]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
* config/alpha/alpha.md (prologue_mcount): Remove lituse_jsr reloc.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common CPP definitions used by CPP_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define CPP_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
54 %{mpower2: -D_ARCH_PWR2} \
55 %{mpowerpc*: -D_ARCH_PPC} \
56 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
57 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
58%{mcpu=common: -D_ARCH_COM} \
59%{mcpu=power: -D_ARCH_PWR} \
60%{mcpu=power2: -D_ARCH_PWR2} \
61%{mcpu=powerpc: -D_ARCH_PPC} \
62%{mcpu=rios: -D_ARCH_PWR} \
63%{mcpu=rios1: -D_ARCH_PWR} \
64%{mcpu=rios2: -D_ARCH_PWR2} \
65%{mcpu=rsc: -D_ARCH_PWR} \
66%{mcpu=rsc1: -D_ARCH_PWR} \
67%{mcpu=401: -D_ARCH_PPC} \
68%{mcpu=403: -D_ARCH_PPC} \
3b370352 69%{mcpu=405: -D_ARCH_PPC} \
f984d8df
DB
70%{mcpu=505: -D_ARCH_PPC} \
71%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
72%{mcpu=602: -D_ARCH_PPC} \
73%{mcpu=603: -D_ARCH_PPC} \
74%{mcpu=603e: -D_ARCH_PPC} \
75%{mcpu=ec603e: -D_ARCH_PPC} \
76%{mcpu=604: -D_ARCH_PPC} \
77%{mcpu=604e: -D_ARCH_PPC} \
78%{mcpu=620: -D_ARCH_PPC} \
79%{mcpu=740: -D_ARCH_PPC} \
fd3b43f2 80%{mcpu=7400: -D_ARCH_PPC} \
f18c054f 81%{mcpu=7450: -D_ARCH_PPC} \
f984d8df
DB
82%{mcpu=750: -D_ARCH_PPC} \
83%{mcpu=801: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
85%{mcpu=823: -D_ARCH_PPC} \
0ac081f6
AH
86%{mcpu=860: -D_ARCH_PPC} \
87%{maltivec: -D__ALTIVEC__}"
f984d8df
DB
88
89/* Common ASM definitions used by ASM_SPEC among the various targets
90 for handling -mcpu=xxx switches. */
91#define ASM_CPU_SPEC \
92"%{!mcpu*: \
93 %{mpower: %{!mpower2: -mpwr}} \
94 %{mpower2: -mpwrx} \
95 %{mpowerpc*: -mppc} \
96 %{mno-power: %{!mpowerpc*: -mcom}} \
97 %{!mno-power: %{!mpower2: %(asm_default)}}} \
98%{mcpu=common: -mcom} \
99%{mcpu=power: -mpwr} \
100%{mcpu=power2: -mpwrx} \
101%{mcpu=powerpc: -mppc} \
102%{mcpu=rios: -mpwr} \
103%{mcpu=rios1: -mpwr} \
104%{mcpu=rios2: -mpwrx} \
105%{mcpu=rsc: -mpwr} \
106%{mcpu=rsc1: -mpwr} \
107%{mcpu=401: -mppc} \
108%{mcpu=403: -mppc} \
3b370352 109%{mcpu=405: -mppc} \
f984d8df
DB
110%{mcpu=505: -mppc} \
111%{mcpu=601: -m601} \
112%{mcpu=602: -mppc} \
113%{mcpu=603: -mppc} \
114%{mcpu=603e: -mppc} \
115%{mcpu=ec603e: -mppc} \
116%{mcpu=604: -mppc} \
117%{mcpu=604e: -mppc} \
118%{mcpu=620: -mppc} \
119%{mcpu=740: -mppc} \
fd3b43f2 120%{mcpu=7400: -mppc} \
f18c054f 121%{mcpu=7450: -mppc} \
f984d8df
DB
122%{mcpu=750: -mppc} \
123%{mcpu=801: -mppc} \
124%{mcpu=821: -mppc} \
125%{mcpu=823: -mppc} \
775db490
AH
126%{mcpu=860: -mppc} \
127%{maltivec: -maltivec}"
f984d8df
DB
128
129#define CPP_DEFAULT_SPEC ""
130
131#define ASM_DEFAULT_SPEC ""
132
841faeed
MM
133/* This macro defines names of additional specifications to put in the specs
134 that can be used in various specifications like CC1_SPEC. Its definition
135 is an initializer with a subgrouping for each command option.
136
137 Each subgrouping contains a string constant, that defines the
138 specification name, and a string constant that used by the GNU CC driver
139 program.
140
141 Do not define this macro if it does not need to do anything. */
142
7509c759 143#define SUBTARGET_EXTRA_SPECS
7509c759 144
c81bebd7
MM
145#define EXTRA_SPECS \
146 { "cpp_cpu", CPP_CPU_SPEC }, \
147 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
148 { "asm_cpu", ASM_CPU_SPEC }, \
149 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
150 SUBTARGET_EXTRA_SPECS
151
fb623df5 152/* Architecture type. */
f045b2c9 153
fb623df5
RK
154extern int target_flags;
155
156/* Use POWER architecture instructions and MQ register. */
38c1f2d7 157#define MASK_POWER 0x00000001
fb623df5 158
6febd581 159/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 160#define MASK_POWER2 0x00000002
6febd581 161
fb623df5 162/* Use PowerPC architecture instructions. */
38c1f2d7 163#define MASK_POWERPC 0x00000004
6febd581 164
583cf4db 165/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 166#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
167
168/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 169#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 170
fb623df5 171/* Use PowerPC-64 architecture instructions. */
38c1f2d7 172#define MASK_POWERPC64 0x00000020
f045b2c9 173
fb623df5 174/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 175#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
176
177/* Disable placing fp constants in the TOC; can be turned on when the
178 TOC overflows. */
38c1f2d7 179#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 180
0b9ccabc
RK
181/* Disable placing symbol+offset constants in the TOC; can be turned on when
182 the TOC overflows. */
38c1f2d7 183#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 184
fb623df5 185/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
186 there are more than 16K unique variables/constants in an executable. With
187 this option, linking fails only if there are more than 16K modules, or
188 if there are more than 16K unique variables/constant in a single module.
189
190 This is at the cost of having 2 extra loads and one extra store per
956d6950 191 function, and one less allocable register. */
38c1f2d7 192#define MASK_MINIMAL_TOC 0x00000200
642a35f1 193
9e654916 194/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
38c1f2d7 195#define MASK_64BIT 0x00000400
9e654916 196
f85f4585 197/* Disable use of FPRs. */
38c1f2d7 198#define MASK_SOFT_FLOAT 0x00000800
f85f4585 199
4d30c363 200/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
201#define MASK_MULTIPLE 0x00001000
202#define MASK_MULTIPLE_SET 0x00002000
4d30c363 203
7e69e155 204/* Use string instructions for block moves */
38c1f2d7
MM
205#define MASK_STRING 0x00004000
206#define MASK_STRING_SET 0x00008000
7e69e155 207
38c1f2d7
MM
208/* Disable update form of load/store */
209#define MASK_NO_UPDATE 0x00010000
210
211/* Disable fused multiply/add operations */
212#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 213
9ebbca7d
GK
214/* Nonzero if we need to schedule the prolog and epilog. */
215#define MASK_SCHED_PROLOG 0x00040000
216
0ac081f6
AH
217/* Use AltiVec instructions. */
218#define MASK_ALTIVEC 0x00080000
219
6fa3f289
ZW
220/* Return small structures in memory (as the AIX ABI requires). */
221#define MASK_AIX_STRUCT_RET 0x00100000
222#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 223
6fa3f289
ZW
224/* The only remaining free bit is 0x00400000. sysv4.h uses
225 0x00800000 -> 0x40000000, and 0x80000000 is not available
226 because target_flags is signed. */
06f4e019 227
7e69e155
MM
228#define TARGET_POWER (target_flags & MASK_POWER)
229#define TARGET_POWER2 (target_flags & MASK_POWER2)
230#define TARGET_POWERPC (target_flags & MASK_POWERPC)
231#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
232#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
233#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
234#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
235#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
236#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
237#define TARGET_64BIT (target_flags & MASK_64BIT)
238#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
239#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
240#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
241#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 242#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
243#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
244#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 245#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 246#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 247#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 248
2f3e5814 249#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 250#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
251#define TARGET_UPDATE (! TARGET_NO_UPDATE)
252#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 253
996ed075
JJ
254#ifdef IN_LIBGCC2
255/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 256#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
257#define TARGET_POWERPC64 1
258#else
259#define TARGET_POWERPC64 0
260#endif
b6c9286a 261#else
9ebbca7d 262#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
263#endif
264
a3950905 265#define TARGET_XL_CALL 0
a3950905 266
fb623df5 267/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 268
fb623df5 269 Macro to define tables used to set the flags.
f045b2c9
RS
270 This is a list in braces of pairs in braces,
271 each pair being { "NAME", VALUE }
272 where VALUE is the bits to set or minus the bits to clear.
273 An empty string NAME is used to identify the default VALUE. */
274
938937d8 275#define TARGET_SWITCHES \
9ebbca7d 276 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 277 N_("Use POWER instruction set")}, \
938937d8 278 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 279 | MASK_POWER2), \
047142d3 280 N_("Use POWER2 instruction set")}, \
9ebbca7d 281 {"no-power2", - MASK_POWER2, \
047142d3 282 N_("Do not use POWER2 instruction set")}, \
938937d8 283 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 284 | MASK_STRING), \
047142d3 285 N_("Do not use POWER instruction set")}, \
9ebbca7d 286 {"powerpc", MASK_POWERPC, \
047142d3 287 N_("Use PowerPC instruction set")}, \
938937d8 288 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 289 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 290 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 291 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 292 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 293 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 294 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 295 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 296 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 297 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 298 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 299 {"powerpc64", MASK_POWERPC64, \
047142d3 300 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 301 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 302 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 303 {"altivec", MASK_ALTIVEC , \
c725bd79 304 N_("Use AltiVec instructions")}, \
f18c054f 305 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 306 N_("Don't use AltiVec instructions")}, \
9ebbca7d 307 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 308 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 309 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 310 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 311 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 312 | MASK_MINIMAL_TOC), \
047142d3 313 N_("Put everything in the regular TOC")}, \
9ebbca7d 314 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 315 N_("Place floating point constants in TOC")}, \
9ebbca7d 316 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 317 N_("Don't place floating point constants in TOC")},\
9ebbca7d 318 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 319 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 320 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 321 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
322 {"minimal-toc", MASK_MINIMAL_TOC, \
323 "Use only one TOC entry per procedure"}, \
324 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 325 ""}, \
9ebbca7d 326 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 327 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 328 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 329 N_("Use hardware fp")}, \
9ebbca7d 330 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 331 N_("Do not use hardware fp")}, \
9ebbca7d 332 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 333 N_("Generate load/store multiple instructions")}, \
9ebbca7d 334 {"no-multiple", - MASK_MULTIPLE, \
047142d3 335 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 336 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 337 ""}, \
9ebbca7d 338 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 339 N_("Generate string instructions for block moves")},\
9ebbca7d 340 {"no-string", - MASK_STRING, \
047142d3 341 N_("Do not generate string instructions for block moves")},\
9ebbca7d 342 {"no-string", MASK_STRING_SET, \
047142d3 343 ""}, \
9ebbca7d 344 {"update", - MASK_NO_UPDATE, \
047142d3 345 N_("Generate load/store with update instructions")},\
9ebbca7d 346 {"no-update", MASK_NO_UPDATE, \
047142d3 347 N_("Do not generate load/store with update instructions")},\
9ebbca7d 348 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 349 N_("Generate fused multiply/add instructions")},\
9ebbca7d 350 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 351 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
352 {"sched-prolog", MASK_SCHED_PROLOG, \
353 ""}, \
354 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 355 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
356 {"sched-epilog", MASK_SCHED_PROLOG, \
357 ""}, \
358 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
359 ""}, \
6fa3f289
ZW
360 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
361 N_("Return all structures in memory (AIX default)")},\
362 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
363 N_("Return small structures in registers (SVR4 default)")},\
364 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
365 ""},\
366 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
367 ""},\
368 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
369 ""},\
370 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
371 ""},\
938937d8 372 SUBTARGET_SWITCHES \
9ebbca7d
GK
373 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
374 ""}}
fb623df5 375
938937d8 376#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
377
378/* This is meant to be redefined in the host dependent files */
379#define SUBTARGET_SWITCHES
fb623df5 380
cac8ce95 381/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 382enum processor_type
bef84347
VM
383 {
384 PROCESSOR_RIOS1,
385 PROCESSOR_RIOS2,
3cb999d8 386 PROCESSOR_RS64A,
bef84347
VM
387 PROCESSOR_MPCCORE,
388 PROCESSOR_PPC403,
fe7f5677 389 PROCESSOR_PPC405,
bef84347
VM
390 PROCESSOR_PPC601,
391 PROCESSOR_PPC603,
392 PROCESSOR_PPC604,
393 PROCESSOR_PPC604e,
394 PROCESSOR_PPC620,
3cb999d8 395 PROCESSOR_PPC630,
ed947a96
DJ
396 PROCESSOR_PPC750,
397 PROCESSOR_PPC7400,
398 PROCESSOR_PPC7450
bef84347 399};
fb623df5
RK
400
401extern enum processor_type rs6000_cpu;
402
403/* Recast the processor type to the cpu attribute. */
404#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
405
8482e358 406/* Define generic processor types based upon current deployment. */
3cb999d8
DE
407#define PROCESSOR_COMMON PROCESSOR_PPC601
408#define PROCESSOR_POWER PROCESSOR_RIOS1
409#define PROCESSOR_POWERPC PROCESSOR_PPC604
410#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 411
fb623df5 412/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
413#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
414#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 415
6febd581
RK
416/* Specify the dialect of assembler to use. New mnemonics is dialect one
417 and the old mnemonics are dialect zero. */
9ebbca7d 418#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 419
fb623df5
RK
420/* This macro is similar to `TARGET_SWITCHES' but defines names of
421 command options that have values. Its definition is an
422 initializer with a subgrouping for each command option.
423
424 Each subgrouping contains a string constant, that defines the
425 fixed part of the option name, and the address of a variable.
426 The variable, type `char *', is set to the variable part of the
427 given option if the fixed part matches. The actual option name
428 is made by appending `-m' to the specified name.
429
430 Here is an example which defines `-mshort-data-NUMBER'. If the
431 given option is `-mshort-data-512', the variable `m88k_short_data'
432 will be set to the string `"512"'.
433
434 extern char *m88k_short_data;
435 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
436
956d6950 437/* This is meant to be overridden in target specific files. */
b6c9286a 438#define SUBTARGET_OPTIONS
b6c9286a 439
9ebbca7d
GK
440#define TARGET_OPTIONS \
441{ \
047142d3
PT
442 {"cpu=", &rs6000_select[1].string, \
443 N_("Use features of and schedule code for given CPU") }, \
444 {"tune=", &rs6000_select[2].string, \
445 N_("Schedule code for given CPU") }, \
446 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
0ac081f6 447 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
448 {"long-double-", &rs6000_long_double_size_string, \
449 N_("Specify size of long double (64 or 128 bits)") }, \
9ebbca7d 450 SUBTARGET_OPTIONS \
b6c9286a 451}
fb623df5 452
ff222560 453/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
454struct rs6000_cpu_select
455{
815cdc52
MM
456 const char *string;
457 const char *name;
8e3f41e7
MM
458 int set_tune_p;
459 int set_arch_p;
460};
461
462extern struct rs6000_cpu_select rs6000_select[];
fb623df5 463
38c1f2d7 464/* Debug support */
0ac081f6 465extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 466extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
467extern int rs6000_debug_stack; /* debug stack applications */
468extern int rs6000_debug_arg; /* debug argument handling */
469
470#define TARGET_DEBUG_STACK rs6000_debug_stack
471#define TARGET_DEBUG_ARG rs6000_debug_arg
472
6fa3f289
ZW
473/* These are separate from target_flags because we've run out of bits
474 there. */
475extern const char *rs6000_long_double_size_string;
476extern int rs6000_long_double_type_size;
477extern int rs6000_altivec_abi;
478
479#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
480#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
481
fb623df5
RK
482/* Sometimes certain combinations of command options do not make sense
483 on a particular target machine. You can define a macro
484 `OVERRIDE_OPTIONS' to take account of this. This macro, if
485 defined, is executed once just after all the command options have
486 been parsed.
487
5accd822
DE
488 Don't use this macro to turn on various extra optimizations for
489 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
490
fb623df5
RK
491 On the RS/6000 this is used to define the target cpu type. */
492
8e3f41e7 493#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 494
5accd822
DE
495/* Define this to change the optimizations performed by default. */
496#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
497
4f074454
RK
498/* Show we can debug even without a frame pointer. */
499#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
500\f
501/* target machine storage layout */
502
df44fa77
RK
503/* Define to support cross compilation to an RS6000 target. */
504#define REAL_ARITHMETIC
505
13d39dbc 506/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 507 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
508 the value is constrained to be within the bounds of the declared
509 type, but kept valid in the wider mode. The signedness of the
510 extension may differ from that of the type. */
511
39403d82
DE
512#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
513 if (GET_MODE_CLASS (MODE) == MODE_INT \
514 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 515 (MODE) = word_mode;
39403d82
DE
516
517/* Define this if function arguments should also be promoted using the above
518 procedure. */
519
520#define PROMOTE_FUNCTION_ARGS
521
522/* Likewise, if the function return value is promoted. */
523
524#define PROMOTE_FUNCTION_RETURN
ef457bda 525
f045b2c9 526/* Define this if most significant bit is lowest numbered
82e41834
KH
527 in instructions that operate on numbered bit-fields. */
528/* That is true on RS/6000. */
f045b2c9
RS
529#define BITS_BIG_ENDIAN 1
530
531/* Define this if most significant byte of a word is the lowest numbered. */
532/* That is true on RS/6000. */
533#define BYTES_BIG_ENDIAN 1
534
535/* Define this if most significant word of a multiword number is lowest
c81bebd7 536 numbered.
f045b2c9
RS
537
538 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 539 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
540#define WORDS_BIG_ENDIAN 1
541
fdaff8ba 542/* number of bits in an addressable storage unit */
f045b2c9
RS
543#define BITS_PER_UNIT 8
544
545/* Width in bits of a "word", which is the contents of a machine register.
546 Note that this is not necessarily the width of data type `int';
547 if using 16-bit ints on a 68000, this would still be 32.
548 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 549#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 550#define MAX_BITS_PER_WORD 64
f045b2c9
RS
551
552/* Width of a word, in units (bytes). */
2f3e5814 553#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 554#define MIN_UNITS_PER_WORD 4
2e360ab3 555#define UNITS_PER_FP_WORD 8
0ac081f6 556#define UNITS_PER_ALTIVEC_WORD 16
f045b2c9 557
915f619f
JW
558/* Type used for ptrdiff_t, as a string used in a declaration. */
559#define PTRDIFF_TYPE "int"
560
058ef853
DE
561/* Type used for size_t, as a string used in a declaration. */
562#define SIZE_TYPE "long unsigned int"
563
f045b2c9
RS
564/* Type used for wchar_t, as a string used in a declaration. */
565#define WCHAR_TYPE "short unsigned int"
566
567/* Width of wchar_t in bits. */
568#define WCHAR_TYPE_SIZE 16
569
9e654916
RK
570/* A C expression for the size in bits of the type `short' on the
571 target machine. If you don't define this, the default is half a
572 word. (If this would be less than one storage unit, it is
573 rounded up to one unit.) */
574#define SHORT_TYPE_SIZE 16
575
576/* A C expression for the size in bits of the type `int' on the
577 target machine. If you don't define this, the default is one
578 word. */
19d2d16f 579#define INT_TYPE_SIZE 32
9e654916
RK
580
581/* A C expression for the size in bits of the type `long' on the
582 target machine. If you don't define this, the default is one
583 word. */
2f3e5814 584#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
585#define MAX_LONG_TYPE_SIZE 64
586
587/* A C expression for the size in bits of the type `long long' on the
588 target machine. If you don't define this, the default is two
589 words. */
590#define LONG_LONG_TYPE_SIZE 64
591
592/* A C expression for the size in bits of the type `char' on the
593 target machine. If you don't define this, the default is one
594 quarter of a word. (If this would be less than one storage unit,
595 it is rounded up to one unit.) */
596#define CHAR_TYPE_SIZE BITS_PER_UNIT
597
598/* A C expression for the size in bits of the type `float' on the
599 target machine. If you don't define this, the default is one
600 word. */
601#define FLOAT_TYPE_SIZE 32
602
603/* A C expression for the size in bits of the type `double' on the
604 target machine. If you don't define this, the default is two
605 words. */
606#define DOUBLE_TYPE_SIZE 64
607
608/* A C expression for the size in bits of the type `long double' on
609 the target machine. If you don't define this, the default is two
610 words. */
6fa3f289 611#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
612
613/* Constant which presents upper bound of the above value. */
614#define MAX_LONG_DOUBLE_TYPE_SIZE 128
615
616/* Define this to set long double type size to use in libgcc2.c, which can
617 not depend on target_flags. */
618#ifdef __LONG_DOUBLE_128__
619#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
620#else
621#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
622#endif
9e654916 623
f045b2c9
RS
624/* Width in bits of a pointer.
625 See also the macro `Pmode' defined below. */
2f3e5814 626#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
627
628/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 629#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
630
631/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 632#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
633
634/* Allocation boundary (in *bits*) for the code of a function. */
635#define FUNCTION_BOUNDARY 32
636
637/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
638#define BIGGEST_ALIGNMENT 128
639
640/* A C expression to compute the alignment for a variables in the
641 local store. TYPE is the data type, and ALIGN is the alignment
642 that the object would ordinarily have. */
643#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a4edd584 644 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
b73fd26c 645
e1565e65
DE
646/* Handle #pragma pack. */
647#define HANDLE_PRAGMA_PACK 1
648
f045b2c9
RS
649/* Alignment of field after `int : 0' in a structure. */
650#define EMPTY_FIELD_BOUNDARY 32
651
652/* Every structure's size must be a multiple of this. */
653#define STRUCTURE_SIZE_BOUNDARY 8
654
655/* A bitfield declared as `int' forces `int' alignment for the struct. */
656#define PCC_BITFIELD_TYPE_MATTERS 1
657
658/* Make strings word-aligned so strcpy from constants will be faster. */
659#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
660 (TREE_CODE (EXP) == STRING_CST \
661 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
662
0ac081f6
AH
663/* Make arrays of chars word-aligned for the same reasons.
664 Align vectors to 128 bits. */
f045b2c9 665#define DATA_ALIGNMENT(TYPE, ALIGN) \
0ac081f6
AH
666 (TREE_CODE (TYPE) == VECTOR_TYPE ? 128 \
667 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
668 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
669 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
670
fdaff8ba 671/* Non-zero if move instructions will actually fail to work
f045b2c9 672 when given unaligned data. */
fdaff8ba 673#define STRICT_ALIGNMENT 0
e1565e65
DE
674
675/* Define this macro to be the value 1 if unaligned accesses have a cost
676 many times greater than aligned accesses, for example if they are
677 emulated in a trap handler. */
41543739
GK
678#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
679 (STRICT_ALIGNMENT \
680 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
681 && (ALIGN) < 32))
f045b2c9
RS
682\f
683/* Standard register usage. */
684
685/* Number of actual hardware registers.
686 The hardware registers are assigned numbers for the compiler
687 from 0 to just below FIRST_PSEUDO_REGISTER.
688 All registers that the compiler knows about must be given numbers,
689 even those that are not normally considered general registers.
690
691 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
692 an MQ register, a count register, a link register, and 8 condition
693 register fields, which we view here as separate registers.
694
695 In addition, the difference between the frame and argument pointers is
696 a function of the number of registers saved, so we need to have a
697 register for AP that will later be eliminated in favor of SP or FP.
802a0058 698 This is a normal register, but it is fixed.
f045b2c9 699
802a0058
MM
700 We also create a pseudo register for float/int conversions, that will
701 really represent the memory location used. It is represented here as
702 a register, in order to work around problems in allocating stack storage
703 in inline functions. */
704
0ac081f6 705#define FIRST_PSEUDO_REGISTER 110
f045b2c9 706
d6a7951f 707/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 708#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 709
f045b2c9
RS
710/* 1 for registers that have pervasive standard uses
711 and are not available for the register allocator.
712
5dead3e5
DJ
713 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
714 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 715
a127c4e5
RK
716 cr5 is not supposed to be used.
717
718 On System V implementations, r13 is fixed and not available for use. */
719
f045b2c9 720#define FIXED_REGISTERS \
5dead3e5 721 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
722 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
724 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
725 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
726 /* AltiVec registers. */ \
727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 729 1 \
0ac081f6 730}
f045b2c9
RS
731
732/* 1 for registers not available across function calls.
733 These must include the FIXED_REGISTERS and also any
734 registers that can be used without being saved.
735 The latter must include the registers where values are returned
736 and the register where structure-value addresses are passed.
737 Aside from that, you can include as many other registers as you like. */
738
739#define CALL_USED_REGISTERS \
a127c4e5 740 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
741 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
742 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
743 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
744 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
745 /* AltiVec registers. */ \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 748 1 \
0ac081f6
AH
749}
750
289e96b2
AH
751/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
752 the entire set of `FIXED_REGISTERS' be included.
753 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
754 This macro is optional. If not specified, it defaults to the value
755 of `CALL_USED_REGISTERS'. */
756
757#define CALL_REALLY_USED_REGISTERS \
758 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
759 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
760 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
761 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
762 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
763 /* AltiVec registers. */ \
764 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
765 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
766 0 \
767}
f045b2c9 768
9ebbca7d
GK
769#define MQ_REGNO 64
770#define CR0_REGNO 68
771#define CR1_REGNO 69
772#define CR2_REGNO 70
773#define CR3_REGNO 71
774#define CR4_REGNO 72
775#define MAX_CR_REGNO 75
776#define XER_REGNO 76
0ac081f6
AH
777#define FIRST_ALTIVEC_REGNO 77
778#define LAST_ALTIVEC_REGNO 108
00b960c7 779#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO)
0ac081f6 780#define VRSAVE_REGNO 109
9ebbca7d 781
f045b2c9
RS
782/* List the order in which to allocate registers. Each register must be
783 listed once, even those in FIXED_REGISTERS.
784
785 We allocate in the following order:
786 fp0 (not saved or used for anything)
787 fp13 - fp2 (not saved; incoming fp arg registers)
788 fp1 (not saved; return value)
789 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
790 cr7, cr6 (not saved or special)
791 cr1 (not saved, but used for FP operations)
f045b2c9 792 cr0 (not saved, but used for arithmetic operations)
5accd822 793 cr4, cr3, cr2 (saved)
f045b2c9
RS
794 r0 (not saved; cannot be base reg)
795 r9 (not saved; best for TImode)
796 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
797 r3 (not saved; return value register)
798 r31 - r13 (saved; order given to save least number)
799 r12 (not saved; if used for DImode or DFmode would use r13)
800 mq (not saved; best to use it if we can)
801 ctr (not saved; when we have the choice ctr is better)
802 lr (saved)
0ac081f6
AH
803 cr5, r1, r2, ap, xer, vrsave (fixed)
804
805 AltiVec registers:
806 v0 - v1 (not saved or used for anything)
807 v13 - v3 (not saved; incoming vector arg registers)
808 v2 (not saved; incoming vector arg reg; return value)
809 v19 - v14 (not saved or used for anything)
810 v31 - v20 (saved; order given to save least number)
811*/
812
f045b2c9
RS
813
814#define REG_ALLOC_ORDER \
815 {32, \
816 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
817 33, \
818 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
819 50, 49, 48, 47, 46, \
5accd822 820 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
821 0, \
822 9, 11, 10, 8, 7, 6, 5, 4, \
823 3, \
824 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
825 18, 17, 16, 15, 14, 13, 12, \
826 64, 66, 65, \
0ac081f6
AH
827 73, 1, 2, 67, 76, \
828 /* AltiVec registers. */ \
829 77, 78, \
830 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
831 79, \
832 96, 95, 94, 93, 92, 91, \
58568475
AH
833 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
834 97, 109 \
0ac081f6 835}
f045b2c9
RS
836
837/* True if register is floating-point. */
838#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
839
840/* True if register is a condition register. */
841#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
842
815cdc52
MM
843/* True if register is a condition register, but not cr0. */
844#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
845
f045b2c9 846/* True if register is an integer register. */
9ebbca7d 847#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 848
0d86f538 849/* True if register is the XER register. */
9ebbca7d 850#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 851
0ac081f6
AH
852/* True if register is an AltiVec register. */
853#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
854
f045b2c9
RS
855/* Return number of consecutive hard regs needed starting at reg REGNO
856 to hold something of mode MODE.
857 This is ordinarily the length in words of a value of mode MODE
858 but can be less for certain modes in special long registers.
859
a260abc9
DE
860 POWER and PowerPC GPRs hold 32 bits worth;
861 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 862
802a0058 863#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 864 (FP_REGNO_P (REGNO) \
2e360ab3 865 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
0ac081f6
AH
866 : ALTIVEC_REGNO_P (REGNO) \
867 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
868 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
869
0ac081f6
AH
870#define ALTIVEC_VECTOR_MODE(MODE) \
871 ((MODE) == V16QImode \
872 || (MODE) == V8HImode \
873 || (MODE) == V4SFmode \
874 || (MODE) == V4SImode)
875
876/* Define this macro to be nonzero if the port is prepared to handle
877 insns involving vector mode MODE. At the very least, it must have
878 move patterns for this mode. */
879
880#define VECTOR_MODE_SUPPORTED_P(MODE) \
881 (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
882
f045b2c9 883/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
884 For POWER and PowerPC, the GPRs can hold any mode, but the float
885 registers only can hold floating modes and DImode, and CR register only
886 can hold CC modes. We cannot put TImode anywhere except general
82e41834 887 register and it must be able to fit within the register set. */
f045b2c9 888
802a0058
MM
889#define HARD_REGNO_MODE_OK(REGNO, MODE) \
890 (FP_REGNO_P (REGNO) ? \
891 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
892 || (GET_MODE_CLASS (MODE) == MODE_INT \
893 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 894 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
802a0058 895 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 896 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
802a0058 897 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 898 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
899 : 1)
900
901/* Value is 1 if it is a good idea to tie two pseudo registers
902 when one has mode MODE1 and one has mode MODE2.
903 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
904 for any hard reg, then this must be 0 for correct output. */
905#define MODES_TIEABLE_P(MODE1, MODE2) \
906 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
907 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
908 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
909 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
910 : GET_MODE_CLASS (MODE1) == MODE_CC \
911 ? GET_MODE_CLASS (MODE2) == MODE_CC \
912 : GET_MODE_CLASS (MODE2) == MODE_CC \
913 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
914 : ALTIVEC_VECTOR_MODE (MODE1) \
915 ? ALTIVEC_VECTOR_MODE (MODE2) \
916 : ALTIVEC_VECTOR_MODE (MODE2) \
917 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
918 : 1)
919
920/* A C expression returning the cost of moving data from a register of class
921 CLASS1 to one of CLASS2.
922
923 On the RS/6000, copying between floating-point and fixed-point
924 registers is expensive. */
925
cf011243 926#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
0ac081f6 927 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
f045b2c9
RS
928 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
929 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
0ac081f6
AH
930 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
931 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
a4b970a0 932 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
933 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
934 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 935 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 936 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 937 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
938 : 2)
939
940/* A C expressions returning the cost of moving data of MODE from a register to
941 or from memory.
942
943 On the RS/6000, bump this up a bit. */
944
e1565e65
DE
945#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
946 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
ab4a5fc9
RK
947 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
948 ? 3 : 2) \
949 + 4)
f045b2c9
RS
950
951/* Specify the cost of a branch insn; roughly the number of extra insns that
952 should be added to avoid a branch.
953
ef457bda 954 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
955 unscheduled conditional branch. */
956
ef457bda 957#define BRANCH_COST 3
f045b2c9 958
6febd581
RK
959/* Define this macro to change register usage conditional on target flags.
960 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 961 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 962 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
963 Conditionally disable FPRs. */
964
8d30c4ee
FS
965#define CONDITIONAL_REGISTER_USAGE \
966{ \
e9e4208a 967 int i; \
8d30c4ee
FS
968 if (! TARGET_POWER) \
969 fixed_regs[64] = 1; \
970 if (TARGET_64BIT) \
289e96b2
AH
971 fixed_regs[13] = call_used_regs[13] \
972 = call_really_used_regs[13] = 1; \
8d30c4ee
FS
973 if (TARGET_SOFT_FLOAT) \
974 for (i = 32; i < 64; i++) \
289e96b2
AH
975 fixed_regs[i] = call_used_regs[i] \
976 = call_really_used_regs[i] = 1; \
f607bc57 977 if (DEFAULT_ABI == ABI_V4 && flag_pic == 1) \
8d30c4ee 978 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
289e96b2
AH
979 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
980 = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
ee890fe2
SS
981 if (DEFAULT_ABI == ABI_DARWIN && flag_pic) \
982 global_regs[PIC_OFFSET_TABLE_REGNUM] \
983 = fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
289e96b2
AH
984 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
985 = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
2473ee11
AH
986 if (! TARGET_ALTIVEC) \
987 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
289e96b2 988 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
0ac081f6 989 if (TARGET_ALTIVEC_ABI) \
2473ee11 990 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 991 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 992}
6febd581 993
f045b2c9
RS
994/* Specify the registers used for certain standard purposes.
995 The values of these macros are register numbers. */
996
997/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
998/* #define PC_REGNUM */
999
1000/* Register to use for pushing function arguments. */
1001#define STACK_POINTER_REGNUM 1
1002
1003/* Base register for access to local variables of the function. */
1004#define FRAME_POINTER_REGNUM 31
1005
1006/* Value should be nonzero if functions must have frame pointers.
1007 Zero means the frame pointer need not be set up (and parms
1008 may be accessed via the stack pointer) in functions that seem suitable.
1009 This is computed in `reload', in reload1.c. */
1010#define FRAME_POINTER_REQUIRED 0
1011
1012/* Base register for access to arguments of the function. */
1013#define ARG_POINTER_REGNUM 67
1014
1015/* Place to put static chain when calling a function that requires it. */
1016#define STATIC_CHAIN_REGNUM 11
1017
82e41834 1018/* Link register number. */
9ebbca7d 1019#define LINK_REGISTER_REGNUM 65
b6c9286a 1020
82e41834 1021/* Count register number. */
9ebbca7d 1022#define COUNT_REGISTER_REGNUM 66
802a0058 1023
f045b2c9
RS
1024/* Place that structure value return address is placed.
1025
1026 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1027#define STRUCT_VALUE 0
f045b2c9
RS
1028\f
1029/* Define the classes of registers for register constraints in the
1030 machine description. Also define ranges of constants.
1031
1032 One of the classes must always be named ALL_REGS and include all hard regs.
1033 If there is more than one class, another class must be named NO_REGS
1034 and contain no registers.
1035
1036 The name GENERAL_REGS must be the name of a class (or an alias for
1037 another name such as ALL_REGS). This is the class of registers
1038 that is allowed by "g" or "r" in a register constraint.
1039 Also, registers outside this class are allocated only when
1040 instructions express preferences for them.
1041
1042 The classes must be numbered in nondecreasing order; that is,
1043 a larger-numbered class must never be contained completely
1044 in a smaller-numbered class.
1045
1046 For any two classes, it is very desirable that there be another
1047 class that represents their union. */
c81bebd7 1048
f045b2c9
RS
1049/* The RS/6000 has three types of registers, fixed-point, floating-point,
1050 and condition registers, plus three special registers, MQ, CTR, and the
1051 link register.
1052
1053 However, r0 is special in that it cannot be used as a base register.
1054 So make a class for registers valid as base registers.
1055
1056 Also, cr0 is the only condition code register that can be used in
0d86f538 1057 arithmetic insns, so make a separate class for it. */
f045b2c9 1058
ebedb4dd
MM
1059enum reg_class
1060{
1061 NO_REGS,
ebedb4dd
MM
1062 BASE_REGS,
1063 GENERAL_REGS,
1064 FLOAT_REGS,
0ac081f6
AH
1065 ALTIVEC_REGS,
1066 VRSAVE_REGS,
ebedb4dd
MM
1067 NON_SPECIAL_REGS,
1068 MQ_REGS,
1069 LINK_REGS,
1070 CTR_REGS,
1071 LINK_OR_CTR_REGS,
1072 SPECIAL_REGS,
1073 SPEC_OR_GEN_REGS,
1074 CR0_REGS,
ebedb4dd
MM
1075 CR_REGS,
1076 NON_FLOAT_REGS,
9ebbca7d 1077 XER_REGS,
ebedb4dd
MM
1078 ALL_REGS,
1079 LIM_REG_CLASSES
1080};
f045b2c9
RS
1081
1082#define N_REG_CLASSES (int) LIM_REG_CLASSES
1083
82e41834 1084/* Give names of register classes as strings for dump file. */
f045b2c9 1085
ebedb4dd
MM
1086#define REG_CLASS_NAMES \
1087{ \
1088 "NO_REGS", \
ebedb4dd
MM
1089 "BASE_REGS", \
1090 "GENERAL_REGS", \
1091 "FLOAT_REGS", \
0ac081f6
AH
1092 "ALTIVEC_REGS", \
1093 "VRSAVE_REGS", \
ebedb4dd
MM
1094 "NON_SPECIAL_REGS", \
1095 "MQ_REGS", \
1096 "LINK_REGS", \
1097 "CTR_REGS", \
1098 "LINK_OR_CTR_REGS", \
1099 "SPECIAL_REGS", \
1100 "SPEC_OR_GEN_REGS", \
1101 "CR0_REGS", \
ebedb4dd
MM
1102 "CR_REGS", \
1103 "NON_FLOAT_REGS", \
9ebbca7d 1104 "XER_REGS", \
ebedb4dd
MM
1105 "ALL_REGS" \
1106}
f045b2c9
RS
1107
1108/* Define which registers fit in which classes.
1109 This is an initializer for a vector of HARD_REG_SET
1110 of length N_REG_CLASSES. */
1111
0ac081f6
AH
1112#define REG_CLASS_CONTENTS \
1113{ \
1114 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1115 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1116 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1117 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1118 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1119 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
0ac081f6
AH
1120 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1121 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1122 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1123 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1124 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1125 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1126 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1127 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1128 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1129 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1130 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1131 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1132}
f045b2c9
RS
1133
1134/* The same information, inverted:
1135 Return the class number of the smallest class containing
1136 reg number REGNO. This could be a conditional expression
1137 or could index an array. */
1138
0d86f538
GK
1139#define REGNO_REG_CLASS(REGNO) \
1140 ((REGNO) == 0 ? GENERAL_REGS \
1141 : (REGNO) < 32 ? BASE_REGS \
1142 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1143 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1144 : (REGNO) == CR0_REGNO ? CR0_REGS \
1145 : CR_REGNO_P (REGNO) ? CR_REGS \
1146 : (REGNO) == MQ_REGNO ? MQ_REGS \
1147 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1148 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1149 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1150 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1151 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
f045b2c9
RS
1152 : NO_REGS)
1153
1154/* The class value for index registers, and the one for base regs. */
1155#define INDEX_REG_CLASS GENERAL_REGS
1156#define BASE_REG_CLASS BASE_REGS
1157
1158/* Get reg_class from a letter such as appears in the machine description. */
1159
1160#define REG_CLASS_FROM_LETTER(C) \
1161 ((C) == 'f' ? FLOAT_REGS \
1162 : (C) == 'b' ? BASE_REGS \
1163 : (C) == 'h' ? SPECIAL_REGS \
1164 : (C) == 'q' ? MQ_REGS \
1165 : (C) == 'c' ? CTR_REGS \
1166 : (C) == 'l' ? LINK_REGS \
0ac081f6 1167 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1168 : (C) == 'x' ? CR0_REGS \
1169 : (C) == 'y' ? CR_REGS \
9ebbca7d 1170 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1171 : NO_REGS)
1172
1173/* The letters I, J, K, L, M, N, and P in a register constraint string
1174 can be used to stand for particular ranges of immediate operands.
1175 This macro defines what the ranges are.
1176 C is the letter, and VALUE is a constant value.
1177 Return 1 if VALUE is in the range specified by C.
1178
9615f239 1179 `I' is a signed 16-bit constant
f045b2c9
RS
1180 `J' is a constant with only the high-order 16 bits non-zero
1181 `K' is a constant with only the low-order 16 bits non-zero
9615f239 1182 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1183 `M' is a constant that is greater than 31
2bfcf297 1184 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1185 `O' is the constant zero
1186 `P' is a constant whose negation is a signed 16-bit constant */
1187
5b6f7b96
RK
1188#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1189 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1190 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1191 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1192 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1193 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1194 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1195 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1196 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1197 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1198 : 0)
1199
1200/* Similar, but for floating constants, and defining letters G and H.
1201 Here VALUE is the CONST_DOUBLE rtx itself.
1202
1203 We flag for special constants when we can copy the constant into
4e74d8ec 1204 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1205
c4c40373 1206 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1207
1208#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1209 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1210 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1211 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1212 : 0)
f045b2c9
RS
1213
1214/* Optional extra constraints for this machine.
1215
b6c9286a
MM
1216 'Q' means that is a memory operand that is just an offset from a reg.
1217 'R' is for AIX TOC entries.
a260abc9 1218 'S' is a constant that can be placed into a 64-bit mask operand
9615f239 1219 'T' is a consatnt that can be placed into a 32-bit mask operand
88228c4b 1220 'U' is for V.4 small data references. */
f045b2c9 1221
e8a8bc24
RK
1222#define EXTRA_CONSTRAINT(OP, C) \
1223 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1224 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
a260abc9 1225 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
9615f239 1226 : (C) == 'T' ? mask_operand (OP, VOIDmode) \
f607bc57 1227 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1228 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1229 : 0)
f045b2c9
RS
1230
1231/* Given an rtx X being reloaded into a reg required to be
1232 in class CLASS, return the class of reg to actually use.
1233 In general this is just CLASS; but on some machines
c81bebd7 1234 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1235
1236 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1237 floating-point CONST_DOUBLE to force it to be copied to memory.
1238
1239 We also don't want to reload integer values into floating-point
1240 registers if we can at all help it. In fact, this can
1241 cause reload to abort, if it tries to generate a reload of CTR
1242 into a FP register and discovers it doesn't have the memory location
1243 required.
1244
1245 ??? Would it be a good idea to have reload do the converse, that is
1246 try to reload floating modes into FP registers if possible?
1247 */
f045b2c9 1248
802a0058 1249#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1250 (((GET_CODE (X) == CONST_DOUBLE \
1251 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1252 ? NO_REGS \
1253 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1254 && (CLASS) == NON_SPECIAL_REGS) \
1255 ? GENERAL_REGS \
1256 : (CLASS)))
c81bebd7 1257
f045b2c9
RS
1258/* Return the register class of a scratch register needed to copy IN into
1259 or out of a register in CLASS in MODE. If it can be done directly,
1260 NO_REGS is returned. */
1261
1262#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1263 secondary_reload_class (CLASS, MODE, IN)
1264
0ac081f6
AH
1265/* If we are copying between FP or AltiVec registers and anything
1266 else, we need a memory location. */
7ea555a4 1267
0ac081f6
AH
1268#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1269 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1270 || (CLASS2) == FLOAT_REGS \
1271 || (CLASS1) == ALTIVEC_REGS \
1272 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1273
f045b2c9
RS
1274/* Return the maximum number of consecutive registers
1275 needed to represent mode MODE in a register of class CLASS.
1276
1277 On RS/6000, this is the size of MODE in words,
1278 except in the FP regs, where a single reg is enough for two words. */
802a0058 1279#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1280 (((CLASS) == FLOAT_REGS) \
2e360ab3 1281 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1282 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1283
1284/* If defined, gives a class of registers that cannot be used as the
02188693 1285 operand of a SUBREG that changes the mode of the object illegally. */
580d3230 1286
02188693
RH
1287#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1288
1289/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1290
1291#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1292 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
f045b2c9
RS
1293\f
1294/* Stack layout; function entry, exit and calling. */
1295
6b67933e
RK
1296/* Enumeration to give which calling sequence to use. */
1297enum rs6000_abi {
1298 ABI_NONE,
1299 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1300 ABI_AIX_NODESC, /* AIX calling sequence minus
1301 function descriptors */
b6c9286a 1302 ABI_V4, /* System V.4/eabi */
ee890fe2 1303 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1304};
1305
b6c9286a
MM
1306extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1307
4697a36c
MM
1308/* Structure used to define the rs6000 stack */
1309typedef struct rs6000_stack {
1310 int first_gp_reg_save; /* first callee saved GP register used */
1311 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1312 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1313 int lr_save_p; /* true if the link reg needs to be saved */
1314 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1315 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1316 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1317 int push_p; /* true if we need to allocate stack space */
1318 int calls_p; /* true if the function makes any calls */
6b67933e 1319 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1320 int gp_save_offset; /* offset to save GP regs from initial SP */
1321 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1322 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1323 int lr_save_offset; /* offset to save LR from initial SP */
1324 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1325 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
b6c9286a 1326 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1327 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1328 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1329 int reg_size; /* register size (4 or 8) */
1330 int varargs_size; /* size to hold V.4 args passed in regs */
1331 int vars_size; /* variable save area size */
1332 int parm_size; /* outgoing parameter size */
1333 int save_size; /* save area size */
1334 int fixed_size; /* fixed size of stack frame */
1335 int gp_size; /* size of saved GP registers */
1336 int fp_size; /* size of saved FP registers */
00b960c7 1337 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1338 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1339 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1340 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1341 int altivec_padding_size; /* size of altivec alignment padding if
1342 not in save_size */
b6c9286a 1343 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1344 int total_size; /* total bytes allocated for stack */
1345} rs6000_stack_t;
1346
f045b2c9
RS
1347/* Define this if pushing a word on the stack
1348 makes the stack pointer a smaller address. */
1349#define STACK_GROWS_DOWNWARD
1350
1351/* Define this if the nominal address of the stack frame
1352 is at the high-address end of the local variables;
1353 that is, each additional local variable allocated
1354 goes at a more negative offset in the frame.
1355
1356 On the RS/6000, we grow upwards, from the area after the outgoing
1357 arguments. */
1358/* #define FRAME_GROWS_DOWNWARD */
1359
4697a36c 1360/* Size of the outgoing register save area */
9ebbca7d 1361#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1362 || DEFAULT_ABI == ABI_AIX_NODESC \
1363 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1364 ? (TARGET_64BIT ? 64 : 32) \
1365 : 0)
4697a36c
MM
1366
1367/* Size of the fixed area on the stack */
9ebbca7d 1368#define RS6000_SAVE_AREA \
ee890fe2 1369 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1370 << (TARGET_64BIT ? 1 : 0))
4697a36c 1371
97f6e72f
DE
1372/* MEM representing address to save the TOC register */
1373#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1374 plus_constant (stack_pointer_rtx, \
1375 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1376
4697a36c
MM
1377/* Size of the V.4 varargs area if needed */
1378#define RS6000_VARARGS_AREA 0
1379
4697a36c 1380/* Align an address */
ed33106f 1381#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1382
1383/* Size of V.4 varargs area in bytes */
1384#define RS6000_VARARGS_SIZE \
2f3e5814 1385 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1386
f045b2c9
RS
1387/* Offset within stack frame to start allocating local variables at.
1388 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1389 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1390 of the first local allocated.
f045b2c9
RS
1391
1392 On the RS/6000, the frame pointer is the same as the stack pointer,
1393 except for dynamic allocations. So we start after the fixed area and
1394 outgoing parameter area. */
1395
802a0058 1396#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1397 (RS6000_ALIGN (current_function_outgoing_args_size, \
1398 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1399 + RS6000_VARARGS_AREA \
1400 + RS6000_SAVE_AREA)
1401
1402/* Offset from the stack pointer register to an item dynamically
1403 allocated on the stack, e.g., by `alloca'.
1404
1405 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1406 length of the outgoing arguments. The default is correct for most
1407 machines. See `function.c' for details. */
1408#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1409 (RS6000_ALIGN (current_function_outgoing_args_size, \
1410 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1411 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1412
1413/* If we generate an insn to push BYTES bytes,
1414 this says how many the stack pointer really advances by.
1415 On RS/6000, don't define this because there are no push insns. */
1416/* #define PUSH_ROUNDING(BYTES) */
1417
1418/* Offset of first parameter from the argument pointer register value.
1419 On the RS/6000, we define the argument pointer to the start of the fixed
1420 area. */
4697a36c 1421#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1422
62153b61
JM
1423/* Offset from the argument pointer register value to the top of
1424 stack. This is different from FIRST_PARM_OFFSET because of the
1425 register save area. */
1426#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1427
f045b2c9
RS
1428/* Define this if stack space is still allocated for a parameter passed
1429 in a register. The value is the number of bytes allocated to this
1430 area. */
4697a36c 1431#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1432
1433/* Define this if the above stack space is to be considered part of the
1434 space allocated by the caller. */
1435#define OUTGOING_REG_PARM_STACK_SPACE
1436
1437/* This is the difference between the logical top of stack and the actual sp.
1438
82e41834 1439 For the RS/6000, sp points past the fixed area. */
4697a36c 1440#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1441
1442/* Define this if the maximum size of all the outgoing args is to be
1443 accumulated and pushed during the prologue. The amount can be
1444 found in the variable current_function_outgoing_args_size. */
f73ad30e 1445#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1446
1447/* Value is the number of bytes of arguments automatically
1448 popped when returning from a subroutine call.
8b109b37 1449 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1450 FUNTYPE is the data type of the function (as a tree),
1451 or for a library call it is an identifier node for the subroutine name.
1452 SIZE is the number of bytes of arguments passed on the stack. */
1453
8b109b37 1454#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1455
1456/* Define how to find the value returned by a function.
1457 VALTYPE is the data type of the value (as a tree).
1458 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1459 otherwise, FUNC is 0.
1460
c81bebd7 1461 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1462 fp1, unless -msoft-float. */
f045b2c9 1463
39403d82
DE
1464#define FUNCTION_VALUE(VALTYPE, FUNC) \
1465 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1466 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1467 || POINTER_TYPE_P (VALTYPE) \
1468 ? word_mode : TYPE_MODE (VALTYPE), \
0ac081f6
AH
1469 TREE_CODE (VALTYPE) == VECTOR_TYPE ? ALTIVEC_ARG_RETURN \
1470 : TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
e9cf9523 1471 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1472
1473/* Define how to find the value returned by a library function
1474 assuming the value has mode MODE. */
1475
0ac081f6
AH
1476#define LIBCALL_VALUE(MODE) \
1477 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1478 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1479 && TARGET_HARD_FLOAT \
1480 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1481
6fa3f289
ZW
1482/* The AIX ABI for the RS/6000 specifies that all structures are
1483 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1484 specifies that structures <= 8 bytes are returned in r3/r4, but a
1485 draft put them in memory, and GCC used to implement the draft
1486 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1487 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1488 compatibility can change DRAFT_V4_STRUCT_RET to override the
1489 default, and -m switches get the final word. See
52acbdcb
ZW
1490 rs6000_override_options for more details.
1491
1492 int_size_in_bytes returns -1 for variable size objects, which go in
1493 memory always. The cast to unsigned makes -1 > 8. */
1494
6fa3f289
ZW
1495#define RETURN_IN_MEMORY(TYPE) \
1496 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb
ZW
1497 (TARGET_AIX_STRUCT_RET || \
1498 (unsigned HOST_WIDEST_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1499
6fa3f289
ZW
1500/* DRAFT_V4_STRUCT_RET defaults off. */
1501#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1502
1503/* Let RETURN_IN_MEMORY control what happens. */
1504#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1505
a260abc9 1506/* Mode of stack savearea.
dfdfa60f
DE
1507 FUNCTION is VOIDmode because calling convention maintains SP.
1508 BLOCK needs Pmode for SP.
a260abc9
DE
1509 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1510#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1511 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1512 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1513
4697a36c
MM
1514/* Minimum and maximum general purpose registers used to hold arguments. */
1515#define GP_ARG_MIN_REG 3
1516#define GP_ARG_MAX_REG 10
1517#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1518
1519/* Minimum and maximum floating point registers used to hold arguments. */
1520#define FP_ARG_MIN_REG 33
7509c759
MM
1521#define FP_ARG_AIX_MAX_REG 45
1522#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1523#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1524 || DEFAULT_ABI == ABI_AIX_NODESC \
1525 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1526 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1527#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1528
0ac081f6
AH
1529/* Minimum and maximum AltiVec registers used to hold arguments. */
1530#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1531#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1532#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1533
4697a36c
MM
1534/* Return registers */
1535#define GP_ARG_RETURN GP_ARG_MIN_REG
1536#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1537#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1538
7509c759 1539/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1540#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1541/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1542#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1543#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1544#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1545
f045b2c9
RS
1546/* 1 if N is a possible register number for a function value
1547 as seen by the caller.
1548
0ac081f6
AH
1549 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1550#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1551 || ((N) == FP_ARG_RETURN) \
1552 || (TARGET_ALTIVEC && \
1553 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1554
1555/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1556 On RS/6000, these are r3-r10 and fp1-fp13.
1557 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1558#define FUNCTION_ARG_REGNO_P(N) \
6d0f55e6 1559 ((unsigned)(((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1560 || (TARGET_ALTIVEC && \
1a3ab9e1 1561 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1562 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1563
f045b2c9 1564\f
00dba523
NC
1565/* A C structure for machine-specific, per-function data.
1566 This is added to the cfun structure. */
1567typedef struct machine_function
1568{
1569 /* Whether a System V.4 varargs area was created. */
1570 int sysv_varargs_p;
71f123ca
FS
1571 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1572 int ra_needs_full_frame;
00dba523
NC
1573} machine_function;
1574
f045b2c9
RS
1575/* Define a data type for recording info about an argument list
1576 during the scan of that argument list. This data type should
1577 hold all necessary information about the function itself
1578 and about the args processed so far, enough to enable macros
1579 such as FUNCTION_ARG to determine where the next arg should go.
1580
1581 On the RS/6000, this is a structure. The first element is the number of
1582 total argument words, the second is used to store the next
1583 floating-point register number, and the third says how many more args we
4697a36c
MM
1584 have prototype types for.
1585
4cc833b7
RH
1586 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1587 the next availible GP register, `fregno' is the next available FP
1588 register, and `words' is the number of words used on the stack.
1589
bd227acc 1590 The varargs/stdarg support requires that this structure's size
4cc833b7 1591 be a multiple of sizeof(int). */
4697a36c
MM
1592
1593typedef struct rs6000_args
1594{
4cc833b7 1595 int words; /* # words used for passing GP registers */
6a4cee5f 1596 int fregno; /* next available FP register */
0ac081f6 1597 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1598 int nargs_prototype; /* # args left in the current prototype */
1599 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1600 int prototype; /* Whether a prototype was defined */
1601 int call_cookie; /* Do special things for this call */
4cc833b7 1602 int sysv_gregno; /* next available GP register */
4697a36c 1603} CUMULATIVE_ARGS;
f045b2c9
RS
1604
1605/* Define intermediate macro to compute the size (in registers) of an argument
1606 for the RS/6000. */
1607
d34c5b80
DE
1608#define RS6000_ARG_SIZE(MODE, TYPE) \
1609((MODE) != BLKmode \
c5d71f39
GK
1610 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1611 : ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
1612 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1613
1614/* Initialize a variable CUM of type CUMULATIVE_ARGS
1615 for a call to a function whose data type is FNTYPE.
1616 For a library call, FNTYPE is 0. */
1617
2c7ee1a6 1618#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1619 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1620
1621/* Similar, but when scanning the definition of a procedure. We always
1622 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1623
4697a36c
MM
1624#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1625 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1626
1627/* Update the data in CUM to advance over an argument
1628 of mode MODE and data type TYPE.
1629 (TYPE is null for libcalls where that information may not be available.) */
1630
1631#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1632 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1633
1634/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1635#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1636 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1637 && (CUM).fregno <= FP_ARG_MAX_REG \
1638 && TARGET_HARD_FLOAT)
f045b2c9 1639
0ac081f6
AH
1640/* Non-zero if we can use an AltiVec register to pass this arg. */
1641#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1642 (ALTIVEC_VECTOR_MODE (MODE) \
1643 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1644 && TARGET_ALTIVEC_ABI)
1645
f045b2c9
RS
1646/* Determine where to put an argument to a function.
1647 Value is zero to push the argument on the stack,
1648 or a hard register in which to store the argument.
1649
1650 MODE is the argument's machine mode.
1651 TYPE is the data type of the argument (as a tree).
1652 This is null for libcalls where that information may
1653 not be available.
1654 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1655 the preceding args and about the function being called.
1656 NAMED is nonzero if this argument is a named parameter
1657 (otherwise it is an extra parameter matching an ellipsis).
1658
1659 On RS/6000 the first eight words of non-FP are normally in registers
1660 and the rest are pushed. The first 13 FP args are in registers.
1661
1662 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1663 both an FP and integer register (or possibly FP reg and stack). Library
1664 functions (when TYPE is zero) always have the proper types for args,
1665 so we can pass the FP value just in one register. emit_library_function
1666 doesn't support EXPR_LIST anyway. */
f045b2c9 1667
4697a36c
MM
1668#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1669 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1670
1671/* For an arg passed partly in registers and partly in memory,
1672 this is the number of registers used.
1673 For args passed entirely in registers or entirely in memory, zero. */
1674
4697a36c
MM
1675#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1676 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1677
1678/* A C expression that indicates when an argument must be passed by
1679 reference. If nonzero for an argument, a copy of that argument is
1680 made in memory and a pointer to the argument is passed instead of
1681 the argument itself. The pointer is passed in whatever way is
82e41834 1682 appropriate for passing a pointer to that type. */
4697a36c
MM
1683
1684#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1685 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1686
c229cba9
DE
1687/* If defined, a C expression which determines whether, and in which
1688 direction, to pad out an argument with extra space. The value
1689 should be of type `enum direction': either `upward' to pad above
1690 the argument, `downward' to pad below, or `none' to inhibit
1691 padding. */
1692
9ebbca7d 1693#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1694
b6c9286a 1695/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1696 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1697 PARM_BOUNDARY is used for all arguments. */
1698
1699#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1700 function_arg_boundary (MODE, TYPE)
1701
f045b2c9 1702/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1703 variable number of arguments.
f045b2c9
RS
1704
1705 CUM is as above.
1706
1707 MODE and TYPE are the mode and type of the current parameter.
1708
1709 PRETEND_SIZE is a variable that should be set to the amount of stack
1710 that must be pushed by the prolog to pretend that our caller pushed
1711 it.
1712
1713 Normally, this macro will push all remaining incoming registers on the
1714 stack and set PRETEND_SIZE to the length of the registers pushed. */
1715
4697a36c
MM
1716#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1717 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1718
dfafc897
FS
1719/* Define the `__builtin_va_list' type for the ABI. */
1720#define BUILD_VA_LIST_TYPE(VALIST) \
1721 (VALIST) = rs6000_build_va_list ()
4697a36c 1722
dfafc897
FS
1723/* Implement `va_start' for varargs and stdarg. */
1724#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1725 rs6000_va_start (stdarg, valist, nextarg)
1726
1727/* Implement `va_arg'. */
1728#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1729 rs6000_va_arg (valist, type)
f045b2c9 1730
d34c5b80
DE
1731/* Define this macro to be a nonzero value if the location where a function
1732 argument is passed depends on whether or not it is a named argument. */
1733#define STRICT_ARGUMENT_NAMING 1
1734
f045b2c9 1735/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1736 for profiling a function entry. */
f045b2c9
RS
1737
1738#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1739 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1740
1741/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1742 the stack pointer does not matter. No definition is equivalent to
1743 always zero.
1744
1745 On the RS/6000, this is non-zero because we can restore the stack from
1746 its backpointer, which we maintain. */
1747#define EXIT_IGNORE_STACK 1
1748
a701949a
FS
1749/* Define this macro as a C expression that is nonzero for registers
1750 that are used by the epilogue or the return' pattern. The stack
1751 and frame pointer registers are already be assumed to be used as
1752 needed. */
1753
83720594
RH
1754#define EPILOGUE_USES(REGNO) \
1755 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
00b960c7 1756 || (REGNO) == VRSAVE_REGNO \
83720594 1757 || (current_function_calls_eh_return \
3553b09d 1758 && TARGET_AIX \
83720594 1759 && (REGNO) == TOC_REGISTER))
2bfcf297 1760
f045b2c9 1761\f
eaf1bcf1 1762/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1763
1764/* Length in units of the trampoline for entering a nested function. */
1765
b6c9286a 1766#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1767
1768/* Emit RTL insns to initialize the variable parts of a trampoline.
1769 FNADDR is an RTX for the address of the function's pure code.
1770 CXT is an RTX for the static chain value for the function. */
1771
1772#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1773 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1774\f
f33985c6
MS
1775/* Definitions for __builtin_return_address and __builtin_frame_address.
1776 __builtin_return_address (0) should give link register (65), enable
82e41834 1777 this. */
f33985c6
MS
1778/* This should be uncommented, so that the link register is used, but
1779 currently this would result in unmatched insns and spilling fixed
1780 registers so we'll leave it for another day. When these problems are
1781 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1782 (mrs) */
1783/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1784
b6c9286a
MM
1785/* Number of bytes into the frame return addresses can be found. See
1786 rs6000_stack_info in rs6000.c for more information on how the different
1787 abi's store the return address. */
1788#define RETURN_ADDRESS_OFFSET \
1789 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1790 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1791 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1792 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1793 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1794
f33985c6
MS
1795/* The current return address is in link register (65). The return address
1796 of anything farther back is accessed normally at an offset of 8 from the
1797 frame pointer. */
71f123ca
FS
1798#define RETURN_ADDR_RTX(COUNT, FRAME) \
1799 (rs6000_return_addr (COUNT, FRAME))
1800
f33985c6 1801\f
f045b2c9
RS
1802/* Definitions for register eliminations.
1803
1804 We have two registers that can be eliminated on the RS/6000. First, the
1805 frame pointer register can often be eliminated in favor of the stack
1806 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1807 eliminated; it is replaced with either the stack or frame pointer.
1808
1809 In addition, we use the elimination mechanism to see if r30 is needed
1810 Initially we assume that it isn't. If it is, we spill it. This is done
1811 by making it an eliminable register. We replace it with itself so that
1812 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1813
1814/* This is an array of structures. Each structure initializes one pair
1815 of eliminable registers. The "from" register number is given first,
1816 followed by "to". Eliminations of the same "from" register are listed
1817 in order of preference. */
1818#define ELIMINABLE_REGS \
1819{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1820 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1821 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1822 { 30, 30} }
f045b2c9
RS
1823
1824/* Given FROM and TO register numbers, say whether this elimination is allowed.
1825 Frame pointer elimination is automatically handled.
1826
1827 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1828 to convert ap into fp, not sp.
1829
abc95ed3 1830 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1831 references. */
f045b2c9
RS
1832
1833#define CAN_ELIMINATE(FROM, TO) \
1834 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1835 ? ! frame_pointer_needed \
4697a36c 1836 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1837 : 1)
1838
1839/* Define the offset between two registers, one to be eliminated, and the other
1840 its replacement, at the start of a routine. */
1841#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1842{ \
4697a36c 1843 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1844 \
1845 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1846 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1847 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1848 (OFFSET) = info->total_size; \
1849 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1850 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1851 else if ((FROM) == 30) \
1852 (OFFSET) = 0; \
f045b2c9
RS
1853 else \
1854 abort (); \
1855}
1856\f
1857/* Addressing modes, and classification of registers for them. */
1858
940da324
JL
1859/* #define HAVE_POST_INCREMENT 0 */
1860/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1861
940da324
JL
1862#define HAVE_PRE_DECREMENT 1
1863#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1864
1865/* Macros to check register numbers against specific register classes. */
1866
1867/* These assume that REGNO is a hard or pseudo reg number.
1868 They give nonzero only if REGNO is a hard reg of the suitable class
1869 or a pseudo reg currently allocated to a suitable hard reg.
1870 Since they use reg_renumber, they are safe only once reg_renumber
1871 has been allocated, which happens in local-alloc.c. */
1872
1873#define REGNO_OK_FOR_INDEX_P(REGNO) \
1874((REGNO) < FIRST_PSEUDO_REGISTER \
1875 ? (REGNO) <= 31 || (REGNO) == 67 \
1876 : (reg_renumber[REGNO] >= 0 \
1877 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1878
1879#define REGNO_OK_FOR_BASE_P(REGNO) \
1880((REGNO) < FIRST_PSEUDO_REGISTER \
1881 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1882 : (reg_renumber[REGNO] > 0 \
1883 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1884\f
1885/* Maximum number of registers that can appear in a valid memory address. */
1886
1887#define MAX_REGS_PER_ADDRESS 2
1888
1889/* Recognize any constant value that is a valid address. */
1890
6eff269e
BK
1891#define CONSTANT_ADDRESS_P(X) \
1892 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1893 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1894 || GET_CODE (X) == HIGH)
f045b2c9
RS
1895
1896/* Nonzero if the constant value X is a legitimate general operand.
1897 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1898
1899 On the RS/6000, all integer constants are acceptable, most won't be valid
1900 for particular insns, though. Only easy FP constants are
1901 acceptable. */
1902
1903#define LEGITIMATE_CONSTANT_P(X) \
1904 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1905 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1906 || easy_fp_constant (X, GET_MODE (X)))
1907
1908/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1909 and check its validity for a certain class.
1910 We have two alternate definitions for each of them.
1911 The usual definition accepts all pseudo regs; the other rejects
1912 them unless they have been allocated suitable hard regs.
1913 The symbol REG_OK_STRICT causes the latter definition to be used.
1914
1915 Most source files want to accept pseudo regs in the hope that
1916 they will get allocated to the class that the insn wants them to be in.
1917 Source files for reload pass need to be strict.
1918 After reload, it makes no difference, since pseudo regs have
1919 been eliminated by then. */
1920
258bfae2
FS
1921#ifdef REG_OK_STRICT
1922# define REG_OK_STRICT_FLAG 1
1923#else
1924# define REG_OK_STRICT_FLAG 0
1925#endif
f045b2c9
RS
1926
1927/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1928 or if it is a pseudo reg in the non-strict case. */
1929#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1930 ((! (STRICT) \
1931 && (REGNO (X) <= 31 \
1932 || REGNO (X) == ARG_POINTER_REGNUM \
1933 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1934 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
1935
1936/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1937 or if it is a pseudo reg in the non-strict case. */
1938#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1939 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 1940
258bfae2
FS
1941#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1942#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1943\f
1944/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1945 that is a valid memory address for an instruction.
1946 The MODE argument is the machine mode for the MEM expression
1947 that wants to use this address.
1948
1949 On the RS/6000, there are four valid address: a SYMBOL_REF that
1950 refers to a constant pool entry of an address (or the sum of it
1951 plus a constant), a short (16-bit signed) constant plus a register,
1952 the sum of two registers, or a register indirect, possibly with an
1953 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1954 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1955 word aligned.
1956
1957 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1958 32-bit DImode, TImode), indexed addressing cannot be used because
1959 adjacent memory cells are accessed by adding word-sized offsets
1960 during assembly output. */
f045b2c9 1961
9ebbca7d
GK
1962#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
1963
1964#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9
RS
1965
1966#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
1967 (TARGET_TOC \
1968 && GET_CODE (X) == PLUS \
1969 && GET_CODE (XEXP (X, 0)) == REG \
1970 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
1971 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 1972
7509c759 1973#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 1974 (DEFAULT_ABI == ABI_V4 \
81795281 1975 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1976 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1977 && small_data_operand (X, MODE))
7509c759 1978
258bfae2 1979#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 1980 (GET_CODE (X) == CONST_INT \
5b6f7b96 1981 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 1982
258bfae2
FS
1983#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
1984 (GET_CODE (X) == PLUS \
1985 && GET_CODE (XEXP (X, 0)) == REG \
1986 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1987 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
0ac081f6 1988 && (! ALTIVEC_VECTOR_MODE (MODE) || INTVAL (X) == 0) \
258bfae2
FS
1989 && (((MODE) != DFmode && (MODE) != DImode) \
1990 || (TARGET_32BIT \
1991 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1992 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1993 && ((MODE) != TImode \
1994 || (TARGET_32BIT \
1995 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1996 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 1997 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 1998
258bfae2
FS
1999#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2000 (GET_CODE (X) == PLUS \
2001 && GET_CODE (XEXP (X, 0)) == REG \
2002 && GET_CODE (XEXP (X, 1)) == REG \
2003 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2004 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2005 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2006 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2007
2008#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2009 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2010
6ac7bf2c
GK
2011#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2012 (TARGET_ELF \
2013 && ! flag_pic && ! TARGET_TOC \
2014 && GET_MODE_NUNITS (MODE) == 1 \
2015 && (GET_MODE_BITSIZE (MODE) <= 32 \
c3bb62b9 2016 || (TARGET_HARD_FLOAT && (MODE) == DFmode)) \
6ac7bf2c
GK
2017 && GET_CODE (X) == LO_SUM \
2018 && GET_CODE (XEXP (X, 0)) == REG \
2019 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2020 && CONSTANT_P (XEXP (X, 1)))
2021
258bfae2
FS
2022#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2023{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2024 goto ADDR; \
f045b2c9
RS
2025}
2026\f
2027/* Try machine-dependent ways of modifying an illegitimate address
2028 to be legitimate. If we find one, return the new, valid address.
2029 This macro is used in only one place: `memory_address' in explow.c.
2030
2031 OLDX is the address as it was before break_out_memory_refs was called.
2032 In some cases it is useful to look at this to decide what needs to be done.
2033
2034 MODE and WIN are passed so that this macro can use
2035 GO_IF_LEGITIMATE_ADDRESS.
2036
2037 It is always safe for this macro to do nothing. It exists to recognize
2038 opportunities to optimize the output.
2039
2040 On RS/6000, first check for the sum of a register with a constant
2041 integer that is out of range. If so, generate code to add the
2042 constant with the low-order 16 bits masked to the register and force
2043 this result into another register (this can be done with `cau').
c81bebd7 2044 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2045 possibility of bit 16 being a one.
2046
2047 Then check for the sum of a register and something not constant, try to
2048 load the other things into a register and return the sum. */
2049
9ebbca7d
GK
2050#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2051{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2052 if (result != NULL_RTX) \
2053 { \
2054 (X) = result; \
2055 goto WIN; \
2056 } \
f045b2c9
RS
2057}
2058
a260abc9
DE
2059/* Try a machine-dependent way of reloading an illegitimate address
2060 operand. If we find one, push the reload and jump to WIN. This
2061 macro is used in only one place: `find_reloads_address' in reload.c.
2062
24ea750e
DJ
2063 Implemented on rs6000 by rs6000_legitimize_reload_address.
2064 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2065
a9098fd0
GK
2066#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2067do { \
24ea750e
DJ
2068 int win; \
2069 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2070 (int)(TYPE), (IND_LEVELS), &win); \
2071 if ( win ) \
2072 goto WIN; \
a260abc9
DE
2073} while (0)
2074
f045b2c9
RS
2075/* Go to LABEL if ADDR (a legitimate address expression)
2076 has an effect that depends on the machine mode it is used for.
2077
2078 On the RS/6000 this is true if the address is valid with a zero offset
2079 but not with an offset of four (this means it cannot be used as an
2080 address for DImode or DFmode) or is a pre-increment or decrement. Since
2081 we know it is valid, we just check for an address that is not valid with
2082 an offset of four. */
2083
2084#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2085{ if (GET_CODE (ADDR) == PLUS \
2086 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2087 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2088 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2089 goto LABEL; \
38c1f2d7 2090 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2091 goto LABEL; \
38c1f2d7 2092 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2093 goto LABEL; \
4697a36c
MM
2094 if (GET_CODE (ADDR) == LO_SUM) \
2095 goto LABEL; \
f045b2c9 2096}
766a866c
MM
2097\f
2098/* The register number of the register used to address a table of
2099 static data addresses in memory. In some cases this register is
2100 defined by a processor's "application binary interface" (ABI).
2101 When this macro is defined, RTL is generated for this register
2102 once, as with the stack pointer and frame pointer registers. If
2103 this macro is not defined, it is up to the machine-dependent files
2104 to allocate such a register (if necessary). */
2105
8d30c4ee 2106#define PIC_OFFSET_TABLE_REGNUM 30
766a866c 2107
9ebbca7d
GK
2108#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2109
766a866c
MM
2110/* Define this macro if the register defined by
2111 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2112 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2113
2114/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2115
2116/* By generating position-independent code, when two different
2117 programs (A and B) share a common library (libC.a), the text of
2118 the library can be shared whether or not the library is linked at
2119 the same address for both programs. In some of these
2120 environments, position-independent code requires not only the use
2121 of different addressing modes, but also special code to enable the
2122 use of these addressing modes.
2123
2124 The `FINALIZE_PIC' macro serves as a hook to emit these special
2125 codes once the function is being compiled into assembly code, but
2126 not before. (It is not done before, because in the case of
2127 compiling an inline function, it would lead to multiple PIC
2128 prologues being included in functions which used inline functions
2129 and were compiled to assembly language.) */
2130
8d30c4ee 2131/* #define FINALIZE_PIC */
766a866c 2132
766a866c
MM
2133/* A C expression that is nonzero if X is a legitimate immediate
2134 operand on the target machine when generating position independent
2135 code. You can assume that X satisfies `CONSTANT_P', so you need
2136 not check this. You can also assume FLAG_PIC is true, so you need
2137 not check it either. You need not define this macro if all
2138 constants (including `SYMBOL_REF') can be immediate operands when
2139 generating position independent code. */
2140
2141/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2142
30ea98f1
MM
2143/* In rare cases, correct code generation requires extra machine
2144 dependent processing between the second jump optimization pass and
2145 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2146 as a C statement to act on the code starting at INSN. */
30ea98f1 2147
9ebbca7d 2148/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2149
f045b2c9
RS
2150\f
2151/* Define this if some processing needs to be done immediately before
4255474b 2152 emitting code for an insn. */
f045b2c9 2153
4255474b 2154/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2155
2156/* Specify the machine mode that this machine uses
2157 for the index in the tablejump instruction. */
e1565e65 2158#define CASE_VECTOR_MODE SImode
f045b2c9 2159
18543a22
ILT
2160/* Define as C expression which evaluates to nonzero if the tablejump
2161 instruction expects the table to contain offsets from the address of the
2162 table.
82e41834 2163 Do not define this if the table should contain absolute addresses. */
18543a22 2164#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2165
f045b2c9
RS
2166/* Define this as 1 if `char' should by default be signed; else as 0. */
2167#define DEFAULT_SIGNED_CHAR 0
2168
2169/* This flag, if defined, says the same insns that convert to a signed fixnum
2170 also convert validly to an unsigned one. */
2171
2172/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2173
2174/* Max number of bytes we can move from memory to memory
2175 in one reasonably fast instruction. */
2f3e5814 2176#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2177#define MAX_MOVE_MAX 8
f045b2c9
RS
2178
2179/* Nonzero if access to memory by bytes is no faster than for words.
2180 Also non-zero if doing byte operations (specifically shifts) in registers
2181 is undesirable. */
2182#define SLOW_BYTE_ACCESS 1
2183
9a63901f
RK
2184/* Define if operations between registers always perform the operation
2185 on the full register even if a narrower mode is specified. */
2186#define WORD_REGISTER_OPERATIONS
2187
2188/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2189 will either zero-extend or sign-extend. The value of this macro should
2190 be the code that says which one of the two operations is implicitly
2191 done, NIL if none. */
2192#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2193
2194/* Define if loading short immediate values into registers sign extends. */
2195#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2196\f
f045b2c9
RS
2197/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2198 is done just by pretending it is already truncated. */
2199#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2200
2201/* Specify the machine mode that pointers have.
2202 After generation of rtl, the compiler makes no further distinction
2203 between pointers and any other objects of this machine mode. */
2f3e5814 2204#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2205
2206/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2207 Doesn't matter on RS/6000. */
2f3e5814 2208#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2209
2210/* Define this if addresses of constant functions
2211 shouldn't be put through pseudo regs where they can be cse'd.
2212 Desirable on machines where ordinary constants are expensive
2213 but a CALL with constant address is cheap. */
2214#define NO_FUNCTION_CSE
2215
d969caf8 2216/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2217 few bits.
2218
2219 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2220 have been dropped from the PowerPC architecture. */
2221
4697a36c 2222#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2223
f045b2c9
RS
2224/* Compute the cost of computing a constant rtl expression RTX
2225 whose rtx-code is CODE. The body of this macro is a portion
2226 of a switch statement. If the code is computed here,
2227 return it with a return statement. Otherwise, break from the switch.
2228
01554f00 2229 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2230 always returns 0. */
2231
4697a36c 2232#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2233 case CONST_INT: \
2234 case CONST: \
2235 case LABEL_REF: \
2236 case SYMBOL_REF: \
2237 case CONST_DOUBLE: \
4697a36c 2238 case HIGH: \
f045b2c9
RS
2239 return 0;
2240
2241/* Provide the costs of a rtl expression. This is in the body of a
2242 switch on CODE. */
2243
38c1f2d7
MM
2244#define RTX_COSTS(X,CODE,OUTER_CODE) \
2245 case PLUS: \
2246 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2247 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2248 + 0x8000) >= 0x10000) \
296b8152 2249 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2250 ? COSTS_N_INSNS (2) \
2251 : COSTS_N_INSNS (1)); \
2252 case AND: \
38c1f2d7
MM
2253 case IOR: \
2254 case XOR: \
a260abc9
DE
2255 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2256 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2257 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2258 ? COSTS_N_INSNS (2) \
2259 : COSTS_N_INSNS (1)); \
2260 case MULT: \
2261 switch (rs6000_cpu) \
2262 { \
2263 case PROCESSOR_RIOS1: \
fe7f5677 2264 case PROCESSOR_PPC405: \
38c1f2d7
MM
2265 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2266 ? COSTS_N_INSNS (5) \
2267 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2268 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2269 case PROCESSOR_RS64A: \
2270 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2271 ? GET_MODE (XEXP (X, 1)) != DImode \
2272 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2273 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2274 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2275 case PROCESSOR_RIOS2: \
2276 case PROCESSOR_MPCCORE: \
5a41b476 2277 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2278 return COSTS_N_INSNS (2); \
2279 case PROCESSOR_PPC601: \
2280 return COSTS_N_INSNS (5); \
2281 case PROCESSOR_PPC603: \
7960cfbb 2282 case PROCESSOR_PPC7400: \
bef84347 2283 case PROCESSOR_PPC750: \
38c1f2d7
MM
2284 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2285 ? COSTS_N_INSNS (5) \
2286 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2287 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2288 case PROCESSOR_PPC7450: \
2289 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2290 ? COSTS_N_INSNS (4) \
2291 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2292 case PROCESSOR_PPC403: \
2293 case PROCESSOR_PPC604: \
38c1f2d7 2294 return COSTS_N_INSNS (4); \
3cb999d8
DE
2295 case PROCESSOR_PPC620: \
2296 case PROCESSOR_PPC630: \
2297 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2298 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2299 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2300 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2301 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2302 } \
2303 case DIV: \
2304 case MOD: \
2305 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2306 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2307 return COSTS_N_INSNS (2); \
2308 /* otherwise fall through to normal divide. */ \
2309 case UDIV: \
2310 case UMOD: \
2311 switch (rs6000_cpu) \
2312 { \
2313 case PROCESSOR_RIOS1: \
2314 return COSTS_N_INSNS (19); \
2315 case PROCESSOR_RIOS2: \
2316 return COSTS_N_INSNS (13); \
3cb999d8
DE
2317 case PROCESSOR_RS64A: \
2318 return (GET_MODE (XEXP (X, 1)) != DImode \
2319 ? COSTS_N_INSNS (65) \
2320 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2321 case PROCESSOR_MPCCORE: \
2322 return COSTS_N_INSNS (6); \
2323 case PROCESSOR_PPC403: \
2324 return COSTS_N_INSNS (33); \
fe7f5677
DE
2325 case PROCESSOR_PPC405: \
2326 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2327 case PROCESSOR_PPC601: \
2328 return COSTS_N_INSNS (36); \
2329 case PROCESSOR_PPC603: \
2330 return COSTS_N_INSNS (37); \
2331 case PROCESSOR_PPC604: \
5a41b476 2332 case PROCESSOR_PPC604e: \
38c1f2d7 2333 return COSTS_N_INSNS (20); \
3cb999d8
DE
2334 case PROCESSOR_PPC620: \
2335 case PROCESSOR_PPC630: \
2336 return (GET_MODE (XEXP (X, 1)) != DImode \
2337 ? COSTS_N_INSNS (21) \
2338 : COSTS_N_INSNS (37)); \
bef84347 2339 case PROCESSOR_PPC750: \
ed947a96 2340 case PROCESSOR_PPC7400: \
bef84347 2341 return COSTS_N_INSNS (19); \
ed947a96
DJ
2342 case PROCESSOR_PPC7450: \
2343 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2344 } \
2345 case FFS: \
2346 return COSTS_N_INSNS (4); \
2347 case MEM: \
f045b2c9
RS
2348 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2349 return 5;
2350
2351/* Compute the cost of an address. This is meant to approximate the size
2352 and/or execution delay of an insn using that address. If the cost is
2353 approximated by the RTL complexity, including CONST_COSTS above, as
2354 is usually the case for CISC machines, this macro should not be defined.
2355 For aggressively RISCy machines, only one insn format is allowed, so
2356 this macro should be a constant. The value of this macro only matters
2357 for valid addresses.
2358
2359 For the RS/6000, everything is cost 0. */
2360
2361#define ADDRESS_COST(RTX) 0
2362
2363/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2364 should be adjusted to reflect any required changes. This macro is used when
2365 there is some systematic length adjustment required that would be difficult
2366 to express in the length attribute. */
2367
2368/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2369
2370/* Add any extra modes needed to represent the condition code.
2371
2372 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2373 are being done and we need a separate mode for floating-point. We also
2374 use a mode for the case when we are comparing the results of two
39a10a29 2375 comparisons, as then only the EQ bit is valid in the register. */
f045b2c9 2376
aa0b4465
ZW
2377#define EXTRA_CC_MODES \
2378 CC(CCUNSmode, "CCUNS") \
2379 CC(CCFPmode, "CCFP") \
2380 CC(CCEQmode, "CCEQ")
f045b2c9 2381
39a10a29
GK
2382/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2383 COMPARE, return the mode to be used for the comparison. For
2384 floating-point, CCFPmode should be used. CCUNSmode should be used
2385 for unsigned comparisons. CCEQmode should be used when we are
2386 doing an inequality comparison on the result of a
2387 comparison. CCmode should be used in all other cases. */
c5defebb 2388
b565a316 2389#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2390 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2391 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2392 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2393 ? CCEQmode : CCmode))
f045b2c9
RS
2394
2395/* Define the information needed to generate branch and scc insns. This is
2396 stored from the compare operation. Note that we can't use "rtx" here
2397 since it hasn't been defined! */
2398
2399extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2400extern int rs6000_compare_fp_p;
f045b2c9
RS
2401\f
2402/* Control the assembler format that we output. */
2403
1b279f39
DE
2404/* A C string constant describing how to begin a comment in the target
2405 assembler language. The compiler assumes that the comment will end at
2406 the end of the line. */
2407#define ASM_COMMENT_START " #"
6b67933e 2408
fdaff8ba
RS
2409/* Implicit library calls should use memcpy, not bcopy, etc. */
2410
2411#define TARGET_MEM_FUNCTIONS
2412
38c1f2d7
MM
2413/* Flag to say the TOC is initialized */
2414extern int toc_initialized;
2415
f045b2c9
RS
2416/* Macro to output a special constant pool entry. Go to WIN if we output
2417 it. Otherwise, it is written the usual way.
2418
2419 On the RS/6000, toc entries are handled this way. */
2420
a9098fd0
GK
2421#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2422{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2423 { \
2424 output_toc (FILE, X, LABELNO, MODE); \
2425 goto WIN; \
2426 } \
f045b2c9
RS
2427}
2428
ebd97b96
DE
2429#ifdef HAVE_GAS_WEAK
2430#define RS6000_WEAK 1
2431#else
2432#define RS6000_WEAK 0
2433#endif
290ad355 2434
ebd97b96 2435/* This implementes the `alias' attribute. */
9ebbca7d
GK
2436#define ASM_OUTPUT_DEF_FROM_DECLS(FILE,decl,target) \
2437do { \
53cd5d6c 2438 const char * alias = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
9ebbca7d
GK
2439 char * name = IDENTIFIER_POINTER (target); \
2440 if (TREE_CODE (decl) == FUNCTION_DECL \
2441 && DEFAULT_ABI == ABI_AIX) \
2442 { \
2443 if (TREE_PUBLIC (decl)) \
2444 { \
ebd97b96
DE
2445 if (RS6000_WEAK && DECL_WEAK (decl)) \
2446 { \
2447 fputs ("\t.weak .", FILE); \
2448 assemble_name (FILE, alias); \
2449 putc ('\n', FILE); \
2450 } \
2451 else \
2452 { \
2453 fputs ("\t.globl .", FILE); \
2454 assemble_name (FILE, alias); \
2455 putc ('\n', FILE); \
2456 } \
9ebbca7d
GK
2457 } \
2458 else \
2459 { \
2460 fputs ("\t.lglobl .", FILE); \
2461 assemble_name (FILE, alias); \
2462 putc ('\n', FILE); \
2463 } \
2464 fputs ("\t.set .", FILE); \
2465 assemble_name (FILE, alias); \
2466 fputs (",.", FILE); \
2467 assemble_name (FILE, name); \
2468 fputc ('\n', FILE); \
2469 } \
2470 ASM_OUTPUT_DEF (FILE, alias, name); \
290ad355
RH
2471} while (0)
2472
f045b2c9
RS
2473/* Output to assembler file text saying following lines
2474 may contain character constants, extra white space, comments, etc. */
2475
2476#define ASM_APP_ON ""
2477
2478/* Output to assembler file text saying following lines
2479 no longer contain unusual constructs. */
2480
2481#define ASM_APP_OFF ""
2482
f045b2c9
RS
2483/* How to refer to registers in assembler output.
2484 This sequence is indexed by compiler's hard-register-number (see above). */
2485
82e41834 2486extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2487
2488#define REGISTER_NAMES \
2489{ \
2490 &rs6000_reg_names[ 0][0], /* r0 */ \
2491 &rs6000_reg_names[ 1][0], /* r1 */ \
2492 &rs6000_reg_names[ 2][0], /* r2 */ \
2493 &rs6000_reg_names[ 3][0], /* r3 */ \
2494 &rs6000_reg_names[ 4][0], /* r4 */ \
2495 &rs6000_reg_names[ 5][0], /* r5 */ \
2496 &rs6000_reg_names[ 6][0], /* r6 */ \
2497 &rs6000_reg_names[ 7][0], /* r7 */ \
2498 &rs6000_reg_names[ 8][0], /* r8 */ \
2499 &rs6000_reg_names[ 9][0], /* r9 */ \
2500 &rs6000_reg_names[10][0], /* r10 */ \
2501 &rs6000_reg_names[11][0], /* r11 */ \
2502 &rs6000_reg_names[12][0], /* r12 */ \
2503 &rs6000_reg_names[13][0], /* r13 */ \
2504 &rs6000_reg_names[14][0], /* r14 */ \
2505 &rs6000_reg_names[15][0], /* r15 */ \
2506 &rs6000_reg_names[16][0], /* r16 */ \
2507 &rs6000_reg_names[17][0], /* r17 */ \
2508 &rs6000_reg_names[18][0], /* r18 */ \
2509 &rs6000_reg_names[19][0], /* r19 */ \
2510 &rs6000_reg_names[20][0], /* r20 */ \
2511 &rs6000_reg_names[21][0], /* r21 */ \
2512 &rs6000_reg_names[22][0], /* r22 */ \
2513 &rs6000_reg_names[23][0], /* r23 */ \
2514 &rs6000_reg_names[24][0], /* r24 */ \
2515 &rs6000_reg_names[25][0], /* r25 */ \
2516 &rs6000_reg_names[26][0], /* r26 */ \
2517 &rs6000_reg_names[27][0], /* r27 */ \
2518 &rs6000_reg_names[28][0], /* r28 */ \
2519 &rs6000_reg_names[29][0], /* r29 */ \
2520 &rs6000_reg_names[30][0], /* r30 */ \
2521 &rs6000_reg_names[31][0], /* r31 */ \
2522 \
2523 &rs6000_reg_names[32][0], /* fr0 */ \
2524 &rs6000_reg_names[33][0], /* fr1 */ \
2525 &rs6000_reg_names[34][0], /* fr2 */ \
2526 &rs6000_reg_names[35][0], /* fr3 */ \
2527 &rs6000_reg_names[36][0], /* fr4 */ \
2528 &rs6000_reg_names[37][0], /* fr5 */ \
2529 &rs6000_reg_names[38][0], /* fr6 */ \
2530 &rs6000_reg_names[39][0], /* fr7 */ \
2531 &rs6000_reg_names[40][0], /* fr8 */ \
2532 &rs6000_reg_names[41][0], /* fr9 */ \
2533 &rs6000_reg_names[42][0], /* fr10 */ \
2534 &rs6000_reg_names[43][0], /* fr11 */ \
2535 &rs6000_reg_names[44][0], /* fr12 */ \
2536 &rs6000_reg_names[45][0], /* fr13 */ \
2537 &rs6000_reg_names[46][0], /* fr14 */ \
2538 &rs6000_reg_names[47][0], /* fr15 */ \
2539 &rs6000_reg_names[48][0], /* fr16 */ \
2540 &rs6000_reg_names[49][0], /* fr17 */ \
2541 &rs6000_reg_names[50][0], /* fr18 */ \
2542 &rs6000_reg_names[51][0], /* fr19 */ \
2543 &rs6000_reg_names[52][0], /* fr20 */ \
2544 &rs6000_reg_names[53][0], /* fr21 */ \
2545 &rs6000_reg_names[54][0], /* fr22 */ \
2546 &rs6000_reg_names[55][0], /* fr23 */ \
2547 &rs6000_reg_names[56][0], /* fr24 */ \
2548 &rs6000_reg_names[57][0], /* fr25 */ \
2549 &rs6000_reg_names[58][0], /* fr26 */ \
2550 &rs6000_reg_names[59][0], /* fr27 */ \
2551 &rs6000_reg_names[60][0], /* fr28 */ \
2552 &rs6000_reg_names[61][0], /* fr29 */ \
2553 &rs6000_reg_names[62][0], /* fr30 */ \
2554 &rs6000_reg_names[63][0], /* fr31 */ \
2555 \
2556 &rs6000_reg_names[64][0], /* mq */ \
2557 &rs6000_reg_names[65][0], /* lr */ \
2558 &rs6000_reg_names[66][0], /* ctr */ \
2559 &rs6000_reg_names[67][0], /* ap */ \
2560 \
2561 &rs6000_reg_names[68][0], /* cr0 */ \
2562 &rs6000_reg_names[69][0], /* cr1 */ \
2563 &rs6000_reg_names[70][0], /* cr2 */ \
2564 &rs6000_reg_names[71][0], /* cr3 */ \
2565 &rs6000_reg_names[72][0], /* cr4 */ \
2566 &rs6000_reg_names[73][0], /* cr5 */ \
2567 &rs6000_reg_names[74][0], /* cr6 */ \
2568 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2569 \
9ebbca7d 2570 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2571 \
2572 &rs6000_reg_names[77][0], /* v0 */ \
2573 &rs6000_reg_names[78][0], /* v1 */ \
2574 &rs6000_reg_names[79][0], /* v2 */ \
2575 &rs6000_reg_names[80][0], /* v3 */ \
2576 &rs6000_reg_names[81][0], /* v4 */ \
2577 &rs6000_reg_names[82][0], /* v5 */ \
2578 &rs6000_reg_names[83][0], /* v6 */ \
2579 &rs6000_reg_names[84][0], /* v7 */ \
2580 &rs6000_reg_names[85][0], /* v8 */ \
2581 &rs6000_reg_names[86][0], /* v9 */ \
2582 &rs6000_reg_names[87][0], /* v10 */ \
2583 &rs6000_reg_names[88][0], /* v11 */ \
2584 &rs6000_reg_names[89][0], /* v12 */ \
2585 &rs6000_reg_names[90][0], /* v13 */ \
2586 &rs6000_reg_names[91][0], /* v14 */ \
2587 &rs6000_reg_names[92][0], /* v15 */ \
2588 &rs6000_reg_names[93][0], /* v16 */ \
2589 &rs6000_reg_names[94][0], /* v17 */ \
2590 &rs6000_reg_names[95][0], /* v18 */ \
2591 &rs6000_reg_names[96][0], /* v19 */ \
2592 &rs6000_reg_names[97][0], /* v20 */ \
2593 &rs6000_reg_names[98][0], /* v21 */ \
2594 &rs6000_reg_names[99][0], /* v22 */ \
2595 &rs6000_reg_names[100][0], /* v23 */ \
2596 &rs6000_reg_names[101][0], /* v24 */ \
2597 &rs6000_reg_names[102][0], /* v25 */ \
2598 &rs6000_reg_names[103][0], /* v26 */ \
2599 &rs6000_reg_names[104][0], /* v27 */ \
2600 &rs6000_reg_names[105][0], /* v28 */ \
2601 &rs6000_reg_names[106][0], /* v29 */ \
2602 &rs6000_reg_names[107][0], /* v30 */ \
2603 &rs6000_reg_names[108][0], /* v31 */ \
2604 &rs6000_reg_names[109][0], /* vrsave */ \
c81bebd7
MM
2605}
2606
2607/* print-rtl can't handle the above REGISTER_NAMES, so define the
2608 following for it. Switch to use the alternate names since
2609 they are more mnemonic. */
2610
2611#define DEBUG_REGISTER_NAMES \
2612{ \
802a0058
MM
2613 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2614 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2615 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2616 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2617 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2618 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2619 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2620 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2621 "mq", "lr", "ctr", "ap", \
2622 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2623 "xer", \
2624 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2625 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2626 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2627 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2628 "vrsave" \
c81bebd7 2629}
f045b2c9
RS
2630
2631/* Table of additional register names to use in user input. */
2632
2633#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2634 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2635 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2636 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2637 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2638 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2639 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2640 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2641 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2642 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2643 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2644 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2645 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2646 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2647 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2648 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2649 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2650 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2651 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2652 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2653 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2654 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2655 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2656 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2657 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2658 {"vrsave", 109}, \
c4d38ccb
MM
2659 /* no additional names for: mq, lr, ctr, ap */ \
2660 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2661 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2662 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2663
0da40b09
RK
2664/* Text to write out after a CALL that may be replaced by glue code by
2665 the loader. This depends on the AIX version. */
2666#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2667
f045b2c9
RS
2668/* This is how to output an element of a case-vector that is relative. */
2669
e1565e65 2670#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2671 do { char buf[100]; \
e1565e65 2672 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2673 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2674 assemble_name (FILE, buf); \
19d2d16f 2675 putc ('-', FILE); \
3daf36a4
ILT
2676 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2677 assemble_name (FILE, buf); \
19d2d16f 2678 putc ('\n', FILE); \
3daf36a4 2679 } while (0)
f045b2c9
RS
2680
2681/* This is how to output an assembler line
2682 that says to advance the location counter
2683 to a multiple of 2**LOG bytes. */
2684
2685#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2686 if ((LOG) != 0) \
2687 fprintf (FILE, "\t.align %d\n", (LOG))
2688
f045b2c9
RS
2689/* Store in OUTPUT a string (made with alloca) containing
2690 an assembler-name for a local static variable named NAME.
2691 LABELNO is an integer which is different for each call. */
2692
2693#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2694( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2695 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2696
9ebbca7d
GK
2697/* Pick up the return address upon entry to a procedure. Used for
2698 dwarf2 unwind information. This also enables the table driven
2699 mechanism. */
2700
2701#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2702#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2703
83720594
RH
2704/* Describe how we implement __builtin_eh_return. */
2705#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2706#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2707
f045b2c9
RS
2708/* Print operand X (an rtx) in assembler syntax to file FILE.
2709 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2710 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2711
2712#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2713
2714/* Define which CODE values are valid. */
2715
c81bebd7 2716#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2717 ((CODE) == '.')
f045b2c9
RS
2718
2719/* Print a memory address as an operand to reference that memory location. */
2720
2721#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2722
2723/* Define the codes that are matched by predicates in rs6000.c. */
2724
39a10a29
GK
2725#define PREDICATE_CODES \
2726 {"short_cint_operand", {CONST_INT}}, \
2727 {"u_short_cint_operand", {CONST_INT}}, \
2728 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2729 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2730 {"gpc_reg_operand", {SUBREG, REG}}, \
2731 {"cc_reg_operand", {SUBREG, REG}}, \
2732 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2733 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2734 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2735 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2736 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2737 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2738 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2739 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2740 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2741 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2742 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2743 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2744 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2745 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2746 {"lwa_operand", {SUBREG, MEM, REG}}, \
2747 {"volatile_mem_operand", {MEM}}, \
2748 {"offsettable_mem_operand", {MEM}}, \
2749 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2750 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2751 {"non_add_cint_operand", {CONST_INT}}, \
2752 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2753 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2754 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2755 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2756 {"mask_operand", {CONST_INT}}, \
2757 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2758 {"count_register_operand", {REG}}, \
2759 {"xer_operand", {REG}}, \
2760 {"call_operand", {SYMBOL_REF, REG}}, \
2761 {"current_file_function_operand", {SYMBOL_REF}}, \
2762 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2763 CONST_DOUBLE, SYMBOL_REF}}, \
2764 {"load_multiple_operation", {PARALLEL}}, \
2765 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2766 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2767 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2768 GT, LEU, LTU, GEU, GTU, \
2769 UNORDERED, ORDERED, \
2770 UNGE, UNLE }}, \
2771 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2772 UNORDERED }}, \
2773 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2774 GT, LEU, LTU, GEU, GTU, \
2775 UNORDERED, ORDERED, \
2776 UNGE, UNLE }}, \
2777 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2778 GT, LEU, LTU, GEU, GTU}}, \
2779 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056
GK
2780 {"boolean_or_operator", {IOR, XOR}}, \
2781 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2782
b6c9286a
MM
2783/* uncomment for disabling the corresponding default options */
2784/* #define MACHINE_no_sched_interblock */
2785/* #define MACHINE_no_sched_speculative */
2786/* #define MACHINE_no_sched_speculative_load */
2787
766a866c
MM
2788/* General flags. */
2789extern int flag_pic;
354b734b
MM
2790extern int optimize;
2791extern int flag_expensive_optimizations;
a7df97e6 2792extern int frame_pointer_needed;
0ac081f6
AH
2793
2794enum rs6000_builtins
2795{
2796 /* AltiVec builtins. */
f18c054f
DB
2797 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2798 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2799 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2800 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2801 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2802 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2803 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2804 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2805 ALTIVEC_BUILTIN_VADDUBM,
2806 ALTIVEC_BUILTIN_VADDUHM,
2807 ALTIVEC_BUILTIN_VADDUWM,
2808 ALTIVEC_BUILTIN_VADDFP,
2809 ALTIVEC_BUILTIN_VADDCUW,
2810 ALTIVEC_BUILTIN_VADDUBS,
2811 ALTIVEC_BUILTIN_VADDSBS,
2812 ALTIVEC_BUILTIN_VADDUHS,
2813 ALTIVEC_BUILTIN_VADDSHS,
2814 ALTIVEC_BUILTIN_VADDUWS,
2815 ALTIVEC_BUILTIN_VADDSWS,
2816 ALTIVEC_BUILTIN_VAND,
2817 ALTIVEC_BUILTIN_VANDC,
2818 ALTIVEC_BUILTIN_VAVGUB,
2819 ALTIVEC_BUILTIN_VAVGSB,
2820 ALTIVEC_BUILTIN_VAVGUH,
2821 ALTIVEC_BUILTIN_VAVGSH,
2822 ALTIVEC_BUILTIN_VAVGUW,
2823 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2824 ALTIVEC_BUILTIN_VCFUX,
2825 ALTIVEC_BUILTIN_VCFSX,
2826 ALTIVEC_BUILTIN_VCTSXS,
2827 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2828 ALTIVEC_BUILTIN_VCMPBFP,
2829 ALTIVEC_BUILTIN_VCMPEQUB,
2830 ALTIVEC_BUILTIN_VCMPEQUH,
2831 ALTIVEC_BUILTIN_VCMPEQUW,
2832 ALTIVEC_BUILTIN_VCMPEQFP,
2833 ALTIVEC_BUILTIN_VCMPGEFP,
2834 ALTIVEC_BUILTIN_VCMPGTUB,
2835 ALTIVEC_BUILTIN_VCMPGTSB,
2836 ALTIVEC_BUILTIN_VCMPGTUH,
2837 ALTIVEC_BUILTIN_VCMPGTSH,
2838 ALTIVEC_BUILTIN_VCMPGTUW,
2839 ALTIVEC_BUILTIN_VCMPGTSW,
2840 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2841 ALTIVEC_BUILTIN_VEXPTEFP,
2842 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2843 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2844 ALTIVEC_BUILTIN_VMAXUB,
2845 ALTIVEC_BUILTIN_VMAXSB,
2846 ALTIVEC_BUILTIN_VMAXUH,
2847 ALTIVEC_BUILTIN_VMAXSH,
2848 ALTIVEC_BUILTIN_VMAXUW,
2849 ALTIVEC_BUILTIN_VMAXSW,
2850 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2851 ALTIVEC_BUILTIN_VMHADDSHS,
2852 ALTIVEC_BUILTIN_VMHRADDSHS,
2853 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2854 ALTIVEC_BUILTIN_VMRGHB,
2855 ALTIVEC_BUILTIN_VMRGHH,
2856 ALTIVEC_BUILTIN_VMRGHW,
2857 ALTIVEC_BUILTIN_VMRGLB,
2858 ALTIVEC_BUILTIN_VMRGLH,
2859 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2860 ALTIVEC_BUILTIN_VMSUMUBM,
2861 ALTIVEC_BUILTIN_VMSUMMBM,
2862 ALTIVEC_BUILTIN_VMSUMUHM,
2863 ALTIVEC_BUILTIN_VMSUMSHM,
2864 ALTIVEC_BUILTIN_VMSUMUHS,
2865 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2866 ALTIVEC_BUILTIN_VMINUB,
2867 ALTIVEC_BUILTIN_VMINSB,
2868 ALTIVEC_BUILTIN_VMINUH,
2869 ALTIVEC_BUILTIN_VMINSH,
2870 ALTIVEC_BUILTIN_VMINUW,
2871 ALTIVEC_BUILTIN_VMINSW,
2872 ALTIVEC_BUILTIN_VMINFP,
2873 ALTIVEC_BUILTIN_VMULEUB,
2874 ALTIVEC_BUILTIN_VMULESB,
2875 ALTIVEC_BUILTIN_VMULEUH,
2876 ALTIVEC_BUILTIN_VMULESH,
2877 ALTIVEC_BUILTIN_VMULOUB,
2878 ALTIVEC_BUILTIN_VMULOSB,
2879 ALTIVEC_BUILTIN_VMULOUH,
2880 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2881 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2882 ALTIVEC_BUILTIN_VNOR,
2883 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2884 ALTIVEC_BUILTIN_VSEL_4SI,
2885 ALTIVEC_BUILTIN_VSEL_4SF,
2886 ALTIVEC_BUILTIN_VSEL_8HI,
2887 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2888 ALTIVEC_BUILTIN_VPERM_4SI,
2889 ALTIVEC_BUILTIN_VPERM_4SF,
2890 ALTIVEC_BUILTIN_VPERM_8HI,
2891 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2892 ALTIVEC_BUILTIN_VPKUHUM,
2893 ALTIVEC_BUILTIN_VPKUWUM,
2894 ALTIVEC_BUILTIN_VPKPX,
2895 ALTIVEC_BUILTIN_VPKUHSS,
2896 ALTIVEC_BUILTIN_VPKSHSS,
2897 ALTIVEC_BUILTIN_VPKUWSS,
2898 ALTIVEC_BUILTIN_VPKSWSS,
2899 ALTIVEC_BUILTIN_VPKUHUS,
2900 ALTIVEC_BUILTIN_VPKSHUS,
2901 ALTIVEC_BUILTIN_VPKUWUS,
2902 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2903 ALTIVEC_BUILTIN_VREFP,
2904 ALTIVEC_BUILTIN_VRFIM,
2905 ALTIVEC_BUILTIN_VRFIN,
2906 ALTIVEC_BUILTIN_VRFIP,
2907 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2908 ALTIVEC_BUILTIN_VRLB,
2909 ALTIVEC_BUILTIN_VRLH,
2910 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2911 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2912 ALTIVEC_BUILTIN_VSLB,
2913 ALTIVEC_BUILTIN_VSLH,
2914 ALTIVEC_BUILTIN_VSLW,
2915 ALTIVEC_BUILTIN_VSL,
2916 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2917 ALTIVEC_BUILTIN_VSPLTB,
2918 ALTIVEC_BUILTIN_VSPLTH,
2919 ALTIVEC_BUILTIN_VSPLTW,
2920 ALTIVEC_BUILTIN_VSPLTISB,
2921 ALTIVEC_BUILTIN_VSPLTISH,
2922 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2923 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2924 ALTIVEC_BUILTIN_VSRH,
2925 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2926 ALTIVEC_BUILTIN_VSRAB,
2927 ALTIVEC_BUILTIN_VSRAH,
2928 ALTIVEC_BUILTIN_VSRAW,
2929 ALTIVEC_BUILTIN_VSR,
2930 ALTIVEC_BUILTIN_VSRO,
2931 ALTIVEC_BUILTIN_VSUBUBM,
2932 ALTIVEC_BUILTIN_VSUBUHM,
2933 ALTIVEC_BUILTIN_VSUBUWM,
2934 ALTIVEC_BUILTIN_VSUBFP,
2935 ALTIVEC_BUILTIN_VSUBCUW,
2936 ALTIVEC_BUILTIN_VSUBUBS,
2937 ALTIVEC_BUILTIN_VSUBSBS,
2938 ALTIVEC_BUILTIN_VSUBUHS,
2939 ALTIVEC_BUILTIN_VSUBSHS,
2940 ALTIVEC_BUILTIN_VSUBUWS,
2941 ALTIVEC_BUILTIN_VSUBSWS,
2942 ALTIVEC_BUILTIN_VSUM4UBS,
2943 ALTIVEC_BUILTIN_VSUM4SBS,
2944 ALTIVEC_BUILTIN_VSUM4SHS,
2945 ALTIVEC_BUILTIN_VSUM2SWS,
2946 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2947 ALTIVEC_BUILTIN_VXOR,
2948 ALTIVEC_BUILTIN_VSLDOI_16QI,
2949 ALTIVEC_BUILTIN_VSLDOI_8HI,
2950 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2951 ALTIVEC_BUILTIN_VSLDOI_4SF,
2952 ALTIVEC_BUILTIN_VUPKHSB,
2953 ALTIVEC_BUILTIN_VUPKHPX,
2954 ALTIVEC_BUILTIN_VUPKHSH,
2955 ALTIVEC_BUILTIN_VUPKLSB,
2956 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23
AH
2957 ALTIVEC_BUILTIN_VUPKLSH,
2958 ALTIVEC_BUILTIN_VCMPBFP_P,
2959 ALTIVEC_BUILTIN_VCMPEQFP_P,
2960 ALTIVEC_BUILTIN_VCMPEQUB_P,
2961 ALTIVEC_BUILTIN_VCMPEQUH_P,
2962 ALTIVEC_BUILTIN_VCMPEQUW_P,
2963 ALTIVEC_BUILTIN_VCMPGEFP_P,
2964 ALTIVEC_BUILTIN_VCMPGTFP_P,
2965 ALTIVEC_BUILTIN_VCMPGTSB_P,
2966 ALTIVEC_BUILTIN_VCMPGTSH_P,
2967 ALTIVEC_BUILTIN_VCMPGTSW_P,
2968 ALTIVEC_BUILTIN_VCMPGTUB_P,
2969 ALTIVEC_BUILTIN_VCMPGTUH_P,
2970 ALTIVEC_BUILTIN_VCMPGTUW_P
0ac081f6 2971};
This page took 1.579372 seconds and 5 git commands to generate.