]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
Fix syntax error.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
9a1c7cd7 37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 44
95dea81f
JW
45/* Sparc ABI says that long double is 4 words. */
46
d9ca49d5 47#define LONG_DOUBLE_TYPE_SIZE 128
d9ca49d5 48
1bb87f28
JW
49#define PTRDIFF_TYPE "int"
50#define SIZE_TYPE "int"
51#define WCHAR_TYPE "short unsigned int"
52#define WCHAR_TYPE_SIZE 16
53
98ccf8fe
RK
54/* Omit frame pointer at high optimization levels. */
55
1bb87f28
JW
56#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
57{ \
58 if (OPTIMIZE >= 2) \
59 { \
60 flag_omit_frame_pointer = 1; \
1bb87f28
JW
61 } \
62}
63
5b485d2c
JW
64/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
65 code into the rtl. Also, if we are profiling, we cannot eliminate
66 the frame pointer (because the return address will get smashed). */
67
68#define OVERRIDE_OPTIONS \
69 do { if (profile_flag || profile_block_flag) \
70 flag_omit_frame_pointer = 0, flag_pic = 0; } while (0)
71
1bb87f28
JW
72/* These compiler options take an argument. We ignore -target for now. */
73
74#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
75 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
76 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
77
78/* Names to predefine in the preprocessor for this target machine. */
79
f19c1a78
JW
80/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
81 new versions, which have an incompatible va-sparc.h file. This matters
82 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
83 wrong varargs file when it is compiled with a different version of gcc. */
84
85#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__"
1bb87f28
JW
86
87/* Print subsidiary information on the compiler version in use. */
88
89#define TARGET_VERSION fprintf (stderr, " (sparc)");
90
91/* Generate DBX debugging information. */
92
93#define DBX_DEBUGGING_INFO
94
95/* Run-time compilation parameters selecting different hardware subsets. */
96
97extern int target_flags;
98
99/* Nonzero if we should generate code to use the fpu. */
100#define TARGET_FPU (target_flags & 1)
101
102/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
103 use fast return insns, but lose some generality. */
104#define TARGET_EPILOGUE (target_flags & 2)
105
95dea81f
JW
106/* Nonzero if we should assume that double pointers might be unaligned.
107 This can happen when linking gcc compiled code with other compilers,
108 because the ABI only guarantees 4 byte alignment. */
109#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 110
885d8175
JW
111/* Nonzero means that we should generate code for a v8 sparc. */
112#define TARGET_V8 (target_flags & 64)
113
114/* Nonzero means that we should generate code for a sparclite. */
115#define TARGET_SPARCLITE (target_flags & 128)
116
5b485d2c 117/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
118 model, i.e. no save/restore instructions are generated, in the most
119 efficient manner. This code is not compatible with normal sparc code. */
120/* This is not a user selectable option yet, because it requires changes
121 that are not yet switchable via command line arguments. */
5b485d2c
JW
122#define TARGET_FRW (target_flags & 256)
123
9a1c7cd7
JW
124/* Nonzero means that we should generate code using a flat register window
125 model, i.e. no save/restore instructions are generated, but which is
126 compatible with normal sparc code. This is the same as above, except
127 that the frame pointer is %l6 instead of %fp. This code is not as efficient
128 as TARGET_FRW, because it has one less allocatable register. */
129/* This is not a user selectable option yet, because it requires changes
130 that are not yet switchable via command line arguments. */
131#define TARGET_FRW_COMPAT (target_flags & 512)
132
1bb87f28
JW
133/* Macro to define tables used to set the flags.
134 This is a list in braces of pairs in braces,
135 each pair being { "NAME", VALUE }
136 where VALUE is the bits to set or minus the bits to clear.
137 An empty string NAME is used to identify the default VALUE. */
138
139#define TARGET_SWITCHES \
140 { {"fpu", 1}, \
26c5587d
JW
141 {"no-fpu", -1}, \
142 {"hard-float", 1}, \
1bb87f28
JW
143 {"soft-float", -1}, \
144 {"epilogue", 2}, \
145 {"no-epilogue", -2}, \
95dea81f
JW
146 {"unaligned-doubles", 4}, \
147 {"no-unaligned-doubles", -4},\
885d8175
JW
148 {"v8", 64}, \
149 {"no-v8", -64}, \
150 {"sparclite", 128}, \
a66279da 151 {"sparclite", -1}, \
885d8175 152 {"no-sparclite", -128}, \
a66279da 153 {"no-sparclite", 1}, \
9a1c7cd7
JW
154/* {"frw", 256}, */ \
155/* {"no-frw", -256}, */ \
156/* {"frw-compat", 256+512}, */ \
157/* {"no-frw-compat", -(256+512)}, */ \
b1fc14e5 158 { "", TARGET_DEFAULT}}
1bb87f28
JW
159
160#define TARGET_DEFAULT 3
161\f
162/* target machine storage layout */
163
164/* Define this if most significant bit is lowest numbered
165 in instructions that operate on numbered bit-fields. */
166#define BITS_BIG_ENDIAN 1
167
168/* Define this if most significant byte of a word is the lowest numbered. */
169/* This is true on the SPARC. */
170#define BYTES_BIG_ENDIAN 1
171
172/* Define this if most significant word of a multiword number is the lowest
173 numbered. */
174/* Doubles are stored in memory with the high order word first. This
175 matters when cross-compiling. */
176#define WORDS_BIG_ENDIAN 1
177
b4ac57ab 178/* number of bits in an addressable storage unit */
1bb87f28
JW
179#define BITS_PER_UNIT 8
180
181/* Width in bits of a "word", which is the contents of a machine register.
182 Note that this is not necessarily the width of data type `int';
183 if using 16-bit ints on a 68000, this would still be 32.
184 But on a machine with 16-bit registers, this would be 16. */
185#define BITS_PER_WORD 32
186#define MAX_BITS_PER_WORD 32
187
188/* Width of a word, in units (bytes). */
189#define UNITS_PER_WORD 4
190
191/* Width in bits of a pointer.
192 See also the macro `Pmode' defined below. */
193#define POINTER_SIZE 32
194
195/* Allocation boundary (in *bits*) for storing arguments in argument list. */
196#define PARM_BOUNDARY 32
197
198/* Boundary (in *bits*) on which stack pointer should be aligned. */
199#define STACK_BOUNDARY 64
200
10d1b70f
JW
201/* ALIGN FRAMES on double word boundaries */
202
203#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
204
1bb87f28
JW
205/* Allocation boundary (in *bits*) for the code of a function. */
206#define FUNCTION_BOUNDARY 32
207
208/* Alignment of field after `int : 0' in a structure. */
209#define EMPTY_FIELD_BOUNDARY 32
210
211/* Every structure's size must be a multiple of this. */
212#define STRUCTURE_SIZE_BOUNDARY 8
213
214/* A bitfield declared as `int' forces `int' alignment for the struct. */
215#define PCC_BITFIELD_TYPE_MATTERS 1
216
217/* No data type wants to be aligned rounder than this. */
218#define BIGGEST_ALIGNMENT 64
219
77a02b01
JW
220/* The best alignment to use in cases where we have a choice. */
221#define FASTEST_ALIGNMENT 64
222
1bb87f28
JW
223/* Make strings word-aligned so strcpy from constants will be faster. */
224#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
225 ((TREE_CODE (EXP) == STRING_CST \
226 && (ALIGN) < FASTEST_ALIGNMENT) \
227 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
228
229/* Make arrays of chars word-aligned for the same reasons. */
230#define DATA_ALIGNMENT(TYPE, ALIGN) \
231 (TREE_CODE (TYPE) == ARRAY_TYPE \
232 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 233 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 234
b4ac57ab 235/* Set this nonzero if move instructions will actually fail to work
1bb87f28 236 when given unaligned data. */
b4ac57ab 237#define STRICT_ALIGNMENT 1
1bb87f28
JW
238
239/* Things that must be doubleword aligned cannot go in the text section,
240 because the linker fails to align the text section enough!
241 Put them in the data section. */
242#define MAX_TEXT_ALIGN 32
243
244#define SELECT_SECTION(T,RELOC) \
245{ \
246 if (TREE_CODE (T) == VAR_DECL) \
247 { \
248 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
249 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
250 && ! (flag_pic && (RELOC))) \
251 text_section (); \
252 else \
253 data_section (); \
254 } \
255 else if (TREE_CODE (T) == CONSTRUCTOR) \
256 { \
257 if (flag_pic != 0 && (RELOC) != 0) \
258 data_section (); \
259 } \
260 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
261 { \
262 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
263 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
264 data_section (); \
265 else \
266 text_section (); \
267 } \
268}
269
270/* Use text section for a constant
271 unless we need more alignment than that offers. */
272#define SELECT_RTX_SECTION(MODE, X) \
273{ \
274 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
275 && ! (flag_pic && symbolic_operand (X))) \
276 text_section (); \
277 else \
278 data_section (); \
279}
280\f
281/* Standard register usage. */
282
283/* Number of actual hardware registers.
284 The hardware registers are assigned numbers for the compiler
285 from 0 to just below FIRST_PSEUDO_REGISTER.
286 All registers that the compiler knows about must be given numbers,
287 even those that are not normally considered general registers.
288
289 SPARC has 32 integer registers and 32 floating point registers. */
290
291#define FIRST_PSEUDO_REGISTER 64
292
293/* 1 for registers that have pervasive standard uses
294 and are not available for the register allocator.
5b485d2c 295 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 296 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
297 g1 through g4 are free to use as temporaries.
298 g5 through g7 are reserved for the operating system. */
1bb87f28 299#define FIXED_REGISTERS \
d9ca49d5 300 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
301 0, 0, 0, 0, 0, 0, 1, 0, \
302 0, 0, 0, 0, 0, 0, 0, 0, \
303 0, 0, 0, 0, 0, 0, 1, 1, \
304 \
305 0, 0, 0, 0, 0, 0, 0, 0, \
306 0, 0, 0, 0, 0, 0, 0, 0, \
307 0, 0, 0, 0, 0, 0, 0, 0, \
308 0, 0, 0, 0, 0, 0, 0, 0}
309
310/* 1 for registers not available across function calls.
311 These must include the FIXED_REGISTERS and also any
312 registers that can be used without being saved.
313 The latter must include the registers where values are returned
314 and the register where structure-value addresses are passed.
315 Aside from that, you can include as many other registers as you like. */
316#define CALL_USED_REGISTERS \
317 {1, 1, 1, 1, 1, 1, 1, 1, \
318 1, 1, 1, 1, 1, 1, 1, 1, \
319 0, 0, 0, 0, 0, 0, 0, 0, \
320 0, 0, 0, 0, 0, 0, 1, 1, \
321 \
322 1, 1, 1, 1, 1, 1, 1, 1, \
323 1, 1, 1, 1, 1, 1, 1, 1, \
324 1, 1, 1, 1, 1, 1, 1, 1, \
325 1, 1, 1, 1, 1, 1, 1, 1}
326
26c5587d
JW
327/* If !TARGET_FPU, then make the fp registers fixed so that they won't
328 be allocated. */
329
330#define CONDITIONAL_REGISTER_USAGE \
331do \
332 { \
333 if (! TARGET_FPU) \
334 { \
335 int regno; \
336 for (regno = 32; regno < 64; regno++) \
337 fixed_regs[regno] = 1; \
338 } \
339 } \
340while (0)
341
1bb87f28
JW
342/* Return number of consecutive hard regs needed starting at reg REGNO
343 to hold something of mode MODE.
344 This is ordinarily the length in words of a value of mode MODE
345 but can be less for certain modes in special long registers.
346
347 On SPARC, ordinary registers hold 32 bits worth;
348 this means both integer and floating point registers.
349
350 We use vectors to keep this information about registers. */
351
352/* How many hard registers it takes to make a register of this mode. */
353extern int hard_regno_nregs[];
354
355#define HARD_REGNO_NREGS(REGNO, MODE) \
356 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
357
358/* Value is 1 if register/mode pair is acceptable on sparc. */
359extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
360
361/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
362 On SPARC, the cpu registers can hold any mode but the float registers
363 can only hold SFmode or DFmode. See sparc.c for how we
364 initialize this. */
365#define HARD_REGNO_MODE_OK(REGNO, MODE) \
366 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
367
368/* Value is 1 if it is a good idea to tie two pseudo registers
369 when one has mode MODE1 and one has mode MODE2.
370 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
371 for any hard reg, then this must be 0 for correct output. */
372#define MODES_TIEABLE_P(MODE1, MODE2) \
373 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
374
375/* Specify the registers used for certain standard purposes.
376 The values of these macros are register numbers. */
377
378/* SPARC pc isn't overloaded on a register that the compiler knows about. */
379/* #define PC_REGNUM */
380
381/* Register to use for pushing function arguments. */
382#define STACK_POINTER_REGNUM 14
383
384/* Actual top-of-stack address is 92 greater than the contents
385 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
386 for the ins and local registers, 4 byte for structure return address, and
387 24 bytes for the 6 register parameters. */
388#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
389
390/* Base register for access to local variables of the function. */
391#define FRAME_POINTER_REGNUM 30
392
393#if 0
394/* Register that is used for the return address. */
395#define RETURN_ADDR_REGNUM 15
396#endif
397
398/* Value should be nonzero if functions must have frame pointers.
399 Zero means the frame pointer need not be set up (and parms
400 may be accessed via the stack pointer) in functions that seem suitable.
401 This is computed in `reload', in reload1.c.
402
c0524a34 403 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
404extern int leaf_function;
405
406#define FRAME_POINTER_REQUIRED \
a72cb8ec 407 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
408
409/* C statement to store the difference between the frame pointer
410 and the stack pointer values immediately after the function prologue.
411
412 Note, we always pretend that this is a leaf function because if
413 it's not, there's no point in trying to eliminate the
414 frame pointer. If it is a leaf function, we guessed right! */
415#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
416 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
417 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
418
419/* Base register for access to arguments of the function. */
420#define ARG_POINTER_REGNUM 30
421
422/* Register in which static-chain is passed to a function. */
423/* ??? */
424#define STATIC_CHAIN_REGNUM 1
425
426/* Register which holds offset table for position-independent
427 data references. */
428
429#define PIC_OFFSET_TABLE_REGNUM 23
430
431#define INITIALIZE_PIC initialize_pic ()
432#define FINALIZE_PIC finalize_pic ()
433
d9ca49d5 434/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 435 in memory. */
d9ca49d5 436#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 437 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 438
1bb87f28
JW
439/* Functions which return large structures get the address
440 to place the wanted value at offset 64 from the frame.
441 Must reserve 64 bytes for the in and local registers. */
442/* Used only in other #defines in this file. */
443#define STRUCT_VALUE_OFFSET 64
444
445#define STRUCT_VALUE \
446 gen_rtx (MEM, Pmode, \
447 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
448 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
449#define STRUCT_VALUE_INCOMING \
450 gen_rtx (MEM, Pmode, \
451 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
452 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
453\f
454/* Define the classes of registers for register constraints in the
455 machine description. Also define ranges of constants.
456
457 One of the classes must always be named ALL_REGS and include all hard regs.
458 If there is more than one class, another class must be named NO_REGS
459 and contain no registers.
460
461 The name GENERAL_REGS must be the name of a class (or an alias for
462 another name such as ALL_REGS). This is the class of registers
463 that is allowed by "g" or "r" in a register constraint.
464 Also, registers outside this class are allocated only when
465 instructions express preferences for them.
466
467 The classes must be numbered in nondecreasing order; that is,
468 a larger-numbered class must never be contained completely
469 in a smaller-numbered class.
470
471 For any two classes, it is very desirable that there be another
472 class that represents their union. */
473
474/* The SPARC has two kinds of registers, general and floating point. */
475
476enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
477
478#define N_REG_CLASSES (int) LIM_REG_CLASSES
479
480/* Give names of register classes as strings for dump file. */
481
482#define REG_CLASS_NAMES \
483 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
484
485/* Define which registers fit in which classes.
486 This is an initializer for a vector of HARD_REG_SET
487 of length N_REG_CLASSES. */
488
489#if 0 && defined (__GNUC__)
490#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
491#else
492#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
493#endif
494
495/* The same information, inverted:
496 Return the class number of the smallest class containing
497 reg number REGNO. This could be a conditional expression
498 or could index an array. */
499
500#define REGNO_REG_CLASS(REGNO) \
501 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
502
503/* This is the order in which to allocate registers
51f0e748
JW
504 normally.
505
506 We put %f0/%f1 last among the float registers, so as to make it more
507 likely that a pseduo-register which dies in the float return register
508 will get allocated to the float return register, thus saving a move
509 instruction at the end of the function. */
1bb87f28 510#define REG_ALLOC_ORDER \
b4ac57ab
RS
511{ 8, 9, 10, 11, 12, 13, 2, 3, \
512 15, 16, 17, 18, 19, 20, 21, 22, \
513 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 514 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
515 40, 41, 42, 43, 44, 45, 46, 47, \
516 48, 49, 50, 51, 52, 53, 54, 55, \
517 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 518 32, 33, \
4b69d2a3 519 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
520
521/* This is the order in which to allocate registers for
522 leaf functions. If all registers can fit in the "i" registers,
523 then we have the possibility of having a leaf function. */
524#define REG_LEAF_ALLOC_ORDER \
525{ 2, 3, 24, 25, 26, 27, 28, 29, \
526 15, 8, 9, 10, 11, 12, 13, \
527 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 528 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
529 40, 41, 42, 43, 44, 45, 46, 47, \
530 48, 49, 50, 51, 52, 53, 54, 55, \
531 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 532 32, 33, \
4b69d2a3 533 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
534
535#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
536
537#define LEAF_REGISTERS \
538{ 1, 1, 1, 1, 1, 1, 1, 1, \
539 0, 0, 0, 0, 0, 0, 1, 0, \
540 0, 0, 0, 0, 0, 0, 0, 0, \
541 1, 1, 1, 1, 1, 1, 0, 1, \
542 1, 1, 1, 1, 1, 1, 1, 1, \
543 1, 1, 1, 1, 1, 1, 1, 1, \
544 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 545 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
546
547extern char leaf_reg_remap[];
548#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
549extern char leaf_reg_backmap[];
550#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
551
1bb87f28
JW
552/* The class value for index registers, and the one for base regs. */
553#define INDEX_REG_CLASS GENERAL_REGS
554#define BASE_REG_CLASS GENERAL_REGS
555
556/* Get reg_class from a letter such as appears in the machine description. */
557
558#define REG_CLASS_FROM_LETTER(C) \
559 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
560
561/* The letters I, J, K, L and M in a register constraint string
562 can be used to stand for particular ranges of immediate operands.
563 This macro defines what the ranges are.
564 C is the letter, and VALUE is a constant value.
565 Return 1 if VALUE is in the range specified by C.
566
567 For SPARC, `I' is used for the range of constants an insn
568 can actually contain.
569 `J' is used for the range which is just zero (since that is R0).
9ad2c692 570 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
571
572#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
573
574#define CONST_OK_FOR_LETTER_P(VALUE, C) \
575 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
576 : (C) == 'J' ? (VALUE) == 0 \
577 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
578 : 0)
579
580/* Similar, but for floating constants, and defining letters G and H.
581 Here VALUE is the CONST_DOUBLE rtx itself. */
582
583#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
584 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
585 && CONST_DOUBLE_LOW (VALUE) == 0 \
586 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
587 : 0)
588
589/* Given an rtx X being reloaded into a reg required to be
590 in class CLASS, return the class of reg to actually use.
591 In general this is just CLASS; but on some machines
592 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
593/* We can't load constants into FP registers. We can't load any FP constant
594 if an 'E' constraint fails to match it. */
595#define PREFERRED_RELOAD_CLASS(X,CLASS) \
596 (CONSTANT_P (X) \
597 && ((CLASS) == FP_REGS \
598 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
599 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
600 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
601 ? NO_REGS : (CLASS))
1bb87f28
JW
602
603/* Return the register class of a scratch register needed to load IN into
604 a register of class CLASS in MODE.
605
606 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 607 into a register.
1bb87f28 608
ae51bd97
JW
609 Also, we need a temporary when loading/storing a HImode/QImode value
610 between memory and the FPU registers. This can happen when combine puts
611 a paradoxical subreg in a float/fix conversion insn. */
612
613#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
614 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
615 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
616 && (GET_CODE (IN) == MEM \
617 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
618 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
619
620#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
621 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
622 && (GET_CODE (IN) == MEM \
623 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
624 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 625
b924cef0
JW
626/* On SPARC it is not possible to directly move data between
627 GENERAL_REGS and FP_REGS. */
628#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
629 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
630 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 631
fe1f7f24
JW
632/* Return the stack location to use for secondary memory needed reloads. */
633#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
634 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, GEN_INT (-8)))
635
1bb87f28
JW
636/* Return the maximum number of consecutive registers
637 needed to represent mode MODE in a register of class CLASS. */
638/* On SPARC, this is the size of MODE in words. */
639#define CLASS_MAX_NREGS(CLASS, MODE) \
640 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
641\f
642/* Stack layout; function entry, exit and calling. */
643
644/* Define the number of register that can hold parameters.
645 These two macros are used only in other macro definitions below. */
646#define NPARM_REGS 6
647
648/* Define this if pushing a word on the stack
649 makes the stack pointer a smaller address. */
650#define STACK_GROWS_DOWNWARD
651
652/* Define this if the nominal address of the stack frame
653 is at the high-address end of the local variables;
654 that is, each additional local variable allocated
655 goes at a more negative offset in the frame. */
656#define FRAME_GROWS_DOWNWARD
657
658/* Offset within stack frame to start allocating local variables at.
659 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
660 first local allocated. Otherwise, it is the offset to the BEGINNING
661 of the first local allocated. */
1fe44568 662#define STARTING_FRAME_OFFSET (-8)
1bb87f28
JW
663
664/* If we generate an insn to push BYTES bytes,
665 this says how many the stack pointer really advances by.
666 On SPARC, don't define this because there are no push insns. */
667/* #define PUSH_ROUNDING(BYTES) */
668
669/* Offset of first parameter from the argument pointer register value.
670 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
671 even if this function isn't going to use it. */
672#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
673
674/* When a parameter is passed in a register, stack space is still
675 allocated for it. */
676#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
677
678/* Keep the stack pointer constant throughout the function.
b4ac57ab 679 This is both an optimization and a necessity: longjmp
1bb87f28
JW
680 doesn't behave itself when the stack pointer moves within
681 the function! */
682#define ACCUMULATE_OUTGOING_ARGS
683
684/* Value is the number of bytes of arguments automatically
685 popped when returning from a subroutine call.
686 FUNTYPE is the data type of the function (as a tree),
687 or for a library call it is an identifier node for the subroutine name.
688 SIZE is the number of bytes of arguments passed on the stack. */
689
690#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
691
5b485d2c
JW
692/* Some subroutine macros specific to this machine.
693 When !TARGET_FPU, put float return values in the general registers,
694 since we don't have any fp registers. */
1bb87f28 695#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 696 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 697#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
698 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
699 : (TARGET_FRW ? 8 : 24))
1bb87f28 700#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 701#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 702
92ea370b
TW
703/* Define this macro if the target machine has "register windows". This
704 C expression returns the register number as seen by the called function
705 corresponding to register number OUT as seen by the calling function.
706 Return OUT if register number OUT is not an outbound register. */
707
708#define INCOMING_REGNO(OUT) \
709 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
710
711/* Define this macro if the target machine has "register windows". This
712 C expression returns the register number as seen by the calling function
713 corresponding to register number IN as seen by the called function.
714 Return IN if register number IN is not an inbound register. */
715
716#define OUTGOING_REGNO(IN) \
717 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
718
1bb87f28
JW
719/* Define how to find the value returned by a function.
720 VALTYPE is the data type of the value (as a tree).
721 If the precise function being called is known, FUNC is its FUNCTION_DECL;
722 otherwise, FUNC is 0. */
723
724/* On SPARC the value is found in the first "output" register. */
725
726#define FUNCTION_VALUE(VALTYPE, FUNC) \
727 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
728
729/* But the called function leaves it in the first "input" register. */
730
731#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
732 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
733
734/* Define how to find the value returned by a library function
735 assuming the value has mode MODE. */
736
737#define LIBCALL_VALUE(MODE) \
738 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
739
740/* 1 if N is a possible register number for a function value
741 as seen by the caller.
742 On SPARC, the first "output" reg is used for integer values,
743 and the first floating point register is used for floating point values. */
744
745#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
746
747/* 1 if N is a possible register number for function argument passing.
748 On SPARC, these are the "output" registers. */
749
750#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
751\f
752/* Define a data type for recording info about an argument list
753 during the scan of that argument list. This data type should
754 hold all necessary information about the function itself
755 and about the args processed so far, enough to enable macros
756 such as FUNCTION_ARG to determine where the next arg should go.
757
758 On SPARC, this is a single integer, which is a number of words
759 of arguments scanned so far (including the invisible argument,
760 if any, which holds the structure-value-address).
761 Thus 7 or more means all following args should go on the stack. */
762
763#define CUMULATIVE_ARGS int
764
765#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
766 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
767
1bb87f28
JW
768/* Initialize a variable CUM of type CUMULATIVE_ARGS
769 for a call to a function whose data type is FNTYPE.
770 For a library call, FNTYPE is 0.
771
772 On SPARC, the offset always starts at 0: the first parm reg is always
773 the same reg. */
774
775#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
776
777/* Update the data in CUM to advance over an argument
778 of mode MODE and data type TYPE.
779 (TYPE is null for libcalls where that information may not be available.) */
780
781#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
782 ((CUM) += ((MODE) != BLKmode \
783 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
784 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
785
786/* Determine where to put an argument to a function.
787 Value is zero to push the argument on the stack,
788 or a hard register in which to store the argument.
789
790 MODE is the argument's machine mode.
791 TYPE is the data type of the argument (as a tree).
792 This is null for libcalls where that information may
793 not be available.
794 CUM is a variable of type CUMULATIVE_ARGS which gives info about
795 the preceding args and about the function being called.
796 NAMED is nonzero if this argument is a named parameter
797 (otherwise it is an extra parameter matching an ellipsis). */
798
799/* On SPARC the first six args are normally in registers
800 and the rest are pushed. Any arg that starts within the first 6 words
801 is at least partially passed in a register unless its data type forbids. */
802
803#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 804((CUM) < NPARM_REGS \
1bb87f28 805 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
806 && ((TYPE)==0 || (MODE) != BLKmode \
807 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 808 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 809 : 0)
1bb87f28
JW
810
811/* Define where a function finds its arguments.
812 This is different from FUNCTION_ARG because of register windows. */
813
814#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 815((CUM) < NPARM_REGS \
1bb87f28 816 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
817 && ((TYPE)==0 || (MODE) != BLKmode \
818 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 819 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 820 : 0)
1bb87f28
JW
821
822/* For an arg passed partly in registers and partly in memory,
823 this is the number of registers used.
824 For args passed entirely in registers or entirely in memory, zero.
825 Any arg that starts in the first 6 regs but won't entirely fit in them
826 needs partial registers on the Sparc. */
827
828#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 829 ((CUM) < NPARM_REGS \
1bb87f28 830 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
831 && ((TYPE)==0 || (MODE) != BLKmode \
832 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
833 && ((CUM) + ((MODE) == BLKmode \
834 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
835 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
836 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
837 : 0)
838
d9ca49d5
JW
839/* The SPARC ABI stipulates passing struct arguments (of any size) and
840 quad-precision floats by invisible reference. */
1bb87f28 841#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
842 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
843 || TREE_CODE (TYPE) == UNION_TYPE)) \
844 || (MODE == TFmode))
1bb87f28
JW
845
846/* Define the information needed to generate branch and scc insns. This is
847 stored from the compare operation. Note that we can't use "rtx" here
848 since it hasn't been defined! */
849
850extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
851
852/* Define the function that build the compare insn for scc and bcc. */
853
854extern struct rtx_def *gen_compare_reg ();
855\f
4b69d2a3
RS
856/* Generate the special assembly code needed to tell the assembler whatever
857 it might need to know about the return value of a function.
858
859 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
860 information to the assembler relating to peephole optimization (done in
861 the assembler). */
862
863#define ASM_DECLARE_RESULT(FILE, RESULT) \
864 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
865
1bb87f28
JW
866/* Output the label for a function definition. */
867
4b69d2a3
RS
868#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
869do { \
870 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
871 ASM_OUTPUT_LABEL (FILE, NAME); \
872} while (0)
1bb87f28
JW
873
874/* Two views of the size of the current frame. */
875extern int actual_fsize;
876extern int apparent_fsize;
877
878/* This macro generates the assembly code for function entry.
879 FILE is a stdio stream to output the code to.
880 SIZE is an int: how many units of temporary storage to allocate.
881 Refer to the array `regs_ever_live' to determine which registers
882 to save; `regs_ever_live[I]' is nonzero if register number I
883 is ever used in the function. This macro is responsible for
884 knowing which registers should not be saved even if used. */
885
886/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
887 of memory. If any fpu reg is used in the function, we allocate
888 such a block here, at the bottom of the frame, just in case it's needed.
889
890 If this function is a leaf procedure, then we may choose not
891 to do a "save" insn. The decision about whether or not
892 to do this is made in regclass.c. */
893
894#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
895 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
896 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
897
898/* Output assembler code to FILE to increment profiler label # LABELNO
899 for profiling a function entry. */
900
d2a8e680
RS
901#define FUNCTION_PROFILER(FILE, LABELNO) \
902 do { \
903 fputs ("\tsethi %hi(", (FILE)); \
904 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
905 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
906 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
907 fputs ("),%o0,%o0\n", (FILE)); \
908 } while (0)
1bb87f28
JW
909
910/* Output assembler code to FILE to initialize this source file's
911 basic block profiling info, if that has not already been done. */
d2a8e680
RS
912/* FIXME -- this does not parameterize how it generates labels (like the
913 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
914
915#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
916 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
917 (LABELNO), (LABELNO))
918
919/* Output assembler code to FILE to increment the entry-count for
920 the BLOCKNO'th basic block in this source file. */
921
922#define BLOCK_PROFILER(FILE, BLOCKNO) \
923{ \
924 int blockn = (BLOCKNO); \
925 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
926\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
927 4 * blockn, 4 * blockn, 4 * blockn); \
928}
929
1bb87f28
JW
930/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
931 the stack pointer does not matter. The value is tested only in
932 functions that have frame pointers.
933 No definition is equivalent to always zero. */
934
935extern int current_function_calls_alloca;
936extern int current_function_outgoing_args_size;
937
938#define EXIT_IGNORE_STACK \
939 (get_frame_size () != 0 \
940 || current_function_calls_alloca || current_function_outgoing_args_size)
941
942/* This macro generates the assembly code for function exit,
943 on machines that need it. If FUNCTION_EPILOGUE is not defined
944 then individual return instructions are generated for each
945 return statement. Args are same as for FUNCTION_PROLOGUE.
946
947 The function epilogue should not depend on the current stack pointer!
948 It should use the frame pointer only. This is mandatory because
949 of alloca; we also take advantage of it to omit stack adjustments
950 before returning. */
951
952/* This declaration is needed due to traditional/ANSI
953 incompatibilities which cannot be #ifdefed away
954 because they occur inside of macros. Sigh. */
955extern union tree_node *current_function_decl;
956
957#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
958 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
959 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 960
5b485d2c
JW
961#define DELAY_SLOTS_FOR_EPILOGUE \
962 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 963#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
964 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
965 : eligible_for_epilogue_delay (trial, slots_filled))
1bb87f28
JW
966
967/* Output assembler code for a block containing the constant parts
968 of a trampoline, leaving space for the variable parts. */
969
970/* On the sparc, the trampoline contains five instructions:
971 sethi #TOP_OF_FUNCTION,%g2
972 or #BOTTOM_OF_FUNCTION,%g2,%g2
973 sethi #TOP_OF_STATIC,%g1
974 jmp g2
975 or #BOTTOM_OF_STATIC,%g1,%g1 */
976#define TRAMPOLINE_TEMPLATE(FILE) \
977{ \
978 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
979 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
980 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
981 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
982 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
983}
984
985/* Length in units of the trampoline for entering a nested function. */
986
987#define TRAMPOLINE_SIZE 20
988
989/* Emit RTL insns to initialize the variable parts of a trampoline.
990 FNADDR is an RTX for the address of the function's pure code.
991 CXT is an RTX for the static chain value for the function.
992
993 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
994 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
995 (to store insns). This is a bit excessive. Perhaps a different
996 mechanism would be better here. */
997
998#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
999{ \
1000 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1001 size_int (10), 0, 1); \
1002 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1003 size_int (10), 0, 1); \
1004 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1005 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1006 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1007 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1008 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1009 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1010 rtx g1_ori = gen_rtx (HIGH, SImode, \
1011 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1012 rtx g2_ori = gen_rtx (HIGH, SImode, \
1013 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1014 rtx tem = gen_reg_rtx (SImode); \
1015 emit_move_insn (tem, g2_sethi); \
1016 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1017 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
1018 emit_move_insn (tem, g2_ori); \
1019 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1020 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
1021 emit_move_insn (tem, g1_sethi); \
1022 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1023 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
1024 emit_move_insn (tem, g1_ori); \
1025 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1026 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1027}
1028
9a1c7cd7
JW
1029/* Generate necessary RTL for __builtin_saveregs().
1030 ARGLIST is the argument list; see expr.c. */
1031extern struct rtx_def *sparc_builtin_saveregs ();
1032#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1033
1034/* Generate RTL to flush the register windows so as to make arbitrary frames
1035 available. */
1036#define SETUP_FRAME_ADDRESSES() \
1037 emit_insn (gen_flush_register_windows ())
1038
1039/* Given an rtx for the address of a frame,
1040 return an rtx for the address of the word in the frame
1041 that holds the dynamic chain--the previous frame's address. */
1042#define DYNAMIC_CHAIN_ADDRESS(frame) \
1043 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1044
1045/* The return address isn't on the stack, it is in a register, so we can't
1046 access it from the current frame pointer. We can access it from the
1047 previous frame pointer though by reading a value from the register window
1048 save area. */
1049#define RETURN_ADDR_IN_PREVIOUS_FRAME
1050
1051/* The current return address is in %i7. The return address of anything
1052 farther back is in the register window save area at [%fp+60]. */
1053/* ??? This ignores the fact that the actual return address is +8 for normal
1054 returns, and +12 for structure returns. */
1055#define RETURN_ADDR_RTX(count, frame) \
1056 ((count == -1) \
1057 ? gen_rtx (REG, Pmode, 31) \
1058 : copy_to_reg (gen_rtx (MEM, Pmode, \
1059 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1060\f
1061/* Addressing modes, and classification of registers for them. */
1062
1063/* #define HAVE_POST_INCREMENT */
1064/* #define HAVE_POST_DECREMENT */
1065
1066/* #define HAVE_PRE_DECREMENT */
1067/* #define HAVE_PRE_INCREMENT */
1068
1069/* Macros to check register numbers against specific register classes. */
1070
1071/* These assume that REGNO is a hard or pseudo reg number.
1072 They give nonzero only if REGNO is a hard reg of the suitable class
1073 or a pseudo reg currently allocated to a suitable hard reg.
1074 Since they use reg_renumber, they are safe only once reg_renumber
1075 has been allocated, which happens in local-alloc.c. */
1076
1077#define REGNO_OK_FOR_INDEX_P(REGNO) \
1078(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1079#define REGNO_OK_FOR_BASE_P(REGNO) \
1080(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1081#define REGNO_OK_FOR_FP_P(REGNO) \
1082(((REGNO) ^ 0x20) < 32 \
1083 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1084
1085/* Now macros that check whether X is a register and also,
1086 strictly, whether it is in a specified class.
1087
1088 These macros are specific to the SPARC, and may be used only
1089 in code for printing assembler insns and in conditions for
1090 define_optimization. */
1091
1092/* 1 if X is an fp register. */
1093
1094#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1095\f
1096/* Maximum number of registers that can appear in a valid memory address. */
1097
1098#define MAX_REGS_PER_ADDRESS 2
1099
1100/* Recognize any constant value that is a valid address. */
1101
6eff269e
BK
1102#define CONSTANT_ADDRESS_P(X) \
1103 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1104 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1105 || GET_CODE (X) == HIGH)
1bb87f28
JW
1106
1107/* Nonzero if the constant value X is a legitimate general operand.
1108 Anything can be made to work except floating point constants. */
1109
1110#define LEGITIMATE_CONSTANT_P(X) \
1111 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1112
1113/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1114 and check its validity for a certain class.
1115 We have two alternate definitions for each of them.
1116 The usual definition accepts all pseudo regs; the other rejects
1117 them unless they have been allocated suitable hard regs.
1118 The symbol REG_OK_STRICT causes the latter definition to be used.
1119
1120 Most source files want to accept pseudo regs in the hope that
1121 they will get allocated to the class that the insn wants them to be in.
1122 Source files for reload pass need to be strict.
1123 After reload, it makes no difference, since pseudo regs have
1124 been eliminated by then. */
1125
1126/* Optional extra constraints for this machine. Borrowed from romp.h.
1127
1128 For the SPARC, `Q' means that this is a memory operand but not a
1129 symbolic memory operand. Note that an unassigned pseudo register
1130 is such a memory operand. Needed because reload will generate
1131 these things in insns and then not re-recognize the insns, causing
1132 constrain_operands to fail.
1133
1bb87f28
JW
1134 `S' handles constraints for calls. */
1135
1136#ifndef REG_OK_STRICT
1137
1138/* Nonzero if X is a hard reg that can be used as an index
1139 or if it is a pseudo reg. */
1140#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1141/* Nonzero if X is a hard reg that can be used as a base reg
1142 or if it is a pseudo reg. */
1143#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1144
1145#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1146 ((C) == 'Q' \
1147 ? ((GET_CODE (OP) == MEM \
1148 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1149 && ! symbolic_memory_operand (OP, VOIDmode)) \
1150 || (reload_in_progress && GET_CODE (OP) == REG \
1151 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
db5e449c
RS
1152 : (C) == 'S' \
1153 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1154 : (C) == 'T' \
1155 ? (mem_aligned_8 (OP)) \
1156 : (C) == 'U' \
1157 ? (register_ok_for_ldd (OP)) \
db5e449c 1158 : 0)
19858600 1159
1bb87f28
JW
1160#else
1161
1162/* Nonzero if X is a hard reg that can be used as an index. */
1163#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1164/* Nonzero if X is a hard reg that can be used as a base reg. */
1165#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1166
1167#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1168 ((C) == 'Q' \
1169 ? (GET_CODE (OP) == REG \
1170 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1171 && reg_renumber[REGNO (OP)] < 0) \
1172 : GET_CODE (OP) == MEM) \
1173 : (C) == 'S' \
1174 ? (CONSTANT_P (OP) \
1175 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0) \
1176 || strict_memory_address_p (Pmode, OP)) \
1177 : (C) == 'T' \
1178 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, OP) \
1179 : (C) == 'U' \
1180 ? register_ok_for_ldd (OP) : 0)
1bb87f28
JW
1181#endif
1182\f
1183/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1184 that is a valid memory address for an instruction.
1185 The MODE argument is the machine mode for the MEM expression
1186 that wants to use this address.
1187
1188 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1189 ordinarily. This changes a bit when generating PIC.
1190
1191 If you change this, execute "rm explow.o recog.o reload.o". */
1192
bec2e359
JW
1193#define RTX_OK_FOR_BASE_P(X) \
1194 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1195 || (GET_CODE (X) == SUBREG \
1196 && GET_CODE (SUBREG_REG (X)) == REG \
1197 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1198
1199#define RTX_OK_FOR_INDEX_P(X) \
1200 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1201 || (GET_CODE (X) == SUBREG \
1202 && GET_CODE (SUBREG_REG (X)) == REG \
1203 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1204
1205#define RTX_OK_FOR_OFFSET_P(X) \
1206 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1207
1bb87f28 1208#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1209{ if (RTX_OK_FOR_BASE_P (X)) \
1210 goto ADDR; \
1bb87f28
JW
1211 else if (GET_CODE (X) == PLUS) \
1212 { \
bec2e359
JW
1213 register rtx op0 = XEXP (X, 0); \
1214 register rtx op1 = XEXP (X, 1); \
1215 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1216 { \
bec2e359 1217 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1218 goto ADDR; \
1219 else if (flag_pic == 1 \
bec2e359
JW
1220 && GET_CODE (op1) != REG \
1221 && GET_CODE (op1) != LO_SUM \
1222 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1223 goto ADDR; \
1224 } \
bec2e359 1225 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1226 { \
bec2e359
JW
1227 if (RTX_OK_FOR_INDEX_P (op1) \
1228 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1229 goto ADDR; \
1230 } \
bec2e359 1231 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1232 { \
bec2e359
JW
1233 if (RTX_OK_FOR_INDEX_P (op0) \
1234 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1235 goto ADDR; \
1236 } \
1237 } \
bec2e359
JW
1238 else if (GET_CODE (X) == LO_SUM) \
1239 { \
1240 register rtx op0 = XEXP (X, 0); \
1241 register rtx op1 = XEXP (X, 1); \
1242 if (RTX_OK_FOR_BASE_P (op0) \
1243 && CONSTANT_P (op1)) \
1244 goto ADDR; \
1245 } \
1bb87f28
JW
1246 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1247 goto ADDR; \
1248}
1249\f
1250/* Try machine-dependent ways of modifying an illegitimate address
1251 to be legitimate. If we find one, return the new, valid address.
1252 This macro is used in only one place: `memory_address' in explow.c.
1253
1254 OLDX is the address as it was before break_out_memory_refs was called.
1255 In some cases it is useful to look at this to decide what needs to be done.
1256
1257 MODE and WIN are passed so that this macro can use
1258 GO_IF_LEGITIMATE_ADDRESS.
1259
1260 It is always safe for this macro to do nothing. It exists to recognize
1261 opportunities to optimize the output. */
1262
1263/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1264extern struct rtx_def *legitimize_pic_address ();
1265#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1266{ rtx sparc_x = (X); \
1267 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1268 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1269 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1270 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1271 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1272 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1273 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1274 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1275 XEXP (X, 1)); \
1276 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1277 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1278 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1279 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1280 goto WIN; \
1281 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1282 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1283 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1284 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1285 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1286 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1287 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1288 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1289 || GET_CODE (X) == LABEL_REF) \
1290 (X) = gen_rtx (LO_SUM, Pmode, \
1291 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1292 if (memory_address_p (MODE, X)) \
1293 goto WIN; }
1294
1295/* Go to LABEL if ADDR (a legitimate address expression)
1296 has an effect that depends on the machine mode it is used for.
1297 On the SPARC this is never true. */
1298
1299#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1300\f
1301/* Specify the machine mode that this machine uses
1302 for the index in the tablejump instruction. */
1303#define CASE_VECTOR_MODE SImode
1304
1305/* Define this if the tablejump instruction expects the table
1306 to contain offsets from the address of the table.
1307 Do not define this if the table should contain absolute addresses. */
1308/* #define CASE_VECTOR_PC_RELATIVE */
1309
1310/* Specify the tree operation to be used to convert reals to integers. */
1311#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1312
1313/* This is the kind of divide that is easiest to do in the general case. */
1314#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1315
1316/* Define this as 1 if `char' should by default be signed; else as 0. */
1317#define DEFAULT_SIGNED_CHAR 1
1318
1319/* Max number of bytes we can move from memory to memory
1320 in one reasonably fast instruction. */
2eef2ef1 1321#define MOVE_MAX 8
1bb87f28 1322
0fb5a69e 1323#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1324/* This is the value of the error code EDOM for this machine,
1325 used by the sqrt instruction. */
1326#define TARGET_EDOM 33
1327
1328/* This is how to refer to the variable errno. */
1329#define GEN_ERRNO_RTX \
1330 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1331#endif /* 0 */
24e2a2bf 1332
1bb87f28
JW
1333/* Define if normal loads of shorter-than-word items from memory clears
1334 the rest of the bigs in the register. */
1335#define BYTE_LOADS_ZERO_EXTEND
1336
1337/* Nonzero if access to memory by bytes is slow and undesirable.
1338 For RISC chips, it means that access to memory by bytes is no
1339 better than access by words when possible, so grab a whole word
1340 and maybe make use of that. */
1341#define SLOW_BYTE_ACCESS 1
1342
1343/* We assume that the store-condition-codes instructions store 0 for false
1344 and some other value for true. This is the value stored for true. */
1345
1346#define STORE_FLAG_VALUE 1
1347
1348/* When a prototype says `char' or `short', really pass an `int'. */
1349#define PROMOTE_PROTOTYPES
1350
1351/* Define if shifts truncate the shift count
1352 which implies one can omit a sign-extension or zero-extension
1353 of a shift count. */
1354#define SHIFT_COUNT_TRUNCATED
1355
1356/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1357 is done just by pretending it is already truncated. */
1358#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1359
1360/* Specify the machine mode that pointers have.
1361 After generation of rtl, the compiler makes no further distinction
1362 between pointers and any other objects of this machine mode. */
1363#define Pmode SImode
1364
b4ac57ab
RS
1365/* Generate calls to memcpy, memcmp and memset. */
1366#define TARGET_MEM_FUNCTIONS
1367
1bb87f28
JW
1368/* Add any extra modes needed to represent the condition code.
1369
1370 On the Sparc, we have a "no-overflow" mode which is used when an add or
1371 subtract insn is used to set the condition code. Different branches are
1372 used in this case for some operations.
1373
4d449554
JW
1374 We also have two modes to indicate that the relevant condition code is
1375 in the floating-point condition code register. One for comparisons which
1376 will generate an exception if the result is unordered (CCFPEmode) and
1377 one for comparisons which will never trap (CCFPmode). This really should
1378 be a separate register, but we don't want to go to 65 registers. */
1379#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1380
1381/* Define the names for the modes specified above. */
4d449554 1382#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1383
1384/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1385 return the mode to be used for the comparison. For floating-point,
1386 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1387 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1388 needed. */
679655e6 1389#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1390 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1391 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1392 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1393 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1394
1395/* A function address in a call instruction
1396 is a byte address (for indexing purposes)
1397 so give the MEM rtx a byte's mode. */
1398#define FUNCTION_MODE SImode
1399
1400/* Define this if addresses of constant functions
1401 shouldn't be put through pseudo regs where they can be cse'd.
1402 Desirable on machines where ordinary constants are expensive
1403 but a CALL with constant address is cheap. */
1404#define NO_FUNCTION_CSE
1405
1406/* alloca should avoid clobbering the old register save area. */
1407#define SETJMP_VIA_SAVE_AREA
1408
1409/* Define subroutines to call to handle multiply and divide.
1410 Use the subroutines that Sun's library provides.
1411 The `*' prevents an underscore from being prepended by the compiler. */
1412
1413#define DIVSI3_LIBCALL "*.div"
1414#define UDIVSI3_LIBCALL "*.udiv"
1415#define MODSI3_LIBCALL "*.rem"
1416#define UMODSI3_LIBCALL "*.urem"
1417/* .umul is a little faster than .mul. */
1418#define MULSI3_LIBCALL "*.umul"
1419
1420/* Compute the cost of computing a constant rtl expression RTX
1421 whose rtx-code is CODE. The body of this macro is a portion
1422 of a switch statement. If the code is computed here,
1423 return it with a return statement. Otherwise, break from the switch. */
1424
3bb22aee 1425#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1426 case CONST_INT: \
1bb87f28 1427 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1428 return 0; \
1bb87f28
JW
1429 case HIGH: \
1430 return 2; \
1431 case CONST: \
1432 case LABEL_REF: \
1433 case SYMBOL_REF: \
1434 return 4; \
1435 case CONST_DOUBLE: \
1436 if (GET_MODE (RTX) == DImode) \
1437 if ((XINT (RTX, 3) == 0 \
1438 && (unsigned) XINT (RTX, 2) < 0x1000) \
1439 || (XINT (RTX, 3) == -1 \
1440 && XINT (RTX, 2) < 0 \
1441 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1442 return 0; \
1bb87f28
JW
1443 return 8;
1444
1445/* SPARC offers addressing modes which are "as cheap as a register".
1446 See sparc.c (or gcc.texinfo) for details. */
1447
1448#define ADDRESS_COST(RTX) \
1449 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1450
1451/* Compute extra cost of moving data between one register class
1452 and another. */
1453#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1454 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1455 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1456
1457/* Provide the costs of a rtl expression. This is in the body of a
1458 switch on CODE. The purpose for the cost of MULT is to encourage
1459 `synth_mult' to find a synthetic multiply when reasonable.
1460
1461 If we need more than 12 insns to do a multiply, then go out-of-line,
1462 since the call overhead will be < 10% of the cost of the multiply. */
1463
3bb22aee 1464#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1465 case MULT: \
1466 return COSTS_N_INSNS (25); \
1467 case DIV: \
1468 case UDIV: \
1469 case MOD: \
1470 case UMOD: \
5b485d2c
JW
1471 return COSTS_N_INSNS (25); \
1472 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1473 so that cse will favor the latter. */ \
1474 case FLOAT: \
5b485d2c 1475 case FIX: \
1bb87f28
JW
1476 return 19;
1477
1478/* Conditional branches with empty delay slots have a length of two. */
1479#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1480 if (GET_CODE (INSN) == CALL_INSN \
1481 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1482 LENGTH += 1;
1483\f
1484/* Control the assembler format that we output. */
1485
1486/* Output at beginning of assembler file. */
1487
1488#define ASM_FILE_START(file)
1489
1490/* Output to assembler file text saying following lines
1491 may contain character constants, extra white space, comments, etc. */
1492
1493#define ASM_APP_ON ""
1494
1495/* Output to assembler file text saying following lines
1496 no longer contain unusual constructs. */
1497
1498#define ASM_APP_OFF ""
1499
303d524a
JW
1500#define ASM_LONG ".word"
1501#define ASM_SHORT ".half"
1502#define ASM_BYTE_OP ".byte"
1503
1bb87f28
JW
1504/* Output before read-only data. */
1505
1506#define TEXT_SECTION_ASM_OP ".text"
1507
1508/* Output before writable data. */
1509
1510#define DATA_SECTION_ASM_OP ".data"
1511
1512/* How to refer to registers in assembler output.
1513 This sequence is indexed by compiler's hard-register-number (see above). */
1514
1515#define REGISTER_NAMES \
1516{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1517 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1518 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1519 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1520 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1521 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1522 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1523 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1524
ea3fa5f7
JW
1525/* Define additional names for use in asm clobbers and asm declarations.
1526
1527 We define the fake Condition Code register as an alias for reg 0 (which
1528 is our `condition code' register), so that condition codes can easily
1529 be clobbered by an asm. No such register actually exists. Condition
1530 codes are partly stored in the PSR and partly in the FSR. */
1531
0eb9f40e 1532#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1533
1bb87f28
JW
1534/* How to renumber registers for dbx and gdb. */
1535
1536#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1537
1538/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1539 since the length can run past this up to a continuation point. */
1540#define DBX_CONTIN_LENGTH 1500
1541
1542/* This is how to output a note to DBX telling it the line number
1543 to which the following sequence of instructions corresponds.
1544
1545 This is needed for SunOS 4.0, and should not hurt for 3.2
1546 versions either. */
1547#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1548 { static int sym_lineno = 1; \
1549 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1550 line, sym_lineno, sym_lineno); \
1551 sym_lineno += 1; }
1552
1553/* This is how to output the definition of a user-level label named NAME,
1554 such as the label on a static function or variable NAME. */
1555
1556#define ASM_OUTPUT_LABEL(FILE,NAME) \
1557 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1558
1559/* This is how to output a command to make the user-level label named NAME
1560 defined for reference from other files. */
1561
1562#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1563 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1564
1565/* This is how to output a reference to a user-level label named NAME.
1566 `assemble_name' uses this. */
1567
1568#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1569 fprintf (FILE, "_%s", NAME)
1570
d2a8e680 1571/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1572 PREFIX is the class of label and NUM is the number within the class. */
1573
1574#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1575 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1576
d2a8e680
RS
1577/* This is how to output a reference to an internal numbered label where
1578 PREFIX is the class of label and NUM is the number within the class. */
1579/* FIXME: This should be used throughout gcc, and documented in the texinfo
1580 files. There is no reason you should have to allocate a buffer and
1581 `sprintf' to reference an internal label (as opposed to defining it). */
1582
1583#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1584 fprintf (FILE, "%s%d", PREFIX, NUM)
1585
1bb87f28
JW
1586/* This is how to store into the string LABEL
1587 the symbol_ref name of an internal numbered label where
1588 PREFIX is the class of label and NUM is the number within the class.
1589 This is suitable for output with `assemble_name'. */
1590
1591#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1592 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1593
1594/* This is how to output an assembler line defining a `double' constant. */
1595
b1fc14e5
RS
1596/* Assemblers (both gas 1.35 and as in 4.0.3)
1597 seem to treat -0.0 as if it were 0.0.
1598 They reject 99e9999, but accept inf. */
1bb87f28
JW
1599#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1600 { \
303d524a
JW
1601 if (REAL_VALUE_ISINF (VALUE) \
1602 || REAL_VALUE_ISNAN (VALUE) \
1603 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1604 { \
303d524a
JW
1605 long t[2]; \
1606 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1607 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1608 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1609 } \
1610 else \
1611 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1612 }
1613
1614/* This is how to output an assembler line defining a `float' constant. */
1615
1616#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1617 { \
303d524a
JW
1618 if (REAL_VALUE_ISINF (VALUE) \
1619 || REAL_VALUE_ISNAN (VALUE) \
1620 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1621 { \
303d524a
JW
1622 long t; \
1623 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1624 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1625 } \
1626 else \
1627 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1628 }
1629
0cd02cbb
DE
1630/* This is how to output an assembler line defining a `long double'
1631 constant. */
1632
1633#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1634 { \
1635 long t[4]; \
1636 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1637 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1638 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1639 }
1640
1bb87f28
JW
1641/* This is how to output an assembler line defining an `int' constant. */
1642
1643#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1644( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1645 output_addr_const (FILE, (VALUE)), \
1646 fprintf (FILE, "\n"))
1647
1648/* This is how to output an assembler line defining a DImode constant. */
1649#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1650 output_double_int (FILE, VALUE)
1651
1652/* Likewise for `char' and `short' constants. */
1653
1654#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1655( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1656 output_addr_const (FILE, (VALUE)), \
1657 fprintf (FILE, "\n"))
1658
1659#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1660( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1661 output_addr_const (FILE, (VALUE)), \
1662 fprintf (FILE, "\n"))
1663
1664/* This is how to output an assembler line for a numeric constant byte. */
1665
1666#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1667 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1668
1669/* This is how to output an element of a case-vector that is absolute. */
1670
1671#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1672do { \
1673 char label[30]; \
1674 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1675 fprintf (FILE, "\t.word\t"); \
1676 assemble_name (FILE, label); \
1677 fprintf (FILE, "\n"); \
1678} while (0)
1bb87f28
JW
1679
1680/* This is how to output an element of a case-vector that is relative.
1681 (SPARC uses such vectors only when generating PIC.) */
1682
4b69d2a3
RS
1683#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1684do { \
1685 char label[30]; \
1686 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1687 fprintf (FILE, "\t.word\t"); \
1688 assemble_name (FILE, label); \
1689 fprintf (FILE, "-1b\n"); \
1690} while (0)
1bb87f28
JW
1691
1692/* This is how to output an assembler line
1693 that says to advance the location counter
1694 to a multiple of 2**LOG bytes. */
1695
1696#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1697 if ((LOG) != 0) \
1698 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1699
1700#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1701 fprintf (FILE, "\t.skip %u\n", (SIZE))
1702
1703/* This says how to output an assembler line
1704 to define a global common symbol. */
1705
1706#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1707( fputs ("\t.global ", (FILE)), \
1708 assemble_name ((FILE), (NAME)), \
1709 fputs ("\n\t.common ", (FILE)), \
1710 assemble_name ((FILE), (NAME)), \
1711 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1712
1713/* This says how to output an assembler line
1714 to define a local common symbol. */
1715
1716#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1717( fputs ("\n\t.reserve ", (FILE)), \
1718 assemble_name ((FILE), (NAME)), \
1719 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1720
1721/* Store in OUTPUT a string (made with alloca) containing
1722 an assembler-name for a local static variable named NAME.
1723 LABELNO is an integer which is different for each call. */
1724
1725#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1726( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1727 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1728
c14f2655
RS
1729#define IDENT_ASM_OP ".ident"
1730
1731/* Output #ident as a .ident. */
1732
1733#define ASM_OUTPUT_IDENT(FILE, NAME) \
1734 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1735
1bb87f28
JW
1736/* Define the parentheses used to group arithmetic operations
1737 in assembler code. */
1738
1739#define ASM_OPEN_PAREN "("
1740#define ASM_CLOSE_PAREN ")"
1741
1742/* Define results of standard character escape sequences. */
1743#define TARGET_BELL 007
1744#define TARGET_BS 010
1745#define TARGET_TAB 011
1746#define TARGET_NEWLINE 012
1747#define TARGET_VT 013
1748#define TARGET_FF 014
1749#define TARGET_CR 015
1750
1751#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1752 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1753
1754/* Print operand X (an rtx) in assembler syntax to file FILE.
1755 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1756 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1757
1758#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1759
1760/* Print a memory address as an operand to reference that memory location. */
1761
1762#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1763{ register rtx base, index = 0; \
1764 int offset = 0; \
1765 register rtx addr = ADDR; \
1766 if (GET_CODE (addr) == REG) \
1767 fputs (reg_names[REGNO (addr)], FILE); \
1768 else if (GET_CODE (addr) == PLUS) \
1769 { \
1770 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1771 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1772 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1773 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1774 else \
1775 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1776 fputs (reg_names[REGNO (base)], FILE); \
1777 if (index == 0) \
1778 fprintf (FILE, "%+d", offset); \
1779 else if (GET_CODE (index) == REG) \
1780 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1781 else if (GET_CODE (index) == SYMBOL_REF) \
1782 fputc ('+', FILE), output_addr_const (FILE, index); \
1783 else abort (); \
1784 } \
1785 else if (GET_CODE (addr) == MINUS \
1786 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1787 { \
1788 output_addr_const (FILE, XEXP (addr, 0)); \
1789 fputs ("-(", FILE); \
1790 output_addr_const (FILE, XEXP (addr, 1)); \
1791 fputs ("-.)", FILE); \
1792 } \
1793 else if (GET_CODE (addr) == LO_SUM) \
1794 { \
1795 output_operand (XEXP (addr, 0), 0); \
1796 fputs ("+%lo(", FILE); \
1797 output_address (XEXP (addr, 1)); \
1798 fputc (')', FILE); \
1799 } \
1800 else if (flag_pic && GET_CODE (addr) == CONST \
1801 && GET_CODE (XEXP (addr, 0)) == MINUS \
1802 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1803 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1804 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1805 { \
1806 addr = XEXP (addr, 0); \
1807 output_addr_const (FILE, XEXP (addr, 0)); \
1808 /* Group the args of the second CONST in parenthesis. */ \
1809 fputs ("-(", FILE); \
1810 /* Skip past the second CONST--it does nothing for us. */\
1811 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1812 /* Close the parenthesis. */ \
1813 fputc (')', FILE); \
1814 } \
1815 else \
1816 { \
1817 output_addr_const (FILE, addr); \
1818 } \
1819}
1820
1821/* Declare functions defined in sparc.c and used in templates. */
1822
1823extern char *singlemove_string ();
1824extern char *output_move_double ();
795068a4 1825extern char *output_move_quad ();
1bb87f28 1826extern char *output_fp_move_double ();
795068a4 1827extern char *output_fp_move_quad ();
1bb87f28
JW
1828extern char *output_block_move ();
1829extern char *output_scc_insn ();
1830extern char *output_cbranch ();
1831extern char *output_return ();
1bb87f28
JW
1832
1833/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1834
1835extern int flag_pic;
This page took 0.405707 seconds and 5 git commands to generate.