]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(arith64_operand): Integer CONST_DOUBLE is DImode.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28 1/* Definitions of target machine for GNU compiler, for Sun SPARC.
b331b745 2 Copyright (C) 1987, 1988, 1989, 1992, 1994 Free Software Foundation, Inc.
1bb87f28 3 Contributed by Michael Tiemann (tiemann@cygnus.com).
7a6cf439
DE
4 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
1bb87f28
JW
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING. If not, write to
21the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
7a6cf439
DE
26/* Sparc64 support has been added by trying to allow for a day when one
27 compiler can handle both v8 and v9. There are a few cases where this
28 isn't doable, but keep them to a minimum! Two macros are used to help out:
29 TARGET_V9 is used to select (at runtime) !v9-ness or v9-ness.
30 SPARCV9 is defined when compiling for sparc64 only.
31 In places where it is possible to choose between the two at runtime, use
32 TARGET_V9. In places where it is currently not possible to select
33 between the two at runtime use SPARCV9. Again, keep uses of SPARCV9 to a
34 minimum. No attempt is made to support both v8 and v9 in the v9 compiler.
35
36 If a combination v8/v9 compiler is too slow, it should always be possible
37 to #define TARGET_V9 as 0 (and potentially other v9-only options), and
38 #undef SPARCV9. */
39
bef8d8c7
JW
40/* What architecture we're compiling for. This must coincide with the
41 `arch_type' attribute in the .md file. The names were chosen to avoid
42 potential misunderstandings with the various 32 bit flavors (v7, v8, etc.):
43 if we used ARCH_V9 then we'd want to use something like ARCH_V8 but that
44 could be misleading and ARCH_NOTV9 sounds klunky. */
45enum arch_type { ARCH_32BIT, ARCH_64BIT };
46extern enum arch_type sparc_arch_type;
7a6cf439
DE
47
48/* Names to predefine in the preprocessor for this target machine. */
49
50/* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
51 the right varags.h file when bootstrapping. */
52
53#ifdef SPARCV9
54#define CPP_PREDEFINES \
55 "-Dsparc -Dsun -Dunix -D__sparc_v9__ \
56 -Asystem(unix) -Asystem(bsd) -Acpu(sparc64) -Amachine(sparc64)"
57#else
58#define CPP_PREDEFINES \
59 "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
857458c4 60 -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
7a6cf439
DE
61#endif
62
9ee6230c 63#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
1bb87f28 64
98ccf8fe 65/* Provide required defaults for linker -e and -d switches. */
1bb87f28 66
d6f04508 67#define LINK_SPEC \
197a1140 68 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
69
70/* Special flags to the Sun-4 assembler when using pipe for input. */
71
b877b5ab 72#define ASM_SPEC " %| %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}}"
1bb87f28 73
885d8175 74/* Define macros to distinguish architectures. */
857458c4
DE
75
76#ifdef SPARCV9
77#define CPP_SPEC "\
78%{mint64:-D__INT_MAX__=9223372036854775807LL -D__LONG_MAX__=9223372036854775807LL} \
79%{mlong64:-D__LONG_MAX__=9223372036854775807LL} \
80"
81#else
7a6cf439
DE
82#define CPP_SPEC "\
83%{msparclite:-D__sparclite__} \
84%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
85%{mv8:-D__sparc_v8__} \
bef8d8c7 86%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
7a6cf439 87"
857458c4 88#endif
885d8175 89
b1fc14e5
RS
90/* Prevent error on `-sun4' and `-target sun4' options. */
91/* This used to translate -dalign to -malign, but that is no good
92 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 93
b1fc14e5 94#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 95
857458c4
DE
96#ifdef SPARCV9
97#define PTRDIFF_TYPE "long long int"
98#define SIZE_TYPE "long long unsigned int"
99#else
100#define PTRDIFF_TYPE "int"
101/* In 2.4 it should work to delete this.
102 #define SIZE_TYPE "int" */
103#endif
7a6cf439
DE
104
105/* ??? This should be 32 bits for v9 but what can we do? */
1bb87f28
JW
106#define WCHAR_TYPE "short unsigned int"
107#define WCHAR_TYPE_SIZE 16
7a6cf439 108#define MAX_WCHAR_TYPE_SIZE 16
1bb87f28 109
4f074454
RK
110/* Show we can debug even without a frame pointer. */
111#define CAN_DEBUG_WITHOUT_FP
1bb87f28 112
5b485d2c
JW
113/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
114 code into the rtl. Also, if we are profiling, we cannot eliminate
115 the frame pointer (because the return address will get smashed). */
116
7a6cf439
DE
117void sparc_override_options ();
118
5b485d2c 119#define OVERRIDE_OPTIONS \
7a6cf439
DE
120 do { \
121 if (profile_flag || profile_block_flag) \
122 { \
123 if (flag_pic) \
124 { \
125 char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC"; \
126 warning ("%s and profiling conflict: disabling %s", \
127 pic_string, pic_string); \
128 flag_pic = 0; \
129 } \
130 flag_omit_frame_pointer = 0; \
131 } \
132 SUBTARGET_OVERRIDE_OPTIONS \
133 sparc_override_options (); \
134 } while (0)
84ab3bfb
JW
135
136/* This is meant to be redefined in the host dependent files */
137#define SUBTARGET_OVERRIDE_OPTIONS
5b485d2c 138
1bb87f28
JW
139/* These compiler options take an argument. We ignore -target for now. */
140
141#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
142 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
143 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28 144
1bb87f28
JW
145/* Print subsidiary information on the compiler version in use. */
146
147#define TARGET_VERSION fprintf (stderr, " (sparc)");
148
149/* Generate DBX debugging information. */
150
151#define DBX_DEBUGGING_INFO
7a6cf439 152\f
1bb87f28
JW
153/* Run-time compilation parameters selecting different hardware subsets. */
154
155extern int target_flags;
156
157/* Nonzero if we should generate code to use the fpu. */
7a6cf439
DE
158#define MASK_FPU 1
159#define TARGET_FPU (target_flags & MASK_FPU)
1bb87f28
JW
160
161/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
162 use fast return insns, but lose some generality. */
7a6cf439
DE
163#define MASK_EPILOGUE 2
164#define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
1bb87f28 165
95dea81f
JW
166/* Nonzero if we should assume that double pointers might be unaligned.
167 This can happen when linking gcc compiled code with other compilers,
168 because the ABI only guarantees 4 byte alignment. */
7a6cf439
DE
169#define MASK_UNALIGNED_DOUBLES 4
170#define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
171
bef8d8c7
JW
172/* ??? Bits 0x18 are currently unused. */
173
174/* Nonzero means we should schedule code for the TMS390Z55 SuperSparc chip. */
175#define MASK_SUPERSPARC 0x20
176#define TARGET_SUPERSPARC (target_flags & MASK_SUPERSPARC)
1bb87f28 177
885d8175 178/* Nonzero means that we should generate code for a v8 sparc. */
7a6cf439
DE
179#define MASK_V8 0x40
180#define TARGET_V8 (target_flags & MASK_V8)
885d8175 181
bc9e02ae
JW
182/* Nonzero means that we should generate code for a sparclite.
183 This enables the sparclite specific instructions, but does not affect
184 whether FPU instructions are emitted. */
7a6cf439
DE
185#define MASK_SPARCLITE 0x80
186#define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
885d8175 187
5b485d2c 188/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
189 model, i.e. no save/restore instructions are generated, in the most
190 efficient manner. This code is not compatible with normal sparc code. */
191/* This is not a user selectable option yet, because it requires changes
192 that are not yet switchable via command line arguments. */
5c56efde 193/* ??? This flag is deprecated and may disappear at some point. */
7a6cf439
DE
194#define MASK_FRW 0x100
195#define TARGET_FRW (target_flags & MASK_FRW)
5b485d2c 196
9a1c7cd7
JW
197/* Nonzero means that we should generate code using a flat register window
198 model, i.e. no save/restore instructions are generated, but which is
199 compatible with normal sparc code. This is the same as above, except
5c56efde
DE
200 that the frame pointer is %i7 instead of %fp. */
201/* ??? This use to be named TARGET_FRW_COMPAT. At some point TARGET_FRW will
202 go away, but until that time only use this one when necessary.
203 -mflat sets both. */
7a6cf439
DE
204#define MASK_FLAT 0x200
205#define TARGET_FLAT (target_flags & MASK_FLAT)
9a1c7cd7 206
34ad7aaf 207/* Nonzero means use the registers that the Sparc ABI reserves for
7a6cf439
DE
208 application software. This is the default for v8, but not v9. */
209#define MASK_APP_REGS 0x400
210#define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
34ad7aaf 211
8248e2bc
JW
212/* Option to select how quad word floating point is implemented.
213 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
214 Otherwise, we use the SPARC ABI quad library functions. */
7a6cf439
DE
215#define MASK_HARD_QUAD 0x800
216#define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
217
218/* Nonzero if we're compiling for 64 bit sparc. */
219#define MASK_V9 0x1000
220#define TARGET_V9 (target_flags & MASK_V9)
221
222/* Nonzero if ints are 64 bits.
223 This automatically implies longs are 64 bits too.
224 This option is for v9 only. */
225#define MASK_INT64 0x2000
226#define TARGET_INT64 (target_flags & MASK_INT64)
227
228/* Nonzero if longs are 64 bits.
229 This option is for v9 only. */
230#define MASK_LONG64 0x4000
231#define TARGET_LONG64 (target_flags & MASK_LONG64)
232
233/* Nonzero if pointers are 64 bits.
857458c4
DE
234 This is not a user selectable option, though it may be one day -
235 so it is used to determine pointer size instead of an architecture flag. */
7a6cf439
DE
236#define MASK_PTR64 0x8000
237#define TARGET_PTR64 (target_flags & MASK_PTR64)
238
239/* Nonzero if we are generating code to be tested in a 32 bit environment.
240 Hence, we assume the upper 32 bits of symbolic addresses are zero, and
241 avoid generating %uhi and %ulo terms.
242 Pointers are still 64 bits though! This option is for v9 only. */
fa653e40 243/* ??? This option is deprecated. Try to use -mcode-model=medium-low. */
7a6cf439
DE
244#define MASK_ENV32 0x10000
245#define TARGET_ENV32 (target_flags & MASK_ENV32)
246
247/* Memory models.
248 Two memory models are supported:
249 TARGET_MEDLOW: 32 bit address space, top 32 bits = 0
857458c4 250 (pointers still 64 bits)
7a6cf439
DE
251 TARGET_MEDANY: 32 bit address space, data segment loaded anywhere
252 (use %g4 as offset).
253 TARGET_FULLANY: not supported yet.
254 These options are for v9 only. All mask values are nonzero so the v8
255 compiler can assume this stuff won't interfere. */
256#define MASK_MEDLOW 0x20000
257#define MASK_MEDANY 0x40000
258#define MASK_FULLANY 0x60000
259#define MASK_CODE_MODEL (MASK_MEDLOW + MASK_MEDANY)
260#define TARGET_MEDLOW ((target_flags & MASK_CODE_MODEL) == MASK_MEDLOW)
261#define TARGET_MEDANY ((target_flags & MASK_CODE_MODEL) == MASK_MEDANY)
262#define TARGET_FULLANY ((target_flags & MASK_CODE_MODEL) == MASK_FULLANY)
263
264/* ??? There are hardcoded references to this reg in the .md file. */
265#define MEDANY_BASE_REG "%g4"
266
267/* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
268 adding 2047 to %sp. This option is for v9 only and is the default. */
269#define MASK_STACK_BIAS 0x80000
270#define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
8248e2bc 271
1bb87f28
JW
272/* Macro to define tables used to set the flags.
273 This is a list in braces of pairs in braces,
274 each pair being { "NAME", VALUE }
275 where VALUE is the bits to set or minus the bits to clear.
276 An empty string NAME is used to identify the default VALUE. */
277
bc9e02ae 278/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
7a6cf439 279 The Fujitsu MB86934 is the recent sparclite chip, with an fpu.
bc9e02ae
JW
280 We use -mf930 and -mf934 options to choose which.
281 ??? These should perhaps be -mcpu= options. */
282
1bb87f28 283#define TARGET_SWITCHES \
7a6cf439
DE
284 { {"fpu", MASK_FPU}, \
285 {"no-fpu", -MASK_FPU}, \
286 {"hard-float", MASK_FPU}, \
287 {"soft-float", -MASK_FPU}, \
288 {"epilogue", MASK_EPILOGUE}, \
289 {"no-epilogue", -MASK_EPILOGUE}, \
290 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES}, \
291 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES}, \
bef8d8c7
JW
292 {"supersparc", MASK_SUPERSPARC+MASK_V8}, \
293 {"cypress", -MASK_SUPERSPARC-MASK_V8}, \
7a6cf439
DE
294 {"v8", MASK_V8}, \
295 {"no-v8", -MASK_V8}, \
296 {"sparclite", MASK_SPARCLITE}, \
297 {"no-sparclite", -MASK_SPARCLITE}, \
298 {"f930", MASK_SPARCLITE}, \
299 {"f930", -MASK_FPU}, \
300 {"f934", MASK_SPARCLITE}, \
301 {"flat", MASK_FRW+MASK_FLAT}, \
302 {"no-flat", -(MASK_FRW+MASK_FLAT)}, \
303 {"app-regs", MASK_APP_REGS}, \
304 {"no-app-regs", -MASK_APP_REGS}, \
305 {"hard-quad-float", MASK_HARD_QUAD}, \
306 {"soft-quad-float", -MASK_HARD_QUAD}, \
307 SUBTARGET_SWITCHES \
308 V9_SWITCHES \
b1fc14e5 309 { "", TARGET_DEFAULT}}
1bb87f28 310
7a6cf439 311#define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
84ab3bfb
JW
312
313/* This is meant to be redefined in the host dependent files */
314#define SUBTARGET_SWITCHES
1bb87f28 315
7a6cf439
DE
316/* ??? Until we support a combination v8/v9 compiler, the v9 specific options
317 are only defined for the v9 compiler. */
7a6cf439
DE
318#ifdef SPARCV9
319#define V9_SWITCHES \
fa653e40 320/* {"v9", MASK_V9}, */ \
7a6cf439
DE
321 {"int64", MASK_INT64+MASK_LONG64}, \
322 {"int32", -MASK_INT64}, \
fa653e40
DE
323 {"int32", MASK_LONG64}, \
324 {"long64", -MASK_INT64}, \
7a6cf439 325 {"long64", MASK_LONG64}, \
fa653e40
DE
326 {"long32", -(MASK_INT64+MASK_LONG64)}, \
327/* {"ptr64", MASK_PTR64}, */ \
328/* {"ptr32", -MASK_PTR64}, */ \
7a6cf439
DE
329 {"stack-bias", MASK_STACK_BIAS}, \
330 {"no-stack-bias", -MASK_STACK_BIAS},
331#else
332#define V9_SWITCHES
360b1451 333#endif
d667538b 334
7a6cf439
DE
335/* This macro is similar to `TARGET_SWITCHES' but defines names of
336 command options that have values. Its definition is an
337 initializer with a subgrouping for each command option.
338
339 Each subgrouping contains a string constant, that defines the
340 fixed part of the option name, and the address of a variable.
341 The variable, type `char *', is set to the variable part of the
342 given option if the fixed part matches. The actual option name
343 is made by prepending `-m' to the specified name.
344
345 Here is an example which defines `-mshort-data-NUMBER'. If the
346 given option is `-mshort-data-512', the variable `m88k_short_data'
347 will be set to the string `"512"'.
348
349 extern char *m88k_short_data;
350 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
351
352/* For v9, two values of "code model" are currently supported.
353
354 medium-low
355 32 bit address space starting at 0
356
357 medium-anywhere
358 32 bit text segment starting at 0
359 32 bit data segment(s) starting anywhere (determined at link time)
360 MEDANY_BASE_REG points to the start
361*/
362
363extern char *sparc_code_model;
364
365#define TARGET_OPTIONS \
366{ \
367 { "code-model=", &sparc_code_model } \
368}
369\f
370/* target machine storage layout */
371
d667538b
JW
372/* Define for cross-compilation to a sparc target with no TFmode from a host
373 with a different float format (e.g. VAX). */
374#define REAL_ARITHMETIC
375
1bb87f28
JW
376/* Define this if most significant bit is lowest numbered
377 in instructions that operate on numbered bit-fields. */
378#define BITS_BIG_ENDIAN 1
379
380/* Define this if most significant byte of a word is the lowest numbered. */
381/* This is true on the SPARC. */
382#define BYTES_BIG_ENDIAN 1
383
384/* Define this if most significant word of a multiword number is the lowest
385 numbered. */
386/* Doubles are stored in memory with the high order word first. This
387 matters when cross-compiling. */
388#define WORDS_BIG_ENDIAN 1
389
b4ac57ab 390/* number of bits in an addressable storage unit */
1bb87f28
JW
391#define BITS_PER_UNIT 8
392
393/* Width in bits of a "word", which is the contents of a machine register.
394 Note that this is not necessarily the width of data type `int';
395 if using 16-bit ints on a 68000, this would still be 32.
396 But on a machine with 16-bit registers, this would be 16. */
7a6cf439
DE
397#define BITS_PER_WORD (TARGET_V9 ? 64 : 32)
398#define MAX_BITS_PER_WORD 64
1bb87f28
JW
399
400/* Width of a word, in units (bytes). */
7a6cf439
DE
401#define UNITS_PER_WORD (TARGET_V9 ? 8 : 4)
402#define MAX_UNITS_PER_WORD 8
403
404/* Now define the sizes of the C data types. */
405
406#define SHORT_TYPE_SIZE 16
407#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
408#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
409#define LONG_LONG_TYPE_SIZE 64
410#define FLOAT_TYPE_SIZE 32
411#define DOUBLE_TYPE_SIZE 64
412
413#define MAX_INT_TYPE_SIZE 64
414#define MAX_LONG_TYPE_SIZE 64
415
416#ifdef SPARCV9
417/* ??? This does not work in SunOS 4.x, so it is not enabled here.
418 Instead, it is enabled in sol2.h, because it does work under Solaris. */
419/* Define for support of TFmode long double and REAL_ARITHMETIC.
420 Sparc ABI says that long double is 4 words. */
421#define LONG_DOUBLE_TYPE_SIZE 128
422#endif
1bb87f28
JW
423
424/* Width in bits of a pointer.
425 See also the macro `Pmode' defined below. */
7a6cf439 426#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
1bb87f28
JW
427
428/* Allocation boundary (in *bits*) for storing arguments in argument list. */
7a6cf439 429#define PARM_BOUNDARY (TARGET_V9 ? 64 : 32)
1bb87f28
JW
430
431/* Boundary (in *bits*) on which stack pointer should be aligned. */
7a6cf439 432#define STACK_BOUNDARY (TARGET_V9 ? 128 : 64)
1bb87f28 433
10d1b70f
JW
434/* ALIGN FRAMES on double word boundaries */
435
7a6cf439
DE
436#define SPARC_STACK_ALIGN(LOC) \
437 (TARGET_V9 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
10d1b70f 438
1bb87f28
JW
439/* Allocation boundary (in *bits*) for the code of a function. */
440#define FUNCTION_BOUNDARY 32
441
442/* Alignment of field after `int : 0' in a structure. */
7a6cf439
DE
443/* ??? Should this be based on TARGET_INT64? */
444#define EMPTY_FIELD_BOUNDARY (TARGET_V9 ? 64 : 32)
1bb87f28
JW
445
446/* Every structure's size must be a multiple of this. */
447#define STRUCTURE_SIZE_BOUNDARY 8
448
449/* A bitfield declared as `int' forces `int' alignment for the struct. */
450#define PCC_BITFIELD_TYPE_MATTERS 1
451
452/* No data type wants to be aligned rounder than this. */
7a6cf439 453#define BIGGEST_ALIGNMENT (TARGET_V9 ? 128 : 64)
1bb87f28 454
77a02b01
JW
455/* The best alignment to use in cases where we have a choice. */
456#define FASTEST_ALIGNMENT 64
457
1bb87f28
JW
458/* Make strings word-aligned so strcpy from constants will be faster. */
459#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
460 ((TREE_CODE (EXP) == STRING_CST \
461 && (ALIGN) < FASTEST_ALIGNMENT) \
462 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
463
464/* Make arrays of chars word-aligned for the same reasons. */
465#define DATA_ALIGNMENT(TYPE, ALIGN) \
466 (TREE_CODE (TYPE) == ARRAY_TYPE \
467 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 468 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 469
b4ac57ab 470/* Set this nonzero if move instructions will actually fail to work
1bb87f28 471 when given unaligned data. */
b4ac57ab 472#define STRICT_ALIGNMENT 1
1bb87f28
JW
473
474/* Things that must be doubleword aligned cannot go in the text section,
475 because the linker fails to align the text section enough!
7a6cf439 476 Put them in the data section. This macro is only used in this file. */
1bb87f28
JW
477#define MAX_TEXT_ALIGN 32
478
7a6cf439 479/* This is defined differently for v9 in a cover file. */
1bb87f28
JW
480#define SELECT_SECTION(T,RELOC) \
481{ \
482 if (TREE_CODE (T) == VAR_DECL) \
483 { \
484 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
ed8969fa
JW
485 && DECL_INITIAL (T) \
486 && (DECL_INITIAL (T) == error_mark_node \
487 || TREE_CONSTANT (DECL_INITIAL (T))) \
1bb87f28
JW
488 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
489 && ! (flag_pic && (RELOC))) \
490 text_section (); \
491 else \
492 data_section (); \
493 } \
494 else if (TREE_CODE (T) == CONSTRUCTOR) \
495 { \
496 if (flag_pic != 0 && (RELOC) != 0) \
497 data_section (); \
498 } \
499 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
500 { \
501 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
502 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
503 data_section (); \
504 else \
505 text_section (); \
506 } \
507}
508
509/* Use text section for a constant
510 unless we need more alignment than that offers. */
7a6cf439 511/* This is defined differently for v9 in a cover file. */
1bb87f28
JW
512#define SELECT_RTX_SECTION(MODE, X) \
513{ \
514 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
515 && ! (flag_pic && symbolic_operand (X))) \
516 text_section (); \
517 else \
518 data_section (); \
519}
520\f
521/* Standard register usage. */
522
523/* Number of actual hardware registers.
524 The hardware registers are assigned numbers for the compiler
525 from 0 to just below FIRST_PSEUDO_REGISTER.
526 All registers that the compiler knows about must be given numbers,
527 even those that are not normally considered general registers.
528
7a6cf439
DE
529 SPARC has 32 integer registers and 32 floating point registers.
530 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
531 accessible. We still account for them to simplify register computations
532 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
533 32+32+32+4 == 100.
534 Register 0 is used as the integer condition code register. */
1bb87f28 535
7a6cf439
DE
536#ifdef SPARCV9
537#define FIRST_PSEUDO_REGISTER 100
538#else
1bb87f28 539#define FIRST_PSEUDO_REGISTER 64
7a6cf439 540#endif
1bb87f28
JW
541
542/* 1 for registers that have pervasive standard uses
543 and are not available for the register allocator.
5b485d2c 544 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 545 hardwired to 0, so reg 0 is *not* fixed.
7a6cf439 546 On non-v9 systems:
34ad7aaf
JW
547 g1 is free to use as temporary.
548 g2-g4 are reserved for applications. Gcc normally uses them as
549 temporaries, but this can be disabled via the -mno-app-regs option.
7a6cf439
DE
550 g5 through g7 are reserved for the operating system.
551 On v9 systems:
552 g1 and g5 are free to use as temporaries.
553 g2-g4 are reserved for applications (the compiler will not normally use
554 them, but they can be used as temporaries with -mapp-regs).
555 g6-g7 are reserved for the operating system.
556 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
557 currently be a fixed register until this pattern is rewritten.
558 Register 1 is also used when restoring call-preserved registers in large
559 stack frames. */
560
561#ifdef SPARCV9
562#define FIXED_REGISTERS \
563 {0, 1, 1, 1, 1, 0, 1, 1, \
564 0, 0, 0, 0, 0, 0, 1, 0, \
565 0, 0, 0, 0, 0, 0, 0, 0, \
566 0, 0, 0, 0, 0, 0, 1, 1, \
567 \
568 0, 0, 0, 0, 0, 0, 0, 0, \
569 0, 0, 0, 0, 0, 0, 0, 0, \
570 0, 0, 0, 0, 0, 0, 0, 0, \
571 0, 0, 0, 0, 0, 0, 0, 0, \
572 \
573 0, 0, 0, 0, 0, 0, 0, 0, \
574 0, 0, 0, 0, 0, 0, 0, 0, \
575 0, 0, 0, 0, 0, 0, 0, 0, \
576 0, 0, 0, 0, 0, 0, 0, 0, \
577 \
578 0, 0, 0, 0}
579#else
1bb87f28 580#define FIXED_REGISTERS \
d9ca49d5 581 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
582 0, 0, 0, 0, 0, 0, 1, 0, \
583 0, 0, 0, 0, 0, 0, 0, 0, \
584 0, 0, 0, 0, 0, 0, 1, 1, \
585 \
586 0, 0, 0, 0, 0, 0, 0, 0, \
587 0, 0, 0, 0, 0, 0, 0, 0, \
588 0, 0, 0, 0, 0, 0, 0, 0, \
589 0, 0, 0, 0, 0, 0, 0, 0}
7a6cf439 590#endif
1bb87f28
JW
591
592/* 1 for registers not available across function calls.
593 These must include the FIXED_REGISTERS and also any
594 registers that can be used without being saved.
595 The latter must include the registers where values are returned
596 and the register where structure-value addresses are passed.
597 Aside from that, you can include as many other registers as you like. */
7a6cf439
DE
598
599#ifdef SPARCV9
600#define CALL_USED_REGISTERS \
601 {1, 1, 1, 1, 1, 1, 1, 1, \
602 1, 1, 1, 1, 1, 1, 1, 1, \
603 0, 0, 0, 0, 0, 0, 0, 0, \
604 0, 0, 0, 0, 0, 0, 1, 1, \
605 \
606 1, 1, 1, 1, 1, 1, 1, 1, \
607 1, 1, 1, 1, 1, 1, 1, 1, \
608 0, 0, 0, 0, 0, 0, 0, 0, \
609 0, 0, 0, 0, 0, 0, 0, 0, \
610 \
611 0, 0, 0, 0, 0, 0, 0, 0, \
612 0, 0, 0, 0, 0, 0, 0, 0, \
613 1, 1, 1, 1, 1, 1, 1, 1, \
614 1, 1, 1, 1, 1, 1, 1, 1, \
615 \
616 1, 1, 1, 1}
617#else
1bb87f28
JW
618#define CALL_USED_REGISTERS \
619 {1, 1, 1, 1, 1, 1, 1, 1, \
620 1, 1, 1, 1, 1, 1, 1, 1, \
621 0, 0, 0, 0, 0, 0, 0, 0, \
622 0, 0, 0, 0, 0, 0, 1, 1, \
623 \
624 1, 1, 1, 1, 1, 1, 1, 1, \
625 1, 1, 1, 1, 1, 1, 1, 1, \
626 1, 1, 1, 1, 1, 1, 1, 1, \
627 1, 1, 1, 1, 1, 1, 1, 1}
7a6cf439 628#endif
1bb87f28 629
26c5587d 630/* If !TARGET_FPU, then make the fp registers fixed so that they won't
7a6cf439 631 be allocated. On v9, also make the fp cc regs fixed. */
26c5587d
JW
632
633#define CONDITIONAL_REGISTER_USAGE \
634do \
635 { \
636 if (! TARGET_FPU) \
637 { \
638 int regno; \
7a6cf439 639 for (regno = 32; regno < FIRST_PSEUDO_REGISTER; regno++) \
26c5587d
JW
640 fixed_regs[regno] = 1; \
641 } \
34ad7aaf
JW
642 if (! TARGET_APP_REGS) \
643 { \
644 fixed_regs[2] = 1; \
645 fixed_regs[3] = 1; \
646 fixed_regs[4] = 1; \
647 } \
7a6cf439
DE
648 else \
649 { \
650 fixed_regs[2] = 0; \
651 fixed_regs[3] = 0; \
652 fixed_regs[4] = 0; \
653 } \
5c56efde
DE
654 if (TARGET_FLAT) \
655 { \
656 /* Let the compiler believe the frame pointer is still \
657 %fp, but output it as %i7. */ \
658 fixed_regs[31] = 1; \
659 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
660 /* ??? This is a hack to disable leaf functions. */ \
661 global_regs[7] = 1; \
662 } \
9ee6230c
JW
663 if (profile_block_flag) \
664 { \
665 /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \
666 uses them. */ \
667 fixed_regs[1] = 1; \
668 fixed_regs[2] = 1; \
669 } \
26c5587d
JW
670 } \
671while (0)
672
1bb87f28
JW
673/* Return number of consecutive hard regs needed starting at reg REGNO
674 to hold something of mode MODE.
675 This is ordinarily the length in words of a value of mode MODE
676 but can be less for certain modes in special long registers.
677
678 On SPARC, ordinary registers hold 32 bits worth;
679 this means both integer and floating point registers.
7a6cf439
DE
680 On v9, integer regs hold 64 bits worth; floating point regs hold
681 32 bits worth (this includes the new fp regs as even the odd ones are
682 included in the hard register count). */
1bb87f28 683
7a6cf439
DE
684#define HARD_REGNO_NREGS(REGNO, MODE) \
685 (TARGET_V9 \
686 ? ((REGNO) < 32 \
687 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
688 : (GET_MODE_SIZE (MODE) + 3) / 4) \
689 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1bb87f28
JW
690
691/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
923a8d06 692 See sparc.c for how we initialize this. */
7a6cf439
DE
693extern int *hard_regno_mode_classes;
694extern int sparc_mode_class[];
1bb87f28 695#define HARD_REGNO_MODE_OK(REGNO, MODE) \
7a6cf439 696 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1bb87f28
JW
697
698/* Value is 1 if it is a good idea to tie two pseudo registers
699 when one has mode MODE1 and one has mode MODE2.
700 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
7a6cf439
DE
701 for any hard reg, then this must be 0 for correct output.
702
703 For V9: SFmode can't be combined with other float modes, because they can't
704 be allocated to the %d registers. Also, DFmode won't fit in odd %f
705 registers, but SFmode will. */
1bb87f28 706#define MODES_TIEABLE_P(MODE1, MODE2) \
7a6cf439
DE
707 ((MODE1) == (MODE2) \
708 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
709 && (! TARGET_V9 \
710 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
711 || (MODE1 != SFmode && MODE2 != SFmode)))))
1bb87f28
JW
712
713/* Specify the registers used for certain standard purposes.
714 The values of these macros are register numbers. */
715
716/* SPARC pc isn't overloaded on a register that the compiler knows about. */
717/* #define PC_REGNUM */
718
719/* Register to use for pushing function arguments. */
720#define STACK_POINTER_REGNUM 14
721
7a6cf439
DE
722/* Actual top-of-stack address is 92/136 greater than the contents of the
723 stack pointer register for !v9/v9. That is:
724 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
725 address, and 24 bytes for the 6 register parameters.
726 - v9: 128 bytes for the in and local registers + 8 bytes reserved. */
1bb87f28
JW
727#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
728
7a6cf439
DE
729/* The stack bias (amount by which the hardware register is offset by). */
730#define SPARC_STACK_BIAS (TARGET_STACK_BIAS ? 2047 : 0)
731
1bb87f28
JW
732/* Base register for access to local variables of the function. */
733#define FRAME_POINTER_REGNUM 30
734
735#if 0
736/* Register that is used for the return address. */
737#define RETURN_ADDR_REGNUM 15
738#endif
739
740/* Value should be nonzero if functions must have frame pointers.
741 Zero means the frame pointer need not be set up (and parms
742 may be accessed via the stack pointer) in functions that seem suitable.
743 This is computed in `reload', in reload1.c.
744
c0524a34 745 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
746extern int leaf_function;
747
748#define FRAME_POINTER_REQUIRED \
5c56efde
DE
749 (TARGET_FRW ? (current_function_calls_alloca || current_function_varargs) \
750 : ! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
751
752/* C statement to store the difference between the frame pointer
753 and the stack pointer values immediately after the function prologue.
754
755 Note, we always pretend that this is a leaf function because if
756 it's not, there's no point in trying to eliminate the
757 frame pointer. If it is a leaf function, we guessed right! */
758#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5c56efde 759 ((VAR) = (TARGET_FRW ? sparc_flat_compute_frame_size (get_frame_size ()) \
5b485d2c 760 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
761
762/* Base register for access to arguments of the function. */
5c56efde 763#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1bb87f28 764
6098b63e 765/* Register in which static-chain is passed to a function. This must
7a6cf439
DE
766 not be a register used by the prologue.
767 ??? v9: Since %g2 is reserved but %g5 is available, perhaps use %g5. */
6098b63e 768#define STATIC_CHAIN_REGNUM 2
1bb87f28
JW
769
770/* Register which holds offset table for position-independent
771 data references. */
772
773#define PIC_OFFSET_TABLE_REGNUM 23
774
775#define INITIALIZE_PIC initialize_pic ()
776#define FINALIZE_PIC finalize_pic ()
777
d9ca49d5 778/* Sparc ABI says that quad-precision floats and all structures are returned
7a6cf439
DE
779 in memory.
780 For v9, all aggregates are returned in memory. */
781#define RETURN_IN_MEMORY(TYPE) \
782 (TYPE_MODE (TYPE) == BLKmode || (! TARGET_V9 && TYPE_MODE (TYPE) == TFmode))
d9ca49d5 783
1bb87f28
JW
784/* Functions which return large structures get the address
785 to place the wanted value at offset 64 from the frame.
7a6cf439
DE
786 Must reserve 64 bytes for the in and local registers.
787 v9: Functions which return large structures get the address to place the
788 wanted value from an invisible first argument. */
1bb87f28
JW
789/* Used only in other #defines in this file. */
790#define STRUCT_VALUE_OFFSET 64
791
792#define STRUCT_VALUE \
7a6cf439
DE
793 (TARGET_V9 \
794 ? 0 \
795 : gen_rtx (MEM, Pmode, \
796 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
797 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
1bb87f28 798#define STRUCT_VALUE_INCOMING \
7a6cf439
DE
799 (TARGET_V9 \
800 ? 0 \
801 : gen_rtx (MEM, Pmode, \
802 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
803 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
1bb87f28
JW
804\f
805/* Define the classes of registers for register constraints in the
806 machine description. Also define ranges of constants.
807
808 One of the classes must always be named ALL_REGS and include all hard regs.
809 If there is more than one class, another class must be named NO_REGS
810 and contain no registers.
811
812 The name GENERAL_REGS must be the name of a class (or an alias for
813 another name such as ALL_REGS). This is the class of registers
814 that is allowed by "g" or "r" in a register constraint.
815 Also, registers outside this class are allocated only when
816 instructions express preferences for them.
817
818 The classes must be numbered in nondecreasing order; that is,
819 a larger-numbered class must never be contained completely
820 in a smaller-numbered class.
821
822 For any two classes, it is very desirable that there be another
823 class that represents their union. */
824
7a6cf439
DE
825/* The SPARC has two kinds of registers, general and floating point.
826 v9 also has 4 floating point condition code registers. Since we don't
827 have a class that is the union of FPCC_REGS with either of the others,
828 it is important that it appear first. Otherwise the compiler will die
829 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
830 constraints. */
831 /* ??? As an experiment for v9, we treat all fp regs similarily here. */
832
833#ifdef SPARCV9
834enum reg_class { NO_REGS, FPCC_REGS, GENERAL_REGS, FP_REGS, GENERAL_OR_FP_REGS,
835 ALL_REGS, LIM_REG_CLASSES };
836#else
1bb87f28 837enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
7a6cf439 838#endif
1bb87f28
JW
839
840#define N_REG_CLASSES (int) LIM_REG_CLASSES
841
842/* Give names of register classes as strings for dump file. */
843
7a6cf439 844#ifdef SPARCV9
1bb87f28 845#define REG_CLASS_NAMES \
7a6cf439
DE
846 {"NO_REGS", "FPCC_REGS", "GENERAL_REGS", "FP_REGS", "GENERAL_OR_FP_REGS", \
847 "ALL_REGS" }
848#else
849#define REG_CLASS_NAMES \
850 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
851#endif
1bb87f28
JW
852
853/* Define which registers fit in which classes.
854 This is an initializer for a vector of HARD_REG_SET
855 of length N_REG_CLASSES. */
856
7a6cf439
DE
857#ifdef SPARCV9
858#define REG_CLASS_CONTENTS \
859 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {-2, 0, 0, 0}, {0, -1, -1, 0}, \
860 {-2, -1, -1, 0}, {-2, -1, -1, 0xf}}
861#else
1bb87f28
JW
862#if 0 && defined (__GNUC__)
863#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
864#else
865#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
866#endif
7a6cf439 867#endif
1bb87f28
JW
868
869/* The same information, inverted:
870 Return the class number of the smallest class containing
871 reg number REGNO. This could be a conditional expression
872 or could index an array. */
873
7a6cf439
DE
874#ifdef SPARCV9
875#define REGNO_REG_CLASS(REGNO) \
876 ((REGNO) == 0 ? NO_REGS \
877 : ((REGNO) < 32 ? GENERAL_REGS \
878 : ((REGNO) < 96 ? FP_REGS \
879 : FPCC_REGS)))
880#else
1bb87f28
JW
881#define REGNO_REG_CLASS(REGNO) \
882 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
7a6cf439 883#endif
1bb87f28 884
7a6cf439 885/* This is the order in which to allocate registers normally.
51f0e748
JW
886
887 We put %f0/%f1 last among the float registers, so as to make it more
6a4bb1fa 888 likely that a pseudo-register which dies in the float return register
51f0e748 889 will get allocated to the float return register, thus saving a move
7a6cf439
DE
890 instruction at the end of the function.
891
892 On v9, the float registers are ordered a little "funny" because some
893 of them (%f16-%f47) are call-preserved. */
894#ifdef SPARCV9
895#define REG_ALLOC_ORDER \
896{ 8, 9, 10, 11, 12, 13, \
897 15, 16, 17, 18, 19, 20, 21, 22, \
898 23, 24, 25, 26, 27, 28, 29, 31, \
899 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
900 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
901 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
902 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
903 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
904 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
905 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
906 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
907 32, 33, /* %f0,%f1 */ \
908 96, 97, 98, 99, /* %fcc0-3 */ \
909 1, 5, 2, 3, 4, 6, 7, 0, 14, 30}
910#else
1bb87f28 911#define REG_ALLOC_ORDER \
b4ac57ab
RS
912{ 8, 9, 10, 11, 12, 13, 2, 3, \
913 15, 16, 17, 18, 19, 20, 21, 22, \
914 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 915 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
916 40, 41, 42, 43, 44, 45, 46, 47, \
917 48, 49, 50, 51, 52, 53, 54, 55, \
918 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 919 32, 33, \
4b69d2a3 920 1, 4, 5, 6, 7, 0, 14, 30}
7a6cf439 921#endif
1bb87f28
JW
922
923/* This is the order in which to allocate registers for
924 leaf functions. If all registers can fit in the "i" registers,
7a6cf439
DE
925 then we have the possibility of having a leaf function.
926 v9: The floating point registers are ordered a little "funny" because some
927 of them (%f16-%f47) are call-preserved. */
928#ifdef SPARCV9
929#define REG_LEAF_ALLOC_ORDER \
930{ 24, 25, 26, 27, 28, 29, \
931 15, 8, 9, 10, 11, 12, 13, \
932 16, 17, 18, 19, 20, 21, 22, 23, \
933 34, 35, 36, 37, 38, 39, \
934 40, 41, 42, 43, 44, 45, 46, 47, \
935 80, 81, 82, 83, 84, 85, 86, 87, \
936 88, 89, 90, 91, 92, 93, 94, 95, \
937 48, 49, 50, 51, 52, 53, 54, 55, \
938 56, 57, 58, 59, 60, 61, 62, 63, \
939 64, 65, 66, 67, 68, 69, 70, 71, \
940 72, 73, 74, 75, 76, 77, 78, 79, \
941 32, 33, \
942 96, 97, 98, 99, \
943 1, 5, 2, 3, 4, 6, 7, 0, 14, 30, 31}
944#else
1bb87f28
JW
945#define REG_LEAF_ALLOC_ORDER \
946{ 2, 3, 24, 25, 26, 27, 28, 29, \
947 15, 8, 9, 10, 11, 12, 13, \
948 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 949 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
950 40, 41, 42, 43, 44, 45, 46, 47, \
951 48, 49, 50, 51, 52, 53, 54, 55, \
952 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 953 32, 33, \
4b69d2a3 954 1, 4, 5, 6, 7, 0, 14, 30, 31}
7a6cf439 955#endif
1bb87f28
JW
956
957#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
958
5c56efde
DE
959/* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
960 -mflat is used. Function only_leaf_regs_used will return 0 if a global
961 register is used and is not permitted in a leaf function. We make %g7
962 a global reg if -mflat and voila. Since %g7 is a system register and is
963 fixed it won't be used by gcc anyway. */
7a6cf439
DE
964#ifdef SPARCV9
965#define LEAF_REGISTERS \
966{ 1, 1, 1, 1, 1, 1, 1, 0, \
967 0, 0, 0, 0, 0, 0, 1, 0, \
968 0, 0, 0, 0, 0, 0, 0, 0, \
969 1, 1, 1, 1, 1, 1, 0, 1, \
970 1, 1, 1, 1, 1, 1, 1, 1, \
971 1, 1, 1, 1, 1, 1, 1, 1, \
972 1, 1, 1, 1, 1, 1, 1, 1, \
973 1, 1, 1, 1, 1, 1, 1, 1, \
974 1, 1, 1, 1, 1, 1, 1, 1, \
975 1, 1, 1, 1, 1, 1, 1, 1, \
976 1, 1, 1, 1, 1, 1, 1, 1, \
977 1, 1, 1, 1, 1, 1, 1, 1, \
978 1, 1, 1, 1}
979#else
1bb87f28 980#define LEAF_REGISTERS \
5c56efde 981{ 1, 1, 1, 1, 1, 1, 1, 0, \
1bb87f28
JW
982 0, 0, 0, 0, 0, 0, 1, 0, \
983 0, 0, 0, 0, 0, 0, 0, 0, \
984 1, 1, 1, 1, 1, 1, 0, 1, \
985 1, 1, 1, 1, 1, 1, 1, 1, \
986 1, 1, 1, 1, 1, 1, 1, 1, \
987 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 988 1, 1, 1, 1, 1, 1, 1, 1}
7a6cf439 989#endif
1bb87f28
JW
990
991extern char leaf_reg_remap[];
992#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1bb87f28 993
1bb87f28
JW
994/* The class value for index registers, and the one for base regs. */
995#define INDEX_REG_CLASS GENERAL_REGS
996#define BASE_REG_CLASS GENERAL_REGS
997
998/* Get reg_class from a letter such as appears in the machine description. */
999
7a6cf439
DE
1000#ifdef SPARCV9
1001#define REG_CLASS_FROM_LETTER(C) \
1002 ((C) == 'f' ? FP_REGS : (C) == 'c' ? FPCC_REGS : NO_REGS)
1003#else
1bb87f28 1004#define REG_CLASS_FROM_LETTER(C) \
7a6cf439
DE
1005 ((C) == 'f' ? FP_REGS : NO_REGS)
1006#endif
1bb87f28
JW
1007
1008/* The letters I, J, K, L and M in a register constraint string
1009 can be used to stand for particular ranges of immediate operands.
1010 This macro defines what the ranges are.
1011 C is the letter, and VALUE is a constant value.
1012 Return 1 if VALUE is in the range specified by C.
1013
1014 For SPARC, `I' is used for the range of constants an insn
1015 can actually contain.
1016 `J' is used for the range which is just zero (since that is R0).
9ad2c692 1017 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
1018
1019#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
1020
1021#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1022 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
1023 : (C) == 'J' ? (VALUE) == 0 \
1024 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
1025 : 0)
1026
1027/* Similar, but for floating constants, and defining letters G and H.
1028 Here VALUE is the CONST_DOUBLE rtx itself. */
1029
1030#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
96f69de5 1031 ((C) == 'G' ? fp_zero_operand (VALUE) \
1bb87f28
JW
1032 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1033 : 0)
1034
1035/* Given an rtx X being reloaded into a reg required to be
1036 in class CLASS, return the class of reg to actually use.
1037 In general this is just CLASS; but on some machines
1038 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
1039/* We can't load constants into FP registers. We can't load any FP constant
1040 if an 'E' constraint fails to match it. */
1041#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1042 (CONSTANT_P (X) \
1043 && ((CLASS) == FP_REGS \
1044 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1045 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
1046 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
1047 ? NO_REGS : (CLASS))
1bb87f28
JW
1048
1049/* Return the register class of a scratch register needed to load IN into
1050 a register of class CLASS in MODE.
1051
1052 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 1053 into a register.
1bb87f28 1054
ae51bd97
JW
1055 Also, we need a temporary when loading/storing a HImode/QImode value
1056 between memory and the FPU registers. This can happen when combine puts
1057 a paradoxical subreg in a float/fix conversion insn. */
1058
1059#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
7aca9b9c 1060 (((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
ae51bd97
JW
1061 && (GET_CODE (IN) == MEM \
1062 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1063 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
1064
1065#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1066 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
1067 && (GET_CODE (IN) == MEM \
1068 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1069 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 1070
b924cef0
JW
1071/* On SPARC it is not possible to directly move data between
1072 GENERAL_REGS and FP_REGS. */
7a6cf439 1073#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) ((CLASS1) != (CLASS2))
b924cef0 1074
55be783d
JW
1075/* Return the stack location to use for secondary memory needed reloads.
1076 We want to use the reserved location just below the frame pointer.
1077 However, we must ensure that there is a frame, so use assign_stack_local
1078 if the frame size is zero. */
fe1f7f24 1079#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
55be783d
JW
1080 (get_frame_size () == 0 \
1081 ? assign_stack_local (mode, GET_MODE_SIZE (mode), 0) \
1082 : gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
1083 GEN_INT (STARTING_FRAME_OFFSET))))
fe1f7f24 1084
7a6cf439
DE
1085/* Get_secondary_mem widens it's argument to BITS_PER_WORD which loses on v9
1086 because the movsi and movsf patterns don't handle r/f moves.
1087 For v8 we copy the default definition. */
1088#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1089 (TARGET_V9 \
1090 ? (GET_MODE_BITSIZE (mode) < 32 \
1091 ? mode_for_size (32, GET_MODE_CLASS (mode), 0) \
1092 : MODE) \
1093 : (GET_MODE_BITSIZE (mode) < BITS_PER_WORD \
1094 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0) \
1095 : MODE))
1096
1bb87f28
JW
1097/* Return the maximum number of consecutive registers
1098 needed to represent mode MODE in a register of class CLASS. */
1099/* On SPARC, this is the size of MODE in words. */
1100#define CLASS_MAX_NREGS(CLASS, MODE) \
7a6cf439
DE
1101 ((CLASS) == FP_REGS ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1102 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1bb87f28
JW
1103\f
1104/* Stack layout; function entry, exit and calling. */
1105
1106/* Define the number of register that can hold parameters.
7a6cf439
DE
1107 These two macros are used only in other macro definitions below.
1108 MODE is the mode of the argument.
1109 !v9: All args are passed in %o0-%o5.
1110 v9: Non-float args are passed in %o0-5 and float args are passed in
1111 %f0-%f15. */
1112#define NPARM_REGS(MODE) \
1113 (TARGET_V9 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 16 : 6) : 6)
1bb87f28
JW
1114
1115/* Define this if pushing a word on the stack
1116 makes the stack pointer a smaller address. */
1117#define STACK_GROWS_DOWNWARD
1118
1119/* Define this if the nominal address of the stack frame
1120 is at the high-address end of the local variables;
1121 that is, each additional local variable allocated
1122 goes at a more negative offset in the frame. */
1123#define FRAME_GROWS_DOWNWARD
1124
1125/* Offset within stack frame to start allocating local variables at.
1126 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1127 first local allocated. Otherwise, it is the offset to the BEGINNING
1128 of the first local allocated. */
7238ce3a
JW
1129/* This allows space for one TFmode floating point value. */
1130#define STARTING_FRAME_OFFSET \
7a6cf439
DE
1131 (TARGET_V9 ? (SPARC_STACK_BIAS - 16) \
1132 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1bb87f28
JW
1133
1134/* If we generate an insn to push BYTES bytes,
1135 this says how many the stack pointer really advances by.
1136 On SPARC, don't define this because there are no push insns. */
1137/* #define PUSH_ROUNDING(BYTES) */
1138
1139/* Offset of first parameter from the argument pointer register value.
7a6cf439
DE
1140 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1141 even if this function isn't going to use it.
1142 v9: This is 128 for the ins and locals, plus a reserved space of 8. */
1143#define FIRST_PARM_OFFSET(FNDECL) \
1144 (TARGET_V9 ? (SPARC_STACK_BIAS + 136) \
1145 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1bb87f28
JW
1146
1147/* When a parameter is passed in a register, stack space is still
1148 allocated for it. */
7a6cf439
DE
1149#ifndef SPARCV9
1150#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS (SImode) * UNITS_PER_WORD)
1151#endif
1bb87f28
JW
1152
1153/* Keep the stack pointer constant throughout the function.
b4ac57ab 1154 This is both an optimization and a necessity: longjmp
1bb87f28
JW
1155 doesn't behave itself when the stack pointer moves within
1156 the function! */
1157#define ACCUMULATE_OUTGOING_ARGS
1158
1159/* Value is the number of bytes of arguments automatically
1160 popped when returning from a subroutine call.
1161 FUNTYPE is the data type of the function (as a tree),
1162 or for a library call it is an identifier node for the subroutine name.
1163 SIZE is the number of bytes of arguments passed on the stack. */
1164
1165#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
1166
5b485d2c
JW
1167/* Some subroutine macros specific to this machine.
1168 When !TARGET_FPU, put float return values in the general registers,
1169 since we don't have any fp registers. */
1bb87f28 1170#define BASE_RETURN_VALUE_REG(MODE) \
7a6cf439
DE
1171 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
1172 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1bb87f28 1173#define BASE_OUTGOING_VALUE_REG(MODE) \
7a6cf439
DE
1174 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
1175 : TARGET_FRW ? 8 : 24) \
1176 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1177 : (TARGET_FRW ? 8 : 24)))
1178#define BASE_PASSING_ARG_REG(MODE) \
1179 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
1180 : (8))
1181#define BASE_INCOMING_ARG_REG(MODE) \
1182 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
1183 : TARGET_FRW ? 8 : 24) \
1184 : (TARGET_FRW ? 8 : 24))
1bb87f28 1185
92ea370b
TW
1186/* Define this macro if the target machine has "register windows". This
1187 C expression returns the register number as seen by the called function
1188 corresponding to register number OUT as seen by the calling function.
1189 Return OUT if register number OUT is not an outbound register. */
1190
1191#define INCOMING_REGNO(OUT) \
1192 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1193
1194/* Define this macro if the target machine has "register windows". This
1195 C expression returns the register number as seen by the calling function
1196 corresponding to register number IN as seen by the called function.
1197 Return IN if register number IN is not an inbound register. */
1198
1199#define OUTGOING_REGNO(IN) \
1200 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1201
1bb87f28
JW
1202/* Define how to find the value returned by a function.
1203 VALTYPE is the data type of the value (as a tree).
1204 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1205 otherwise, FUNC is 0. */
1206
1207/* On SPARC the value is found in the first "output" register. */
1208
1209#define FUNCTION_VALUE(VALTYPE, FUNC) \
1210 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1211
1212/* But the called function leaves it in the first "input" register. */
1213
1214#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1215 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
1216
1217/* Define how to find the value returned by a library function
1218 assuming the value has mode MODE. */
1219
1220#define LIBCALL_VALUE(MODE) \
1221 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
1222
1223/* 1 if N is a possible register number for a function value
1224 as seen by the caller.
1225 On SPARC, the first "output" reg is used for integer values,
1226 and the first floating point register is used for floating point values. */
1227
1228#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1229
34aaacec
JW
1230/* Define the size of space to allocate for the return value of an
1231 untyped_call. */
1232
1233#define APPLY_RESULT_SIZE 16
1234
1bb87f28 1235/* 1 if N is a possible register number for function argument passing.
7a6cf439 1236 On SPARC, these are the "output" registers. v9 also uses %f0-%f15. */
1bb87f28 1237
7a6cf439
DE
1238#define FUNCTION_ARG_REGNO_P(N) \
1239 (TARGET_V9 ? (((N) < 14 && (N) > 7) || (N) > 31 && (N) < 48) \
1240 : ((N) < 14 && (N) > 7))
1bb87f28
JW
1241\f
1242/* Define a data type for recording info about an argument list
1243 during the scan of that argument list. This data type should
1244 hold all necessary information about the function itself
1245 and about the args processed so far, enough to enable macros
1246 such as FUNCTION_ARG to determine where the next arg should go.
1247
7a6cf439 1248 On SPARC (!v9), this is a single integer, which is a number of words
1bb87f28
JW
1249 of arguments scanned so far (including the invisible argument,
1250 if any, which holds the structure-value-address).
7a6cf439
DE
1251 Thus 7 or more means all following args should go on the stack.
1252
1253 For v9, we record how many of each type has been passed. Different
1254 types get passed differently.
1255
1256 - Float args are passed in %f0-15, after which they go to the stack
1257 where floats and doubles are passed 8 byte aligned and long doubles
1258 are passed 16 byte aligned.
1259 - All aggregates are passed by reference. The callee copies
1260 the structure if necessary, except if stdarg/varargs and the struct
1261 matches the ellipse in which case the caller makes a copy.
1262 - Any non-float argument might be split between memory and reg %o5.
1263 ??? I don't think this can ever happen now that structs are no
1264 longer passed in regs.
1265
1266 For v9 return values:
1267
1268 - For all aggregates, the caller allocates space for the return value,
1269 and passes the pointer as an implicit first argument, which is
1270 allocated like all other arguments.
1271 - The unimp instruction stuff for structure returns is gone. */
1272
1273#ifdef SPARCV9
1274enum sparc_arg_class { SPARC_ARG_INT = 0, SPARC_ARG_FLOAT = 1 };
1275struct sparc_args {
1276 int arg_count[2]; /* must be int! (for __builtin_args_info) */
1277};
1278#define CUMULATIVE_ARGS struct sparc_args
1279
1280/* Return index into CUMULATIVE_ARGS. */
1281
1282#define GET_SPARC_ARG_CLASS(MODE) \
1283 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? SPARC_ARG_FLOAT : SPARC_ARG_INT)
1bb87f28 1284
7a6cf439
DE
1285/* Round a register number up to a proper boundary for an arg of mode MODE.
1286 This macro is only used in this file.
1287
1288 The "& (0x10000 - ...)" is used to round up to the next appropriate reg. */
1289
1290#define ROUND_REG(CUM, MODE) \
1291 (GET_MODE_CLASS (MODE) != MODE_FLOAT \
1292 ? (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1293 : ((CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1294 + GET_MODE_UNIT_SIZE (MODE) / 4 - 1) \
1295 & (0x10000 - GET_MODE_UNIT_SIZE (MODE) / 4))
1296
1297#define ROUND_ADVANCE(SIZE) \
1298 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1299
1300#else /* ! SPARCV9 */
1bb87f28
JW
1301#define CUMULATIVE_ARGS int
1302
7a6cf439
DE
1303#define ROUND_REG(CUM, MODE) (CUM)
1304
1bb87f28 1305#define ROUND_ADVANCE(SIZE) \
b1fc14e5 1306 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
7a6cf439 1307#endif /* ! SPARCV9 */
b1fc14e5 1308
1bb87f28
JW
1309/* Initialize a variable CUM of type CUMULATIVE_ARGS
1310 for a call to a function whose data type is FNTYPE.
1311 For a library call, FNTYPE is 0.
1312
1313 On SPARC, the offset always starts at 0: the first parm reg is always
1314 the same reg. */
1315
7a6cf439
DE
1316#ifdef SPARCV9
1317extern int sparc_arg_count,sparc_n_named_args;
1318#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
1319 do { \
1320 (CUM).arg_count[(int) SPARC_ARG_INT] = 0; \
1321 (CUM).arg_count[(int) SPARC_ARG_FLOAT] = 0; \
1322 sparc_arg_count = 0; \
1323 sparc_n_named_args = \
1324 ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE) \
1325 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) \
1326 + (TREE_CODE (TREE_TYPE (FNTYPE)) == RECORD_TYPE \
1327 || TREE_CODE (TREE_TYPE (FNTYPE)) == UNION_TYPE)) \
1328 /* Can't tell, treat 'em all as named. */ \
1329 : 10000); \
1330 } while (0)
1331#else
1bb87f28 1332#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
7a6cf439 1333#endif
1bb87f28
JW
1334
1335/* Update the data in CUM to advance over an argument
1336 of mode MODE and data type TYPE.
1337 (TYPE is null for libcalls where that information may not be available.) */
1338
7a6cf439
DE
1339#ifdef SPARCV9
1340#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1341 do { \
1342 (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] = \
1343 ROUND_REG ((CUM), (MODE)) \
1344 + (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1345 ? GET_MODE_SIZE (MODE) / 4 \
1346 : ROUND_ADVANCE ((MODE) == BLKmode \
1347 ? GET_MODE_SIZE (Pmode) \
1348 : GET_MODE_SIZE (MODE))); \
1349 sparc_arg_count++; \
1350 } while (0)
1351#else
1bb87f28 1352#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
1353 ((CUM) += ((MODE) != BLKmode \
1354 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1355 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
7a6cf439
DE
1356#endif
1357
1358/* Return boolean indicating arg of mode MODE will be passed in a reg.
1359 This macro is only used in this file. */
1360
1361#ifdef SPARCV9
1362#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1363 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE) \
1364 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1365 && ((TYPE)==0 || (MODE) != BLKmode))
1366#else
1367#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1368 ((CUM) < NPARM_REGS (SImode) \
1369 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1370 && ((TYPE)==0 || (MODE) != BLKmode \
1371 || (TYPE_ALIGN (TYPE) % PARM_BOUNDARY == 0)))
1372#endif
1bb87f28
JW
1373
1374/* Determine where to put an argument to a function.
1375 Value is zero to push the argument on the stack,
1376 or a hard register in which to store the argument.
1377
1378 MODE is the argument's machine mode.
1379 TYPE is the data type of the argument (as a tree).
1380 This is null for libcalls where that information may
1381 not be available.
1382 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1383 the preceding args and about the function being called.
1384 NAMED is nonzero if this argument is a named parameter
1385 (otherwise it is an extra parameter matching an ellipsis). */
1386
1387/* On SPARC the first six args are normally in registers
1388 and the rest are pushed. Any arg that starts within the first 6 words
7a6cf439
DE
1389 is at least partially passed in a register unless its data type forbids.
1390 For v9, the first 6 int args are passed in regs and the first N
1391 float args are passed in regs (where N is such that %f0-15 are filled).
1392 The rest are pushed. Any arg that starts within the first 6 words
1bb87f28
JW
1393 is at least partially passed in a register unless its data type forbids. */
1394
1395#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1396 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1397 ? gen_rtx (REG, (MODE), \
1398 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1399 : 0)
1bb87f28
JW
1400
1401/* Define where a function finds its arguments.
1402 This is different from FUNCTION_ARG because of register windows. */
1403
1404#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1405 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1406 ? gen_rtx (REG, (MODE), \
1407 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1408 : 0)
1bb87f28
JW
1409
1410/* For an arg passed partly in registers and partly in memory,
1411 this is the number of registers used.
1412 For args passed entirely in registers or entirely in memory, zero.
1413 Any arg that starts in the first 6 regs but won't entirely fit in them
7a6cf439
DE
1414 needs partial registers on the Sparc (!v9). On v9, there are no arguments
1415 that are passed partially in registers (??? complex values?). */
1bb87f28 1416
7a6cf439 1417#ifndef SPARCV9
1bb87f28 1418#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
7a6cf439
DE
1419 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1420 && ((CUM) + ((MODE) == BLKmode \
1421 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1422 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS (SImode) > 0)\
1423 ? (NPARM_REGS (SImode) - (CUM)) \
1bb87f28 1424 : 0)
7a6cf439 1425#endif
1bb87f28 1426
d9ca49d5 1427/* The SPARC ABI stipulates passing struct arguments (of any size) and
7a6cf439 1428 (!v9) quad-precision floats by invisible reference.
87ac3809 1429 For Pascal, also pass arrays by reference. */
1bb87f28 1430#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5 1431 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
87ac3809
JW
1432 || TREE_CODE (TYPE) == UNION_TYPE \
1433 || TREE_CODE (TYPE) == ARRAY_TYPE)) \
7a6cf439
DE
1434 || (!TARGET_V9 && MODE == TFmode))
1435
1436/* A C expression that indicates when it is the called function's
1437 responsibility to make copies of arguments passed by reference.
1438 If the callee can determine that the argument won't be modified, it can
1439 avoid the copy. */
1440/* ??? We'd love to be able to use NAMED here. Unfortunately, it doesn't
1441 include the last named argument so we keep track of the args ourselves. */
1442
1443#ifdef SPARCV9
1444#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1445 (sparc_arg_count < sparc_n_named_args)
1446#endif
1447\f
1448/* Initialize data used by insn expanders. This is called from
1449 init_emit, once for each function, before code is generated.
1450 For v9, clear the temp slot used by float/int DImode conversions.
1451 ??? There is the 16 bytes at [%fp-16], however we'd like to delete this
1452 space at some point.
1453 ??? Use assign_stack_temp? */
1454
1455extern void sparc64_init_expanders ();
1456extern struct rtx_def *sparc64_fpconv_stack_temp ();
1457#ifdef SPARCV9
1458#define INIT_EXPANDERS sparc64_init_expanders ()
1459#endif
1bb87f28
JW
1460
1461/* Define the information needed to generate branch and scc insns. This is
1462 stored from the compare operation. Note that we can't use "rtx" here
1463 since it hasn't been defined! */
1464
1465extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1466
1467/* Define the function that build the compare insn for scc and bcc. */
1468
1469extern struct rtx_def *gen_compare_reg ();
7a6cf439
DE
1470
1471/* This function handles all v9 scc insns */
1472
1473extern int gen_v9_scc ();
1474
1475/* ??? This is a hack until conditional move support is complete. */
1476#define HAVE_conditional_move (TARGET_V9)
1bb87f28 1477\f
4b69d2a3
RS
1478/* Generate the special assembly code needed to tell the assembler whatever
1479 it might need to know about the return value of a function.
1480
1481 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1482 information to the assembler relating to peephole optimization (done in
1483 the assembler). */
1484
1485#define ASM_DECLARE_RESULT(FILE, RESULT) \
1486 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
1487
1bb87f28
JW
1488/* Output the label for a function definition. */
1489
4b69d2a3
RS
1490#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1491do { \
1492 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1493 ASM_OUTPUT_LABEL (FILE, NAME); \
1494} while (0)
1bb87f28 1495
1bb87f28
JW
1496/* This macro generates the assembly code for function entry.
1497 FILE is a stdio stream to output the code to.
1498 SIZE is an int: how many units of temporary storage to allocate.
1499 Refer to the array `regs_ever_live' to determine which registers
1500 to save; `regs_ever_live[I]' is nonzero if register number I
1501 is ever used in the function. This macro is responsible for
1502 knowing which registers should not be saved even if used. */
1503
1504/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
1505 of memory. If any fpu reg is used in the function, we allocate
1506 such a block here, at the bottom of the frame, just in case it's needed.
1507
1508 If this function is a leaf procedure, then we may choose not
1509 to do a "save" insn. The decision about whether or not
1510 to do this is made in regclass.c. */
1511
1512#define FUNCTION_PROLOGUE(FILE, SIZE) \
5c56efde 1513 (TARGET_FRW ? sparc_flat_output_function_prologue (FILE, SIZE) \
5b485d2c 1514 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
1515
1516/* Output assembler code to FILE to increment profiler label # LABELNO
1517 for profiling a function entry. */
1518
d2a8e680
RS
1519#define FUNCTION_PROFILER(FILE, LABELNO) \
1520 do { \
1521 fputs ("\tsethi %hi(", (FILE)); \
1522 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
7a6cf439
DE
1523 fputs ("),%o0\n", (FILE)); \
1524 if (TARGET_MEDANY) \
1525 fprintf (FILE, "\tadd %%o0,%s,%%o0\n", \
1526 MEDANY_BASE_REG); \
1527 fputs ("\tcall mcount\n\tadd %lo(", (FILE)); \
d2a8e680
RS
1528 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
1529 fputs ("),%o0,%o0\n", (FILE)); \
1530 } while (0)
1bb87f28
JW
1531
1532/* Output assembler code to FILE to initialize this source file's
1533 basic block profiling info, if that has not already been done. */
1534
1535#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
7a6cf439
DE
1536 do { \
1537 if (TARGET_MEDANY) \
1538 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tld [%s+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%s,%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
1539 MEDANY_BASE_REG, (LABELNO), MEDANY_BASE_REG, (LABELNO)); \
1540 else \
1541 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
1542 (LABELNO), (LABELNO)); \
1543 } while (0)
1bb87f28
JW
1544
1545/* Output assembler code to FILE to increment the entry-count for
1546 the BLOCKNO'th basic block in this source file. */
1547
1548#define BLOCK_PROFILER(FILE, BLOCKNO) \
7a6cf439
DE
1549{ \
1550 int blockn = (BLOCKNO); \
1551 if (TARGET_MEDANY) \
1552 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tor %%g1,%%lo(LPBX2+%d),%%g1\n\tld [%%g1+%s],%%g2\n\tadd %%g2,1,%%g2\n\tst %%g2,[%%g1+%s]\n", \
1553 4 * blockn, 4 * blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \
1554 else \
1555 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
1556\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
1557 4 * blockn, 4 * blockn, 4 * blockn); \
1bb87f28
JW
1558}
1559
1bb87f28
JW
1560/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1561 the stack pointer does not matter. The value is tested only in
1562 functions that have frame pointers.
1563 No definition is equivalent to always zero. */
1564
1565extern int current_function_calls_alloca;
1566extern int current_function_outgoing_args_size;
1567
1568#define EXIT_IGNORE_STACK \
1569 (get_frame_size () != 0 \
1570 || current_function_calls_alloca || current_function_outgoing_args_size)
1571
1572/* This macro generates the assembly code for function exit,
1573 on machines that need it. If FUNCTION_EPILOGUE is not defined
1574 then individual return instructions are generated for each
1575 return statement. Args are same as for FUNCTION_PROLOGUE.
1576
1577 The function epilogue should not depend on the current stack pointer!
1578 It should use the frame pointer only. This is mandatory because
1579 of alloca; we also take advantage of it to omit stack adjustments
1580 before returning. */
1581
1582/* This declaration is needed due to traditional/ANSI
1583 incompatibilities which cannot be #ifdefed away
1584 because they occur inside of macros. Sigh. */
1585extern union tree_node *current_function_decl;
1586
1587#define FUNCTION_EPILOGUE(FILE, SIZE) \
5c56efde 1588 (TARGET_FRW ? sparc_flat_output_function_epilogue (FILE, SIZE) \
5b485d2c 1589 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 1590
5b485d2c 1591#define DELAY_SLOTS_FOR_EPILOGUE \
5c56efde 1592 (TARGET_FRW ? sparc_flat_epilogue_delay_slots () : 1)
1bb87f28 1593#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5c56efde 1594 (TARGET_FRW ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
5b485d2c 1595 : eligible_for_epilogue_delay (trial, slots_filled))
6a4bb1fa 1596\f
1bb87f28
JW
1597/* Output assembler code for a block containing the constant parts
1598 of a trampoline, leaving space for the variable parts. */
1599
1600/* On the sparc, the trampoline contains five instructions:
6098b63e
RK
1601 sethi #TOP_OF_FUNCTION,%g1
1602 or #BOTTOM_OF_FUNCTION,%g1,%g1
1603 sethi #TOP_OF_STATIC,%g2
1604 jmp g1
1605 or #BOTTOM_OF_STATIC,%g2,%g2 */
1bb87f28
JW
1606#define TRAMPOLINE_TEMPLATE(FILE) \
1607{ \
1608 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1609 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1610 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
6098b63e 1611 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
1bb87f28
JW
1612 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1613}
1614
1615/* Length in units of the trampoline for entering a nested function. */
1616
1617#define TRAMPOLINE_SIZE 20
1618
1619/* Emit RTL insns to initialize the variable parts of a trampoline.
1620 FNADDR is an RTX for the address of the function's pure code.
7a6cf439 1621 CXT is an RTX for the static chain value for the function. */
1bb87f28 1622
7a6cf439
DE
1623void sparc_initialize_trampoline ();
1624void sparc64_initialize_trampoline ();
1625#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1626 do { \
1627 if (TARGET_V9) \
1628 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1629 else \
1630 sparc_initialize_trampoline (TRAMP, FNADDR, CXT); \
1631 } while (0)
6a4bb1fa 1632\f
9a1c7cd7
JW
1633/* Generate necessary RTL for __builtin_saveregs().
1634 ARGLIST is the argument list; see expr.c. */
1635extern struct rtx_def *sparc_builtin_saveregs ();
1636#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1637
1638/* Generate RTL to flush the register windows so as to make arbitrary frames
1639 available. */
1640#define SETUP_FRAME_ADDRESSES() \
1641 emit_insn (gen_flush_register_windows ())
1642
1643/* Given an rtx for the address of a frame,
1644 return an rtx for the address of the word in the frame
7a6cf439
DE
1645 that holds the dynamic chain--the previous frame's address.
1646 ??? -mflat support? */
953fe179 1647#define DYNAMIC_CHAIN_ADDRESS(frame) \
7a6cf439 1648 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 14 * UNITS_PER_WORD))
953fe179
JW
1649
1650/* The return address isn't on the stack, it is in a register, so we can't
1651 access it from the current frame pointer. We can access it from the
1652 previous frame pointer though by reading a value from the register window
1653 save area. */
1654#define RETURN_ADDR_IN_PREVIOUS_FRAME
1655
1656/* The current return address is in %i7. The return address of anything
1657 farther back is in the register window save area at [%fp+60]. */
1658/* ??? This ignores the fact that the actual return address is +8 for normal
1659 returns, and +12 for structure returns. */
1660#define RETURN_ADDR_RTX(count, frame) \
1661 ((count == -1) \
1662 ? gen_rtx (REG, Pmode, 31) \
1663 : copy_to_reg (gen_rtx (MEM, Pmode, \
7a6cf439 1664 memory_address (Pmode, plus_constant (frame, 15 * UNITS_PER_WORD)))))
1bb87f28
JW
1665\f
1666/* Addressing modes, and classification of registers for them. */
1667
1668/* #define HAVE_POST_INCREMENT */
1669/* #define HAVE_POST_DECREMENT */
1670
1671/* #define HAVE_PRE_DECREMENT */
1672/* #define HAVE_PRE_INCREMENT */
1673
1674/* Macros to check register numbers against specific register classes. */
1675
1676/* These assume that REGNO is a hard or pseudo reg number.
1677 They give nonzero only if REGNO is a hard reg of the suitable class
1678 or a pseudo reg currently allocated to a suitable hard reg.
1679 Since they use reg_renumber, they are safe only once reg_renumber
1680 has been allocated, which happens in local-alloc.c. */
1681
1682#define REGNO_OK_FOR_INDEX_P(REGNO) \
1683(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1684#define REGNO_OK_FOR_BASE_P(REGNO) \
1685(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1686#define REGNO_OK_FOR_FP_P(REGNO) \
7a6cf439
DE
1687 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? 64 : 32)) \
1688 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? 64 : 32)))
1689#define REGNO_OK_FOR_CCFP_P(REGNO) \
1690 (TARGET_V9 \
1691 && ((unsigned) (REGNO) - 96 < 4) || ((unsigned) reg_renumber[REGNO] - 96 < 4))
1bb87f28
JW
1692
1693/* Now macros that check whether X is a register and also,
1694 strictly, whether it is in a specified class.
1695
1696 These macros are specific to the SPARC, and may be used only
1697 in code for printing assembler insns and in conditions for
1698 define_optimization. */
1699
1700/* 1 if X is an fp register. */
1701
1702#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1703\f
1704/* Maximum number of registers that can appear in a valid memory address. */
1705
1706#define MAX_REGS_PER_ADDRESS 2
1707
7aca9b9c
JW
1708/* Recognize any constant value that is a valid address.
1709 When PIC, we do not accept an address that would require a scratch reg
1710 to load into a register. */
1bb87f28 1711
6eff269e
BK
1712#define CONSTANT_ADDRESS_P(X) \
1713 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
7aca9b9c
JW
1714 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1715 || (GET_CODE (X) == CONST \
1716 && ! (flag_pic && pic_address_needs_scratch (X))))
1717
1718/* Define this, so that when PIC, reload won't try to reload invalid
1719 addresses which require two reload registers. */
1720
1721#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
1bb87f28
JW
1722
1723/* Nonzero if the constant value X is a legitimate general operand.
1724 Anything can be made to work except floating point constants. */
1725
1726#define LEGITIMATE_CONSTANT_P(X) \
1727 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1728
1729/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1730 and check its validity for a certain class.
1731 We have two alternate definitions for each of them.
1732 The usual definition accepts all pseudo regs; the other rejects
1733 them unless they have been allocated suitable hard regs.
1734 The symbol REG_OK_STRICT causes the latter definition to be used.
1735
1736 Most source files want to accept pseudo regs in the hope that
1737 they will get allocated to the class that the insn wants them to be in.
1738 Source files for reload pass need to be strict.
1739 After reload, it makes no difference, since pseudo regs have
1740 been eliminated by then. */
1741
1742/* Optional extra constraints for this machine. Borrowed from romp.h.
1743
1744 For the SPARC, `Q' means that this is a memory operand but not a
1745 symbolic memory operand. Note that an unassigned pseudo register
1746 is such a memory operand. Needed because reload will generate
1747 these things in insns and then not re-recognize the insns, causing
1748 constrain_operands to fail.
1749
7a6cf439 1750 `S' handles constraints for calls. ??? So where is it? */
1bb87f28
JW
1751
1752#ifndef REG_OK_STRICT
1753
1754/* Nonzero if X is a hard reg that can be used as an index
1755 or if it is a pseudo reg. */
7a6cf439
DE
1756#define REG_OK_FOR_INDEX_P(X) \
1757 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
1bb87f28
JW
1758/* Nonzero if X is a hard reg that can be used as a base reg
1759 or if it is a pseudo reg. */
7a6cf439
DE
1760#define REG_OK_FOR_BASE_P(X) \
1761 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
1762
1763/* 'T', 'U' are for aligned memory loads which aren't needed for v9. */
1bb87f28
JW
1764
1765#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1766 ((C) == 'Q' \
1767 ? ((GET_CODE (OP) == MEM \
7a6cf439 1768 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
db5e449c
RS
1769 && ! symbolic_memory_operand (OP, VOIDmode)) \
1770 || (reload_in_progress && GET_CODE (OP) == REG \
1771 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
7a6cf439 1772 : ! TARGET_V9 && (C) == 'T' \
19858600 1773 ? (mem_aligned_8 (OP)) \
7a6cf439 1774 : ! TARGET_V9 && (C) == 'U' \
19858600 1775 ? (register_ok_for_ldd (OP)) \
db5e449c 1776 : 0)
19858600 1777
1bb87f28
JW
1778#else
1779
1780/* Nonzero if X is a hard reg that can be used as an index. */
1781#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1782/* Nonzero if X is a hard reg that can be used as a base reg. */
1783#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1784
1785#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1786 ((C) == 'Q' \
1787 ? (GET_CODE (OP) == REG \
1788 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1789 && reg_renumber[REGNO (OP)] < 0) \
1790 : GET_CODE (OP) == MEM) \
7a6cf439 1791 : ! TARGET_V9 && (C) == 'T' \
b165d471 1792 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
7a6cf439 1793 : ! TARGET_V9 && (C) == 'U' \
b165d471
JW
1794 ? (GET_CODE (OP) == REG \
1795 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1796 || reg_renumber[REGNO (OP)] > 0) \
1797 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
1798#endif
1799\f
1800/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1801 that is a valid memory address for an instruction.
1802 The MODE argument is the machine mode for the MEM expression
1803 that wants to use this address.
1804
1805 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1806 ordinarily. This changes a bit when generating PIC.
1807
1808 If you change this, execute "rm explow.o recog.o reload.o". */
1809
bec2e359
JW
1810#define RTX_OK_FOR_BASE_P(X) \
1811 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1812 || (GET_CODE (X) == SUBREG \
1813 && GET_CODE (SUBREG_REG (X)) == REG \
1814 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1815
1816#define RTX_OK_FOR_INDEX_P(X) \
1817 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1818 || (GET_CODE (X) == SUBREG \
1819 && GET_CODE (SUBREG_REG (X)) == REG \
1820 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1821
1822#define RTX_OK_FOR_OFFSET_P(X) \
1823 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1824
1bb87f28 1825#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1826{ if (RTX_OK_FOR_BASE_P (X)) \
1827 goto ADDR; \
1bb87f28
JW
1828 else if (GET_CODE (X) == PLUS) \
1829 { \
bec2e359
JW
1830 register rtx op0 = XEXP (X, 0); \
1831 register rtx op1 = XEXP (X, 1); \
1832 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1833 { \
bec2e359 1834 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1835 goto ADDR; \
1836 else if (flag_pic == 1 \
bec2e359
JW
1837 && GET_CODE (op1) != REG \
1838 && GET_CODE (op1) != LO_SUM \
7aca9b9c
JW
1839 && GET_CODE (op1) != MEM \
1840 && (GET_CODE (op1) != CONST_INT \
1841 || SMALL_INT (op1))) \
1bb87f28
JW
1842 goto ADDR; \
1843 } \
bec2e359 1844 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1845 { \
bec2e359
JW
1846 if (RTX_OK_FOR_INDEX_P (op1) \
1847 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1848 goto ADDR; \
1849 } \
bec2e359 1850 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1851 { \
bec2e359
JW
1852 if (RTX_OK_FOR_INDEX_P (op0) \
1853 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1854 goto ADDR; \
1855 } \
1856 } \
bec2e359
JW
1857 else if (GET_CODE (X) == LO_SUM) \
1858 { \
1859 register rtx op0 = XEXP (X, 0); \
1860 register rtx op1 = XEXP (X, 1); \
1861 if (RTX_OK_FOR_BASE_P (op0) \
1862 && CONSTANT_P (op1)) \
1863 goto ADDR; \
1864 } \
1bb87f28
JW
1865 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1866 goto ADDR; \
1867}
1868\f
1869/* Try machine-dependent ways of modifying an illegitimate address
1870 to be legitimate. If we find one, return the new, valid address.
1871 This macro is used in only one place: `memory_address' in explow.c.
1872
1873 OLDX is the address as it was before break_out_memory_refs was called.
1874 In some cases it is useful to look at this to decide what needs to be done.
1875
1876 MODE and WIN are passed so that this macro can use
1877 GO_IF_LEGITIMATE_ADDRESS.
1878
1879 It is always safe for this macro to do nothing. It exists to recognize
1880 opportunities to optimize the output. */
1881
1882/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1883extern struct rtx_def *legitimize_pic_address ();
1884#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1885{ rtx sparc_x = (X); \
1886 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1887 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1888 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1889 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1890 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1891 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1892 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1893 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1894 XEXP (X, 1)); \
1895 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1896 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1897 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1898 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1899 goto WIN; \
7aca9b9c 1900 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
1bb87f28
JW
1901 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1902 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1903 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1904 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1905 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1906 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1907 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1908 || GET_CODE (X) == LABEL_REF) \
1909 (X) = gen_rtx (LO_SUM, Pmode, \
1910 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1911 if (memory_address_p (MODE, X)) \
1912 goto WIN; }
1913
1914/* Go to LABEL if ADDR (a legitimate address expression)
1915 has an effect that depends on the machine mode it is used for.
1916 On the SPARC this is never true. */
1917
1918#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
7a6cf439
DE
1919
1920/* If we are referencing a function make the SYMBOL_REF special.
1921 In the Medium/Anywhere code model, %g4 points to the data segment so we
1922 must not add it to function addresses. */
1923
1924#define ENCODE_SECTION_INFO(DECL) \
1925 do { \
1926 if (TARGET_MEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
1927 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
1928 } while (0)
1bb87f28
JW
1929\f
1930/* Specify the machine mode that this machine uses
1931 for the index in the tablejump instruction. */
7a6cf439 1932#define CASE_VECTOR_MODE Pmode
1bb87f28
JW
1933
1934/* Define this if the tablejump instruction expects the table
1935 to contain offsets from the address of the table.
1936 Do not define this if the table should contain absolute addresses. */
1937/* #define CASE_VECTOR_PC_RELATIVE */
1938
1939/* Specify the tree operation to be used to convert reals to integers. */
1940#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1941
1942/* This is the kind of divide that is easiest to do in the general case. */
1943#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1944
1945/* Define this as 1 if `char' should by default be signed; else as 0. */
1946#define DEFAULT_SIGNED_CHAR 1
1947
1948/* Max number of bytes we can move from memory to memory
1949 in one reasonably fast instruction. */
2eef2ef1 1950#define MOVE_MAX 8
1bb87f28 1951
0fb5a69e 1952#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1953/* This is the value of the error code EDOM for this machine,
1954 used by the sqrt instruction. */
1955#define TARGET_EDOM 33
1956
1957/* This is how to refer to the variable errno. */
1958#define GEN_ERRNO_RTX \
1959 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1960#endif /* 0 */
24e2a2bf 1961
9a63901f
RK
1962/* Define if operations between registers always perform the operation
1963 on the full register even if a narrower mode is specified. */
1964#define WORD_REGISTER_OPERATIONS
1965
1966/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1967 will either zero-extend or sign-extend. The value of this macro should
1968 be the code that says which one of the two operations is implicitly
1969 done, NIL if none. */
1970#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1bb87f28
JW
1971
1972/* Nonzero if access to memory by bytes is slow and undesirable.
1973 For RISC chips, it means that access to memory by bytes is no
1974 better than access by words when possible, so grab a whole word
1975 and maybe make use of that. */
1976#define SLOW_BYTE_ACCESS 1
1977
1978/* We assume that the store-condition-codes instructions store 0 for false
1979 and some other value for true. This is the value stored for true. */
1980
1981#define STORE_FLAG_VALUE 1
1982
1983/* When a prototype says `char' or `short', really pass an `int'. */
1984#define PROMOTE_PROTOTYPES
1985
d969caf8
RK
1986/* Define this to be nonzero if shift instructions ignore all but the low-order
1987 few bits. */
1988#define SHIFT_COUNT_TRUNCATED 1
1bb87f28
JW
1989
1990/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1991 is done just by pretending it is already truncated. */
1992#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1993
1994/* Specify the machine mode that pointers have.
1995 After generation of rtl, the compiler makes no further distinction
1996 between pointers and any other objects of this machine mode. */
7a6cf439 1997#define Pmode (TARGET_PTR64 ? DImode : SImode)
1bb87f28 1998
b4ac57ab
RS
1999/* Generate calls to memcpy, memcmp and memset. */
2000#define TARGET_MEM_FUNCTIONS
2001
1bb87f28
JW
2002/* Add any extra modes needed to represent the condition code.
2003
2004 On the Sparc, we have a "no-overflow" mode which is used when an add or
2005 subtract insn is used to set the condition code. Different branches are
2006 used in this case for some operations.
2007
4d449554
JW
2008 We also have two modes to indicate that the relevant condition code is
2009 in the floating-point condition code register. One for comparisons which
2010 will generate an exception if the result is unordered (CCFPEmode) and
2011 one for comparisons which will never trap (CCFPmode). This really should
7a6cf439
DE
2012 be a separate register, but we don't want to go to 65 registers.
2013
2014 CCXmode and CCX_NOOVmode are only used by v9. */
2015
2016#define EXTRA_CC_MODES CCXmode, CC_NOOVmode, CCX_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
2017
2018/* Define the names for the modes specified above. */
7a6cf439
DE
2019
2020#define EXTRA_CC_NAMES "CCX", "CC_NOOV", "CCX_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
2021
2022/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
2023 return the mode to be used for the comparison. For floating-point,
2024 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
922bd191
JW
2025 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2026 processing is needed. */
679655e6 2027#define SELECT_CC_MODE(OP,X,Y) \
4d449554 2028 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
922bd191
JW
2029 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2030 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2031 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
7a6cf439
DE
2032 ? (TARGET_V9 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \
2033 : (TARGET_V9 && GET_MODE (X) == DImode ? CCXmode : CCmode)))
1bb87f28 2034
b331b745
RK
2035/* Return non-zero if SELECT_CC_MODE will never return MODE for a
2036 floating point inequality comparison. */
2037
2038#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
2039
1bb87f28
JW
2040/* A function address in a call instruction
2041 is a byte address (for indexing purposes)
2042 so give the MEM rtx a byte's mode. */
2043#define FUNCTION_MODE SImode
2044
2045/* Define this if addresses of constant functions
2046 shouldn't be put through pseudo regs where they can be cse'd.
2047 Desirable on machines where ordinary constants are expensive
2048 but a CALL with constant address is cheap. */
2049#define NO_FUNCTION_CSE
2050
2051/* alloca should avoid clobbering the old register save area. */
2052#define SETJMP_VIA_SAVE_AREA
2053
2054/* Define subroutines to call to handle multiply and divide.
2055 Use the subroutines that Sun's library provides.
2056 The `*' prevents an underscore from being prepended by the compiler. */
2057
2058#define DIVSI3_LIBCALL "*.div"
2059#define UDIVSI3_LIBCALL "*.udiv"
2060#define MODSI3_LIBCALL "*.rem"
2061#define UMODSI3_LIBCALL "*.urem"
2062/* .umul is a little faster than .mul. */
2063#define MULSI3_LIBCALL "*.umul"
2064
8248e2bc
JW
2065/* Define library calls for quad FP operations. These are all part of the
2066 SPARC ABI. */
b3f741ed
JW
2067#define ADDTF3_LIBCALL "_Q_add"
2068#define SUBTF3_LIBCALL "_Q_sub"
2069#define MULTF3_LIBCALL "_Q_mul"
2070#define DIVTF3_LIBCALL "_Q_div"
2071#define SQRTTF2_LIBCALL "_Q_sqrt"
2072#define FLOATSITF2_LIBCALL "_Q_itoq"
2073#define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2074#define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2075#define EXTENDSFTF2_LIBCALL "_Q_stoq"
2076#define TRUNCTFSF2_LIBCALL "_Q_qtos"
2077#define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2078#define TRUNCTFDF2_LIBCALL "_Q_qtod"
2079#define EQTF2_LIBCALL "_Q_feq"
2080#define NETF2_LIBCALL "_Q_fne"
2081#define GTTF2_LIBCALL "_Q_fgt"
2082#define GETF2_LIBCALL "_Q_fge"
2083#define LTTF2_LIBCALL "_Q_flt"
2084#define LETF2_LIBCALL "_Q_fle"
8248e2bc 2085
1bb87f28
JW
2086/* Compute the cost of computing a constant rtl expression RTX
2087 whose rtx-code is CODE. The body of this macro is a portion
2088 of a switch statement. If the code is computed here,
2089 return it with a return statement. Otherwise, break from the switch. */
2090
3bb22aee 2091#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 2092 case CONST_INT: \
1bb87f28 2093 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 2094 return 0; \
1bb87f28
JW
2095 case HIGH: \
2096 return 2; \
2097 case CONST: \
2098 case LABEL_REF: \
2099 case SYMBOL_REF: \
2100 return 4; \
2101 case CONST_DOUBLE: \
2102 if (GET_MODE (RTX) == DImode) \
2103 if ((XINT (RTX, 3) == 0 \
2104 && (unsigned) XINT (RTX, 2) < 0x1000) \
2105 || (XINT (RTX, 3) == -1 \
2106 && XINT (RTX, 2) < 0 \
2107 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 2108 return 0; \
1bb87f28
JW
2109 return 8;
2110
a0a74fda 2111/* Compute the cost of an address. For the sparc, all valid addresses are
7a6cf439
DE
2112 the same cost.
2113 ??? Is this true for v9? */
1bb87f28 2114
a0a74fda 2115#define ADDRESS_COST(RTX) 1
1bb87f28
JW
2116
2117/* Compute extra cost of moving data between one register class
7a6cf439
DE
2118 and another.
2119 ??? v9: We ignore FPCC_REGS on the assumption they'll never be seen. */
1bb87f28
JW
2120#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2121 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
2122 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
2123
2124/* Provide the costs of a rtl expression. This is in the body of a
2125 switch on CODE. The purpose for the cost of MULT is to encourage
2126 `synth_mult' to find a synthetic multiply when reasonable.
2127
2128 If we need more than 12 insns to do a multiply, then go out-of-line,
2129 since the call overhead will be < 10% of the cost of the multiply. */
2130
3bb22aee 2131#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 2132 case MULT: \
7a6cf439 2133 return (TARGET_V8 || TARGET_V9) ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
2134 case DIV: \
2135 case UDIV: \
2136 case MOD: \
2137 case UMOD: \
5b485d2c
JW
2138 return COSTS_N_INSNS (25); \
2139 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
2140 so that cse will favor the latter. */ \
2141 case FLOAT: \
5b485d2c 2142 case FIX: \
1bb87f28
JW
2143 return 19;
2144
bef8d8c7
JW
2145/* Adjust the cost of dependencies. */
2146#define ADJUST_COST(INSN,LINK,DEP,COST) \
2147 if (TARGET_SUPERSPARC) \
2148 (COST) = supersparc_adjust_cost (INSN, LINK, DEP, COST)
2149
1bb87f28
JW
2150/* Conditional branches with empty delay slots have a length of two. */
2151#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2152 if (GET_CODE (INSN) == CALL_INSN \
2153 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2154 LENGTH += 1;
2155\f
2156/* Control the assembler format that we output. */
2157
2158/* Output at beginning of assembler file. */
2159
2160#define ASM_FILE_START(file)
2161
2162/* Output to assembler file text saying following lines
2163 may contain character constants, extra white space, comments, etc. */
2164
2165#define ASM_APP_ON ""
2166
2167/* Output to assembler file text saying following lines
2168 no longer contain unusual constructs. */
2169
2170#define ASM_APP_OFF ""
2171
7a6cf439
DE
2172/* ??? Try to make the style consistent here (_OP?). */
2173
2174#define ASM_LONGLONG ".xword"
303d524a
JW
2175#define ASM_LONG ".word"
2176#define ASM_SHORT ".half"
2177#define ASM_BYTE_OP ".byte"
7a6cf439
DE
2178#define ASM_FLOAT ".single"
2179#define ASM_DOUBLE ".double"
2180#define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
303d524a 2181
1bb87f28
JW
2182/* Output before read-only data. */
2183
2184#define TEXT_SECTION_ASM_OP ".text"
2185
2186/* Output before writable data. */
2187
2188#define DATA_SECTION_ASM_OP ".data"
2189
2190/* How to refer to registers in assembler output.
2191 This sequence is indexed by compiler's hard-register-number (see above). */
2192
7a6cf439
DE
2193#ifdef SPARCV9
2194#define REGISTER_NAMES \
2195{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2196 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2197 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2198 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2199 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2200 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2201 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2202 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2203 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2204 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2205 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2206 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2207 "%fcc0", "%fcc1", "%fcc2", "%fcc3"}
2208#else
1bb87f28
JW
2209#define REGISTER_NAMES \
2210{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2211 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2212 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2213 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2214 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2215 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2216 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2217 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
7a6cf439 2218#endif
1bb87f28 2219
ea3fa5f7
JW
2220/* Define additional names for use in asm clobbers and asm declarations.
2221
2222 We define the fake Condition Code register as an alias for reg 0 (which
2223 is our `condition code' register), so that condition codes can easily
2224 be clobbered by an asm. No such register actually exists. Condition
2225 codes are partly stored in the PSR and partly in the FSR. */
2226
0eb9f40e 2227#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 2228
1bb87f28
JW
2229/* How to renumber registers for dbx and gdb. */
2230
2231#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2232
2233/* On Sun 4, this limit is 2048. We use 1500 to be safe,
2234 since the length can run past this up to a continuation point. */
2235#define DBX_CONTIN_LENGTH 1500
2236
2237/* This is how to output a note to DBX telling it the line number
2238 to which the following sequence of instructions corresponds.
2239
2240 This is needed for SunOS 4.0, and should not hurt for 3.2
2241 versions either. */
2242#define ASM_OUTPUT_SOURCE_LINE(file, line) \
2243 { static int sym_lineno = 1; \
2244 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2245 line, sym_lineno, sym_lineno); \
2246 sym_lineno += 1; }
2247
2248/* This is how to output the definition of a user-level label named NAME,
2249 such as the label on a static function or variable NAME. */
2250
2251#define ASM_OUTPUT_LABEL(FILE,NAME) \
2252 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2253
2254/* This is how to output a command to make the user-level label named NAME
2255 defined for reference from other files. */
2256
2257#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2258 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2259
2260/* This is how to output a reference to a user-level label named NAME.
2261 `assemble_name' uses this. */
2262
2263#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2264 fprintf (FILE, "_%s", NAME)
2265
d2a8e680 2266/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
2267 PREFIX is the class of label and NUM is the number within the class. */
2268
2269#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2270 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2271
d2a8e680
RS
2272/* This is how to output a reference to an internal numbered label where
2273 PREFIX is the class of label and NUM is the number within the class. */
2274/* FIXME: This should be used throughout gcc, and documented in the texinfo
2275 files. There is no reason you should have to allocate a buffer and
2276 `sprintf' to reference an internal label (as opposed to defining it). */
2277
2278#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
2279 fprintf (FILE, "%s%d", PREFIX, NUM)
2280
1bb87f28
JW
2281/* This is how to store into the string LABEL
2282 the symbol_ref name of an internal numbered label where
2283 PREFIX is the class of label and NUM is the number within the class.
2284 This is suitable for output with `assemble_name'. */
2285
2286#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2287 sprintf (LABEL, "*%s%d", PREFIX, NUM)
2288
2289/* This is how to output an assembler line defining a `double' constant. */
2290
2291#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2292 { \
2e7ac77c
JW
2293 long t[2]; \
2294 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2295 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2296 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
2297 }
2298
2299/* This is how to output an assembler line defining a `float' constant. */
2300
2301#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2302 { \
2e7ac77c
JW
2303 long t; \
2304 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2305 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
2306 } \
1bb87f28 2307
0cd02cbb
DE
2308/* This is how to output an assembler line defining a `long double'
2309 constant. */
2310
2311#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2312 { \
2313 long t[4]; \
2314 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2315 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2316 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
2317 }
2318
1bb87f28
JW
2319/* This is how to output an assembler line defining an `int' constant. */
2320
2321#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 2322( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
2323 output_addr_const (FILE, (VALUE)), \
2324 fprintf (FILE, "\n"))
2325
2326/* This is how to output an assembler line defining a DImode constant. */
2327#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2328 output_double_int (FILE, VALUE)
2329
2330/* Likewise for `char' and `short' constants. */
2331
2332#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 2333( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
2334 output_addr_const (FILE, (VALUE)), \
2335 fprintf (FILE, "\n"))
2336
2337#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 2338( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
2339 output_addr_const (FILE, (VALUE)), \
2340 fprintf (FILE, "\n"))
2341
2342/* This is how to output an assembler line for a numeric constant byte. */
2343
2344#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 2345 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
2346
2347/* This is how to output an element of a case-vector that is absolute. */
2348
2349#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
2350do { \
2351 char label[30]; \
2352 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
7a6cf439
DE
2353 if (Pmode == SImode) \
2354 fprintf (FILE, "\t.word\t"); \
2355 else if (TARGET_ENV32) \
2356 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2357 else \
2358 fprintf (FILE, "\t.xword\t"); \
4b69d2a3
RS
2359 assemble_name (FILE, label); \
2360 fprintf (FILE, "\n"); \
2361} while (0)
1bb87f28
JW
2362
2363/* This is how to output an element of a case-vector that is relative.
2364 (SPARC uses such vectors only when generating PIC.) */
2365
4b69d2a3
RS
2366#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2367do { \
2368 char label[30]; \
2369 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
7a6cf439
DE
2370 if (Pmode == SImode) \
2371 fprintf (FILE, "\t.word\t"); \
2372 else if (TARGET_ENV32) \
2373 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2374 else \
2375 fprintf (FILE, "\t.xword\t"); \
4b69d2a3
RS
2376 assemble_name (FILE, label); \
2377 fprintf (FILE, "-1b\n"); \
2378} while (0)
1bb87f28
JW
2379
2380/* This is how to output an assembler line
2381 that says to advance the location counter
2382 to a multiple of 2**LOG bytes. */
2383
2384#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2385 if ((LOG) != 0) \
2386 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2387
2388#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2389 fprintf (FILE, "\t.skip %u\n", (SIZE))
2390
2391/* This says how to output an assembler line
2392 to define a global common symbol. */
2393
2394#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
b277ceaf 2395( fputs ("\t.common ", (FILE)), \
1bb87f28 2396 assemble_name ((FILE), (NAME)), \
b277ceaf 2397 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
1bb87f28 2398
b277ceaf
JW
2399/* This says how to output an assembler line to define a local common
2400 symbol. */
1bb87f28 2401
b277ceaf
JW
2402#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2403( fputs ("\t.reserve ", (FILE)), \
2404 assemble_name ((FILE), (NAME)), \
2405 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2406 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1bb87f28
JW
2407
2408/* Store in OUTPUT a string (made with alloca) containing
2409 an assembler-name for a local static variable named NAME.
2410 LABELNO is an integer which is different for each call. */
2411
2412#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2413( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2414 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2415
c14f2655
RS
2416#define IDENT_ASM_OP ".ident"
2417
2418/* Output #ident as a .ident. */
2419
2420#define ASM_OUTPUT_IDENT(FILE, NAME) \
2421 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
2422
1bb87f28
JW
2423/* Define the parentheses used to group arithmetic operations
2424 in assembler code. */
2425
2426#define ASM_OPEN_PAREN "("
2427#define ASM_CLOSE_PAREN ")"
2428
2429/* Define results of standard character escape sequences. */
2430#define TARGET_BELL 007
2431#define TARGET_BS 010
2432#define TARGET_TAB 011
2433#define TARGET_NEWLINE 012
2434#define TARGET_VT 013
2435#define TARGET_FF 014
2436#define TARGET_CR 015
2437
2438#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 2439 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
2440
2441/* Print operand X (an rtx) in assembler syntax to file FILE.
2442 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2443 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2444
2445#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2446
2447/* Print a memory address as an operand to reference that memory location. */
2448
2449#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2450{ register rtx base, index = 0; \
2451 int offset = 0; \
2452 register rtx addr = ADDR; \
2453 if (GET_CODE (addr) == REG) \
2454 fputs (reg_names[REGNO (addr)], FILE); \
2455 else if (GET_CODE (addr) == PLUS) \
2456 { \
2457 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2458 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2459 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2460 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2461 else \
2462 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2463 fputs (reg_names[REGNO (base)], FILE); \
2464 if (index == 0) \
2465 fprintf (FILE, "%+d", offset); \
2466 else if (GET_CODE (index) == REG) \
2467 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2468 else if (GET_CODE (index) == SYMBOL_REF) \
2469 fputc ('+', FILE), output_addr_const (FILE, index); \
2470 else abort (); \
2471 } \
2472 else if (GET_CODE (addr) == MINUS \
2473 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2474 { \
2475 output_addr_const (FILE, XEXP (addr, 0)); \
2476 fputs ("-(", FILE); \
2477 output_addr_const (FILE, XEXP (addr, 1)); \
2478 fputs ("-.)", FILE); \
2479 } \
2480 else if (GET_CODE (addr) == LO_SUM) \
2481 { \
2482 output_operand (XEXP (addr, 0), 0); \
2483 fputs ("+%lo(", FILE); \
2484 output_address (XEXP (addr, 1)); \
2485 fputc (')', FILE); \
2486 } \
2487 else if (flag_pic && GET_CODE (addr) == CONST \
2488 && GET_CODE (XEXP (addr, 0)) == MINUS \
2489 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2490 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2491 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2492 { \
2493 addr = XEXP (addr, 0); \
2494 output_addr_const (FILE, XEXP (addr, 0)); \
2495 /* Group the args of the second CONST in parenthesis. */ \
2496 fputs ("-(", FILE); \
2497 /* Skip past the second CONST--it does nothing for us. */\
2498 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2499 /* Close the parenthesis. */ \
2500 fputc (')', FILE); \
2501 } \
2502 else \
2503 { \
2504 output_addr_const (FILE, addr); \
2505 } \
2506}
2507
2508/* Declare functions defined in sparc.c and used in templates. */
2509
2510extern char *singlemove_string ();
2511extern char *output_move_double ();
795068a4 2512extern char *output_move_quad ();
1bb87f28 2513extern char *output_fp_move_double ();
795068a4 2514extern char *output_fp_move_quad ();
1bb87f28
JW
2515extern char *output_block_move ();
2516extern char *output_scc_insn ();
2517extern char *output_cbranch ();
7a6cf439 2518extern char *output_v9branch ();
1bb87f28 2519extern char *output_return ();
1bb87f28
JW
2520
2521/* Defined in flags.h, but insn-emit.c does not include flags.h. */
2522
2523extern int flag_pic;
This page took 0.513748 seconds and 5 git commands to generate.