]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(do_spec_1): Propagate failure from recursive calls.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
98ccf8fe 26/* Provide required defaults for linker -e and -d switches. */
1bb87f28 27
d6f04508 28#define LINK_SPEC \
197a1140 29 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
30
31/* Special flags to the Sun-4 assembler when using pipe for input. */
32
cf8a904b 33#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 34
885d8175 35/* Define macros to distinguish architectures. */
e9136699 36#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 37
b1fc14e5
RS
38/* Prevent error on `-sun4' and `-target sun4' options. */
39/* This used to translate -dalign to -malign, but that is no good
40 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 41
b1fc14e5 42#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 43
d9ca49d5
JW
44#if 0
45/* Sparc ABI says that long double is 4 words.
46 ??? This doesn't work yet. */
47#define LONG_DOUBLE_TYPE_SIZE 128
48#endif
49
1bb87f28
JW
50#define PTRDIFF_TYPE "int"
51#define SIZE_TYPE "int"
52#define WCHAR_TYPE "short unsigned int"
53#define WCHAR_TYPE_SIZE 16
54
98ccf8fe
RK
55/* Omit frame pointer at high optimization levels. */
56
1bb87f28
JW
57#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
58{ \
59 if (OPTIMIZE >= 2) \
60 { \
61 flag_omit_frame_pointer = 1; \
1bb87f28
JW
62 } \
63}
64
65/* These compiler options take an argument. We ignore -target for now. */
66
67#define WORD_SWITCH_TAKES_ARG(STR) \
b4b05f16
JW
68 (!strcmp (STR, "Tdata") || !strcmp (STR, "Ttext") \
69 || !strcmp (STR, "Tbss") || !strcmp (STR, "include") \
1bb87f28 70 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
b1fc14e5 71 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
1bb87f28
JW
72
73/* Names to predefine in the preprocessor for this target machine. */
74
75#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
76
77/* Print subsidiary information on the compiler version in use. */
78
79#define TARGET_VERSION fprintf (stderr, " (sparc)");
80
81/* Generate DBX debugging information. */
82
83#define DBX_DEBUGGING_INFO
84
85/* Run-time compilation parameters selecting different hardware subsets. */
86
87extern int target_flags;
88
89/* Nonzero if we should generate code to use the fpu. */
90#define TARGET_FPU (target_flags & 1)
91
92/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
93 use fast return insns, but lose some generality. */
94#define TARGET_EPILOGUE (target_flags & 2)
95
b1fc14e5
RS
96/* Nonzero means that reference doublewords as if they were guaranteed
97 to be aligned...if they aren't, too bad for the user!
eadf0fe6 98 Like -dalign in Sun cc. */
b1fc14e5
RS
99#define TARGET_HOPE_ALIGN (target_flags & 16)
100
0be8e859
JW
101/* Nonzero means make sure all doubles are on 8-byte boundaries.
102 This option results in a calling convention that is incompatible with
103 every other sparc compiler in the world, and thus should only ever be
104 used for experimenting. Also, varargs won't work with it, but it doesn't
105 seem worth trying to fix. */
b1fc14e5 106#define TARGET_FORCE_ALIGN (target_flags & 32)
1bb87f28 107
885d8175
JW
108/* Nonzero means that we should generate code for a v8 sparc. */
109#define TARGET_V8 (target_flags & 64)
110
111/* Nonzero means that we should generate code for a sparclite. */
112#define TARGET_SPARCLITE (target_flags & 128)
113
1bb87f28
JW
114/* Macro to define tables used to set the flags.
115 This is a list in braces of pairs in braces,
116 each pair being { "NAME", VALUE }
117 where VALUE is the bits to set or minus the bits to clear.
118 An empty string NAME is used to identify the default VALUE. */
119
120#define TARGET_SWITCHES \
121 { {"fpu", 1}, \
122 {"soft-float", -1}, \
123 {"epilogue", 2}, \
124 {"no-epilogue", -2}, \
b1fc14e5
RS
125 {"hope-align", 16}, \
126 {"force-align", 48}, \
885d8175
JW
127 {"v8", 64}, \
128 {"no-v8", -64}, \
129 {"sparclite", 128}, \
a66279da 130 {"sparclite", -1}, \
885d8175 131 {"no-sparclite", -128}, \
a66279da 132 {"no-sparclite", 1}, \
b1fc14e5 133 { "", TARGET_DEFAULT}}
1bb87f28
JW
134
135#define TARGET_DEFAULT 3
136\f
137/* target machine storage layout */
138
139/* Define this if most significant bit is lowest numbered
140 in instructions that operate on numbered bit-fields. */
141#define BITS_BIG_ENDIAN 1
142
143/* Define this if most significant byte of a word is the lowest numbered. */
144/* This is true on the SPARC. */
145#define BYTES_BIG_ENDIAN 1
146
147/* Define this if most significant word of a multiword number is the lowest
148 numbered. */
149/* Doubles are stored in memory with the high order word first. This
150 matters when cross-compiling. */
151#define WORDS_BIG_ENDIAN 1
152
b4ac57ab 153/* number of bits in an addressable storage unit */
1bb87f28
JW
154#define BITS_PER_UNIT 8
155
156/* Width in bits of a "word", which is the contents of a machine register.
157 Note that this is not necessarily the width of data type `int';
158 if using 16-bit ints on a 68000, this would still be 32.
159 But on a machine with 16-bit registers, this would be 16. */
160#define BITS_PER_WORD 32
161#define MAX_BITS_PER_WORD 32
162
163/* Width of a word, in units (bytes). */
164#define UNITS_PER_WORD 4
165
166/* Width in bits of a pointer.
167 See also the macro `Pmode' defined below. */
168#define POINTER_SIZE 32
169
170/* Allocation boundary (in *bits*) for storing arguments in argument list. */
171#define PARM_BOUNDARY 32
172
173/* Boundary (in *bits*) on which stack pointer should be aligned. */
174#define STACK_BOUNDARY 64
175
10d1b70f
JW
176/* ALIGN FRAMES on double word boundaries */
177
178#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
179
1bb87f28
JW
180/* Allocation boundary (in *bits*) for the code of a function. */
181#define FUNCTION_BOUNDARY 32
182
183/* Alignment of field after `int : 0' in a structure. */
184#define EMPTY_FIELD_BOUNDARY 32
185
186/* Every structure's size must be a multiple of this. */
187#define STRUCTURE_SIZE_BOUNDARY 8
188
189/* A bitfield declared as `int' forces `int' alignment for the struct. */
190#define PCC_BITFIELD_TYPE_MATTERS 1
191
192/* No data type wants to be aligned rounder than this. */
193#define BIGGEST_ALIGNMENT 64
194
77a02b01
JW
195/* The best alignment to use in cases where we have a choice. */
196#define FASTEST_ALIGNMENT 64
197
1bb87f28
JW
198/* Make strings word-aligned so strcpy from constants will be faster. */
199#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
200 ((TREE_CODE (EXP) == STRING_CST \
201 && (ALIGN) < FASTEST_ALIGNMENT) \
202 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
203
204/* Make arrays of chars word-aligned for the same reasons. */
205#define DATA_ALIGNMENT(TYPE, ALIGN) \
206 (TREE_CODE (TYPE) == ARRAY_TYPE \
207 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 208 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 209
b4ac57ab 210/* Set this nonzero if move instructions will actually fail to work
1bb87f28 211 when given unaligned data. */
b4ac57ab 212#define STRICT_ALIGNMENT 1
1bb87f28
JW
213
214/* Things that must be doubleword aligned cannot go in the text section,
215 because the linker fails to align the text section enough!
216 Put them in the data section. */
217#define MAX_TEXT_ALIGN 32
218
219#define SELECT_SECTION(T,RELOC) \
220{ \
221 if (TREE_CODE (T) == VAR_DECL) \
222 { \
223 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
224 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
225 && ! (flag_pic && (RELOC))) \
226 text_section (); \
227 else \
228 data_section (); \
229 } \
230 else if (TREE_CODE (T) == CONSTRUCTOR) \
231 { \
232 if (flag_pic != 0 && (RELOC) != 0) \
233 data_section (); \
234 } \
235 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
236 { \
237 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
238 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
239 data_section (); \
240 else \
241 text_section (); \
242 } \
243}
244
245/* Use text section for a constant
246 unless we need more alignment than that offers. */
247#define SELECT_RTX_SECTION(MODE, X) \
248{ \
249 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
250 && ! (flag_pic && symbolic_operand (X))) \
251 text_section (); \
252 else \
253 data_section (); \
254}
255\f
256/* Standard register usage. */
257
258/* Number of actual hardware registers.
259 The hardware registers are assigned numbers for the compiler
260 from 0 to just below FIRST_PSEUDO_REGISTER.
261 All registers that the compiler knows about must be given numbers,
262 even those that are not normally considered general registers.
263
264 SPARC has 32 integer registers and 32 floating point registers. */
265
266#define FIRST_PSEUDO_REGISTER 64
267
268/* 1 for registers that have pervasive standard uses
269 and are not available for the register allocator.
270 0 is used for the condition code and not to represent %g0, which is
271 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
272 g1 through g4 are free to use as temporaries.
273 g5 through g7 are reserved for the operating system. */
1bb87f28 274#define FIXED_REGISTERS \
d9ca49d5 275 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
276 0, 0, 0, 0, 0, 0, 1, 0, \
277 0, 0, 0, 0, 0, 0, 0, 0, \
278 0, 0, 0, 0, 0, 0, 1, 1, \
279 \
280 0, 0, 0, 0, 0, 0, 0, 0, \
281 0, 0, 0, 0, 0, 0, 0, 0, \
282 0, 0, 0, 0, 0, 0, 0, 0, \
283 0, 0, 0, 0, 0, 0, 0, 0}
284
285/* 1 for registers not available across function calls.
286 These must include the FIXED_REGISTERS and also any
287 registers that can be used without being saved.
288 The latter must include the registers where values are returned
289 and the register where structure-value addresses are passed.
290 Aside from that, you can include as many other registers as you like. */
291#define CALL_USED_REGISTERS \
292 {1, 1, 1, 1, 1, 1, 1, 1, \
293 1, 1, 1, 1, 1, 1, 1, 1, \
294 0, 0, 0, 0, 0, 0, 0, 0, \
295 0, 0, 0, 0, 0, 0, 1, 1, \
296 \
297 1, 1, 1, 1, 1, 1, 1, 1, \
298 1, 1, 1, 1, 1, 1, 1, 1, \
299 1, 1, 1, 1, 1, 1, 1, 1, \
300 1, 1, 1, 1, 1, 1, 1, 1}
301
302/* Return number of consecutive hard regs needed starting at reg REGNO
303 to hold something of mode MODE.
304 This is ordinarily the length in words of a value of mode MODE
305 but can be less for certain modes in special long registers.
306
307 On SPARC, ordinary registers hold 32 bits worth;
308 this means both integer and floating point registers.
309
310 We use vectors to keep this information about registers. */
311
312/* How many hard registers it takes to make a register of this mode. */
313extern int hard_regno_nregs[];
314
315#define HARD_REGNO_NREGS(REGNO, MODE) \
316 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
317
318/* Value is 1 if register/mode pair is acceptable on sparc. */
319extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
320
321/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
322 On SPARC, the cpu registers can hold any mode but the float registers
323 can only hold SFmode or DFmode. See sparc.c for how we
324 initialize this. */
325#define HARD_REGNO_MODE_OK(REGNO, MODE) \
326 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
327
328/* Value is 1 if it is a good idea to tie two pseudo registers
329 when one has mode MODE1 and one has mode MODE2.
330 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
331 for any hard reg, then this must be 0 for correct output. */
332#define MODES_TIEABLE_P(MODE1, MODE2) \
333 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
334
335/* Specify the registers used for certain standard purposes.
336 The values of these macros are register numbers. */
337
338/* SPARC pc isn't overloaded on a register that the compiler knows about. */
339/* #define PC_REGNUM */
340
341/* Register to use for pushing function arguments. */
342#define STACK_POINTER_REGNUM 14
343
344/* Actual top-of-stack address is 92 greater than the contents
345 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
346 for the ins and local registers, 4 byte for structure return address, and
347 24 bytes for the 6 register parameters. */
348#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
349
350/* Base register for access to local variables of the function. */
351#define FRAME_POINTER_REGNUM 30
352
353#if 0
354/* Register that is used for the return address. */
355#define RETURN_ADDR_REGNUM 15
356#endif
357
358/* Value should be nonzero if functions must have frame pointers.
359 Zero means the frame pointer need not be set up (and parms
360 may be accessed via the stack pointer) in functions that seem suitable.
361 This is computed in `reload', in reload1.c.
362
c0524a34 363 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
364extern int leaf_function;
365
366#define FRAME_POINTER_REQUIRED \
a72cb8ec 367 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
368
369/* C statement to store the difference between the frame pointer
370 and the stack pointer values immediately after the function prologue.
371
372 Note, we always pretend that this is a leaf function because if
373 it's not, there's no point in trying to eliminate the
374 frame pointer. If it is a leaf function, we guessed right! */
375#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
376 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
377
378/* Base register for access to arguments of the function. */
379#define ARG_POINTER_REGNUM 30
380
381/* Register in which static-chain is passed to a function. */
382/* ??? */
383#define STATIC_CHAIN_REGNUM 1
384
385/* Register which holds offset table for position-independent
386 data references. */
387
388#define PIC_OFFSET_TABLE_REGNUM 23
389
390#define INITIALIZE_PIC initialize_pic ()
391#define FINALIZE_PIC finalize_pic ()
392
d9ca49d5 393/* Sparc ABI says that quad-precision floats and all structures are returned
dafe6cf1
RS
394 in memory. We go along regarding floats, but for structures
395 we follow GCC's normal policy. Use -fpcc-struct-value
396 if you want to follow the ABI. */
d9ca49d5 397#define RETURN_IN_MEMORY(TYPE) \
dafe6cf1 398 (TYPE_MODE (TYPE) == TFmode)
d9ca49d5 399
1bb87f28
JW
400/* Functions which return large structures get the address
401 to place the wanted value at offset 64 from the frame.
402 Must reserve 64 bytes for the in and local registers. */
403/* Used only in other #defines in this file. */
404#define STRUCT_VALUE_OFFSET 64
405
406#define STRUCT_VALUE \
407 gen_rtx (MEM, Pmode, \
408 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
409 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
410#define STRUCT_VALUE_INCOMING \
411 gen_rtx (MEM, Pmode, \
412 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
413 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
414\f
415/* Define the classes of registers for register constraints in the
416 machine description. Also define ranges of constants.
417
418 One of the classes must always be named ALL_REGS and include all hard regs.
419 If there is more than one class, another class must be named NO_REGS
420 and contain no registers.
421
422 The name GENERAL_REGS must be the name of a class (or an alias for
423 another name such as ALL_REGS). This is the class of registers
424 that is allowed by "g" or "r" in a register constraint.
425 Also, registers outside this class are allocated only when
426 instructions express preferences for them.
427
428 The classes must be numbered in nondecreasing order; that is,
429 a larger-numbered class must never be contained completely
430 in a smaller-numbered class.
431
432 For any two classes, it is very desirable that there be another
433 class that represents their union. */
434
435/* The SPARC has two kinds of registers, general and floating point. */
436
437enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
438
439#define N_REG_CLASSES (int) LIM_REG_CLASSES
440
441/* Give names of register classes as strings for dump file. */
442
443#define REG_CLASS_NAMES \
444 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
445
446/* Define which registers fit in which classes.
447 This is an initializer for a vector of HARD_REG_SET
448 of length N_REG_CLASSES. */
449
450#if 0 && defined (__GNUC__)
451#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
452#else
453#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
454#endif
455
456/* The same information, inverted:
457 Return the class number of the smallest class containing
458 reg number REGNO. This could be a conditional expression
459 or could index an array. */
460
461#define REGNO_REG_CLASS(REGNO) \
462 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
463
464/* This is the order in which to allocate registers
465 normally. */
466#define REG_ALLOC_ORDER \
b4ac57ab
RS
467{ 8, 9, 10, 11, 12, 13, 2, 3, \
468 15, 16, 17, 18, 19, 20, 21, 22, \
469 23, 24, 25, 26, 27, 28, 29, 31, \
1bb87f28
JW
470 32, 33, 34, 35, 36, 37, 38, 39, \
471 40, 41, 42, 43, 44, 45, 46, 47, \
472 48, 49, 50, 51, 52, 53, 54, 55, \
473 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 474 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
475
476/* This is the order in which to allocate registers for
477 leaf functions. If all registers can fit in the "i" registers,
478 then we have the possibility of having a leaf function. */
479#define REG_LEAF_ALLOC_ORDER \
480{ 2, 3, 24, 25, 26, 27, 28, 29, \
481 15, 8, 9, 10, 11, 12, 13, \
482 16, 17, 18, 19, 20, 21, 22, 23, \
483 32, 33, 34, 35, 36, 37, 38, 39, \
484 40, 41, 42, 43, 44, 45, 46, 47, \
485 48, 49, 50, 51, 52, 53, 54, 55, \
486 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 487 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
488
489#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
490
491#define LEAF_REGISTERS \
492{ 1, 1, 1, 1, 1, 1, 1, 1, \
493 0, 0, 0, 0, 0, 0, 1, 0, \
494 0, 0, 0, 0, 0, 0, 0, 0, \
495 1, 1, 1, 1, 1, 1, 0, 1, \
496 1, 1, 1, 1, 1, 1, 1, 1, \
497 1, 1, 1, 1, 1, 1, 1, 1, \
498 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 499 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
500
501extern char leaf_reg_remap[];
502#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
503extern char leaf_reg_backmap[];
504#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
505
506#define REG_USED_SO_FAR(REGNO) \
507 ((REGNO) >= 24 && (REGNO) < 30 \
508 ? (regs_ever_live[24] \
509 || regs_ever_live[25] \
510 || regs_ever_live[26] \
511 || regs_ever_live[27] \
512 || regs_ever_live[28] \
513 || regs_ever_live[29]) : 0)
514
515/* The class value for index registers, and the one for base regs. */
516#define INDEX_REG_CLASS GENERAL_REGS
517#define BASE_REG_CLASS GENERAL_REGS
518
519/* Get reg_class from a letter such as appears in the machine description. */
520
521#define REG_CLASS_FROM_LETTER(C) \
522 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
523
524/* The letters I, J, K, L and M in a register constraint string
525 can be used to stand for particular ranges of immediate operands.
526 This macro defines what the ranges are.
527 C is the letter, and VALUE is a constant value.
528 Return 1 if VALUE is in the range specified by C.
529
530 For SPARC, `I' is used for the range of constants an insn
531 can actually contain.
532 `J' is used for the range which is just zero (since that is R0).
533 `K' is used for the 5-bit operand of a compare insns. */
534
535#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
536
537#define CONST_OK_FOR_LETTER_P(VALUE, C) \
538 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
539 : (C) == 'J' ? (VALUE) == 0 \
540 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
541 : 0)
542
543/* Similar, but for floating constants, and defining letters G and H.
544 Here VALUE is the CONST_DOUBLE rtx itself. */
545
546#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
547 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
548 && CONST_DOUBLE_LOW (VALUE) == 0 \
549 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
550 : 0)
551
552/* Given an rtx X being reloaded into a reg required to be
553 in class CLASS, return the class of reg to actually use.
554 In general this is just CLASS; but on some machines
555 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
556/* We can't load constants into FP registers. We can't load any FP constant
557 if an 'E' constraint fails to match it. */
558#define PREFERRED_RELOAD_CLASS(X,CLASS) \
559 (CONSTANT_P (X) \
560 && ((CLASS) == FP_REGS \
561 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
562 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
563 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
564 ? NO_REGS : (CLASS))
1bb87f28
JW
565
566/* Return the register class of a scratch register needed to load IN into
567 a register of class CLASS in MODE.
568
569 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 570 into a register.
1bb87f28 571
ae51bd97
JW
572 Also, we need a temporary when loading/storing a HImode/QImode value
573 between memory and the FPU registers. This can happen when combine puts
574 a paradoxical subreg in a float/fix conversion insn. */
575
576#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
577 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
578 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
579 && (GET_CODE (IN) == MEM \
580 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
581 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
582
583#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
584 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
585 && (GET_CODE (IN) == MEM \
586 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
587 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 588
b924cef0
JW
589/* On SPARC it is not possible to directly move data between
590 GENERAL_REGS and FP_REGS. */
591#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
592 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
593 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 594
1bb87f28
JW
595/* Return the maximum number of consecutive registers
596 needed to represent mode MODE in a register of class CLASS. */
597/* On SPARC, this is the size of MODE in words. */
598#define CLASS_MAX_NREGS(CLASS, MODE) \
599 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
600\f
601/* Stack layout; function entry, exit and calling. */
602
603/* Define the number of register that can hold parameters.
604 These two macros are used only in other macro definitions below. */
605#define NPARM_REGS 6
606
607/* Define this if pushing a word on the stack
608 makes the stack pointer a smaller address. */
609#define STACK_GROWS_DOWNWARD
610
611/* Define this if the nominal address of the stack frame
612 is at the high-address end of the local variables;
613 that is, each additional local variable allocated
614 goes at a more negative offset in the frame. */
615#define FRAME_GROWS_DOWNWARD
616
617/* Offset within stack frame to start allocating local variables at.
618 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
619 first local allocated. Otherwise, it is the offset to the BEGINNING
620 of the first local allocated. */
621#define STARTING_FRAME_OFFSET (-16)
622
623/* If we generate an insn to push BYTES bytes,
624 this says how many the stack pointer really advances by.
625 On SPARC, don't define this because there are no push insns. */
626/* #define PUSH_ROUNDING(BYTES) */
627
628/* Offset of first parameter from the argument pointer register value.
629 This is 64 for the ins and locals, plus 4 for the struct-return reg
0be8e859
JW
630 even if this function isn't going to use it.
631 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
632 stack remains aligned. */
633#define FIRST_PARM_OFFSET(FNDECL) \
634 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
1bb87f28
JW
635
636/* When a parameter is passed in a register, stack space is still
637 allocated for it. */
638#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
639
640/* Keep the stack pointer constant throughout the function.
b4ac57ab 641 This is both an optimization and a necessity: longjmp
1bb87f28
JW
642 doesn't behave itself when the stack pointer moves within
643 the function! */
644#define ACCUMULATE_OUTGOING_ARGS
645
646/* Value is the number of bytes of arguments automatically
647 popped when returning from a subroutine call.
648 FUNTYPE is the data type of the function (as a tree),
649 or for a library call it is an identifier node for the subroutine name.
650 SIZE is the number of bytes of arguments passed on the stack. */
651
652#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
653
654/* Some subroutine macros specific to this machine. */
655#define BASE_RETURN_VALUE_REG(MODE) \
656 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
657#define BASE_OUTGOING_VALUE_REG(MODE) \
658 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
659#define BASE_PASSING_ARG_REG(MODE) (8)
660#define BASE_INCOMING_ARG_REG(MODE) (24)
661
662/* Define how to find the value returned by a function.
663 VALTYPE is the data type of the value (as a tree).
664 If the precise function being called is known, FUNC is its FUNCTION_DECL;
665 otherwise, FUNC is 0. */
666
667/* On SPARC the value is found in the first "output" register. */
668
669#define FUNCTION_VALUE(VALTYPE, FUNC) \
670 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
671
672/* But the called function leaves it in the first "input" register. */
673
674#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
675 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
676
677/* Define how to find the value returned by a library function
678 assuming the value has mode MODE. */
679
680#define LIBCALL_VALUE(MODE) \
681 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
682
683/* 1 if N is a possible register number for a function value
684 as seen by the caller.
685 On SPARC, the first "output" reg is used for integer values,
686 and the first floating point register is used for floating point values. */
687
688#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
689
690/* 1 if N is a possible register number for function argument passing.
691 On SPARC, these are the "output" registers. */
692
693#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
694\f
695/* Define a data type for recording info about an argument list
696 during the scan of that argument list. This data type should
697 hold all necessary information about the function itself
698 and about the args processed so far, enough to enable macros
699 such as FUNCTION_ARG to determine where the next arg should go.
700
701 On SPARC, this is a single integer, which is a number of words
702 of arguments scanned so far (including the invisible argument,
703 if any, which holds the structure-value-address).
704 Thus 7 or more means all following args should go on the stack. */
705
706#define CUMULATIVE_ARGS int
707
708#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
709 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
710
711/* Round a register number up to a proper boundary for an arg of mode MODE.
712 Note that we need an odd/even pair for a two-word arg,
713 since that will become 8-byte aligned when stored in memory. */
714#define ROUND_REG(X, MODE) \
715 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
716 ? ((X) + ! ((X) & 1)) : (X))
1bb87f28
JW
717
718/* Initialize a variable CUM of type CUMULATIVE_ARGS
719 for a call to a function whose data type is FNTYPE.
720 For a library call, FNTYPE is 0.
721
722 On SPARC, the offset always starts at 0: the first parm reg is always
723 the same reg. */
724
725#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
726
727/* Update the data in CUM to advance over an argument
728 of mode MODE and data type TYPE.
729 (TYPE is null for libcalls where that information may not be available.) */
730
731#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b1fc14e5
RS
732 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
733 + ((MODE) != BLKmode \
734 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
735 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
1bb87f28
JW
736
737/* Determine where to put an argument to a function.
738 Value is zero to push the argument on the stack,
739 or a hard register in which to store the argument.
740
741 MODE is the argument's machine mode.
742 TYPE is the data type of the argument (as a tree).
743 This is null for libcalls where that information may
744 not be available.
745 CUM is a variable of type CUMULATIVE_ARGS which gives info about
746 the preceding args and about the function being called.
747 NAMED is nonzero if this argument is a named parameter
748 (otherwise it is an extra parameter matching an ellipsis). */
749
750/* On SPARC the first six args are normally in registers
751 and the rest are pushed. Any arg that starts within the first 6 words
752 is at least partially passed in a register unless its data type forbids. */
753
754#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 755(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 756 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
757 && ((TYPE)==0 || (MODE) != BLKmode \
758 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
759 ? gen_rtx (REG, (MODE), \
760 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
761 : 0)
1bb87f28
JW
762
763/* Define where a function finds its arguments.
764 This is different from FUNCTION_ARG because of register windows. */
765
766#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 767(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 768 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
769 && ((TYPE)==0 || (MODE) != BLKmode \
770 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
771 ? gen_rtx (REG, (MODE), \
772 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
773 : 0)
1bb87f28
JW
774
775/* For an arg passed partly in registers and partly in memory,
776 this is the number of registers used.
777 For args passed entirely in registers or entirely in memory, zero.
778 Any arg that starts in the first 6 regs but won't entirely fit in them
779 needs partial registers on the Sparc. */
780
781#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b1fc14e5 782 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 783 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
784 && ((TYPE)==0 || (MODE) != BLKmode \
785 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
786 && (ROUND_REG ((CUM), (MODE)) \
1bb87f28
JW
787 + ((MODE) == BLKmode \
788 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
b1fc14e5
RS
789 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
790 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
1bb87f28
JW
791 : 0)
792
d9ca49d5
JW
793/* The SPARC ABI stipulates passing struct arguments (of any size) and
794 quad-precision floats by invisible reference. */
1bb87f28 795#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
796 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
797 || TREE_CODE (TYPE) == UNION_TYPE)) \
798 || (MODE == TFmode))
1bb87f28 799
b1fc14e5
RS
800/* If defined, a C expression that gives the alignment boundary, in
801 bits, of an argument with the specified mode and type. If it is
802 not defined, `PARM_BOUNDARY' is used for all arguments.
803
804 This definition does nothing special unless TARGET_FORCE_ALIGN;
805 in that case, it aligns each arg to the natural boundary. */
806
807#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
808 (! TARGET_FORCE_ALIGN \
809 ? PARM_BOUNDARY \
810 : (((TYPE) != 0) \
811 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
812 ? PARM_BOUNDARY \
813 : TYPE_ALIGN (TYPE)) \
814 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
815 ? PARM_BOUNDARY \
816 : GET_MODE_ALIGNMENT (MODE))))
817
1bb87f28
JW
818/* Define the information needed to generate branch and scc insns. This is
819 stored from the compare operation. Note that we can't use "rtx" here
820 since it hasn't been defined! */
821
822extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
823
824/* Define the function that build the compare insn for scc and bcc. */
825
826extern struct rtx_def *gen_compare_reg ();
827\f
4b69d2a3
RS
828/* Generate the special assembly code needed to tell the assembler whatever
829 it might need to know about the return value of a function.
830
831 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
832 information to the assembler relating to peephole optimization (done in
833 the assembler). */
834
835#define ASM_DECLARE_RESULT(FILE, RESULT) \
836 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
837
1bb87f28
JW
838/* Output the label for a function definition. */
839
4b69d2a3
RS
840#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
841do { \
842 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
843 ASM_OUTPUT_LABEL (FILE, NAME); \
844} while (0)
1bb87f28
JW
845
846/* Two views of the size of the current frame. */
847extern int actual_fsize;
848extern int apparent_fsize;
849
850/* This macro generates the assembly code for function entry.
851 FILE is a stdio stream to output the code to.
852 SIZE is an int: how many units of temporary storage to allocate.
853 Refer to the array `regs_ever_live' to determine which registers
854 to save; `regs_ever_live[I]' is nonzero if register number I
855 is ever used in the function. This macro is responsible for
856 knowing which registers should not be saved even if used. */
857
858/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
859 of memory. If any fpu reg is used in the function, we allocate
860 such a block here, at the bottom of the frame, just in case it's needed.
861
862 If this function is a leaf procedure, then we may choose not
863 to do a "save" insn. The decision about whether or not
864 to do this is made in regclass.c. */
865
866#define FUNCTION_PROLOGUE(FILE, SIZE) \
867 output_function_prologue (FILE, SIZE, leaf_function)
868
869/* Output assembler code to FILE to increment profiler label # LABELNO
870 for profiling a function entry. */
871
d2a8e680
RS
872#define FUNCTION_PROFILER(FILE, LABELNO) \
873 do { \
874 fputs ("\tsethi %hi(", (FILE)); \
875 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
876 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
877 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
878 fputs ("),%o0,%o0\n", (FILE)); \
879 } while (0)
1bb87f28
JW
880
881/* Output assembler code to FILE to initialize this source file's
882 basic block profiling info, if that has not already been done. */
d2a8e680
RS
883/* FIXME -- this does not parameterize how it generates labels (like the
884 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
885
886#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
887 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
888 (LABELNO), (LABELNO))
889
890/* Output assembler code to FILE to increment the entry-count for
891 the BLOCKNO'th basic block in this source file. */
892
893#define BLOCK_PROFILER(FILE, BLOCKNO) \
894{ \
895 int blockn = (BLOCKNO); \
896 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
897\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
898 4 * blockn, 4 * blockn, 4 * blockn); \
899}
900
901/* Output rtl to increment the entry-count for the LABELNO'th instrumented
902 arc in this source file. */
903
904#define ARC_PROFILER(ARCNO, INSERT_AFTER) \
905 output_arc_profiler (ARCNO, INSERT_AFTER)
906
907/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
908 the stack pointer does not matter. The value is tested only in
909 functions that have frame pointers.
910 No definition is equivalent to always zero. */
911
912extern int current_function_calls_alloca;
913extern int current_function_outgoing_args_size;
914
915#define EXIT_IGNORE_STACK \
916 (get_frame_size () != 0 \
917 || current_function_calls_alloca || current_function_outgoing_args_size)
918
919/* This macro generates the assembly code for function exit,
920 on machines that need it. If FUNCTION_EPILOGUE is not defined
921 then individual return instructions are generated for each
922 return statement. Args are same as for FUNCTION_PROLOGUE.
923
924 The function epilogue should not depend on the current stack pointer!
925 It should use the frame pointer only. This is mandatory because
926 of alloca; we also take advantage of it to omit stack adjustments
927 before returning. */
928
929/* This declaration is needed due to traditional/ANSI
930 incompatibilities which cannot be #ifdefed away
931 because they occur inside of macros. Sigh. */
932extern union tree_node *current_function_decl;
933
934#define FUNCTION_EPILOGUE(FILE, SIZE) \
ef8200df 935 output_function_epilogue (FILE, SIZE, leaf_function)
1bb87f28
JW
936
937#define DELAY_SLOTS_FOR_EPILOGUE 1
938#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
939 eligible_for_epilogue_delay (trial, slots_filled)
940
941/* Output assembler code for a block containing the constant parts
942 of a trampoline, leaving space for the variable parts. */
943
944/* On the sparc, the trampoline contains five instructions:
945 sethi #TOP_OF_FUNCTION,%g2
946 or #BOTTOM_OF_FUNCTION,%g2,%g2
947 sethi #TOP_OF_STATIC,%g1
948 jmp g2
949 or #BOTTOM_OF_STATIC,%g1,%g1 */
950#define TRAMPOLINE_TEMPLATE(FILE) \
951{ \
952 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
953 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
954 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
955 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
956 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
957}
958
959/* Length in units of the trampoline for entering a nested function. */
960
961#define TRAMPOLINE_SIZE 20
962
963/* Emit RTL insns to initialize the variable parts of a trampoline.
964 FNADDR is an RTX for the address of the function's pure code.
965 CXT is an RTX for the static chain value for the function.
966
967 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
968 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
969 (to store insns). This is a bit excessive. Perhaps a different
970 mechanism would be better here. */
971
972#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
973{ \
974 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
975 size_int (10), 0, 1); \
976 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
977 size_int (10), 0, 1); \
978 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
979 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
980 rtx g1_sethi = gen_rtx (HIGH, SImode, \
981 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
982 rtx g2_sethi = gen_rtx (HIGH, SImode, \
983 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
984 rtx g1_ori = gen_rtx (HIGH, SImode, \
985 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
986 rtx g2_ori = gen_rtx (HIGH, SImode, \
987 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
988 rtx tem = gen_reg_rtx (SImode); \
989 emit_move_insn (tem, g2_sethi); \
990 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
991 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
992 emit_move_insn (tem, g2_ori); \
993 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
994 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
995 emit_move_insn (tem, g1_sethi); \
996 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
997 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
998 emit_move_insn (tem, g1_ori); \
999 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1000 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1001}
1002
1003/* Emit code for a call to builtin_saveregs. We must emit USE insns which
1004 reference the 6 input registers. Ordinarily they are not call used
1005 registers, but they are for _builtin_saveregs, so we must make this
1006 explicit. */
1007
1008#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
1009 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
1010 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
1011 expand_call (exp, target, ignore))
1012\f
1013/* Addressing modes, and classification of registers for them. */
1014
1015/* #define HAVE_POST_INCREMENT */
1016/* #define HAVE_POST_DECREMENT */
1017
1018/* #define HAVE_PRE_DECREMENT */
1019/* #define HAVE_PRE_INCREMENT */
1020
1021/* Macros to check register numbers against specific register classes. */
1022
1023/* These assume that REGNO is a hard or pseudo reg number.
1024 They give nonzero only if REGNO is a hard reg of the suitable class
1025 or a pseudo reg currently allocated to a suitable hard reg.
1026 Since they use reg_renumber, they are safe only once reg_renumber
1027 has been allocated, which happens in local-alloc.c. */
1028
1029#define REGNO_OK_FOR_INDEX_P(REGNO) \
1030(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1031#define REGNO_OK_FOR_BASE_P(REGNO) \
1032(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1033#define REGNO_OK_FOR_FP_P(REGNO) \
1034(((REGNO) ^ 0x20) < 32 \
1035 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1036
1037/* Now macros that check whether X is a register and also,
1038 strictly, whether it is in a specified class.
1039
1040 These macros are specific to the SPARC, and may be used only
1041 in code for printing assembler insns and in conditions for
1042 define_optimization. */
1043
1044/* 1 if X is an fp register. */
1045
1046#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1047\f
1048/* Maximum number of registers that can appear in a valid memory address. */
1049
1050#define MAX_REGS_PER_ADDRESS 2
1051
1052/* Recognize any constant value that is a valid address. */
1053
1054#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1055
1056/* Nonzero if the constant value X is a legitimate general operand.
1057 Anything can be made to work except floating point constants. */
1058
1059#define LEGITIMATE_CONSTANT_P(X) \
1060 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1061
1062/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1063 and check its validity for a certain class.
1064 We have two alternate definitions for each of them.
1065 The usual definition accepts all pseudo regs; the other rejects
1066 them unless they have been allocated suitable hard regs.
1067 The symbol REG_OK_STRICT causes the latter definition to be used.
1068
1069 Most source files want to accept pseudo regs in the hope that
1070 they will get allocated to the class that the insn wants them to be in.
1071 Source files for reload pass need to be strict.
1072 After reload, it makes no difference, since pseudo regs have
1073 been eliminated by then. */
1074
1075/* Optional extra constraints for this machine. Borrowed from romp.h.
1076
1077 For the SPARC, `Q' means that this is a memory operand but not a
1078 symbolic memory operand. Note that an unassigned pseudo register
1079 is such a memory operand. Needed because reload will generate
1080 these things in insns and then not re-recognize the insns, causing
1081 constrain_operands to fail.
1082
1083 `R' handles the LO_SUM which can be an address for `Q'.
1084
1085 `S' handles constraints for calls. */
1086
1087#ifndef REG_OK_STRICT
1088
1089/* Nonzero if X is a hard reg that can be used as an index
1090 or if it is a pseudo reg. */
1091#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1092/* Nonzero if X is a hard reg that can be used as a base reg
1093 or if it is a pseudo reg. */
1094#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1095
1096#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1097 ((C) == 'Q' \
1098 ? ((GET_CODE (OP) == MEM \
1099 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1100 && ! symbolic_memory_operand (OP, VOIDmode)) \
1101 || (reload_in_progress && GET_CODE (OP) == REG \
1102 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
1103 : (C) == 'R' \
1104 ? (GET_CODE (OP) == LO_SUM \
1105 && GET_CODE (XEXP (OP, 0)) == REG \
1106 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1107 : (C) == 'S' \
1108 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1109 : (C) == 'T' \
1110 ? (mem_aligned_8 (OP)) \
1111 : (C) == 'U' \
1112 ? (register_ok_for_ldd (OP)) \
db5e449c 1113 : 0)
19858600 1114
1bb87f28
JW
1115#else
1116
1117/* Nonzero if X is a hard reg that can be used as an index. */
1118#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1119/* Nonzero if X is a hard reg that can be used as a base reg. */
1120#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1121
1122#define EXTRA_CONSTRAINT(OP, C) \
1123 ((C) == 'Q' ? \
1124 (GET_CODE (OP) == REG ? \
1125 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1126 && reg_renumber[REGNO (OP)] < 0) \
1127 : GET_CODE (OP) == MEM) \
1128 : ((C) == 'R' ? \
1129 (GET_CODE (OP) == LO_SUM \
1130 && GET_CODE (XEXP (OP, 0)) == REG \
1131 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1132 : ((C) == 'S' \
1133 ? (CONSTANT_P (OP) \
1134 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
19858600
JL
1135 || strict_memory_address_p (Pmode, OP)) \
1136 : ((C) == 'T' ? \
1137 mem_aligned_8 (OP) && strict_memory_address_p (Pmode, OP) \
1138 : ((C) == 'U' ? \
1139 register_ok_for_ldd (OP) : 0)))))
1bb87f28
JW
1140#endif
1141\f
1142/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1143 that is a valid memory address for an instruction.
1144 The MODE argument is the machine mode for the MEM expression
1145 that wants to use this address.
1146
1147 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1148 ordinarily. This changes a bit when generating PIC.
1149
1150 If you change this, execute "rm explow.o recog.o reload.o". */
1151
bec2e359
JW
1152#define RTX_OK_FOR_BASE_P(X) \
1153 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1154 || (GET_CODE (X) == SUBREG \
1155 && GET_CODE (SUBREG_REG (X)) == REG \
1156 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1157
1158#define RTX_OK_FOR_INDEX_P(X) \
1159 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1160 || (GET_CODE (X) == SUBREG \
1161 && GET_CODE (SUBREG_REG (X)) == REG \
1162 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1163
1164#define RTX_OK_FOR_OFFSET_P(X) \
1165 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1166
1bb87f28 1167#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1168{ if (RTX_OK_FOR_BASE_P (X)) \
1169 goto ADDR; \
1bb87f28
JW
1170 else if (GET_CODE (X) == PLUS) \
1171 { \
bec2e359
JW
1172 register rtx op0 = XEXP (X, 0); \
1173 register rtx op1 = XEXP (X, 1); \
1174 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1175 { \
bec2e359 1176 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1177 goto ADDR; \
1178 else if (flag_pic == 1 \
bec2e359
JW
1179 && GET_CODE (op1) != REG \
1180 && GET_CODE (op1) != LO_SUM \
1181 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1182 goto ADDR; \
1183 } \
bec2e359 1184 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1185 { \
bec2e359
JW
1186 if (RTX_OK_FOR_INDEX_P (op1) \
1187 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1188 goto ADDR; \
1189 } \
bec2e359 1190 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1191 { \
bec2e359
JW
1192 if (RTX_OK_FOR_INDEX_P (op0) \
1193 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1194 goto ADDR; \
1195 } \
1196 } \
bec2e359
JW
1197 else if (GET_CODE (X) == LO_SUM) \
1198 { \
1199 register rtx op0 = XEXP (X, 0); \
1200 register rtx op1 = XEXP (X, 1); \
1201 if (RTX_OK_FOR_BASE_P (op0) \
1202 && CONSTANT_P (op1)) \
1203 goto ADDR; \
1204 } \
1bb87f28
JW
1205 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1206 goto ADDR; \
1207}
1208\f
1209/* Try machine-dependent ways of modifying an illegitimate address
1210 to be legitimate. If we find one, return the new, valid address.
1211 This macro is used in only one place: `memory_address' in explow.c.
1212
1213 OLDX is the address as it was before break_out_memory_refs was called.
1214 In some cases it is useful to look at this to decide what needs to be done.
1215
1216 MODE and WIN are passed so that this macro can use
1217 GO_IF_LEGITIMATE_ADDRESS.
1218
1219 It is always safe for this macro to do nothing. It exists to recognize
1220 opportunities to optimize the output. */
1221
1222/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1223extern struct rtx_def *legitimize_pic_address ();
1224#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1225{ rtx sparc_x = (X); \
1226 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1227 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1228 force_operand (XEXP (X, 0), 0)); \
1229 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1230 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1231 force_operand (XEXP (X, 1), 0)); \
1232 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1233 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1234 XEXP (X, 1)); \
1235 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1236 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1237 force_operand (XEXP (X, 1), 0)); \
1238 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1239 goto WIN; \
1240 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1241 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1242 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1243 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1244 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1245 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1246 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1247 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1248 || GET_CODE (X) == LABEL_REF) \
1249 (X) = gen_rtx (LO_SUM, Pmode, \
1250 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1251 if (memory_address_p (MODE, X)) \
1252 goto WIN; }
1253
1254/* Go to LABEL if ADDR (a legitimate address expression)
1255 has an effect that depends on the machine mode it is used for.
1256 On the SPARC this is never true. */
1257
1258#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1259\f
1260/* Specify the machine mode that this machine uses
1261 for the index in the tablejump instruction. */
1262#define CASE_VECTOR_MODE SImode
1263
1264/* Define this if the tablejump instruction expects the table
1265 to contain offsets from the address of the table.
1266 Do not define this if the table should contain absolute addresses. */
1267/* #define CASE_VECTOR_PC_RELATIVE */
1268
1269/* Specify the tree operation to be used to convert reals to integers. */
1270#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1271
1272/* This is the kind of divide that is easiest to do in the general case. */
1273#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1274
1275/* Define this as 1 if `char' should by default be signed; else as 0. */
1276#define DEFAULT_SIGNED_CHAR 1
1277
1278/* Max number of bytes we can move from memory to memory
1279 in one reasonably fast instruction. */
2eef2ef1 1280#define MOVE_MAX 8
1bb87f28 1281
0fb5a69e 1282#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1283/* This is the value of the error code EDOM for this machine,
1284 used by the sqrt instruction. */
1285#define TARGET_EDOM 33
1286
1287/* This is how to refer to the variable errno. */
1288#define GEN_ERRNO_RTX \
1289 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1290#endif /* 0 */
24e2a2bf 1291
1bb87f28
JW
1292/* Define if normal loads of shorter-than-word items from memory clears
1293 the rest of the bigs in the register. */
1294#define BYTE_LOADS_ZERO_EXTEND
1295
1296/* Nonzero if access to memory by bytes is slow and undesirable.
1297 For RISC chips, it means that access to memory by bytes is no
1298 better than access by words when possible, so grab a whole word
1299 and maybe make use of that. */
1300#define SLOW_BYTE_ACCESS 1
1301
1302/* We assume that the store-condition-codes instructions store 0 for false
1303 and some other value for true. This is the value stored for true. */
1304
1305#define STORE_FLAG_VALUE 1
1306
1307/* When a prototype says `char' or `short', really pass an `int'. */
1308#define PROMOTE_PROTOTYPES
1309
1310/* Define if shifts truncate the shift count
1311 which implies one can omit a sign-extension or zero-extension
1312 of a shift count. */
1313#define SHIFT_COUNT_TRUNCATED
1314
1315/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1316 is done just by pretending it is already truncated. */
1317#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1318
1319/* Specify the machine mode that pointers have.
1320 After generation of rtl, the compiler makes no further distinction
1321 between pointers and any other objects of this machine mode. */
1322#define Pmode SImode
1323
b4ac57ab
RS
1324/* Generate calls to memcpy, memcmp and memset. */
1325#define TARGET_MEM_FUNCTIONS
1326
1bb87f28
JW
1327/* Add any extra modes needed to represent the condition code.
1328
1329 On the Sparc, we have a "no-overflow" mode which is used when an add or
1330 subtract insn is used to set the condition code. Different branches are
1331 used in this case for some operations.
1332
4d449554
JW
1333 We also have two modes to indicate that the relevant condition code is
1334 in the floating-point condition code register. One for comparisons which
1335 will generate an exception if the result is unordered (CCFPEmode) and
1336 one for comparisons which will never trap (CCFPmode). This really should
1337 be a separate register, but we don't want to go to 65 registers. */
1338#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1339
1340/* Define the names for the modes specified above. */
4d449554 1341#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1342
1343/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1344 return the mode to be used for the comparison. For floating-point,
1345 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1346 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1347 needed. */
679655e6 1348#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1349 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1350 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1351 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1352 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1353
1354/* A function address in a call instruction
1355 is a byte address (for indexing purposes)
1356 so give the MEM rtx a byte's mode. */
1357#define FUNCTION_MODE SImode
1358
1359/* Define this if addresses of constant functions
1360 shouldn't be put through pseudo regs where they can be cse'd.
1361 Desirable on machines where ordinary constants are expensive
1362 but a CALL with constant address is cheap. */
1363#define NO_FUNCTION_CSE
1364
1365/* alloca should avoid clobbering the old register save area. */
1366#define SETJMP_VIA_SAVE_AREA
1367
1368/* Define subroutines to call to handle multiply and divide.
1369 Use the subroutines that Sun's library provides.
1370 The `*' prevents an underscore from being prepended by the compiler. */
1371
1372#define DIVSI3_LIBCALL "*.div"
1373#define UDIVSI3_LIBCALL "*.udiv"
1374#define MODSI3_LIBCALL "*.rem"
1375#define UMODSI3_LIBCALL "*.urem"
1376/* .umul is a little faster than .mul. */
1377#define MULSI3_LIBCALL "*.umul"
1378
1379/* Compute the cost of computing a constant rtl expression RTX
1380 whose rtx-code is CODE. The body of this macro is a portion
1381 of a switch statement. If the code is computed here,
1382 return it with a return statement. Otherwise, break from the switch. */
1383
3bb22aee 1384#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28
JW
1385 case CONST_INT: \
1386 if (INTVAL (RTX) == 0) \
1387 return 0; \
1388 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1389 return 1; \
1390 case HIGH: \
1391 return 2; \
1392 case CONST: \
1393 case LABEL_REF: \
1394 case SYMBOL_REF: \
1395 return 4; \
1396 case CONST_DOUBLE: \
1397 if (GET_MODE (RTX) == DImode) \
1398 if ((XINT (RTX, 3) == 0 \
1399 && (unsigned) XINT (RTX, 2) < 0x1000) \
1400 || (XINT (RTX, 3) == -1 \
1401 && XINT (RTX, 2) < 0 \
1402 && XINT (RTX, 2) >= -0x1000)) \
1403 return 1; \
1404 return 8;
1405
1406/* SPARC offers addressing modes which are "as cheap as a register".
1407 See sparc.c (or gcc.texinfo) for details. */
1408
1409#define ADDRESS_COST(RTX) \
1410 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1411
1412/* Compute extra cost of moving data between one register class
1413 and another. */
1414#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1415 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1416 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1417
1418/* Provide the costs of a rtl expression. This is in the body of a
1419 switch on CODE. The purpose for the cost of MULT is to encourage
1420 `synth_mult' to find a synthetic multiply when reasonable.
1421
1422 If we need more than 12 insns to do a multiply, then go out-of-line,
1423 since the call overhead will be < 10% of the cost of the multiply. */
1424
3bb22aee 1425#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1426 case MULT: \
1427 return COSTS_N_INSNS (25); \
1428 case DIV: \
1429 case UDIV: \
1430 case MOD: \
1431 case UMOD: \
1432 return COSTS_N_INSNS (20); \
1433 /* Make FLOAT more expensive than CONST_DOUBLE, \
1434 so that cse will favor the latter. */ \
1435 case FLOAT: \
1436 return 19;
1437
1438/* Conditional branches with empty delay slots have a length of two. */
1439#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1440 if (GET_CODE (INSN) == CALL_INSN \
1441 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1442 LENGTH += 1;
1443\f
1444/* Control the assembler format that we output. */
1445
1446/* Output at beginning of assembler file. */
1447
1448#define ASM_FILE_START(file)
1449
1450/* Output to assembler file text saying following lines
1451 may contain character constants, extra white space, comments, etc. */
1452
1453#define ASM_APP_ON ""
1454
1455/* Output to assembler file text saying following lines
1456 no longer contain unusual constructs. */
1457
1458#define ASM_APP_OFF ""
1459
303d524a
JW
1460#define ASM_LONG ".word"
1461#define ASM_SHORT ".half"
1462#define ASM_BYTE_OP ".byte"
1463
1bb87f28
JW
1464/* Output before read-only data. */
1465
1466#define TEXT_SECTION_ASM_OP ".text"
1467
1468/* Output before writable data. */
1469
1470#define DATA_SECTION_ASM_OP ".data"
1471
1472/* How to refer to registers in assembler output.
1473 This sequence is indexed by compiler's hard-register-number (see above). */
1474
1475#define REGISTER_NAMES \
1476{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1477 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1478 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1479 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1480 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1481 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1482 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1483 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1484
ea3fa5f7
JW
1485/* Define additional names for use in asm clobbers and asm declarations.
1486
1487 We define the fake Condition Code register as an alias for reg 0 (which
1488 is our `condition code' register), so that condition codes can easily
1489 be clobbered by an asm. No such register actually exists. Condition
1490 codes are partly stored in the PSR and partly in the FSR. */
1491
0eb9f40e 1492#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1493
1bb87f28
JW
1494/* How to renumber registers for dbx and gdb. */
1495
1496#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1497
1498/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1499 since the length can run past this up to a continuation point. */
1500#define DBX_CONTIN_LENGTH 1500
1501
1502/* This is how to output a note to DBX telling it the line number
1503 to which the following sequence of instructions corresponds.
1504
1505 This is needed for SunOS 4.0, and should not hurt for 3.2
1506 versions either. */
1507#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1508 { static int sym_lineno = 1; \
1509 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1510 line, sym_lineno, sym_lineno); \
1511 sym_lineno += 1; }
1512
1513/* This is how to output the definition of a user-level label named NAME,
1514 such as the label on a static function or variable NAME. */
1515
1516#define ASM_OUTPUT_LABEL(FILE,NAME) \
1517 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1518
1519/* This is how to output a command to make the user-level label named NAME
1520 defined for reference from other files. */
1521
1522#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1523 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1524
1525/* This is how to output a reference to a user-level label named NAME.
1526 `assemble_name' uses this. */
1527
1528#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1529 fprintf (FILE, "_%s", NAME)
1530
d2a8e680 1531/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1532 PREFIX is the class of label and NUM is the number within the class. */
1533
1534#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1535 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1536
d2a8e680
RS
1537/* This is how to output a reference to an internal numbered label where
1538 PREFIX is the class of label and NUM is the number within the class. */
1539/* FIXME: This should be used throughout gcc, and documented in the texinfo
1540 files. There is no reason you should have to allocate a buffer and
1541 `sprintf' to reference an internal label (as opposed to defining it). */
1542
1543#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1544 fprintf (FILE, "%s%d", PREFIX, NUM)
1545
1bb87f28
JW
1546/* This is how to store into the string LABEL
1547 the symbol_ref name of an internal numbered label where
1548 PREFIX is the class of label and NUM is the number within the class.
1549 This is suitable for output with `assemble_name'. */
1550
1551#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1552 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1553
1554/* This is how to output an assembler line defining a `double' constant. */
1555
b1fc14e5
RS
1556/* Assemblers (both gas 1.35 and as in 4.0.3)
1557 seem to treat -0.0 as if it were 0.0.
1558 They reject 99e9999, but accept inf. */
1bb87f28
JW
1559#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1560 { \
303d524a
JW
1561 if (REAL_VALUE_ISINF (VALUE) \
1562 || REAL_VALUE_ISNAN (VALUE) \
1563 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1564 { \
303d524a
JW
1565 long t[2]; \
1566 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1567 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1568 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1569 } \
1570 else \
1571 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1572 }
1573
1574/* This is how to output an assembler line defining a `float' constant. */
1575
1576#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1577 { \
303d524a
JW
1578 if (REAL_VALUE_ISINF (VALUE) \
1579 || REAL_VALUE_ISNAN (VALUE) \
1580 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1581 { \
303d524a
JW
1582 long t; \
1583 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1584 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1585 } \
1586 else \
1587 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1588 }
1589
1590/* This is how to output an assembler line defining an `int' constant. */
1591
1592#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1593( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1594 output_addr_const (FILE, (VALUE)), \
1595 fprintf (FILE, "\n"))
1596
1597/* This is how to output an assembler line defining a DImode constant. */
1598#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1599 output_double_int (FILE, VALUE)
1600
1601/* Likewise for `char' and `short' constants. */
1602
1603#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1604( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1605 output_addr_const (FILE, (VALUE)), \
1606 fprintf (FILE, "\n"))
1607
1608#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1609( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1610 output_addr_const (FILE, (VALUE)), \
1611 fprintf (FILE, "\n"))
1612
1613/* This is how to output an assembler line for a numeric constant byte. */
1614
1615#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1616 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1617
1618/* This is how to output an element of a case-vector that is absolute. */
1619
1620#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1621do { \
1622 char label[30]; \
1623 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1624 fprintf (FILE, "\t.word\t"); \
1625 assemble_name (FILE, label); \
1626 fprintf (FILE, "\n"); \
1627} while (0)
1bb87f28
JW
1628
1629/* This is how to output an element of a case-vector that is relative.
1630 (SPARC uses such vectors only when generating PIC.) */
1631
4b69d2a3
RS
1632#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1633do { \
1634 char label[30]; \
1635 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1636 fprintf (FILE, "\t.word\t"); \
1637 assemble_name (FILE, label); \
1638 fprintf (FILE, "-1b\n"); \
1639} while (0)
1bb87f28
JW
1640
1641/* This is how to output an assembler line
1642 that says to advance the location counter
1643 to a multiple of 2**LOG bytes. */
1644
1645#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1646 if ((LOG) != 0) \
1647 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1648
1649#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1650 fprintf (FILE, "\t.skip %u\n", (SIZE))
1651
1652/* This says how to output an assembler line
1653 to define a global common symbol. */
1654
1655#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1656( fputs ("\t.global ", (FILE)), \
1657 assemble_name ((FILE), (NAME)), \
1658 fputs ("\n\t.common ", (FILE)), \
1659 assemble_name ((FILE), (NAME)), \
1660 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1661
1662/* This says how to output an assembler line
1663 to define a local common symbol. */
1664
1665#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1666( fputs ("\n\t.reserve ", (FILE)), \
1667 assemble_name ((FILE), (NAME)), \
1668 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1669
1670/* Store in OUTPUT a string (made with alloca) containing
1671 an assembler-name for a local static variable named NAME.
1672 LABELNO is an integer which is different for each call. */
1673
1674#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1675( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1676 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1677
1678/* Define the parentheses used to group arithmetic operations
1679 in assembler code. */
1680
1681#define ASM_OPEN_PAREN "("
1682#define ASM_CLOSE_PAREN ")"
1683
1684/* Define results of standard character escape sequences. */
1685#define TARGET_BELL 007
1686#define TARGET_BS 010
1687#define TARGET_TAB 011
1688#define TARGET_NEWLINE 012
1689#define TARGET_VT 013
1690#define TARGET_FF 014
1691#define TARGET_CR 015
1692
1693#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
837e5fe9
JW
1694 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' \
1695 || (CHAR) == '(')
1bb87f28
JW
1696
1697/* Print operand X (an rtx) in assembler syntax to file FILE.
1698 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1699 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1700
1701#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1702
1703/* Print a memory address as an operand to reference that memory location. */
1704
1705#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1706{ register rtx base, index = 0; \
1707 int offset = 0; \
1708 register rtx addr = ADDR; \
1709 if (GET_CODE (addr) == REG) \
1710 fputs (reg_names[REGNO (addr)], FILE); \
1711 else if (GET_CODE (addr) == PLUS) \
1712 { \
1713 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1714 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1715 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1716 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1717 else \
1718 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1719 fputs (reg_names[REGNO (base)], FILE); \
1720 if (index == 0) \
1721 fprintf (FILE, "%+d", offset); \
1722 else if (GET_CODE (index) == REG) \
1723 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1724 else if (GET_CODE (index) == SYMBOL_REF) \
1725 fputc ('+', FILE), output_addr_const (FILE, index); \
1726 else abort (); \
1727 } \
1728 else if (GET_CODE (addr) == MINUS \
1729 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1730 { \
1731 output_addr_const (FILE, XEXP (addr, 0)); \
1732 fputs ("-(", FILE); \
1733 output_addr_const (FILE, XEXP (addr, 1)); \
1734 fputs ("-.)", FILE); \
1735 } \
1736 else if (GET_CODE (addr) == LO_SUM) \
1737 { \
1738 output_operand (XEXP (addr, 0), 0); \
1739 fputs ("+%lo(", FILE); \
1740 output_address (XEXP (addr, 1)); \
1741 fputc (')', FILE); \
1742 } \
1743 else if (flag_pic && GET_CODE (addr) == CONST \
1744 && GET_CODE (XEXP (addr, 0)) == MINUS \
1745 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1746 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1747 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1748 { \
1749 addr = XEXP (addr, 0); \
1750 output_addr_const (FILE, XEXP (addr, 0)); \
1751 /* Group the args of the second CONST in parenthesis. */ \
1752 fputs ("-(", FILE); \
1753 /* Skip past the second CONST--it does nothing for us. */\
1754 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1755 /* Close the parenthesis. */ \
1756 fputc (')', FILE); \
1757 } \
1758 else \
1759 { \
1760 output_addr_const (FILE, addr); \
1761 } \
1762}
1763
1764/* Declare functions defined in sparc.c and used in templates. */
1765
1766extern char *singlemove_string ();
1767extern char *output_move_double ();
795068a4 1768extern char *output_move_quad ();
1bb87f28 1769extern char *output_fp_move_double ();
795068a4 1770extern char *output_fp_move_quad ();
1bb87f28
JW
1771extern char *output_block_move ();
1772extern char *output_scc_insn ();
1773extern char *output_cbranch ();
1774extern char *output_return ();
1bb87f28
JW
1775
1776/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1777
1778extern int flag_pic;
This page took 0.257168 seconds and 5 git commands to generate.