]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(CEIL): Delete.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
9a1c7cd7 37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 38
b1fc14e5
RS
39/* Prevent error on `-sun4' and `-target sun4' options. */
40/* This used to translate -dalign to -malign, but that is no good
41 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 42
b1fc14e5 43#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28 44
d9ca49d5
JW
45#if 0
46/* Sparc ABI says that long double is 4 words.
47 ??? This doesn't work yet. */
48#define LONG_DOUBLE_TYPE_SIZE 128
49#endif
50
1bb87f28
JW
51#define PTRDIFF_TYPE "int"
52#define SIZE_TYPE "int"
53#define WCHAR_TYPE "short unsigned int"
54#define WCHAR_TYPE_SIZE 16
55
98ccf8fe
RK
56/* Omit frame pointer at high optimization levels. */
57
1bb87f28
JW
58#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
59{ \
60 if (OPTIMIZE >= 2) \
61 { \
62 flag_omit_frame_pointer = 1; \
1bb87f28
JW
63 } \
64}
65
5b485d2c
JW
66/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
67 code into the rtl. Also, if we are profiling, we cannot eliminate
68 the frame pointer (because the return address will get smashed). */
69
70#define OVERRIDE_OPTIONS \
71 do { if (profile_flag || profile_block_flag) \
72 flag_omit_frame_pointer = 0, flag_pic = 0; } while (0)
73
1bb87f28
JW
74/* These compiler options take an argument. We ignore -target for now. */
75
76#define WORD_SWITCH_TAKES_ARG(STR) \
b4b05f16
JW
77 (!strcmp (STR, "Tdata") || !strcmp (STR, "Ttext") \
78 || !strcmp (STR, "Tbss") || !strcmp (STR, "include") \
1bb87f28 79 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
b1fc14e5 80 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
1bb87f28
JW
81
82/* Names to predefine in the preprocessor for this target machine. */
83
84#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
85
86/* Print subsidiary information on the compiler version in use. */
87
88#define TARGET_VERSION fprintf (stderr, " (sparc)");
89
90/* Generate DBX debugging information. */
91
92#define DBX_DEBUGGING_INFO
93
94/* Run-time compilation parameters selecting different hardware subsets. */
95
96extern int target_flags;
97
98/* Nonzero if we should generate code to use the fpu. */
99#define TARGET_FPU (target_flags & 1)
100
101/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
102 use fast return insns, but lose some generality. */
103#define TARGET_EPILOGUE (target_flags & 2)
104
b1fc14e5
RS
105/* Nonzero means that reference doublewords as if they were guaranteed
106 to be aligned...if they aren't, too bad for the user!
eadf0fe6 107 Like -dalign in Sun cc. */
b1fc14e5
RS
108#define TARGET_HOPE_ALIGN (target_flags & 16)
109
0be8e859
JW
110/* Nonzero means make sure all doubles are on 8-byte boundaries.
111 This option results in a calling convention that is incompatible with
112 every other sparc compiler in the world, and thus should only ever be
113 used for experimenting. Also, varargs won't work with it, but it doesn't
114 seem worth trying to fix. */
b1fc14e5 115#define TARGET_FORCE_ALIGN (target_flags & 32)
1bb87f28 116
885d8175
JW
117/* Nonzero means that we should generate code for a v8 sparc. */
118#define TARGET_V8 (target_flags & 64)
119
120/* Nonzero means that we should generate code for a sparclite. */
121#define TARGET_SPARCLITE (target_flags & 128)
122
5b485d2c 123/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
124 model, i.e. no save/restore instructions are generated, in the most
125 efficient manner. This code is not compatible with normal sparc code. */
126/* This is not a user selectable option yet, because it requires changes
127 that are not yet switchable via command line arguments. */
5b485d2c
JW
128#define TARGET_FRW (target_flags & 256)
129
9a1c7cd7
JW
130/* Nonzero means that we should generate code using a flat register window
131 model, i.e. no save/restore instructions are generated, but which is
132 compatible with normal sparc code. This is the same as above, except
133 that the frame pointer is %l6 instead of %fp. This code is not as efficient
134 as TARGET_FRW, because it has one less allocatable register. */
135/* This is not a user selectable option yet, because it requires changes
136 that are not yet switchable via command line arguments. */
137#define TARGET_FRW_COMPAT (target_flags & 512)
138
1bb87f28
JW
139/* Macro to define tables used to set the flags.
140 This is a list in braces of pairs in braces,
141 each pair being { "NAME", VALUE }
142 where VALUE is the bits to set or minus the bits to clear.
143 An empty string NAME is used to identify the default VALUE. */
144
145#define TARGET_SWITCHES \
146 { {"fpu", 1}, \
26c5587d
JW
147 {"no-fpu", -1}, \
148 {"hard-float", 1}, \
1bb87f28
JW
149 {"soft-float", -1}, \
150 {"epilogue", 2}, \
151 {"no-epilogue", -2}, \
b1fc14e5
RS
152 {"hope-align", 16}, \
153 {"force-align", 48}, \
885d8175
JW
154 {"v8", 64}, \
155 {"no-v8", -64}, \
156 {"sparclite", 128}, \
a66279da 157 {"sparclite", -1}, \
885d8175 158 {"no-sparclite", -128}, \
a66279da 159 {"no-sparclite", 1}, \
9a1c7cd7
JW
160/* {"frw", 256}, */ \
161/* {"no-frw", -256}, */ \
162/* {"frw-compat", 256+512}, */ \
163/* {"no-frw-compat", -(256+512)}, */ \
b1fc14e5 164 { "", TARGET_DEFAULT}}
1bb87f28
JW
165
166#define TARGET_DEFAULT 3
167\f
168/* target machine storage layout */
169
170/* Define this if most significant bit is lowest numbered
171 in instructions that operate on numbered bit-fields. */
172#define BITS_BIG_ENDIAN 1
173
174/* Define this if most significant byte of a word is the lowest numbered. */
175/* This is true on the SPARC. */
176#define BYTES_BIG_ENDIAN 1
177
178/* Define this if most significant word of a multiword number is the lowest
179 numbered. */
180/* Doubles are stored in memory with the high order word first. This
181 matters when cross-compiling. */
182#define WORDS_BIG_ENDIAN 1
183
b4ac57ab 184/* number of bits in an addressable storage unit */
1bb87f28
JW
185#define BITS_PER_UNIT 8
186
187/* Width in bits of a "word", which is the contents of a machine register.
188 Note that this is not necessarily the width of data type `int';
189 if using 16-bit ints on a 68000, this would still be 32.
190 But on a machine with 16-bit registers, this would be 16. */
191#define BITS_PER_WORD 32
192#define MAX_BITS_PER_WORD 32
193
194/* Width of a word, in units (bytes). */
195#define UNITS_PER_WORD 4
196
197/* Width in bits of a pointer.
198 See also the macro `Pmode' defined below. */
199#define POINTER_SIZE 32
200
201/* Allocation boundary (in *bits*) for storing arguments in argument list. */
202#define PARM_BOUNDARY 32
203
204/* Boundary (in *bits*) on which stack pointer should be aligned. */
205#define STACK_BOUNDARY 64
206
10d1b70f
JW
207/* ALIGN FRAMES on double word boundaries */
208
209#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
210
1bb87f28
JW
211/* Allocation boundary (in *bits*) for the code of a function. */
212#define FUNCTION_BOUNDARY 32
213
214/* Alignment of field after `int : 0' in a structure. */
215#define EMPTY_FIELD_BOUNDARY 32
216
217/* Every structure's size must be a multiple of this. */
218#define STRUCTURE_SIZE_BOUNDARY 8
219
220/* A bitfield declared as `int' forces `int' alignment for the struct. */
221#define PCC_BITFIELD_TYPE_MATTERS 1
222
223/* No data type wants to be aligned rounder than this. */
224#define BIGGEST_ALIGNMENT 64
225
77a02b01
JW
226/* The best alignment to use in cases where we have a choice. */
227#define FASTEST_ALIGNMENT 64
228
1bb87f28
JW
229/* Make strings word-aligned so strcpy from constants will be faster. */
230#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
231 ((TREE_CODE (EXP) == STRING_CST \
232 && (ALIGN) < FASTEST_ALIGNMENT) \
233 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
234
235/* Make arrays of chars word-aligned for the same reasons. */
236#define DATA_ALIGNMENT(TYPE, ALIGN) \
237 (TREE_CODE (TYPE) == ARRAY_TYPE \
238 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 239 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 240
b4ac57ab 241/* Set this nonzero if move instructions will actually fail to work
1bb87f28 242 when given unaligned data. */
b4ac57ab 243#define STRICT_ALIGNMENT 1
1bb87f28
JW
244
245/* Things that must be doubleword aligned cannot go in the text section,
246 because the linker fails to align the text section enough!
247 Put them in the data section. */
248#define MAX_TEXT_ALIGN 32
249
250#define SELECT_SECTION(T,RELOC) \
251{ \
252 if (TREE_CODE (T) == VAR_DECL) \
253 { \
254 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
255 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
256 && ! (flag_pic && (RELOC))) \
257 text_section (); \
258 else \
259 data_section (); \
260 } \
261 else if (TREE_CODE (T) == CONSTRUCTOR) \
262 { \
263 if (flag_pic != 0 && (RELOC) != 0) \
264 data_section (); \
265 } \
266 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
267 { \
268 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
269 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
270 data_section (); \
271 else \
272 text_section (); \
273 } \
274}
275
276/* Use text section for a constant
277 unless we need more alignment than that offers. */
278#define SELECT_RTX_SECTION(MODE, X) \
279{ \
280 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
281 && ! (flag_pic && symbolic_operand (X))) \
282 text_section (); \
283 else \
284 data_section (); \
285}
286\f
287/* Standard register usage. */
288
289/* Number of actual hardware registers.
290 The hardware registers are assigned numbers for the compiler
291 from 0 to just below FIRST_PSEUDO_REGISTER.
292 All registers that the compiler knows about must be given numbers,
293 even those that are not normally considered general registers.
294
295 SPARC has 32 integer registers and 32 floating point registers. */
296
297#define FIRST_PSEUDO_REGISTER 64
298
299/* 1 for registers that have pervasive standard uses
300 and are not available for the register allocator.
5b485d2c 301 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 302 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
303 g1 through g4 are free to use as temporaries.
304 g5 through g7 are reserved for the operating system. */
1bb87f28 305#define FIXED_REGISTERS \
d9ca49d5 306 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
307 0, 0, 0, 0, 0, 0, 1, 0, \
308 0, 0, 0, 0, 0, 0, 0, 0, \
309 0, 0, 0, 0, 0, 0, 1, 1, \
310 \
311 0, 0, 0, 0, 0, 0, 0, 0, \
312 0, 0, 0, 0, 0, 0, 0, 0, \
313 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0}
315
316/* 1 for registers not available across function calls.
317 These must include the FIXED_REGISTERS and also any
318 registers that can be used without being saved.
319 The latter must include the registers where values are returned
320 and the register where structure-value addresses are passed.
321 Aside from that, you can include as many other registers as you like. */
322#define CALL_USED_REGISTERS \
323 {1, 1, 1, 1, 1, 1, 1, 1, \
324 1, 1, 1, 1, 1, 1, 1, 1, \
325 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 0, 0, 0, 1, 1, \
327 \
328 1, 1, 1, 1, 1, 1, 1, 1, \
329 1, 1, 1, 1, 1, 1, 1, 1, \
330 1, 1, 1, 1, 1, 1, 1, 1, \
331 1, 1, 1, 1, 1, 1, 1, 1}
332
26c5587d
JW
333/* If !TARGET_FPU, then make the fp registers fixed so that they won't
334 be allocated. */
335
336#define CONDITIONAL_REGISTER_USAGE \
337do \
338 { \
339 if (! TARGET_FPU) \
340 { \
341 int regno; \
342 for (regno = 32; regno < 64; regno++) \
343 fixed_regs[regno] = 1; \
344 } \
345 } \
346while (0)
347
1bb87f28
JW
348/* Return number of consecutive hard regs needed starting at reg REGNO
349 to hold something of mode MODE.
350 This is ordinarily the length in words of a value of mode MODE
351 but can be less for certain modes in special long registers.
352
353 On SPARC, ordinary registers hold 32 bits worth;
354 this means both integer and floating point registers.
355
356 We use vectors to keep this information about registers. */
357
358/* How many hard registers it takes to make a register of this mode. */
359extern int hard_regno_nregs[];
360
361#define HARD_REGNO_NREGS(REGNO, MODE) \
362 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
363
364/* Value is 1 if register/mode pair is acceptable on sparc. */
365extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
366
367/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
368 On SPARC, the cpu registers can hold any mode but the float registers
369 can only hold SFmode or DFmode. See sparc.c for how we
370 initialize this. */
371#define HARD_REGNO_MODE_OK(REGNO, MODE) \
372 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
373
374/* Value is 1 if it is a good idea to tie two pseudo registers
375 when one has mode MODE1 and one has mode MODE2.
376 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
377 for any hard reg, then this must be 0 for correct output. */
378#define MODES_TIEABLE_P(MODE1, MODE2) \
379 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
380
381/* Specify the registers used for certain standard purposes.
382 The values of these macros are register numbers. */
383
384/* SPARC pc isn't overloaded on a register that the compiler knows about. */
385/* #define PC_REGNUM */
386
387/* Register to use for pushing function arguments. */
388#define STACK_POINTER_REGNUM 14
389
390/* Actual top-of-stack address is 92 greater than the contents
391 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
392 for the ins and local registers, 4 byte for structure return address, and
393 24 bytes for the 6 register parameters. */
394#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
395
396/* Base register for access to local variables of the function. */
397#define FRAME_POINTER_REGNUM 30
398
399#if 0
400/* Register that is used for the return address. */
401#define RETURN_ADDR_REGNUM 15
402#endif
403
404/* Value should be nonzero if functions must have frame pointers.
405 Zero means the frame pointer need not be set up (and parms
406 may be accessed via the stack pointer) in functions that seem suitable.
407 This is computed in `reload', in reload1.c.
408
c0524a34 409 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
410extern int leaf_function;
411
412#define FRAME_POINTER_REQUIRED \
a72cb8ec 413 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
414
415/* C statement to store the difference between the frame pointer
416 and the stack pointer values immediately after the function prologue.
417
418 Note, we always pretend that this is a leaf function because if
419 it's not, there's no point in trying to eliminate the
420 frame pointer. If it is a leaf function, we guessed right! */
421#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
422 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
423 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
424
425/* Base register for access to arguments of the function. */
426#define ARG_POINTER_REGNUM 30
427
428/* Register in which static-chain is passed to a function. */
429/* ??? */
430#define STATIC_CHAIN_REGNUM 1
431
432/* Register which holds offset table for position-independent
433 data references. */
434
435#define PIC_OFFSET_TABLE_REGNUM 23
436
437#define INITIALIZE_PIC initialize_pic ()
438#define FINALIZE_PIC finalize_pic ()
439
d9ca49d5 440/* Sparc ABI says that quad-precision floats and all structures are returned
dafe6cf1
RS
441 in memory. We go along regarding floats, but for structures
442 we follow GCC's normal policy. Use -fpcc-struct-value
443 if you want to follow the ABI. */
d9ca49d5 444#define RETURN_IN_MEMORY(TYPE) \
dafe6cf1 445 (TYPE_MODE (TYPE) == TFmode)
d9ca49d5 446
1bb87f28
JW
447/* Functions which return large structures get the address
448 to place the wanted value at offset 64 from the frame.
449 Must reserve 64 bytes for the in and local registers. */
450/* Used only in other #defines in this file. */
451#define STRUCT_VALUE_OFFSET 64
452
453#define STRUCT_VALUE \
454 gen_rtx (MEM, Pmode, \
455 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
456 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
457#define STRUCT_VALUE_INCOMING \
458 gen_rtx (MEM, Pmode, \
459 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
460 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
461\f
462/* Define the classes of registers for register constraints in the
463 machine description. Also define ranges of constants.
464
465 One of the classes must always be named ALL_REGS and include all hard regs.
466 If there is more than one class, another class must be named NO_REGS
467 and contain no registers.
468
469 The name GENERAL_REGS must be the name of a class (or an alias for
470 another name such as ALL_REGS). This is the class of registers
471 that is allowed by "g" or "r" in a register constraint.
472 Also, registers outside this class are allocated only when
473 instructions express preferences for them.
474
475 The classes must be numbered in nondecreasing order; that is,
476 a larger-numbered class must never be contained completely
477 in a smaller-numbered class.
478
479 For any two classes, it is very desirable that there be another
480 class that represents their union. */
481
482/* The SPARC has two kinds of registers, general and floating point. */
483
484enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
485
486#define N_REG_CLASSES (int) LIM_REG_CLASSES
487
488/* Give names of register classes as strings for dump file. */
489
490#define REG_CLASS_NAMES \
491 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
492
493/* Define which registers fit in which classes.
494 This is an initializer for a vector of HARD_REG_SET
495 of length N_REG_CLASSES. */
496
497#if 0 && defined (__GNUC__)
498#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
499#else
500#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
501#endif
502
503/* The same information, inverted:
504 Return the class number of the smallest class containing
505 reg number REGNO. This could be a conditional expression
506 or could index an array. */
507
508#define REGNO_REG_CLASS(REGNO) \
509 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
510
511/* This is the order in which to allocate registers
512 normally. */
513#define REG_ALLOC_ORDER \
b4ac57ab
RS
514{ 8, 9, 10, 11, 12, 13, 2, 3, \
515 15, 16, 17, 18, 19, 20, 21, 22, \
516 23, 24, 25, 26, 27, 28, 29, 31, \
1bb87f28
JW
517 32, 33, 34, 35, 36, 37, 38, 39, \
518 40, 41, 42, 43, 44, 45, 46, 47, \
519 48, 49, 50, 51, 52, 53, 54, 55, \
520 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 521 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
522
523/* This is the order in which to allocate registers for
524 leaf functions. If all registers can fit in the "i" registers,
525 then we have the possibility of having a leaf function. */
526#define REG_LEAF_ALLOC_ORDER \
527{ 2, 3, 24, 25, 26, 27, 28, 29, \
528 15, 8, 9, 10, 11, 12, 13, \
529 16, 17, 18, 19, 20, 21, 22, 23, \
530 32, 33, 34, 35, 36, 37, 38, 39, \
531 40, 41, 42, 43, 44, 45, 46, 47, \
532 48, 49, 50, 51, 52, 53, 54, 55, \
533 56, 57, 58, 59, 60, 61, 62, 63, \
4b69d2a3 534 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
535
536#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
537
538#define LEAF_REGISTERS \
539{ 1, 1, 1, 1, 1, 1, 1, 1, \
540 0, 0, 0, 0, 0, 0, 1, 0, \
541 0, 0, 0, 0, 0, 0, 0, 0, \
542 1, 1, 1, 1, 1, 1, 0, 1, \
543 1, 1, 1, 1, 1, 1, 1, 1, \
544 1, 1, 1, 1, 1, 1, 1, 1, \
545 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 546 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
547
548extern char leaf_reg_remap[];
549#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
550extern char leaf_reg_backmap[];
551#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
552
1bb87f28
JW
553/* The class value for index registers, and the one for base regs. */
554#define INDEX_REG_CLASS GENERAL_REGS
555#define BASE_REG_CLASS GENERAL_REGS
556
557/* Get reg_class from a letter such as appears in the machine description. */
558
559#define REG_CLASS_FROM_LETTER(C) \
560 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
561
562/* The letters I, J, K, L and M in a register constraint string
563 can be used to stand for particular ranges of immediate operands.
564 This macro defines what the ranges are.
565 C is the letter, and VALUE is a constant value.
566 Return 1 if VALUE is in the range specified by C.
567
568 For SPARC, `I' is used for the range of constants an insn
569 can actually contain.
570 `J' is used for the range which is just zero (since that is R0).
571 `K' is used for the 5-bit operand of a compare insns. */
572
573#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
574
575#define CONST_OK_FOR_LETTER_P(VALUE, C) \
576 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
577 : (C) == 'J' ? (VALUE) == 0 \
578 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
579 : 0)
580
581/* Similar, but for floating constants, and defining letters G and H.
582 Here VALUE is the CONST_DOUBLE rtx itself. */
583
584#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
585 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
586 && CONST_DOUBLE_LOW (VALUE) == 0 \
587 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
588 : 0)
589
590/* Given an rtx X being reloaded into a reg required to be
591 in class CLASS, return the class of reg to actually use.
592 In general this is just CLASS; but on some machines
593 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
594/* We can't load constants into FP registers. We can't load any FP constant
595 if an 'E' constraint fails to match it. */
596#define PREFERRED_RELOAD_CLASS(X,CLASS) \
597 (CONSTANT_P (X) \
598 && ((CLASS) == FP_REGS \
599 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
600 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
601 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
602 ? NO_REGS : (CLASS))
1bb87f28
JW
603
604/* Return the register class of a scratch register needed to load IN into
605 a register of class CLASS in MODE.
606
607 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 608 into a register.
1bb87f28 609
ae51bd97
JW
610 Also, we need a temporary when loading/storing a HImode/QImode value
611 between memory and the FPU registers. This can happen when combine puts
612 a paradoxical subreg in a float/fix conversion insn. */
613
614#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
615 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS \
616 : ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
617 && (GET_CODE (IN) == MEM \
618 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
619 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
620
621#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
622 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
623 && (GET_CODE (IN) == MEM \
624 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
625 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 626
b924cef0
JW
627/* On SPARC it is not possible to directly move data between
628 GENERAL_REGS and FP_REGS. */
629#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
630 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
631 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 632
1bb87f28
JW
633/* Return the maximum number of consecutive registers
634 needed to represent mode MODE in a register of class CLASS. */
635/* On SPARC, this is the size of MODE in words. */
636#define CLASS_MAX_NREGS(CLASS, MODE) \
637 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
638\f
639/* Stack layout; function entry, exit and calling. */
640
641/* Define the number of register that can hold parameters.
642 These two macros are used only in other macro definitions below. */
643#define NPARM_REGS 6
644
645/* Define this if pushing a word on the stack
646 makes the stack pointer a smaller address. */
647#define STACK_GROWS_DOWNWARD
648
649/* Define this if the nominal address of the stack frame
650 is at the high-address end of the local variables;
651 that is, each additional local variable allocated
652 goes at a more negative offset in the frame. */
653#define FRAME_GROWS_DOWNWARD
654
655/* Offset within stack frame to start allocating local variables at.
656 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
657 first local allocated. Otherwise, it is the offset to the BEGINNING
658 of the first local allocated. */
659#define STARTING_FRAME_OFFSET (-16)
660
661/* If we generate an insn to push BYTES bytes,
662 this says how many the stack pointer really advances by.
663 On SPARC, don't define this because there are no push insns. */
664/* #define PUSH_ROUNDING(BYTES) */
665
666/* Offset of first parameter from the argument pointer register value.
667 This is 64 for the ins and locals, plus 4 for the struct-return reg
0be8e859
JW
668 even if this function isn't going to use it.
669 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
670 stack remains aligned. */
671#define FIRST_PARM_OFFSET(FNDECL) \
672 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
1bb87f28
JW
673
674/* When a parameter is passed in a register, stack space is still
675 allocated for it. */
676#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
677
678/* Keep the stack pointer constant throughout the function.
b4ac57ab 679 This is both an optimization and a necessity: longjmp
1bb87f28
JW
680 doesn't behave itself when the stack pointer moves within
681 the function! */
682#define ACCUMULATE_OUTGOING_ARGS
683
684/* Value is the number of bytes of arguments automatically
685 popped when returning from a subroutine call.
686 FUNTYPE is the data type of the function (as a tree),
687 or for a library call it is an identifier node for the subroutine name.
688 SIZE is the number of bytes of arguments passed on the stack. */
689
690#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
691
5b485d2c
JW
692/* Some subroutine macros specific to this machine.
693 When !TARGET_FPU, put float return values in the general registers,
694 since we don't have any fp registers. */
1bb87f28 695#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 696 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 697#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
698 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
699 : (TARGET_FRW ? 8 : 24))
1bb87f28 700#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 701#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28
JW
702
703/* Define how to find the value returned by a function.
704 VALTYPE is the data type of the value (as a tree).
705 If the precise function being called is known, FUNC is its FUNCTION_DECL;
706 otherwise, FUNC is 0. */
707
708/* On SPARC the value is found in the first "output" register. */
709
710#define FUNCTION_VALUE(VALTYPE, FUNC) \
711 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
712
713/* But the called function leaves it in the first "input" register. */
714
715#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
716 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
717
718/* Define how to find the value returned by a library function
719 assuming the value has mode MODE. */
720
721#define LIBCALL_VALUE(MODE) \
722 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
723
724/* 1 if N is a possible register number for a function value
725 as seen by the caller.
726 On SPARC, the first "output" reg is used for integer values,
727 and the first floating point register is used for floating point values. */
728
729#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
730
731/* 1 if N is a possible register number for function argument passing.
732 On SPARC, these are the "output" registers. */
733
734#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
735\f
736/* Define a data type for recording info about an argument list
737 during the scan of that argument list. This data type should
738 hold all necessary information about the function itself
739 and about the args processed so far, enough to enable macros
740 such as FUNCTION_ARG to determine where the next arg should go.
741
742 On SPARC, this is a single integer, which is a number of words
743 of arguments scanned so far (including the invisible argument,
744 if any, which holds the structure-value-address).
745 Thus 7 or more means all following args should go on the stack. */
746
747#define CUMULATIVE_ARGS int
748
749#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
750 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
751
752/* Round a register number up to a proper boundary for an arg of mode MODE.
753 Note that we need an odd/even pair for a two-word arg,
754 since that will become 8-byte aligned when stored in memory. */
755#define ROUND_REG(X, MODE) \
756 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
757 ? ((X) + ! ((X) & 1)) : (X))
1bb87f28
JW
758
759/* Initialize a variable CUM of type CUMULATIVE_ARGS
760 for a call to a function whose data type is FNTYPE.
761 For a library call, FNTYPE is 0.
762
763 On SPARC, the offset always starts at 0: the first parm reg is always
764 the same reg. */
765
766#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
767
768/* Update the data in CUM to advance over an argument
769 of mode MODE and data type TYPE.
770 (TYPE is null for libcalls where that information may not be available.) */
771
772#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
b1fc14e5
RS
773 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
774 + ((MODE) != BLKmode \
775 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
776 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
1bb87f28
JW
777
778/* Determine where to put an argument to a function.
779 Value is zero to push the argument on the stack,
780 or a hard register in which to store the argument.
781
782 MODE is the argument's machine mode.
783 TYPE is the data type of the argument (as a tree).
784 This is null for libcalls where that information may
785 not be available.
786 CUM is a variable of type CUMULATIVE_ARGS which gives info about
787 the preceding args and about the function being called.
788 NAMED is nonzero if this argument is a named parameter
789 (otherwise it is an extra parameter matching an ellipsis). */
790
791/* On SPARC the first six args are normally in registers
792 and the rest are pushed. Any arg that starts within the first 6 words
793 is at least partially passed in a register unless its data type forbids. */
794
795#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 796(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 797 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
798 && ((TYPE)==0 || (MODE) != BLKmode \
799 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
800 ? gen_rtx (REG, (MODE), \
801 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
802 : 0)
1bb87f28
JW
803
804/* Define where a function finds its arguments.
805 This is different from FUNCTION_ARG because of register windows. */
806
807#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
b1fc14e5 808(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 809 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
810 && ((TYPE)==0 || (MODE) != BLKmode \
811 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
812 ? gen_rtx (REG, (MODE), \
813 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
814 : 0)
1bb87f28
JW
815
816/* For an arg passed partly in registers and partly in memory,
817 this is the number of registers used.
818 For args passed entirely in registers or entirely in memory, zero.
819 Any arg that starts in the first 6 regs but won't entirely fit in them
820 needs partial registers on the Sparc. */
821
822#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
b1fc14e5 823 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
1bb87f28 824 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
825 && ((TYPE)==0 || (MODE) != BLKmode \
826 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
827 && (ROUND_REG ((CUM), (MODE)) \
1bb87f28
JW
828 + ((MODE) == BLKmode \
829 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
b1fc14e5
RS
830 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
831 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
1bb87f28
JW
832 : 0)
833
d9ca49d5
JW
834/* The SPARC ABI stipulates passing struct arguments (of any size) and
835 quad-precision floats by invisible reference. */
1bb87f28 836#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5
JW
837 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
838 || TREE_CODE (TYPE) == UNION_TYPE)) \
839 || (MODE == TFmode))
1bb87f28 840
b1fc14e5
RS
841/* If defined, a C expression that gives the alignment boundary, in
842 bits, of an argument with the specified mode and type. If it is
843 not defined, `PARM_BOUNDARY' is used for all arguments.
844
845 This definition does nothing special unless TARGET_FORCE_ALIGN;
846 in that case, it aligns each arg to the natural boundary. */
847
848#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
849 (! TARGET_FORCE_ALIGN \
850 ? PARM_BOUNDARY \
851 : (((TYPE) != 0) \
852 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
853 ? PARM_BOUNDARY \
854 : TYPE_ALIGN (TYPE)) \
855 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
856 ? PARM_BOUNDARY \
857 : GET_MODE_ALIGNMENT (MODE))))
858
1bb87f28
JW
859/* Define the information needed to generate branch and scc insns. This is
860 stored from the compare operation. Note that we can't use "rtx" here
861 since it hasn't been defined! */
862
863extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
864
865/* Define the function that build the compare insn for scc and bcc. */
866
867extern struct rtx_def *gen_compare_reg ();
868\f
4b69d2a3
RS
869/* Generate the special assembly code needed to tell the assembler whatever
870 it might need to know about the return value of a function.
871
872 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
873 information to the assembler relating to peephole optimization (done in
874 the assembler). */
875
876#define ASM_DECLARE_RESULT(FILE, RESULT) \
877 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
878
1bb87f28
JW
879/* Output the label for a function definition. */
880
4b69d2a3
RS
881#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
882do { \
883 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
884 ASM_OUTPUT_LABEL (FILE, NAME); \
885} while (0)
1bb87f28
JW
886
887/* Two views of the size of the current frame. */
888extern int actual_fsize;
889extern int apparent_fsize;
890
891/* This macro generates the assembly code for function entry.
892 FILE is a stdio stream to output the code to.
893 SIZE is an int: how many units of temporary storage to allocate.
894 Refer to the array `regs_ever_live' to determine which registers
895 to save; `regs_ever_live[I]' is nonzero if register number I
896 is ever used in the function. This macro is responsible for
897 knowing which registers should not be saved even if used. */
898
899/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
900 of memory. If any fpu reg is used in the function, we allocate
901 such a block here, at the bottom of the frame, just in case it's needed.
902
903 If this function is a leaf procedure, then we may choose not
904 to do a "save" insn. The decision about whether or not
905 to do this is made in regclass.c. */
906
907#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
908 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
909 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
910
911/* Output assembler code to FILE to increment profiler label # LABELNO
912 for profiling a function entry. */
913
d2a8e680
RS
914#define FUNCTION_PROFILER(FILE, LABELNO) \
915 do { \
916 fputs ("\tsethi %hi(", (FILE)); \
917 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
918 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
919 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
920 fputs ("),%o0,%o0\n", (FILE)); \
921 } while (0)
1bb87f28
JW
922
923/* Output assembler code to FILE to initialize this source file's
924 basic block profiling info, if that has not already been done. */
d2a8e680
RS
925/* FIXME -- this does not parameterize how it generates labels (like the
926 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
927
928#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
929 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
930 (LABELNO), (LABELNO))
931
932/* Output assembler code to FILE to increment the entry-count for
933 the BLOCKNO'th basic block in this source file. */
934
935#define BLOCK_PROFILER(FILE, BLOCKNO) \
936{ \
937 int blockn = (BLOCKNO); \
938 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
939\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
940 4 * blockn, 4 * blockn, 4 * blockn); \
941}
942
1bb87f28
JW
943/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
944 the stack pointer does not matter. The value is tested only in
945 functions that have frame pointers.
946 No definition is equivalent to always zero. */
947
948extern int current_function_calls_alloca;
949extern int current_function_outgoing_args_size;
950
951#define EXIT_IGNORE_STACK \
952 (get_frame_size () != 0 \
953 || current_function_calls_alloca || current_function_outgoing_args_size)
954
955/* This macro generates the assembly code for function exit,
956 on machines that need it. If FUNCTION_EPILOGUE is not defined
957 then individual return instructions are generated for each
958 return statement. Args are same as for FUNCTION_PROLOGUE.
959
960 The function epilogue should not depend on the current stack pointer!
961 It should use the frame pointer only. This is mandatory because
962 of alloca; we also take advantage of it to omit stack adjustments
963 before returning. */
964
965/* This declaration is needed due to traditional/ANSI
966 incompatibilities which cannot be #ifdefed away
967 because they occur inside of macros. Sigh. */
968extern union tree_node *current_function_decl;
969
970#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
971 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
972 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 973
5b485d2c
JW
974#define DELAY_SLOTS_FOR_EPILOGUE \
975 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 976#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
977 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
978 : eligible_for_epilogue_delay (trial, slots_filled))
1bb87f28
JW
979
980/* Output assembler code for a block containing the constant parts
981 of a trampoline, leaving space for the variable parts. */
982
983/* On the sparc, the trampoline contains five instructions:
984 sethi #TOP_OF_FUNCTION,%g2
985 or #BOTTOM_OF_FUNCTION,%g2,%g2
986 sethi #TOP_OF_STATIC,%g1
987 jmp g2
988 or #BOTTOM_OF_STATIC,%g1,%g1 */
989#define TRAMPOLINE_TEMPLATE(FILE) \
990{ \
991 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
992 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
993 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
994 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
995 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
996}
997
998/* Length in units of the trampoline for entering a nested function. */
999
1000#define TRAMPOLINE_SIZE 20
1001
1002/* Emit RTL insns to initialize the variable parts of a trampoline.
1003 FNADDR is an RTX for the address of the function's pure code.
1004 CXT is an RTX for the static chain value for the function.
1005
1006 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1007 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1008 (to store insns). This is a bit excessive. Perhaps a different
1009 mechanism would be better here. */
1010
1011#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1012{ \
1013 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1014 size_int (10), 0, 1); \
1015 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1016 size_int (10), 0, 1); \
1017 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1018 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1019 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1020 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1021 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1022 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1023 rtx g1_ori = gen_rtx (HIGH, SImode, \
1024 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1025 rtx g2_ori = gen_rtx (HIGH, SImode, \
1026 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1027 rtx tem = gen_reg_rtx (SImode); \
1028 emit_move_insn (tem, g2_sethi); \
1029 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1030 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
1031 emit_move_insn (tem, g2_ori); \
1032 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1033 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
1034 emit_move_insn (tem, g1_sethi); \
1035 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1036 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
1037 emit_move_insn (tem, g1_ori); \
1038 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1039 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
1040}
1041
9a1c7cd7
JW
1042/* Generate necessary RTL for __builtin_saveregs().
1043 ARGLIST is the argument list; see expr.c. */
1044extern struct rtx_def *sparc_builtin_saveregs ();
1045#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
1bb87f28
JW
1046\f
1047/* Addressing modes, and classification of registers for them. */
1048
1049/* #define HAVE_POST_INCREMENT */
1050/* #define HAVE_POST_DECREMENT */
1051
1052/* #define HAVE_PRE_DECREMENT */
1053/* #define HAVE_PRE_INCREMENT */
1054
1055/* Macros to check register numbers against specific register classes. */
1056
1057/* These assume that REGNO is a hard or pseudo reg number.
1058 They give nonzero only if REGNO is a hard reg of the suitable class
1059 or a pseudo reg currently allocated to a suitable hard reg.
1060 Since they use reg_renumber, they are safe only once reg_renumber
1061 has been allocated, which happens in local-alloc.c. */
1062
1063#define REGNO_OK_FOR_INDEX_P(REGNO) \
1064(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1065#define REGNO_OK_FOR_BASE_P(REGNO) \
1066(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1067#define REGNO_OK_FOR_FP_P(REGNO) \
1068(((REGNO) ^ 0x20) < 32 \
1069 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1070
1071/* Now macros that check whether X is a register and also,
1072 strictly, whether it is in a specified class.
1073
1074 These macros are specific to the SPARC, and may be used only
1075 in code for printing assembler insns and in conditions for
1076 define_optimization. */
1077
1078/* 1 if X is an fp register. */
1079
1080#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1081\f
1082/* Maximum number of registers that can appear in a valid memory address. */
1083
1084#define MAX_REGS_PER_ADDRESS 2
1085
1086/* Recognize any constant value that is a valid address. */
1087
1088#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1089
1090/* Nonzero if the constant value X is a legitimate general operand.
1091 Anything can be made to work except floating point constants. */
1092
1093#define LEGITIMATE_CONSTANT_P(X) \
1094 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1095
1096/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1097 and check its validity for a certain class.
1098 We have two alternate definitions for each of them.
1099 The usual definition accepts all pseudo regs; the other rejects
1100 them unless they have been allocated suitable hard regs.
1101 The symbol REG_OK_STRICT causes the latter definition to be used.
1102
1103 Most source files want to accept pseudo regs in the hope that
1104 they will get allocated to the class that the insn wants them to be in.
1105 Source files for reload pass need to be strict.
1106 After reload, it makes no difference, since pseudo regs have
1107 been eliminated by then. */
1108
1109/* Optional extra constraints for this machine. Borrowed from romp.h.
1110
1111 For the SPARC, `Q' means that this is a memory operand but not a
1112 symbolic memory operand. Note that an unassigned pseudo register
1113 is such a memory operand. Needed because reload will generate
1114 these things in insns and then not re-recognize the insns, causing
1115 constrain_operands to fail.
1116
1117 `R' handles the LO_SUM which can be an address for `Q'.
1118
1119 `S' handles constraints for calls. */
1120
1121#ifndef REG_OK_STRICT
1122
1123/* Nonzero if X is a hard reg that can be used as an index
1124 or if it is a pseudo reg. */
1125#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1126/* Nonzero if X is a hard reg that can be used as a base reg
1127 or if it is a pseudo reg. */
1128#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1129
1130#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1131 ((C) == 'Q' \
1132 ? ((GET_CODE (OP) == MEM \
1133 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1134 && ! symbolic_memory_operand (OP, VOIDmode)) \
1135 || (reload_in_progress && GET_CODE (OP) == REG \
1136 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
1137 : (C) == 'R' \
1138 ? (GET_CODE (OP) == LO_SUM \
1139 && GET_CODE (XEXP (OP, 0)) == REG \
1140 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1141 : (C) == 'S' \
1142 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
19858600
JL
1143 : (C) == 'T' \
1144 ? (mem_aligned_8 (OP)) \
1145 : (C) == 'U' \
1146 ? (register_ok_for_ldd (OP)) \
db5e449c 1147 : 0)
19858600 1148
1bb87f28
JW
1149#else
1150
1151/* Nonzero if X is a hard reg that can be used as an index. */
1152#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1153/* Nonzero if X is a hard reg that can be used as a base reg. */
1154#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1155
1156#define EXTRA_CONSTRAINT(OP, C) \
1157 ((C) == 'Q' ? \
1158 (GET_CODE (OP) == REG ? \
1159 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1160 && reg_renumber[REGNO (OP)] < 0) \
1161 : GET_CODE (OP) == MEM) \
1162 : ((C) == 'R' ? \
1163 (GET_CODE (OP) == LO_SUM \
1164 && GET_CODE (XEXP (OP, 0)) == REG \
1165 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1166 : ((C) == 'S' \
1167 ? (CONSTANT_P (OP) \
1168 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
19858600
JL
1169 || strict_memory_address_p (Pmode, OP)) \
1170 : ((C) == 'T' ? \
1171 mem_aligned_8 (OP) && strict_memory_address_p (Pmode, OP) \
1172 : ((C) == 'U' ? \
1173 register_ok_for_ldd (OP) : 0)))))
1bb87f28
JW
1174#endif
1175\f
1176/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1177 that is a valid memory address for an instruction.
1178 The MODE argument is the machine mode for the MEM expression
1179 that wants to use this address.
1180
1181 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1182 ordinarily. This changes a bit when generating PIC.
1183
1184 If you change this, execute "rm explow.o recog.o reload.o". */
1185
bec2e359
JW
1186#define RTX_OK_FOR_BASE_P(X) \
1187 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1188 || (GET_CODE (X) == SUBREG \
1189 && GET_CODE (SUBREG_REG (X)) == REG \
1190 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1191
1192#define RTX_OK_FOR_INDEX_P(X) \
1193 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1194 || (GET_CODE (X) == SUBREG \
1195 && GET_CODE (SUBREG_REG (X)) == REG \
1196 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1197
1198#define RTX_OK_FOR_OFFSET_P(X) \
1199 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1200
1bb87f28 1201#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1202{ if (RTX_OK_FOR_BASE_P (X)) \
1203 goto ADDR; \
1bb87f28
JW
1204 else if (GET_CODE (X) == PLUS) \
1205 { \
bec2e359
JW
1206 register rtx op0 = XEXP (X, 0); \
1207 register rtx op1 = XEXP (X, 1); \
1208 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1209 { \
bec2e359 1210 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1211 goto ADDR; \
1212 else if (flag_pic == 1 \
bec2e359
JW
1213 && GET_CODE (op1) != REG \
1214 && GET_CODE (op1) != LO_SUM \
1215 && GET_CODE (op1) != MEM) \
1bb87f28
JW
1216 goto ADDR; \
1217 } \
bec2e359 1218 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1219 { \
bec2e359
JW
1220 if (RTX_OK_FOR_INDEX_P (op1) \
1221 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1222 goto ADDR; \
1223 } \
bec2e359 1224 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1225 { \
bec2e359
JW
1226 if (RTX_OK_FOR_INDEX_P (op0) \
1227 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1228 goto ADDR; \
1229 } \
1230 } \
bec2e359
JW
1231 else if (GET_CODE (X) == LO_SUM) \
1232 { \
1233 register rtx op0 = XEXP (X, 0); \
1234 register rtx op1 = XEXP (X, 1); \
1235 if (RTX_OK_FOR_BASE_P (op0) \
1236 && CONSTANT_P (op1)) \
1237 goto ADDR; \
1238 } \
1bb87f28
JW
1239 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1240 goto ADDR; \
1241}
1242\f
1243/* Try machine-dependent ways of modifying an illegitimate address
1244 to be legitimate. If we find one, return the new, valid address.
1245 This macro is used in only one place: `memory_address' in explow.c.
1246
1247 OLDX is the address as it was before break_out_memory_refs was called.
1248 In some cases it is useful to look at this to decide what needs to be done.
1249
1250 MODE and WIN are passed so that this macro can use
1251 GO_IF_LEGITIMATE_ADDRESS.
1252
1253 It is always safe for this macro to do nothing. It exists to recognize
1254 opportunities to optimize the output. */
1255
1256/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1257extern struct rtx_def *legitimize_pic_address ();
1258#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1259{ rtx sparc_x = (X); \
1260 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1261 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1262 force_operand (XEXP (X, 0), 0)); \
1263 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1264 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1265 force_operand (XEXP (X, 1), 0)); \
1266 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1267 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1268 XEXP (X, 1)); \
1269 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1270 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1271 force_operand (XEXP (X, 1), 0)); \
1272 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1273 goto WIN; \
1274 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1275 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1276 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1277 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1278 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1279 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1280 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1281 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1282 || GET_CODE (X) == LABEL_REF) \
1283 (X) = gen_rtx (LO_SUM, Pmode, \
1284 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1285 if (memory_address_p (MODE, X)) \
1286 goto WIN; }
1287
1288/* Go to LABEL if ADDR (a legitimate address expression)
1289 has an effect that depends on the machine mode it is used for.
1290 On the SPARC this is never true. */
1291
1292#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1293\f
1294/* Specify the machine mode that this machine uses
1295 for the index in the tablejump instruction. */
1296#define CASE_VECTOR_MODE SImode
1297
1298/* Define this if the tablejump instruction expects the table
1299 to contain offsets from the address of the table.
1300 Do not define this if the table should contain absolute addresses. */
1301/* #define CASE_VECTOR_PC_RELATIVE */
1302
1303/* Specify the tree operation to be used to convert reals to integers. */
1304#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1305
1306/* This is the kind of divide that is easiest to do in the general case. */
1307#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1308
1309/* Define this as 1 if `char' should by default be signed; else as 0. */
1310#define DEFAULT_SIGNED_CHAR 1
1311
1312/* Max number of bytes we can move from memory to memory
1313 in one reasonably fast instruction. */
2eef2ef1 1314#define MOVE_MAX 8
1bb87f28 1315
0fb5a69e 1316#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1317/* This is the value of the error code EDOM for this machine,
1318 used by the sqrt instruction. */
1319#define TARGET_EDOM 33
1320
1321/* This is how to refer to the variable errno. */
1322#define GEN_ERRNO_RTX \
1323 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1324#endif /* 0 */
24e2a2bf 1325
1bb87f28
JW
1326/* Define if normal loads of shorter-than-word items from memory clears
1327 the rest of the bigs in the register. */
1328#define BYTE_LOADS_ZERO_EXTEND
1329
1330/* Nonzero if access to memory by bytes is slow and undesirable.
1331 For RISC chips, it means that access to memory by bytes is no
1332 better than access by words when possible, so grab a whole word
1333 and maybe make use of that. */
1334#define SLOW_BYTE_ACCESS 1
1335
1336/* We assume that the store-condition-codes instructions store 0 for false
1337 and some other value for true. This is the value stored for true. */
1338
1339#define STORE_FLAG_VALUE 1
1340
1341/* When a prototype says `char' or `short', really pass an `int'. */
1342#define PROMOTE_PROTOTYPES
1343
1344/* Define if shifts truncate the shift count
1345 which implies one can omit a sign-extension or zero-extension
1346 of a shift count. */
1347#define SHIFT_COUNT_TRUNCATED
1348
1349/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1350 is done just by pretending it is already truncated. */
1351#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1352
1353/* Specify the machine mode that pointers have.
1354 After generation of rtl, the compiler makes no further distinction
1355 between pointers and any other objects of this machine mode. */
1356#define Pmode SImode
1357
b4ac57ab
RS
1358/* Generate calls to memcpy, memcmp and memset. */
1359#define TARGET_MEM_FUNCTIONS
1360
1bb87f28
JW
1361/* Add any extra modes needed to represent the condition code.
1362
1363 On the Sparc, we have a "no-overflow" mode which is used when an add or
1364 subtract insn is used to set the condition code. Different branches are
1365 used in this case for some operations.
1366
4d449554
JW
1367 We also have two modes to indicate that the relevant condition code is
1368 in the floating-point condition code register. One for comparisons which
1369 will generate an exception if the result is unordered (CCFPEmode) and
1370 one for comparisons which will never trap (CCFPmode). This really should
1371 be a separate register, but we don't want to go to 65 registers. */
1372#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1373
1374/* Define the names for the modes specified above. */
4d449554 1375#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1376
1377/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1378 return the mode to be used for the comparison. For floating-point,
1379 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1bb87f28
JW
1380 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1381 needed. */
679655e6 1382#define SELECT_CC_MODE(OP,X,Y) \
4d449554
JW
1383 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1384 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1385 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1386 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1387
1388/* A function address in a call instruction
1389 is a byte address (for indexing purposes)
1390 so give the MEM rtx a byte's mode. */
1391#define FUNCTION_MODE SImode
1392
1393/* Define this if addresses of constant functions
1394 shouldn't be put through pseudo regs where they can be cse'd.
1395 Desirable on machines where ordinary constants are expensive
1396 but a CALL with constant address is cheap. */
1397#define NO_FUNCTION_CSE
1398
1399/* alloca should avoid clobbering the old register save area. */
1400#define SETJMP_VIA_SAVE_AREA
1401
1402/* Define subroutines to call to handle multiply and divide.
1403 Use the subroutines that Sun's library provides.
1404 The `*' prevents an underscore from being prepended by the compiler. */
1405
1406#define DIVSI3_LIBCALL "*.div"
1407#define UDIVSI3_LIBCALL "*.udiv"
1408#define MODSI3_LIBCALL "*.rem"
1409#define UMODSI3_LIBCALL "*.urem"
1410/* .umul is a little faster than .mul. */
1411#define MULSI3_LIBCALL "*.umul"
1412
1413/* Compute the cost of computing a constant rtl expression RTX
1414 whose rtx-code is CODE. The body of this macro is a portion
1415 of a switch statement. If the code is computed here,
1416 return it with a return statement. Otherwise, break from the switch. */
1417
3bb22aee 1418#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1419 case CONST_INT: \
1bb87f28 1420 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1421 return 0; \
1bb87f28
JW
1422 case HIGH: \
1423 return 2; \
1424 case CONST: \
1425 case LABEL_REF: \
1426 case SYMBOL_REF: \
1427 return 4; \
1428 case CONST_DOUBLE: \
1429 if (GET_MODE (RTX) == DImode) \
1430 if ((XINT (RTX, 3) == 0 \
1431 && (unsigned) XINT (RTX, 2) < 0x1000) \
1432 || (XINT (RTX, 3) == -1 \
1433 && XINT (RTX, 2) < 0 \
1434 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1435 return 0; \
1bb87f28
JW
1436 return 8;
1437
1438/* SPARC offers addressing modes which are "as cheap as a register".
1439 See sparc.c (or gcc.texinfo) for details. */
1440
1441#define ADDRESS_COST(RTX) \
1442 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1443
1444/* Compute extra cost of moving data between one register class
1445 and another. */
1446#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1447 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1448 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1449
1450/* Provide the costs of a rtl expression. This is in the body of a
1451 switch on CODE. The purpose for the cost of MULT is to encourage
1452 `synth_mult' to find a synthetic multiply when reasonable.
1453
1454 If we need more than 12 insns to do a multiply, then go out-of-line,
1455 since the call overhead will be < 10% of the cost of the multiply. */
1456
3bb22aee 1457#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28
JW
1458 case MULT: \
1459 return COSTS_N_INSNS (25); \
1460 case DIV: \
1461 case UDIV: \
1462 case MOD: \
1463 case UMOD: \
5b485d2c
JW
1464 return COSTS_N_INSNS (25); \
1465 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1466 so that cse will favor the latter. */ \
1467 case FLOAT: \
5b485d2c 1468 case FIX: \
1bb87f28
JW
1469 return 19;
1470
1471/* Conditional branches with empty delay slots have a length of two. */
1472#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1473 if (GET_CODE (INSN) == CALL_INSN \
1474 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1475 LENGTH += 1;
1476\f
1477/* Control the assembler format that we output. */
1478
1479/* Output at beginning of assembler file. */
1480
1481#define ASM_FILE_START(file)
1482
1483/* Output to assembler file text saying following lines
1484 may contain character constants, extra white space, comments, etc. */
1485
1486#define ASM_APP_ON ""
1487
1488/* Output to assembler file text saying following lines
1489 no longer contain unusual constructs. */
1490
1491#define ASM_APP_OFF ""
1492
303d524a
JW
1493#define ASM_LONG ".word"
1494#define ASM_SHORT ".half"
1495#define ASM_BYTE_OP ".byte"
1496
1bb87f28
JW
1497/* Output before read-only data. */
1498
1499#define TEXT_SECTION_ASM_OP ".text"
1500
1501/* Output before writable data. */
1502
1503#define DATA_SECTION_ASM_OP ".data"
1504
1505/* How to refer to registers in assembler output.
1506 This sequence is indexed by compiler's hard-register-number (see above). */
1507
1508#define REGISTER_NAMES \
1509{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1510 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1511 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1512 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1513 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1514 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1515 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1516 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1517
ea3fa5f7
JW
1518/* Define additional names for use in asm clobbers and asm declarations.
1519
1520 We define the fake Condition Code register as an alias for reg 0 (which
1521 is our `condition code' register), so that condition codes can easily
1522 be clobbered by an asm. No such register actually exists. Condition
1523 codes are partly stored in the PSR and partly in the FSR. */
1524
0eb9f40e 1525#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1526
1bb87f28
JW
1527/* How to renumber registers for dbx and gdb. */
1528
1529#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1530
1531/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1532 since the length can run past this up to a continuation point. */
1533#define DBX_CONTIN_LENGTH 1500
1534
1535/* This is how to output a note to DBX telling it the line number
1536 to which the following sequence of instructions corresponds.
1537
1538 This is needed for SunOS 4.0, and should not hurt for 3.2
1539 versions either. */
1540#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1541 { static int sym_lineno = 1; \
1542 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1543 line, sym_lineno, sym_lineno); \
1544 sym_lineno += 1; }
1545
1546/* This is how to output the definition of a user-level label named NAME,
1547 such as the label on a static function or variable NAME. */
1548
1549#define ASM_OUTPUT_LABEL(FILE,NAME) \
1550 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1551
1552/* This is how to output a command to make the user-level label named NAME
1553 defined for reference from other files. */
1554
1555#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1556 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1557
1558/* This is how to output a reference to a user-level label named NAME.
1559 `assemble_name' uses this. */
1560
1561#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1562 fprintf (FILE, "_%s", NAME)
1563
d2a8e680 1564/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1565 PREFIX is the class of label and NUM is the number within the class. */
1566
1567#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1568 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1569
d2a8e680
RS
1570/* This is how to output a reference to an internal numbered label where
1571 PREFIX is the class of label and NUM is the number within the class. */
1572/* FIXME: This should be used throughout gcc, and documented in the texinfo
1573 files. There is no reason you should have to allocate a buffer and
1574 `sprintf' to reference an internal label (as opposed to defining it). */
1575
1576#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1577 fprintf (FILE, "%s%d", PREFIX, NUM)
1578
1bb87f28
JW
1579/* This is how to store into the string LABEL
1580 the symbol_ref name of an internal numbered label where
1581 PREFIX is the class of label and NUM is the number within the class.
1582 This is suitable for output with `assemble_name'. */
1583
1584#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1585 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1586
1587/* This is how to output an assembler line defining a `double' constant. */
1588
b1fc14e5
RS
1589/* Assemblers (both gas 1.35 and as in 4.0.3)
1590 seem to treat -0.0 as if it were 0.0.
1591 They reject 99e9999, but accept inf. */
1bb87f28
JW
1592#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1593 { \
303d524a
JW
1594 if (REAL_VALUE_ISINF (VALUE) \
1595 || REAL_VALUE_ISNAN (VALUE) \
1596 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1597 { \
303d524a
JW
1598 long t[2]; \
1599 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1600 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1601 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1602 } \
1603 else \
1604 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1605 }
1606
1607/* This is how to output an assembler line defining a `float' constant. */
1608
1609#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1610 { \
303d524a
JW
1611 if (REAL_VALUE_ISINF (VALUE) \
1612 || REAL_VALUE_ISNAN (VALUE) \
1613 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1bb87f28 1614 { \
303d524a
JW
1615 long t; \
1616 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1617 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1bb87f28
JW
1618 } \
1619 else \
1620 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1621 }
1622
1623/* This is how to output an assembler line defining an `int' constant. */
1624
1625#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1626( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1627 output_addr_const (FILE, (VALUE)), \
1628 fprintf (FILE, "\n"))
1629
1630/* This is how to output an assembler line defining a DImode constant. */
1631#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1632 output_double_int (FILE, VALUE)
1633
1634/* Likewise for `char' and `short' constants. */
1635
1636#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1637( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1638 output_addr_const (FILE, (VALUE)), \
1639 fprintf (FILE, "\n"))
1640
1641#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1642( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1643 output_addr_const (FILE, (VALUE)), \
1644 fprintf (FILE, "\n"))
1645
1646/* This is how to output an assembler line for a numeric constant byte. */
1647
1648#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1649 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1650
1651/* This is how to output an element of a case-vector that is absolute. */
1652
1653#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1654do { \
1655 char label[30]; \
1656 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1657 fprintf (FILE, "\t.word\t"); \
1658 assemble_name (FILE, label); \
1659 fprintf (FILE, "\n"); \
1660} while (0)
1bb87f28
JW
1661
1662/* This is how to output an element of a case-vector that is relative.
1663 (SPARC uses such vectors only when generating PIC.) */
1664
4b69d2a3
RS
1665#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1666do { \
1667 char label[30]; \
1668 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1669 fprintf (FILE, "\t.word\t"); \
1670 assemble_name (FILE, label); \
1671 fprintf (FILE, "-1b\n"); \
1672} while (0)
1bb87f28
JW
1673
1674/* This is how to output an assembler line
1675 that says to advance the location counter
1676 to a multiple of 2**LOG bytes. */
1677
1678#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1679 if ((LOG) != 0) \
1680 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1681
1682#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1683 fprintf (FILE, "\t.skip %u\n", (SIZE))
1684
1685/* This says how to output an assembler line
1686 to define a global common symbol. */
1687
1688#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1689( fputs ("\t.global ", (FILE)), \
1690 assemble_name ((FILE), (NAME)), \
1691 fputs ("\n\t.common ", (FILE)), \
1692 assemble_name ((FILE), (NAME)), \
1693 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1694
1695/* This says how to output an assembler line
1696 to define a local common symbol. */
1697
1698#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1699( fputs ("\n\t.reserve ", (FILE)), \
1700 assemble_name ((FILE), (NAME)), \
1701 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1702
1703/* Store in OUTPUT a string (made with alloca) containing
1704 an assembler-name for a local static variable named NAME.
1705 LABELNO is an integer which is different for each call. */
1706
1707#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1708( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1709 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1710
1711/* Define the parentheses used to group arithmetic operations
1712 in assembler code. */
1713
1714#define ASM_OPEN_PAREN "("
1715#define ASM_CLOSE_PAREN ")"
1716
1717/* Define results of standard character escape sequences. */
1718#define TARGET_BELL 007
1719#define TARGET_BS 010
1720#define TARGET_TAB 011
1721#define TARGET_NEWLINE 012
1722#define TARGET_VT 013
1723#define TARGET_FF 014
1724#define TARGET_CR 015
1725
1726#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1727 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1728
1729/* Print operand X (an rtx) in assembler syntax to file FILE.
1730 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1731 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1732
1733#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1734
1735/* Print a memory address as an operand to reference that memory location. */
1736
1737#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1738{ register rtx base, index = 0; \
1739 int offset = 0; \
1740 register rtx addr = ADDR; \
1741 if (GET_CODE (addr) == REG) \
1742 fputs (reg_names[REGNO (addr)], FILE); \
1743 else if (GET_CODE (addr) == PLUS) \
1744 { \
1745 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1746 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1747 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1748 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1749 else \
1750 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1751 fputs (reg_names[REGNO (base)], FILE); \
1752 if (index == 0) \
1753 fprintf (FILE, "%+d", offset); \
1754 else if (GET_CODE (index) == REG) \
1755 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1756 else if (GET_CODE (index) == SYMBOL_REF) \
1757 fputc ('+', FILE), output_addr_const (FILE, index); \
1758 else abort (); \
1759 } \
1760 else if (GET_CODE (addr) == MINUS \
1761 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1762 { \
1763 output_addr_const (FILE, XEXP (addr, 0)); \
1764 fputs ("-(", FILE); \
1765 output_addr_const (FILE, XEXP (addr, 1)); \
1766 fputs ("-.)", FILE); \
1767 } \
1768 else if (GET_CODE (addr) == LO_SUM) \
1769 { \
1770 output_operand (XEXP (addr, 0), 0); \
1771 fputs ("+%lo(", FILE); \
1772 output_address (XEXP (addr, 1)); \
1773 fputc (')', FILE); \
1774 } \
1775 else if (flag_pic && GET_CODE (addr) == CONST \
1776 && GET_CODE (XEXP (addr, 0)) == MINUS \
1777 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1778 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1779 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1780 { \
1781 addr = XEXP (addr, 0); \
1782 output_addr_const (FILE, XEXP (addr, 0)); \
1783 /* Group the args of the second CONST in parenthesis. */ \
1784 fputs ("-(", FILE); \
1785 /* Skip past the second CONST--it does nothing for us. */\
1786 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1787 /* Close the parenthesis. */ \
1788 fputc (')', FILE); \
1789 } \
1790 else \
1791 { \
1792 output_addr_const (FILE, addr); \
1793 } \
1794}
1795
1796/* Declare functions defined in sparc.c and used in templates. */
1797
1798extern char *singlemove_string ();
1799extern char *output_move_double ();
795068a4 1800extern char *output_move_quad ();
1bb87f28 1801extern char *output_fp_move_double ();
795068a4 1802extern char *output_fp_move_quad ();
1bb87f28
JW
1803extern char *output_block_move ();
1804extern char *output_scc_insn ();
1805extern char *output_cbranch ();
1806extern char *output_return ();
1bb87f28
JW
1807
1808/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1809
1810extern int flag_pic;
This page took 0.286465 seconds and 5 git commands to generate.