]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(print_global_hdr): Remove "l" from printf format for flags.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28 1/* Definitions of target machine for GNU compiler, for Sun SPARC.
b331b745 2 Copyright (C) 1987, 1988, 1989, 1992, 1994 Free Software Foundation, Inc.
1bb87f28
JW
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
9ee6230c 24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
1bb87f28 25
98ccf8fe 26/* Provide required defaults for linker -e and -d switches. */
1bb87f28 27
d6f04508 28#define LINK_SPEC \
197a1140 29 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
30
31/* Special flags to the Sun-4 assembler when using pipe for input. */
32
cf8a904b 33#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 34
885d8175 35/* Define macros to distinguish architectures. */
bc9e02ae
JW
36#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mf930:-D__sparclite__} \
37%{mf934:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28
JW
44
45#define PTRDIFF_TYPE "int"
1ede52a6
RS
46/* In 2.4 it should work to delete this.
47 #define SIZE_TYPE "int" */
1bb87f28
JW
48#define WCHAR_TYPE "short unsigned int"
49#define WCHAR_TYPE_SIZE 16
50
4f074454
RK
51/* Show we can debug even without a frame pointer. */
52#define CAN_DEBUG_WITHOUT_FP
1bb87f28 53
5b485d2c
JW
54/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
55 code into the rtl. Also, if we are profiling, we cannot eliminate
56 the frame pointer (because the return address will get smashed). */
57
58#define OVERRIDE_OPTIONS \
84ab3bfb
JW
59{ \
60 if (profile_flag || profile_block_flag) \
61 flag_omit_frame_pointer = 0, flag_pic = 0; \
62 SUBTARGET_OVERRIDE_OPTIONS \
63 }
64
65/* This is meant to be redefined in the host dependent files */
66#define SUBTARGET_OVERRIDE_OPTIONS
5b485d2c 67
1bb87f28
JW
68/* These compiler options take an argument. We ignore -target for now. */
69
70#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
71 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
72 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
73
74/* Names to predefine in the preprocessor for this target machine. */
75
9cfda000
JW
76/* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
77 the right varags.h file when bootstrapping. */
f19c1a78 78
65c42379
DE
79#define CPP_PREDEFINES \
80 "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
81 -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
1bb87f28
JW
82
83/* Print subsidiary information on the compiler version in use. */
84
85#define TARGET_VERSION fprintf (stderr, " (sparc)");
86
87/* Generate DBX debugging information. */
88
89#define DBX_DEBUGGING_INFO
90
91/* Run-time compilation parameters selecting different hardware subsets. */
92
93extern int target_flags;
94
95/* Nonzero if we should generate code to use the fpu. */
96#define TARGET_FPU (target_flags & 1)
97
98/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
99 use fast return insns, but lose some generality. */
100#define TARGET_EPILOGUE (target_flags & 2)
101
95dea81f
JW
102/* Nonzero if we should assume that double pointers might be unaligned.
103 This can happen when linking gcc compiled code with other compilers,
104 because the ABI only guarantees 4 byte alignment. */
105#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 106
885d8175
JW
107/* Nonzero means that we should generate code for a v8 sparc. */
108#define TARGET_V8 (target_flags & 64)
109
bc9e02ae
JW
110/* Nonzero means that we should generate code for a sparclite.
111 This enables the sparclite specific instructions, but does not affect
112 whether FPU instructions are emitted. */
885d8175
JW
113#define TARGET_SPARCLITE (target_flags & 128)
114
5b485d2c 115/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
116 model, i.e. no save/restore instructions are generated, in the most
117 efficient manner. This code is not compatible with normal sparc code. */
118/* This is not a user selectable option yet, because it requires changes
119 that are not yet switchable via command line arguments. */
5c56efde 120/* ??? This flag is deprecated and may disappear at some point. */
5b485d2c
JW
121#define TARGET_FRW (target_flags & 256)
122
9a1c7cd7
JW
123/* Nonzero means that we should generate code using a flat register window
124 model, i.e. no save/restore instructions are generated, but which is
125 compatible with normal sparc code. This is the same as above, except
5c56efde
DE
126 that the frame pointer is %i7 instead of %fp. */
127/* ??? This use to be named TARGET_FRW_COMPAT. At some point TARGET_FRW will
128 go away, but until that time only use this one when necessary.
129 -mflat sets both. */
130#define TARGET_FLAT (target_flags & 512)
9a1c7cd7 131
34ad7aaf
JW
132/* Nonzero means use the registers that the Sparc ABI reserves for
133 application software. This is the default. */
134#define TARGET_APP_REGS (target_flags & 1024)
135
8248e2bc
JW
136/* Option to select how quad word floating point is implemented.
137 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
138 Otherwise, we use the SPARC ABI quad library functions. */
139#define TARGET_HARD_QUAD (target_flags & 2048)
140
1bb87f28
JW
141/* Macro to define tables used to set the flags.
142 This is a list in braces of pairs in braces,
143 each pair being { "NAME", VALUE }
144 where VALUE is the bits to set or minus the bits to clear.
145 An empty string NAME is used to identify the default VALUE. */
146
bc9e02ae
JW
147/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
148 The Fujitsu MB86934 is the recent sparclite chip, with an fup.
149 We use -mf930 and -mf934 options to choose which.
150 ??? These should perhaps be -mcpu= options. */
151
1bb87f28
JW
152#define TARGET_SWITCHES \
153 { {"fpu", 1}, \
26c5587d
JW
154 {"no-fpu", -1}, \
155 {"hard-float", 1}, \
1bb87f28
JW
156 {"soft-float", -1}, \
157 {"epilogue", 2}, \
158 {"no-epilogue", -2}, \
95dea81f
JW
159 {"unaligned-doubles", 4}, \
160 {"no-unaligned-doubles", -4},\
885d8175
JW
161 {"v8", 64}, \
162 {"no-v8", -64}, \
163 {"sparclite", 128}, \
164 {"no-sparclite", -128}, \
bc9e02ae
JW
165 {"f930", 128}, \
166 {"f930", -1}, \
167 {"f934", 128}, \
5c56efde
DE
168 {"flat", 256+512}, \
169 {"no-flat", -(256+512)}, \
34ad7aaf
JW
170 {"app-regs", 1024}, \
171 {"no-app-regs", -1024}, \
8248e2bc
JW
172 {"hard-quad-float", 2048}, \
173 {"soft-quad-float", -2048}, \
84ab3bfb 174 SUBTARGET_SWITCHES \
b1fc14e5 175 { "", TARGET_DEFAULT}}
1bb87f28 176
8248e2bc 177#define TARGET_DEFAULT (1024+3)
84ab3bfb
JW
178
179/* This is meant to be redefined in the host dependent files */
180#define SUBTARGET_SWITCHES
1bb87f28
JW
181\f
182/* target machine storage layout */
183
360b1451
JW
184#if 0
185/* ??? This does not work in SunOS 4.x, so it is not enabled here.
186 Instead, it is enabled in sol2.h, because it does work under Solaris. */
d667538b
JW
187/* Define for support of TFmode long double and REAL_ARITHMETIC.
188 Sparc ABI says that long double is 4 words. */
189#define LONG_DOUBLE_TYPE_SIZE 128
360b1451 190#endif
d667538b
JW
191
192/* Define for cross-compilation to a sparc target with no TFmode from a host
193 with a different float format (e.g. VAX). */
194#define REAL_ARITHMETIC
195
1bb87f28
JW
196/* Define this if most significant bit is lowest numbered
197 in instructions that operate on numbered bit-fields. */
198#define BITS_BIG_ENDIAN 1
199
200/* Define this if most significant byte of a word is the lowest numbered. */
201/* This is true on the SPARC. */
202#define BYTES_BIG_ENDIAN 1
203
204/* Define this if most significant word of a multiword number is the lowest
205 numbered. */
206/* Doubles are stored in memory with the high order word first. This
207 matters when cross-compiling. */
208#define WORDS_BIG_ENDIAN 1
209
b4ac57ab 210/* number of bits in an addressable storage unit */
1bb87f28
JW
211#define BITS_PER_UNIT 8
212
213/* Width in bits of a "word", which is the contents of a machine register.
214 Note that this is not necessarily the width of data type `int';
215 if using 16-bit ints on a 68000, this would still be 32.
216 But on a machine with 16-bit registers, this would be 16. */
217#define BITS_PER_WORD 32
218#define MAX_BITS_PER_WORD 32
219
220/* Width of a word, in units (bytes). */
221#define UNITS_PER_WORD 4
222
223/* Width in bits of a pointer.
224 See also the macro `Pmode' defined below. */
225#define POINTER_SIZE 32
226
227/* Allocation boundary (in *bits*) for storing arguments in argument list. */
228#define PARM_BOUNDARY 32
229
230/* Boundary (in *bits*) on which stack pointer should be aligned. */
231#define STACK_BOUNDARY 64
232
10d1b70f
JW
233/* ALIGN FRAMES on double word boundaries */
234
ea236c90 235#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & (~7))
10d1b70f 236
1bb87f28
JW
237/* Allocation boundary (in *bits*) for the code of a function. */
238#define FUNCTION_BOUNDARY 32
239
240/* Alignment of field after `int : 0' in a structure. */
241#define EMPTY_FIELD_BOUNDARY 32
242
243/* Every structure's size must be a multiple of this. */
244#define STRUCTURE_SIZE_BOUNDARY 8
245
246/* A bitfield declared as `int' forces `int' alignment for the struct. */
247#define PCC_BITFIELD_TYPE_MATTERS 1
248
249/* No data type wants to be aligned rounder than this. */
250#define BIGGEST_ALIGNMENT 64
251
77a02b01
JW
252/* The best alignment to use in cases where we have a choice. */
253#define FASTEST_ALIGNMENT 64
254
1bb87f28
JW
255/* Make strings word-aligned so strcpy from constants will be faster. */
256#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
257 ((TREE_CODE (EXP) == STRING_CST \
258 && (ALIGN) < FASTEST_ALIGNMENT) \
259 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
260
261/* Make arrays of chars word-aligned for the same reasons. */
262#define DATA_ALIGNMENT(TYPE, ALIGN) \
263 (TREE_CODE (TYPE) == ARRAY_TYPE \
264 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 265 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 266
b4ac57ab 267/* Set this nonzero if move instructions will actually fail to work
1bb87f28 268 when given unaligned data. */
b4ac57ab 269#define STRICT_ALIGNMENT 1
1bb87f28
JW
270
271/* Things that must be doubleword aligned cannot go in the text section,
272 because the linker fails to align the text section enough!
273 Put them in the data section. */
274#define MAX_TEXT_ALIGN 32
275
276#define SELECT_SECTION(T,RELOC) \
277{ \
278 if (TREE_CODE (T) == VAR_DECL) \
279 { \
280 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
ed8969fa
JW
281 && DECL_INITIAL (T) \
282 && (DECL_INITIAL (T) == error_mark_node \
283 || TREE_CONSTANT (DECL_INITIAL (T))) \
1bb87f28
JW
284 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
285 && ! (flag_pic && (RELOC))) \
286 text_section (); \
287 else \
288 data_section (); \
289 } \
290 else if (TREE_CODE (T) == CONSTRUCTOR) \
291 { \
292 if (flag_pic != 0 && (RELOC) != 0) \
293 data_section (); \
294 } \
295 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
296 { \
297 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
298 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
299 data_section (); \
300 else \
301 text_section (); \
302 } \
303}
304
305/* Use text section for a constant
306 unless we need more alignment than that offers. */
307#define SELECT_RTX_SECTION(MODE, X) \
308{ \
309 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
310 && ! (flag_pic && symbolic_operand (X))) \
311 text_section (); \
312 else \
313 data_section (); \
314}
315\f
316/* Standard register usage. */
317
318/* Number of actual hardware registers.
319 The hardware registers are assigned numbers for the compiler
320 from 0 to just below FIRST_PSEUDO_REGISTER.
321 All registers that the compiler knows about must be given numbers,
322 even those that are not normally considered general registers.
323
324 SPARC has 32 integer registers and 32 floating point registers. */
325
326#define FIRST_PSEUDO_REGISTER 64
327
328/* 1 for registers that have pervasive standard uses
329 and are not available for the register allocator.
5b485d2c 330 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 331 hardwired to 0, so reg 0 is *not* fixed.
34ad7aaf
JW
332 g1 is free to use as temporary.
333 g2-g4 are reserved for applications. Gcc normally uses them as
334 temporaries, but this can be disabled via the -mno-app-regs option.
d9ca49d5 335 g5 through g7 are reserved for the operating system. */
1bb87f28 336#define FIXED_REGISTERS \
d9ca49d5 337 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
338 0, 0, 0, 0, 0, 0, 1, 0, \
339 0, 0, 0, 0, 0, 0, 0, 0, \
340 0, 0, 0, 0, 0, 0, 1, 1, \
341 \
342 0, 0, 0, 0, 0, 0, 0, 0, \
343 0, 0, 0, 0, 0, 0, 0, 0, \
344 0, 0, 0, 0, 0, 0, 0, 0, \
345 0, 0, 0, 0, 0, 0, 0, 0}
346
347/* 1 for registers not available across function calls.
348 These must include the FIXED_REGISTERS and also any
349 registers that can be used without being saved.
350 The latter must include the registers where values are returned
351 and the register where structure-value addresses are passed.
352 Aside from that, you can include as many other registers as you like. */
353#define CALL_USED_REGISTERS \
354 {1, 1, 1, 1, 1, 1, 1, 1, \
355 1, 1, 1, 1, 1, 1, 1, 1, \
356 0, 0, 0, 0, 0, 0, 0, 0, \
357 0, 0, 0, 0, 0, 0, 1, 1, \
358 \
359 1, 1, 1, 1, 1, 1, 1, 1, \
360 1, 1, 1, 1, 1, 1, 1, 1, \
361 1, 1, 1, 1, 1, 1, 1, 1, \
362 1, 1, 1, 1, 1, 1, 1, 1}
363
26c5587d
JW
364/* If !TARGET_FPU, then make the fp registers fixed so that they won't
365 be allocated. */
366
367#define CONDITIONAL_REGISTER_USAGE \
368do \
369 { \
370 if (! TARGET_FPU) \
371 { \
372 int regno; \
373 for (regno = 32; regno < 64; regno++) \
374 fixed_regs[regno] = 1; \
375 } \
34ad7aaf
JW
376 if (! TARGET_APP_REGS) \
377 { \
378 fixed_regs[2] = 1; \
379 fixed_regs[3] = 1; \
380 fixed_regs[4] = 1; \
381 } \
5c56efde
DE
382 if (TARGET_FLAT) \
383 { \
384 /* Let the compiler believe the frame pointer is still \
385 %fp, but output it as %i7. */ \
386 fixed_regs[31] = 1; \
387 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
388 /* ??? This is a hack to disable leaf functions. */ \
389 global_regs[7] = 1; \
390 } \
9ee6230c
JW
391 if (profile_block_flag) \
392 { \
393 /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \
394 uses them. */ \
395 fixed_regs[1] = 1; \
396 fixed_regs[2] = 1; \
397 } \
26c5587d
JW
398 } \
399while (0)
400
1bb87f28
JW
401/* Return number of consecutive hard regs needed starting at reg REGNO
402 to hold something of mode MODE.
403 This is ordinarily the length in words of a value of mode MODE
404 but can be less for certain modes in special long registers.
405
406 On SPARC, ordinary registers hold 32 bits worth;
407 this means both integer and floating point registers.
408
409 We use vectors to keep this information about registers. */
410
411/* How many hard registers it takes to make a register of this mode. */
412extern int hard_regno_nregs[];
413
414#define HARD_REGNO_NREGS(REGNO, MODE) \
415 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
416
417/* Value is 1 if register/mode pair is acceptable on sparc. */
418extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
419
420/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
923a8d06 421 See sparc.c for how we initialize this. */
1bb87f28
JW
422#define HARD_REGNO_MODE_OK(REGNO, MODE) \
423 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
424
425/* Value is 1 if it is a good idea to tie two pseudo registers
426 when one has mode MODE1 and one has mode MODE2.
427 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
428 for any hard reg, then this must be 0 for correct output. */
429#define MODES_TIEABLE_P(MODE1, MODE2) \
430 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
431
432/* Specify the registers used for certain standard purposes.
433 The values of these macros are register numbers. */
434
435/* SPARC pc isn't overloaded on a register that the compiler knows about. */
436/* #define PC_REGNUM */
437
438/* Register to use for pushing function arguments. */
439#define STACK_POINTER_REGNUM 14
440
441/* Actual top-of-stack address is 92 greater than the contents
442 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
443 for the ins and local registers, 4 byte for structure return address, and
444 24 bytes for the 6 register parameters. */
445#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
446
447/* Base register for access to local variables of the function. */
448#define FRAME_POINTER_REGNUM 30
449
450#if 0
451/* Register that is used for the return address. */
452#define RETURN_ADDR_REGNUM 15
453#endif
454
455/* Value should be nonzero if functions must have frame pointers.
456 Zero means the frame pointer need not be set up (and parms
457 may be accessed via the stack pointer) in functions that seem suitable.
458 This is computed in `reload', in reload1.c.
459
c0524a34 460 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
461extern int leaf_function;
462
463#define FRAME_POINTER_REQUIRED \
5c56efde
DE
464 (TARGET_FRW ? (current_function_calls_alloca || current_function_varargs) \
465 : ! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
466
467/* C statement to store the difference between the frame pointer
468 and the stack pointer values immediately after the function prologue.
469
470 Note, we always pretend that this is a leaf function because if
471 it's not, there's no point in trying to eliminate the
472 frame pointer. If it is a leaf function, we guessed right! */
473#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5c56efde 474 ((VAR) = (TARGET_FRW ? sparc_flat_compute_frame_size (get_frame_size ()) \
5b485d2c 475 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
476
477/* Base register for access to arguments of the function. */
5c56efde 478#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1bb87f28 479
6098b63e
RK
480/* Register in which static-chain is passed to a function. This must
481 not be a register used by the prologue. */
482#define STATIC_CHAIN_REGNUM 2
1bb87f28
JW
483
484/* Register which holds offset table for position-independent
485 data references. */
486
487#define PIC_OFFSET_TABLE_REGNUM 23
488
489#define INITIALIZE_PIC initialize_pic ()
490#define FINALIZE_PIC finalize_pic ()
491
d9ca49d5 492/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 493 in memory. */
d9ca49d5 494#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 495 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 496
1bb87f28
JW
497/* Functions which return large structures get the address
498 to place the wanted value at offset 64 from the frame.
499 Must reserve 64 bytes for the in and local registers. */
500/* Used only in other #defines in this file. */
501#define STRUCT_VALUE_OFFSET 64
502
503#define STRUCT_VALUE \
504 gen_rtx (MEM, Pmode, \
505 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
506 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
507#define STRUCT_VALUE_INCOMING \
508 gen_rtx (MEM, Pmode, \
509 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
510 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
511\f
512/* Define the classes of registers for register constraints in the
513 machine description. Also define ranges of constants.
514
515 One of the classes must always be named ALL_REGS and include all hard regs.
516 If there is more than one class, another class must be named NO_REGS
517 and contain no registers.
518
519 The name GENERAL_REGS must be the name of a class (or an alias for
520 another name such as ALL_REGS). This is the class of registers
521 that is allowed by "g" or "r" in a register constraint.
522 Also, registers outside this class are allocated only when
523 instructions express preferences for them.
524
525 The classes must be numbered in nondecreasing order; that is,
526 a larger-numbered class must never be contained completely
527 in a smaller-numbered class.
528
529 For any two classes, it is very desirable that there be another
530 class that represents their union. */
531
532/* The SPARC has two kinds of registers, general and floating point. */
533
534enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
535
536#define N_REG_CLASSES (int) LIM_REG_CLASSES
537
538/* Give names of register classes as strings for dump file. */
539
540#define REG_CLASS_NAMES \
541 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
542
543/* Define which registers fit in which classes.
544 This is an initializer for a vector of HARD_REG_SET
545 of length N_REG_CLASSES. */
546
547#if 0 && defined (__GNUC__)
548#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
549#else
550#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
551#endif
552
553/* The same information, inverted:
554 Return the class number of the smallest class containing
555 reg number REGNO. This could be a conditional expression
556 or could index an array. */
557
558#define REGNO_REG_CLASS(REGNO) \
559 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
560
561/* This is the order in which to allocate registers
51f0e748
JW
562 normally.
563
564 We put %f0/%f1 last among the float registers, so as to make it more
6a4bb1fa 565 likely that a pseudo-register which dies in the float return register
51f0e748
JW
566 will get allocated to the float return register, thus saving a move
567 instruction at the end of the function. */
1bb87f28 568#define REG_ALLOC_ORDER \
b4ac57ab
RS
569{ 8, 9, 10, 11, 12, 13, 2, 3, \
570 15, 16, 17, 18, 19, 20, 21, 22, \
571 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 572 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
573 40, 41, 42, 43, 44, 45, 46, 47, \
574 48, 49, 50, 51, 52, 53, 54, 55, \
575 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 576 32, 33, \
4b69d2a3 577 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
578
579/* This is the order in which to allocate registers for
580 leaf functions. If all registers can fit in the "i" registers,
581 then we have the possibility of having a leaf function. */
582#define REG_LEAF_ALLOC_ORDER \
583{ 2, 3, 24, 25, 26, 27, 28, 29, \
584 15, 8, 9, 10, 11, 12, 13, \
585 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 586 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
587 40, 41, 42, 43, 44, 45, 46, 47, \
588 48, 49, 50, 51, 52, 53, 54, 55, \
589 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 590 32, 33, \
4b69d2a3 591 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
592
593#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
594
5c56efde
DE
595/* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
596 -mflat is used. Function only_leaf_regs_used will return 0 if a global
597 register is used and is not permitted in a leaf function. We make %g7
598 a global reg if -mflat and voila. Since %g7 is a system register and is
599 fixed it won't be used by gcc anyway. */
1bb87f28 600#define LEAF_REGISTERS \
5c56efde 601{ 1, 1, 1, 1, 1, 1, 1, 0, \
1bb87f28
JW
602 0, 0, 0, 0, 0, 0, 1, 0, \
603 0, 0, 0, 0, 0, 0, 0, 0, \
604 1, 1, 1, 1, 1, 1, 0, 1, \
605 1, 1, 1, 1, 1, 1, 1, 1, \
606 1, 1, 1, 1, 1, 1, 1, 1, \
607 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 608 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
609
610extern char leaf_reg_remap[];
611#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1bb87f28 612
1bb87f28
JW
613/* The class value for index registers, and the one for base regs. */
614#define INDEX_REG_CLASS GENERAL_REGS
615#define BASE_REG_CLASS GENERAL_REGS
616
617/* Get reg_class from a letter such as appears in the machine description. */
618
619#define REG_CLASS_FROM_LETTER(C) \
620 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
621
622/* The letters I, J, K, L and M in a register constraint string
623 can be used to stand for particular ranges of immediate operands.
624 This macro defines what the ranges are.
625 C is the letter, and VALUE is a constant value.
626 Return 1 if VALUE is in the range specified by C.
627
628 For SPARC, `I' is used for the range of constants an insn
629 can actually contain.
630 `J' is used for the range which is just zero (since that is R0).
9ad2c692 631 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
632
633#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
634
635#define CONST_OK_FOR_LETTER_P(VALUE, C) \
636 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
637 : (C) == 'J' ? (VALUE) == 0 \
638 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
639 : 0)
640
641/* Similar, but for floating constants, and defining letters G and H.
642 Here VALUE is the CONST_DOUBLE rtx itself. */
643
644#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
96f69de5 645 ((C) == 'G' ? fp_zero_operand (VALUE) \
1bb87f28
JW
646 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
647 : 0)
648
649/* Given an rtx X being reloaded into a reg required to be
650 in class CLASS, return the class of reg to actually use.
651 In general this is just CLASS; but on some machines
652 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
653/* We can't load constants into FP registers. We can't load any FP constant
654 if an 'E' constraint fails to match it. */
655#define PREFERRED_RELOAD_CLASS(X,CLASS) \
656 (CONSTANT_P (X) \
657 && ((CLASS) == FP_REGS \
658 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
659 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
660 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
661 ? NO_REGS : (CLASS))
1bb87f28
JW
662
663/* Return the register class of a scratch register needed to load IN into
664 a register of class CLASS in MODE.
665
666 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 667 into a register.
1bb87f28 668
ae51bd97
JW
669 Also, we need a temporary when loading/storing a HImode/QImode value
670 between memory and the FPU registers. This can happen when combine puts
671 a paradoxical subreg in a float/fix conversion insn. */
672
673#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
7aca9b9c 674 (((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
ae51bd97
JW
675 && (GET_CODE (IN) == MEM \
676 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
677 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
678
679#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
680 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
681 && (GET_CODE (IN) == MEM \
682 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
683 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 684
b924cef0
JW
685/* On SPARC it is not possible to directly move data between
686 GENERAL_REGS and FP_REGS. */
687#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
688 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
689 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 690
fe1f7f24
JW
691/* Return the stack location to use for secondary memory needed reloads. */
692#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
15f67e06
JW
693 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
694 GEN_INT (STARTING_FRAME_OFFSET)))
fe1f7f24 695
1bb87f28
JW
696/* Return the maximum number of consecutive registers
697 needed to represent mode MODE in a register of class CLASS. */
698/* On SPARC, this is the size of MODE in words. */
699#define CLASS_MAX_NREGS(CLASS, MODE) \
700 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
701\f
702/* Stack layout; function entry, exit and calling. */
703
704/* Define the number of register that can hold parameters.
705 These two macros are used only in other macro definitions below. */
706#define NPARM_REGS 6
707
708/* Define this if pushing a word on the stack
709 makes the stack pointer a smaller address. */
710#define STACK_GROWS_DOWNWARD
711
712/* Define this if the nominal address of the stack frame
713 is at the high-address end of the local variables;
714 that is, each additional local variable allocated
715 goes at a more negative offset in the frame. */
716#define FRAME_GROWS_DOWNWARD
717
718/* Offset within stack frame to start allocating local variables at.
719 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
720 first local allocated. Otherwise, it is the offset to the BEGINNING
721 of the first local allocated. */
7238ce3a
JW
722/* This allows space for one TFmode floating point value. */
723#define STARTING_FRAME_OFFSET \
724 (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT))
1bb87f28
JW
725
726/* If we generate an insn to push BYTES bytes,
727 this says how many the stack pointer really advances by.
728 On SPARC, don't define this because there are no push insns. */
729/* #define PUSH_ROUNDING(BYTES) */
730
731/* Offset of first parameter from the argument pointer register value.
732 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
733 even if this function isn't going to use it. */
734#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
735
736/* When a parameter is passed in a register, stack space is still
737 allocated for it. */
738#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
739
740/* Keep the stack pointer constant throughout the function.
b4ac57ab 741 This is both an optimization and a necessity: longjmp
1bb87f28
JW
742 doesn't behave itself when the stack pointer moves within
743 the function! */
744#define ACCUMULATE_OUTGOING_ARGS
745
746/* Value is the number of bytes of arguments automatically
747 popped when returning from a subroutine call.
748 FUNTYPE is the data type of the function (as a tree),
749 or for a library call it is an identifier node for the subroutine name.
750 SIZE is the number of bytes of arguments passed on the stack. */
751
752#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
753
5b485d2c
JW
754/* Some subroutine macros specific to this machine.
755 When !TARGET_FPU, put float return values in the general registers,
756 since we don't have any fp registers. */
1bb87f28 757#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 758 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 759#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
760 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
761 : (TARGET_FRW ? 8 : 24))
1bb87f28 762#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 763#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 764
92ea370b
TW
765/* Define this macro if the target machine has "register windows". This
766 C expression returns the register number as seen by the called function
767 corresponding to register number OUT as seen by the calling function.
768 Return OUT if register number OUT is not an outbound register. */
769
770#define INCOMING_REGNO(OUT) \
771 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
772
773/* Define this macro if the target machine has "register windows". This
774 C expression returns the register number as seen by the calling function
775 corresponding to register number IN as seen by the called function.
776 Return IN if register number IN is not an inbound register. */
777
778#define OUTGOING_REGNO(IN) \
779 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
780
1bb87f28
JW
781/* Define how to find the value returned by a function.
782 VALTYPE is the data type of the value (as a tree).
783 If the precise function being called is known, FUNC is its FUNCTION_DECL;
784 otherwise, FUNC is 0. */
785
786/* On SPARC the value is found in the first "output" register. */
787
788#define FUNCTION_VALUE(VALTYPE, FUNC) \
789 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
790
791/* But the called function leaves it in the first "input" register. */
792
793#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
794 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
795
796/* Define how to find the value returned by a library function
797 assuming the value has mode MODE. */
798
799#define LIBCALL_VALUE(MODE) \
800 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
801
802/* 1 if N is a possible register number for a function value
803 as seen by the caller.
804 On SPARC, the first "output" reg is used for integer values,
805 and the first floating point register is used for floating point values. */
806
807#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
808
34aaacec
JW
809/* Define the size of space to allocate for the return value of an
810 untyped_call. */
811
812#define APPLY_RESULT_SIZE 16
813
1bb87f28
JW
814/* 1 if N is a possible register number for function argument passing.
815 On SPARC, these are the "output" registers. */
816
817#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
818\f
819/* Define a data type for recording info about an argument list
820 during the scan of that argument list. This data type should
821 hold all necessary information about the function itself
822 and about the args processed so far, enough to enable macros
823 such as FUNCTION_ARG to determine where the next arg should go.
824
825 On SPARC, this is a single integer, which is a number of words
826 of arguments scanned so far (including the invisible argument,
827 if any, which holds the structure-value-address).
828 Thus 7 or more means all following args should go on the stack. */
829
830#define CUMULATIVE_ARGS int
831
832#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
833 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
834
1bb87f28
JW
835/* Initialize a variable CUM of type CUMULATIVE_ARGS
836 for a call to a function whose data type is FNTYPE.
837 For a library call, FNTYPE is 0.
838
839 On SPARC, the offset always starts at 0: the first parm reg is always
840 the same reg. */
841
842#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
843
844/* Update the data in CUM to advance over an argument
845 of mode MODE and data type TYPE.
846 (TYPE is null for libcalls where that information may not be available.) */
847
848#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
849 ((CUM) += ((MODE) != BLKmode \
850 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
851 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
852
853/* Determine where to put an argument to a function.
854 Value is zero to push the argument on the stack,
855 or a hard register in which to store the argument.
856
857 MODE is the argument's machine mode.
858 TYPE is the data type of the argument (as a tree).
859 This is null for libcalls where that information may
860 not be available.
861 CUM is a variable of type CUMULATIVE_ARGS which gives info about
862 the preceding args and about the function being called.
863 NAMED is nonzero if this argument is a named parameter
864 (otherwise it is an extra parameter matching an ellipsis). */
865
866/* On SPARC the first six args are normally in registers
867 and the rest are pushed. Any arg that starts within the first 6 words
868 is at least partially passed in a register unless its data type forbids. */
869
870#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 871((CUM) < NPARM_REGS \
1bb87f28 872 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
873 && ((TYPE)==0 || (MODE) != BLKmode \
874 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 875 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 876 : 0)
1bb87f28
JW
877
878/* Define where a function finds its arguments.
879 This is different from FUNCTION_ARG because of register windows. */
880
881#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 882((CUM) < NPARM_REGS \
1bb87f28 883 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
884 && ((TYPE)==0 || (MODE) != BLKmode \
885 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 886 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 887 : 0)
1bb87f28
JW
888
889/* For an arg passed partly in registers and partly in memory,
890 this is the number of registers used.
891 For args passed entirely in registers or entirely in memory, zero.
892 Any arg that starts in the first 6 regs but won't entirely fit in them
893 needs partial registers on the Sparc. */
894
895#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 896 ((CUM) < NPARM_REGS \
1bb87f28 897 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
898 && ((TYPE)==0 || (MODE) != BLKmode \
899 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
900 && ((CUM) + ((MODE) == BLKmode \
901 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
902 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
903 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
904 : 0)
905
d9ca49d5 906/* The SPARC ABI stipulates passing struct arguments (of any size) and
87ac3809
JW
907 quad-precision floats by invisible reference.
908 For Pascal, also pass arrays by reference. */
1bb87f28 909#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5 910 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
87ac3809
JW
911 || TREE_CODE (TYPE) == UNION_TYPE \
912 || TREE_CODE (TYPE) == ARRAY_TYPE)) \
d9ca49d5 913 || (MODE == TFmode))
1bb87f28
JW
914
915/* Define the information needed to generate branch and scc insns. This is
916 stored from the compare operation. Note that we can't use "rtx" here
917 since it hasn't been defined! */
918
919extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
920
921/* Define the function that build the compare insn for scc and bcc. */
922
923extern struct rtx_def *gen_compare_reg ();
924\f
4b69d2a3
RS
925/* Generate the special assembly code needed to tell the assembler whatever
926 it might need to know about the return value of a function.
927
928 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
929 information to the assembler relating to peephole optimization (done in
930 the assembler). */
931
932#define ASM_DECLARE_RESULT(FILE, RESULT) \
933 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
934
1bb87f28
JW
935/* Output the label for a function definition. */
936
4b69d2a3
RS
937#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
938do { \
939 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
940 ASM_OUTPUT_LABEL (FILE, NAME); \
941} while (0)
1bb87f28 942
1bb87f28
JW
943/* This macro generates the assembly code for function entry.
944 FILE is a stdio stream to output the code to.
945 SIZE is an int: how many units of temporary storage to allocate.
946 Refer to the array `regs_ever_live' to determine which registers
947 to save; `regs_ever_live[I]' is nonzero if register number I
948 is ever used in the function. This macro is responsible for
949 knowing which registers should not be saved even if used. */
950
951/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
952 of memory. If any fpu reg is used in the function, we allocate
953 such a block here, at the bottom of the frame, just in case it's needed.
954
955 If this function is a leaf procedure, then we may choose not
956 to do a "save" insn. The decision about whether or not
957 to do this is made in regclass.c. */
958
959#define FUNCTION_PROLOGUE(FILE, SIZE) \
5c56efde 960 (TARGET_FRW ? sparc_flat_output_function_prologue (FILE, SIZE) \
5b485d2c 961 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
962
963/* Output assembler code to FILE to increment profiler label # LABELNO
964 for profiling a function entry. */
965
d2a8e680
RS
966#define FUNCTION_PROFILER(FILE, LABELNO) \
967 do { \
968 fputs ("\tsethi %hi(", (FILE)); \
969 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
970 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
971 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
972 fputs ("),%o0,%o0\n", (FILE)); \
973 } while (0)
1bb87f28
JW
974
975/* Output assembler code to FILE to initialize this source file's
976 basic block profiling info, if that has not already been done. */
d2a8e680
RS
977/* FIXME -- this does not parameterize how it generates labels (like the
978 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
979
980#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
981 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
982 (LABELNO), (LABELNO))
983
984/* Output assembler code to FILE to increment the entry-count for
985 the BLOCKNO'th basic block in this source file. */
986
987#define BLOCK_PROFILER(FILE, BLOCKNO) \
988{ \
989 int blockn = (BLOCKNO); \
990 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
991\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
992 4 * blockn, 4 * blockn, 4 * blockn); \
993}
994
1bb87f28
JW
995/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
996 the stack pointer does not matter. The value is tested only in
997 functions that have frame pointers.
998 No definition is equivalent to always zero. */
999
1000extern int current_function_calls_alloca;
1001extern int current_function_outgoing_args_size;
1002
1003#define EXIT_IGNORE_STACK \
1004 (get_frame_size () != 0 \
1005 || current_function_calls_alloca || current_function_outgoing_args_size)
1006
1007/* This macro generates the assembly code for function exit,
1008 on machines that need it. If FUNCTION_EPILOGUE is not defined
1009 then individual return instructions are generated for each
1010 return statement. Args are same as for FUNCTION_PROLOGUE.
1011
1012 The function epilogue should not depend on the current stack pointer!
1013 It should use the frame pointer only. This is mandatory because
1014 of alloca; we also take advantage of it to omit stack adjustments
1015 before returning. */
1016
1017/* This declaration is needed due to traditional/ANSI
1018 incompatibilities which cannot be #ifdefed away
1019 because they occur inside of macros. Sigh. */
1020extern union tree_node *current_function_decl;
1021
1022#define FUNCTION_EPILOGUE(FILE, SIZE) \
5c56efde 1023 (TARGET_FRW ? sparc_flat_output_function_epilogue (FILE, SIZE) \
5b485d2c 1024 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 1025
5b485d2c 1026#define DELAY_SLOTS_FOR_EPILOGUE \
5c56efde 1027 (TARGET_FRW ? sparc_flat_epilogue_delay_slots () : 1)
1bb87f28 1028#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5c56efde 1029 (TARGET_FRW ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
5b485d2c 1030 : eligible_for_epilogue_delay (trial, slots_filled))
6a4bb1fa 1031\f
1bb87f28
JW
1032/* Output assembler code for a block containing the constant parts
1033 of a trampoline, leaving space for the variable parts. */
1034
1035/* On the sparc, the trampoline contains five instructions:
6098b63e
RK
1036 sethi #TOP_OF_FUNCTION,%g1
1037 or #BOTTOM_OF_FUNCTION,%g1,%g1
1038 sethi #TOP_OF_STATIC,%g2
1039 jmp g1
1040 or #BOTTOM_OF_STATIC,%g2,%g2 */
1bb87f28
JW
1041#define TRAMPOLINE_TEMPLATE(FILE) \
1042{ \
1043 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1044 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1045 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
6098b63e 1046 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
1bb87f28
JW
1047 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1048}
1049
1050/* Length in units of the trampoline for entering a nested function. */
1051
1052#define TRAMPOLINE_SIZE 20
1053
1054/* Emit RTL insns to initialize the variable parts of a trampoline.
1055 FNADDR is an RTX for the address of the function's pure code.
1056 CXT is an RTX for the static chain value for the function.
1057
1058 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1059 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1060 (to store insns). This is a bit excessive. Perhaps a different
297c72b6
RS
1061 mechanism would be better here.
1062
1063 Emit 3 FLUSH instructions (UNSPEC_VOLATILE 2) to synchonize the data
1064 and instruction caches. */
1bb87f28
JW
1065
1066#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1067{ \
1068 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1069 size_int (10), 0, 1); \
1070 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1071 size_int (10), 0, 1); \
1072 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1073 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1074 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1075 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1076 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1077 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1078 rtx g1_ori = gen_rtx (HIGH, SImode, \
1079 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1080 rtx g2_ori = gen_rtx (HIGH, SImode, \
1081 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1082 rtx tem = gen_reg_rtx (SImode); \
6098b63e 1083 emit_move_insn (tem, g1_sethi); \
1bb87f28
JW
1084 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1085 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
6098b63e 1086 emit_move_insn (tem, g1_ori); \
1bb87f28
JW
1087 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1088 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
6098b63e 1089 emit_move_insn (tem, g2_sethi); \
1bb87f28
JW
1090 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1091 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
6098b63e 1092 emit_move_insn (tem, g2_ori); \
1bb87f28
JW
1093 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1094 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
297c72b6
RS
1095 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1096 gen_rtvec (1, plus_constant (TRAMP, 0)), \
1097 2)); \
1098 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1099 gen_rtvec (1, plus_constant (TRAMP, 8)), \
1100 2)); \
1101 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1102 gen_rtvec (1, plus_constant (TRAMP, 16)), \
1103 2)); \
1bb87f28 1104}
6a4bb1fa 1105\f
9a1c7cd7
JW
1106/* Generate necessary RTL for __builtin_saveregs().
1107 ARGLIST is the argument list; see expr.c. */
1108extern struct rtx_def *sparc_builtin_saveregs ();
1109#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1110
1111/* Generate RTL to flush the register windows so as to make arbitrary frames
1112 available. */
1113#define SETUP_FRAME_ADDRESSES() \
1114 emit_insn (gen_flush_register_windows ())
1115
1116/* Given an rtx for the address of a frame,
1117 return an rtx for the address of the word in the frame
1118 that holds the dynamic chain--the previous frame's address. */
1119#define DYNAMIC_CHAIN_ADDRESS(frame) \
1120 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1121
1122/* The return address isn't on the stack, it is in a register, so we can't
1123 access it from the current frame pointer. We can access it from the
1124 previous frame pointer though by reading a value from the register window
1125 save area. */
1126#define RETURN_ADDR_IN_PREVIOUS_FRAME
1127
1128/* The current return address is in %i7. The return address of anything
1129 farther back is in the register window save area at [%fp+60]. */
1130/* ??? This ignores the fact that the actual return address is +8 for normal
1131 returns, and +12 for structure returns. */
1132#define RETURN_ADDR_RTX(count, frame) \
1133 ((count == -1) \
1134 ? gen_rtx (REG, Pmode, 31) \
1135 : copy_to_reg (gen_rtx (MEM, Pmode, \
1136 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1137\f
1138/* Addressing modes, and classification of registers for them. */
1139
1140/* #define HAVE_POST_INCREMENT */
1141/* #define HAVE_POST_DECREMENT */
1142
1143/* #define HAVE_PRE_DECREMENT */
1144/* #define HAVE_PRE_INCREMENT */
1145
1146/* Macros to check register numbers against specific register classes. */
1147
1148/* These assume that REGNO is a hard or pseudo reg number.
1149 They give nonzero only if REGNO is a hard reg of the suitable class
1150 or a pseudo reg currently allocated to a suitable hard reg.
1151 Since they use reg_renumber, they are safe only once reg_renumber
1152 has been allocated, which happens in local-alloc.c. */
1153
1154#define REGNO_OK_FOR_INDEX_P(REGNO) \
1155(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1156#define REGNO_OK_FOR_BASE_P(REGNO) \
1157(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1158#define REGNO_OK_FOR_FP_P(REGNO) \
1159(((REGNO) ^ 0x20) < 32 \
1160 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1161
1162/* Now macros that check whether X is a register and also,
1163 strictly, whether it is in a specified class.
1164
1165 These macros are specific to the SPARC, and may be used only
1166 in code for printing assembler insns and in conditions for
1167 define_optimization. */
1168
1169/* 1 if X is an fp register. */
1170
1171#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1172\f
1173/* Maximum number of registers that can appear in a valid memory address. */
1174
1175#define MAX_REGS_PER_ADDRESS 2
1176
7aca9b9c
JW
1177/* Recognize any constant value that is a valid address.
1178 When PIC, we do not accept an address that would require a scratch reg
1179 to load into a register. */
1bb87f28 1180
6eff269e
BK
1181#define CONSTANT_ADDRESS_P(X) \
1182 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
7aca9b9c
JW
1183 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1184 || (GET_CODE (X) == CONST \
1185 && ! (flag_pic && pic_address_needs_scratch (X))))
1186
1187/* Define this, so that when PIC, reload won't try to reload invalid
1188 addresses which require two reload registers. */
1189
1190#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
1bb87f28
JW
1191
1192/* Nonzero if the constant value X is a legitimate general operand.
1193 Anything can be made to work except floating point constants. */
1194
1195#define LEGITIMATE_CONSTANT_P(X) \
1196 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1197
1198/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1199 and check its validity for a certain class.
1200 We have two alternate definitions for each of them.
1201 The usual definition accepts all pseudo regs; the other rejects
1202 them unless they have been allocated suitable hard regs.
1203 The symbol REG_OK_STRICT causes the latter definition to be used.
1204
1205 Most source files want to accept pseudo regs in the hope that
1206 they will get allocated to the class that the insn wants them to be in.
1207 Source files for reload pass need to be strict.
1208 After reload, it makes no difference, since pseudo regs have
1209 been eliminated by then. */
1210
1211/* Optional extra constraints for this machine. Borrowed from romp.h.
1212
1213 For the SPARC, `Q' means that this is a memory operand but not a
1214 symbolic memory operand. Note that an unassigned pseudo register
1215 is such a memory operand. Needed because reload will generate
1216 these things in insns and then not re-recognize the insns, causing
1217 constrain_operands to fail.
1218
1bb87f28
JW
1219 `S' handles constraints for calls. */
1220
1221#ifndef REG_OK_STRICT
1222
1223/* Nonzero if X is a hard reg that can be used as an index
1224 or if it is a pseudo reg. */
1225#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1226/* Nonzero if X is a hard reg that can be used as a base reg
1227 or if it is a pseudo reg. */
1228#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1229
1230#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1231 ((C) == 'Q' \
1232 ? ((GET_CODE (OP) == MEM \
1233 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1234 && ! symbolic_memory_operand (OP, VOIDmode)) \
1235 || (reload_in_progress && GET_CODE (OP) == REG \
1236 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
19858600
JL
1237 : (C) == 'T' \
1238 ? (mem_aligned_8 (OP)) \
1239 : (C) == 'U' \
1240 ? (register_ok_for_ldd (OP)) \
db5e449c 1241 : 0)
19858600 1242
1bb87f28
JW
1243#else
1244
1245/* Nonzero if X is a hard reg that can be used as an index. */
1246#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1247/* Nonzero if X is a hard reg that can be used as a base reg. */
1248#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1249
1250#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1251 ((C) == 'Q' \
1252 ? (GET_CODE (OP) == REG \
1253 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1254 && reg_renumber[REGNO (OP)] < 0) \
1255 : GET_CODE (OP) == MEM) \
9ad2c692 1256 : (C) == 'T' \
b165d471 1257 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
9ad2c692 1258 : (C) == 'U' \
b165d471
JW
1259 ? (GET_CODE (OP) == REG \
1260 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1261 || reg_renumber[REGNO (OP)] > 0) \
1262 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
1263#endif
1264\f
1265/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1266 that is a valid memory address for an instruction.
1267 The MODE argument is the machine mode for the MEM expression
1268 that wants to use this address.
1269
1270 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1271 ordinarily. This changes a bit when generating PIC.
1272
1273 If you change this, execute "rm explow.o recog.o reload.o". */
1274
bec2e359
JW
1275#define RTX_OK_FOR_BASE_P(X) \
1276 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1277 || (GET_CODE (X) == SUBREG \
1278 && GET_CODE (SUBREG_REG (X)) == REG \
1279 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1280
1281#define RTX_OK_FOR_INDEX_P(X) \
1282 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1283 || (GET_CODE (X) == SUBREG \
1284 && GET_CODE (SUBREG_REG (X)) == REG \
1285 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1286
1287#define RTX_OK_FOR_OFFSET_P(X) \
1288 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1289
1bb87f28 1290#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1291{ if (RTX_OK_FOR_BASE_P (X)) \
1292 goto ADDR; \
1bb87f28
JW
1293 else if (GET_CODE (X) == PLUS) \
1294 { \
bec2e359
JW
1295 register rtx op0 = XEXP (X, 0); \
1296 register rtx op1 = XEXP (X, 1); \
1297 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1298 { \
bec2e359 1299 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1300 goto ADDR; \
1301 else if (flag_pic == 1 \
bec2e359
JW
1302 && GET_CODE (op1) != REG \
1303 && GET_CODE (op1) != LO_SUM \
7aca9b9c
JW
1304 && GET_CODE (op1) != MEM \
1305 && (GET_CODE (op1) != CONST_INT \
1306 || SMALL_INT (op1))) \
1bb87f28
JW
1307 goto ADDR; \
1308 } \
bec2e359 1309 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1310 { \
bec2e359
JW
1311 if (RTX_OK_FOR_INDEX_P (op1) \
1312 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1313 goto ADDR; \
1314 } \
bec2e359 1315 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1316 { \
bec2e359
JW
1317 if (RTX_OK_FOR_INDEX_P (op0) \
1318 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1319 goto ADDR; \
1320 } \
1321 } \
bec2e359
JW
1322 else if (GET_CODE (X) == LO_SUM) \
1323 { \
1324 register rtx op0 = XEXP (X, 0); \
1325 register rtx op1 = XEXP (X, 1); \
1326 if (RTX_OK_FOR_BASE_P (op0) \
1327 && CONSTANT_P (op1)) \
1328 goto ADDR; \
1329 } \
1bb87f28
JW
1330 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1331 goto ADDR; \
1332}
1333\f
1334/* Try machine-dependent ways of modifying an illegitimate address
1335 to be legitimate. If we find one, return the new, valid address.
1336 This macro is used in only one place: `memory_address' in explow.c.
1337
1338 OLDX is the address as it was before break_out_memory_refs was called.
1339 In some cases it is useful to look at this to decide what needs to be done.
1340
1341 MODE and WIN are passed so that this macro can use
1342 GO_IF_LEGITIMATE_ADDRESS.
1343
1344 It is always safe for this macro to do nothing. It exists to recognize
1345 opportunities to optimize the output. */
1346
1347/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1348extern struct rtx_def *legitimize_pic_address ();
1349#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1350{ rtx sparc_x = (X); \
1351 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1352 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1353 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1354 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1355 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1356 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1357 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1358 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1359 XEXP (X, 1)); \
1360 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1361 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1362 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1363 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1364 goto WIN; \
7aca9b9c 1365 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
1bb87f28
JW
1366 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1367 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1368 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1369 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1370 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1371 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1372 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1373 || GET_CODE (X) == LABEL_REF) \
1374 (X) = gen_rtx (LO_SUM, Pmode, \
1375 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1376 if (memory_address_p (MODE, X)) \
1377 goto WIN; }
1378
1379/* Go to LABEL if ADDR (a legitimate address expression)
1380 has an effect that depends on the machine mode it is used for.
1381 On the SPARC this is never true. */
1382
1383#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1384\f
1385/* Specify the machine mode that this machine uses
1386 for the index in the tablejump instruction. */
1387#define CASE_VECTOR_MODE SImode
1388
1389/* Define this if the tablejump instruction expects the table
1390 to contain offsets from the address of the table.
1391 Do not define this if the table should contain absolute addresses. */
1392/* #define CASE_VECTOR_PC_RELATIVE */
1393
1394/* Specify the tree operation to be used to convert reals to integers. */
1395#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1396
1397/* This is the kind of divide that is easiest to do in the general case. */
1398#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1399
1400/* Define this as 1 if `char' should by default be signed; else as 0. */
1401#define DEFAULT_SIGNED_CHAR 1
1402
1403/* Max number of bytes we can move from memory to memory
1404 in one reasonably fast instruction. */
2eef2ef1 1405#define MOVE_MAX 8
1bb87f28 1406
0fb5a69e 1407#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1408/* This is the value of the error code EDOM for this machine,
1409 used by the sqrt instruction. */
1410#define TARGET_EDOM 33
1411
1412/* This is how to refer to the variable errno. */
1413#define GEN_ERRNO_RTX \
1414 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1415#endif /* 0 */
24e2a2bf 1416
9a63901f
RK
1417/* Define if operations between registers always perform the operation
1418 on the full register even if a narrower mode is specified. */
1419#define WORD_REGISTER_OPERATIONS
1420
1421/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1422 will either zero-extend or sign-extend. The value of this macro should
1423 be the code that says which one of the two operations is implicitly
1424 done, NIL if none. */
1425#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1bb87f28
JW
1426
1427/* Nonzero if access to memory by bytes is slow and undesirable.
1428 For RISC chips, it means that access to memory by bytes is no
1429 better than access by words when possible, so grab a whole word
1430 and maybe make use of that. */
1431#define SLOW_BYTE_ACCESS 1
1432
1433/* We assume that the store-condition-codes instructions store 0 for false
1434 and some other value for true. This is the value stored for true. */
1435
1436#define STORE_FLAG_VALUE 1
1437
1438/* When a prototype says `char' or `short', really pass an `int'. */
1439#define PROMOTE_PROTOTYPES
1440
d969caf8
RK
1441/* Define this to be nonzero if shift instructions ignore all but the low-order
1442 few bits. */
1443#define SHIFT_COUNT_TRUNCATED 1
1bb87f28
JW
1444
1445/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1446 is done just by pretending it is already truncated. */
1447#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1448
1449/* Specify the machine mode that pointers have.
1450 After generation of rtl, the compiler makes no further distinction
1451 between pointers and any other objects of this machine mode. */
1452#define Pmode SImode
1453
b4ac57ab
RS
1454/* Generate calls to memcpy, memcmp and memset. */
1455#define TARGET_MEM_FUNCTIONS
1456
1bb87f28
JW
1457/* Add any extra modes needed to represent the condition code.
1458
1459 On the Sparc, we have a "no-overflow" mode which is used when an add or
1460 subtract insn is used to set the condition code. Different branches are
1461 used in this case for some operations.
1462
4d449554
JW
1463 We also have two modes to indicate that the relevant condition code is
1464 in the floating-point condition code register. One for comparisons which
1465 will generate an exception if the result is unordered (CCFPEmode) and
1466 one for comparisons which will never trap (CCFPmode). This really should
1467 be a separate register, but we don't want to go to 65 registers. */
1468#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1469
1470/* Define the names for the modes specified above. */
4d449554 1471#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1472
1473/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1474 return the mode to be used for the comparison. For floating-point,
1475 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
922bd191
JW
1476 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1477 processing is needed. */
679655e6 1478#define SELECT_CC_MODE(OP,X,Y) \
4d449554 1479 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
922bd191
JW
1480 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1481 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1482 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
4d449554 1483 ? CC_NOOVmode : CCmode))
1bb87f28 1484
b331b745
RK
1485/* Return non-zero if SELECT_CC_MODE will never return MODE for a
1486 floating point inequality comparison. */
1487
1488#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
1489
1bb87f28
JW
1490/* A function address in a call instruction
1491 is a byte address (for indexing purposes)
1492 so give the MEM rtx a byte's mode. */
1493#define FUNCTION_MODE SImode
1494
1495/* Define this if addresses of constant functions
1496 shouldn't be put through pseudo regs where they can be cse'd.
1497 Desirable on machines where ordinary constants are expensive
1498 but a CALL with constant address is cheap. */
1499#define NO_FUNCTION_CSE
1500
1501/* alloca should avoid clobbering the old register save area. */
1502#define SETJMP_VIA_SAVE_AREA
1503
1504/* Define subroutines to call to handle multiply and divide.
1505 Use the subroutines that Sun's library provides.
1506 The `*' prevents an underscore from being prepended by the compiler. */
1507
1508#define DIVSI3_LIBCALL "*.div"
1509#define UDIVSI3_LIBCALL "*.udiv"
1510#define MODSI3_LIBCALL "*.rem"
1511#define UMODSI3_LIBCALL "*.urem"
1512/* .umul is a little faster than .mul. */
1513#define MULSI3_LIBCALL "*.umul"
1514
8248e2bc
JW
1515/* Define library calls for quad FP operations. These are all part of the
1516 SPARC ABI. */
b3f741ed
JW
1517#define ADDTF3_LIBCALL "_Q_add"
1518#define SUBTF3_LIBCALL "_Q_sub"
1519#define MULTF3_LIBCALL "_Q_mul"
1520#define DIVTF3_LIBCALL "_Q_div"
1521#define SQRTTF2_LIBCALL "_Q_sqrt"
1522#define FLOATSITF2_LIBCALL "_Q_itoq"
1523#define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
1524#define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
1525#define EXTENDSFTF2_LIBCALL "_Q_stoq"
1526#define TRUNCTFSF2_LIBCALL "_Q_qtos"
1527#define EXTENDDFTF2_LIBCALL "_Q_dtoq"
1528#define TRUNCTFDF2_LIBCALL "_Q_qtod"
1529#define EQTF2_LIBCALL "_Q_feq"
1530#define NETF2_LIBCALL "_Q_fne"
1531#define GTTF2_LIBCALL "_Q_fgt"
1532#define GETF2_LIBCALL "_Q_fge"
1533#define LTTF2_LIBCALL "_Q_flt"
1534#define LETF2_LIBCALL "_Q_fle"
8248e2bc 1535
1bb87f28
JW
1536/* Compute the cost of computing a constant rtl expression RTX
1537 whose rtx-code is CODE. The body of this macro is a portion
1538 of a switch statement. If the code is computed here,
1539 return it with a return statement. Otherwise, break from the switch. */
1540
3bb22aee 1541#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1542 case CONST_INT: \
1bb87f28 1543 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1544 return 0; \
1bb87f28
JW
1545 case HIGH: \
1546 return 2; \
1547 case CONST: \
1548 case LABEL_REF: \
1549 case SYMBOL_REF: \
1550 return 4; \
1551 case CONST_DOUBLE: \
1552 if (GET_MODE (RTX) == DImode) \
1553 if ((XINT (RTX, 3) == 0 \
1554 && (unsigned) XINT (RTX, 2) < 0x1000) \
1555 || (XINT (RTX, 3) == -1 \
1556 && XINT (RTX, 2) < 0 \
1557 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1558 return 0; \
1bb87f28
JW
1559 return 8;
1560
a0a74fda
JW
1561/* Compute the cost of an address. For the sparc, all valid addresses are
1562 the same cost. */
1bb87f28 1563
a0a74fda 1564#define ADDRESS_COST(RTX) 1
1bb87f28
JW
1565
1566/* Compute extra cost of moving data between one register class
1567 and another. */
1568#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1569 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1570 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1571
1572/* Provide the costs of a rtl expression. This is in the body of a
1573 switch on CODE. The purpose for the cost of MULT is to encourage
1574 `synth_mult' to find a synthetic multiply when reasonable.
1575
1576 If we need more than 12 insns to do a multiply, then go out-of-line,
1577 since the call overhead will be < 10% of the cost of the multiply. */
1578
3bb22aee 1579#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 1580 case MULT: \
6ffeae97 1581 return TARGET_V8 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
1582 case DIV: \
1583 case UDIV: \
1584 case MOD: \
1585 case UMOD: \
5b485d2c
JW
1586 return COSTS_N_INSNS (25); \
1587 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1588 so that cse will favor the latter. */ \
1589 case FLOAT: \
5b485d2c 1590 case FIX: \
1bb87f28
JW
1591 return 19;
1592
1593/* Conditional branches with empty delay slots have a length of two. */
1594#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1595 if (GET_CODE (INSN) == CALL_INSN \
1596 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1597 LENGTH += 1;
1598\f
1599/* Control the assembler format that we output. */
1600
1601/* Output at beginning of assembler file. */
1602
1603#define ASM_FILE_START(file)
1604
1605/* Output to assembler file text saying following lines
1606 may contain character constants, extra white space, comments, etc. */
1607
1608#define ASM_APP_ON ""
1609
1610/* Output to assembler file text saying following lines
1611 no longer contain unusual constructs. */
1612
1613#define ASM_APP_OFF ""
1614
303d524a
JW
1615#define ASM_LONG ".word"
1616#define ASM_SHORT ".half"
1617#define ASM_BYTE_OP ".byte"
1618
1bb87f28
JW
1619/* Output before read-only data. */
1620
1621#define TEXT_SECTION_ASM_OP ".text"
1622
1623/* Output before writable data. */
1624
1625#define DATA_SECTION_ASM_OP ".data"
1626
1627/* How to refer to registers in assembler output.
1628 This sequence is indexed by compiler's hard-register-number (see above). */
1629
1630#define REGISTER_NAMES \
1631{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1632 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1633 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1634 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1635 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1636 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1637 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1638 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1639
ea3fa5f7
JW
1640/* Define additional names for use in asm clobbers and asm declarations.
1641
1642 We define the fake Condition Code register as an alias for reg 0 (which
1643 is our `condition code' register), so that condition codes can easily
1644 be clobbered by an asm. No such register actually exists. Condition
1645 codes are partly stored in the PSR and partly in the FSR. */
1646
0eb9f40e 1647#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1648
1bb87f28
JW
1649/* How to renumber registers for dbx and gdb. */
1650
1651#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1652
1653/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1654 since the length can run past this up to a continuation point. */
1655#define DBX_CONTIN_LENGTH 1500
1656
1657/* This is how to output a note to DBX telling it the line number
1658 to which the following sequence of instructions corresponds.
1659
1660 This is needed for SunOS 4.0, and should not hurt for 3.2
1661 versions either. */
1662#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1663 { static int sym_lineno = 1; \
1664 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1665 line, sym_lineno, sym_lineno); \
1666 sym_lineno += 1; }
1667
1668/* This is how to output the definition of a user-level label named NAME,
1669 such as the label on a static function or variable NAME. */
1670
1671#define ASM_OUTPUT_LABEL(FILE,NAME) \
1672 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1673
1674/* This is how to output a command to make the user-level label named NAME
1675 defined for reference from other files. */
1676
1677#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1678 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1679
1680/* This is how to output a reference to a user-level label named NAME.
1681 `assemble_name' uses this. */
1682
1683#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1684 fprintf (FILE, "_%s", NAME)
1685
d2a8e680 1686/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1687 PREFIX is the class of label and NUM is the number within the class. */
1688
1689#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1690 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1691
d2a8e680
RS
1692/* This is how to output a reference to an internal numbered label where
1693 PREFIX is the class of label and NUM is the number within the class. */
1694/* FIXME: This should be used throughout gcc, and documented in the texinfo
1695 files. There is no reason you should have to allocate a buffer and
1696 `sprintf' to reference an internal label (as opposed to defining it). */
1697
1698#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1699 fprintf (FILE, "%s%d", PREFIX, NUM)
1700
1bb87f28
JW
1701/* This is how to store into the string LABEL
1702 the symbol_ref name of an internal numbered label where
1703 PREFIX is the class of label and NUM is the number within the class.
1704 This is suitable for output with `assemble_name'. */
1705
1706#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1707 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1708
1709/* This is how to output an assembler line defining a `double' constant. */
1710
1711#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1712 { \
2e7ac77c
JW
1713 long t[2]; \
1714 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1715 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1716 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1717 }
1718
1719/* This is how to output an assembler line defining a `float' constant. */
1720
1721#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1722 { \
2e7ac77c
JW
1723 long t; \
1724 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1725 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1726 } \
1bb87f28 1727
0cd02cbb
DE
1728/* This is how to output an assembler line defining a `long double'
1729 constant. */
1730
1731#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1732 { \
1733 long t[4]; \
1734 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1735 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1736 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1737 }
1738
1bb87f28
JW
1739/* This is how to output an assembler line defining an `int' constant. */
1740
1741#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1742( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1743 output_addr_const (FILE, (VALUE)), \
1744 fprintf (FILE, "\n"))
1745
1746/* This is how to output an assembler line defining a DImode constant. */
1747#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1748 output_double_int (FILE, VALUE)
1749
1750/* Likewise for `char' and `short' constants. */
1751
1752#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1753( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1754 output_addr_const (FILE, (VALUE)), \
1755 fprintf (FILE, "\n"))
1756
1757#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1758( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1759 output_addr_const (FILE, (VALUE)), \
1760 fprintf (FILE, "\n"))
1761
1762/* This is how to output an assembler line for a numeric constant byte. */
1763
1764#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1765 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1766
1767/* This is how to output an element of a case-vector that is absolute. */
1768
1769#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1770do { \
1771 char label[30]; \
1772 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1773 fprintf (FILE, "\t.word\t"); \
1774 assemble_name (FILE, label); \
1775 fprintf (FILE, "\n"); \
1776} while (0)
1bb87f28
JW
1777
1778/* This is how to output an element of a case-vector that is relative.
1779 (SPARC uses such vectors only when generating PIC.) */
1780
4b69d2a3
RS
1781#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1782do { \
1783 char label[30]; \
1784 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1785 fprintf (FILE, "\t.word\t"); \
1786 assemble_name (FILE, label); \
1787 fprintf (FILE, "-1b\n"); \
1788} while (0)
1bb87f28
JW
1789
1790/* This is how to output an assembler line
1791 that says to advance the location counter
1792 to a multiple of 2**LOG bytes. */
1793
1794#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1795 if ((LOG) != 0) \
1796 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1797
1798#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1799 fprintf (FILE, "\t.skip %u\n", (SIZE))
1800
1801/* This says how to output an assembler line
1802 to define a global common symbol. */
1803
1804#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
b277ceaf 1805( fputs ("\t.common ", (FILE)), \
1bb87f28 1806 assemble_name ((FILE), (NAME)), \
b277ceaf 1807 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
1bb87f28 1808
b277ceaf
JW
1809/* This says how to output an assembler line to define a local common
1810 symbol. */
1bb87f28 1811
b277ceaf
JW
1812#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1813( fputs ("\t.reserve ", (FILE)), \
1814 assemble_name ((FILE), (NAME)), \
1815 fprintf ((FILE), ",%u,\"bss\",%u\n", \
1816 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1bb87f28
JW
1817
1818/* Store in OUTPUT a string (made with alloca) containing
1819 an assembler-name for a local static variable named NAME.
1820 LABELNO is an integer which is different for each call. */
1821
1822#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1823( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1824 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1825
c14f2655
RS
1826#define IDENT_ASM_OP ".ident"
1827
1828/* Output #ident as a .ident. */
1829
1830#define ASM_OUTPUT_IDENT(FILE, NAME) \
1831 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1832
1bb87f28
JW
1833/* Define the parentheses used to group arithmetic operations
1834 in assembler code. */
1835
1836#define ASM_OPEN_PAREN "("
1837#define ASM_CLOSE_PAREN ")"
1838
1839/* Define results of standard character escape sequences. */
1840#define TARGET_BELL 007
1841#define TARGET_BS 010
1842#define TARGET_TAB 011
1843#define TARGET_NEWLINE 012
1844#define TARGET_VT 013
1845#define TARGET_FF 014
1846#define TARGET_CR 015
1847
1848#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1849 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1850
1851/* Print operand X (an rtx) in assembler syntax to file FILE.
1852 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1853 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1854
1855#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1856
1857/* Print a memory address as an operand to reference that memory location. */
1858
1859#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1860{ register rtx base, index = 0; \
1861 int offset = 0; \
1862 register rtx addr = ADDR; \
1863 if (GET_CODE (addr) == REG) \
1864 fputs (reg_names[REGNO (addr)], FILE); \
1865 else if (GET_CODE (addr) == PLUS) \
1866 { \
1867 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1868 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1869 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1870 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1871 else \
1872 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1873 fputs (reg_names[REGNO (base)], FILE); \
1874 if (index == 0) \
1875 fprintf (FILE, "%+d", offset); \
1876 else if (GET_CODE (index) == REG) \
1877 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1878 else if (GET_CODE (index) == SYMBOL_REF) \
1879 fputc ('+', FILE), output_addr_const (FILE, index); \
1880 else abort (); \
1881 } \
1882 else if (GET_CODE (addr) == MINUS \
1883 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1884 { \
1885 output_addr_const (FILE, XEXP (addr, 0)); \
1886 fputs ("-(", FILE); \
1887 output_addr_const (FILE, XEXP (addr, 1)); \
1888 fputs ("-.)", FILE); \
1889 } \
1890 else if (GET_CODE (addr) == LO_SUM) \
1891 { \
1892 output_operand (XEXP (addr, 0), 0); \
1893 fputs ("+%lo(", FILE); \
1894 output_address (XEXP (addr, 1)); \
1895 fputc (')', FILE); \
1896 } \
1897 else if (flag_pic && GET_CODE (addr) == CONST \
1898 && GET_CODE (XEXP (addr, 0)) == MINUS \
1899 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1900 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1901 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1902 { \
1903 addr = XEXP (addr, 0); \
1904 output_addr_const (FILE, XEXP (addr, 0)); \
1905 /* Group the args of the second CONST in parenthesis. */ \
1906 fputs ("-(", FILE); \
1907 /* Skip past the second CONST--it does nothing for us. */\
1908 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1909 /* Close the parenthesis. */ \
1910 fputc (')', FILE); \
1911 } \
1912 else \
1913 { \
1914 output_addr_const (FILE, addr); \
1915 } \
1916}
1917
1918/* Declare functions defined in sparc.c and used in templates. */
1919
1920extern char *singlemove_string ();
1921extern char *output_move_double ();
795068a4 1922extern char *output_move_quad ();
1bb87f28 1923extern char *output_fp_move_double ();
795068a4 1924extern char *output_fp_move_quad ();
1bb87f28
JW
1925extern char *output_block_move ();
1926extern char *output_scc_insn ();
1927extern char *output_cbranch ();
1928extern char *output_return ();
1bb87f28
JW
1929
1930/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1931
1932extern int flag_pic;
This page took 0.449747 seconds and 5 git commands to generate.