]> gcc.gnu.org Git - gcc.git/blame - gcc/config/sparc/sparc.h
(TARGET_DEFAULT): Delete.
[gcc.git] / gcc / config / sparc / sparc.h
CommitLineData
1bb87f28
JW
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
d95c3733
JW
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
25 %{a:/usr/lib/bb_link.o}"
1bb87f28 26
98ccf8fe 27/* Provide required defaults for linker -e and -d switches. */
1bb87f28 28
d6f04508 29#define LINK_SPEC \
197a1140 30 "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
1bb87f28
JW
31
32/* Special flags to the Sun-4 assembler when using pipe for input. */
33
cf8a904b 34#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
1bb87f28 35
885d8175 36/* Define macros to distinguish architectures. */
bc9e02ae
JW
37#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mf930:-D__sparclite__} \
38%{mf934:-D__sparclite__} %{mv8:-D__sparc_v8__}"
885d8175 39
b1fc14e5
RS
40/* Prevent error on `-sun4' and `-target sun4' options. */
41/* This used to translate -dalign to -malign, but that is no good
42 because it can't turn off the usual meaning of making debugging dumps. */
1bb87f28 43
b1fc14e5 44#define CC1_SPEC "%{sun4:} %{target:}"
1bb87f28
JW
45
46#define PTRDIFF_TYPE "int"
1ede52a6
RS
47/* In 2.4 it should work to delete this.
48 #define SIZE_TYPE "int" */
1bb87f28
JW
49#define WCHAR_TYPE "short unsigned int"
50#define WCHAR_TYPE_SIZE 16
51
4f074454
RK
52/* Show we can debug even without a frame pointer. */
53#define CAN_DEBUG_WITHOUT_FP
1bb87f28 54
5b485d2c
JW
55/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
56 code into the rtl. Also, if we are profiling, we cannot eliminate
57 the frame pointer (because the return address will get smashed). */
58
59#define OVERRIDE_OPTIONS \
84ab3bfb
JW
60{ \
61 if (profile_flag || profile_block_flag) \
62 flag_omit_frame_pointer = 0, flag_pic = 0; \
63 SUBTARGET_OVERRIDE_OPTIONS \
64 }
65
66/* This is meant to be redefined in the host dependent files */
67#define SUBTARGET_OVERRIDE_OPTIONS
5b485d2c 68
1bb87f28
JW
69/* These compiler options take an argument. We ignore -target for now. */
70
71#define WORD_SWITCH_TAKES_ARG(STR) \
3b39b94f
ILT
72 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
73 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
1bb87f28
JW
74
75/* Names to predefine in the preprocessor for this target machine. */
76
f19c1a78
JW
77/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
78 new versions, which have an incompatible va-sparc.h file. This matters
79 because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
80 wrong varargs file when it is compiled with a different version of gcc. */
81
65c42379
DE
82#define CPP_PREDEFINES \
83 "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
84 -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
1bb87f28
JW
85
86/* Print subsidiary information on the compiler version in use. */
87
88#define TARGET_VERSION fprintf (stderr, " (sparc)");
89
90/* Generate DBX debugging information. */
91
92#define DBX_DEBUGGING_INFO
93
94/* Run-time compilation parameters selecting different hardware subsets. */
95
96extern int target_flags;
97
98/* Nonzero if we should generate code to use the fpu. */
99#define TARGET_FPU (target_flags & 1)
100
101/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
102 use fast return insns, but lose some generality. */
103#define TARGET_EPILOGUE (target_flags & 2)
104
95dea81f
JW
105/* Nonzero if we should assume that double pointers might be unaligned.
106 This can happen when linking gcc compiled code with other compilers,
107 because the ABI only guarantees 4 byte alignment. */
108#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
1bb87f28 109
885d8175
JW
110/* Nonzero means that we should generate code for a v8 sparc. */
111#define TARGET_V8 (target_flags & 64)
112
bc9e02ae
JW
113/* Nonzero means that we should generate code for a sparclite.
114 This enables the sparclite specific instructions, but does not affect
115 whether FPU instructions are emitted. */
885d8175
JW
116#define TARGET_SPARCLITE (target_flags & 128)
117
5b485d2c 118/* Nonzero means that we should generate code using a flat register window
9a1c7cd7
JW
119 model, i.e. no save/restore instructions are generated, in the most
120 efficient manner. This code is not compatible with normal sparc code. */
121/* This is not a user selectable option yet, because it requires changes
122 that are not yet switchable via command line arguments. */
5b485d2c
JW
123#define TARGET_FRW (target_flags & 256)
124
9a1c7cd7
JW
125/* Nonzero means that we should generate code using a flat register window
126 model, i.e. no save/restore instructions are generated, but which is
127 compatible with normal sparc code. This is the same as above, except
128 that the frame pointer is %l6 instead of %fp. This code is not as efficient
129 as TARGET_FRW, because it has one less allocatable register. */
130/* This is not a user selectable option yet, because it requires changes
131 that are not yet switchable via command line arguments. */
132#define TARGET_FRW_COMPAT (target_flags & 512)
133
1bb87f28
JW
134/* Macro to define tables used to set the flags.
135 This is a list in braces of pairs in braces,
136 each pair being { "NAME", VALUE }
137 where VALUE is the bits to set or minus the bits to clear.
138 An empty string NAME is used to identify the default VALUE. */
139
bc9e02ae
JW
140/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
141 The Fujitsu MB86934 is the recent sparclite chip, with an fup.
142 We use -mf930 and -mf934 options to choose which.
143 ??? These should perhaps be -mcpu= options. */
144
1bb87f28
JW
145#define TARGET_SWITCHES \
146 { {"fpu", 1}, \
26c5587d
JW
147 {"no-fpu", -1}, \
148 {"hard-float", 1}, \
1bb87f28
JW
149 {"soft-float", -1}, \
150 {"epilogue", 2}, \
151 {"no-epilogue", -2}, \
95dea81f
JW
152 {"unaligned-doubles", 4}, \
153 {"no-unaligned-doubles", -4},\
885d8175
JW
154 {"v8", 64}, \
155 {"no-v8", -64}, \
156 {"sparclite", 128}, \
157 {"no-sparclite", -128}, \
9a1c7cd7
JW
158/* {"frw", 256}, */ \
159/* {"no-frw", -256}, */ \
160/* {"frw-compat", 256+512}, */ \
161/* {"no-frw-compat", -(256+512)}, */ \
bc9e02ae
JW
162 {"f930", 128}, \
163 {"f930", -1}, \
164 {"f934", 128}, \
84ab3bfb 165 SUBTARGET_SWITCHES \
b1fc14e5 166 { "", TARGET_DEFAULT}}
1bb87f28
JW
167
168#define TARGET_DEFAULT 3
84ab3bfb
JW
169
170/* This is meant to be redefined in the host dependent files */
171#define SUBTARGET_SWITCHES
1bb87f28
JW
172\f
173/* target machine storage layout */
174
360b1451
JW
175#if 0
176/* ??? This does not work in SunOS 4.x, so it is not enabled here.
177 Instead, it is enabled in sol2.h, because it does work under Solaris. */
d667538b
JW
178/* Define for support of TFmode long double and REAL_ARITHMETIC.
179 Sparc ABI says that long double is 4 words. */
180#define LONG_DOUBLE_TYPE_SIZE 128
360b1451 181#endif
d667538b
JW
182
183/* Define for cross-compilation to a sparc target with no TFmode from a host
184 with a different float format (e.g. VAX). */
185#define REAL_ARITHMETIC
186
1bb87f28
JW
187/* Define this if most significant bit is lowest numbered
188 in instructions that operate on numbered bit-fields. */
189#define BITS_BIG_ENDIAN 1
190
191/* Define this if most significant byte of a word is the lowest numbered. */
192/* This is true on the SPARC. */
193#define BYTES_BIG_ENDIAN 1
194
195/* Define this if most significant word of a multiword number is the lowest
196 numbered. */
197/* Doubles are stored in memory with the high order word first. This
198 matters when cross-compiling. */
199#define WORDS_BIG_ENDIAN 1
200
b4ac57ab 201/* number of bits in an addressable storage unit */
1bb87f28
JW
202#define BITS_PER_UNIT 8
203
204/* Width in bits of a "word", which is the contents of a machine register.
205 Note that this is not necessarily the width of data type `int';
206 if using 16-bit ints on a 68000, this would still be 32.
207 But on a machine with 16-bit registers, this would be 16. */
208#define BITS_PER_WORD 32
209#define MAX_BITS_PER_WORD 32
210
211/* Width of a word, in units (bytes). */
212#define UNITS_PER_WORD 4
213
214/* Width in bits of a pointer.
215 See also the macro `Pmode' defined below. */
216#define POINTER_SIZE 32
217
218/* Allocation boundary (in *bits*) for storing arguments in argument list. */
219#define PARM_BOUNDARY 32
220
221/* Boundary (in *bits*) on which stack pointer should be aligned. */
222#define STACK_BOUNDARY 64
223
10d1b70f
JW
224/* ALIGN FRAMES on double word boundaries */
225
226#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
227
1bb87f28
JW
228/* Allocation boundary (in *bits*) for the code of a function. */
229#define FUNCTION_BOUNDARY 32
230
231/* Alignment of field after `int : 0' in a structure. */
232#define EMPTY_FIELD_BOUNDARY 32
233
234/* Every structure's size must be a multiple of this. */
235#define STRUCTURE_SIZE_BOUNDARY 8
236
237/* A bitfield declared as `int' forces `int' alignment for the struct. */
238#define PCC_BITFIELD_TYPE_MATTERS 1
239
240/* No data type wants to be aligned rounder than this. */
241#define BIGGEST_ALIGNMENT 64
242
77a02b01
JW
243/* The best alignment to use in cases where we have a choice. */
244#define FASTEST_ALIGNMENT 64
245
1bb87f28
JW
246/* Make strings word-aligned so strcpy from constants will be faster. */
247#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
d2a8e680
RS
248 ((TREE_CODE (EXP) == STRING_CST \
249 && (ALIGN) < FASTEST_ALIGNMENT) \
250 ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28
JW
251
252/* Make arrays of chars word-aligned for the same reasons. */
253#define DATA_ALIGNMENT(TYPE, ALIGN) \
254 (TREE_CODE (TYPE) == ARRAY_TYPE \
255 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
77a02b01 256 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
1bb87f28 257
b4ac57ab 258/* Set this nonzero if move instructions will actually fail to work
1bb87f28 259 when given unaligned data. */
b4ac57ab 260#define STRICT_ALIGNMENT 1
1bb87f28
JW
261
262/* Things that must be doubleword aligned cannot go in the text section,
263 because the linker fails to align the text section enough!
264 Put them in the data section. */
265#define MAX_TEXT_ALIGN 32
266
267#define SELECT_SECTION(T,RELOC) \
268{ \
269 if (TREE_CODE (T) == VAR_DECL) \
270 { \
271 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
272 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
273 && ! (flag_pic && (RELOC))) \
274 text_section (); \
275 else \
276 data_section (); \
277 } \
278 else if (TREE_CODE (T) == CONSTRUCTOR) \
279 { \
280 if (flag_pic != 0 && (RELOC) != 0) \
281 data_section (); \
282 } \
283 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
284 { \
285 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
286 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
287 data_section (); \
288 else \
289 text_section (); \
290 } \
291}
292
293/* Use text section for a constant
294 unless we need more alignment than that offers. */
295#define SELECT_RTX_SECTION(MODE, X) \
296{ \
297 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
298 && ! (flag_pic && symbolic_operand (X))) \
299 text_section (); \
300 else \
301 data_section (); \
302}
303\f
304/* Standard register usage. */
305
306/* Number of actual hardware registers.
307 The hardware registers are assigned numbers for the compiler
308 from 0 to just below FIRST_PSEUDO_REGISTER.
309 All registers that the compiler knows about must be given numbers,
310 even those that are not normally considered general registers.
311
312 SPARC has 32 integer registers and 32 floating point registers. */
313
314#define FIRST_PSEUDO_REGISTER 64
315
316/* 1 for registers that have pervasive standard uses
317 and are not available for the register allocator.
5b485d2c 318 g0 is used for the condition code and not to represent %g0, which is
1bb87f28 319 hardwired to 0, so reg 0 is *not* fixed.
d9ca49d5
JW
320 g1 through g4 are free to use as temporaries.
321 g5 through g7 are reserved for the operating system. */
1bb87f28 322#define FIXED_REGISTERS \
d9ca49d5 323 {0, 0, 0, 0, 0, 1, 1, 1, \
1bb87f28
JW
324 0, 0, 0, 0, 0, 0, 1, 0, \
325 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 0, 0, 0, 1, 1, \
327 \
328 0, 0, 0, 0, 0, 0, 0, 0, \
329 0, 0, 0, 0, 0, 0, 0, 0, \
330 0, 0, 0, 0, 0, 0, 0, 0, \
331 0, 0, 0, 0, 0, 0, 0, 0}
332
333/* 1 for registers not available across function calls.
334 These must include the FIXED_REGISTERS and also any
335 registers that can be used without being saved.
336 The latter must include the registers where values are returned
337 and the register where structure-value addresses are passed.
338 Aside from that, you can include as many other registers as you like. */
339#define CALL_USED_REGISTERS \
340 {1, 1, 1, 1, 1, 1, 1, 1, \
341 1, 1, 1, 1, 1, 1, 1, 1, \
342 0, 0, 0, 0, 0, 0, 0, 0, \
343 0, 0, 0, 0, 0, 0, 1, 1, \
344 \
345 1, 1, 1, 1, 1, 1, 1, 1, \
346 1, 1, 1, 1, 1, 1, 1, 1, \
347 1, 1, 1, 1, 1, 1, 1, 1, \
348 1, 1, 1, 1, 1, 1, 1, 1}
349
26c5587d
JW
350/* If !TARGET_FPU, then make the fp registers fixed so that they won't
351 be allocated. */
352
353#define CONDITIONAL_REGISTER_USAGE \
354do \
355 { \
356 if (! TARGET_FPU) \
357 { \
358 int regno; \
359 for (regno = 32; regno < 64; regno++) \
360 fixed_regs[regno] = 1; \
361 } \
362 } \
363while (0)
364
1bb87f28
JW
365/* Return number of consecutive hard regs needed starting at reg REGNO
366 to hold something of mode MODE.
367 This is ordinarily the length in words of a value of mode MODE
368 but can be less for certain modes in special long registers.
369
370 On SPARC, ordinary registers hold 32 bits worth;
371 this means both integer and floating point registers.
372
373 We use vectors to keep this information about registers. */
374
375/* How many hard registers it takes to make a register of this mode. */
376extern int hard_regno_nregs[];
377
378#define HARD_REGNO_NREGS(REGNO, MODE) \
379 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
380
381/* Value is 1 if register/mode pair is acceptable on sparc. */
382extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
383
384/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
385 On SPARC, the cpu registers can hold any mode but the float registers
386 can only hold SFmode or DFmode. See sparc.c for how we
387 initialize this. */
388#define HARD_REGNO_MODE_OK(REGNO, MODE) \
389 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
390
391/* Value is 1 if it is a good idea to tie two pseudo registers
392 when one has mode MODE1 and one has mode MODE2.
393 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
394 for any hard reg, then this must be 0 for correct output. */
395#define MODES_TIEABLE_P(MODE1, MODE2) \
396 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
397
398/* Specify the registers used for certain standard purposes.
399 The values of these macros are register numbers. */
400
401/* SPARC pc isn't overloaded on a register that the compiler knows about. */
402/* #define PC_REGNUM */
403
404/* Register to use for pushing function arguments. */
405#define STACK_POINTER_REGNUM 14
406
407/* Actual top-of-stack address is 92 greater than the contents
408 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
409 for the ins and local registers, 4 byte for structure return address, and
410 24 bytes for the 6 register parameters. */
411#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
412
413/* Base register for access to local variables of the function. */
414#define FRAME_POINTER_REGNUM 30
415
416#if 0
417/* Register that is used for the return address. */
418#define RETURN_ADDR_REGNUM 15
419#endif
420
421/* Value should be nonzero if functions must have frame pointers.
422 Zero means the frame pointer need not be set up (and parms
423 may be accessed via the stack pointer) in functions that seem suitable.
424 This is computed in `reload', in reload1.c.
425
c0524a34 426 Used in flow.c, global.c, and reload1.c. */
1bb87f28
JW
427extern int leaf_function;
428
429#define FRAME_POINTER_REQUIRED \
a72cb8ec 430 (! (leaf_function_p () && only_leaf_regs_used ()))
1bb87f28
JW
431
432/* C statement to store the difference between the frame pointer
433 and the stack pointer values immediately after the function prologue.
434
435 Note, we always pretend that this is a leaf function because if
436 it's not, there's no point in trying to eliminate the
437 frame pointer. If it is a leaf function, we guessed right! */
438#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
5b485d2c
JW
439 ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
440 : compute_frame_size (get_frame_size (), 1)))
1bb87f28
JW
441
442/* Base register for access to arguments of the function. */
443#define ARG_POINTER_REGNUM 30
444
6098b63e
RK
445/* Register in which static-chain is passed to a function. This must
446 not be a register used by the prologue. */
447#define STATIC_CHAIN_REGNUM 2
1bb87f28
JW
448
449/* Register which holds offset table for position-independent
450 data references. */
451
452#define PIC_OFFSET_TABLE_REGNUM 23
453
454#define INITIALIZE_PIC initialize_pic ()
455#define FINALIZE_PIC finalize_pic ()
456
d9ca49d5 457/* Sparc ABI says that quad-precision floats and all structures are returned
59d7764f 458 in memory. */
d9ca49d5 459#define RETURN_IN_MEMORY(TYPE) \
e14fa9c4 460 (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
d9ca49d5 461
1bb87f28
JW
462/* Functions which return large structures get the address
463 to place the wanted value at offset 64 from the frame.
464 Must reserve 64 bytes for the in and local registers. */
465/* Used only in other #defines in this file. */
466#define STRUCT_VALUE_OFFSET 64
467
468#define STRUCT_VALUE \
469 gen_rtx (MEM, Pmode, \
470 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
471 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
472#define STRUCT_VALUE_INCOMING \
473 gen_rtx (MEM, Pmode, \
474 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
475 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
476\f
477/* Define the classes of registers for register constraints in the
478 machine description. Also define ranges of constants.
479
480 One of the classes must always be named ALL_REGS and include all hard regs.
481 If there is more than one class, another class must be named NO_REGS
482 and contain no registers.
483
484 The name GENERAL_REGS must be the name of a class (or an alias for
485 another name such as ALL_REGS). This is the class of registers
486 that is allowed by "g" or "r" in a register constraint.
487 Also, registers outside this class are allocated only when
488 instructions express preferences for them.
489
490 The classes must be numbered in nondecreasing order; that is,
491 a larger-numbered class must never be contained completely
492 in a smaller-numbered class.
493
494 For any two classes, it is very desirable that there be another
495 class that represents their union. */
496
497/* The SPARC has two kinds of registers, general and floating point. */
498
499enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
500
501#define N_REG_CLASSES (int) LIM_REG_CLASSES
502
503/* Give names of register classes as strings for dump file. */
504
505#define REG_CLASS_NAMES \
506 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
507
508/* Define which registers fit in which classes.
509 This is an initializer for a vector of HARD_REG_SET
510 of length N_REG_CLASSES. */
511
512#if 0 && defined (__GNUC__)
513#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
514#else
515#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
516#endif
517
518/* The same information, inverted:
519 Return the class number of the smallest class containing
520 reg number REGNO. This could be a conditional expression
521 or could index an array. */
522
523#define REGNO_REG_CLASS(REGNO) \
524 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
525
526/* This is the order in which to allocate registers
51f0e748
JW
527 normally.
528
529 We put %f0/%f1 last among the float registers, so as to make it more
6a4bb1fa 530 likely that a pseudo-register which dies in the float return register
51f0e748
JW
531 will get allocated to the float return register, thus saving a move
532 instruction at the end of the function. */
1bb87f28 533#define REG_ALLOC_ORDER \
b4ac57ab
RS
534{ 8, 9, 10, 11, 12, 13, 2, 3, \
535 15, 16, 17, 18, 19, 20, 21, 22, \
536 23, 24, 25, 26, 27, 28, 29, 31, \
51f0e748 537 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
538 40, 41, 42, 43, 44, 45, 46, 47, \
539 48, 49, 50, 51, 52, 53, 54, 55, \
540 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 541 32, 33, \
4b69d2a3 542 1, 4, 5, 6, 7, 0, 14, 30}
1bb87f28
JW
543
544/* This is the order in which to allocate registers for
545 leaf functions. If all registers can fit in the "i" registers,
546 then we have the possibility of having a leaf function. */
547#define REG_LEAF_ALLOC_ORDER \
548{ 2, 3, 24, 25, 26, 27, 28, 29, \
549 15, 8, 9, 10, 11, 12, 13, \
550 16, 17, 18, 19, 20, 21, 22, 23, \
51f0e748 551 34, 35, 36, 37, 38, 39, \
1bb87f28
JW
552 40, 41, 42, 43, 44, 45, 46, 47, \
553 48, 49, 50, 51, 52, 53, 54, 55, \
554 56, 57, 58, 59, 60, 61, 62, 63, \
51f0e748 555 32, 33, \
4b69d2a3 556 1, 4, 5, 6, 7, 0, 14, 30, 31}
1bb87f28
JW
557
558#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
559
560#define LEAF_REGISTERS \
561{ 1, 1, 1, 1, 1, 1, 1, 1, \
562 0, 0, 0, 0, 0, 0, 1, 0, \
563 0, 0, 0, 0, 0, 0, 0, 0, \
564 1, 1, 1, 1, 1, 1, 0, 1, \
565 1, 1, 1, 1, 1, 1, 1, 1, \
566 1, 1, 1, 1, 1, 1, 1, 1, \
567 1, 1, 1, 1, 1, 1, 1, 1, \
4b69d2a3 568 1, 1, 1, 1, 1, 1, 1, 1}
1bb87f28
JW
569
570extern char leaf_reg_remap[];
571#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
572extern char leaf_reg_backmap[];
573#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
574
1bb87f28
JW
575/* The class value for index registers, and the one for base regs. */
576#define INDEX_REG_CLASS GENERAL_REGS
577#define BASE_REG_CLASS GENERAL_REGS
578
579/* Get reg_class from a letter such as appears in the machine description. */
580
581#define REG_CLASS_FROM_LETTER(C) \
582 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
583
584/* The letters I, J, K, L and M in a register constraint string
585 can be used to stand for particular ranges of immediate operands.
586 This macro defines what the ranges are.
587 C is the letter, and VALUE is a constant value.
588 Return 1 if VALUE is in the range specified by C.
589
590 For SPARC, `I' is used for the range of constants an insn
591 can actually contain.
592 `J' is used for the range which is just zero (since that is R0).
9ad2c692 593 `K' is used for constants which can be loaded with a single sethi insn. */
1bb87f28
JW
594
595#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
596
597#define CONST_OK_FOR_LETTER_P(VALUE, C) \
598 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
599 : (C) == 'J' ? (VALUE) == 0 \
600 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
601 : 0)
602
603/* Similar, but for floating constants, and defining letters G and H.
604 Here VALUE is the CONST_DOUBLE rtx itself. */
605
606#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
96f69de5 607 ((C) == 'G' ? fp_zero_operand (VALUE) \
1bb87f28
JW
608 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
609 : 0)
610
611/* Given an rtx X being reloaded into a reg required to be
612 in class CLASS, return the class of reg to actually use.
613 In general this is just CLASS; but on some machines
614 in some cases it is preferable to use a more restrictive class. */
2b9a9aea
JW
615/* We can't load constants into FP registers. We can't load any FP constant
616 if an 'E' constraint fails to match it. */
617#define PREFERRED_RELOAD_CLASS(X,CLASS) \
618 (CONSTANT_P (X) \
619 && ((CLASS) == FP_REGS \
620 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
621 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
622 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
623 ? NO_REGS : (CLASS))
1bb87f28
JW
624
625/* Return the register class of a scratch register needed to load IN into
626 a register of class CLASS in MODE.
627
628 On the SPARC, when PIC, we need a temporary when loading some addresses
ae51bd97 629 into a register.
1bb87f28 630
ae51bd97
JW
631 Also, we need a temporary when loading/storing a HImode/QImode value
632 between memory and the FPU registers. This can happen when combine puts
633 a paradoxical subreg in a float/fix conversion insn. */
634
635#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
7aca9b9c 636 (((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
ae51bd97
JW
637 && (GET_CODE (IN) == MEM \
638 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
639 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
640
641#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
642 ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
643 && (GET_CODE (IN) == MEM \
644 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
645 && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
1bb87f28 646
b924cef0
JW
647/* On SPARC it is not possible to directly move data between
648 GENERAL_REGS and FP_REGS. */
649#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
ae51bd97
JW
650 (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
651 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
b924cef0 652
fe1f7f24
JW
653/* Return the stack location to use for secondary memory needed reloads. */
654#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
15f67e06
JW
655 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
656 GEN_INT (STARTING_FRAME_OFFSET)))
fe1f7f24 657
1bb87f28
JW
658/* Return the maximum number of consecutive registers
659 needed to represent mode MODE in a register of class CLASS. */
660/* On SPARC, this is the size of MODE in words. */
661#define CLASS_MAX_NREGS(CLASS, MODE) \
662 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
663\f
664/* Stack layout; function entry, exit and calling. */
665
666/* Define the number of register that can hold parameters.
667 These two macros are used only in other macro definitions below. */
668#define NPARM_REGS 6
669
670/* Define this if pushing a word on the stack
671 makes the stack pointer a smaller address. */
672#define STACK_GROWS_DOWNWARD
673
674/* Define this if the nominal address of the stack frame
675 is at the high-address end of the local variables;
676 that is, each additional local variable allocated
677 goes at a more negative offset in the frame. */
678#define FRAME_GROWS_DOWNWARD
679
680/* Offset within stack frame to start allocating local variables at.
681 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
682 first local allocated. Otherwise, it is the offset to the BEGINNING
683 of the first local allocated. */
15f67e06
JW
684/* This is 16 to allow space for one TFmode floating point value. */
685#define STARTING_FRAME_OFFSET (-16)
1bb87f28
JW
686
687/* If we generate an insn to push BYTES bytes,
688 this says how many the stack pointer really advances by.
689 On SPARC, don't define this because there are no push insns. */
690/* #define PUSH_ROUNDING(BYTES) */
691
692/* Offset of first parameter from the argument pointer register value.
693 This is 64 for the ins and locals, plus 4 for the struct-return reg
95dea81f
JW
694 even if this function isn't going to use it. */
695#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1bb87f28
JW
696
697/* When a parameter is passed in a register, stack space is still
698 allocated for it. */
699#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
700
701/* Keep the stack pointer constant throughout the function.
b4ac57ab 702 This is both an optimization and a necessity: longjmp
1bb87f28
JW
703 doesn't behave itself when the stack pointer moves within
704 the function! */
705#define ACCUMULATE_OUTGOING_ARGS
706
707/* Value is the number of bytes of arguments automatically
708 popped when returning from a subroutine call.
709 FUNTYPE is the data type of the function (as a tree),
710 or for a library call it is an identifier node for the subroutine name.
711 SIZE is the number of bytes of arguments passed on the stack. */
712
713#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
714
5b485d2c
JW
715/* Some subroutine macros specific to this machine.
716 When !TARGET_FPU, put float return values in the general registers,
717 since we don't have any fp registers. */
1bb87f28 718#define BASE_RETURN_VALUE_REG(MODE) \
26c5587d 719 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
1bb87f28 720#define BASE_OUTGOING_VALUE_REG(MODE) \
5b485d2c
JW
721 (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
722 : (TARGET_FRW ? 8 : 24))
1bb87f28 723#define BASE_PASSING_ARG_REG(MODE) (8)
5b485d2c 724#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
1bb87f28 725
92ea370b
TW
726/* Define this macro if the target machine has "register windows". This
727 C expression returns the register number as seen by the called function
728 corresponding to register number OUT as seen by the calling function.
729 Return OUT if register number OUT is not an outbound register. */
730
731#define INCOMING_REGNO(OUT) \
732 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
733
734/* Define this macro if the target machine has "register windows". This
735 C expression returns the register number as seen by the calling function
736 corresponding to register number IN as seen by the called function.
737 Return IN if register number IN is not an inbound register. */
738
739#define OUTGOING_REGNO(IN) \
740 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
741
1bb87f28
JW
742/* Define how to find the value returned by a function.
743 VALTYPE is the data type of the value (as a tree).
744 If the precise function being called is known, FUNC is its FUNCTION_DECL;
745 otherwise, FUNC is 0. */
746
747/* On SPARC the value is found in the first "output" register. */
748
749#define FUNCTION_VALUE(VALTYPE, FUNC) \
750 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
751
752/* But the called function leaves it in the first "input" register. */
753
754#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
755 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
756
757/* Define how to find the value returned by a library function
758 assuming the value has mode MODE. */
759
760#define LIBCALL_VALUE(MODE) \
761 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
762
763/* 1 if N is a possible register number for a function value
764 as seen by the caller.
765 On SPARC, the first "output" reg is used for integer values,
766 and the first floating point register is used for floating point values. */
767
768#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
769
34aaacec
JW
770/* Define the size of space to allocate for the return value of an
771 untyped_call. */
772
773#define APPLY_RESULT_SIZE 16
774
1bb87f28
JW
775/* 1 if N is a possible register number for function argument passing.
776 On SPARC, these are the "output" registers. */
777
778#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
779\f
780/* Define a data type for recording info about an argument list
781 during the scan of that argument list. This data type should
782 hold all necessary information about the function itself
783 and about the args processed so far, enough to enable macros
784 such as FUNCTION_ARG to determine where the next arg should go.
785
786 On SPARC, this is a single integer, which is a number of words
787 of arguments scanned so far (including the invisible argument,
788 if any, which holds the structure-value-address).
789 Thus 7 or more means all following args should go on the stack. */
790
791#define CUMULATIVE_ARGS int
792
793#define ROUND_ADVANCE(SIZE) \
b1fc14e5
RS
794 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
795
1bb87f28
JW
796/* Initialize a variable CUM of type CUMULATIVE_ARGS
797 for a call to a function whose data type is FNTYPE.
798 For a library call, FNTYPE is 0.
799
800 On SPARC, the offset always starts at 0: the first parm reg is always
801 the same reg. */
802
803#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
804
805/* Update the data in CUM to advance over an argument
806 of mode MODE and data type TYPE.
807 (TYPE is null for libcalls where that information may not be available.) */
808
809#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
95dea81f
JW
810 ((CUM) += ((MODE) != BLKmode \
811 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
812 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1bb87f28
JW
813
814/* Determine where to put an argument to a function.
815 Value is zero to push the argument on the stack,
816 or a hard register in which to store the argument.
817
818 MODE is the argument's machine mode.
819 TYPE is the data type of the argument (as a tree).
820 This is null for libcalls where that information may
821 not be available.
822 CUM is a variable of type CUMULATIVE_ARGS which gives info about
823 the preceding args and about the function being called.
824 NAMED is nonzero if this argument is a named parameter
825 (otherwise it is an extra parameter matching an ellipsis). */
826
827/* On SPARC the first six args are normally in registers
828 and the rest are pushed. Any arg that starts within the first 6 words
829 is at least partially passed in a register unless its data type forbids. */
830
831#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 832((CUM) < NPARM_REGS \
1bb87f28 833 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
834 && ((TYPE)==0 || (MODE) != BLKmode \
835 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 836 ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 837 : 0)
1bb87f28
JW
838
839/* Define where a function finds its arguments.
840 This is different from FUNCTION_ARG because of register windows. */
841
842#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
95dea81f 843((CUM) < NPARM_REGS \
1bb87f28 844 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
845 && ((TYPE)==0 || (MODE) != BLKmode \
846 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f 847 ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
b1fc14e5 848 : 0)
1bb87f28
JW
849
850/* For an arg passed partly in registers and partly in memory,
851 this is the number of registers used.
852 For args passed entirely in registers or entirely in memory, zero.
853 Any arg that starts in the first 6 regs but won't entirely fit in them
854 needs partial registers on the Sparc. */
855
856#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
95dea81f 857 ((CUM) < NPARM_REGS \
1bb87f28 858 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
b1fc14e5
RS
859 && ((TYPE)==0 || (MODE) != BLKmode \
860 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
95dea81f
JW
861 && ((CUM) + ((MODE) == BLKmode \
862 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
863 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
864 ? (NPARM_REGS - (CUM)) \
1bb87f28
JW
865 : 0)
866
d9ca49d5 867/* The SPARC ABI stipulates passing struct arguments (of any size) and
87ac3809
JW
868 quad-precision floats by invisible reference.
869 For Pascal, also pass arrays by reference. */
1bb87f28 870#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
d9ca49d5 871 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
87ac3809
JW
872 || TREE_CODE (TYPE) == UNION_TYPE \
873 || TREE_CODE (TYPE) == ARRAY_TYPE)) \
d9ca49d5 874 || (MODE == TFmode))
1bb87f28
JW
875
876/* Define the information needed to generate branch and scc insns. This is
877 stored from the compare operation. Note that we can't use "rtx" here
878 since it hasn't been defined! */
879
880extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
881
882/* Define the function that build the compare insn for scc and bcc. */
883
884extern struct rtx_def *gen_compare_reg ();
885\f
4b69d2a3
RS
886/* Generate the special assembly code needed to tell the assembler whatever
887 it might need to know about the return value of a function.
888
889 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
890 information to the assembler relating to peephole optimization (done in
891 the assembler). */
892
893#define ASM_DECLARE_RESULT(FILE, RESULT) \
894 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
895
1bb87f28
JW
896/* Output the label for a function definition. */
897
4b69d2a3
RS
898#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
899do { \
900 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
901 ASM_OUTPUT_LABEL (FILE, NAME); \
902} while (0)
1bb87f28 903
1bb87f28
JW
904/* This macro generates the assembly code for function entry.
905 FILE is a stdio stream to output the code to.
906 SIZE is an int: how many units of temporary storage to allocate.
907 Refer to the array `regs_ever_live' to determine which registers
908 to save; `regs_ever_live[I]' is nonzero if register number I
909 is ever used in the function. This macro is responsible for
910 knowing which registers should not be saved even if used. */
911
912/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
913 of memory. If any fpu reg is used in the function, we allocate
914 such a block here, at the bottom of the frame, just in case it's needed.
915
916 If this function is a leaf procedure, then we may choose not
917 to do a "save" insn. The decision about whether or not
918 to do this is made in regclass.c. */
919
920#define FUNCTION_PROLOGUE(FILE, SIZE) \
5b485d2c
JW
921 (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
922 : output_function_prologue (FILE, SIZE, leaf_function))
1bb87f28
JW
923
924/* Output assembler code to FILE to increment profiler label # LABELNO
925 for profiling a function entry. */
926
d2a8e680
RS
927#define FUNCTION_PROFILER(FILE, LABELNO) \
928 do { \
929 fputs ("\tsethi %hi(", (FILE)); \
930 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
931 fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
932 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
933 fputs ("),%o0,%o0\n", (FILE)); \
934 } while (0)
1bb87f28
JW
935
936/* Output assembler code to FILE to initialize this source file's
937 basic block profiling info, if that has not already been done. */
d2a8e680
RS
938/* FIXME -- this does not parameterize how it generates labels (like the
939 above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
1bb87f28
JW
940
941#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
942 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
943 (LABELNO), (LABELNO))
944
945/* Output assembler code to FILE to increment the entry-count for
946 the BLOCKNO'th basic block in this source file. */
947
948#define BLOCK_PROFILER(FILE, BLOCKNO) \
949{ \
950 int blockn = (BLOCKNO); \
951 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
952\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
953 4 * blockn, 4 * blockn, 4 * blockn); \
954}
955
1bb87f28
JW
956/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
957 the stack pointer does not matter. The value is tested only in
958 functions that have frame pointers.
959 No definition is equivalent to always zero. */
960
961extern int current_function_calls_alloca;
962extern int current_function_outgoing_args_size;
963
964#define EXIT_IGNORE_STACK \
965 (get_frame_size () != 0 \
966 || current_function_calls_alloca || current_function_outgoing_args_size)
967
968/* This macro generates the assembly code for function exit,
969 on machines that need it. If FUNCTION_EPILOGUE is not defined
970 then individual return instructions are generated for each
971 return statement. Args are same as for FUNCTION_PROLOGUE.
972
973 The function epilogue should not depend on the current stack pointer!
974 It should use the frame pointer only. This is mandatory because
975 of alloca; we also take advantage of it to omit stack adjustments
976 before returning. */
977
978/* This declaration is needed due to traditional/ANSI
979 incompatibilities which cannot be #ifdefed away
980 because they occur inside of macros. Sigh. */
981extern union tree_node *current_function_decl;
982
983#define FUNCTION_EPILOGUE(FILE, SIZE) \
5b485d2c
JW
984 (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
985 : output_function_epilogue (FILE, SIZE, leaf_function))
1bb87f28 986
5b485d2c
JW
987#define DELAY_SLOTS_FOR_EPILOGUE \
988 (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
1bb87f28 989#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
5b485d2c
JW
990 (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
991 : eligible_for_epilogue_delay (trial, slots_filled))
6a4bb1fa 992\f
1bb87f28
JW
993/* Output assembler code for a block containing the constant parts
994 of a trampoline, leaving space for the variable parts. */
995
996/* On the sparc, the trampoline contains five instructions:
6098b63e
RK
997 sethi #TOP_OF_FUNCTION,%g1
998 or #BOTTOM_OF_FUNCTION,%g1,%g1
999 sethi #TOP_OF_STATIC,%g2
1000 jmp g1
1001 or #BOTTOM_OF_STATIC,%g2,%g2 */
1bb87f28
JW
1002#define TRAMPOLINE_TEMPLATE(FILE) \
1003{ \
1004 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1005 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1006 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
6098b63e 1007 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
1bb87f28
JW
1008 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1009}
1010
1011/* Length in units of the trampoline for entering a nested function. */
1012
1013#define TRAMPOLINE_SIZE 20
1014
1015/* Emit RTL insns to initialize the variable parts of a trampoline.
1016 FNADDR is an RTX for the address of the function's pure code.
1017 CXT is an RTX for the static chain value for the function.
1018
1019 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
1020 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
1021 (to store insns). This is a bit excessive. Perhaps a different
297c72b6
RS
1022 mechanism would be better here.
1023
1024 Emit 3 FLUSH instructions (UNSPEC_VOLATILE 2) to synchonize the data
1025 and instruction caches. */
1bb87f28
JW
1026
1027#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1028{ \
1029 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
1030 size_int (10), 0, 1); \
1031 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
1032 size_int (10), 0, 1); \
1033 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1034 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
1035 rtx g1_sethi = gen_rtx (HIGH, SImode, \
1036 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
1037 rtx g2_sethi = gen_rtx (HIGH, SImode, \
1038 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
1039 rtx g1_ori = gen_rtx (HIGH, SImode, \
1040 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
1041 rtx g2_ori = gen_rtx (HIGH, SImode, \
1042 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
1043 rtx tem = gen_reg_rtx (SImode); \
6098b63e 1044 emit_move_insn (tem, g1_sethi); \
1bb87f28
JW
1045 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
1046 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
6098b63e 1047 emit_move_insn (tem, g1_ori); \
1bb87f28
JW
1048 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
1049 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
6098b63e 1050 emit_move_insn (tem, g2_sethi); \
1bb87f28
JW
1051 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
1052 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
6098b63e 1053 emit_move_insn (tem, g2_ori); \
1bb87f28
JW
1054 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
1055 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
297c72b6
RS
1056 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1057 gen_rtvec (1, plus_constant (TRAMP, 0)), \
1058 2)); \
1059 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1060 gen_rtvec (1, plus_constant (TRAMP, 8)), \
1061 2)); \
1062 emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
1063 gen_rtvec (1, plus_constant (TRAMP, 16)), \
1064 2)); \
1bb87f28 1065}
6a4bb1fa 1066\f
9a1c7cd7
JW
1067/* Generate necessary RTL for __builtin_saveregs().
1068 ARGLIST is the argument list; see expr.c. */
1069extern struct rtx_def *sparc_builtin_saveregs ();
1070#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
953fe179
JW
1071
1072/* Generate RTL to flush the register windows so as to make arbitrary frames
1073 available. */
1074#define SETUP_FRAME_ADDRESSES() \
1075 emit_insn (gen_flush_register_windows ())
1076
1077/* Given an rtx for the address of a frame,
1078 return an rtx for the address of the word in the frame
1079 that holds the dynamic chain--the previous frame's address. */
1080#define DYNAMIC_CHAIN_ADDRESS(frame) \
1081 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
1082
1083/* The return address isn't on the stack, it is in a register, so we can't
1084 access it from the current frame pointer. We can access it from the
1085 previous frame pointer though by reading a value from the register window
1086 save area. */
1087#define RETURN_ADDR_IN_PREVIOUS_FRAME
1088
1089/* The current return address is in %i7. The return address of anything
1090 farther back is in the register window save area at [%fp+60]. */
1091/* ??? This ignores the fact that the actual return address is +8 for normal
1092 returns, and +12 for structure returns. */
1093#define RETURN_ADDR_RTX(count, frame) \
1094 ((count == -1) \
1095 ? gen_rtx (REG, Pmode, 31) \
1096 : copy_to_reg (gen_rtx (MEM, Pmode, \
1097 memory_address (Pmode, plus_constant (frame, 60)))))
1bb87f28
JW
1098\f
1099/* Addressing modes, and classification of registers for them. */
1100
1101/* #define HAVE_POST_INCREMENT */
1102/* #define HAVE_POST_DECREMENT */
1103
1104/* #define HAVE_PRE_DECREMENT */
1105/* #define HAVE_PRE_INCREMENT */
1106
1107/* Macros to check register numbers against specific register classes. */
1108
1109/* These assume that REGNO is a hard or pseudo reg number.
1110 They give nonzero only if REGNO is a hard reg of the suitable class
1111 or a pseudo reg currently allocated to a suitable hard reg.
1112 Since they use reg_renumber, they are safe only once reg_renumber
1113 has been allocated, which happens in local-alloc.c. */
1114
1115#define REGNO_OK_FOR_INDEX_P(REGNO) \
1116(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1117#define REGNO_OK_FOR_BASE_P(REGNO) \
1118(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1119#define REGNO_OK_FOR_FP_P(REGNO) \
1120(((REGNO) ^ 0x20) < 32 \
1121 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1122
1123/* Now macros that check whether X is a register and also,
1124 strictly, whether it is in a specified class.
1125
1126 These macros are specific to the SPARC, and may be used only
1127 in code for printing assembler insns and in conditions for
1128 define_optimization. */
1129
1130/* 1 if X is an fp register. */
1131
1132#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1133\f
1134/* Maximum number of registers that can appear in a valid memory address. */
1135
1136#define MAX_REGS_PER_ADDRESS 2
1137
7aca9b9c
JW
1138/* Recognize any constant value that is a valid address.
1139 When PIC, we do not accept an address that would require a scratch reg
1140 to load into a register. */
1bb87f28 1141
6eff269e
BK
1142#define CONSTANT_ADDRESS_P(X) \
1143 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
7aca9b9c
JW
1144 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1145 || (GET_CODE (X) == CONST \
1146 && ! (flag_pic && pic_address_needs_scratch (X))))
1147
1148/* Define this, so that when PIC, reload won't try to reload invalid
1149 addresses which require two reload registers. */
1150
1151#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
1bb87f28
JW
1152
1153/* Nonzero if the constant value X is a legitimate general operand.
1154 Anything can be made to work except floating point constants. */
1155
1156#define LEGITIMATE_CONSTANT_P(X) \
1157 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1158
1159/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1160 and check its validity for a certain class.
1161 We have two alternate definitions for each of them.
1162 The usual definition accepts all pseudo regs; the other rejects
1163 them unless they have been allocated suitable hard regs.
1164 The symbol REG_OK_STRICT causes the latter definition to be used.
1165
1166 Most source files want to accept pseudo regs in the hope that
1167 they will get allocated to the class that the insn wants them to be in.
1168 Source files for reload pass need to be strict.
1169 After reload, it makes no difference, since pseudo regs have
1170 been eliminated by then. */
1171
1172/* Optional extra constraints for this machine. Borrowed from romp.h.
1173
1174 For the SPARC, `Q' means that this is a memory operand but not a
1175 symbolic memory operand. Note that an unassigned pseudo register
1176 is such a memory operand. Needed because reload will generate
1177 these things in insns and then not re-recognize the insns, causing
1178 constrain_operands to fail.
1179
1bb87f28
JW
1180 `S' handles constraints for calls. */
1181
1182#ifndef REG_OK_STRICT
1183
1184/* Nonzero if X is a hard reg that can be used as an index
1185 or if it is a pseudo reg. */
1186#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1187/* Nonzero if X is a hard reg that can be used as a base reg
1188 or if it is a pseudo reg. */
1189#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1190
1191#define EXTRA_CONSTRAINT(OP, C) \
db5e449c
RS
1192 ((C) == 'Q' \
1193 ? ((GET_CODE (OP) == MEM \
1194 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1195 && ! symbolic_memory_operand (OP, VOIDmode)) \
1196 || (reload_in_progress && GET_CODE (OP) == REG \
1197 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
19858600
JL
1198 : (C) == 'T' \
1199 ? (mem_aligned_8 (OP)) \
1200 : (C) == 'U' \
1201 ? (register_ok_for_ldd (OP)) \
db5e449c 1202 : 0)
19858600 1203
1bb87f28
JW
1204#else
1205
1206/* Nonzero if X is a hard reg that can be used as an index. */
1207#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1208/* Nonzero if X is a hard reg that can be used as a base reg. */
1209#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1210
1211#define EXTRA_CONSTRAINT(OP, C) \
9ad2c692
JW
1212 ((C) == 'Q' \
1213 ? (GET_CODE (OP) == REG \
1214 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1215 && reg_renumber[REGNO (OP)] < 0) \
1216 : GET_CODE (OP) == MEM) \
9ad2c692 1217 : (C) == 'T' \
b165d471 1218 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
9ad2c692 1219 : (C) == 'U' \
b165d471
JW
1220 ? (GET_CODE (OP) == REG \
1221 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1222 || reg_renumber[REGNO (OP)] > 0) \
1223 && register_ok_for_ldd (OP)) : 0)
1bb87f28
JW
1224#endif
1225\f
1226/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1227 that is a valid memory address for an instruction.
1228 The MODE argument is the machine mode for the MEM expression
1229 that wants to use this address.
1230
1231 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1232 ordinarily. This changes a bit when generating PIC.
1233
1234 If you change this, execute "rm explow.o recog.o reload.o". */
1235
bec2e359
JW
1236#define RTX_OK_FOR_BASE_P(X) \
1237 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1238 || (GET_CODE (X) == SUBREG \
1239 && GET_CODE (SUBREG_REG (X)) == REG \
1240 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1241
1242#define RTX_OK_FOR_INDEX_P(X) \
1243 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1244 || (GET_CODE (X) == SUBREG \
1245 && GET_CODE (SUBREG_REG (X)) == REG \
1246 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1247
1248#define RTX_OK_FOR_OFFSET_P(X) \
1249 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1250
1bb87f28 1251#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
bec2e359
JW
1252{ if (RTX_OK_FOR_BASE_P (X)) \
1253 goto ADDR; \
1bb87f28
JW
1254 else if (GET_CODE (X) == PLUS) \
1255 { \
bec2e359
JW
1256 register rtx op0 = XEXP (X, 0); \
1257 register rtx op1 = XEXP (X, 1); \
1258 if (flag_pic && op0 == pic_offset_table_rtx) \
1bb87f28 1259 { \
bec2e359 1260 if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28
JW
1261 goto ADDR; \
1262 else if (flag_pic == 1 \
bec2e359
JW
1263 && GET_CODE (op1) != REG \
1264 && GET_CODE (op1) != LO_SUM \
7aca9b9c
JW
1265 && GET_CODE (op1) != MEM \
1266 && (GET_CODE (op1) != CONST_INT \
1267 || SMALL_INT (op1))) \
1bb87f28
JW
1268 goto ADDR; \
1269 } \
bec2e359 1270 else if (RTX_OK_FOR_BASE_P (op0)) \
1bb87f28 1271 { \
bec2e359
JW
1272 if (RTX_OK_FOR_INDEX_P (op1) \
1273 || RTX_OK_FOR_OFFSET_P (op1)) \
1bb87f28
JW
1274 goto ADDR; \
1275 } \
bec2e359 1276 else if (RTX_OK_FOR_BASE_P (op1)) \
1bb87f28 1277 { \
bec2e359
JW
1278 if (RTX_OK_FOR_INDEX_P (op0) \
1279 || RTX_OK_FOR_OFFSET_P (op0)) \
1bb87f28
JW
1280 goto ADDR; \
1281 } \
1282 } \
bec2e359
JW
1283 else if (GET_CODE (X) == LO_SUM) \
1284 { \
1285 register rtx op0 = XEXP (X, 0); \
1286 register rtx op1 = XEXP (X, 1); \
1287 if (RTX_OK_FOR_BASE_P (op0) \
1288 && CONSTANT_P (op1)) \
1289 goto ADDR; \
1290 } \
1bb87f28
JW
1291 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1292 goto ADDR; \
1293}
1294\f
1295/* Try machine-dependent ways of modifying an illegitimate address
1296 to be legitimate. If we find one, return the new, valid address.
1297 This macro is used in only one place: `memory_address' in explow.c.
1298
1299 OLDX is the address as it was before break_out_memory_refs was called.
1300 In some cases it is useful to look at this to decide what needs to be done.
1301
1302 MODE and WIN are passed so that this macro can use
1303 GO_IF_LEGITIMATE_ADDRESS.
1304
1305 It is always safe for this macro to do nothing. It exists to recognize
1306 opportunities to optimize the output. */
1307
1308/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1309extern struct rtx_def *legitimize_pic_address ();
1310#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1311{ rtx sparc_x = (X); \
1312 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1313 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
a015279e 1314 force_operand (XEXP (X, 0), NULL_RTX)); \
1bb87f28
JW
1315 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1316 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1317 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28 1318 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
a015279e 1319 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1bb87f28
JW
1320 XEXP (X, 1)); \
1321 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1322 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
a015279e 1323 force_operand (XEXP (X, 1), NULL_RTX)); \
1bb87f28
JW
1324 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1325 goto WIN; \
7aca9b9c 1326 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
1bb87f28
JW
1327 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1328 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1329 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1330 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1331 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1332 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1333 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1334 || GET_CODE (X) == LABEL_REF) \
1335 (X) = gen_rtx (LO_SUM, Pmode, \
1336 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1337 if (memory_address_p (MODE, X)) \
1338 goto WIN; }
1339
1340/* Go to LABEL if ADDR (a legitimate address expression)
1341 has an effect that depends on the machine mode it is used for.
1342 On the SPARC this is never true. */
1343
1344#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1345\f
1346/* Specify the machine mode that this machine uses
1347 for the index in the tablejump instruction. */
1348#define CASE_VECTOR_MODE SImode
1349
1350/* Define this if the tablejump instruction expects the table
1351 to contain offsets from the address of the table.
1352 Do not define this if the table should contain absolute addresses. */
1353/* #define CASE_VECTOR_PC_RELATIVE */
1354
1355/* Specify the tree operation to be used to convert reals to integers. */
1356#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1357
1358/* This is the kind of divide that is easiest to do in the general case. */
1359#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1360
1361/* Define this as 1 if `char' should by default be signed; else as 0. */
1362#define DEFAULT_SIGNED_CHAR 1
1363
1364/* Max number of bytes we can move from memory to memory
1365 in one reasonably fast instruction. */
2eef2ef1 1366#define MOVE_MAX 8
1bb87f28 1367
0fb5a69e 1368#if 0 /* Sun 4 has matherr, so this is no good. */
24e2a2bf
RS
1369/* This is the value of the error code EDOM for this machine,
1370 used by the sqrt instruction. */
1371#define TARGET_EDOM 33
1372
1373/* This is how to refer to the variable errno. */
1374#define GEN_ERRNO_RTX \
1375 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
0fb5a69e 1376#endif /* 0 */
24e2a2bf 1377
9a63901f
RK
1378/* Define if operations between registers always perform the operation
1379 on the full register even if a narrower mode is specified. */
1380#define WORD_REGISTER_OPERATIONS
1381
1382/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1383 will either zero-extend or sign-extend. The value of this macro should
1384 be the code that says which one of the two operations is implicitly
1385 done, NIL if none. */
1386#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1bb87f28
JW
1387
1388/* Nonzero if access to memory by bytes is slow and undesirable.
1389 For RISC chips, it means that access to memory by bytes is no
1390 better than access by words when possible, so grab a whole word
1391 and maybe make use of that. */
1392#define SLOW_BYTE_ACCESS 1
1393
1394/* We assume that the store-condition-codes instructions store 0 for false
1395 and some other value for true. This is the value stored for true. */
1396
1397#define STORE_FLAG_VALUE 1
1398
1399/* When a prototype says `char' or `short', really pass an `int'. */
1400#define PROMOTE_PROTOTYPES
1401
d969caf8
RK
1402/* Define this to be nonzero if shift instructions ignore all but the low-order
1403 few bits. */
1404#define SHIFT_COUNT_TRUNCATED 1
1bb87f28
JW
1405
1406/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1407 is done just by pretending it is already truncated. */
1408#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1409
1410/* Specify the machine mode that pointers have.
1411 After generation of rtl, the compiler makes no further distinction
1412 between pointers and any other objects of this machine mode. */
1413#define Pmode SImode
1414
b4ac57ab
RS
1415/* Generate calls to memcpy, memcmp and memset. */
1416#define TARGET_MEM_FUNCTIONS
1417
1bb87f28
JW
1418/* Add any extra modes needed to represent the condition code.
1419
1420 On the Sparc, we have a "no-overflow" mode which is used when an add or
1421 subtract insn is used to set the condition code. Different branches are
1422 used in this case for some operations.
1423
4d449554
JW
1424 We also have two modes to indicate that the relevant condition code is
1425 in the floating-point condition code register. One for comparisons which
1426 will generate an exception if the result is unordered (CCFPEmode) and
1427 one for comparisons which will never trap (CCFPmode). This really should
1428 be a separate register, but we don't want to go to 65 registers. */
1429#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1bb87f28
JW
1430
1431/* Define the names for the modes specified above. */
4d449554 1432#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1bb87f28
JW
1433
1434/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
4d449554
JW
1435 return the mode to be used for the comparison. For floating-point,
1436 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
922bd191
JW
1437 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1438 processing is needed. */
679655e6 1439#define SELECT_CC_MODE(OP,X,Y) \
4d449554 1440 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
922bd191
JW
1441 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1442 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
1443 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
4d449554 1444 ? CC_NOOVmode : CCmode))
1bb87f28
JW
1445
1446/* A function address in a call instruction
1447 is a byte address (for indexing purposes)
1448 so give the MEM rtx a byte's mode. */
1449#define FUNCTION_MODE SImode
1450
1451/* Define this if addresses of constant functions
1452 shouldn't be put through pseudo regs where they can be cse'd.
1453 Desirable on machines where ordinary constants are expensive
1454 but a CALL with constant address is cheap. */
1455#define NO_FUNCTION_CSE
1456
1457/* alloca should avoid clobbering the old register save area. */
1458#define SETJMP_VIA_SAVE_AREA
1459
1460/* Define subroutines to call to handle multiply and divide.
1461 Use the subroutines that Sun's library provides.
1462 The `*' prevents an underscore from being prepended by the compiler. */
1463
1464#define DIVSI3_LIBCALL "*.div"
1465#define UDIVSI3_LIBCALL "*.udiv"
1466#define MODSI3_LIBCALL "*.rem"
1467#define UMODSI3_LIBCALL "*.urem"
1468/* .umul is a little faster than .mul. */
1469#define MULSI3_LIBCALL "*.umul"
1470
1471/* Compute the cost of computing a constant rtl expression RTX
1472 whose rtx-code is CODE. The body of this macro is a portion
1473 of a switch statement. If the code is computed here,
1474 return it with a return statement. Otherwise, break from the switch. */
1475
3bb22aee 1476#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1bb87f28 1477 case CONST_INT: \
1bb87f28 1478 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
5b485d2c 1479 return 0; \
1bb87f28
JW
1480 case HIGH: \
1481 return 2; \
1482 case CONST: \
1483 case LABEL_REF: \
1484 case SYMBOL_REF: \
1485 return 4; \
1486 case CONST_DOUBLE: \
1487 if (GET_MODE (RTX) == DImode) \
1488 if ((XINT (RTX, 3) == 0 \
1489 && (unsigned) XINT (RTX, 2) < 0x1000) \
1490 || (XINT (RTX, 3) == -1 \
1491 && XINT (RTX, 2) < 0 \
1492 && XINT (RTX, 2) >= -0x1000)) \
5b485d2c 1493 return 0; \
1bb87f28
JW
1494 return 8;
1495
a0a74fda
JW
1496/* Compute the cost of an address. For the sparc, all valid addresses are
1497 the same cost. */
1bb87f28 1498
a0a74fda 1499#define ADDRESS_COST(RTX) 1
1bb87f28
JW
1500
1501/* Compute extra cost of moving data between one register class
1502 and another. */
1503#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1504 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1505 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1506
1507/* Provide the costs of a rtl expression. This is in the body of a
1508 switch on CODE. The purpose for the cost of MULT is to encourage
1509 `synth_mult' to find a synthetic multiply when reasonable.
1510
1511 If we need more than 12 insns to do a multiply, then go out-of-line,
1512 since the call overhead will be < 10% of the cost of the multiply. */
1513
3bb22aee 1514#define RTX_COSTS(X,CODE,OUTER_CODE) \
1bb87f28 1515 case MULT: \
6ffeae97 1516 return TARGET_V8 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
1bb87f28
JW
1517 case DIV: \
1518 case UDIV: \
1519 case MOD: \
1520 case UMOD: \
5b485d2c
JW
1521 return COSTS_N_INSNS (25); \
1522 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
1bb87f28
JW
1523 so that cse will favor the latter. */ \
1524 case FLOAT: \
5b485d2c 1525 case FIX: \
1bb87f28
JW
1526 return 19;
1527
1528/* Conditional branches with empty delay slots have a length of two. */
1529#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1530 if (GET_CODE (INSN) == CALL_INSN \
1531 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1532 LENGTH += 1;
1533\f
1534/* Control the assembler format that we output. */
1535
1536/* Output at beginning of assembler file. */
1537
1538#define ASM_FILE_START(file)
1539
1540/* Output to assembler file text saying following lines
1541 may contain character constants, extra white space, comments, etc. */
1542
1543#define ASM_APP_ON ""
1544
1545/* Output to assembler file text saying following lines
1546 no longer contain unusual constructs. */
1547
1548#define ASM_APP_OFF ""
1549
303d524a
JW
1550#define ASM_LONG ".word"
1551#define ASM_SHORT ".half"
1552#define ASM_BYTE_OP ".byte"
1553
1bb87f28
JW
1554/* Output before read-only data. */
1555
1556#define TEXT_SECTION_ASM_OP ".text"
1557
1558/* Output before writable data. */
1559
1560#define DATA_SECTION_ASM_OP ".data"
1561
1562/* How to refer to registers in assembler output.
1563 This sequence is indexed by compiler's hard-register-number (see above). */
1564
1565#define REGISTER_NAMES \
1566{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1567 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1568 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1569 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1570 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1571 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1572 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1573 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1574
ea3fa5f7
JW
1575/* Define additional names for use in asm clobbers and asm declarations.
1576
1577 We define the fake Condition Code register as an alias for reg 0 (which
1578 is our `condition code' register), so that condition codes can easily
1579 be clobbered by an asm. No such register actually exists. Condition
1580 codes are partly stored in the PSR and partly in the FSR. */
1581
0eb9f40e 1582#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
ea3fa5f7 1583
1bb87f28
JW
1584/* How to renumber registers for dbx and gdb. */
1585
1586#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1587
1588/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1589 since the length can run past this up to a continuation point. */
1590#define DBX_CONTIN_LENGTH 1500
1591
1592/* This is how to output a note to DBX telling it the line number
1593 to which the following sequence of instructions corresponds.
1594
1595 This is needed for SunOS 4.0, and should not hurt for 3.2
1596 versions either. */
1597#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1598 { static int sym_lineno = 1; \
1599 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1600 line, sym_lineno, sym_lineno); \
1601 sym_lineno += 1; }
1602
1603/* This is how to output the definition of a user-level label named NAME,
1604 such as the label on a static function or variable NAME. */
1605
1606#define ASM_OUTPUT_LABEL(FILE,NAME) \
1607 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1608
1609/* This is how to output a command to make the user-level label named NAME
1610 defined for reference from other files. */
1611
1612#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1613 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1614
1615/* This is how to output a reference to a user-level label named NAME.
1616 `assemble_name' uses this. */
1617
1618#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1619 fprintf (FILE, "_%s", NAME)
1620
d2a8e680 1621/* This is how to output a definition of an internal numbered label where
1bb87f28
JW
1622 PREFIX is the class of label and NUM is the number within the class. */
1623
1624#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1625 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1626
d2a8e680
RS
1627/* This is how to output a reference to an internal numbered label where
1628 PREFIX is the class of label and NUM is the number within the class. */
1629/* FIXME: This should be used throughout gcc, and documented in the texinfo
1630 files. There is no reason you should have to allocate a buffer and
1631 `sprintf' to reference an internal label (as opposed to defining it). */
1632
1633#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
1634 fprintf (FILE, "%s%d", PREFIX, NUM)
1635
1bb87f28
JW
1636/* This is how to store into the string LABEL
1637 the symbol_ref name of an internal numbered label where
1638 PREFIX is the class of label and NUM is the number within the class.
1639 This is suitable for output with `assemble_name'. */
1640
1641#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1642 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1643
1644/* This is how to output an assembler line defining a `double' constant. */
1645
1646#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1647 { \
2e7ac77c
JW
1648 long t[2]; \
1649 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1650 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1651 ASM_LONG, t[0], ASM_LONG, t[1]); \
1bb87f28
JW
1652 }
1653
1654/* This is how to output an assembler line defining a `float' constant. */
1655
1656#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1657 { \
2e7ac77c
JW
1658 long t; \
1659 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1660 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
1661 } \
1bb87f28 1662
0cd02cbb
DE
1663/* This is how to output an assembler line defining a `long double'
1664 constant. */
1665
1666#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1667 { \
1668 long t[4]; \
1669 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
1670 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
1671 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
1672 }
1673
1bb87f28
JW
1674/* This is how to output an assembler line defining an `int' constant. */
1675
1676#define ASM_OUTPUT_INT(FILE,VALUE) \
303d524a 1677( fprintf (FILE, "\t%s\t", ASM_LONG), \
1bb87f28
JW
1678 output_addr_const (FILE, (VALUE)), \
1679 fprintf (FILE, "\n"))
1680
1681/* This is how to output an assembler line defining a DImode constant. */
1682#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1683 output_double_int (FILE, VALUE)
1684
1685/* Likewise for `char' and `short' constants. */
1686
1687#define ASM_OUTPUT_SHORT(FILE,VALUE) \
303d524a 1688( fprintf (FILE, "\t%s\t", ASM_SHORT), \
1bb87f28
JW
1689 output_addr_const (FILE, (VALUE)), \
1690 fprintf (FILE, "\n"))
1691
1692#define ASM_OUTPUT_CHAR(FILE,VALUE) \
303d524a 1693( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
1bb87f28
JW
1694 output_addr_const (FILE, (VALUE)), \
1695 fprintf (FILE, "\n"))
1696
1697/* This is how to output an assembler line for a numeric constant byte. */
1698
1699#define ASM_OUTPUT_BYTE(FILE,VALUE) \
303d524a 1700 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
1bb87f28
JW
1701
1702/* This is how to output an element of a case-vector that is absolute. */
1703
1704#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
4b69d2a3
RS
1705do { \
1706 char label[30]; \
1707 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1708 fprintf (FILE, "\t.word\t"); \
1709 assemble_name (FILE, label); \
1710 fprintf (FILE, "\n"); \
1711} while (0)
1bb87f28
JW
1712
1713/* This is how to output an element of a case-vector that is relative.
1714 (SPARC uses such vectors only when generating PIC.) */
1715
4b69d2a3
RS
1716#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1717do { \
1718 char label[30]; \
1719 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1720 fprintf (FILE, "\t.word\t"); \
1721 assemble_name (FILE, label); \
1722 fprintf (FILE, "-1b\n"); \
1723} while (0)
1bb87f28
JW
1724
1725/* This is how to output an assembler line
1726 that says to advance the location counter
1727 to a multiple of 2**LOG bytes. */
1728
1729#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1730 if ((LOG) != 0) \
1731 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1732
1733#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1734 fprintf (FILE, "\t.skip %u\n", (SIZE))
1735
1736/* This says how to output an assembler line
1737 to define a global common symbol. */
1738
1739#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
b277ceaf 1740( fputs ("\t.common ", (FILE)), \
1bb87f28 1741 assemble_name ((FILE), (NAME)), \
b277ceaf 1742 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
1bb87f28 1743
b277ceaf
JW
1744/* This says how to output an assembler line to define a local common
1745 symbol. */
1bb87f28 1746
b277ceaf
JW
1747#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1748( fputs ("\t.reserve ", (FILE)), \
1749 assemble_name ((FILE), (NAME)), \
1750 fprintf ((FILE), ",%u,\"bss\",%u\n", \
1751 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1bb87f28
JW
1752
1753/* Store in OUTPUT a string (made with alloca) containing
1754 an assembler-name for a local static variable named NAME.
1755 LABELNO is an integer which is different for each call. */
1756
1757#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1758( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1759 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1760
c14f2655
RS
1761#define IDENT_ASM_OP ".ident"
1762
1763/* Output #ident as a .ident. */
1764
1765#define ASM_OUTPUT_IDENT(FILE, NAME) \
1766 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
1767
1bb87f28
JW
1768/* Define the parentheses used to group arithmetic operations
1769 in assembler code. */
1770
1771#define ASM_OPEN_PAREN "("
1772#define ASM_CLOSE_PAREN ")"
1773
1774/* Define results of standard character escape sequences. */
1775#define TARGET_BELL 007
1776#define TARGET_BS 010
1777#define TARGET_TAB 011
1778#define TARGET_NEWLINE 012
1779#define TARGET_VT 013
1780#define TARGET_FF 014
1781#define TARGET_CR 015
1782
1783#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2ccdef65 1784 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
1bb87f28
JW
1785
1786/* Print operand X (an rtx) in assembler syntax to file FILE.
1787 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1788 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1789
1790#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1791
1792/* Print a memory address as an operand to reference that memory location. */
1793
1794#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1795{ register rtx base, index = 0; \
1796 int offset = 0; \
1797 register rtx addr = ADDR; \
1798 if (GET_CODE (addr) == REG) \
1799 fputs (reg_names[REGNO (addr)], FILE); \
1800 else if (GET_CODE (addr) == PLUS) \
1801 { \
1802 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1803 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1804 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1805 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1806 else \
1807 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1808 fputs (reg_names[REGNO (base)], FILE); \
1809 if (index == 0) \
1810 fprintf (FILE, "%+d", offset); \
1811 else if (GET_CODE (index) == REG) \
1812 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1813 else if (GET_CODE (index) == SYMBOL_REF) \
1814 fputc ('+', FILE), output_addr_const (FILE, index); \
1815 else abort (); \
1816 } \
1817 else if (GET_CODE (addr) == MINUS \
1818 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1819 { \
1820 output_addr_const (FILE, XEXP (addr, 0)); \
1821 fputs ("-(", FILE); \
1822 output_addr_const (FILE, XEXP (addr, 1)); \
1823 fputs ("-.)", FILE); \
1824 } \
1825 else if (GET_CODE (addr) == LO_SUM) \
1826 { \
1827 output_operand (XEXP (addr, 0), 0); \
1828 fputs ("+%lo(", FILE); \
1829 output_address (XEXP (addr, 1)); \
1830 fputc (')', FILE); \
1831 } \
1832 else if (flag_pic && GET_CODE (addr) == CONST \
1833 && GET_CODE (XEXP (addr, 0)) == MINUS \
1834 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1835 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1836 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1837 { \
1838 addr = XEXP (addr, 0); \
1839 output_addr_const (FILE, XEXP (addr, 0)); \
1840 /* Group the args of the second CONST in parenthesis. */ \
1841 fputs ("-(", FILE); \
1842 /* Skip past the second CONST--it does nothing for us. */\
1843 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1844 /* Close the parenthesis. */ \
1845 fputc (')', FILE); \
1846 } \
1847 else \
1848 { \
1849 output_addr_const (FILE, addr); \
1850 } \
1851}
1852
1853/* Declare functions defined in sparc.c and used in templates. */
1854
1855extern char *singlemove_string ();
1856extern char *output_move_double ();
795068a4 1857extern char *output_move_quad ();
1bb87f28 1858extern char *output_fp_move_double ();
795068a4 1859extern char *output_fp_move_quad ();
1bb87f28
JW
1860extern char *output_block_move ();
1861extern char *output_scc_insn ();
1862extern char *output_cbranch ();
1863extern char *output_return ();
1bb87f28
JW
1864
1865/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1866
1867extern int flag_pic;
This page took 0.334317 seconds and 5 git commands to generate.