]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
(common_mode_defined): New variable.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
6a7ec0a7
RK
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25
26/* Names to predefine in the preprocessor for this target machine. */
27
65c42379 28#define CPP_PREDEFINES "-D_IBMR2 -D_AIX -D_AIX32 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
29
30/* Print subsidiary information on the compiler version in use. */
31#define TARGET_VERSION ;
32
fdaff8ba
RS
33/* Tell the assembler to assume that all undefined names are external.
34
35 Don't do this until the fixed IBM assembler is more generally available.
36 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
37 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
38 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
39 will no longer be needed. */
f045b2c9
RS
40
41/* #define ASM_SPEC "-u" */
42
43/* Define the options for the binder: Start text at 512, align all segments
44 to 512 bytes, and warn if there is text relocation.
45
46 The -bhalt:4 option supposedly changes the level at which ld will abort,
47 but it also suppresses warnings about multiply defined symbols and is
48 used by the AIX cc command. So we use it here.
49
50 -bnodelcsect undoes a poor choice of default relating to multiply-defined
51 csects. See AIX documentation for more information about this. */
52
c1950f1c 53#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
561260fe 54 %{static:-bnso -bI:/lib/syscalls.exp} %{g*:-bexport:/usr/lib/libg.exp}"
f045b2c9 55
58a39e45
RS
56/* Profiled library versions are used by linking with special directories. */
57#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
58 %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc"
f045b2c9
RS
59
60/* gcc must do the search itself to find libgcc.a, not use -l. */
33f3c4c0 61#define LINK_LIBGCC_SPECIAL_1
f045b2c9
RS
62
63/* Don't turn -B into -L if the argument specifies a relative file name. */
64#define RELATIVE_PREFIX_NOT_LINKDIR
65
fb623df5 66/* Architecture type. */
f045b2c9 67
fb623df5
RK
68extern int target_flags;
69
70/* Use POWER architecture instructions and MQ register. */
71#define MASK_POWER 0x01
72
6febd581
RK
73/* Use POWER2 extensions to POWER architecture. */
74#define MASK_POWER2 0x02
75
fb623df5 76/* Use PowerPC architecture instructions. */
6febd581
RK
77#define MASK_POWERPC 0x04
78
6a7ec0a7
RK
79/* Use PowerPC extended FP instruction including sqrt and fsel. */
80#define MASK_PPCFPX 0x08
f045b2c9 81
fb623df5 82/* Use PowerPC-64 architecture instructions. */
6febd581 83#define MASK_POWERPC64 0x10
f045b2c9 84
fb623df5 85/* Use revised mnemonic names defined for PowerPC architecture. */
6febd581 86#define MASK_NEW_MNEMONICS 0x20
fb623df5
RK
87
88/* Disable placing fp constants in the TOC; can be turned on when the
89 TOC overflows. */
6febd581 90#define MASK_NO_FP_IN_TOC 0x40
fb623df5 91
0b9ccabc
RK
92/* Disable placing symbol+offset constants in the TOC; can be turned on when
93 the TOC overflows. */
94#define MASK_NO_SUM_IN_TOC 0x80
95
fb623df5 96/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
97 there are more than 16K unique variables/constants in an executable. With
98 this option, linking fails only if there are more than 16K modules, or
99 if there are more than 16K unique variables/constant in a single module.
100
101 This is at the cost of having 2 extra loads and one extra store per
102 function, and one less allocatable register. */
0b9ccabc 103#define MASK_MINIMAL_TOC 0x100
642a35f1 104
fb623df5 105#define TARGET_POWER (target_flags & MASK_POWER)
6febd581 106#define TARGET_POWER2 (target_flags & MASK_POWER2)
fb623df5 107#define TARGET_POWERPC (target_flags & MASK_POWERPC)
6a7ec0a7 108#define TARGET_PPCFPX (target_flags & MASK_PPCFPX)
fb623df5
RK
109#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
110#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
111#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
0b9ccabc 112#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
fb623df5 113#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
642a35f1 114
fb623df5 115/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 116
fb623df5 117 Macro to define tables used to set the flags.
f045b2c9
RS
118 This is a list in braces of pairs in braces,
119 each pair being { "NAME", VALUE }
120 where VALUE is the bits to set or minus the bits to clear.
121 An empty string NAME is used to identify the default VALUE. */
122
fb623df5
RK
123#define TARGET_SWITCHES \
124 {{"power", MASK_POWER}, \
6febd581
RK
125 {"power2", MASK_POWER | MASK_POWER2}, \
126 {"no-power2", - MASK_POWER2}, \
127 {"no-power", - (MASK_POWER | MASK_POWER2)}, \
fb623df5 128 {"powerpc", MASK_POWERPC}, \
6a7ec0a7
RK
129 {"no-powerpc", - (MASK_POWERPC | MASK_PPCFPX | MASK_POWERPC64)}, \
130 {"powerpc-fpx", MASK_POWERPC | MASK_PPCFPX}, \
131 {"no-powerpc-fpx", - MASK_PPCFPX}, \
132 {"powerpc64", MASK_POWERPC | MASK_PPCFPX | MASK_POWERPC64}, \
fb623df5
RK
133 {"no-powerpc64", -MASK_POWERPC64}, \
134 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
135 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
0b9ccabc
RK
136 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
137 | MASK_MINIMAL_TOC)}, \
fb623df5
RK
138 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
139 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
0b9ccabc
RK
140 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
141 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
fb623df5 142 {"minimal-toc", MASK_MINIMAL_TOC}, \
0b9ccabc 143 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
fb623df5
RK
144 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
145 {"", TARGET_DEFAULT}}
146
147#define TARGET_DEFAULT MASK_POWER
148
149/* Processor type. */
150enum processor_type
f86fe1fb 151 {PROCESSOR_RIOS1,
fb623df5
RK
152 PROCESSOR_RIOS2,
153 PROCESSOR_PPC601,
154 PROCESSOR_PPC603,
155 PROCESSOR_PPC604,
156 PROCESSOR_PPC620};
157
158extern enum processor_type rs6000_cpu;
159
160/* Recast the processor type to the cpu attribute. */
161#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
162
163/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 164#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 165
6febd581
RK
166/* Specify the dialect of assembler to use. New mnemonics is dialect one
167 and the old mnemonics are dialect zero. */
168#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
169
fb623df5
RK
170/* This macro is similar to `TARGET_SWITCHES' but defines names of
171 command options that have values. Its definition is an
172 initializer with a subgrouping for each command option.
173
174 Each subgrouping contains a string constant, that defines the
175 fixed part of the option name, and the address of a variable.
176 The variable, type `char *', is set to the variable part of the
177 given option if the fixed part matches. The actual option name
178 is made by appending `-m' to the specified name.
179
180 Here is an example which defines `-mshort-data-NUMBER'. If the
181 given option is `-mshort-data-512', the variable `m88k_short_data'
182 will be set to the string `"512"'.
183
184 extern char *m88k_short_data;
185 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
186
187#define TARGET_OPTIONS \
188{ {"cpu=", &rs6000_cpu_string}}
189
190extern char *rs6000_cpu_string;
191
192/* Sometimes certain combinations of command options do not make sense
193 on a particular target machine. You can define a macro
194 `OVERRIDE_OPTIONS' to take account of this. This macro, if
195 defined, is executed once just after all the command options have
196 been parsed.
197
198 On the RS/6000 this is used to define the target cpu type. */
199
200#define OVERRIDE_OPTIONS rs6000_override_options ()
f045b2c9 201
4f074454
RK
202/* Show we can debug even without a frame pointer. */
203#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
204\f
205/* target machine storage layout */
206
13d39dbc 207/* Define this macro if it is advisable to hold scalars in registers
ef457bda
RK
208 in a wider mode than that declared by the program. In such cases,
209 the value is constrained to be within the bounds of the declared
210 type, but kept valid in the wider mode. The signedness of the
211 extension may differ from that of the type. */
212
213#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
214 if (GET_MODE_CLASS (MODE) == MODE_INT \
215 && GET_MODE_SIZE (MODE) < 4) \
dac29d65 216 (MODE) = SImode;
ef457bda 217
f045b2c9
RS
218/* Define this if most significant bit is lowest numbered
219 in instructions that operate on numbered bit-fields. */
220/* That is true on RS/6000. */
221#define BITS_BIG_ENDIAN 1
222
223/* Define this if most significant byte of a word is the lowest numbered. */
224/* That is true on RS/6000. */
225#define BYTES_BIG_ENDIAN 1
226
227/* Define this if most significant word of a multiword number is lowest
228 numbered.
229
230 For RS/6000 we can decide arbitrarily since there are no machine
231 instructions for them. Might as well be consistent with bits and bytes. */
232#define WORDS_BIG_ENDIAN 1
233
fdaff8ba 234/* number of bits in an addressable storage unit */
f045b2c9
RS
235#define BITS_PER_UNIT 8
236
237/* Width in bits of a "word", which is the contents of a machine register.
238 Note that this is not necessarily the width of data type `int';
239 if using 16-bit ints on a 68000, this would still be 32.
240 But on a machine with 16-bit registers, this would be 16. */
241#define BITS_PER_WORD 32
242
243/* Width of a word, in units (bytes). */
244#define UNITS_PER_WORD 4
245
915f619f
JW
246/* Type used for ptrdiff_t, as a string used in a declaration. */
247#define PTRDIFF_TYPE "int"
248
f045b2c9
RS
249/* Type used for wchar_t, as a string used in a declaration. */
250#define WCHAR_TYPE "short unsigned int"
251
252/* Width of wchar_t in bits. */
253#define WCHAR_TYPE_SIZE 16
254
255/* Width in bits of a pointer.
256 See also the macro `Pmode' defined below. */
257#define POINTER_SIZE 32
258
259/* Allocation boundary (in *bits*) for storing arguments in argument list. */
260#define PARM_BOUNDARY 32
261
262/* Boundary (in *bits*) on which stack pointer should be aligned. */
263#define STACK_BOUNDARY 64
264
265/* Allocation boundary (in *bits*) for the code of a function. */
266#define FUNCTION_BOUNDARY 32
267
268/* No data type wants to be aligned rounder than this. */
269#define BIGGEST_ALIGNMENT 32
270
271/* Alignment of field after `int : 0' in a structure. */
272#define EMPTY_FIELD_BOUNDARY 32
273
274/* Every structure's size must be a multiple of this. */
275#define STRUCTURE_SIZE_BOUNDARY 8
276
277/* A bitfield declared as `int' forces `int' alignment for the struct. */
278#define PCC_BITFIELD_TYPE_MATTERS 1
279
280/* Make strings word-aligned so strcpy from constants will be faster. */
281#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
282 (TREE_CODE (EXP) == STRING_CST \
283 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
284
285/* Make arrays of chars word-aligned for the same reasons. */
286#define DATA_ALIGNMENT(TYPE, ALIGN) \
287 (TREE_CODE (TYPE) == ARRAY_TYPE \
288 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
289 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
290
fdaff8ba 291/* Non-zero if move instructions will actually fail to work
f045b2c9 292 when given unaligned data. */
fdaff8ba 293#define STRICT_ALIGNMENT 0
f045b2c9
RS
294\f
295/* Standard register usage. */
296
297/* Number of actual hardware registers.
298 The hardware registers are assigned numbers for the compiler
299 from 0 to just below FIRST_PSEUDO_REGISTER.
300 All registers that the compiler knows about must be given numbers,
301 even those that are not normally considered general registers.
302
303 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
304 an MQ register, a count register, a link register, and 8 condition
305 register fields, which we view here as separate registers.
306
307 In addition, the difference between the frame and argument pointers is
308 a function of the number of registers saved, so we need to have a
309 register for AP that will later be eliminated in favor of SP or FP.
310 This is a normal register, but it is fixed. */
311
312#define FIRST_PSEUDO_REGISTER 76
313
314/* 1 for registers that have pervasive standard uses
315 and are not available for the register allocator.
316
317 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
318
319 cr5 is not supposed to be used. */
320
321#define FIXED_REGISTERS \
322 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
323 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
324 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
325 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}
327
328/* 1 for registers not available across function calls.
329 These must include the FIXED_REGISTERS and also any
330 registers that can be used without being saved.
331 The latter must include the registers where values are returned
332 and the register where structure-value addresses are passed.
333 Aside from that, you can include as many other registers as you like. */
334
335#define CALL_USED_REGISTERS \
336 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \
337 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
338 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
339 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
340 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1}
341
342/* List the order in which to allocate registers. Each register must be
343 listed once, even those in FIXED_REGISTERS.
344
345 We allocate in the following order:
346 fp0 (not saved or used for anything)
347 fp13 - fp2 (not saved; incoming fp arg registers)
348 fp1 (not saved; return value)
349 fp31 - fp14 (saved; order given to save least number)
350 cr1, cr6, cr7 (not saved or special)
351 cr0 (not saved, but used for arithmetic operations)
352 cr2, cr3, cr4 (saved)
353 r0 (not saved; cannot be base reg)
354 r9 (not saved; best for TImode)
355 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
356 r3 (not saved; return value register)
357 r31 - r13 (saved; order given to save least number)
358 r12 (not saved; if used for DImode or DFmode would use r13)
359 mq (not saved; best to use it if we can)
360 ctr (not saved; when we have the choice ctr is better)
361 lr (saved)
362 cr5, r1, r2, ap (fixed) */
363
364#define REG_ALLOC_ORDER \
365 {32, \
366 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
367 33, \
368 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
369 50, 49, 48, 47, 46, \
370 69, 74, 75, 68, 70, 71, 72, \
371 0, \
372 9, 11, 10, 8, 7, 6, 5, 4, \
373 3, \
374 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
375 18, 17, 16, 15, 14, 13, 12, \
376 64, 66, 65, \
377 73, 1, 2, 67}
378
379/* True if register is floating-point. */
380#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
381
382/* True if register is a condition register. */
383#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
384
385/* True if register is an integer register. */
386#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
387
388/* Return number of consecutive hard regs needed starting at reg REGNO
389 to hold something of mode MODE.
390 This is ordinarily the length in words of a value of mode MODE
391 but can be less for certain modes in special long registers.
392
393 On RS/6000, ordinary registers hold 32 bits worth;
394 a single floating point register holds 64 bits worth. */
395
396#define HARD_REGNO_NREGS(REGNO, MODE) \
397 (FP_REGNO_P (REGNO) \
398 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
399 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
400
401/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
402 On RS/6000, the cpu registers can hold any mode but the float registers
403 can hold only floating modes and CR register can only hold CC modes. We
404 cannot put DImode or TImode anywhere except general register and they
405 must be able to fit within the register set. */
406
407#define HARD_REGNO_MODE_OK(REGNO, MODE) \
408 (FP_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_FLOAT \
409 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
ec559d0c
RK
410 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
411 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
412 : 1)
413
414/* Value is 1 if it is a good idea to tie two pseudo registers
415 when one has mode MODE1 and one has mode MODE2.
416 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
417 for any hard reg, then this must be 0 for correct output. */
418#define MODES_TIEABLE_P(MODE1, MODE2) \
419 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
420 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
421 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
422 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
423 : GET_MODE_CLASS (MODE1) == MODE_CC \
424 ? GET_MODE_CLASS (MODE2) == MODE_CC \
425 : GET_MODE_CLASS (MODE2) == MODE_CC \
426 ? GET_MODE_CLASS (MODE1) == MODE_CC \
427 : 1)
428
429/* A C expression returning the cost of moving data from a register of class
430 CLASS1 to one of CLASS2.
431
432 On the RS/6000, copying between floating-point and fixed-point
433 registers is expensive. */
434
435#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
436 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
437 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
438 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
439 : 2)
440
441/* A C expressions returning the cost of moving data of MODE from a register to
442 or from memory.
443
444 On the RS/6000, bump this up a bit. */
445
e8a8bc24 446#define MEMORY_MOVE_COST(MODE) 6
f045b2c9
RS
447
448/* Specify the cost of a branch insn; roughly the number of extra insns that
449 should be added to avoid a branch.
450
ef457bda 451 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
452 unscheduled conditional branch. */
453
ef457bda 454#define BRANCH_COST 3
f045b2c9 455
5a5e4c2c
RK
456/* A C statement (sans semicolon) to update the integer variable COST
457 based on the relationship between INSN that is dependent on
458 DEP_INSN through the dependence LINK. The default is to make no
459 adjustment to COST. On the RS/6000, ignore the cost of anti- and
460 output-dependencies. In fact, output dependencies on the CR do have
461 a cost, but it is probably not worthwhile to track it. */
462
463#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 464 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 465
6febd581
RK
466/* Define this macro to change register usage conditional on target flags.
467 Set MQ register fixed (already call_used) if not POWER architecture
468 (RIOS1, RIOS2, and PPC601) so that it will not be allocated.
469 Provide alternate register names for ppcas assembler */
470
471#define CONDITIONAL_REGISTER_USAGE \
472 if (!TARGET_POWER) \
473 fixed_regs[64] = 1;
474
f045b2c9
RS
475/* Specify the registers used for certain standard purposes.
476 The values of these macros are register numbers. */
477
478/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
479/* #define PC_REGNUM */
480
481/* Register to use for pushing function arguments. */
482#define STACK_POINTER_REGNUM 1
483
484/* Base register for access to local variables of the function. */
485#define FRAME_POINTER_REGNUM 31
486
487/* Value should be nonzero if functions must have frame pointers.
488 Zero means the frame pointer need not be set up (and parms
489 may be accessed via the stack pointer) in functions that seem suitable.
490 This is computed in `reload', in reload1.c. */
491#define FRAME_POINTER_REQUIRED 0
492
493/* Base register for access to arguments of the function. */
494#define ARG_POINTER_REGNUM 67
495
496/* Place to put static chain when calling a function that requires it. */
497#define STATIC_CHAIN_REGNUM 11
498
499/* Place that structure value return address is placed.
500
501 On the RS/6000, it is passed as an extra parameter. */
502#define STRUCT_VALUE 0
503\f
504/* Define the classes of registers for register constraints in the
505 machine description. Also define ranges of constants.
506
507 One of the classes must always be named ALL_REGS and include all hard regs.
508 If there is more than one class, another class must be named NO_REGS
509 and contain no registers.
510
511 The name GENERAL_REGS must be the name of a class (or an alias for
512 another name such as ALL_REGS). This is the class of registers
513 that is allowed by "g" or "r" in a register constraint.
514 Also, registers outside this class are allocated only when
515 instructions express preferences for them.
516
517 The classes must be numbered in nondecreasing order; that is,
518 a larger-numbered class must never be contained completely
519 in a smaller-numbered class.
520
521 For any two classes, it is very desirable that there be another
522 class that represents their union. */
523
524/* The RS/6000 has three types of registers, fixed-point, floating-point,
525 and condition registers, plus three special registers, MQ, CTR, and the
526 link register.
527
528 However, r0 is special in that it cannot be used as a base register.
529 So make a class for registers valid as base registers.
530
531 Also, cr0 is the only condition code register that can be used in
532 arithmetic insns, so make a separate class for it. */
533
534enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS,
535 NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS,
e8a8bc24
RK
536 SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS,
537 ALL_REGS, LIM_REG_CLASSES };
f045b2c9
RS
538
539#define N_REG_CLASSES (int) LIM_REG_CLASSES
540
541/* Give names of register classes as strings for dump file. */
542
543#define REG_CLASS_NAMES \
544 { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \
545 "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \
e8a8bc24
RK
546 "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \
547 "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" }
f045b2c9
RS
548
549/* Define which registers fit in which classes.
550 This is an initializer for a vector of HARD_REG_SET
551 of length N_REG_CLASSES. */
552
553#define REG_CLASS_CONTENTS \
554 { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \
e8a8bc24
RK
555 {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \
556 {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \
557 {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \
558 {~0, ~0, 0xffff} }
f045b2c9
RS
559
560/* The same information, inverted:
561 Return the class number of the smallest class containing
562 reg number REGNO. This could be a conditional expression
563 or could index an array. */
564
565#define REGNO_REG_CLASS(REGNO) \
566 ((REGNO) == 0 ? GENERAL_REGS \
567 : (REGNO) < 32 ? BASE_REGS \
568 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
569 : (REGNO) == 68 ? CR0_REGS \
570 : CR_REGNO_P (REGNO) ? CR_REGS \
571 : (REGNO) == 64 ? MQ_REGS \
572 : (REGNO) == 65 ? LINK_REGS \
573 : (REGNO) == 66 ? CTR_REGS \
574 : (REGNO) == 67 ? BASE_REGS \
575 : NO_REGS)
576
577/* The class value for index registers, and the one for base regs. */
578#define INDEX_REG_CLASS GENERAL_REGS
579#define BASE_REG_CLASS BASE_REGS
580
581/* Get reg_class from a letter such as appears in the machine description. */
582
583#define REG_CLASS_FROM_LETTER(C) \
584 ((C) == 'f' ? FLOAT_REGS \
585 : (C) == 'b' ? BASE_REGS \
586 : (C) == 'h' ? SPECIAL_REGS \
587 : (C) == 'q' ? MQ_REGS \
588 : (C) == 'c' ? CTR_REGS \
589 : (C) == 'l' ? LINK_REGS \
590 : (C) == 'x' ? CR0_REGS \
591 : (C) == 'y' ? CR_REGS \
592 : NO_REGS)
593
594/* The letters I, J, K, L, M, N, and P in a register constraint string
595 can be used to stand for particular ranges of immediate operands.
596 This macro defines what the ranges are.
597 C is the letter, and VALUE is a constant value.
598 Return 1 if VALUE is in the range specified by C.
599
600 `I' is signed 16-bit constants
601 `J' is a constant with only the high-order 16 bits non-zero
602 `K' is a constant with only the low-order 16 bits non-zero
603 `L' is a constant that can be placed into a mask operand
604 `M' is a constant that is greater than 31
605 `N' is a constant that is an exact power of two
606 `O' is the constant zero
607 `P' is a constant whose negation is a signed 16-bit constant */
608
609#define CONST_OK_FOR_LETTER_P(VALUE, C) \
610 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
611 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
612 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
613 : (C) == 'L' ? mask_constant (VALUE) \
614 : (C) == 'M' ? (VALUE) > 31 \
615 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
616 : (C) == 'O' ? (VALUE) == 0 \
617 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
618 : 0)
619
620/* Similar, but for floating constants, and defining letters G and H.
621 Here VALUE is the CONST_DOUBLE rtx itself.
622
623 We flag for special constants when we can copy the constant into
624 a general register in two insns for DF and one insn for SF. */
625
626#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
627 ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0)
628
629/* Optional extra constraints for this machine.
630
631 For the RS/6000, `Q' means that this is a memory operand that is just
632 an offset from a register. */
633
e8a8bc24
RK
634#define EXTRA_CONSTRAINT(OP, C) \
635 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
636 : 0)
f045b2c9
RS
637
638/* Given an rtx X being reloaded into a reg required to be
639 in class CLASS, return the class of reg to actually use.
640 In general this is just CLASS; but on some machines
641 in some cases it is preferable to use a more restrictive class.
642
643 On the RS/6000, we have to return NO_REGS when we want to reload a
644 floating-point CONST_DOUBLE to force it to be copied to memory. */
645
646#define PREFERRED_RELOAD_CLASS(X,CLASS) \
647 ((GET_CODE (X) == CONST_DOUBLE \
648 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
649 ? NO_REGS : (CLASS))
650
651/* Return the register class of a scratch register needed to copy IN into
652 or out of a register in CLASS in MODE. If it can be done directly,
653 NO_REGS is returned. */
654
655#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
656 secondary_reload_class (CLASS, MODE, IN)
657
7ea555a4
RK
658/* If we are copying between FP registers and anything else, we need a memory
659 location. */
660
661#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
662 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
663
f045b2c9
RS
664/* Return the maximum number of consecutive registers
665 needed to represent mode MODE in a register of class CLASS.
666
667 On RS/6000, this is the size of MODE in words,
668 except in the FP regs, where a single reg is enough for two words. */
669#define CLASS_MAX_NREGS(CLASS, MODE) \
670 ((CLASS) == FLOAT_REGS \
671 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
672 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
673\f
674/* Stack layout; function entry, exit and calling. */
675
676/* Define this if pushing a word on the stack
677 makes the stack pointer a smaller address. */
678#define STACK_GROWS_DOWNWARD
679
680/* Define this if the nominal address of the stack frame
681 is at the high-address end of the local variables;
682 that is, each additional local variable allocated
683 goes at a more negative offset in the frame.
684
685 On the RS/6000, we grow upwards, from the area after the outgoing
686 arguments. */
687/* #define FRAME_GROWS_DOWNWARD */
688
689/* Offset within stack frame to start allocating local variables at.
690 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
691 first local allocated. Otherwise, it is the offset to the BEGINNING
692 of the first local allocated.
693
694 On the RS/6000, the frame pointer is the same as the stack pointer,
695 except for dynamic allocations. So we start after the fixed area and
696 outgoing parameter area. */
697
698#define STARTING_FRAME_OFFSET (current_function_outgoing_args_size + 24)
699
700/* If we generate an insn to push BYTES bytes,
701 this says how many the stack pointer really advances by.
702 On RS/6000, don't define this because there are no push insns. */
703/* #define PUSH_ROUNDING(BYTES) */
704
705/* Offset of first parameter from the argument pointer register value.
706 On the RS/6000, we define the argument pointer to the start of the fixed
707 area. */
708#define FIRST_PARM_OFFSET(FNDECL) 24
709
710/* Define this if stack space is still allocated for a parameter passed
711 in a register. The value is the number of bytes allocated to this
712 area. */
713#define REG_PARM_STACK_SPACE(FNDECL) 32
714
715/* Define this if the above stack space is to be considered part of the
716 space allocated by the caller. */
717#define OUTGOING_REG_PARM_STACK_SPACE
718
719/* This is the difference between the logical top of stack and the actual sp.
720
721 For the RS/6000, sp points past the fixed area. */
722#define STACK_POINTER_OFFSET 24
723
724/* Define this if the maximum size of all the outgoing args is to be
725 accumulated and pushed during the prologue. The amount can be
726 found in the variable current_function_outgoing_args_size. */
727#define ACCUMULATE_OUTGOING_ARGS
728
729/* Value is the number of bytes of arguments automatically
730 popped when returning from a subroutine call.
731 FUNTYPE is the data type of the function (as a tree),
732 or for a library call it is an identifier node for the subroutine name.
733 SIZE is the number of bytes of arguments passed on the stack. */
734
735#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
736
737/* Define how to find the value returned by a function.
738 VALTYPE is the data type of the value (as a tree).
739 If the precise function being called is known, FUNC is its FUNCTION_DECL;
740 otherwise, FUNC is 0.
741
742 On RS/6000 an integer value is in r3 and a floating-point value is in
743 fp1. */
744
745#define FUNCTION_VALUE(VALTYPE, FUNC) \
746 gen_rtx (REG, TYPE_MODE (VALTYPE), \
747 TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3)
748
749/* Define how to find the value returned by a library function
750 assuming the value has mode MODE. */
751
752#define LIBCALL_VALUE(MODE) \
753 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3)
754
755/* The definition of this macro implies that there are cases where
756 a scalar value cannot be returned in registers.
757
758 For the RS/6000, any structure or union type is returned in memory. */
759
760#define RETURN_IN_MEMORY(TYPE) \
e419152d 761 (TYPE_MODE (TYPE) == BLKmode)
f045b2c9
RS
762
763/* 1 if N is a possible register number for a function value
764 as seen by the caller.
765
766 On RS/6000, this is r3 and fp1. */
767
768#define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33))
769
770/* 1 if N is a possible register number for function argument passing.
771 On RS/6000, these are r3-r10 and fp1-fp13. */
772
773#define FUNCTION_ARG_REGNO_P(N) \
774 (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45))
775\f
776/* Define a data type for recording info about an argument list
777 during the scan of that argument list. This data type should
778 hold all necessary information about the function itself
779 and about the args processed so far, enough to enable macros
780 such as FUNCTION_ARG to determine where the next arg should go.
781
782 On the RS/6000, this is a structure. The first element is the number of
783 total argument words, the second is used to store the next
784 floating-point register number, and the third says how many more args we
785 have prototype types for. */
786
787struct rs6000_args {int words, fregno, nargs_prototype; };
788#define CUMULATIVE_ARGS struct rs6000_args
789
790/* Define intermediate macro to compute the size (in registers) of an argument
791 for the RS/6000. */
792
793#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
794(! (NAMED) ? 0 \
795 : (MODE) != BLKmode \
796 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
797 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
798
799/* Initialize a variable CUM of type CUMULATIVE_ARGS
800 for a call to a function whose data type is FNTYPE.
801 For a library call, FNTYPE is 0. */
802
803#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
804 (CUM).words = 0, \
805 (CUM).fregno = 33, \
806 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
807 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
808 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
809 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
810 : 0)
811
812/* Similar, but when scanning the definition of a procedure. We always
813 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
814
815#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
816 (CUM).words = 0, \
817 (CUM).fregno = 33, \
818 (CUM).nargs_prototype = 1000
819
820/* Update the data in CUM to advance over an argument
821 of mode MODE and data type TYPE.
822 (TYPE is null for libcalls where that information may not be available.) */
823
824#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
825{ (CUM).nargs_prototype--; \
826 if (NAMED) \
827 { \
828 (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \
829 if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
830 (CUM).fregno++; \
831 } \
832}
833
834/* Non-zero if we can use a floating-point register to pass this arg. */
835#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
836 (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46)
837
838/* Determine where to put an argument to a function.
839 Value is zero to push the argument on the stack,
840 or a hard register in which to store the argument.
841
842 MODE is the argument's machine mode.
843 TYPE is the data type of the argument (as a tree).
844 This is null for libcalls where that information may
845 not be available.
846 CUM is a variable of type CUMULATIVE_ARGS which gives info about
847 the preceding args and about the function being called.
848 NAMED is nonzero if this argument is a named parameter
849 (otherwise it is an extra parameter matching an ellipsis).
850
851 On RS/6000 the first eight words of non-FP are normally in registers
852 and the rest are pushed. The first 13 FP args are in registers.
853
854 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
855 both an FP and integer register (or possibly FP reg and stack). Library
856 functions (when TYPE is zero) always have the proper types for args,
857 so we can pass the FP value just in one register. emit_library_function
858 doesn't support EXPR_LIST anyway. */
f045b2c9
RS
859
860#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
861 (! (NAMED) ? 0 \
38bd31fc 862 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
d072107f 863 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \
4d6697ca 864 ? ((CUM).nargs_prototype > 0 || (TYPE) == 0 \
f045b2c9
RS
865 ? gen_rtx (REG, MODE, (CUM).fregno) \
866 : ((CUM).words < 8 \
867 ? gen_rtx (EXPR_LIST, VOIDmode, \
868 gen_rtx (REG, (MODE), 3 + (CUM).words), \
869 gen_rtx (REG, (MODE), (CUM).fregno)) \
870 : gen_rtx (EXPR_LIST, VOIDmode, 0, \
871 gen_rtx (REG, (MODE), (CUM).fregno)))) \
872 : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0)
873
874/* For an arg passed partly in registers and partly in memory,
875 this is the number of registers used.
876 For args passed entirely in registers or entirely in memory, zero. */
877
878#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
879 (! (NAMED) ? 0 \
880 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \
881 : (((CUM).words < 8 \
882 && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \
883 ? 8 - (CUM).words : 0))
884
885/* Perform any needed actions needed for a function that is receiving a
886 variable number of arguments.
887
888 CUM is as above.
889
890 MODE and TYPE are the mode and type of the current parameter.
891
892 PRETEND_SIZE is a variable that should be set to the amount of stack
893 that must be pushed by the prolog to pretend that our caller pushed
894 it.
895
896 Normally, this macro will push all remaining incoming registers on the
897 stack and set PRETEND_SIZE to the length of the registers pushed. */
898
899#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
900{ if ((CUM).words < 8) \
901 { \
902 int first_reg_offset = (CUM).words; \
903 \
904 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
905 first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
906 \
907 if (first_reg_offset > 8) \
908 first_reg_offset = 8; \
909 \
910 if (! (NO_RTL) && first_reg_offset != 8) \
911 move_block_from_reg \
912 (3 + first_reg_offset, \
913 gen_rtx (MEM, BLKmode, \
914 plus_constant (virtual_incoming_args_rtx, \
915 first_reg_offset * 4)), \
02892e06 916 8 - first_reg_offset, (8 - first_reg_offset) * UNITS_PER_WORD); \
f045b2c9
RS
917 PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \
918 } \
919}
920
921/* This macro generates the assembly code for function entry.
922 FILE is a stdio stream to output the code to.
923 SIZE is an int: how many units of temporary storage to allocate.
924 Refer to the array `regs_ever_live' to determine which registers
925 to save; `regs_ever_live[I]' is nonzero if register number I
926 is ever used in the function. This macro is responsible for
927 knowing which registers should not be saved even if used. */
928
929#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
930
931/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 932 for profiling a function entry. */
f045b2c9
RS
933
934#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 935 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
936
937/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
938 the stack pointer does not matter. No definition is equivalent to
939 always zero.
940
941 On the RS/6000, this is non-zero because we can restore the stack from
942 its backpointer, which we maintain. */
943#define EXIT_IGNORE_STACK 1
944
945/* This macro generates the assembly code for function exit,
946 on machines that need it. If FUNCTION_EPILOGUE is not defined
947 then individual return instructions are generated for each
948 return statement. Args are same as for FUNCTION_PROLOGUE.
949
950 The function epilogue should not depend on the current stack pointer!
951 It should use the frame pointer only. This is mandatory because
952 of alloca; we also take advantage of it to omit stack adjustments
953 before returning. */
954
955#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
956\f
957/* Output assembler code for a block containing the constant parts
958 of a trampoline, leaving space for the variable parts.
959
960 The trampoline should set the static chain pointer to value placed
961 into the trampoline and should branch to the specified routine.
962
963 On the RS/6000, this is not code at all, but merely a data area,
964 since that is the way all functions are called. The first word is
965 the address of the function, the second word is the TOC pointer (r2),
966 and the third word is the static chain value. */
967
968#define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); }
969
970/* Length in units of the trampoline for entering a nested function. */
971
972#define TRAMPOLINE_SIZE 12
973
974/* Emit RTL insns to initialize the variable parts of a trampoline.
975 FNADDR is an RTX for the address of the function's pure code.
976 CXT is an RTX for the static chain value for the function. */
977
978#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
979{ \
f045b2c9 980 emit_move_insn (gen_rtx (MEM, SImode, \
858b728c
RK
981 memory_address (SImode, (ADDR))), \
982 gen_rtx (MEM, SImode, \
983 memory_address (SImode, (FNADDR)))); \
f045b2c9 984 emit_move_insn (gen_rtx (MEM, SImode, \
858b728c
RK
985 memory_address (SImode, \
986 plus_constant ((ADDR), 4))), \
987 gen_rtx (MEM, SImode, \
988 memory_address (SImode, \
989 plus_constant ((FNADDR), 4)))); \
990 emit_move_insn (gen_rtx (MEM, SImode, \
991 memory_address (SImode, \
992 plus_constant ((ADDR), 8))), \
993 force_reg (SImode, (CXT))); \
f045b2c9
RS
994}
995\f
996/* Definitions for register eliminations.
997
998 We have two registers that can be eliminated on the RS/6000. First, the
999 frame pointer register can often be eliminated in favor of the stack
1000 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1001 eliminated; it is replaced with either the stack or frame pointer.
1002
1003 In addition, we use the elimination mechanism to see if r30 is needed
1004 Initially we assume that it isn't. If it is, we spill it. This is done
1005 by making it an eliminable register. We replace it with itself so that
1006 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1007
1008/* This is an array of structures. Each structure initializes one pair
1009 of eliminable registers. The "from" register number is given first,
1010 followed by "to". Eliminations of the same "from" register are listed
1011 in order of preference. */
1012#define ELIMINABLE_REGS \
1013{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1014 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1015 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1016 { 30, 30} }
f045b2c9
RS
1017
1018/* Given FROM and TO register numbers, say whether this elimination is allowed.
1019 Frame pointer elimination is automatically handled.
1020
1021 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1022 to convert ap into fp, not sp.
1023
1024 We need r30 if -mmininal-toc was specified, and there are constant pool
1025 references. */
f045b2c9
RS
1026
1027#define CAN_ELIMINATE(FROM, TO) \
1028 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1029 ? ! frame_pointer_needed \
642a35f1 1030 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || get_pool_size () == 0 \
f045b2c9
RS
1031 : 1)
1032
1033/* Define the offset between two registers, one to be eliminated, and the other
1034 its replacement, at the start of a routine. */
1035#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1036{ \
1037 int total_stack_size = (rs6000_sa_size () + get_frame_size () \
1038 + current_function_outgoing_args_size); \
1039 \
1040 total_stack_size = (total_stack_size + 7) & ~7; \
1041 \
1042 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1043 { \
1044 if (rs6000_pushes_stack ()) \
1045 (OFFSET) = 0; \
1046 else \
1047 (OFFSET) = - total_stack_size; \
1048 } \
1049 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1050 (OFFSET) = total_stack_size; \
1051 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1052 { \
1053 if (rs6000_pushes_stack ()) \
1054 (OFFSET) = total_stack_size; \
1055 else \
1056 (OFFSET) = 0; \
1057 } \
642a35f1
JW
1058 else if ((FROM) == 30) \
1059 (OFFSET) = 0; \
f045b2c9
RS
1060 else \
1061 abort (); \
1062}
1063\f
1064/* Addressing modes, and classification of registers for them. */
1065
1066/* #define HAVE_POST_INCREMENT */
1067/* #define HAVE_POST_DECREMENT */
1068
1069#define HAVE_PRE_DECREMENT
1070#define HAVE_PRE_INCREMENT
1071
1072/* Macros to check register numbers against specific register classes. */
1073
1074/* These assume that REGNO is a hard or pseudo reg number.
1075 They give nonzero only if REGNO is a hard reg of the suitable class
1076 or a pseudo reg currently allocated to a suitable hard reg.
1077 Since they use reg_renumber, they are safe only once reg_renumber
1078 has been allocated, which happens in local-alloc.c. */
1079
1080#define REGNO_OK_FOR_INDEX_P(REGNO) \
1081((REGNO) < FIRST_PSEUDO_REGISTER \
1082 ? (REGNO) <= 31 || (REGNO) == 67 \
1083 : (reg_renumber[REGNO] >= 0 \
1084 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1085
1086#define REGNO_OK_FOR_BASE_P(REGNO) \
1087((REGNO) < FIRST_PSEUDO_REGISTER \
1088 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1089 : (reg_renumber[REGNO] > 0 \
1090 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1091\f
1092/* Maximum number of registers that can appear in a valid memory address. */
1093
1094#define MAX_REGS_PER_ADDRESS 2
1095
1096/* Recognize any constant value that is a valid address. */
1097
6eff269e
BK
1098#define CONSTANT_ADDRESS_P(X) \
1099 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1100 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1101 || GET_CODE (X) == HIGH)
f045b2c9
RS
1102
1103/* Nonzero if the constant value X is a legitimate general operand.
1104 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1105
1106 On the RS/6000, all integer constants are acceptable, most won't be valid
1107 for particular insns, though. Only easy FP constants are
1108 acceptable. */
1109
1110#define LEGITIMATE_CONSTANT_P(X) \
1111 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1112 || easy_fp_constant (X, GET_MODE (X)))
1113
1114/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1115 and check its validity for a certain class.
1116 We have two alternate definitions for each of them.
1117 The usual definition accepts all pseudo regs; the other rejects
1118 them unless they have been allocated suitable hard regs.
1119 The symbol REG_OK_STRICT causes the latter definition to be used.
1120
1121 Most source files want to accept pseudo regs in the hope that
1122 they will get allocated to the class that the insn wants them to be in.
1123 Source files for reload pass need to be strict.
1124 After reload, it makes no difference, since pseudo regs have
1125 been eliminated by then. */
1126
1127#ifndef REG_OK_STRICT
1128
1129/* Nonzero if X is a hard reg that can be used as an index
1130 or if it is a pseudo reg. */
1131#define REG_OK_FOR_INDEX_P(X) \
1132 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1133
1134/* Nonzero if X is a hard reg that can be used as a base reg
1135 or if it is a pseudo reg. */
1136#define REG_OK_FOR_BASE_P(X) \
1137 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1138
1139#else
1140
1141/* Nonzero if X is a hard reg that can be used as an index. */
1142#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1143/* Nonzero if X is a hard reg that can be used as a base reg. */
1144#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1145
1146#endif
1147\f
1148/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1149 that is a valid memory address for an instruction.
1150 The MODE argument is the machine mode for the MEM expression
1151 that wants to use this address.
1152
1153 On the RS/6000, there are four valid address: a SYMBOL_REF that
1154 refers to a constant pool entry of an address (or the sum of it
1155 plus a constant), a short (16-bit signed) constant plus a register,
1156 the sum of two registers, or a register indirect, possibly with an
1157 auto-increment. For DFmode and DImode with an constant plus register,
1158 we must ensure that both words are addressable. */
1159
1160#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1161 (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \
1162 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1163
1164#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1165 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1166 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1167 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1168 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1169
1170#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1171 (GET_CODE (X) == CONST_INT \
1172 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1173
1174#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1175 (GET_CODE (X) == PLUS \
1176 && GET_CODE (XEXP (X, 0)) == REG \
1177 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1178 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1179 && (((MODE) != DFmode && (MODE) != DImode) \
1180 || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))
1181
1182#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1183 (GET_CODE (X) == PLUS \
1184 && GET_CODE (XEXP (X, 0)) == REG \
1185 && GET_CODE (XEXP (X, 1)) == REG \
1186 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1187 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1188 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1189 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1190
1191#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1192 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1193
1194#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1195{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1196 goto ADDR; \
1197 if (GET_CODE (X) == PRE_INC \
1198 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1199 goto ADDR; \
1200 if (GET_CODE (X) == PRE_DEC \
1201 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1202 goto ADDR; \
1203 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1204 goto ADDR; \
1205 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1206 goto ADDR; \
1207 if ((MODE) != DImode && (MODE) != TImode \
1208 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1209 goto ADDR; \
1210}
1211\f
1212/* Try machine-dependent ways of modifying an illegitimate address
1213 to be legitimate. If we find one, return the new, valid address.
1214 This macro is used in only one place: `memory_address' in explow.c.
1215
1216 OLDX is the address as it was before break_out_memory_refs was called.
1217 In some cases it is useful to look at this to decide what needs to be done.
1218
1219 MODE and WIN are passed so that this macro can use
1220 GO_IF_LEGITIMATE_ADDRESS.
1221
1222 It is always safe for this macro to do nothing. It exists to recognize
1223 opportunities to optimize the output.
1224
1225 On RS/6000, first check for the sum of a register with a constant
1226 integer that is out of range. If so, generate code to add the
1227 constant with the low-order 16 bits masked to the register and force
1228 this result into another register (this can be done with `cau').
1229 Then generate an address of REG+(CONST&0xffff), allowing for the
1230 possibility of bit 16 being a one.
1231
1232 Then check for the sum of a register and something not constant, try to
1233 load the other things into a register and return the sum. */
1234
1235#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1236{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1237 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1238 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1239 { int high_int, low_int; \
1240 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1241 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1242 if (low_int & 0x8000) \
1243 high_int += 1, low_int |= 0xffff0000; \
1244 (X) = gen_rtx (PLUS, SImode, \
1245 force_operand \
1246 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1247 gen_rtx (CONST_INT, VOIDmode, \
1248 high_int << 16)), 0),\
1249 gen_rtx (CONST_INT, VOIDmode, low_int)); \
f357808b 1250 goto WIN; \
f045b2c9
RS
1251 } \
1252 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
27a2a2f1
RK
1253 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1254 && (MODE) != DImode && (MODE) != TImode) \
f357808b
RK
1255 { \
1256 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
1257 force_reg (SImode, force_operand (XEXP (X, 1), 0))); \
1258 goto WIN; \
1259 } \
f045b2c9
RS
1260}
1261
1262/* Go to LABEL if ADDR (a legitimate address expression)
1263 has an effect that depends on the machine mode it is used for.
1264
1265 On the RS/6000 this is true if the address is valid with a zero offset
1266 but not with an offset of four (this means it cannot be used as an
1267 address for DImode or DFmode) or is a pre-increment or decrement. Since
1268 we know it is valid, we just check for an address that is not valid with
1269 an offset of four. */
1270
1271#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1272{ if (GET_CODE (ADDR) == PLUS \
1273 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1274 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1275 goto LABEL; \
1276 if (GET_CODE (ADDR) == PRE_INC) \
1277 goto LABEL; \
1278 if (GET_CODE (ADDR) == PRE_DEC) \
1279 goto LABEL; \
1280}
1281\f
1282/* Define this if some processing needs to be done immediately before
1283 emitting code for an insn. */
1284
1285/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1286
1287/* Specify the machine mode that this machine uses
1288 for the index in the tablejump instruction. */
1289#define CASE_VECTOR_MODE SImode
1290
1291/* Define this if the tablejump instruction expects the table
1292 to contain offsets from the address of the table.
1293 Do not define this if the table should contain absolute addresses. */
1294#define CASE_VECTOR_PC_RELATIVE
1295
1296/* Specify the tree operation to be used to convert reals to integers. */
1297#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1298
1299/* This is the kind of divide that is easiest to do in the general case. */
1300#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1301
1302/* Define this as 1 if `char' should by default be signed; else as 0. */
1303#define DEFAULT_SIGNED_CHAR 0
1304
1305/* This flag, if defined, says the same insns that convert to a signed fixnum
1306 also convert validly to an unsigned one. */
1307
1308/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1309
1310/* Max number of bytes we can move from memory to memory
1311 in one reasonably fast instruction. */
1312#define MOVE_MAX 16
1313
1314/* Nonzero if access to memory by bytes is no faster than for words.
1315 Also non-zero if doing byte operations (specifically shifts) in registers
1316 is undesirable. */
1317#define SLOW_BYTE_ACCESS 1
1318
9a63901f
RK
1319/* Define if operations between registers always perform the operation
1320 on the full register even if a narrower mode is specified. */
1321#define WORD_REGISTER_OPERATIONS
1322
1323/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1324 will either zero-extend or sign-extend. The value of this macro should
1325 be the code that says which one of the two operations is implicitly
1326 done, NIL if none. */
1327#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
1328
1329/* Define if loading short immediate values into registers sign extends. */
1330#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
1331\f
1332/* The RS/6000 uses the XCOFF format. */
f045b2c9 1333
fdaff8ba 1334#define XCOFF_DEBUGGING_INFO
f045b2c9 1335
c5abcf1d
CH
1336/* Define if the object format being used is COFF or a superset. */
1337#define OBJECT_FORMAT_COFF
1338
2c440f06
RK
1339/* Define the magic numbers that we recognize as COFF. */
1340
1341#define MY_ISCOFF(magic) \
1342 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
1343
115e69a9
RK
1344/* This is the only version of nm that collect2 can work with. */
1345#define REAL_NM_FILE_NAME "/usr/ucb/nm"
1346
f045b2c9
RS
1347/* We don't have GAS for the RS/6000 yet, so don't write out special
1348 .stabs in cc1plus. */
1349
1350#define FASCIST_ASSEMBLER
1351
f045b2c9
RS
1352/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1353 is done just by pretending it is already truncated. */
1354#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1355
1356/* Specify the machine mode that pointers have.
1357 After generation of rtl, the compiler makes no further distinction
1358 between pointers and any other objects of this machine mode. */
1359#define Pmode SImode
1360
1361/* Mode of a function address in a call instruction (for indexing purposes).
1362
1363 Doesn't matter on RS/6000. */
1364#define FUNCTION_MODE SImode
1365
1366/* Define this if addresses of constant functions
1367 shouldn't be put through pseudo regs where they can be cse'd.
1368 Desirable on machines where ordinary constants are expensive
1369 but a CALL with constant address is cheap. */
1370#define NO_FUNCTION_CSE
1371
d969caf8 1372/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
1373 few bits.
1374
1375 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1376 have been dropped from the PowerPC architecture. */
1377
1378#define SHIFT_COUNT_TRUNCATED TARGET_POWER ? 1 : 0
f045b2c9
RS
1379
1380/* Use atexit for static constructors/destructors, instead of defining
1381 our own exit function. */
1382#define HAVE_ATEXIT
1383
1384/* Compute the cost of computing a constant rtl expression RTX
1385 whose rtx-code is CODE. The body of this macro is a portion
1386 of a switch statement. If the code is computed here,
1387 return it with a return statement. Otherwise, break from the switch.
1388
1389 On the RS/6000, if it is legal in the insn, it is free. So this
1390 always returns 0. */
1391
3bb22aee 1392#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
1393 case CONST_INT: \
1394 case CONST: \
1395 case LABEL_REF: \
1396 case SYMBOL_REF: \
1397 case CONST_DOUBLE: \
1398 return 0;
1399
1400/* Provide the costs of a rtl expression. This is in the body of a
1401 switch on CODE. */
1402
3bb22aee 1403#define RTX_COSTS(X,CODE,OUTER_CODE) \
f045b2c9
RS
1404 case MULT: \
1405 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
1406 ? COSTS_N_INSNS (5) \
1407 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
1408 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
1409 case DIV: \
1410 case MOD: \
1411 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1412 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
1413 return COSTS_N_INSNS (2); \
1414 /* otherwise fall through to normal divide. */ \
1415 case UDIV: \
1416 case UMOD: \
1417 return COSTS_N_INSNS (19); \
1418 case MEM: \
1419 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
1420 return 5;
1421
1422/* Compute the cost of an address. This is meant to approximate the size
1423 and/or execution delay of an insn using that address. If the cost is
1424 approximated by the RTL complexity, including CONST_COSTS above, as
1425 is usually the case for CISC machines, this macro should not be defined.
1426 For aggressively RISCy machines, only one insn format is allowed, so
1427 this macro should be a constant. The value of this macro only matters
1428 for valid addresses.
1429
1430 For the RS/6000, everything is cost 0. */
1431
1432#define ADDRESS_COST(RTX) 0
1433
1434/* Adjust the length of an INSN. LENGTH is the currently-computed length and
1435 should be adjusted to reflect any required changes. This macro is used when
1436 there is some systematic length adjustment required that would be difficult
1437 to express in the length attribute. */
1438
1439/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1440
1441/* Add any extra modes needed to represent the condition code.
1442
1443 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
1444 are being done and we need a separate mode for floating-point. We also
1445 use a mode for the case when we are comparing the results of two
1446 comparisons. */
f045b2c9 1447
c5defebb 1448#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
1449
1450/* Define the names for the modes specified above. */
c5defebb 1451#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
1452
1453/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1454 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
1455 should be used. CCUNSmode should be used for unsigned comparisons.
1456 CCEQmode should be used when we are doing an inequality comparison on
1457 the result of a comparison. CCmode should be used in all other cases. */
1458
b565a316 1459#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 1460 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
1461 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1462 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
1463 ? CCEQmode : CCmode))
f045b2c9
RS
1464
1465/* Define the information needed to generate branch and scc insns. This is
1466 stored from the compare operation. Note that we can't use "rtx" here
1467 since it hasn't been defined! */
1468
1469extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
1470extern int rs6000_compare_fp_p;
1471
1472/* Set to non-zero by "fix" operation to indicate that itrunc and
1473 uitrunc must be defined. */
1474
1475extern int rs6000_trunc_used;
9929b575
ILT
1476
1477/* Function names to call to do floating point truncation. */
1478
1479#define RS6000_ITRUNC "itrunc"
1480#define RS6000_UITRUNC "uitrunc"
f045b2c9
RS
1481\f
1482/* Control the assembler format that we output. */
1483
1484/* Output at beginning of assembler file.
1485
b4d6689b 1486 Initialize the section names for the RS/6000 at this point.
fdaff8ba 1487
6355b140 1488 Specify filename to assembler.
3fc2151d 1489
b4d6689b 1490 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 1491 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
1492 [RW] section emitted.
1493
1494 We then switch back to text to force the gcc2_compiled. label and the space
1495 allocated after it (when profiling) into the text section.
1496
1497 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
1498
1499#define ASM_FILE_START(FILE) \
1500{ \
fdaff8ba 1501 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 1502 main_input_filename, ".bss_"); \
fdaff8ba 1503 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 1504 main_input_filename, ".rw_"); \
fdaff8ba 1505 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
1506 main_input_filename, ".ro_"); \
1507 \
6355b140 1508 output_file_directive (FILE, main_input_filename); \
f045b2c9 1509 toc_section (); \
fdaff8ba
RS
1510 if (write_symbols != NO_DEBUG) \
1511 private_data_section (); \
b4d6689b
RK
1512 text_section (); \
1513 if (profile_flag) \
1514 fprintf (FILE, "\t.extern .mcount\n"); \
f045b2c9
RS
1515}
1516
1517/* Output at end of assembler file.
1518
1519 On the RS/6000, referencing data should automatically pull in text. */
1520
1521#define ASM_FILE_END(FILE) \
1522{ \
1523 text_section (); \
1524 fprintf (FILE, "_section_.text:\n"); \
1525 data_section (); \
1526 fprintf (FILE, "\t.long _section_.text\n"); \
1527}
1528
f045b2c9
RS
1529/* We define this to prevent the name mangler from putting dollar signs into
1530 function names. */
1531
1532#define NO_DOLLAR_IN_LABEL
1533
1534/* We define this to 0 so that gcc will never accept a dollar sign in a
1535 variable name. This is needed because the AIX assembler will not accept
1536 dollar signs. */
1537
1538#define DOLLARS_IN_IDENTIFIERS 0
1539
fdaff8ba
RS
1540/* Implicit library calls should use memcpy, not bcopy, etc. */
1541
1542#define TARGET_MEM_FUNCTIONS
1543
f045b2c9
RS
1544/* Define the extra sections we need. We define three: one is the read-only
1545 data section which is used for constants. This is a csect whose name is
1546 derived from the name of the input file. The second is for initialized
1547 global variables. This is a csect whose name is that of the variable.
1548 The third is the TOC. */
1549
1550#define EXTRA_SECTIONS \
1551 read_only_data, private_data, read_only_private_data, toc, bss
1552
1553/* Define the name of our readonly data section. */
1554
1555#define READONLY_DATA_SECTION read_only_data_section
1556
b4f892eb
RK
1557/* If we are referencing a function that is static or is known to be
1558 in this file, make the SYMBOL_REF special. We can use this to indicate
1559 that we can branch to this function without emitting a no-op after the
1560 call. */
1561
1562#define ENCODE_SECTION_INFO(DECL) \
1563 if (TREE_CODE (DECL) == FUNCTION_DECL \
1564 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1565 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1566
f045b2c9
RS
1567/* Indicate that jump tables go in the text section. */
1568
1569#define JUMP_TABLES_IN_TEXT_SECTION
1570
1571/* Define the routines to implement these extra sections. */
1572
1573#define EXTRA_SECTION_FUNCTIONS \
1574 \
1575void \
1576read_only_data_section () \
1577{ \
1578 if (in_section != read_only_data) \
1579 { \
469adec3 1580 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 1581 xcoff_read_only_section_name); \
f045b2c9
RS
1582 in_section = read_only_data; \
1583 } \
1584} \
1585 \
1586void \
1587private_data_section () \
1588{ \
1589 if (in_section != private_data) \
1590 { \
469adec3 1591 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 1592 xcoff_private_data_section_name); \
f045b2c9
RS
1593 \
1594 in_section = private_data; \
1595 } \
1596} \
1597 \
1598void \
1599read_only_private_data_section () \
1600{ \
1601 if (in_section != read_only_private_data) \
1602 { \
f25359b5 1603 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 1604 xcoff_private_data_section_name); \
f045b2c9
RS
1605 in_section = read_only_private_data; \
1606 } \
1607} \
1608 \
1609void \
1610toc_section () \
1611{ \
642a35f1
JW
1612 if (TARGET_MINIMAL_TOC) \
1613 { \
1614 static int toc_initialized = 0; \
1615 \
1616 /* toc_section is always called at least once from ASM_FILE_START, \
1617 so this is guaranteed to always be defined once and only once \
1618 in each file. */ \
1619 if (! toc_initialized) \
1620 { \
1621 fprintf (asm_out_file, ".toc\nLCTOC..0:\n"); \
1622 fprintf (asm_out_file, "\t.tc toc_table[TC],toc_table[RW]\n"); \
1623 toc_initialized = 1; \
1624 } \
f045b2c9 1625 \
642a35f1
JW
1626 if (in_section != toc) \
1627 fprintf (asm_out_file, ".csect toc_table[RW]\n"); \
1628 } \
1629 else \
1630 { \
1631 if (in_section != toc) \
1632 fprintf (asm_out_file, ".toc\n"); \
1633 } \
f045b2c9 1634 in_section = toc; \
fc3ffe83 1635}
f045b2c9
RS
1636
1637/* This macro produces the initial definition of a function name.
1638 On the RS/6000, we need to place an extra '.' in the function name and
1639 output the function descriptor.
1640
1641 The csect for the function will have already been created by the
1642 `text_section' call previously done. We do have to go back to that
1643 csect, however. */
1644
fdaff8ba
RS
1645/* ??? What do the 16 and 044 in the .function line really mean? */
1646
f045b2c9
RS
1647#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1648{ if (TREE_PUBLIC (DECL)) \
1649 { \
1650 fprintf (FILE, "\t.globl ."); \
1651 RS6000_OUTPUT_BASENAME (FILE, NAME); \
fdaff8ba
RS
1652 fprintf (FILE, "\n"); \
1653 } \
1654 else if (write_symbols == XCOFF_DEBUG) \
1655 { \
1656 fprintf (FILE, "\t.lglobl ."); \
1657 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1658 fprintf (FILE, "\n"); \
f045b2c9 1659 } \
f25359b5 1660 fprintf (FILE, ".csect "); \
f045b2c9
RS
1661 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1662 fprintf (FILE, "[DS]\n"); \
1663 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1664 fprintf (FILE, ":\n"); \
1665 fprintf (FILE, "\t.long ."); \
1666 RS6000_OUTPUT_BASENAME (FILE, NAME); \
fdaff8ba 1667 fprintf (FILE, ", TOC[tc0], 0\n"); \
11117bb9 1668 fprintf (FILE, ".csect .text[PR]\n."); \
f045b2c9
RS
1669 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1670 fprintf (FILE, ":\n"); \
fdaff8ba 1671 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 1672 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
1673}
1674
1675/* Return non-zero if this entry is to be written into the constant pool
1676 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
1677 containing one of them. If -mfp-in-toc (the default), we also do
1678 this for floating-point constants. We actually can only do this
1679 if the FP formats of the target and host machines are the same, but
1680 we can't check that since not every file that uses
1681 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
1682
1683#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
1684 (GET_CODE (X) == SYMBOL_REF \
1685 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1686 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
1687 || GET_CODE (X) == LABEL_REF \
72847b95
RK
1688 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
1689 && GET_CODE (X) == CONST_DOUBLE \
f045b2c9
RS
1690 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1691 && BITS_PER_WORD == HOST_BITS_PER_INT))
1692
1693/* Select section for constant in constant pool.
1694
1695 On RS/6000, all constants are in the private read-only data area.
1696 However, if this is being placed in the TOC it must be output as a
1697 toc entry. */
1698
1699#define SELECT_RTX_SECTION(MODE, X) \
1700{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1701 toc_section (); \
1702 else \
1703 read_only_private_data_section (); \
1704}
1705
1706/* Macro to output a special constant pool entry. Go to WIN if we output
1707 it. Otherwise, it is written the usual way.
1708
1709 On the RS/6000, toc entries are handled this way. */
1710
1711#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1712{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1713 { \
1714 output_toc (FILE, X, LABELNO); \
1715 goto WIN; \
1716 } \
1717}
1718
1719/* Select the section for an initialized data object.
1720
1721 On the RS/6000, we have a special section for all variables except those
1722 that are static. */
1723
1724#define SELECT_SECTION(EXP,RELOC) \
1725{ \
1726 if ((TREE_READONLY (EXP) \
1727 || (TREE_CODE (EXP) == STRING_CST \
1728 && !flag_writable_strings)) \
1729 && ! TREE_THIS_VOLATILE (EXP) \
1730 && ! (RELOC)) \
1731 { \
1732 if (TREE_PUBLIC (EXP)) \
1733 read_only_data_section (); \
1734 else \
1735 read_only_private_data_section (); \
1736 } \
1737 else \
1738 { \
1739 if (TREE_PUBLIC (EXP)) \
1740 data_section (); \
1741 else \
1742 private_data_section (); \
1743 } \
1744}
1745
1746/* This outputs NAME to FILE up to the first null or '['. */
1747
1748#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
1749 if ((NAME)[0] == '*') \
1750 assemble_name (FILE, NAME); \
1751 else \
1752 { \
1753 char *_p; \
1754 for (_p = (NAME); *_p && *_p != '['; _p++) \
1755 fputc (*_p, FILE); \
1756 }
1757
1758/* Output something to declare an external symbol to the assembler. Most
1759 assemblers don't need this.
1760
1761 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
1762 name. Normally we write this out along with the name. In the few cases
1763 where we can't, it gets stripped off. */
1764
1765#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1766{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
1767 if ((TREE_CODE (DECL) == VAR_DECL \
1768 || TREE_CODE (DECL) == FUNCTION_DECL) \
1769 && (NAME)[0] != '*' \
1770 && (NAME)[strlen (NAME) - 1] != ']') \
1771 { \
1772 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
1773 strcpy (_name, XSTR (_symref, 0)); \
1774 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
1775 XSTR (_symref, 0) = _name; \
1776 } \
1777 fprintf (FILE, "\t.extern "); \
1778 assemble_name (FILE, XSTR (_symref, 0)); \
1779 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1780 { \
1781 fprintf (FILE, "\n\t.extern ."); \
1782 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
1783 } \
1784 fprintf (FILE, "\n"); \
1785}
1786
1787/* Similar, but for libcall. We only have to worry about the function name,
1788 not that of the descriptor. */
1789
1790#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1791{ fprintf (FILE, "\t.extern ."); \
1792 assemble_name (FILE, XSTR (FUN, 0)); \
1793 fprintf (FILE, "\n"); \
1794}
1795
1796/* Output to assembler file text saying following lines
1797 may contain character constants, extra white space, comments, etc. */
1798
1799#define ASM_APP_ON ""
1800
1801/* Output to assembler file text saying following lines
1802 no longer contain unusual constructs. */
1803
1804#define ASM_APP_OFF ""
1805
1806/* Output before instructions. */
1807
11117bb9 1808#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
1809
1810/* Output before writable data. */
1811
fdaff8ba 1812#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
1813
1814/* How to refer to registers in assembler output.
1815 This sequence is indexed by compiler's hard-register-number (see above). */
1816
1817#define REGISTER_NAMES \
1818 {"0", "1", "2", "3", "4", "5", "6", "7", \
1819 "8", "9", "10", "11", "12", "13", "14", "15", \
1820 "16", "17", "18", "19", "20", "21", "22", "23", \
1821 "24", "25", "26", "27", "28", "29", "30", "31", \
1822 "0", "1", "2", "3", "4", "5", "6", "7", \
1823 "8", "9", "10", "11", "12", "13", "14", "15", \
1824 "16", "17", "18", "19", "20", "21", "22", "23", \
1825 "24", "25", "26", "27", "28", "29", "30", "31", \
1826 "mq", "lr", "ctr", "ap", \
1827 "0", "1", "2", "3", "4", "5", "6", "7" }
1828
1829/* Table of additional register names to use in user input. */
1830
1831#define ADDITIONAL_REGISTER_NAMES \
1832 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
1833 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
1834 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
1835 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
1836 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
1837 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
1838 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
1839 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
1840 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
1841 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
1842 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
1843 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
1844 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
1845 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
1846 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
1847 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
1848 /* no additional names for: mq, lr, ctr, ap */ \
1849 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
fc3ffe83
RK
1850 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
1851 "cc", 68 }
f045b2c9
RS
1852
1853/* How to renumber registers for dbx and gdb. */
1854
1855#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1856
0da40b09
RK
1857/* Text to write out after a CALL that may be replaced by glue code by
1858 the loader. This depends on the AIX version. */
1859#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 1860
f045b2c9
RS
1861/* This is how to output the definition of a user-level label named NAME,
1862 such as the label on a static function or variable NAME. */
1863
1864#define ASM_OUTPUT_LABEL(FILE,NAME) \
1865 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
1866
1867/* This is how to output a command to make the user-level label named NAME
1868 defined for reference from other files. */
1869
1870#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1871 do { fputs ("\t.globl ", FILE); \
1872 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
1873
1874/* This is how to output a reference to a user-level label named NAME.
1875 `assemble_name' uses this. */
1876
1877#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1878 fprintf (FILE, NAME)
1879
1880/* This is how to output an internal numbered label where
1881 PREFIX is the class of label and NUM is the number within the class. */
1882
1883#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1884 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
1885
3daf36a4
ILT
1886/* This is how to output an internal label prefix. rs6000.c uses this
1887 when generating traceback tables. */
1888
1889#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
1890 fprintf (FILE, "%s..", PREFIX)
1891
f045b2c9
RS
1892/* This is how to output a label for a jump table. Arguments are the same as
1893 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1894 passed. */
1895
1896#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1897{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1898
1899/* This is how to store into the string LABEL
1900 the symbol_ref name of an internal numbered label where
1901 PREFIX is the class of label and NUM is the number within the class.
1902 This is suitable for output with `assemble_name'. */
1903
1904#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1905 sprintf (LABEL, "%s..%d", PREFIX, NUM)
1906
1907/* This is how to output an assembler line defining a `double' constant. */
1908
a5b1eb34
RS
1909#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1910 { \
1911 if (REAL_VALUE_ISINF (VALUE) \
1912 || REAL_VALUE_ISNAN (VALUE) \
1913 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1914 { \
1915 long t[2]; \
1916 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
1917 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
1918 t[0] & 0xffffffff, t[1] & 0xffffffff); \
1919 } \
1920 else \
1921 { \
1922 char str[30]; \
1923 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
1924 fprintf (FILE, "\t.double 0d%s\n", str); \
1925 } \
1926 }
f045b2c9
RS
1927
1928/* This is how to output an assembler line defining a `float' constant. */
1929
a5b1eb34
RS
1930#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1931 { \
1932 if (REAL_VALUE_ISINF (VALUE) \
1933 || REAL_VALUE_ISNAN (VALUE) \
1934 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1935 { \
1936 long t; \
1937 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
1938 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
1939 } \
1940 else \
1941 { \
1942 char str[30]; \
1943 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
1944 fprintf (FILE, "\t.float 0d%s\n", str); \
1945 } \
1946 }
f045b2c9
RS
1947
1948/* This is how to output an assembler line defining an `int' constant. */
1949
1950#define ASM_OUTPUT_INT(FILE,VALUE) \
1951( fprintf (FILE, "\t.long "), \
1952 output_addr_const (FILE, (VALUE)), \
1953 fprintf (FILE, "\n"))
1954
1955/* Likewise for `char' and `short' constants. */
1956
1957#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1958( fprintf (FILE, "\t.short "), \
1959 output_addr_const (FILE, (VALUE)), \
1960 fprintf (FILE, "\n"))
1961
1962#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1963( fprintf (FILE, "\t.byte "), \
1964 output_addr_const (FILE, (VALUE)), \
1965 fprintf (FILE, "\n"))
1966
1967/* This is how to output an assembler line for a numeric constant byte. */
1968
1969#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1970 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1971
1972/* This is how to output an assembler line to define N characters starting
1973 at P to FILE. */
1974
1975#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
1976
1977/* This is how to output code to push a register on the stack.
1978 It need not be very fast code. */
1979
1980#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
6febd581 1981 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(r1)\n", reg_names[REGNO]);
f045b2c9
RS
1982
1983/* This is how to output an insn to pop a register from the stack.
1984 It need not be very fast code. */
1985
1986#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
6febd581
RK
1987 asm_fprintf (FILE, "\t{l|lwz} %s,0(r1)\n\t{ai|addic} r1,r1,4\n", \
1988 reg_names[REGNO])
f045b2c9
RS
1989
1990/* This is how to output an element of a case-vector that is absolute.
1991 (RS/6000 does not use such vectors, but we must define this macro
1992 anyway.) */
1993
3daf36a4
ILT
1994#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1995 do { char buf[100]; \
1996 fprintf (FILE, "\t.long "); \
1997 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
1998 assemble_name (FILE, buf); \
1999 fprintf (FILE, "\n"); \
2000 } while (0)
f045b2c9
RS
2001
2002/* This is how to output an element of a case-vector that is relative. */
2003
2004#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
3daf36a4
ILT
2005 do { char buf[100]; \
2006 fprintf (FILE, "\t.long "); \
2007 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2008 assemble_name (FILE, buf); \
2009 fprintf (FILE, "-"); \
2010 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2011 assemble_name (FILE, buf); \
2012 fprintf (FILE, "\n"); \
2013 } while (0)
f045b2c9
RS
2014
2015/* This is how to output an assembler line
2016 that says to advance the location counter
2017 to a multiple of 2**LOG bytes. */
2018
2019#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2020 if ((LOG) != 0) \
2021 fprintf (FILE, "\t.align %d\n", (LOG))
2022
2023#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2024 fprintf (FILE, "\t.space %d\n", (SIZE))
2025
2026/* This says how to output an assembler line
2027 to define a global common symbol. */
2028
2029#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
fc3ffe83 2030 do { fputs (".comm ", (FILE)); \
f045b2c9
RS
2031 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2032 fprintf ((FILE), ",%d\n", (SIZE)); } while (0)
2033
2034/* This says how to output an assembler line
2035 to define a local common symbol. */
2036
2037#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 2038 do { fputs (".lcomm ", (FILE)); \
f045b2c9 2039 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 2040 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
2041 } while (0)
2042
2043/* Store in OUTPUT a string (made with alloca) containing
2044 an assembler-name for a local static variable named NAME.
2045 LABELNO is an integer which is different for each call. */
2046
2047#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2048( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2049 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2050
2051/* Define the parentheses used to group arithmetic operations
2052 in assembler code. */
2053
2054#define ASM_OPEN_PAREN "("
2055#define ASM_CLOSE_PAREN ")"
2056
2057/* Define results of standard character escape sequences. */
2058#define TARGET_BELL 007
2059#define TARGET_BS 010
2060#define TARGET_TAB 011
2061#define TARGET_NEWLINE 012
2062#define TARGET_VT 013
2063#define TARGET_FF 014
2064#define TARGET_CR 015
2065
2066/* Print operand X (an rtx) in assembler syntax to file FILE.
2067 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2068 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2069
2070#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2071
2072/* Define which CODE values are valid. */
2073
11117bb9 2074#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '.')
f045b2c9
RS
2075
2076/* Print a memory address as an operand to reference that memory location. */
2077
2078#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2079
2080/* Define the codes that are matched by predicates in rs6000.c. */
2081
2082#define PREDICATE_CODES \
2083 {"short_cint_operand", {CONST_INT}}, \
2084 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 2085 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 2086 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9
RS
2087 {"cc_reg_operand", {SUBREG, REG}}, \
2088 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2089 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2090 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2091 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2092 {"easy_fp_constant", {CONST_DOUBLE}}, \
2093 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2094 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2095 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2096 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 2097 {"non_add_cint_operand", {CONST_INT}}, \
f045b2c9 2098 {"and_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 2099 {"non_and_cint_operand", {CONST_INT}}, \
f045b2c9 2100 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 2101 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9
RS
2102 {"mask_operand", {CONST_INT}}, \
2103 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 2104 {"current_file_function_operand", {SYMBOL_REF}}, \
f045b2c9 2105 {"input_operand", {SUBREG, MEM, REG, CONST_INT}}, \
f8634644
RK
2106 {"load_multiple_operation", {PARALLEL}}, \
2107 {"store_multiple_operation", {PARALLEL}}, \
2108 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 2109 GT, LEU, LTU, GEU, GTU}}, \
f8634644 2110 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 2111 GT, LEU, LTU, GEU, GTU}},
This page took 0.38631 seconds and 5 git commands to generate.