]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
* pt.c (process_template_parm): Undo previous change.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
a260abc9 2 Copyright (C) 1992, 93-7, 1998 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
a238cd8b 29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 -D_LONG_LONG \
84b49fa7 30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
956d6950 55/* Common CPP definitions used by CPP_SPEC among the various targets
841faeed
MM
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
49a0b204 73%{mcpu=403: -D_ARCH_PPC} \
cf27b467 74%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 75%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 76%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
77%{mcpu=603: -D_ARCH_PPC} \
78%{mcpu=603e: -D_ARCH_PPC} \
79%{mcpu=604: -D_ARCH_PPC} \
cf27b467
MM
80%{mcpu=620: -D_ARCH_PPC} \
81%{mcpu=821: -D_ARCH_PPC} \
82%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 83
841faeed
MM
84#ifndef CPP_DEFAULT_SPEC
85#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86#endif
87
88#ifndef CPP_SYSV_SPEC
89#define CPP_SYSV_SPEC ""
90#endif
91
92#ifndef CPP_ENDIAN_SPEC
93#define CPP_ENDIAN_SPEC ""
94#endif
95
c81bebd7
MM
96#ifndef CPP_ENDIAN_DEFAULT_SPEC
97#define CPP_ENDIAN_DEFAULT_SPEC ""
98#endif
99
841faeed
MM
100#ifndef CPP_SYSV_DEFAULT_SPEC
101#define CPP_SYSV_DEFAULT_SPEC ""
102#endif
103
956d6950 104/* Common ASM definitions used by ASM_SPEC among the various targets
841faeed
MM
105 for handling -mcpu=xxx switches. */
106#define ASM_CPU_SPEC \
107"%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113%{mcpu=common: -mcom} \
114%{mcpu=power: -mpwr} \
115%{mcpu=power2: -mpwrx} \
116%{mcpu=powerpc: -mppc} \
117%{mcpu=rios: -mpwr} \
118%{mcpu=rios1: -mpwr} \
119%{mcpu=rios2: -mpwrx} \
120%{mcpu=rsc: -mpwr} \
121%{mcpu=rsc1: -mpwr} \
122%{mcpu=403: -mppc} \
123%{mcpu=505: -mppc} \
124%{mcpu=601: -m601} \
125%{mcpu=602: -mppc} \
126%{mcpu=603: -mppc} \
127%{mcpu=603e: -mppc} \
128%{mcpu=604: -mppc} \
129%{mcpu=620: -mppc} \
130%{mcpu=821: -mppc} \
131%{mcpu=860: -mppc}"
132
133#ifndef ASM_DEFAULT_SPEC
fba29a8c 134#define ASM_DEFAULT_SPEC ""
841faeed
MM
135#endif
136
137/* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
7509c759
MM
147#ifndef SUBTARGET_EXTRA_SPECS
148#define SUBTARGET_EXTRA_SPECS
149#endif
150
c81bebd7
MM
151#define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
162 SUBTARGET_EXTRA_SPECS
163
7509c759
MM
164/* Default location of syscalls.exp under AIX */
165#ifndef CROSS_COMPILE
166#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167#else
168#define LINK_SYSCALLS_SPEC ""
169#endif
170
171/* Default location of libg.exp under AIX */
172#ifndef CROSS_COMPILE
173#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174#else
175#define LINK_LIBG_SPEC ""
176#endif
177
f045b2c9
RS
178/* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
f045b2c9 191
c1950f1c 192#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 195
58a39e45
RS
196/* Profiled library versions are used by linking with special directories. */
197#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
199
200/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 201#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
202
203/* Don't turn -B into -L if the argument specifies a relative file name. */
204#define RELATIVE_PREFIX_NOT_LINKDIR
205
fb623df5 206/* Architecture type. */
f045b2c9 207
fb623df5
RK
208extern int target_flags;
209
210/* Use POWER architecture instructions and MQ register. */
38c1f2d7 211#define MASK_POWER 0x00000001
fb623df5 212
6febd581 213/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 214#define MASK_POWER2 0x00000002
6febd581 215
fb623df5 216/* Use PowerPC architecture instructions. */
38c1f2d7 217#define MASK_POWERPC 0x00000004
6febd581 218
583cf4db 219/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 220#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
221
222/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 223#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 224
fb623df5 225/* Use PowerPC-64 architecture instructions. */
38c1f2d7 226#define MASK_POWERPC64 0x00000020
f045b2c9 227
fb623df5 228/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 229#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
230
231/* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
38c1f2d7 233#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 234
0b9ccabc
RK
235/* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
38c1f2d7 237#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 238
fb623df5 239/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
956d6950 245 function, and one less allocable register. */
38c1f2d7 246#define MASK_MINIMAL_TOC 0x00000200
642a35f1 247
9e654916 248/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
38c1f2d7 249#define MASK_64BIT 0x00000400
9e654916 250
f85f4585 251/* Disable use of FPRs. */
38c1f2d7 252#define MASK_SOFT_FLOAT 0x00000800
f85f4585 253
4d30c363 254/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
255#define MASK_MULTIPLE 0x00001000
256#define MASK_MULTIPLE_SET 0x00002000
4d30c363 257
7e69e155 258/* Use string instructions for block moves */
38c1f2d7
MM
259#define MASK_STRING 0x00004000
260#define MASK_STRING_SET 0x00008000
7e69e155 261
38c1f2d7
MM
262/* Disable update form of load/store */
263#define MASK_NO_UPDATE 0x00010000
264
265/* Disable fused multiply/add operations */
266#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 267
7e69e155
MM
268#define TARGET_POWER (target_flags & MASK_POWER)
269#define TARGET_POWER2 (target_flags & MASK_POWER2)
270#define TARGET_POWERPC (target_flags & MASK_POWERPC)
271#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
272#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
273#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
274#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
275#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
276#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
277#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
278#define TARGET_64BIT (target_flags & MASK_64BIT)
279#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
280#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
281#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
282#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 283#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
284#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
285#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
7e69e155 286
2f3e5814 287#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 288#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
289#define TARGET_UPDATE (! TARGET_NO_UPDATE)
290#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 291
4697a36c
MM
292/* Pseudo target to indicate whether the object format is ELF
293 (to get around not having conditional compilation in the md file) */
294#ifndef TARGET_ELF
295#define TARGET_ELF 0
296#endif
297
298/* If this isn't V.4, don't support -mno-toc. */
299#ifndef TARGET_NO_TOC
300#define TARGET_NO_TOC 0
301#define TARGET_TOC 1
302#endif
303
b6c9286a
MM
304/* Pseudo target to say whether this is Windows NT */
305#ifndef TARGET_WINDOWS_NT
306#define TARGET_WINDOWS_NT 0
307#endif
308
309/* Pseudo target to say whether this is MAC */
310#ifndef TARGET_MACOS
311#define TARGET_MACOS 0
312#endif
313
314/* Pseudo target to say whether this is AIX */
315#ifndef TARGET_AIX
316#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
317#define TARGET_AIX 0
318#else
319#define TARGET_AIX 1
320#endif
321#endif
322
a3950905
MM
323#ifndef TARGET_XL_CALL
324#define TARGET_XL_CALL 0
325#endif
326
fb623df5 327/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 328
fb623df5 329 Macro to define tables used to set the flags.
f045b2c9
RS
330 This is a list in braces of pairs in braces,
331 each pair being { "NAME", VALUE }
332 where VALUE is the bits to set or minus the bits to clear.
333 An empty string NAME is used to identify the default VALUE. */
334
4d30c363
MM
335/* This is meant to be redefined in the host dependent files */
336#ifndef SUBTARGET_SWITCHES
337#define SUBTARGET_SWITCHES
338#endif
339
938937d8
MM
340#define TARGET_SWITCHES \
341 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
342 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
343 | MASK_POWER2)}, \
344 {"no-power2", - MASK_POWER2}, \
345 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
346 | MASK_STRING)}, \
347 {"powerpc", MASK_POWERPC}, \
348 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
349 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
350 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
351 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
352 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
353 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
a260abc9
DE
354 {"powerpc64", MASK_POWERPC64}, \
355 {"no-powerpc64", - MASK_POWERPC64}, \
938937d8
MM
356 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
357 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
358 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
359 | MASK_MINIMAL_TOC)}, \
360 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
361 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
362 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
363 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
364 {"minimal-toc", MASK_MINIMAL_TOC}, \
365 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
366 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
367 {"hard-float", - MASK_SOFT_FLOAT}, \
368 {"soft-float", MASK_SOFT_FLOAT}, \
369 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
370 {"no-multiple", - MASK_MULTIPLE}, \
371 {"no-multiple", MASK_MULTIPLE_SET}, \
372 {"string", MASK_STRING | MASK_STRING_SET}, \
373 {"no-string", - MASK_STRING}, \
bbdd88df 374 {"no-string", MASK_STRING_SET}, \
38c1f2d7
MM
375 {"update", - MASK_NO_UPDATE}, \
376 {"no-update", MASK_NO_UPDATE}, \
377 {"fused-madd", - MASK_NO_FUSED_MADD}, \
378 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
938937d8 379 SUBTARGET_SWITCHES \
fb623df5
RK
380 {"", TARGET_DEFAULT}}
381
938937d8 382#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5
RK
383
384/* Processor type. */
385enum processor_type
f86fe1fb 386 {PROCESSOR_RIOS1,
fb623df5 387 PROCESSOR_RIOS2,
cf27b467 388 PROCESSOR_MPCCORE,
49a0b204 389 PROCESSOR_PPC403,
fb623df5
RK
390 PROCESSOR_PPC601,
391 PROCESSOR_PPC603,
392 PROCESSOR_PPC604,
393 PROCESSOR_PPC620};
394
395extern enum processor_type rs6000_cpu;
396
397/* Recast the processor type to the cpu attribute. */
398#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
399
8482e358 400/* Define generic processor types based upon current deployment. */
8e3f41e7 401#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 402#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 403#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 404
fb623df5 405/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 406#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 407
6febd581
RK
408/* Specify the dialect of assembler to use. New mnemonics is dialect one
409 and the old mnemonics are dialect zero. */
410#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
411
fb623df5
RK
412/* This macro is similar to `TARGET_SWITCHES' but defines names of
413 command options that have values. Its definition is an
414 initializer with a subgrouping for each command option.
415
416 Each subgrouping contains a string constant, that defines the
417 fixed part of the option name, and the address of a variable.
418 The variable, type `char *', is set to the variable part of the
419 given option if the fixed part matches. The actual option name
420 is made by appending `-m' to the specified name.
421
422 Here is an example which defines `-mshort-data-NUMBER'. If the
423 given option is `-mshort-data-512', the variable `m88k_short_data'
424 will be set to the string `"512"'.
425
426 extern char *m88k_short_data;
427 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
428
956d6950 429/* This is meant to be overridden in target specific files. */
b6c9286a
MM
430#ifndef SUBTARGET_OPTIONS
431#define SUBTARGET_OPTIONS
432#endif
433
8e3f41e7
MM
434#define TARGET_OPTIONS \
435{ \
436 {"cpu=", &rs6000_select[1].string}, \
437 {"tune=", &rs6000_select[2].string}, \
38c1f2d7
MM
438 {"debug-", &rs6000_debug_name}, \
439 {"debug=", &rs6000_debug_name}, \
8e3f41e7 440 SUBTARGET_OPTIONS \
b6c9286a 441}
fb623df5 442
ff222560 443/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
444struct rs6000_cpu_select
445{
446 char *string;
447 char *name;
448 int set_tune_p;
449 int set_arch_p;
450};
451
452extern struct rs6000_cpu_select rs6000_select[];
fb623df5 453
38c1f2d7
MM
454/* Debug support */
455extern char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
456extern int rs6000_debug_stack; /* debug stack applications */
457extern int rs6000_debug_arg; /* debug argument handling */
458
459#define TARGET_DEBUG_STACK rs6000_debug_stack
460#define TARGET_DEBUG_ARG rs6000_debug_arg
461
fb623df5
RK
462/* Sometimes certain combinations of command options do not make sense
463 on a particular target machine. You can define a macro
464 `OVERRIDE_OPTIONS' to take account of this. This macro, if
465 defined, is executed once just after all the command options have
466 been parsed.
467
468 On the RS/6000 this is used to define the target cpu type. */
469
8e3f41e7 470#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 471
4f074454
RK
472/* Show we can debug even without a frame pointer. */
473#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
474\f
475/* target machine storage layout */
476
df44fa77
RK
477/* Define to support cross compilation to an RS6000 target. */
478#define REAL_ARITHMETIC
479
13d39dbc 480/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 481 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
482 the value is constrained to be within the bounds of the declared
483 type, but kept valid in the wider mode. The signedness of the
484 extension may differ from that of the type. */
485
39403d82
DE
486#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
487 if (GET_MODE_CLASS (MODE) == MODE_INT \
488 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
489 (MODE) = (! TARGET_POWERPC64 ? SImode : DImode);
490
491/* Define this if function arguments should also be promoted using the above
492 procedure. */
493
494#define PROMOTE_FUNCTION_ARGS
495
496/* Likewise, if the function return value is promoted. */
497
498#define PROMOTE_FUNCTION_RETURN
ef457bda 499
f045b2c9
RS
500/* Define this if most significant bit is lowest numbered
501 in instructions that operate on numbered bit-fields. */
502/* That is true on RS/6000. */
503#define BITS_BIG_ENDIAN 1
504
505/* Define this if most significant byte of a word is the lowest numbered. */
506/* That is true on RS/6000. */
507#define BYTES_BIG_ENDIAN 1
508
509/* Define this if most significant word of a multiword number is lowest
c81bebd7 510 numbered.
f045b2c9
RS
511
512 For RS/6000 we can decide arbitrarily since there are no machine
513 instructions for them. Might as well be consistent with bits and bytes. */
514#define WORDS_BIG_ENDIAN 1
515
fdaff8ba 516/* number of bits in an addressable storage unit */
f045b2c9
RS
517#define BITS_PER_UNIT 8
518
519/* Width in bits of a "word", which is the contents of a machine register.
520 Note that this is not necessarily the width of data type `int';
521 if using 16-bit ints on a 68000, this would still be 32.
522 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 523#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 524#define MAX_BITS_PER_WORD 64
f045b2c9
RS
525
526/* Width of a word, in units (bytes). */
2f3e5814 527#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 528#define MIN_UNITS_PER_WORD 4
2e360ab3 529#define UNITS_PER_FP_WORD 8
f045b2c9 530
915f619f
JW
531/* Type used for ptrdiff_t, as a string used in a declaration. */
532#define PTRDIFF_TYPE "int"
533
f045b2c9
RS
534/* Type used for wchar_t, as a string used in a declaration. */
535#define WCHAR_TYPE "short unsigned int"
536
537/* Width of wchar_t in bits. */
538#define WCHAR_TYPE_SIZE 16
539
9e654916
RK
540/* A C expression for the size in bits of the type `short' on the
541 target machine. If you don't define this, the default is half a
542 word. (If this would be less than one storage unit, it is
543 rounded up to one unit.) */
544#define SHORT_TYPE_SIZE 16
545
546/* A C expression for the size in bits of the type `int' on the
547 target machine. If you don't define this, the default is one
548 word. */
19d2d16f 549#define INT_TYPE_SIZE 32
9e654916
RK
550
551/* A C expression for the size in bits of the type `long' on the
552 target machine. If you don't define this, the default is one
553 word. */
2f3e5814 554#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
555#define MAX_LONG_TYPE_SIZE 64
556
557/* A C expression for the size in bits of the type `long long' on the
558 target machine. If you don't define this, the default is two
559 words. */
560#define LONG_LONG_TYPE_SIZE 64
561
562/* A C expression for the size in bits of the type `char' on the
563 target machine. If you don't define this, the default is one
564 quarter of a word. (If this would be less than one storage unit,
565 it is rounded up to one unit.) */
566#define CHAR_TYPE_SIZE BITS_PER_UNIT
567
568/* A C expression for the size in bits of the type `float' on the
569 target machine. If you don't define this, the default is one
570 word. */
571#define FLOAT_TYPE_SIZE 32
572
573/* A C expression for the size in bits of the type `double' on the
574 target machine. If you don't define this, the default is two
575 words. */
576#define DOUBLE_TYPE_SIZE 64
577
578/* A C expression for the size in bits of the type `long double' on
579 the target machine. If you don't define this, the default is two
580 words. */
581#define LONG_DOUBLE_TYPE_SIZE 64
582
f045b2c9
RS
583/* Width in bits of a pointer.
584 See also the macro `Pmode' defined below. */
2f3e5814 585#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
586
587/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 588#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
589
590/* Boundary (in *bits*) on which stack pointer should be aligned. */
a260abc9 591#define STACK_BOUNDARY (TARGET_32BIT ? 64 : 128)
f045b2c9
RS
592
593/* Allocation boundary (in *bits*) for the code of a function. */
594#define FUNCTION_BOUNDARY 32
595
596/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
597#define BIGGEST_ALIGNMENT 64
598
6bc3403c
DE
599/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
600#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
a260abc9
DE
601 (TYPE_MODE (TREE_CODE (TREE_TYPE (FIELD)) == ARRAY_TYPE \
602 ? get_inner_array_type (FIELD) \
603 : TREE_TYPE (FIELD)) == DFmode \
604 ? MIN ((COMPUTED), 32) : (COMPUTED))
f045b2c9
RS
605
606/* Alignment of field after `int : 0' in a structure. */
607#define EMPTY_FIELD_BOUNDARY 32
608
609/* Every structure's size must be a multiple of this. */
610#define STRUCTURE_SIZE_BOUNDARY 8
611
612/* A bitfield declared as `int' forces `int' alignment for the struct. */
613#define PCC_BITFIELD_TYPE_MATTERS 1
614
6bc3403c
DE
615/* AIX increases natural record alignment to doubleword if the first
616 field is an FP double while the FP fields remain word aligned. */
617#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
618 ((TREE_CODE (STRUCT) == RECORD_TYPE \
619 || TREE_CODE (STRUCT) == UNION_TYPE \
620 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
02bef6da 621 && TYPE_FIELDS (STRUCT) != 0 \
6bc3403c
DE
622 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
623 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
624 : MAX ((COMPUTED), (SPECIFIED)))
625
f045b2c9
RS
626/* Make strings word-aligned so strcpy from constants will be faster. */
627#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
628 (TREE_CODE (EXP) == STRING_CST \
629 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
630
631/* Make arrays of chars word-aligned for the same reasons. */
632#define DATA_ALIGNMENT(TYPE, ALIGN) \
633 (TREE_CODE (TYPE) == ARRAY_TYPE \
634 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
635 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
636
fdaff8ba 637/* Non-zero if move instructions will actually fail to work
f045b2c9 638 when given unaligned data. */
fdaff8ba 639#define STRICT_ALIGNMENT 0
f045b2c9
RS
640\f
641/* Standard register usage. */
642
643/* Number of actual hardware registers.
644 The hardware registers are assigned numbers for the compiler
645 from 0 to just below FIRST_PSEUDO_REGISTER.
646 All registers that the compiler knows about must be given numbers,
647 even those that are not normally considered general registers.
648
649 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
650 an MQ register, a count register, a link register, and 8 condition
651 register fields, which we view here as separate registers.
652
653 In addition, the difference between the frame and argument pointers is
654 a function of the number of registers saved, so we need to have a
655 register for AP that will later be eliminated in favor of SP or FP.
802a0058 656 This is a normal register, but it is fixed.
f045b2c9 657
802a0058
MM
658 We also create a pseudo register for float/int conversions, that will
659 really represent the memory location used. It is represented here as
660 a register, in order to work around problems in allocating stack storage
661 in inline functions. */
662
663#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
664
665/* 1 for registers that have pervasive standard uses
666 and are not available for the register allocator.
667
c81bebd7 668 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 669
a127c4e5
RK
670 cr5 is not supposed to be used.
671
672 On System V implementations, r13 is fixed and not available for use. */
673
674#ifndef FIXED_R13
675#define FIXED_R13 0
676#endif
f045b2c9
RS
677
678#define FIXED_REGISTERS \
a127c4e5 679 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
680 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
681 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
682 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 683 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
684
685/* 1 for registers not available across function calls.
686 These must include the FIXED_REGISTERS and also any
687 registers that can be used without being saved.
688 The latter must include the registers where values are returned
689 and the register where structure-value addresses are passed.
690 Aside from that, you can include as many other registers as you like. */
691
692#define CALL_USED_REGISTERS \
a127c4e5 693 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
694 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
695 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 697 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
698
699/* List the order in which to allocate registers. Each register must be
700 listed once, even those in FIXED_REGISTERS.
701
702 We allocate in the following order:
703 fp0 (not saved or used for anything)
704 fp13 - fp2 (not saved; incoming fp arg registers)
705 fp1 (not saved; return value)
706 fp31 - fp14 (saved; order given to save least number)
707 cr1, cr6, cr7 (not saved or special)
708 cr0 (not saved, but used for arithmetic operations)
709 cr2, cr3, cr4 (saved)
710 r0 (not saved; cannot be base reg)
711 r9 (not saved; best for TImode)
712 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
713 r3 (not saved; return value register)
714 r31 - r13 (saved; order given to save least number)
715 r12 (not saved; if used for DImode or DFmode would use r13)
716 mq (not saved; best to use it if we can)
717 ctr (not saved; when we have the choice ctr is better)
718 lr (saved)
719 cr5, r1, r2, ap (fixed) */
720
721#define REG_ALLOC_ORDER \
722 {32, \
723 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
724 33, \
725 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
726 50, 49, 48, 47, 46, \
727 69, 74, 75, 68, 70, 71, 72, \
728 0, \
729 9, 11, 10, 8, 7, 6, 5, 4, \
730 3, \
731 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
732 18, 17, 16, 15, 14, 13, 12, \
733 64, 66, 65, \
802a0058 734 73, 1, 2, 67, 76}
f045b2c9
RS
735
736/* True if register is floating-point. */
737#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
738
739/* True if register is a condition register. */
740#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
741
742/* True if register is an integer register. */
743#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
744
802a0058
MM
745/* True if register is the temporary memory location used for int/float
746 conversion. */
747#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
748
f045b2c9
RS
749/* Return number of consecutive hard regs needed starting at reg REGNO
750 to hold something of mode MODE.
751 This is ordinarily the length in words of a value of mode MODE
752 but can be less for certain modes in special long registers.
753
a260abc9
DE
754 POWER and PowerPC GPRs hold 32 bits worth;
755 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 756
802a0058
MM
757#define HARD_REGNO_NREGS(REGNO, MODE) \
758 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 759 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
760 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
761
762/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
763 For POWER and PowerPC, the GPRs can hold any mode, but the float
764 registers only can hold floating modes and DImode, and CR register only
765 can hold CC modes. We cannot put TImode anywhere except general
766 register and it must be able to fit within the register set. */
f045b2c9 767
802a0058
MM
768#define HARD_REGNO_MODE_OK(REGNO, MODE) \
769 (FP_REGNO_P (REGNO) ? \
770 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
771 || (GET_MODE_CLASS (MODE) == MODE_INT \
772 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
773 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
774 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
775 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 776 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
777 : 1)
778
779/* Value is 1 if it is a good idea to tie two pseudo registers
780 when one has mode MODE1 and one has mode MODE2.
781 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
782 for any hard reg, then this must be 0 for correct output. */
783#define MODES_TIEABLE_P(MODE1, MODE2) \
784 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
785 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
786 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
787 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
788 : GET_MODE_CLASS (MODE1) == MODE_CC \
789 ? GET_MODE_CLASS (MODE2) == MODE_CC \
790 : GET_MODE_CLASS (MODE2) == MODE_CC \
791 ? GET_MODE_CLASS (MODE1) == MODE_CC \
792 : 1)
793
794/* A C expression returning the cost of moving data from a register of class
795 CLASS1 to one of CLASS2.
796
797 On the RS/6000, copying between floating-point and fixed-point
798 registers is expensive. */
799
800#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
801 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
802 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
803 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 804 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
805 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
806 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 807 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 808 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 809 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
810 : 2)
811
812/* A C expressions returning the cost of moving data of MODE from a register to
813 or from memory.
814
815 On the RS/6000, bump this up a bit. */
816
cbd5b9a2 817#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
ab4a5fc9
RK
818 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
819 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
820 ? 3 : 2) \
821 + 4)
f045b2c9
RS
822
823/* Specify the cost of a branch insn; roughly the number of extra insns that
824 should be added to avoid a branch.
825
ef457bda 826 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
827 unscheduled conditional branch. */
828
ef457bda 829#define BRANCH_COST 3
f045b2c9 830
5a5e4c2c
RK
831/* A C statement (sans semicolon) to update the integer variable COST
832 based on the relationship between INSN that is dependent on
833 DEP_INSN through the dependence LINK. The default is to make no
834 adjustment to COST. On the RS/6000, ignore the cost of anti- and
835 output-dependencies. In fact, output dependencies on the CR do have
836 a cost, but it is probably not worthwhile to track it. */
837
838#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 839 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 840
6febd581
RK
841/* Define this macro to change register usage conditional on target flags.
842 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 843 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 844 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
845 Conditionally disable FPRs. */
846
847#define CONDITIONAL_REGISTER_USAGE \
848{ \
849 if (! TARGET_POWER) \
850 fixed_regs[64] = 1; \
a238cd8b
DE
851 if (TARGET_64BIT) \
852 fixed_regs[13] = call_used_regs[13] = 1; \
d14a6d05
MM
853 if (TARGET_SOFT_FLOAT) \
854 for (i = 32; i < 64; i++) \
f85f4585
RK
855 fixed_regs[i] = call_used_regs[i] = 1; \
856}
6febd581 857
f045b2c9
RS
858/* Specify the registers used for certain standard purposes.
859 The values of these macros are register numbers. */
860
861/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
862/* #define PC_REGNUM */
863
864/* Register to use for pushing function arguments. */
865#define STACK_POINTER_REGNUM 1
866
867/* Base register for access to local variables of the function. */
868#define FRAME_POINTER_REGNUM 31
869
870/* Value should be nonzero if functions must have frame pointers.
871 Zero means the frame pointer need not be set up (and parms
872 may be accessed via the stack pointer) in functions that seem suitable.
873 This is computed in `reload', in reload1.c. */
874#define FRAME_POINTER_REQUIRED 0
875
876/* Base register for access to arguments of the function. */
877#define ARG_POINTER_REGNUM 67
878
879/* Place to put static chain when calling a function that requires it. */
880#define STATIC_CHAIN_REGNUM 11
881
b6c9286a
MM
882/* count register number for special purposes */
883#define COUNT_REGISTER_REGNUM 66
884
802a0058
MM
885/* Special register that represents memory, used for float/int conversions. */
886#define FPMEM_REGNUM 76
887
1ff7789b
MM
888/* Register to use as a placeholder for the GOT/allocated TOC register.
889 FINALIZE_PIC will change all uses of this register to a an appropriate
890 pseudo register when it adds the code to setup the GOT. We use r2
891 because it is a reserved register in all of the ABI's. */
892#define GOT_TOC_REGNUM 2
893
f045b2c9
RS
894/* Place that structure value return address is placed.
895
896 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 897#define STRUCT_VALUE 0
f045b2c9
RS
898\f
899/* Define the classes of registers for register constraints in the
900 machine description. Also define ranges of constants.
901
902 One of the classes must always be named ALL_REGS and include all hard regs.
903 If there is more than one class, another class must be named NO_REGS
904 and contain no registers.
905
906 The name GENERAL_REGS must be the name of a class (or an alias for
907 another name such as ALL_REGS). This is the class of registers
908 that is allowed by "g" or "r" in a register constraint.
909 Also, registers outside this class are allocated only when
910 instructions express preferences for them.
911
912 The classes must be numbered in nondecreasing order; that is,
913 a larger-numbered class must never be contained completely
914 in a smaller-numbered class.
915
916 For any two classes, it is very desirable that there be another
917 class that represents their union. */
c81bebd7 918
f045b2c9
RS
919/* The RS/6000 has three types of registers, fixed-point, floating-point,
920 and condition registers, plus three special registers, MQ, CTR, and the
921 link register.
922
923 However, r0 is special in that it cannot be used as a base register.
924 So make a class for registers valid as base registers.
925
926 Also, cr0 is the only condition code register that can be used in
802a0058
MM
927 arithmetic insns, so make a separate class for it.
928
956d6950 929 There is a special 'register' (76), which is not a register, but a
802a0058
MM
930 placeholder for memory allocated to convert between floating point and
931 integral types. This works around a problem where if we allocate memory
932 with allocate_stack_{local,temp} and the function is an inline function, the
933 memory allocated will clobber memory in the caller. So we use a special
934 register, and if that is used, we allocate stack space for it. */
f045b2c9 935
ebedb4dd
MM
936enum reg_class
937{
938 NO_REGS,
ebedb4dd
MM
939 BASE_REGS,
940 GENERAL_REGS,
941 FLOAT_REGS,
942 NON_SPECIAL_REGS,
943 MQ_REGS,
944 LINK_REGS,
945 CTR_REGS,
946 LINK_OR_CTR_REGS,
947 SPECIAL_REGS,
948 SPEC_OR_GEN_REGS,
949 CR0_REGS,
ebedb4dd
MM
950 CR_REGS,
951 NON_FLOAT_REGS,
802a0058
MM
952 FPMEM_REGS,
953 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
954 ALL_REGS,
955 LIM_REG_CLASSES
956};
f045b2c9
RS
957
958#define N_REG_CLASSES (int) LIM_REG_CLASSES
959
960/* Give names of register classes as strings for dump file. */
961
ebedb4dd
MM
962#define REG_CLASS_NAMES \
963{ \
964 "NO_REGS", \
ebedb4dd
MM
965 "BASE_REGS", \
966 "GENERAL_REGS", \
967 "FLOAT_REGS", \
968 "NON_SPECIAL_REGS", \
969 "MQ_REGS", \
970 "LINK_REGS", \
971 "CTR_REGS", \
972 "LINK_OR_CTR_REGS", \
973 "SPECIAL_REGS", \
974 "SPEC_OR_GEN_REGS", \
975 "CR0_REGS", \
ebedb4dd
MM
976 "CR_REGS", \
977 "NON_FLOAT_REGS", \
802a0058
MM
978 "FPMEM_REGS", \
979 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
980 "ALL_REGS" \
981}
f045b2c9
RS
982
983/* Define which registers fit in which classes.
984 This is an initializer for a vector of HARD_REG_SET
985 of length N_REG_CLASSES. */
986
ebedb4dd
MM
987#define REG_CLASS_CONTENTS \
988{ \
989 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
990 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
991 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
992 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
993 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
994 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
995 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
996 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
997 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
998 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
999 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
1000 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
1001 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
1002 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
1003 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
1004 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
1005 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 1006}
f045b2c9
RS
1007
1008/* The same information, inverted:
1009 Return the class number of the smallest class containing
1010 reg number REGNO. This could be a conditional expression
1011 or could index an array. */
1012
802a0058
MM
1013#define REGNO_REG_CLASS(REGNO) \
1014 ((REGNO) == 0 ? GENERAL_REGS \
1015 : (REGNO) < 32 ? BASE_REGS \
1016 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1017 : (REGNO) == 68 ? CR0_REGS \
1018 : CR_REGNO_P (REGNO) ? CR_REGS \
1019 : (REGNO) == 64 ? MQ_REGS \
1020 : (REGNO) == 65 ? LINK_REGS \
1021 : (REGNO) == 66 ? CTR_REGS \
1022 : (REGNO) == 67 ? BASE_REGS \
1023 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
1024 : NO_REGS)
1025
1026/* The class value for index registers, and the one for base regs. */
1027#define INDEX_REG_CLASS GENERAL_REGS
1028#define BASE_REG_CLASS BASE_REGS
1029
1030/* Get reg_class from a letter such as appears in the machine description. */
1031
1032#define REG_CLASS_FROM_LETTER(C) \
1033 ((C) == 'f' ? FLOAT_REGS \
1034 : (C) == 'b' ? BASE_REGS \
1035 : (C) == 'h' ? SPECIAL_REGS \
1036 : (C) == 'q' ? MQ_REGS \
1037 : (C) == 'c' ? CTR_REGS \
1038 : (C) == 'l' ? LINK_REGS \
1039 : (C) == 'x' ? CR0_REGS \
1040 : (C) == 'y' ? CR_REGS \
802a0058 1041 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
1042 : NO_REGS)
1043
1044/* The letters I, J, K, L, M, N, and P in a register constraint string
1045 can be used to stand for particular ranges of immediate operands.
1046 This macro defines what the ranges are.
1047 C is the letter, and VALUE is a constant value.
1048 Return 1 if VALUE is in the range specified by C.
1049
c81bebd7 1050 `I' is signed 16-bit constants
f045b2c9
RS
1051 `J' is a constant with only the high-order 16 bits non-zero
1052 `K' is a constant with only the low-order 16 bits non-zero
1053 `L' is a constant that can be placed into a mask operand
1054 `M' is a constant that is greater than 31
1055 `N' is a constant that is an exact power of two
1056 `O' is the constant zero
1057 `P' is a constant whose negation is a signed 16-bit constant */
1058
5b6f7b96
RK
1059#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1060 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1061 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
a260abc9 1062 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
5b6f7b96
RK
1063 : (C) == 'L' ? mask_constant (VALUE) \
1064 : (C) == 'M' ? (VALUE) > 31 \
1065 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1066 : (C) == 'O' ? (VALUE) == 0 \
1067 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
f045b2c9
RS
1068 : 0)
1069
1070/* Similar, but for floating constants, and defining letters G and H.
1071 Here VALUE is the CONST_DOUBLE rtx itself.
1072
1073 We flag for special constants when we can copy the constant into
4e74d8ec 1074 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1075
c4c40373 1076 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1077
1078#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1079 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1080 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1081 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1082 : 0)
f045b2c9
RS
1083
1084/* Optional extra constraints for this machine.
1085
b6c9286a
MM
1086 'Q' means that is a memory operand that is just an offset from a reg.
1087 'R' is for AIX TOC entries.
a260abc9 1088 'S' is a constant that can be placed into a 64-bit mask operand
88228c4b 1089 'U' is for V.4 small data references. */
f045b2c9 1090
e8a8bc24
RK
1091#define EXTRA_CONSTRAINT(OP, C) \
1092 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1093 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
a260abc9 1094 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
c81bebd7
MM
1095 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1096 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1097 : 0)
f045b2c9
RS
1098
1099/* Given an rtx X being reloaded into a reg required to be
1100 in class CLASS, return the class of reg to actually use.
1101 In general this is just CLASS; but on some machines
c81bebd7 1102 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1103
1104 On the RS/6000, we have to return NO_REGS when we want to reload a
1105 floating-point CONST_DOUBLE to force it to be copied to memory. */
1106
802a0058 1107#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1108 ((GET_CODE (X) == CONST_DOUBLE \
1109 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1110 ? NO_REGS : (CLASS))
c81bebd7 1111
f045b2c9
RS
1112/* Return the register class of a scratch register needed to copy IN into
1113 or out of a register in CLASS in MODE. If it can be done directly,
1114 NO_REGS is returned. */
1115
1116#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1117 secondary_reload_class (CLASS, MODE, IN)
1118
7ea555a4
RK
1119/* If we are copying between FP registers and anything else, we need a memory
1120 location. */
1121
1122#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1123 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1124
f045b2c9
RS
1125/* Return the maximum number of consecutive registers
1126 needed to represent mode MODE in a register of class CLASS.
1127
1128 On RS/6000, this is the size of MODE in words,
1129 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1130#define CLASS_MAX_NREGS(CLASS, MODE) \
1131 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1132 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1133 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1134 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1135
1136/* If defined, gives a class of registers that cannot be used as the
1137 operand of a SUBREG that changes the size of the object. */
1138
802a0058 1139#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1140\f
1141/* Stack layout; function entry, exit and calling. */
1142
6b67933e
RK
1143/* Enumeration to give which calling sequence to use. */
1144enum rs6000_abi {
1145 ABI_NONE,
1146 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1147 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1148 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1149 ABI_NT, /* Windows/NT */
1150 ABI_SOLARIS /* Solaris */
6b67933e
RK
1151};
1152
b6c9286a
MM
1153extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1154
1155/* Default ABI to compile code for */
1156#ifndef DEFAULT_ABI
1157#define DEFAULT_ABI ABI_AIX
fb19c17f
RK
1158/* The prefix to add to user-visible assembler symbols. */
1159#define USER_LABEL_PREFIX "."
b6c9286a
MM
1160#endif
1161
4697a36c
MM
1162/* Structure used to define the rs6000 stack */
1163typedef struct rs6000_stack {
1164 int first_gp_reg_save; /* first callee saved GP register used */
1165 int first_fp_reg_save; /* first callee saved FP register used */
1166 int lr_save_p; /* true if the link reg needs to be saved */
1167 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1168 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1169 int push_p; /* true if we need to allocate stack space */
1170 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1171 int main_p; /* true if this is main */
1172 int main_save_p; /* true if this is main and we need to save args */
802a0058 1173 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1174 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1175 int gp_save_offset; /* offset to save GP regs from initial SP */
1176 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1177 int lr_save_offset; /* offset to save LR from initial SP */
1178 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1179 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1180 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1181 int main_save_offset; /* offset to save main's args */
802a0058 1182 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1183 int reg_size; /* register size (4 or 8) */
1184 int varargs_size; /* size to hold V.4 args passed in regs */
1185 int vars_size; /* variable save area size */
1186 int parm_size; /* outgoing parameter size */
b6c9286a 1187 int main_size; /* size to hold saving main's args */
4697a36c
MM
1188 int save_size; /* save area size */
1189 int fixed_size; /* fixed size of stack frame */
1190 int gp_size; /* size of saved GP registers */
1191 int fp_size; /* size of saved FP registers */
1192 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1193 int lr_size; /* size to hold LR if not in save_size */
802a0058 1194 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1195 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1196 int total_size; /* total bytes allocated for stack */
1197} rs6000_stack_t;
1198
f045b2c9
RS
1199/* Define this if pushing a word on the stack
1200 makes the stack pointer a smaller address. */
1201#define STACK_GROWS_DOWNWARD
1202
1203/* Define this if the nominal address of the stack frame
1204 is at the high-address end of the local variables;
1205 that is, each additional local variable allocated
1206 goes at a more negative offset in the frame.
1207
1208 On the RS/6000, we grow upwards, from the area after the outgoing
1209 arguments. */
1210/* #define FRAME_GROWS_DOWNWARD */
1211
4697a36c 1212/* Size of the outgoing register save area */
2f3e5814 1213#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1214
1215/* Size of the fixed area on the stack */
2f3e5814 1216#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1217
b6c9286a 1218/* Address to save the TOC register */
a260abc9 1219#define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, (TARGET_32BIT ? 20 : 40))
b6c9286a 1220
802a0058
MM
1221/* Offset & size for fpmem stack locations used for converting between
1222 float and integral types. */
1223extern int rs6000_fpmem_offset;
1224extern int rs6000_fpmem_size;
1225
4697a36c
MM
1226/* Size of the V.4 varargs area if needed */
1227#define RS6000_VARARGS_AREA 0
1228
1229/* Whether a V.4 varargs area is needed */
1230extern int rs6000_sysv_varargs_p;
1231
1232/* Align an address */
ed33106f 1233#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1234
a7df97e6
MM
1235/* Initialize data used by insn expanders. This is called from
1236 init_emit, once for each function, before code is generated. */
1237#define INIT_EXPANDERS rs6000_init_expanders ()
1238
4697a36c
MM
1239/* Size of V.4 varargs area in bytes */
1240#define RS6000_VARARGS_SIZE \
2f3e5814 1241 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c
MM
1242
1243/* Offset of V.4 varargs area */
802a0058 1244#define RS6000_VARARGS_OFFSET \
ed33106f 1245 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1246 + RS6000_SAVE_AREA)
4697a36c 1247
f045b2c9
RS
1248/* Offset within stack frame to start allocating local variables at.
1249 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1250 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1251 of the first local allocated.
f045b2c9
RS
1252
1253 On the RS/6000, the frame pointer is the same as the stack pointer,
1254 except for dynamic allocations. So we start after the fixed area and
1255 outgoing parameter area. */
1256
802a0058 1257#define STARTING_FRAME_OFFSET \
ed33106f 1258 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058
MM
1259 + RS6000_VARARGS_AREA \
1260 + RS6000_SAVE_AREA)
1261
1262/* Offset from the stack pointer register to an item dynamically
1263 allocated on the stack, e.g., by `alloca'.
1264
1265 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1266 length of the outgoing arguments. The default is correct for most
1267 machines. See `function.c' for details. */
1268#define STACK_DYNAMIC_OFFSET(FUNDECL) \
ed33106f 1269 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1270 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1271
1272/* If we generate an insn to push BYTES bytes,
1273 this says how many the stack pointer really advances by.
1274 On RS/6000, don't define this because there are no push insns. */
1275/* #define PUSH_ROUNDING(BYTES) */
1276
1277/* Offset of first parameter from the argument pointer register value.
1278 On the RS/6000, we define the argument pointer to the start of the fixed
1279 area. */
4697a36c 1280#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1281
1282/* Define this if stack space is still allocated for a parameter passed
1283 in a register. The value is the number of bytes allocated to this
1284 area. */
4697a36c 1285#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1286
1287/* Define this if the above stack space is to be considered part of the
1288 space allocated by the caller. */
1289#define OUTGOING_REG_PARM_STACK_SPACE
1290
1291/* This is the difference between the logical top of stack and the actual sp.
1292
1293 For the RS/6000, sp points past the fixed area. */
4697a36c 1294#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1295
1296/* Define this if the maximum size of all the outgoing args is to be
1297 accumulated and pushed during the prologue. The amount can be
1298 found in the variable current_function_outgoing_args_size. */
1299#define ACCUMULATE_OUTGOING_ARGS
1300
1301/* Value is the number of bytes of arguments automatically
1302 popped when returning from a subroutine call.
8b109b37 1303 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1304 FUNTYPE is the data type of the function (as a tree),
1305 or for a library call it is an identifier node for the subroutine name.
1306 SIZE is the number of bytes of arguments passed on the stack. */
1307
8b109b37 1308#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1309
1310/* Define how to find the value returned by a function.
1311 VALTYPE is the data type of the value (as a tree).
1312 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1313 otherwise, FUNC is 0.
1314
c81bebd7 1315 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1316 fp1, unless -msoft-float. */
f045b2c9 1317
39403d82
DE
1318#define FUNCTION_VALUE(VALTYPE, FUNC) \
1319 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1320 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1321 || POINTER_TYPE_P (VALTYPE) \
1322 ? word_mode : TYPE_MODE (VALTYPE), \
1323 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1324
1325/* Define how to find the value returned by a library function
1326 assuming the value has mode MODE. */
1327
1328#define LIBCALL_VALUE(MODE) \
39403d82
DE
1329 gen_rtx_REG (MODE, \
1330 GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1331
1332/* The definition of this macro implies that there are cases where
1333 a scalar value cannot be returned in registers.
1334
c81bebd7
MM
1335 For the RS/6000, any structure or union type is returned in memory, except for
1336 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1337
c81bebd7
MM
1338#define RETURN_IN_MEMORY(TYPE) \
1339 (TYPE_MODE (TYPE) == BLKmode \
1340 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1341
a260abc9 1342/* Mode of stack savearea.
dfdfa60f
DE
1343 FUNCTION is VOIDmode because calling convention maintains SP.
1344 BLOCK needs Pmode for SP.
a260abc9
DE
1345 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1346#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1347 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1348 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1349
4697a36c
MM
1350/* Minimum and maximum general purpose registers used to hold arguments. */
1351#define GP_ARG_MIN_REG 3
1352#define GP_ARG_MAX_REG 10
1353#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1354
1355/* Minimum and maximum floating point registers used to hold arguments. */
1356#define FP_ARG_MIN_REG 33
7509c759
MM
1357#define FP_ARG_AIX_MAX_REG 45
1358#define FP_ARG_V4_MAX_REG 40
1359#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1360#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1361
1362/* Return registers */
1363#define GP_ARG_RETURN GP_ARG_MIN_REG
1364#define FP_ARG_RETURN FP_ARG_MIN_REG
1365
7509c759 1366/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1367#define CALL_NORMAL 0x00000000 /* no special processing */
1368#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1369#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1370#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1371#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1372
4697a36c
MM
1373/* Define cutoff for using external functions to save floating point */
1374#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1375
f045b2c9
RS
1376/* 1 if N is a possible register number for a function value
1377 as seen by the caller.
1378
1379 On RS/6000, this is r3 and fp1. */
4697a36c 1380#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1381
1382/* 1 if N is a possible register number for function argument passing.
1383 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1384#define FUNCTION_ARG_REGNO_P(N) \
1385 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1386 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1387
f045b2c9
RS
1388\f
1389/* Define a data type for recording info about an argument list
1390 during the scan of that argument list. This data type should
1391 hold all necessary information about the function itself
1392 and about the args processed so far, enough to enable macros
1393 such as FUNCTION_ARG to determine where the next arg should go.
1394
1395 On the RS/6000, this is a structure. The first element is the number of
1396 total argument words, the second is used to store the next
1397 floating-point register number, and the third says how many more args we
4697a36c
MM
1398 have prototype types for.
1399
1400 The System V.4 varargs/stdarg support requires that this structure's size
1401 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1402 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1403
1404typedef struct rs6000_args
1405{
6a4cee5f
MM
1406 int words; /* # words uses for passing GP registers */
1407 int fregno; /* next available FP register */
1408 int nargs_prototype; /* # args left in the current prototype */
1409 int orig_nargs; /* Original value of nargs_prototype */
1410 int varargs_offset; /* offset of the varargs save area */
1411 int prototype; /* Whether a prototype was defined */
1412 int call_cookie; /* Do special things for this call */
4697a36c 1413} CUMULATIVE_ARGS;
f045b2c9
RS
1414
1415/* Define intermediate macro to compute the size (in registers) of an argument
1416 for the RS/6000. */
1417
1418#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1419(! (NAMED) ? 0 \
1420 : (MODE) != BLKmode \
1421 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1422 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1423
1424/* Initialize a variable CUM of type CUMULATIVE_ARGS
1425 for a call to a function whose data type is FNTYPE.
1426 For a library call, FNTYPE is 0. */
1427
2c7ee1a6 1428#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1429 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1430
1431/* Similar, but when scanning the definition of a procedure. We always
1432 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1433
4697a36c
MM
1434#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1435 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1436
1437/* Update the data in CUM to advance over an argument
1438 of mode MODE and data type TYPE.
1439 (TYPE is null for libcalls where that information may not be available.) */
1440
1441#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1442 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1443
1444/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1445#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1446 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1447 && (CUM).fregno <= FP_ARG_MAX_REG \
1448 && TARGET_HARD_FLOAT)
f045b2c9
RS
1449
1450/* Determine where to put an argument to a function.
1451 Value is zero to push the argument on the stack,
1452 or a hard register in which to store the argument.
1453
1454 MODE is the argument's machine mode.
1455 TYPE is the data type of the argument (as a tree).
1456 This is null for libcalls where that information may
1457 not be available.
1458 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1459 the preceding args and about the function being called.
1460 NAMED is nonzero if this argument is a named parameter
1461 (otherwise it is an extra parameter matching an ellipsis).
1462
1463 On RS/6000 the first eight words of non-FP are normally in registers
1464 and the rest are pushed. The first 13 FP args are in registers.
1465
1466 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1467 both an FP and integer register (or possibly FP reg and stack). Library
1468 functions (when TYPE is zero) always have the proper types for args,
1469 so we can pass the FP value just in one register. emit_library_function
1470 doesn't support EXPR_LIST anyway. */
f045b2c9 1471
4697a36c
MM
1472#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1473 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1474
1475/* For an arg passed partly in registers and partly in memory,
1476 this is the number of registers used.
1477 For args passed entirely in registers or entirely in memory, zero. */
1478
4697a36c
MM
1479#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1480 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1481
1482/* A C expression that indicates when an argument must be passed by
1483 reference. If nonzero for an argument, a copy of that argument is
1484 made in memory and a pointer to the argument is passed instead of
1485 the argument itself. The pointer is passed in whatever way is
1486 appropriate for passing a pointer to that type. */
1487
1488#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1489 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1490
c229cba9
DE
1491/* If defined, a C expression which determines whether, and in which
1492 direction, to pad out an argument with extra space. The value
1493 should be of type `enum direction': either `upward' to pad above
1494 the argument, `downward' to pad below, or `none' to inhibit
1495 padding. */
1496
1497#define FUNCTION_ARG_PADDING(MODE, TYPE) \
c4d38ccb 1498 (enum direction) function_arg_padding (MODE, TYPE)
c229cba9 1499
b6c9286a 1500/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1501 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1502 PARM_BOUNDARY is used for all arguments. */
1503
1504#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1505 function_arg_boundary (MODE, TYPE)
1506
f045b2c9 1507/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1508 variable number of arguments.
f045b2c9
RS
1509
1510 CUM is as above.
1511
1512 MODE and TYPE are the mode and type of the current parameter.
1513
1514 PRETEND_SIZE is a variable that should be set to the amount of stack
1515 that must be pushed by the prolog to pretend that our caller pushed
1516 it.
1517
1518 Normally, this macro will push all remaining incoming registers on the
1519 stack and set PRETEND_SIZE to the length of the registers pushed. */
1520
4697a36c
MM
1521#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1522 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1523
1524/* If defined, is a C expression that produces the machine-specific
1525 code for a call to `__builtin_saveregs'. This code will be moved
1526 to the very beginning of the function, before any parameter access
1527 are made. The return value of this function should be an RTX that
1528 contains the value to use as the return of `__builtin_saveregs'.
1529
1530 The argument ARGS is a `tree_list' containing the arguments that
1531 were passed to `__builtin_saveregs'.
1532
1533 If this macro is not defined, the compiler will output an ordinary
1534 call to the library function `__builtin_saveregs'. */
1535
1536#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1537 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1538
1539/* This macro generates the assembly code for function entry.
1540 FILE is a stdio stream to output the code to.
1541 SIZE is an int: how many units of temporary storage to allocate.
1542 Refer to the array `regs_ever_live' to determine which registers
1543 to save; `regs_ever_live[I]' is nonzero if register number I
1544 is ever used in the function. This macro is responsible for
1545 knowing which registers should not be saved even if used. */
1546
1547#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1548
1549/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1550 for profiling a function entry. */
f045b2c9
RS
1551
1552#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1553 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1554
1555/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1556 the stack pointer does not matter. No definition is equivalent to
1557 always zero.
1558
1559 On the RS/6000, this is non-zero because we can restore the stack from
1560 its backpointer, which we maintain. */
1561#define EXIT_IGNORE_STACK 1
1562
1563/* This macro generates the assembly code for function exit,
1564 on machines that need it. If FUNCTION_EPILOGUE is not defined
1565 then individual return instructions are generated for each
1566 return statement. Args are same as for FUNCTION_PROLOGUE.
1567
1568 The function epilogue should not depend on the current stack pointer!
1569 It should use the frame pointer only. This is mandatory because
1570 of alloca; we also take advantage of it to omit stack adjustments
1571 before returning. */
1572
1573#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1574\f
eaf1bcf1 1575/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1576
1577/* Length in units of the trampoline for entering a nested function. */
1578
b6c9286a 1579#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1580
1581/* Emit RTL insns to initialize the variable parts of a trampoline.
1582 FNADDR is an RTX for the address of the function's pure code.
1583 CXT is an RTX for the static chain value for the function. */
1584
1585#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1586 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1587\f
7509c759
MM
1588/* If defined, a C expression whose value is nonzero if IDENTIFIER
1589 with arguments ARGS is a valid machine specific attribute for DECL.
1590 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1591
1592#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1593 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1594
1595/* If defined, a C expression whose value is nonzero if IDENTIFIER
1596 with arguments ARGS is a valid machine specific attribute for TYPE.
1597 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1598
1599#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1600 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1601
1602/* If defined, a C expression whose value is zero if the attributes on
1603 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1604 two if they are nearly compatible (which causes a warning to be
1605 generated). */
1606
1607#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1608 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1609
1610/* If defined, a C statement that assigns default attributes to newly
1611 defined TYPE. */
1612
1613#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1614 (rs6000_set_default_type_attributes (TYPE))
1615
1616\f
f33985c6
MS
1617/* Definitions for __builtin_return_address and __builtin_frame_address.
1618 __builtin_return_address (0) should give link register (65), enable
1619 this. */
1620/* This should be uncommented, so that the link register is used, but
1621 currently this would result in unmatched insns and spilling fixed
1622 registers so we'll leave it for another day. When these problems are
1623 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1624 (mrs) */
1625/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1626
b6c9286a
MM
1627/* Number of bytes into the frame return addresses can be found. See
1628 rs6000_stack_info in rs6000.c for more information on how the different
1629 abi's store the return address. */
1630#define RETURN_ADDRESS_OFFSET \
1631 ((DEFAULT_ABI == ABI_AIX \
1632 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1633 (DEFAULT_ABI == ABI_V4 \
1634 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1635 (DEFAULT_ABI == ABI_NT) ? -4 : \
1636 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1637
f33985c6
MS
1638/* The current return address is in link register (65). The return address
1639 of anything farther back is accessed normally at an offset of 8 from the
1640 frame pointer. */
1641#define RETURN_ADDR_RTX(count, frame) \
1642 ((count == -1) \
39403d82
DE
1643 ? gen_rtx_REG (Pmode, 65) \
1644 : gen_rtx_MEM (Pmode, \
f09d4c33 1645 memory_address (Pmode, \
39403d82 1646 plus_constant (copy_to_reg (gen_rtx_MEM (Pmode, \
f09d4c33
RK
1647 memory_address (Pmode, frame))), \
1648 RETURN_ADDRESS_OFFSET))))
f33985c6 1649\f
f045b2c9
RS
1650/* Definitions for register eliminations.
1651
1652 We have two registers that can be eliminated on the RS/6000. First, the
1653 frame pointer register can often be eliminated in favor of the stack
1654 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1655 eliminated; it is replaced with either the stack or frame pointer.
1656
1657 In addition, we use the elimination mechanism to see if r30 is needed
1658 Initially we assume that it isn't. If it is, we spill it. This is done
1659 by making it an eliminable register. We replace it with itself so that
1660 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1661
1662/* This is an array of structures. Each structure initializes one pair
1663 of eliminable registers. The "from" register number is given first,
1664 followed by "to". Eliminations of the same "from" register are listed
1665 in order of preference. */
1666#define ELIMINABLE_REGS \
1667{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1668 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1669 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1670 { 30, 30} }
f045b2c9
RS
1671
1672/* Given FROM and TO register numbers, say whether this elimination is allowed.
1673 Frame pointer elimination is automatically handled.
1674
1675 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1676 to convert ap into fp, not sp.
1677
abc95ed3 1678 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1679 references. */
f045b2c9
RS
1680
1681#define CAN_ELIMINATE(FROM, TO) \
1682 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1683 ? ! frame_pointer_needed \
4697a36c 1684 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1685 : 1)
1686
1687/* Define the offset between two registers, one to be eliminated, and the other
1688 its replacement, at the start of a routine. */
1689#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1690{ \
4697a36c 1691 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1692 \
1693 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1694 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1695 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1696 (OFFSET) = info->total_size; \
1697 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1698 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1699 else if ((FROM) == 30) \
1700 (OFFSET) = 0; \
f045b2c9
RS
1701 else \
1702 abort (); \
1703}
1704\f
1705/* Addressing modes, and classification of registers for them. */
1706
1707/* #define HAVE_POST_INCREMENT */
1708/* #define HAVE_POST_DECREMENT */
1709
1710#define HAVE_PRE_DECREMENT
1711#define HAVE_PRE_INCREMENT
1712
1713/* Macros to check register numbers against specific register classes. */
1714
1715/* These assume that REGNO is a hard or pseudo reg number.
1716 They give nonzero only if REGNO is a hard reg of the suitable class
1717 or a pseudo reg currently allocated to a suitable hard reg.
1718 Since they use reg_renumber, they are safe only once reg_renumber
1719 has been allocated, which happens in local-alloc.c. */
1720
1721#define REGNO_OK_FOR_INDEX_P(REGNO) \
1722((REGNO) < FIRST_PSEUDO_REGISTER \
1723 ? (REGNO) <= 31 || (REGNO) == 67 \
1724 : (reg_renumber[REGNO] >= 0 \
1725 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1726
1727#define REGNO_OK_FOR_BASE_P(REGNO) \
1728((REGNO) < FIRST_PSEUDO_REGISTER \
1729 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1730 : (reg_renumber[REGNO] > 0 \
1731 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1732\f
1733/* Maximum number of registers that can appear in a valid memory address. */
1734
1735#define MAX_REGS_PER_ADDRESS 2
1736
1737/* Recognize any constant value that is a valid address. */
1738
6eff269e
BK
1739#define CONSTANT_ADDRESS_P(X) \
1740 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1741 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1742 || GET_CODE (X) == HIGH)
f045b2c9
RS
1743
1744/* Nonzero if the constant value X is a legitimate general operand.
1745 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1746
1747 On the RS/6000, all integer constants are acceptable, most won't be valid
1748 for particular insns, though. Only easy FP constants are
1749 acceptable. */
1750
1751#define LEGITIMATE_CONSTANT_P(X) \
1752 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1753 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1754 || easy_fp_constant (X, GET_MODE (X)))
1755
1756/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1757 and check its validity for a certain class.
1758 We have two alternate definitions for each of them.
1759 The usual definition accepts all pseudo regs; the other rejects
1760 them unless they have been allocated suitable hard regs.
1761 The symbol REG_OK_STRICT causes the latter definition to be used.
1762
1763 Most source files want to accept pseudo regs in the hope that
1764 they will get allocated to the class that the insn wants them to be in.
1765 Source files for reload pass need to be strict.
1766 After reload, it makes no difference, since pseudo regs have
1767 been eliminated by then. */
1768
1769#ifndef REG_OK_STRICT
1770
1771/* Nonzero if X is a hard reg that can be used as an index
1772 or if it is a pseudo reg. */
1773#define REG_OK_FOR_INDEX_P(X) \
1774 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1775
1776/* Nonzero if X is a hard reg that can be used as a base reg
1777 or if it is a pseudo reg. */
1778#define REG_OK_FOR_BASE_P(X) \
1779 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1780
1781#else
1782
1783/* Nonzero if X is a hard reg that can be used as an index. */
1784#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1785/* Nonzero if X is a hard reg that can be used as a base reg. */
1786#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1787
1788#endif
1789\f
1790/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1791 that is a valid memory address for an instruction.
1792 The MODE argument is the machine mode for the MEM expression
1793 that wants to use this address.
1794
1795 On the RS/6000, there are four valid address: a SYMBOL_REF that
1796 refers to a constant pool entry of an address (or the sum of it
1797 plus a constant), a short (16-bit signed) constant plus a register,
1798 the sum of two registers, or a register indirect, possibly with an
1799 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814
DE
1800 we must ensure that both words are addressable or PowerPC64 with offset
1801 word aligned. */
f045b2c9
RS
1802
1803#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1804 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1805 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1806 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1807
a260abc9 1808/* AIX64 guaranteed to have 64 bit TOC alignment. */
f045b2c9
RS
1809#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1810 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1811 || (TARGET_TOC \
1812 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1813 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1814 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1815
7509c759 1816#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1817 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
81795281 1818 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1819 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1820 && small_data_operand (X, MODE))
7509c759 1821
f045b2c9
RS
1822#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1823 (GET_CODE (X) == CONST_INT \
5b6f7b96 1824 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9
RS
1825
1826#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1827 (GET_CODE (X) == PLUS \
1828 && GET_CODE (XEXP (X, 0)) == REG \
1829 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1830 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1831 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1832 || (TARGET_32BIT \
1465faec
DE
1833 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1834 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1835 && ((MODE) != TImode \
644d82dd 1836 || (TARGET_32BIT \
1465faec
DE
1837 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1838 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1839 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1840
1841#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1842 (GET_CODE (X) == PLUS \
1843 && GET_CODE (XEXP (X, 0)) == REG \
1844 && GET_CODE (XEXP (X, 1)) == REG \
1845 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1846 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1847 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1848 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1849
1850#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1851 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1852
4697a36c
MM
1853#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1854 (TARGET_ELF \
81795281 1855 && !flag_pic && !TARGET_TOC \
4697a36c
MM
1856 && (MODE) != DImode \
1857 && (MODE) != TImode \
1858 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1859 && GET_CODE (X) == LO_SUM \
1860 && GET_CODE (XEXP (X, 0)) == REG \
1861 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1862 && CONSTANT_P (XEXP (X, 1)))
1863
f045b2c9
RS
1864#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1865{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1866 goto ADDR; \
0a90c336 1867 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
38c1f2d7 1868 && TARGET_UPDATE \
f045b2c9
RS
1869 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1870 goto ADDR; \
7509c759
MM
1871 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1872 goto ADDR; \
f045b2c9
RS
1873 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1874 goto ADDR; \
1875 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1876 goto ADDR; \
2f3e5814
DE
1877 if ((MODE) != TImode \
1878 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1879 && (TARGET_64BIT || (MODE) != DImode) \
f045b2c9
RS
1880 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1881 goto ADDR; \
4697a36c
MM
1882 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1883 goto ADDR; \
f045b2c9
RS
1884}
1885\f
1886/* Try machine-dependent ways of modifying an illegitimate address
1887 to be legitimate. If we find one, return the new, valid address.
1888 This macro is used in only one place: `memory_address' in explow.c.
1889
1890 OLDX is the address as it was before break_out_memory_refs was called.
1891 In some cases it is useful to look at this to decide what needs to be done.
1892
1893 MODE and WIN are passed so that this macro can use
1894 GO_IF_LEGITIMATE_ADDRESS.
1895
1896 It is always safe for this macro to do nothing. It exists to recognize
1897 opportunities to optimize the output.
1898
1899 On RS/6000, first check for the sum of a register with a constant
1900 integer that is out of range. If so, generate code to add the
1901 constant with the low-order 16 bits masked to the register and force
1902 this result into another register (this can be done with `cau').
c81bebd7 1903 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1904 possibility of bit 16 being a one.
1905
1906 Then check for the sum of a register and something not constant, try to
1907 load the other things into a register and return the sum. */
1908
4697a36c
MM
1909#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1910{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1911 && GET_CODE (XEXP (X, 1)) == CONST_INT \
5b6f7b96 1912 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1913 { HOST_WIDE_INT high_int, low_int; \
1914 rtx sum; \
1915 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1916 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1917 if (low_int & 0x8000) \
354b734b 1918 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
39403d82 1919 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (X, 0), \
354b734b 1920 GEN_INT (high_int)), 0); \
39403d82 1921 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1922 goto WIN; \
1923 } \
1924 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1925 && GET_CODE (XEXP (X, 1)) != CONST_INT \
2f3e5814
DE
1926 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1927 && (TARGET_64BIT || (MODE) != DImode) \
1928 && (MODE) != TImode) \
4697a36c 1929 { \
39403d82 1930 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
0a90c336 1931 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
1932 goto WIN; \
1933 } \
2f3e5814 1934 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
461422d5 1935 && !flag_pic \
4697a36c
MM
1936 && GET_CODE (X) != CONST_INT \
1937 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1938 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1939 && (MODE) != DImode && (MODE) != TImode) \
1940 { \
1941 rtx reg = gen_reg_rtx (Pmode); \
1942 emit_insn (gen_elf_high (reg, (X))); \
39403d82 1943 (X) = gen_rtx_LO_SUM (Pmode, reg, (X)); \
4697a36c 1944 } \
f045b2c9
RS
1945}
1946
a260abc9
DE
1947/* Try a machine-dependent way of reloading an illegitimate address
1948 operand. If we find one, push the reload and jump to WIN. This
1949 macro is used in only one place: `find_reloads_address' in reload.c.
1950
1951 For RS/6000, we wish to handle large displacements off a base
1952 register by splitting the addend across an addiu/addis and the mem insn.
1953 This cuts number of extra insns needed from 3 to 1. */
1954
1955#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1956do { \
1957 if (GET_CODE (X) == PLUS \
1958 && GET_CODE (XEXP (X, 0)) == REG \
1959 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1960 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1961 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1962 { \
1963 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1964 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1965 HOST_WIDE_INT high \
1966 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1967 \
1968 /* Check for 32-bit overflow. */ \
1969 if (high + low != val) \
1970 break; \
1971 \
1972 /* Reload the high part into a base reg; leave the low part \
1973 in the mem directly. */ \
1974 \
1975 X = gen_rtx_PLUS (GET_MODE (X), \
1976 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1977 GEN_INT (high)), \
1978 GEN_INT (low)); \
1979 \
1980 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1981 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1982 OPNUM, TYPE); \
1983 goto WIN; \
1984 } \
1985} while (0)
1986
f045b2c9
RS
1987/* Go to LABEL if ADDR (a legitimate address expression)
1988 has an effect that depends on the machine mode it is used for.
1989
1990 On the RS/6000 this is true if the address is valid with a zero offset
1991 but not with an offset of four (this means it cannot be used as an
1992 address for DImode or DFmode) or is a pre-increment or decrement. Since
1993 we know it is valid, we just check for an address that is not valid with
1994 an offset of four. */
1995
1996#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1997{ if (GET_CODE (ADDR) == PLUS \
1998 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
1999 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2000 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2001 goto LABEL; \
38c1f2d7 2002 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2003 goto LABEL; \
38c1f2d7 2004 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2005 goto LABEL; \
4697a36c
MM
2006 if (GET_CODE (ADDR) == LO_SUM) \
2007 goto LABEL; \
f045b2c9 2008}
766a866c
MM
2009\f
2010/* The register number of the register used to address a table of
2011 static data addresses in memory. In some cases this register is
2012 defined by a processor's "application binary interface" (ABI).
2013 When this macro is defined, RTL is generated for this register
2014 once, as with the stack pointer and frame pointer registers. If
2015 this macro is not defined, it is up to the machine-dependent files
2016 to allocate such a register (if necessary). */
2017
2018/* #define PIC_OFFSET_TABLE_REGNUM */
2019
2020/* Define this macro if the register defined by
2021 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2022 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
2023
2024/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2025
2026/* By generating position-independent code, when two different
2027 programs (A and B) share a common library (libC.a), the text of
2028 the library can be shared whether or not the library is linked at
2029 the same address for both programs. In some of these
2030 environments, position-independent code requires not only the use
2031 of different addressing modes, but also special code to enable the
2032 use of these addressing modes.
2033
2034 The `FINALIZE_PIC' macro serves as a hook to emit these special
2035 codes once the function is being compiled into assembly code, but
2036 not before. (It is not done before, because in the case of
2037 compiling an inline function, it would lead to multiple PIC
2038 prologues being included in functions which used inline functions
2039 and were compiled to assembly language.) */
2040
d266da75 2041#define FINALIZE_PIC rs6000_finalize_pic ()
766a866c 2042
766a866c
MM
2043/* A C expression that is nonzero if X is a legitimate immediate
2044 operand on the target machine when generating position independent
2045 code. You can assume that X satisfies `CONSTANT_P', so you need
2046 not check this. You can also assume FLAG_PIC is true, so you need
2047 not check it either. You need not define this macro if all
2048 constants (including `SYMBOL_REF') can be immediate operands when
2049 generating position independent code. */
2050
2051/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2052
30ea98f1
MM
2053/* In rare cases, correct code generation requires extra machine
2054 dependent processing between the second jump optimization pass and
2055 delayed branch scheduling. On those machines, define this macro
2056 as a C statement to act on the code starting at INSN.
2057
2058 On the RS/6000, we use it to make sure the GOT_TOC register marker
2059 that FINALIZE_PIC is supposed to remove actually got removed. */
2060
2061#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
2062
f045b2c9
RS
2063\f
2064/* Define this if some processing needs to be done immediately before
4255474b 2065 emitting code for an insn. */
f045b2c9 2066
4255474b 2067/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2068
2069/* Specify the machine mode that this machine uses
2070 for the index in the tablejump instruction. */
2f3e5814 2071#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9 2072
18543a22
ILT
2073/* Define as C expression which evaluates to nonzero if the tablejump
2074 instruction expects the table to contain offsets from the address of the
2075 table.
2076 Do not define this if the table should contain absolute addresses. */
2077#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9
RS
2078
2079/* Specify the tree operation to be used to convert reals to integers. */
2080#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2081
2082/* This is the kind of divide that is easiest to do in the general case. */
2083#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2084
2085/* Define this as 1 if `char' should by default be signed; else as 0. */
2086#define DEFAULT_SIGNED_CHAR 0
2087
2088/* This flag, if defined, says the same insns that convert to a signed fixnum
2089 also convert validly to an unsigned one. */
2090
2091/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2092
2093/* Max number of bytes we can move from memory to memory
2094 in one reasonably fast instruction. */
2f3e5814 2095#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2096#define MAX_MOVE_MAX 8
f045b2c9
RS
2097
2098/* Nonzero if access to memory by bytes is no faster than for words.
2099 Also non-zero if doing byte operations (specifically shifts) in registers
2100 is undesirable. */
2101#define SLOW_BYTE_ACCESS 1
2102
9a63901f
RK
2103/* Define if operations between registers always perform the operation
2104 on the full register even if a narrower mode is specified. */
2105#define WORD_REGISTER_OPERATIONS
2106
2107/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2108 will either zero-extend or sign-extend. The value of this macro should
2109 be the code that says which one of the two operations is implicitly
2110 done, NIL if none. */
2111#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2112
2113/* Define if loading short immediate values into registers sign extends. */
2114#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2115\f
2116/* The RS/6000 uses the XCOFF format. */
f045b2c9 2117
fdaff8ba 2118#define XCOFF_DEBUGGING_INFO
f045b2c9 2119
c5abcf1d
CH
2120/* Define if the object format being used is COFF or a superset. */
2121#define OBJECT_FORMAT_COFF
2122
b9af8fb0 2123/* Define the magic numbers that we recognize as COFF.
a260abc9
DE
2124 AIX 4.3 adds U803XTOCMAGIC (0757) for 64-bit objects, but collect2.c
2125 does not include files in the correct order to conditionally define
2126 the symbolic name in this macro. */
2c440f06 2127#define MY_ISCOFF(magic) \
b9af8fb0
DE
2128 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC \
2129 || (magic) == U802TOCMAGIC || (magic) == 0757)
2c440f06 2130
115e69a9
RK
2131/* This is the only version of nm that collect2 can work with. */
2132#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2133
f045b2c9
RS
2134/* We don't have GAS for the RS/6000 yet, so don't write out special
2135 .stabs in cc1plus. */
c81bebd7 2136
f045b2c9 2137#define FASCIST_ASSEMBLER
b6c9286a 2138
4cacd7a0
KE
2139/* AIX does not have any init/fini or ctor/dtor sections, so create
2140 static constructors and destructors as normal functions. */
2141/* #define ASM_OUTPUT_CONSTRUCTOR(file, name) */
2142/* #define ASM_OUTPUT_DESTRUCTOR(file, name) */
f045b2c9 2143
f045b2c9
RS
2144/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2145 is done just by pretending it is already truncated. */
2146#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2147
2148/* Specify the machine mode that pointers have.
2149 After generation of rtl, the compiler makes no further distinction
2150 between pointers and any other objects of this machine mode. */
2f3e5814 2151#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2152
2153/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2154 Doesn't matter on RS/6000. */
2f3e5814 2155#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2156
2157/* Define this if addresses of constant functions
2158 shouldn't be put through pseudo regs where they can be cse'd.
2159 Desirable on machines where ordinary constants are expensive
2160 but a CALL with constant address is cheap. */
2161#define NO_FUNCTION_CSE
2162
d969caf8 2163/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2164 few bits.
2165
2166 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2167 have been dropped from the PowerPC architecture. */
2168
4697a36c 2169#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2170
2171/* Use atexit for static constructors/destructors, instead of defining
2172 our own exit function. */
2173#define HAVE_ATEXIT
2174
2175/* Compute the cost of computing a constant rtl expression RTX
2176 whose rtx-code is CODE. The body of this macro is a portion
2177 of a switch statement. If the code is computed here,
2178 return it with a return statement. Otherwise, break from the switch.
2179
01554f00 2180 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2181 always returns 0. */
2182
4697a36c 2183#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2184 case CONST_INT: \
2185 case CONST: \
2186 case LABEL_REF: \
2187 case SYMBOL_REF: \
2188 case CONST_DOUBLE: \
4697a36c 2189 case HIGH: \
f045b2c9
RS
2190 return 0;
2191
2192/* Provide the costs of a rtl expression. This is in the body of a
2193 switch on CODE. */
2194
38c1f2d7
MM
2195#define RTX_COSTS(X,CODE,OUTER_CODE) \
2196 case PLUS: \
2197 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2198 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2199 + 0x8000) >= 0x10000) \
296b8152 2200 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2201 ? COSTS_N_INSNS (2) \
2202 : COSTS_N_INSNS (1)); \
2203 case AND: \
38c1f2d7
MM
2204 case IOR: \
2205 case XOR: \
a260abc9
DE
2206 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2207 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2208 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2209 ? COSTS_N_INSNS (2) \
2210 : COSTS_N_INSNS (1)); \
2211 case MULT: \
2212 switch (rs6000_cpu) \
2213 { \
2214 case PROCESSOR_RIOS1: \
2215 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2216 ? COSTS_N_INSNS (5) \
2217 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2218 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2219 case PROCESSOR_RIOS2: \
2220 case PROCESSOR_MPCCORE: \
2221 return COSTS_N_INSNS (2); \
2222 case PROCESSOR_PPC601: \
2223 return COSTS_N_INSNS (5); \
2224 case PROCESSOR_PPC603: \
2225 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2226 ? COSTS_N_INSNS (5) \
2227 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2228 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2229 case PROCESSOR_PPC403: \
2230 case PROCESSOR_PPC604: \
2231 case PROCESSOR_PPC620: \
2232 return COSTS_N_INSNS (4); \
2233 } \
2234 case DIV: \
2235 case MOD: \
2236 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2237 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2238 return COSTS_N_INSNS (2); \
2239 /* otherwise fall through to normal divide. */ \
2240 case UDIV: \
2241 case UMOD: \
2242 switch (rs6000_cpu) \
2243 { \
2244 case PROCESSOR_RIOS1: \
2245 return COSTS_N_INSNS (19); \
2246 case PROCESSOR_RIOS2: \
2247 return COSTS_N_INSNS (13); \
2248 case PROCESSOR_MPCCORE: \
2249 return COSTS_N_INSNS (6); \
2250 case PROCESSOR_PPC403: \
2251 return COSTS_N_INSNS (33); \
2252 case PROCESSOR_PPC601: \
2253 return COSTS_N_INSNS (36); \
2254 case PROCESSOR_PPC603: \
2255 return COSTS_N_INSNS (37); \
2256 case PROCESSOR_PPC604: \
2257 case PROCESSOR_PPC620: \
2258 return COSTS_N_INSNS (20); \
2259 } \
2260 case FFS: \
2261 return COSTS_N_INSNS (4); \
2262 case MEM: \
f045b2c9
RS
2263 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2264 return 5;
2265
2266/* Compute the cost of an address. This is meant to approximate the size
2267 and/or execution delay of an insn using that address. If the cost is
2268 approximated by the RTL complexity, including CONST_COSTS above, as
2269 is usually the case for CISC machines, this macro should not be defined.
2270 For aggressively RISCy machines, only one insn format is allowed, so
2271 this macro should be a constant. The value of this macro only matters
2272 for valid addresses.
2273
2274 For the RS/6000, everything is cost 0. */
2275
2276#define ADDRESS_COST(RTX) 0
2277
2278/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2279 should be adjusted to reflect any required changes. This macro is used when
2280 there is some systematic length adjustment required that would be difficult
2281 to express in the length attribute. */
2282
2283/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2284
2285/* Add any extra modes needed to represent the condition code.
2286
2287 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2288 are being done and we need a separate mode for floating-point. We also
2289 use a mode for the case when we are comparing the results of two
2290 comparisons. */
f045b2c9 2291
c5defebb 2292#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2293
2294/* Define the names for the modes specified above. */
c5defebb 2295#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2296
2297/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2298 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2299 should be used. CCUNSmode should be used for unsigned comparisons.
2300 CCEQmode should be used when we are doing an inequality comparison on
2301 the result of a comparison. CCmode should be used in all other cases. */
2302
b565a316 2303#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2304 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2305 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2306 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2307 ? CCEQmode : CCmode))
f045b2c9
RS
2308
2309/* Define the information needed to generate branch and scc insns. This is
2310 stored from the compare operation. Note that we can't use "rtx" here
2311 since it hasn't been defined! */
2312
2313extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2314extern int rs6000_compare_fp_p;
2315
2316/* Set to non-zero by "fix" operation to indicate that itrunc and
2317 uitrunc must be defined. */
2318
2319extern int rs6000_trunc_used;
9929b575
ILT
2320
2321/* Function names to call to do floating point truncation. */
2322
5bf6466a
DE
2323#define RS6000_ITRUNC "__itrunc"
2324#define RS6000_UITRUNC "__uitrunc"
4d30c363
MM
2325
2326/* Prefix and suffix to use to saving floating point */
2327#ifndef SAVE_FP_PREFIX
2328#define SAVE_FP_PREFIX "._savef"
2329#define SAVE_FP_SUFFIX ""
2330#endif
2331
2332/* Prefix and suffix to use to restoring floating point */
2333#ifndef RESTORE_FP_PREFIX
2334#define RESTORE_FP_PREFIX "._restf"
2335#define RESTORE_FP_SUFFIX ""
2336#endif
2337
5bf6466a
DE
2338/* Function name to call to do profiling. */
2339#define RS6000_MCOUNT ".__mcount"
2340
f045b2c9
RS
2341\f
2342/* Control the assembler format that we output. */
2343
1b279f39
DE
2344/* A C string constant describing how to begin a comment in the target
2345 assembler language. The compiler assumes that the comment will end at
2346 the end of the line. */
2347#define ASM_COMMENT_START " #"
6b67933e 2348
f045b2c9
RS
2349/* Output at beginning of assembler file.
2350
b4d6689b 2351 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2352
6355b140 2353 Specify filename to assembler.
3fc2151d 2354
b4d6689b 2355 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2356 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2357 [RW] section emitted.
2358
2359 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2360 allocated after it (when profiling) into the text section.
b4d6689b
RK
2361
2362 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2363
2364#define ASM_FILE_START(FILE) \
2365{ \
fdaff8ba 2366 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2367 main_input_filename, ".bss_"); \
fdaff8ba 2368 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2369 main_input_filename, ".rw_"); \
fdaff8ba 2370 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2371 main_input_filename, ".ro_"); \
2372 \
6355b140 2373 output_file_directive (FILE, main_input_filename); \
a260abc9
DE
2374 if (TARGET_64BIT) \
2375 fputs ("\t.machine\t\"ppc64\"\n", FILE); \
f045b2c9 2376 toc_section (); \
fdaff8ba
RS
2377 if (write_symbols != NO_DEBUG) \
2378 private_data_section (); \
b4d6689b
RK
2379 text_section (); \
2380 if (profile_flag) \
5bf6466a 2381 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
3cfa4909 2382 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2383}
2384
2385/* Output at end of assembler file.
2386
2387 On the RS/6000, referencing data should automatically pull in text. */
2388
2389#define ASM_FILE_END(FILE) \
2390{ \
2391 text_section (); \
19d2d16f 2392 fputs ("_section_.text:\n", FILE); \
f045b2c9 2393 data_section (); \
19d2d16f 2394 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2395}
2396
f045b2c9
RS
2397/* We define this to prevent the name mangler from putting dollar signs into
2398 function names. */
2399
2400#define NO_DOLLAR_IN_LABEL
2401
2402/* We define this to 0 so that gcc will never accept a dollar sign in a
2403 variable name. This is needed because the AIX assembler will not accept
2404 dollar signs. */
2405
2406#define DOLLARS_IN_IDENTIFIERS 0
2407
fdaff8ba
RS
2408/* Implicit library calls should use memcpy, not bcopy, etc. */
2409
2410#define TARGET_MEM_FUNCTIONS
2411
f045b2c9
RS
2412/* Define the extra sections we need. We define three: one is the read-only
2413 data section which is used for constants. This is a csect whose name is
2414 derived from the name of the input file. The second is for initialized
2415 global variables. This is a csect whose name is that of the variable.
2416 The third is the TOC. */
2417
2418#define EXTRA_SECTIONS \
2419 read_only_data, private_data, read_only_private_data, toc, bss
2420
2421/* Define the name of our readonly data section. */
2422
2423#define READONLY_DATA_SECTION read_only_data_section
2424
9704efe6
MS
2425
2426/* Define the name of the section to use for the exception tables.
2427 TODO: test and see if we can use read_only_data_section, if so,
2428 remove this. */
2429
2430#define EXCEPTION_SECTION data_section
2431
b4f892eb
RK
2432/* If we are referencing a function that is static or is known to be
2433 in this file, make the SYMBOL_REF special. We can use this to indicate
2434 that we can branch to this function without emitting a no-op after the
2435 call. */
2436
2437#define ENCODE_SECTION_INFO(DECL) \
2438 if (TREE_CODE (DECL) == FUNCTION_DECL \
2439 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2440 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2441
f045b2c9
RS
2442/* Indicate that jump tables go in the text section. */
2443
75197b37 2444#define JUMP_TABLES_IN_TEXT_SECTION 1
f045b2c9
RS
2445
2446/* Define the routines to implement these extra sections. */
2447
2448#define EXTRA_SECTION_FUNCTIONS \
2449 \
2450void \
2451read_only_data_section () \
2452{ \
2453 if (in_section != read_only_data) \
2454 { \
469adec3 2455 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2456 xcoff_read_only_section_name); \
f045b2c9
RS
2457 in_section = read_only_data; \
2458 } \
2459} \
2460 \
2461void \
2462private_data_section () \
2463{ \
2464 if (in_section != private_data) \
2465 { \
469adec3 2466 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 2467 xcoff_private_data_section_name); \
f045b2c9
RS
2468 \
2469 in_section = private_data; \
2470 } \
2471} \
2472 \
2473void \
2474read_only_private_data_section () \
2475{ \
2476 if (in_section != read_only_private_data) \
2477 { \
f25359b5 2478 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2479 xcoff_private_data_section_name); \
f045b2c9
RS
2480 in_section = read_only_private_data; \
2481 } \
2482} \
2483 \
2484void \
2485toc_section () \
2486{ \
642a35f1
JW
2487 if (TARGET_MINIMAL_TOC) \
2488 { \
642a35f1
JW
2489 /* toc_section is always called at least once from ASM_FILE_START, \
2490 so this is guaranteed to always be defined once and only once \
2491 in each file. */ \
2492 if (! toc_initialized) \
2493 { \
19d2d16f
MM
2494 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2495 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2496 toc_initialized = 1; \
2497 } \
f045b2c9 2498 \
642a35f1 2499 if (in_section != toc) \
19d2d16f 2500 fputs (".csect toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2501 } \
2502 else \
2503 { \
2504 if (in_section != toc) \
19d2d16f 2505 fputs (".toc\n", asm_out_file); \
642a35f1 2506 } \
f045b2c9 2507 in_section = toc; \
fc3ffe83 2508}
f045b2c9 2509
38c1f2d7
MM
2510/* Flag to say the TOC is initialized */
2511extern int toc_initialized;
2512
f045b2c9
RS
2513/* This macro produces the initial definition of a function name.
2514 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2515 output the function descriptor.
f045b2c9
RS
2516
2517 The csect for the function will have already been created by the
2518 `text_section' call previously done. We do have to go back to that
2519 csect, however. */
2520
fdaff8ba
RS
2521/* ??? What do the 16 and 044 in the .function line really mean? */
2522
f045b2c9
RS
2523#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2524{ if (TREE_PUBLIC (DECL)) \
2525 { \
19d2d16f 2526 fputs ("\t.globl .", FILE); \
f045b2c9 2527 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2528 putc ('\n', FILE); \
fdaff8ba 2529 } \
3ce428da 2530 else \
fdaff8ba 2531 { \
19d2d16f 2532 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2533 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2534 putc ('\n', FILE); \
f045b2c9 2535 } \
19d2d16f 2536 fputs (".csect ", FILE); \
f045b2c9 2537 RS6000_OUTPUT_BASENAME (FILE, NAME); \
a260abc9 2538 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", FILE); \
f045b2c9 2539 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2540 fputs (":\n", FILE); \
a260abc9 2541 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2542 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2543 fputs (", TOC[tc0], 0\n", FILE); \
2544 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2545 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2546 fputs (":\n", FILE); \
fdaff8ba 2547 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2548 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2549}
2550
2551/* Return non-zero if this entry is to be written into the constant pool
2552 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2553 containing one of them. If -mfp-in-toc (the default), we also do
2554 this for floating-point constants. We actually can only do this
2555 if the FP formats of the target and host machines are the same, but
2556 we can't check that since not every file that uses
2557 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2558
4697a36c
MM
2559#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2560 (TARGET_TOC \
2561 && (GET_CODE (X) == SYMBOL_REF \
2562 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2563 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2564 || GET_CODE (X) == LABEL_REF \
2565 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2566 && GET_CODE (X) == CONST_DOUBLE \
a260abc9
DE
2567 && (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2568 || (TARGET_POWERPC64 && GET_MODE (X) == DImode)))))
2569#if 0
4697a36c 2570 && BITS_PER_WORD == HOST_BITS_PER_INT)))
a260abc9 2571#endif
f045b2c9
RS
2572
2573/* Select section for constant in constant pool.
2574
2575 On RS/6000, all constants are in the private read-only data area.
2576 However, if this is being placed in the TOC it must be output as a
2577 toc entry. */
2578
2579#define SELECT_RTX_SECTION(MODE, X) \
2580{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2581 toc_section (); \
2582 else \
2583 read_only_private_data_section (); \
2584}
2585
2586/* Macro to output a special constant pool entry. Go to WIN if we output
2587 it. Otherwise, it is written the usual way.
2588
2589 On the RS/6000, toc entries are handled this way. */
2590
2591#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2592{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2593 { \
2594 output_toc (FILE, X, LABELNO); \
2595 goto WIN; \
2596 } \
2597}
2598
2599/* Select the section for an initialized data object.
2600
2601 On the RS/6000, we have a special section for all variables except those
2602 that are static. */
2603
2604#define SELECT_SECTION(EXP,RELOC) \
2605{ \
ed8969fa
JW
2606 if ((TREE_CODE (EXP) == STRING_CST \
2607 && !flag_writable_strings) \
128e5769 2608 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2609 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2610 && DECL_INITIAL (EXP) \
2611 && (DECL_INITIAL (EXP) == error_mark_node \
2612 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2613 && ! (RELOC))) \
f045b2c9
RS
2614 { \
2615 if (TREE_PUBLIC (EXP)) \
2616 read_only_data_section (); \
2617 else \
2618 read_only_private_data_section (); \
2619 } \
2620 else \
2621 { \
2622 if (TREE_PUBLIC (EXP)) \
2623 data_section (); \
2624 else \
2625 private_data_section (); \
2626 } \
2627}
2628
2629/* This outputs NAME to FILE up to the first null or '['. */
2630
2631#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2632 { \
2633 char *_p; \
99d3d26e 2634 \
c23a9d0e
JM
2635 STRIP_NAME_ENCODING (_p, (NAME)); \
2636 assemble_name ((FILE), _p); \
2637 }
2638
2639/* Remove any trailing [DS] or the like from the symbol name. */
2640
28c57785
MM
2641#define STRIP_NAME_ENCODING(VAR,NAME) \
2642 do \
2643 { \
2644 char *_name = (NAME); \
b6c9286a 2645 int _len; \
28c57785 2646 if (_name[0] == '*') \
b6c9286a
MM
2647 _name++; \
2648 _len = strlen (_name); \
2649 if (_name[_len - 1] != ']') \
2650 (VAR) = _name; \
28c57785
MM
2651 else \
2652 { \
b6c9286a
MM
2653 (VAR) = (char *) alloca (_len + 1); \
2654 strcpy ((VAR), _name); \
2655 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2656 } \
2657 } \
c23a9d0e 2658 while (0)
f045b2c9
RS
2659
2660/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2661 assemblers don't need this.
f045b2c9
RS
2662
2663 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2664 name. Normally we write this out along with the name. In the few cases
2665 where we can't, it gets stripped off. */
2666
2667#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2668{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2669 if ((TREE_CODE (DECL) == VAR_DECL \
2670 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2671 && (NAME)[strlen (NAME) - 1] != ']') \
2672 { \
2673 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2674 strcpy (_name, XSTR (_symref, 0)); \
2675 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2676 XSTR (_symref, 0) = _name; \
2677 } \
19d2d16f 2678 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2679 assemble_name (FILE, XSTR (_symref, 0)); \
2680 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2681 { \
19d2d16f 2682 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2683 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2684 } \
19d2d16f 2685 putc ('\n', FILE); \
f045b2c9
RS
2686}
2687
2688/* Similar, but for libcall. We only have to worry about the function name,
2689 not that of the descriptor. */
2690
2691#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2692{ fputs ("\t.extern .", FILE); \
f045b2c9 2693 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2694 putc ('\n', FILE); \
f045b2c9
RS
2695}
2696
2697/* Output to assembler file text saying following lines
2698 may contain character constants, extra white space, comments, etc. */
2699
2700#define ASM_APP_ON ""
2701
2702/* Output to assembler file text saying following lines
2703 no longer contain unusual constructs. */
2704
2705#define ASM_APP_OFF ""
2706
2707/* Output before instructions. */
2708
11117bb9 2709#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
2710
2711/* Output before writable data. */
2712
fdaff8ba 2713#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
2714
2715/* How to refer to registers in assembler output.
2716 This sequence is indexed by compiler's hard-register-number (see above). */
2717
802a0058 2718extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2719
2720#define REGISTER_NAMES \
2721{ \
2722 &rs6000_reg_names[ 0][0], /* r0 */ \
2723 &rs6000_reg_names[ 1][0], /* r1 */ \
2724 &rs6000_reg_names[ 2][0], /* r2 */ \
2725 &rs6000_reg_names[ 3][0], /* r3 */ \
2726 &rs6000_reg_names[ 4][0], /* r4 */ \
2727 &rs6000_reg_names[ 5][0], /* r5 */ \
2728 &rs6000_reg_names[ 6][0], /* r6 */ \
2729 &rs6000_reg_names[ 7][0], /* r7 */ \
2730 &rs6000_reg_names[ 8][0], /* r8 */ \
2731 &rs6000_reg_names[ 9][0], /* r9 */ \
2732 &rs6000_reg_names[10][0], /* r10 */ \
2733 &rs6000_reg_names[11][0], /* r11 */ \
2734 &rs6000_reg_names[12][0], /* r12 */ \
2735 &rs6000_reg_names[13][0], /* r13 */ \
2736 &rs6000_reg_names[14][0], /* r14 */ \
2737 &rs6000_reg_names[15][0], /* r15 */ \
2738 &rs6000_reg_names[16][0], /* r16 */ \
2739 &rs6000_reg_names[17][0], /* r17 */ \
2740 &rs6000_reg_names[18][0], /* r18 */ \
2741 &rs6000_reg_names[19][0], /* r19 */ \
2742 &rs6000_reg_names[20][0], /* r20 */ \
2743 &rs6000_reg_names[21][0], /* r21 */ \
2744 &rs6000_reg_names[22][0], /* r22 */ \
2745 &rs6000_reg_names[23][0], /* r23 */ \
2746 &rs6000_reg_names[24][0], /* r24 */ \
2747 &rs6000_reg_names[25][0], /* r25 */ \
2748 &rs6000_reg_names[26][0], /* r26 */ \
2749 &rs6000_reg_names[27][0], /* r27 */ \
2750 &rs6000_reg_names[28][0], /* r28 */ \
2751 &rs6000_reg_names[29][0], /* r29 */ \
2752 &rs6000_reg_names[30][0], /* r30 */ \
2753 &rs6000_reg_names[31][0], /* r31 */ \
2754 \
2755 &rs6000_reg_names[32][0], /* fr0 */ \
2756 &rs6000_reg_names[33][0], /* fr1 */ \
2757 &rs6000_reg_names[34][0], /* fr2 */ \
2758 &rs6000_reg_names[35][0], /* fr3 */ \
2759 &rs6000_reg_names[36][0], /* fr4 */ \
2760 &rs6000_reg_names[37][0], /* fr5 */ \
2761 &rs6000_reg_names[38][0], /* fr6 */ \
2762 &rs6000_reg_names[39][0], /* fr7 */ \
2763 &rs6000_reg_names[40][0], /* fr8 */ \
2764 &rs6000_reg_names[41][0], /* fr9 */ \
2765 &rs6000_reg_names[42][0], /* fr10 */ \
2766 &rs6000_reg_names[43][0], /* fr11 */ \
2767 &rs6000_reg_names[44][0], /* fr12 */ \
2768 &rs6000_reg_names[45][0], /* fr13 */ \
2769 &rs6000_reg_names[46][0], /* fr14 */ \
2770 &rs6000_reg_names[47][0], /* fr15 */ \
2771 &rs6000_reg_names[48][0], /* fr16 */ \
2772 &rs6000_reg_names[49][0], /* fr17 */ \
2773 &rs6000_reg_names[50][0], /* fr18 */ \
2774 &rs6000_reg_names[51][0], /* fr19 */ \
2775 &rs6000_reg_names[52][0], /* fr20 */ \
2776 &rs6000_reg_names[53][0], /* fr21 */ \
2777 &rs6000_reg_names[54][0], /* fr22 */ \
2778 &rs6000_reg_names[55][0], /* fr23 */ \
2779 &rs6000_reg_names[56][0], /* fr24 */ \
2780 &rs6000_reg_names[57][0], /* fr25 */ \
2781 &rs6000_reg_names[58][0], /* fr26 */ \
2782 &rs6000_reg_names[59][0], /* fr27 */ \
2783 &rs6000_reg_names[60][0], /* fr28 */ \
2784 &rs6000_reg_names[61][0], /* fr29 */ \
2785 &rs6000_reg_names[62][0], /* fr30 */ \
2786 &rs6000_reg_names[63][0], /* fr31 */ \
2787 \
2788 &rs6000_reg_names[64][0], /* mq */ \
2789 &rs6000_reg_names[65][0], /* lr */ \
2790 &rs6000_reg_names[66][0], /* ctr */ \
2791 &rs6000_reg_names[67][0], /* ap */ \
2792 \
2793 &rs6000_reg_names[68][0], /* cr0 */ \
2794 &rs6000_reg_names[69][0], /* cr1 */ \
2795 &rs6000_reg_names[70][0], /* cr2 */ \
2796 &rs6000_reg_names[71][0], /* cr3 */ \
2797 &rs6000_reg_names[72][0], /* cr4 */ \
2798 &rs6000_reg_names[73][0], /* cr5 */ \
2799 &rs6000_reg_names[74][0], /* cr6 */ \
2800 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2801 \
2802 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2803}
2804
2805/* print-rtl can't handle the above REGISTER_NAMES, so define the
2806 following for it. Switch to use the alternate names since
2807 they are more mnemonic. */
2808
2809#define DEBUG_REGISTER_NAMES \
2810{ \
802a0058
MM
2811 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2812 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2813 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2814 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2815 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2816 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2817 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2818 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2819 "mq", "lr", "ctr", "ap", \
2820 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2821 "fpmem" \
c81bebd7 2822}
f045b2c9
RS
2823
2824/* Table of additional register names to use in user input. */
2825
2826#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2827 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2828 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2829 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2830 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2831 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2832 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2833 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2834 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2835 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2836 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2837 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2838 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2839 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2840 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2841 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2842 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2843 /* no additional names for: mq, lr, ctr, ap */ \
2844 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2845 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2846 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9
RS
2847
2848/* How to renumber registers for dbx and gdb. */
2849
2850#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2851
0da40b09
RK
2852/* Text to write out after a CALL that may be replaced by glue code by
2853 the loader. This depends on the AIX version. */
2854#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2855
f045b2c9
RS
2856/* This is how to output the definition of a user-level label named NAME,
2857 such as the label on a static function or variable NAME. */
2858
2859#define ASM_OUTPUT_LABEL(FILE,NAME) \
2860 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2861
2862/* This is how to output a command to make the user-level label named NAME
2863 defined for reference from other files. */
2864
2865#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2866 do { fputs ("\t.globl ", FILE); \
2867 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2868
2869/* This is how to output a reference to a user-level label named NAME.
2870 `assemble_name' uses this. */
2871
2872#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2873 fputs (NAME, FILE)
f045b2c9
RS
2874
2875/* This is how to output an internal numbered label where
2876 PREFIX is the class of label and NUM is the number within the class. */
2877
2878#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2879 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2880
3daf36a4
ILT
2881/* This is how to output an internal label prefix. rs6000.c uses this
2882 when generating traceback tables. */
2883
2884#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2885 fprintf (FILE, "%s..", PREFIX)
2886
f045b2c9
RS
2887/* This is how to output a label for a jump table. Arguments are the same as
2888 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2889 passed. */
2890
2891#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2892{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2893
2894/* This is how to store into the string LABEL
2895 the symbol_ref name of an internal numbered label where
2896 PREFIX is the class of label and NUM is the number within the class.
2897 This is suitable for output with `assemble_name'. */
2898
2899#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 2900 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
2901
2902/* This is how to output an assembler line defining a `double' constant. */
2903
a5b1eb34
RS
2904#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2905 { \
2906 if (REAL_VALUE_ISINF (VALUE) \
2907 || REAL_VALUE_ISNAN (VALUE) \
2908 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2909 { \
2910 long t[2]; \
2911 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2912 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2913 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2914 } \
2915 else \
2916 { \
2917 char str[30]; \
2918 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2919 fprintf (FILE, "\t.double 0d%s\n", str); \
2920 } \
2921 }
f045b2c9
RS
2922
2923/* This is how to output an assembler line defining a `float' constant. */
2924
a5b1eb34
RS
2925#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2926 { \
2927 if (REAL_VALUE_ISINF (VALUE) \
2928 || REAL_VALUE_ISNAN (VALUE) \
2929 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2930 { \
2931 long t; \
2932 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2933 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2934 } \
2935 else \
2936 { \
2937 char str[30]; \
2938 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2939 fprintf (FILE, "\t.float 0d%s\n", str); \
2940 } \
2941 }
f045b2c9
RS
2942
2943/* This is how to output an assembler line defining an `int' constant. */
2944
5854b0d0
DE
2945#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2946do { \
2947 if (TARGET_32BIT) \
2948 { \
2949 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2950 UNITS_PER_WORD, 1); \
2951 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2952 UNITS_PER_WORD, 1); \
2953 } \
2954 else \
2955 { \
2956 fputs ("\t.llong ", FILE); \
2957 output_addr_const (FILE, (VALUE)); \
2958 putc ('\n', FILE); \
2959 } \
2960} while (0)
2961
f045b2c9 2962#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 2963( fputs ("\t.long ", FILE), \
f045b2c9 2964 output_addr_const (FILE, (VALUE)), \
19d2d16f 2965 putc ('\n', FILE))
f045b2c9
RS
2966
2967/* Likewise for `char' and `short' constants. */
2968
2969#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 2970( fputs ("\t.short ", FILE), \
f045b2c9 2971 output_addr_const (FILE, (VALUE)), \
19d2d16f 2972 putc ('\n', FILE))
f045b2c9
RS
2973
2974#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 2975( fputs ("\t.byte ", FILE), \
f045b2c9 2976 output_addr_const (FILE, (VALUE)), \
19d2d16f 2977 putc ('\n', FILE))
f045b2c9
RS
2978
2979/* This is how to output an assembler line for a numeric constant byte. */
2980
2981#define ASM_OUTPUT_BYTE(FILE,VALUE) \
2982 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2983
2984/* This is how to output an assembler line to define N characters starting
2985 at P to FILE. */
2986
2987#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2988
2989/* This is how to output code to push a register on the stack.
034e84c4
MM
2990 It need not be very fast code.
2991
2992 On the rs6000, we must keep the backchain up to date. In order
2993 to simplify things, always allocate 16 bytes for a push (System V
2994 wants to keep stack aligned to a 16 byte boundary). */
f045b2c9 2995
4697a36c
MM
2996#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2997do { \
2998 extern char *reg_names[]; \
034e84c4
MM
2999 asm_fprintf (FILE, "\t{stu|stwu} %s,-16(%s)\n\t{st|stw} %s,8(%s)\n", \
3000 reg_names[1], reg_names[1], reg_names[REGNO], \
4697a36c
MM
3001 reg_names[1]); \
3002} while (0)
f045b2c9
RS
3003
3004/* This is how to output an insn to pop a register from the stack.
3005 It need not be very fast code. */
3006
4697a36c
MM
3007#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
3008do { \
3009 extern char *reg_names[]; \
034e84c4 3010 asm_fprintf (FILE, "\t{l|lwz} %s,8(%s)\n\t{ai|addic} %s,%s,16\n", \
4697a36c
MM
3011 reg_names[REGNO], reg_names[1], reg_names[1], \
3012 reg_names[1]); \
3013} while (0)
f045b2c9 3014
c81bebd7 3015/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
3016 (RS/6000 does not use such vectors, but we must define this macro
3017 anyway.) */
3018
3daf36a4
ILT
3019#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3020 do { char buf[100]; \
a260abc9 3021 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3022 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3023 assemble_name (FILE, buf); \
19d2d16f 3024 putc ('\n', FILE); \
3daf36a4 3025 } while (0)
f045b2c9
RS
3026
3027/* This is how to output an element of a case-vector that is relative. */
3028
33f7f353 3029#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
3daf36a4 3030 do { char buf[100]; \
a260abc9 3031 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3032 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3033 assemble_name (FILE, buf); \
19d2d16f 3034 putc ('-', FILE); \
3daf36a4
ILT
3035 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
3036 assemble_name (FILE, buf); \
19d2d16f 3037 putc ('\n', FILE); \
3daf36a4 3038 } while (0)
f045b2c9
RS
3039
3040/* This is how to output an assembler line
3041 that says to advance the location counter
3042 to a multiple of 2**LOG bytes. */
3043
3044#define ASM_OUTPUT_ALIGN(FILE,LOG) \
3045 if ((LOG) != 0) \
3046 fprintf (FILE, "\t.align %d\n", (LOG))
3047
3048#define ASM_OUTPUT_SKIP(FILE,SIZE) \
3049 fprintf (FILE, "\t.space %d\n", (SIZE))
3050
3051/* This says how to output an assembler line
3052 to define a global common symbol. */
3053
b73fd26c 3054#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 3055 do { fputs (".comm ", (FILE)); \
f045b2c9 3056 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
3057 if ( (SIZE) > 4) \
3058 fprintf ((FILE), ",%d,3\n", (SIZE)); \
3059 else \
3060 fprintf( (FILE), ",%d\n", (SIZE)); \
3061 } while (0)
f045b2c9
RS
3062
3063/* This says how to output an assembler line
3064 to define a local common symbol. */
3065
3066#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 3067 do { fputs (".lcomm ", (FILE)); \
f045b2c9 3068 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 3069 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
3070 } while (0)
3071
3072/* Store in OUTPUT a string (made with alloca) containing
3073 an assembler-name for a local static variable named NAME.
3074 LABELNO is an integer which is different for each call. */
3075
3076#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3077( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3078 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3079
3080/* Define the parentheses used to group arithmetic operations
3081 in assembler code. */
3082
3083#define ASM_OPEN_PAREN "("
3084#define ASM_CLOSE_PAREN ")"
3085
3086/* Define results of standard character escape sequences. */
3087#define TARGET_BELL 007
3088#define TARGET_BS 010
3089#define TARGET_TAB 011
3090#define TARGET_NEWLINE 012
3091#define TARGET_VT 013
3092#define TARGET_FF 014
3093#define TARGET_CR 015
3094
3095/* Print operand X (an rtx) in assembler syntax to file FILE.
3096 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3097 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3098
3099#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3100
3101/* Define which CODE values are valid. */
3102
c81bebd7
MM
3103#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3104 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
3105
3106/* Print a memory address as an operand to reference that memory location. */
3107
3108#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3109
3110/* Define the codes that are matched by predicates in rs6000.c. */
3111
802a0058 3112#define PREDICATE_CODES \
e675f625
DE
3113 {"short_cint_operand", {CONST_INT, CONSTANT_P_RTX}}, \
3114 {"u_short_cint_operand", {CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3115 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 3116 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9 3117 {"cc_reg_operand", {SUBREG, REG}}, \
e675f625 3118 {"reg_or_short_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f045b2c9 3119 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
e675f625
DE
3120 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
3121 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
766a866c 3122 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
38c1f2d7 3123 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
f045b2c9
RS
3124 {"easy_fp_constant", {CONST_DOUBLE}}, \
3125 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 3126 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 3127 {"volatile_mem_operand", {MEM}}, \
b7676b46 3128 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
f045b2c9 3129 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
e675f625 3130 {"add_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3131 {"non_add_cint_operand", {CONST_INT}}, \
e675f625
DE
3132 {"and_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
3133 {"and64_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX, \
3134 CONST_DOUBLE}}, \
3135 {"logical_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3136 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 3137 {"mask_operand", {CONST_INT}}, \
a260abc9 3138 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
b6c9286a 3139 {"count_register_operand", {REG}}, \
802a0058 3140 {"fpmem_operand", {REG}}, \
f045b2c9 3141 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 3142 {"current_file_function_operand", {SYMBOL_REF}}, \
e675f625
DE
3143 {"input_operand", {SUBREG, MEM, REG, CONST_INT, CONSTANT_P_RTX, \
3144 CONST_DOUBLE, SYMBOL_REF}}, \
f8634644
RK
3145 {"load_multiple_operation", {PARALLEL}}, \
3146 {"store_multiple_operation", {PARALLEL}}, \
3147 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3148 GT, LEU, LTU, GEU, GTU}}, \
f8634644 3149 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
d2a0c2ee
JC
3150 GT, LEU, LTU, GEU, GTU}}, \
3151 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
3152 GT, LEU, LTU, GEU, GTU}},
75814ad4 3153
b6c9286a
MM
3154/* uncomment for disabling the corresponding default options */
3155/* #define MACHINE_no_sched_interblock */
3156/* #define MACHINE_no_sched_speculative */
3157/* #define MACHINE_no_sched_speculative_load */
3158
3159/* indicate that issue rate is defined for this machine
3160 (no need to use the default) */
246853b9 3161#define ISSUE_RATE get_issue_rate ()
b6c9286a 3162
766a866c
MM
3163/* General flags. */
3164extern int flag_pic;
354b734b
MM
3165extern int optimize;
3166extern int flag_expensive_optimizations;
a7df97e6 3167extern int frame_pointer_needed;
354b734b 3168
75814ad4 3169/* Declare functions in rs6000.c */
6b67933e 3170extern void output_options ();
75814ad4 3171extern void rs6000_override_options ();
3cfa4909 3172extern void rs6000_file_start ();
6b67933e 3173extern struct rtx_def *rs6000_float_const ();
c4c40373 3174extern struct rtx_def *rs6000_got_register ();
75814ad4 3175extern int direct_return ();
c4d38ccb 3176extern int get_issue_rate ();
75814ad4
MM
3177extern int any_operand ();
3178extern int short_cint_operand ();
3179extern int u_short_cint_operand ();
3180extern int non_short_cint_operand ();
3181extern int gpc_reg_operand ();
3182extern int cc_reg_operand ();
3183extern int reg_or_short_operand ();
3184extern int reg_or_neg_short_operand ();
3185extern int reg_or_u_short_operand ();
3186extern int reg_or_cint_operand ();
766a866c 3187extern int got_operand ();
38c1f2d7 3188extern int got_no_const_operand ();
4e74d8ec 3189extern int num_insns_constant ();
75814ad4 3190extern int easy_fp_constant ();
b7676b46
RK
3191extern int volatile_mem_operand ();
3192extern int offsettable_addr_operand ();
75814ad4
MM
3193extern int mem_or_easy_const_operand ();
3194extern int add_operand ();
3195extern int non_add_cint_operand ();
c4d38ccb 3196extern int non_logical_cint_operand ();
75814ad4 3197extern int logical_operand ();
75814ad4
MM
3198extern int mask_constant ();
3199extern int mask_operand ();
a260abc9
DE
3200extern int mask64_operand ();
3201extern int and64_operand ();
75814ad4 3202extern int and_operand ();
802a0058
MM
3203extern int count_register_operand ();
3204extern int fpmem_operand ();
75814ad4
MM
3205extern int reg_or_mem_operand ();
3206extern int lwa_operand ();
3207extern int call_operand ();
3208extern int current_file_function_operand ();
3209extern int input_operand ();
7509c759 3210extern int small_data_operand ();
4697a36c
MM
3211extern void init_cumulative_args ();
3212extern void function_arg_advance ();
b6c9286a 3213extern int function_arg_boundary ();
4697a36c
MM
3214extern struct rtx_def *function_arg ();
3215extern int function_arg_partial_nregs ();
3216extern int function_arg_pass_by_reference ();
3217extern void setup_incoming_varargs ();
3218extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3219extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3220extern int expand_block_move ();
75814ad4
MM
3221extern int load_multiple_operation ();
3222extern int store_multiple_operation ();
3223extern int branch_comparison_operator ();
3224extern int scc_comparison_operator ();
d2a0c2ee 3225extern int trap_comparison_operator ();
75814ad4
MM
3226extern int includes_lshift_p ();
3227extern int includes_rshift_p ();
3228extern int registers_ok_for_quad_peep ();
3229extern int addrs_ok_for_quad_peep ();
3230extern enum reg_class secondary_reload_class ();
3231extern int ccr_bit ();
d266da75 3232extern void rs6000_finalize_pic ();
30ea98f1 3233extern void rs6000_reorg ();
a7df97e6
MM
3234extern void rs6000_save_machine_status ();
3235extern void rs6000_restore_machine_status ();
3236extern void rs6000_init_expanders ();
75814ad4
MM
3237extern void print_operand ();
3238extern void print_operand_address ();
3239extern int first_reg_to_save ();
3240extern int first_fp_reg_to_save ();
75814ad4 3241extern int rs6000_makes_calls ();
4697a36c 3242extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3243extern void output_prolog ();
3244extern void output_epilog ();
3245extern void output_toc ();
3246extern void output_ascii ();
3247extern void rs6000_gen_section_name ();
3248extern void output_function_profiler ();
3249extern int rs6000_adjust_cost ();
b6c9286a
MM
3250extern void rs6000_trampoline_template ();
3251extern int rs6000_trampoline_size ();
3252extern void rs6000_initialize_trampoline ();
c4d38ccb 3253extern void rs6000_output_load_toc_table ();
7509c759
MM
3254extern int rs6000_comp_type_attributes ();
3255extern int rs6000_valid_decl_attribute_p ();
3256extern int rs6000_valid_type_attribute_p ();
3257extern void rs6000_set_default_type_attributes ();
3258extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3259extern struct rtx_def *rs6000_longcall_ref ();
c4d38ccb 3260extern int function_arg_padding ();
296b8152
KG
3261extern void toc_section ();
3262extern void private_data_section ();
a6c2a102 3263extern void rs6000_fatal_bad_address ();
28174a14
MS
3264
3265/* See nonlocal_goto_receiver for when this must be set. */
3266
3267#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)
This page took 0.876952 seconds and 5 git commands to generate.