stack. */
712
713#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
714
5b485d2c
JW
715/* Some subroutine macros specific to this machine.
716 When !TARGET_FPU, put float return values in the general registers,
717 since we don't have any fp registers. */
1bb87f28 718#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 719 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 720#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
721 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
722 : (TARGET_FRW ? 8 : 24))
1bb87f28 723#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 724#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 725
92ea370b
TW
726/* Define this macro if the target machine has "register windows". This
727 C expression returns the register number as seen by the called function
728 corresponding to register number OUT as seen by the calling function.
729 Return OUT if register number OUT is not an outbound register. */
730
731#define INCOMING_REGNO(OUT) \
732 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
733
734/* Define this macro if the target machine has "register windows". This
735 C expression returns the register number as seen by the calling function
736 corresponding to register number IN as seen by the called function.
737 Return IN if register number IN is not an inbound register. */
738
739#define OUTGOING_REGNO(IN) \
740 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
741
1bb87f28
JW
742/* Define how to find the value returned by a function.
743 VALTYPE is the data type of the value (as a tree).
744 If the precise function being called is known, FUNC is its FUNCTION_DECL;
745 otherwise, FUNC is 0. */
746
747/* On SPARC the value is found in the first "output" register. */
748
749#define FUNCTION_VALUE(VALTYPE, FUNC) \
750 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
751
752/* But the called function leaves it in the first "input" register. */
753
754#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
755 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
756
757/* Define how to find the value returned by a library function
758 assuming the value has mode MODE. */
759
760#define LIBCALL_VALUE(MODE) \
761 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
762
763/* 1 if N is a possible register number for a function value
764 as seen by the caller.
765 On SPARC, the first "output" reg is used for integer values,
766 and the first floating point register is used for floating point values. */
767
768#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
769
770/* 1 if N is a possible register number for function argument passing.
771 On SPARC, these are the "output" registers. */
772
773#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
774\f
775/* Define a data type for recording info about an argument list
776 during the scan of that argument list. This data type should
777 hold all necessary information about the function itself
778 and about the args processed so far, enough to enable macros
779 such as FUNCTION_ARG to determine where the next arg should go.
780
781 On SPARC, this is a single integer, which is a number of words
782 of arguments scanned so far (including the invisible argument,
783 if any, which holds the structure-value-address).
784 Thus 7 or more means all following args should go on the stack. */
785
786#define CUMULATIVE_ARGS int
787
788#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
789 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
790
1bb87f28
JW
791/* Initialize a variable CUM of type CUMULATIVE_ARGS
792 for a call to a function whose data type is FNTYPE.
793 For a library call, FNTYPE is 0.
794
795 On SPARC, the offset always starts at 0: the first parm reg is always
796 the same reg. */
797
798#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
799
800/* Update the data in CUM to advance over an argument
801 of mode MODE and data type TYPE.
802 (TYPE is null for libcalls where that information may not be available.) */
803
804#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
805 ((CUM) += ((MODE) != BLKmode \
806 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
807 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
808
809/* Determine where to put an argument to a function.
810 Value is zero to push the argument on the stack,
811 or a hard register in which to store the argument.
812
813 MODE is the argument's machine mode.
814 TYPE is the data type of the argument (as a tree).
815 This is null for libcalls where that information may
816 not be available.
817 CUM is a variable of type CUMULATIVE_ARGS which gives info about
818 the preceding args and about the function being called.
819 NAMED is nonzero if this argument is a named parameter
820 (otherwise it is an extra parameter matching an ellipsis). */
821
822/* On SPARC the first six args are normally in registers
823 and the rest are pushed. Any arg that starts within the first 6 words
824 is at least partially passed in a register unless its data type forbids. */
825
826#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 827((CUM) < NPARM_REGS \
1bb87f28 828 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
829 && ((TYPE)==0 || (MODE) != BLKmode \
830 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 831 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 832 : 0)
1bb87f28
JW
833
834/* Define where a function finds its arguments.
835 This is different from FUNCTION_ARG because of register windows. */
836
837#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 838((CUM) < NPARM_REGS \
1bb87f28 839 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
840 && ((TYPE)==0 || (MODE) != BLKmode \
841 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 842 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 843 : 0)
1bb87f28
JW
844
845/* For an arg passed partly in registers and partly in memory,
846 this is the number of registers used.
847 For args passed entirely in registers or entirely in memory, zero.
848 Any arg that starts in the first 6 regs but won't entirely fit in them
849 needs partial registers on the Sparc. */
850
851#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 852 ((CUM) < NPARM_REGS \
1bb87f28 853 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
854 && ((TYPE)==0 || (MODE) != BLKmode \
855 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
856 && ((CUM) + ((MODE) == BLKmode \
857 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
858 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
859 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
860 : 0)
861
d9ca49d5
JW
862/* The SPARC ABI stipulates passing struct arguments (of any size) and
863 quad-precision floats by invisible reference. */
1bb87f28 864#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
865 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
866 || TREE_CODE (TYPE) == UNION_TYPE)) \
867 || (MODE == TFmode))
1bb87f28
JW
868
869/* Define the information needed to generate branch and scc insns. This is
870 stored from the compare operation. Note that we can't use "rtx" here
871 since it hasn't been defined! */
872
873extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
874
875/* Define the function that build the compare insn for scc and bcc. */
876
877extern struct rtx_def *gen_compare_reg ();
878\f
4b69d2a3
RS
879/* Generate the special assembly code needed to tell the assembler whatever
880 it might need to know about the return value of a function.
881
882 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
883 information to the assembler relating to peephole optimization (done in
884 the assembler). */
885
886#define ASM_DECLARE_RESULT(FILE, RESULT) \
887 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
888
1bb87f28
JW
889/* Output the label for a function definition. */
890
4b69d2a3
RS
891#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
892do { \
893 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
894 ASM_OUTPUT_LABEL (FILE, NAME); \
895} while (0)
1bb87f28
JW
896
897/* Two views of the size of the current frame. */
898extern int actual_fsize;
899extern int apparent_fsize;
900
901/* This macro generates the assembly code for function entry.
902 FILE is a stdio stream to output the code to.
903 SIZE is an int: how many units of temporary storage to allocate.
904 Refer to the array `regs_ever_live' to determine which registers
905 to save; `regs_ever_live[I]' is nonzero if register number I
906 is ever used in the function. This macro is responsible for
907 knowing which registers should not be saved even if used. */
908
909/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
910 of memory. If any fpu reg is used in the function, we allocate
911 such a block here, at the bottom of the frame, just in case it's needed.
912
913 If this function is a leaf procedure, then we may choose not
914 to do a "save" insn. The decision about whether or not
915 to do this is made in regclass.c. */
916
917#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
918 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
919 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
920
921/* Output assembler code to FILE to increment profiler label # LABELNO
922 for profiling a function entry. */
923
d2a8e680
RS
924#define FUNCTION_PROFILER(FILE, LABELNO) \
925 do { \
926 fputs ("\tsethi %hi(", (FILE)); \
927 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
928 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
929 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
930 fputs ("),%o0,%o0\n", (FILE)); \
931 } while (0)
1bb87f28
JW
932
933/* Output assembler code to FILE to initialize this source file's
934 basic block profiling info, if that has not already been done. */
d2a8e680
RS
935/* FIXME -- this does not parameterize how it generates labels (like the
936 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
937
938#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
939 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
940 (LABELNO), (LABELNO))
941
942/* Output assembler code to FILE to increment the entry-count for
943 the BLOCKNO'th basic block in this source file. */
944
945#define BLOCK_PROFILER(FILE, BLOCKNO) \
946{ \
947 int blockn = (BLOCKNO); \
948 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
949\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
950 4 * blockn, 4 * blockn, 4 * blockn); \
951}
952
1bb87f28
JW
953/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
954 the stack pointer does not matter. The value is tested only in
955 functions that have frame pointers.
956 No definition is equivalent to always zero. */
957
958extern int current_function_calls_alloca;
959extern int current_function_outgoing_args_size;
960
961#define EXIT_IGNORE_STACK \
962 (get_frame_size () != 0 \
963 || current_function_calls_alloca || current_function_outgoing_args_size)
964
965/* This macro generates the assembly code for function exit,
966 on machines that need it. If FUNCTION_EPILOGUE is not defined
967 then individual return instructions are generated for each
968 return statement. Args are same as for FUNCTION_PROLOGUE.
969
970 The function epilogue should not depend on the current stack pointer!
971 It should use the frame pointer only. This is mandatory because
972 of alloca; we also take advantage of it to omit stack adjustments
973 before returning. */
974
975/* This declaration is needed due to traditional/ANSI
976 incompatibilities which cannot be #ifdefed away
977 because they occur inside of macros. Sigh. */
978extern union tree_node *current_function_decl;
979
980#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
981 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
982 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 983
5b485d2c
JW
984#define DELAY_SLOTS_FOR_EPILOGUE \
985 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 986#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
987 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
988 : eligible_for_epilogue_delay (trial, slots_filled))
1bb87f28
JW
989
990/* Output assembler code for a block containing the constant parts
991 of a trampoline, leaving space for the variable parts. */
992
993/* On the sparc, the trampoline contains five instructions:
994 sethi #TOP_OF_FUNCTION,%g2
995 or #BOTTOM_OF_FUNCTION,%g2,%g2
996 sethi #TOP_OF_STATIC,%g1
997 jmp g2
998 or #BOTTOM_OF_STATIC,%g1,%g1 */
999#define TRAMPOLINE_TEMPLATE(FILE) \
1000{ \
1001 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1002 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1003 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1004 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
1005 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1006}
1007
1008/* Length in units of the trampoline for entering a nested function. */
1009
1010#define TRAMPOLINE_SIZE 20
1011
1012/* Emit RTL insns to initialize the variable parts of a trampoline.
1013 FNADDR is an RTX for the address of the function's pure code.
1014 CXT is an RTX for the static chain value for the function.
1015
1016 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1017 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1018 (to store insns). This is a bit excessive. Perhaps a different
1019 mechanism would be better here. */
1020
1021#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1022{ \
1023 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1024 size_int (10), 0, 1); \
1025 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1026 size_int (10), 0, 1); \
1027 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1028 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1029 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1030 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1031 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1032 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1033 rtx g1_ori = gen_rtx (HIGH, SImode, \
1034 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1035 rtx g2_ori = gen_rtx (HIGH, SImode, \
1036 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1037 rtx tem = gen_reg_rtx (SImode); \
1038 emit_move_insn (tem, g2_sethi); \
1039 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1040 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
1041 emit_move_insn (tem, g2_ori); \
1042 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1043 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
1044 emit_move_insn (tem, g1_sethi); \
1045 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1046 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
1047 emit_move_insn (tem, g1_ori); \
1048 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1049 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1050}
1051
9a1c7cd7
JW
1052/* Generate necessary RTL for __builtin_saveregs().
1053 ARGLIST is the argument list; see expr.c. */
1054extern struct rtx_def *sparc_builtin_saveregs ();
1055#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1056
1057/* Generate RTL to flush the register windows so as to make arbitrary frames
1058 available. */
1059#define SETUP_FRAME_ADDRESSES() \
1060 emit_insn (gen_flush_register_windows ())
1061
1062/* Given an rtx for the address of a frame,
1063 return an rtx for the address of the word in the frame
1064 that holds the dynamic chain--the previous frame's address. */
1065#define DYNAMIC_CHAIN_ADDRESS(frame) \
1066 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1067
1068/* The return address isn't on the stack, it is in a register, so we can't
1069 access it from the current frame pointer. We can access it from the
1070 previous frame pointer though by reading a value from the register window
1071 save area. */
1072#define RETURN_ADDR_IN_PREVIOUS_FRAME
1073
1074/* The current return address is in %i7. The return address of anything
1075 farther back is in the register window save area at [%fp+60]. */
1076/* ??? This ignores the fact that the actual return address is +8 for normal
1077 returns, and +12 for structure returns. */
1078#define RETURN_ADDR_RTX(count, frame) \
1079 ((count == -1) \
1080 ? gen_rtx (REG, Pmode, 31) \
1081 : copy_to_reg (gen_rtx (MEM, Pmode, \
1082 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1083\f
1084/* Addressing modes, and classification of registers for them. */
1085
1086/* #define HAVE_POST_INCREMENT */
1087/* #define HAVE_POST_DECREMENT */
1088
1089/* #define HAVE_PRE_DECREMENT */
1090/* #define HAVE_PRE_INCREMENT */
1091
1092/* Macros to check register numbers against specific register classes. */
1093
1094/* These assume that REGNO is a hard or pseudo reg number.
1095 They give nonzero only if REGNO is a hard reg of the suitable class
1096 or a pseudo reg currently allocated to a suitable hard reg.
1097 Since they use reg_renumber, they are safe only once reg_renumber
1098 has been allocated, which happens in local-alloc.c. */
1099
1100#define REGNO_OK_FOR_INDEX_P(REGNO) \
1101(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1102#define REGNO_OK_FOR_BASE_P(REGNO) \
1103(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1104#define REGNO_OK_FOR_FP_P(REGNO) \
1105(((REGNO) ^ 0x20) < 32 \
1106 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1107
1108/* Now macros that check whether X is a register and also,
1109 strictly, whether it is in a specified class.
1110
1111 These macros are specific to the SPARC, and may be used only
1112 in code for printing assembler insns and in conditions for
1113 define_optimization. */
1114
1115/* 1 if X is an fp register. */
1116
1117#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1118\f
1119/* Maximum number of registers that can appear in a valid memory address. */
1120
1121#define MAX_REGS_PER_ADDRESS 2
1122
1123/* Recognize any constant value that is a valid address. */
1124
6eff269e
BK
1125#define CONSTANT_ADDRESS_P(X) \
1126 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1127 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1128 || GET_CODE (X) == HIGH)
1bb87f28
JW
1129
1130/* Nonzero if the constant value X is a legitimate general operand.
1131 Anything can be made to work except floating point constants. */
1132
1133#define LEGITIMATE_CONSTANT_P(X) \
1134 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1135
1136/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1137 and check its validity for a certain class.
1138 We have two alternate definitions for each of them.
1139 The usual definition accepts all pseudo regs; the other rejects
1140 them unless they have been allocated suitable hard regs.
1141 The symbol REG_OK_STRICT causes the latter definition to be used.
1142
1143 Most source files want to accept pseudo regs in the hope that
1144 they will get allocated to the class that the insn wants them to be in.
1145 Source files for reload pass need to be strict.
1146 After reload, it makes no difference, since pseudo regs have
1147 been eliminated by then. */
1148
1149/* Optional extra constraints for this machine. Borrowed from romp.h.
1150
1151 For the SPARC, `Q' means that this is a memory operand but not a
1152 symbolic memory operand. Note that an unassigned pseudo register
1153 is such a memory operand. Needed because reload will generate
1154 these things in insns and then not re-recognize the insns, causing
1155 constrain_operands to fail.
1156
1bb87f28
JW
1157 `S' handles constraints for calls. */
1158
1159#ifndef REG_OK_STRICT
1160
1161/* Nonzero if X is a hard reg that can be used as an index
1162 or if it is a pseudo reg. */
1163#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1164/* Nonzero if X is a hard reg that can be used as a base reg
1165 or if it is a pseudo reg. */
1166#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1167
1168#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1169 ((C) == 'Q' \
1170 ? ((GET_CODE (OP) == MEM \
1171 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1172 && ! symbolic_memory_operand (OP, VOIDmode)) \
1173 || (reload_in_progress && GET_CODE (OP) == REG \
1174 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
db5e449c
RS
1175 : (C) == 'S' \
1176 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1177 : (C) == 'T' \
1178 ? (mem_aligned_8 (OP)) \
1179 : (C) == 'U' \
1180 ? (register_ok_for_ldd (OP)) \
db5e449c 1181 : 0)
19858600 1182
1bb87f28
JW
1183#else
1184
1185/* Nonzero if X is a hard reg that can be used as an index. */
1186#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1187/* Nonzero if X is a hard reg that can be used as a base reg. */
1188#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1189
1190#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1191 ((C) == 'Q' \
1192 ? (GET_CODE (OP) == REG \
1193 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1194 && reg_renumber[REGNO (OP)] < 0) \
1195 : GET_CODE (OP) == MEM) \
1196 : (C) == 'S' \
1197 ? (CONSTANT_P (OP) \
1198 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0) \
1199 || strict_memory_address_p (Pmode, OP)) \
1200 : (C) == 'T' \
b165d471 1201 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
9ad2c692 1202 : (C) == 'U' \
b165d471
JW
1203 ? (GET_CODE (OP) == REG \
1204 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1205 || reg_renumber[REGNO (OP)] > 0) \
1206 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
1207#endif
1208\f
1209/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1210 that is a valid memory address for an instruction.
1211 The MODE argument is the machine mode for the MEM expression
1212 that wants to use this address.
1213
1214 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1215 ordinarily. This changes a bit when generating PIC.
1216
1217 If you change this, execute "rm explow.o recog.o reload.o". */
1218
bec2e359
JW
1219#define RTX_OK_FOR_BASE_P(X) \
1220 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1221 || (GET_CODE (X) == SUBREG \
1222 && GET_CODE (SUBREG_REG (X)) == REG \
1223 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1224
1225#define RTX_OK_FOR_INDEX_P(X) \
1226 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1227 || (GET_CODE (X) == SUBREG \
1228 && GET_CODE (SUBREG_REG (X)) == REG \
1229 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1230
1231#define RTX_OK_FOR_OFFSET_P(X) \
1232 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1233
1bb87f28 1234#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1235{ if (RTX_OK_FOR_BASE_P (X)) \
1236 goto ADDR; \
1bb87f28
JW
1237 else if (GET_CODE (X) == PLUS) \
1238 { \
bec2e359
JW
1239 register rtx op0 = XEXP (X, 0); \
1240 register rtx op1 = XEXP (X, 1); \
1241 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1242 { \
bec2e359 1243 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1244 goto ADDR; \
1245 else if (flag_pic == 1 \
bec2e359
JW
1246 && GET_CODE (op1) != REG \
1247 && GET_CODE (op1) != LO_SUM \
1248 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1249 goto ADDR; \
1250 } \
bec2e359 1251 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1252 { \
bec2e359
JW
1253 if (RTX_OK_FOR_INDEX_P (op1) \
1254 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1255 goto ADDR; \
1256 } \
bec2e359 1257 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1258 { \
bec2e359
JW
1259 if (RTX_OK_FOR_INDEX_P (op0) \
1260 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1261 goto ADDR; \
1262 } \
1263 } \
bec2e359
JW
1264 else if (GET_CODE (X) == LO_SUM) \
1265 { \
1266 register rtx op0 = XEXP (X, 0); \
1267 register rtx op1 = XEXP (X, 1); \
1268 if (RTX_OK_FOR_BASE_P (op0) \
1269 && CONSTANT_P (op1)) \
1270 goto ADDR; \
1271 } \
1bb87f28
JW
1272 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1273 goto ADDR; \
1274}
1275\f
1276/* Try machine-dependent ways of modifying an illegitimate address
1277 to be legitimate. If we find one, return the new, valid address.
1278 This macro is used in only one place: `memory_address' in explow.c.
1279
1280 OLDX is the address as it was before break_out_memory_refs was called.
1281 In some cases it is useful to look at this to decide what needs to be done.
1282
1283 MODE and WIN are passed so that this macro can use
1284 GO_IF_LEGITIMATE_ADDRESS.
1285
1286 It is always safe for this macro to do nothing. It exists to recognize
1287 opportunities to optimize the output. */
1288
1289/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1290extern struct rtx_def *legitimize_pic_address ();
1291#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1292{ rtx sparc_x = (X); \
1293 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1294 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1295 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1296 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1297 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1298 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1299 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1300 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1301 XEXP (X, 1)); \
1302 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1303 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1304 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1305 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1306 goto WIN; \
1307 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1308 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1309 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1310 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1311 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1312 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1313 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1314 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1315 || GET_CODE (X) == LABEL_REF) \
1316 (X) = gen_rtx (LO_SUM, Pmode, \
1317 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1318 if (memory_address_p (MODE, X)) \
1319 goto WIN; }
1320
1321/* Go to LABEL if ADDR (a legitimate address expression)
1322 has an effect that depends on the machine mode it is used for.
1323 On the SPARC this is never true. */
1324
1325#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1326\f
1327/* Specify the machine mode that this machine uses
1328 for the index in the tablejump instruction. */
1329#define CASE_VECTOR_MODE SImode
1330
1331/* Define this if the tablejump instruction expects the table
1332 to contain offsets from the address of the table.
1333 Do not define this if the table should contain absolute addresses. */
1334/* #define CASE_VECTOR_PC_RELATIVE */
1335
1336/* Specify the tree operation to be used to convert reals to integers. */
1337#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1338
1339/* This is the kind of divide that is easiest to do in the general case. */
1340#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1341
1342/* Define this as 1 if `char' should by default be signed; else as 0. */
1343#define DEFAULT_SIGNED_CHAR 1
1344
1345/* Max number of bytes we can move from memory to memory
1346 in one reasonably fast instruction. */
2eef2ef1 1347#define MOVE_MAX 8
1bb87f28 1348
0fb5a69e 1349#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1350/* This is the value of the error code EDOM for this machine,
1351 used by the sqrt instruction. */
1352#define TARGET_EDOM 33
1353
1354/* This is how to refer to the variable errno. */
1355#define GEN_ERRNO_RTX \
1356 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1357#endif /* 0 */
24e2a2bf 1358
1bb87f28
JW
1359/* Define if normal loads of shorter-than-word items from memory clears
1360 the rest of the bigs in the register. */
1361#define BYTE_LOADS_ZERO_EXTEND
1362
1363/* Nonzero if access to memory by bytes is slow and undesirable.
1364 For RISC chips, it means that access to memory by bytes is no
1365 better than access by words when possible, so grab a whole word
1366 and maybe make use of that. */
1367#define SLOW_BYTE_ACCESS 1
1368
1369/* We assume that the store-condition-codes instructions store 0 for false
1370 and some other value for true. This is the value stored for true. */
1371
1372#define STORE_FLAG_VALUE 1
1373
1374/* When a prototype says `char' or `short', really pass an `int'. */
1375#define PROMOTE_PROTOTYPES
1376
1377/* Define if shifts truncate the shift count
1378 which implies one can omit a sign-extension or zero-extension
1379 of a shift count. */
1380#define SHIFT_COUNT_TRUNCATED
1381
1382/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1383 is done just by pretending it is already truncated. */
1384#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1385
1386/* Specify the machine mode that pointers have.
1387 After generation of rtl, the compiler makes no further distinction
1388 between pointers and any other objects of this machine mode. */
1389#define Pmode SImode
1390
b4ac57ab
RS
1391/* Generate calls to memcpy, memcmp and memset. */
1392#define TARGET_MEM_FUNCTIONS
1393
1bb87f28
JW
1394/* Add any extra modes needed to represent the condition code.
1395
1396 On the Sparc, we have a "no-overflow" mode which is used when an add or
1397 subtract insn is used to set the condition code. Different branches are
1398 used in this case for some operations.
1399
4d449554
JW
1400 We also have two modes to indicate that the relevant condition code is
1401 in the floating-point condition code register. One for comparisons which
1402 will generate an exception if the result is unordered (CCFPEmode) and
1403 one for comparisons which will never trap (CCFPmode). This really should
1404 be a separate register, but we don't want to go to 65 registers. */
1405#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1406
1407/* Define the names for the modes specified above. */
4d449554 1408#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1409
1410/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1411 return the mode to be used for the comparison. For floating-point,
1412 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1413 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1414 needed. */
679655e6 1415#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1416 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1417 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1418 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1419 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1420
1421/* A function address in a call instruction
1422 is a byte address (for indexing purposes)
1423 so give the MEM rtx a byte's mode. */
1424#define FUNCTION_MODE SImode
1425
1426/* Define this if addresses of constant functions
1427 shouldn't be put through pseudo regs where they can be cse'd.
1428 Desirable on machines where ordinary constants are expensive
1429 but a CALL with constant address is cheap. */
1430#define NO_FUNCTION_CSE
1431
1432/* alloca should avoid clobbering the old register save area. */
1433#define SETJMP_VIA_SAVE_AREA
1434
1435/* Define subroutines to call to handle multiply and divide.
1436 Use the subroutines that Sun's library provides.
1437 The `*' prevents an underscore from being prepended by the compiler. */
1438
1439#define DIVSI3_LIBCALL "*.div"
1440#define UDIVSI3_LIBCALL "*.udiv"
1441#define MODSI3_LIBCALL "*.rem"
1442#define UMODSI3_LIBCALL "*.urem"
1443/* .umul is a little faster than .mul. */
1444#define MULSI3_LIBCALL "*.umul"
1445
1446/* Compute the cost of computing a constant rtl expression RTX
1447 whose rtx-code is CODE. The body of this macro is a portion
1448 of a switch statement. If the code is computed here,
1449 return it with a return statement. Otherwise, break from the switch. */
1450
3bb22aee 1451#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1452 case CONST_INT: \
1bb87f28 1453 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1454 return 0; \
1bb87f28
JW
1455 case HIGH: \
1456 return 2; \
1457 case CONST: \
1458 case LABEL_REF: \
1459 case SYMBOL_REF: \
1460 return 4; \
1461 case CONST_DOUBLE: \
1462 if (GET_MODE (RTX) == DImode) \
1463 if ((XINT (RTX, 3) == 0 \
1464 && (unsigned) XINT (RTX, 2) < 0x1000) \
1465 || (XINT (RTX, 3) == -1 \
1466 && XINT (RTX, 2) < 0 \
1467 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1468 return 0; \
1bb87f28
JW
1469 return 8;
1470
1471/* SPARC offers addressing modes which are "as cheap as a register".
1472 See sparc.c (or gcc.texinfo) for details. */
1473
1474#define ADDRESS_COST(RTX) \
1475 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1476
1477/* Compute extra cost of moving data between one register class
1478 and another. */
1479#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1480 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1481 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1482
1483/* Provide the costs of a rtl expression. This is in the body of a
1484 switch on CODE. The purpose for the cost of MULT is to encourage
1485 `synth_mult' to find a synthetic multiply when reasonable.
1486
1487 If we need more than 12 insns to do a multiply, then go out-of-line,
1488 since the call overhead will be < 10% of the cost of the multiply. */
1489
3bb22aee 1490#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 1491 case MULT: \
6ffeae97 1492 return TARGET_V8 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
1493 case DIV: \
1494 case UDIV: \
1495 case MOD: \
1496 case UMOD: \
5b485d2c
JW
1497 return COSTS_N_INSNS (25); \
1498 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1499 so that cse will favor the latter. */ \
1500 case FLOAT: \
5b485d2c 1501 case FIX: \
1bb87f28
JW
1502 return 19;
1503
1504/* Conditional branches with empty delay slots have a length of two. */
1505#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1506 if (GET_CODE (INSN) == CALL_INSN \
1507 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1508 LENGTH += 1;
1509\f
1510/* Control the assembler format that we output. */
1511
1512/* Output at beginning of assembler file. */
1513
1514#define ASM_FILE_START(file)
1515
1516/* Output to assembler file text saying following lines
1517 may contain character constants, extra white space, comments, etc. */
1518
1519#define ASM_APP_ON ""
1520
1521/* Output to assembler file text saying following lines
1522 no longer contain unusual constructs. */
1523
1524#define ASM_APP_OFF ""
1525
303d524a
JW
1526#define ASM_LONG ".word"
1527#define ASM_SHORT ".half"
1528#define ASM_BYTE_OP ".byte"
1529
1bb87f28
JW
1530/* Output before read-only data. */
1531
1532#define TEXT_SECTION_ASM_OP ".text"
1533
1534/* Output before writable data. */
1535
1536#define DATA_SECTION_ASM_OP ".data"
1537
1538/* How to refer to registers in assembler output.
1539 This sequence is indexed by compiler's hard-register-number (see above). */
1540
1541#define REGISTER_NAMES \
1542{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1543 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1544 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1545 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1546 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1547 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1548 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1549 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1550
ea3fa5f7
JW
1551/* Define additional names for use in asm clobbers and asm declarations.
1552
1553 We define the fake Condition Code register as an alias for reg 0 (which
1554 is our `condition code' register), so that condition codes can easily
1555 be clobbered by an asm. No such register actually exists. Condition
1556 codes are partly stored in the PSR and partly in the FSR. */
1557
0eb9f40e 1558#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1559
1bb87f28
JW
1560/* How to renumber registers for dbx and gdb. */
1561
1562#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1563
1564/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1565 since the length can run past this up to a continuation point. */
1566#define DBX_CONTIN_LENGTH 1500
1567
1568/* This is how to output a note to DBX telling it the line number
1569 to which the following sequence of instructions corresponds.
1570
1571 This is needed for SunOS 4.0, and should not hurt for 3.2
1572 versions either. */
1573#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1574 { static int sym_lineno = 1; \
1575 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1576 line, sym_lineno, sym_lineno); \
1577 sym_lineno += 1; }
1578
1579/* This is how to output the definition of a user-level label named NAME,
1580 such as the label on a static function or variable NAME. */
1581
1582#define ASM_OUTPUT_LABEL(FILE,NAME) \
1583 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1584
1585/* This is how to output a command to make the user-level label named NAME
1586 defined for reference from other files. */
1587
1588#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1589 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1590
1591/* This is how to output a reference to a user-level label named NAME.
1592 `assemble_name' uses this. */
1593
1594#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1595 fprintf (FILE, "_%s", NAME)
1596
d2a8e680 1597/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1598 PREFIX is the class of label and NUM is the number within the class. */
1599
1600#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1601 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1602
d2a8e680
RS
1603/* This is how to output a reference to an internal numbered label where
1604 PREFIX is the class of label and NUM is the number within the class. */
1605/* FIXME: This should be used throughout gcc, and documented in the texinfo
1606 files. There is no reason you should have to allocate a buffer and
1607 `sprintf' to reference an internal label (as opposed to defining it). */
1608
1609#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1610 fprintf (FILE, "%s%d", PREFIX, NUM)
1611
1bb87f28
JW
1612/* This is how to store into the string LABEL
1613 the symbol_ref name of an internal numbered label where
1614 PREFIX is the class of label and NUM is the number within the class.
1615 This is suitable for output with `assemble_name'. */
1616
1617#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1618 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1619
1620/* This is how to output an assembler line defining a `double' constant. */
1621
b1fc14e5
RS
1622/* Assemblers (both gas 1.35 and as in 4.0.3)
1623 seem to treat -0.0 as if it were 0.0.
1624 They reject 99e9999, but accept inf. */
1bb87f28
JW
1625#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1626 { \
303d524a
JW
1627 if (REAL_VALUE_ISINF (VALUE) \
1628 || REAL_VALUE_ISNAN (VALUE) \
1629 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1630 { \
303d524a
JW
1631 long t[2]; \
1632 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1633 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1634 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1635 } \
1636 else \
d667538b
JW
1637 { \
1638 char str[30]; \
1639 REAL_VALUE_TO_DECIMAL ((VALUE), "%.17g", str); \
1640 fprintf (FILE, "\t.double 0r%s\n", str); \
1641 } \
1bb87f28
JW
1642 }
1643
1644/* This is how to output an assembler line defining a `float' constant. */
1645
1646#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1647 { \
303d524a
JW
1648 if (REAL_VALUE_ISINF (VALUE) \
1649 || REAL_VALUE_ISNAN (VALUE) \
1650 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1651 { \
303d524a
JW
1652 long t; \
1653 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1654 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1655 } \
1656 else \
d667538b
JW
1657 { \
1658 char str[30]; \
1659 REAL_VALUE_TO_DECIMAL ((VALUE), "%.9g", str); \
1660 fprintf (FILE, "\t.single 0r%s\n", str); \
1661 } \
1bb87f28
JW
1662 }
1663
0cd02cbb
DE
1664/* This is how to output an assembler line defining a `long double'
1665 constant. */
1666
1667#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1668 { \
1669 long t[4]; \
1670 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1671 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1672 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1673 }
1674
1bb87f28
JW
1675/* This is how to output an assembler line defining an `int' constant. */
1676
1677#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1678( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1679 output_addr_const (FILE, (VALUE)), \
1680 fprintf (FILE, "\n"))
1681
1682/* This is how to output an assembler line defining a DImode constant. */
1683#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1684 output_double_int (FILE, VALUE)
1685
1686/* Likewise for `char' and `short' constants. */
1687
1688#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1689( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1690 output_addr_const (FILE, (VALUE)), \
1691 fprintf (FILE, "\n"))
1692
1693#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1694( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1695 output_addr_const (FILE, (VALUE)), \
1696 fprintf (FILE, "\n"))
1697
1698/* This is how to output an assembler line for a numeric constant byte. */
1699
1700#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1701 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1702
1703/* This is how to output an element of a case-vector that is absolute. */
1704
1705#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1706do { \
1707 char label[30]; \
1708 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1709 fprintf (FILE, "\t.word\t"); \
1710 assemble_name (FILE, label); \
1711 fprintf (FILE, "\n"); \
1712} while (0)
1bb87f28
JW
1713
1714/* This is how to output an element of a case-vector that is relative.
1715 (SPARC uses such vectors only when generating PIC.) */
1716
4b69d2a3
RS
1717#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1718do { \
1719 char label[30]; \
1720 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1721 fprintf (FILE, "\t.word\t"); \
1722 assemble_name (FILE, label); \
1723 fprintf (FILE, "-1b\n"); \
1724} while (0)
1bb87f28
JW
1725
1726/* This is how to output an assembler line
1727 that says to advance the location counter
1728 to a multiple of 2**LOG bytes. */
1729
1730#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1731 if ((LOG) != 0) \
1732 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1733
1734#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1735 fprintf (FILE, "\t.skip %u\n", (SIZE))
1736
1737/* This says how to output an assembler line
1738 to define a global common symbol. */
1739
1740#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1741( fputs ("\t.global ", (FILE)), \
1742 assemble_name ((FILE), (NAME)), \
1743 fputs ("\n\t.common ", (FILE)), \
1744 assemble_name ((FILE), (NAME)), \
1745 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1746
1747/* This says how to output an assembler line
1748 to define a local common symbol. */
1749
1750#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1751( fputs ("\n\t.reserve ", (FILE)), \
1752 assemble_name ((FILE), (NAME)), \
1753 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1754
1755/* Store in OUTPUT a string (made with alloca) containing
1756 an assembler-name for a local static variable named NAME.
1757 LABELNO is an integer which is different for each call. */
1758
1759#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1760( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1761 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1762
c14f2655
RS
1763#define IDENT_ASM_OP ".ident"
1764
1765/* Output #ident as a .ident. */
1766
1767#define ASM_OUTPUT_IDENT(FILE, NAME) \
1768 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1769
1bb87f28
JW
1770/* Define the parentheses used to group arithmetic operations
1771 in assembler code. */
1772
1773#define ASM_OPEN_PAREN "("
1774#define ASM_CLOSE_PAREN ")"
1775
1776/* Define results of standard character escape sequences. */
1777#define TARGET_BELL 007
1778#define TARGET_BS 010
1779#define TARGET_TAB 011
1780#define TARGET_NEWLINE 012
1781#define TARGET_VT 013
1782#define TARGET_FF 014
1783#define TARGET_CR 015
1784
1785#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1786 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1787
1788/* Print operand X (an rtx) in assembler syntax to file FILE.
1789 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1790 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1791
1792#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1793
1794/* Print a memory address as an operand to reference that memory location. */
1795
1796#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1797{ register rtx base, index = 0; \
1798 int offset = 0; \
1799 register rtx addr = ADDR; \
1800 if (GET_CODE (addr) == REG) \
1801 fputs (reg_names[REGNO (addr)], FILE); \
1802 else if (GET_CODE (addr) == PLUS) \
1803 { \
1804 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1805 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1806 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1807 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1808 else \
1809 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1810 fputs (reg_names[REGNO (base)], FILE); \
1811 if (index == 0) \
1812 fprintf (FILE, "%+d", offset); \
1813 else if (GET_CODE (index) == REG) \
1814 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1815 else if (GET_CODE (index) == SYMBOL_REF) \
1816 fputc ('+', FILE), output_addr_const (FILE, index); \
1817 else abort (); \
1818 } \
1819 else if (GET_CODE (addr) == MINUS \
1820 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1821 { \
1822 output_addr_const (FILE, XEXP (addr, 0)); \
1823 fputs ("-(", FILE); \
1824 output_addr_const (FILE, XEXP (addr, 1)); \
1825 fputs ("-.)", FILE); \
1826 } \
1827 else if (GET_CODE (addr) == LO_SUM) \
1828 { \
1829 output_operand (XEXP (addr, 0), 0); \
1830 fputs ("+%lo(", FILE); \
1831 output_address (XEXP (addr, 1)); \
1832 fputc (')', FILE); \
1833 } \
1834 else if (flag_pic && GET_CODE (addr) == CONST \
1835 && GET_CODE (XEXP (addr, 0)) == MINUS \
1836 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1837 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1838 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1839 { \
1840 addr = XEXP (addr, 0); \
1841 output_addr_const (FILE, XEXP (addr, 0)); \
1842 /* Group the args of the second CONST in parenthesis. */ \
1843 fputs ("-(", FILE); \
1844 /* Skip past the second CONST--it does nothing for us. */\
1845 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1846 /* Close the parenthesis. */ \
1847 fputc (')', FILE); \
1848 } \
1849 else \
1850 { \
1851 output_addr_const (FILE, addr); \
1852 } \
1853}
1854
1855/* Declare functions defined in sparc.c and used in templates. */
1856
1857extern char *singlemove_string ();
1858extern char *output_move_double ();
795068a4 1859extern char *output_move_quad ();
1bb87f28 1860extern char *output_fp_move_double ();
795068a4 1861extern char *output_fp_move_quad ();
1bb87f28
JW
1862extern char *output_block_move ();
1863extern char *output_scc_insn ();
1864extern char *output_cbranch ();
1865extern char *output_return ();
1bb87f28
JW
1866
1867/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1868
1869extern int flag_pic;
This page took 0.348654 seconds and 5 git commands to generate.