]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
entered into RCS
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9
RS
1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25
26/* Names to predefine in the preprocessor for this target machine. */
27
28#define CPP_PREDEFINES "-D_IBMR2 -D_AIX"
29
30/* Print subsidiary information on the compiler version in use. */
31#define TARGET_VERSION ;
32
fdaff8ba
RS
33/* Tell the assembler to assume that all undefined names are external.
34
35 Don't do this until the fixed IBM assembler is more generally available.
36 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
37 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
38 longer be needed. */
f045b2c9
RS
39
40/* #define ASM_SPEC "-u" */
41
42/* Define the options for the binder: Start text at 512, align all segments
43 to 512 bytes, and warn if there is text relocation.
44
45 The -bhalt:4 option supposedly changes the level at which ld will abort,
46 but it also suppresses warnings about multiply defined symbols and is
47 used by the AIX cc command. So we use it here.
48
49 -bnodelcsect undoes a poor choice of default relating to multiply-defined
50 csects. See AIX documentation for more information about this. */
51
52#define LINK_SPEC "-T512 -H512 -btextro -bhalt:4 -bnodelcsect"
53
58a39e45
RS
54/* Profiled library versions are used by linking with special directories. */
55#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
56 %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc"
f045b2c9
RS
57
58/* gcc must do the search itself to find libgcc.a, not use -l. */
59#define LINK_LIBGCC_SPECIAL
60
61/* Don't turn -B into -L if the argument specifies a relative file name. */
62#define RELATIVE_PREFIX_NOT_LINKDIR
63
64/* Run-time compilation parameters selecting different hardware subsets. */
65
66/* Flag to allow putting fp constants in the TOC; can be turned off when
67 the TOC overflows. */
68
69#define TARGET_FP_IN_TOC (target_flags & 1)
70
71extern int target_flags;
72
73/* Macro to define tables used to set the flags.
74 This is a list in braces of pairs in braces,
75 each pair being { "NAME", VALUE }
76 where VALUE is the bits to set or minus the bits to clear.
77 An empty string NAME is used to identify the default VALUE. */
78
79#define TARGET_SWITCHES \
80 {{"fp-in-toc", 1}, \
81 {"no-fp-in-toc", -1}, \
82 { "", TARGET_DEFAULT}}
83
84#define TARGET_DEFAULT 1
85
86/* On the RS/6000, we turn on various flags if optimization is selected. */
87
88#define OPTIMIZATION_OPTIONS(LEVEL) \
89{ \
90 if ((LEVEL) > 0) \
91 { \
92 flag_force_mem = 1; \
93 flag_omit_frame_pointer = 1; \
94 } \
95}
96
58a39e45 97/* Define this to modify the options specified by the user. */
f045b2c9
RS
98
99#define OVERRIDE_OPTIONS \
100{ \
58a39e45 101 profile_block_flag = 0; \
f045b2c9
RS
102}
103\f
104/* target machine storage layout */
105
106/* Define this if most significant bit is lowest numbered
107 in instructions that operate on numbered bit-fields. */
108/* That is true on RS/6000. */
109#define BITS_BIG_ENDIAN 1
110
111/* Define this if most significant byte of a word is the lowest numbered. */
112/* That is true on RS/6000. */
113#define BYTES_BIG_ENDIAN 1
114
115/* Define this if most significant word of a multiword number is lowest
116 numbered.
117
118 For RS/6000 we can decide arbitrarily since there are no machine
119 instructions for them. Might as well be consistent with bits and bytes. */
120#define WORDS_BIG_ENDIAN 1
121
fdaff8ba 122/* number of bits in an addressable storage unit */
f045b2c9
RS
123#define BITS_PER_UNIT 8
124
125/* Width in bits of a "word", which is the contents of a machine register.
126 Note that this is not necessarily the width of data type `int';
127 if using 16-bit ints on a 68000, this would still be 32.
128 But on a machine with 16-bit registers, this would be 16. */
129#define BITS_PER_WORD 32
130
131/* Width of a word, in units (bytes). */
132#define UNITS_PER_WORD 4
133
915f619f
JW
134/* Type used for ptrdiff_t, as a string used in a declaration. */
135#define PTRDIFF_TYPE "int"
136
f045b2c9
RS
137/* Type used for wchar_t, as a string used in a declaration. */
138#define WCHAR_TYPE "short unsigned int"
139
140/* Width of wchar_t in bits. */
141#define WCHAR_TYPE_SIZE 16
142
143/* Width in bits of a pointer.
144 See also the macro `Pmode' defined below. */
145#define POINTER_SIZE 32
146
147/* Allocation boundary (in *bits*) for storing arguments in argument list. */
148#define PARM_BOUNDARY 32
149
150/* Boundary (in *bits*) on which stack pointer should be aligned. */
151#define STACK_BOUNDARY 64
152
153/* Allocation boundary (in *bits*) for the code of a function. */
154#define FUNCTION_BOUNDARY 32
155
156/* No data type wants to be aligned rounder than this. */
157#define BIGGEST_ALIGNMENT 32
158
159/* Alignment of field after `int : 0' in a structure. */
160#define EMPTY_FIELD_BOUNDARY 32
161
162/* Every structure's size must be a multiple of this. */
163#define STRUCTURE_SIZE_BOUNDARY 8
164
165/* A bitfield declared as `int' forces `int' alignment for the struct. */
166#define PCC_BITFIELD_TYPE_MATTERS 1
167
168/* Make strings word-aligned so strcpy from constants will be faster. */
169#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
170 (TREE_CODE (EXP) == STRING_CST \
171 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
172
173/* Make arrays of chars word-aligned for the same reasons. */
174#define DATA_ALIGNMENT(TYPE, ALIGN) \
175 (TREE_CODE (TYPE) == ARRAY_TYPE \
176 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
177 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
178
fdaff8ba 179/* Non-zero if move instructions will actually fail to work
f045b2c9 180 when given unaligned data. */
fdaff8ba 181#define STRICT_ALIGNMENT 0
f045b2c9
RS
182\f
183/* Standard register usage. */
184
185/* Number of actual hardware registers.
186 The hardware registers are assigned numbers for the compiler
187 from 0 to just below FIRST_PSEUDO_REGISTER.
188 All registers that the compiler knows about must be given numbers,
189 even those that are not normally considered general registers.
190
191 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
192 an MQ register, a count register, a link register, and 8 condition
193 register fields, which we view here as separate registers.
194
195 In addition, the difference between the frame and argument pointers is
196 a function of the number of registers saved, so we need to have a
197 register for AP that will later be eliminated in favor of SP or FP.
198 This is a normal register, but it is fixed. */
199
200#define FIRST_PSEUDO_REGISTER 76
201
202/* 1 for registers that have pervasive standard uses
203 and are not available for the register allocator.
204
205 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
206
207 cr5 is not supposed to be used. */
208
209#define FIXED_REGISTERS \
210 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
212 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
214 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}
215
216/* 1 for registers not available across function calls.
217 These must include the FIXED_REGISTERS and also any
218 registers that can be used without being saved.
219 The latter must include the registers where values are returned
220 and the register where structure-value addresses are passed.
221 Aside from that, you can include as many other registers as you like. */
222
223#define CALL_USED_REGISTERS \
224 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \
225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
226 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
227 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
228 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1}
229
230/* List the order in which to allocate registers. Each register must be
231 listed once, even those in FIXED_REGISTERS.
232
233 We allocate in the following order:
234 fp0 (not saved or used for anything)
235 fp13 - fp2 (not saved; incoming fp arg registers)
236 fp1 (not saved; return value)
237 fp31 - fp14 (saved; order given to save least number)
238 cr1, cr6, cr7 (not saved or special)
239 cr0 (not saved, but used for arithmetic operations)
240 cr2, cr3, cr4 (saved)
241 r0 (not saved; cannot be base reg)
242 r9 (not saved; best for TImode)
243 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
244 r3 (not saved; return value register)
245 r31 - r13 (saved; order given to save least number)
246 r12 (not saved; if used for DImode or DFmode would use r13)
247 mq (not saved; best to use it if we can)
248 ctr (not saved; when we have the choice ctr is better)
249 lr (saved)
250 cr5, r1, r2, ap (fixed) */
251
252#define REG_ALLOC_ORDER \
253 {32, \
254 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
255 33, \
256 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
257 50, 49, 48, 47, 46, \
258 69, 74, 75, 68, 70, 71, 72, \
259 0, \
260 9, 11, 10, 8, 7, 6, 5, 4, \
261 3, \
262 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
263 18, 17, 16, 15, 14, 13, 12, \
264 64, 66, 65, \
265 73, 1, 2, 67}
266
267/* True if register is floating-point. */
268#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
269
270/* True if register is a condition register. */
271#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
272
273/* True if register is an integer register. */
274#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
275
276/* Return number of consecutive hard regs needed starting at reg REGNO
277 to hold something of mode MODE.
278 This is ordinarily the length in words of a value of mode MODE
279 but can be less for certain modes in special long registers.
280
281 On RS/6000, ordinary registers hold 32 bits worth;
282 a single floating point register holds 64 bits worth. */
283
284#define HARD_REGNO_NREGS(REGNO, MODE) \
285 (FP_REGNO_P (REGNO) \
286 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
287 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
288
289/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
290 On RS/6000, the cpu registers can hold any mode but the float registers
291 can hold only floating modes and CR register can only hold CC modes. We
292 cannot put DImode or TImode anywhere except general register and they
293 must be able to fit within the register set. */
294
295#define HARD_REGNO_MODE_OK(REGNO, MODE) \
296 (FP_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_FLOAT \
297 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
298 : ! INT_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_INT \
299 : 1)
300
301/* Value is 1 if it is a good idea to tie two pseudo registers
302 when one has mode MODE1 and one has mode MODE2.
303 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
304 for any hard reg, then this must be 0 for correct output. */
305#define MODES_TIEABLE_P(MODE1, MODE2) \
306 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
307 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
308 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
309 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
310 : GET_MODE_CLASS (MODE1) == MODE_CC \
311 ? GET_MODE_CLASS (MODE2) == MODE_CC \
312 : GET_MODE_CLASS (MODE2) == MODE_CC \
313 ? GET_MODE_CLASS (MODE1) == MODE_CC \
314 : 1)
315
316/* A C expression returning the cost of moving data from a register of class
317 CLASS1 to one of CLASS2.
318
319 On the RS/6000, copying between floating-point and fixed-point
320 registers is expensive. */
321
322#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
323 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
324 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
325 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
326 : 2)
327
328/* A C expressions returning the cost of moving data of MODE from a register to
329 or from memory.
330
331 On the RS/6000, bump this up a bit. */
332
e8a8bc24 333#define MEMORY_MOVE_COST(MODE) 6
f045b2c9
RS
334
335/* Specify the cost of a branch insn; roughly the number of extra insns that
336 should be added to avoid a branch.
337
338 Set this to 2 on the RS/6000 since that is roughly the average cost of an
339 unscheduled conditional branch. */
340
341#define BRANCH_COST 2
342
343/* Specify the registers used for certain standard purposes.
344 The values of these macros are register numbers. */
345
346/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
347/* #define PC_REGNUM */
348
349/* Register to use for pushing function arguments. */
350#define STACK_POINTER_REGNUM 1
351
352/* Base register for access to local variables of the function. */
353#define FRAME_POINTER_REGNUM 31
354
355/* Value should be nonzero if functions must have frame pointers.
356 Zero means the frame pointer need not be set up (and parms
357 may be accessed via the stack pointer) in functions that seem suitable.
358 This is computed in `reload', in reload1.c. */
359#define FRAME_POINTER_REQUIRED 0
360
361/* Base register for access to arguments of the function. */
362#define ARG_POINTER_REGNUM 67
363
364/* Place to put static chain when calling a function that requires it. */
365#define STATIC_CHAIN_REGNUM 11
366
367/* Place that structure value return address is placed.
368
369 On the RS/6000, it is passed as an extra parameter. */
370#define STRUCT_VALUE 0
371\f
372/* Define the classes of registers for register constraints in the
373 machine description. Also define ranges of constants.
374
375 One of the classes must always be named ALL_REGS and include all hard regs.
376 If there is more than one class, another class must be named NO_REGS
377 and contain no registers.
378
379 The name GENERAL_REGS must be the name of a class (or an alias for
380 another name such as ALL_REGS). This is the class of registers
381 that is allowed by "g" or "r" in a register constraint.
382 Also, registers outside this class are allocated only when
383 instructions express preferences for them.
384
385 The classes must be numbered in nondecreasing order; that is,
386 a larger-numbered class must never be contained completely
387 in a smaller-numbered class.
388
389 For any two classes, it is very desirable that there be another
390 class that represents their union. */
391
392/* The RS/6000 has three types of registers, fixed-point, floating-point,
393 and condition registers, plus three special registers, MQ, CTR, and the
394 link register.
395
396 However, r0 is special in that it cannot be used as a base register.
397 So make a class for registers valid as base registers.
398
399 Also, cr0 is the only condition code register that can be used in
400 arithmetic insns, so make a separate class for it. */
401
402enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS,
403 NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS,
e8a8bc24
RK
404 SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS,
405 ALL_REGS, LIM_REG_CLASSES };
f045b2c9
RS
406
407#define N_REG_CLASSES (int) LIM_REG_CLASSES
408
409/* Give names of register classes as strings for dump file. */
410
411#define REG_CLASS_NAMES \
412 { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \
413 "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \
e8a8bc24
RK
414 "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \
415 "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" }
f045b2c9
RS
416
417/* Define which registers fit in which classes.
418 This is an initializer for a vector of HARD_REG_SET
419 of length N_REG_CLASSES. */
420
421#define REG_CLASS_CONTENTS \
422 { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \
e8a8bc24
RK
423 {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \
424 {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \
425 {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \
426 {~0, ~0, 0xffff} }
f045b2c9
RS
427
428/* The same information, inverted:
429 Return the class number of the smallest class containing
430 reg number REGNO. This could be a conditional expression
431 or could index an array. */
432
433#define REGNO_REG_CLASS(REGNO) \
434 ((REGNO) == 0 ? GENERAL_REGS \
435 : (REGNO) < 32 ? BASE_REGS \
436 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
437 : (REGNO) == 68 ? CR0_REGS \
438 : CR_REGNO_P (REGNO) ? CR_REGS \
439 : (REGNO) == 64 ? MQ_REGS \
440 : (REGNO) == 65 ? LINK_REGS \
441 : (REGNO) == 66 ? CTR_REGS \
442 : (REGNO) == 67 ? BASE_REGS \
443 : NO_REGS)
444
445/* The class value for index registers, and the one for base regs. */
446#define INDEX_REG_CLASS GENERAL_REGS
447#define BASE_REG_CLASS BASE_REGS
448
449/* Get reg_class from a letter such as appears in the machine description. */
450
451#define REG_CLASS_FROM_LETTER(C) \
452 ((C) == 'f' ? FLOAT_REGS \
453 : (C) == 'b' ? BASE_REGS \
454 : (C) == 'h' ? SPECIAL_REGS \
455 : (C) == 'q' ? MQ_REGS \
456 : (C) == 'c' ? CTR_REGS \
457 : (C) == 'l' ? LINK_REGS \
458 : (C) == 'x' ? CR0_REGS \
459 : (C) == 'y' ? CR_REGS \
460 : NO_REGS)
461
462/* The letters I, J, K, L, M, N, and P in a register constraint string
463 can be used to stand for particular ranges of immediate operands.
464 This macro defines what the ranges are.
465 C is the letter, and VALUE is a constant value.
466 Return 1 if VALUE is in the range specified by C.
467
468 `I' is signed 16-bit constants
469 `J' is a constant with only the high-order 16 bits non-zero
470 `K' is a constant with only the low-order 16 bits non-zero
471 `L' is a constant that can be placed into a mask operand
472 `M' is a constant that is greater than 31
473 `N' is a constant that is an exact power of two
474 `O' is the constant zero
475 `P' is a constant whose negation is a signed 16-bit constant */
476
477#define CONST_OK_FOR_LETTER_P(VALUE, C) \
478 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
479 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
480 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
481 : (C) == 'L' ? mask_constant (VALUE) \
482 : (C) == 'M' ? (VALUE) > 31 \
483 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
484 : (C) == 'O' ? (VALUE) == 0 \
485 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
486 : 0)
487
488/* Similar, but for floating constants, and defining letters G and H.
489 Here VALUE is the CONST_DOUBLE rtx itself.
490
491 We flag for special constants when we can copy the constant into
492 a general register in two insns for DF and one insn for SF. */
493
494#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
495 ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0)
496
497/* Optional extra constraints for this machine.
498
499 For the RS/6000, `Q' means that this is a memory operand that is just
500 an offset from a register. */
501
e8a8bc24
RK
502#define EXTRA_CONSTRAINT(OP, C) \
503 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
504 : 0)
f045b2c9
RS
505
506/* Given an rtx X being reloaded into a reg required to be
507 in class CLASS, return the class of reg to actually use.
508 In general this is just CLASS; but on some machines
509 in some cases it is preferable to use a more restrictive class.
510
511 On the RS/6000, we have to return NO_REGS when we want to reload a
512 floating-point CONST_DOUBLE to force it to be copied to memory. */
513
514#define PREFERRED_RELOAD_CLASS(X,CLASS) \
515 ((GET_CODE (X) == CONST_DOUBLE \
516 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
517 ? NO_REGS : (CLASS))
518
519/* Return the register class of a scratch register needed to copy IN into
520 or out of a register in CLASS in MODE. If it can be done directly,
521 NO_REGS is returned. */
522
523#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
524 secondary_reload_class (CLASS, MODE, IN)
525
526/* Return the maximum number of consecutive registers
527 needed to represent mode MODE in a register of class CLASS.
528
529 On RS/6000, this is the size of MODE in words,
530 except in the FP regs, where a single reg is enough for two words. */
531#define CLASS_MAX_NREGS(CLASS, MODE) \
532 ((CLASS) == FLOAT_REGS \
533 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
534 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
535\f
536/* Stack layout; function entry, exit and calling. */
537
538/* Define this if pushing a word on the stack
539 makes the stack pointer a smaller address. */
540#define STACK_GROWS_DOWNWARD
541
542/* Define this if the nominal address of the stack frame
543 is at the high-address end of the local variables;
544 that is, each additional local variable allocated
545 goes at a more negative offset in the frame.
546
547 On the RS/6000, we grow upwards, from the area after the outgoing
548 arguments. */
549/* #define FRAME_GROWS_DOWNWARD */
550
551/* Offset within stack frame to start allocating local variables at.
552 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
553 first local allocated. Otherwise, it is the offset to the BEGINNING
554 of the first local allocated.
555
556 On the RS/6000, the frame pointer is the same as the stack pointer,
557 except for dynamic allocations. So we start after the fixed area and
558 outgoing parameter area. */
559
560#define STARTING_FRAME_OFFSET (current_function_outgoing_args_size + 24)
561
562/* If we generate an insn to push BYTES bytes,
563 this says how many the stack pointer really advances by.
564 On RS/6000, don't define this because there are no push insns. */
565/* #define PUSH_ROUNDING(BYTES) */
566
567/* Offset of first parameter from the argument pointer register value.
568 On the RS/6000, we define the argument pointer to the start of the fixed
569 area. */
570#define FIRST_PARM_OFFSET(FNDECL) 24
571
572/* Define this if stack space is still allocated for a parameter passed
573 in a register. The value is the number of bytes allocated to this
574 area. */
575#define REG_PARM_STACK_SPACE(FNDECL) 32
576
577/* Define this if the above stack space is to be considered part of the
578 space allocated by the caller. */
579#define OUTGOING_REG_PARM_STACK_SPACE
580
581/* This is the difference between the logical top of stack and the actual sp.
582
583 For the RS/6000, sp points past the fixed area. */
584#define STACK_POINTER_OFFSET 24
585
586/* Define this if the maximum size of all the outgoing args is to be
587 accumulated and pushed during the prologue. The amount can be
588 found in the variable current_function_outgoing_args_size. */
589#define ACCUMULATE_OUTGOING_ARGS
590
591/* Value is the number of bytes of arguments automatically
592 popped when returning from a subroutine call.
593 FUNTYPE is the data type of the function (as a tree),
594 or for a library call it is an identifier node for the subroutine name.
595 SIZE is the number of bytes of arguments passed on the stack. */
596
597#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
598
599/* Define how to find the value returned by a function.
600 VALTYPE is the data type of the value (as a tree).
601 If the precise function being called is known, FUNC is its FUNCTION_DECL;
602 otherwise, FUNC is 0.
603
604 On RS/6000 an integer value is in r3 and a floating-point value is in
605 fp1. */
606
607#define FUNCTION_VALUE(VALTYPE, FUNC) \
608 gen_rtx (REG, TYPE_MODE (VALTYPE), \
609 TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3)
610
611/* Define how to find the value returned by a library function
612 assuming the value has mode MODE. */
613
614#define LIBCALL_VALUE(MODE) \
615 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3)
616
617/* The definition of this macro implies that there are cases where
618 a scalar value cannot be returned in registers.
619
620 For the RS/6000, any structure or union type is returned in memory. */
621
622#define RETURN_IN_MEMORY(TYPE) \
623 (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE)
624
625/* 1 if N is a possible register number for a function value
626 as seen by the caller.
627
628 On RS/6000, this is r3 and fp1. */
629
630#define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33))
631
632/* 1 if N is a possible register number for function argument passing.
633 On RS/6000, these are r3-r10 and fp1-fp13. */
634
635#define FUNCTION_ARG_REGNO_P(N) \
636 (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45))
637\f
638/* Define a data type for recording info about an argument list
639 during the scan of that argument list. This data type should
640 hold all necessary information about the function itself
641 and about the args processed so far, enough to enable macros
642 such as FUNCTION_ARG to determine where the next arg should go.
643
644 On the RS/6000, this is a structure. The first element is the number of
645 total argument words, the second is used to store the next
646 floating-point register number, and the third says how many more args we
647 have prototype types for. */
648
649struct rs6000_args {int words, fregno, nargs_prototype; };
650#define CUMULATIVE_ARGS struct rs6000_args
651
652/* Define intermediate macro to compute the size (in registers) of an argument
653 for the RS/6000. */
654
655#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
656(! (NAMED) ? 0 \
657 : (MODE) != BLKmode \
658 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
659 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
660
661/* Initialize a variable CUM of type CUMULATIVE_ARGS
662 for a call to a function whose data type is FNTYPE.
663 For a library call, FNTYPE is 0. */
664
665#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
666 (CUM).words = 0, \
667 (CUM).fregno = 33, \
668 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
669 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
670 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
671 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
672 : 0)
673
674/* Similar, but when scanning the definition of a procedure. We always
675 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
676
677#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
678 (CUM).words = 0, \
679 (CUM).fregno = 33, \
680 (CUM).nargs_prototype = 1000
681
682/* Update the data in CUM to advance over an argument
683 of mode MODE and data type TYPE.
684 (TYPE is null for libcalls where that information may not be available.) */
685
686#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
687{ (CUM).nargs_prototype--; \
688 if (NAMED) \
689 { \
690 (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \
691 if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
692 (CUM).fregno++; \
693 } \
694}
695
696/* Non-zero if we can use a floating-point register to pass this arg. */
697#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
698 (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46)
699
700/* Determine where to put an argument to a function.
701 Value is zero to push the argument on the stack,
702 or a hard register in which to store the argument.
703
704 MODE is the argument's machine mode.
705 TYPE is the data type of the argument (as a tree).
706 This is null for libcalls where that information may
707 not be available.
708 CUM is a variable of type CUMULATIVE_ARGS which gives info about
709 the preceding args and about the function being called.
710 NAMED is nonzero if this argument is a named parameter
711 (otherwise it is an extra parameter matching an ellipsis).
712
713 On RS/6000 the first eight words of non-FP are normally in registers
714 and the rest are pushed. The first 13 FP args are in registers.
715
716 If this is floating-point and no prototype is specified, we use
717 both an FP and integer register (or possibly FP reg and stack). */
718
719#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
720 (! (NAMED) ? 0 \
38bd31fc 721 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
d072107f 722 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \
f045b2c9
RS
723 ? ((CUM).nargs_prototype > 0 \
724 ? gen_rtx (REG, MODE, (CUM).fregno) \
725 : ((CUM).words < 8 \
726 ? gen_rtx (EXPR_LIST, VOIDmode, \
727 gen_rtx (REG, (MODE), 3 + (CUM).words), \
728 gen_rtx (REG, (MODE), (CUM).fregno)) \
729 : gen_rtx (EXPR_LIST, VOIDmode, 0, \
730 gen_rtx (REG, (MODE), (CUM).fregno)))) \
731 : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0)
732
733/* For an arg passed partly in registers and partly in memory,
734 this is the number of registers used.
735 For args passed entirely in registers or entirely in memory, zero. */
736
737#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
738 (! (NAMED) ? 0 \
739 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \
740 : (((CUM).words < 8 \
741 && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \
742 ? 8 - (CUM).words : 0))
743
744/* Perform any needed actions needed for a function that is receiving a
745 variable number of arguments.
746
747 CUM is as above.
748
749 MODE and TYPE are the mode and type of the current parameter.
750
751 PRETEND_SIZE is a variable that should be set to the amount of stack
752 that must be pushed by the prolog to pretend that our caller pushed
753 it.
754
755 Normally, this macro will push all remaining incoming registers on the
756 stack and set PRETEND_SIZE to the length of the registers pushed. */
757
758#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
759{ if ((CUM).words < 8) \
760 { \
761 int first_reg_offset = (CUM).words; \
762 \
763 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
764 first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
765 \
766 if (first_reg_offset > 8) \
767 first_reg_offset = 8; \
768 \
769 if (! (NO_RTL) && first_reg_offset != 8) \
770 move_block_from_reg \
771 (3 + first_reg_offset, \
772 gen_rtx (MEM, BLKmode, \
773 plus_constant (virtual_incoming_args_rtx, \
774 first_reg_offset * 4)), \
775 8 - first_reg_offset); \
776 PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \
777 } \
778}
779
780/* This macro generates the assembly code for function entry.
781 FILE is a stdio stream to output the code to.
782 SIZE is an int: how many units of temporary storage to allocate.
783 Refer to the array `regs_ever_live' to determine which registers
784 to save; `regs_ever_live[I]' is nonzero if register number I
785 is ever used in the function. This macro is responsible for
786 knowing which registers should not be saved even if used. */
787
788#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
789
790/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 791 for profiling a function entry. */
f045b2c9
RS
792
793#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 794 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
795
796/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
797 the stack pointer does not matter. No definition is equivalent to
798 always zero.
799
800 On the RS/6000, this is non-zero because we can restore the stack from
801 its backpointer, which we maintain. */
802#define EXIT_IGNORE_STACK 1
803
804/* This macro generates the assembly code for function exit,
805 on machines that need it. If FUNCTION_EPILOGUE is not defined
806 then individual return instructions are generated for each
807 return statement. Args are same as for FUNCTION_PROLOGUE.
808
809 The function epilogue should not depend on the current stack pointer!
810 It should use the frame pointer only. This is mandatory because
811 of alloca; we also take advantage of it to omit stack adjustments
812 before returning. */
813
814#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
815\f
816/* Output assembler code for a block containing the constant parts
817 of a trampoline, leaving space for the variable parts.
818
819 The trampoline should set the static chain pointer to value placed
820 into the trampoline and should branch to the specified routine.
821
822 On the RS/6000, this is not code at all, but merely a data area,
823 since that is the way all functions are called. The first word is
824 the address of the function, the second word is the TOC pointer (r2),
825 and the third word is the static chain value. */
826
827#define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); }
828
829/* Length in units of the trampoline for entering a nested function. */
830
831#define TRAMPOLINE_SIZE 12
832
833/* Emit RTL insns to initialize the variable parts of a trampoline.
834 FNADDR is an RTX for the address of the function's pure code.
835 CXT is an RTX for the static chain value for the function. */
836
837#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
838{ \
839 emit_move_insn (gen_rtx (MEM, SImode, memory_address (SImode, ADDR)), \
840 force_reg (SImode, FNADDR)); \
841 emit_move_insn (gen_rtx (MEM, SImode, \
842 memory_address (SImode, plus_constant (ADDR, 4))), \
843 gen_rtx (REG, SImode, 2)); \
844 emit_move_insn (gen_rtx (MEM, SImode, \
845 memory_address (SImode, plus_constant (ADDR, 8))), \
846 force_reg (SImode, CXT)); \
847}
848\f
849/* Definitions for register eliminations.
850
851 We have two registers that can be eliminated on the RS/6000. First, the
852 frame pointer register can often be eliminated in favor of the stack
853 pointer register. Secondly, the argument pointer register can always be
854 eliminated; it is replaced with either the stack or frame pointer. */
855
856/* This is an array of structures. Each structure initializes one pair
857 of eliminable registers. The "from" register number is given first,
858 followed by "to". Eliminations of the same "from" register are listed
859 in order of preference. */
860#define ELIMINABLE_REGS \
861{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
862 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
863 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM} }
864
865/* Given FROM and TO register numbers, say whether this elimination is allowed.
866 Frame pointer elimination is automatically handled.
867
868 For the RS/6000, if frame pointer elimination is being done, we would like
869 to convert ap into fp, not sp. */
870
871#define CAN_ELIMINATE(FROM, TO) \
872 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
873 ? ! frame_pointer_needed \
874 : 1)
875
876/* Define the offset between two registers, one to be eliminated, and the other
877 its replacement, at the start of a routine. */
878#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
879{ \
880 int total_stack_size = (rs6000_sa_size () + get_frame_size () \
881 + current_function_outgoing_args_size); \
882 \
883 total_stack_size = (total_stack_size + 7) & ~7; \
884 \
885 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
886 { \
887 if (rs6000_pushes_stack ()) \
888 (OFFSET) = 0; \
889 else \
890 (OFFSET) = - total_stack_size; \
891 } \
892 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
893 (OFFSET) = total_stack_size; \
894 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
895 { \
896 if (rs6000_pushes_stack ()) \
897 (OFFSET) = total_stack_size; \
898 else \
899 (OFFSET) = 0; \
900 } \
901 else \
902 abort (); \
903}
904\f
905/* Addressing modes, and classification of registers for them. */
906
907/* #define HAVE_POST_INCREMENT */
908/* #define HAVE_POST_DECREMENT */
909
910#define HAVE_PRE_DECREMENT
911#define HAVE_PRE_INCREMENT
912
913/* Macros to check register numbers against specific register classes. */
914
915/* These assume that REGNO is a hard or pseudo reg number.
916 They give nonzero only if REGNO is a hard reg of the suitable class
917 or a pseudo reg currently allocated to a suitable hard reg.
918 Since they use reg_renumber, they are safe only once reg_renumber
919 has been allocated, which happens in local-alloc.c. */
920
921#define REGNO_OK_FOR_INDEX_P(REGNO) \
922((REGNO) < FIRST_PSEUDO_REGISTER \
923 ? (REGNO) <= 31 || (REGNO) == 67 \
924 : (reg_renumber[REGNO] >= 0 \
925 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
926
927#define REGNO_OK_FOR_BASE_P(REGNO) \
928((REGNO) < FIRST_PSEUDO_REGISTER \
929 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
930 : (reg_renumber[REGNO] > 0 \
931 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
932\f
933/* Maximum number of registers that can appear in a valid memory address. */
934
935#define MAX_REGS_PER_ADDRESS 2
936
937/* Recognize any constant value that is a valid address. */
938
939#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
940
941/* Nonzero if the constant value X is a legitimate general operand.
942 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
943
944 On the RS/6000, all integer constants are acceptable, most won't be valid
945 for particular insns, though. Only easy FP constants are
946 acceptable. */
947
948#define LEGITIMATE_CONSTANT_P(X) \
949 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
950 || easy_fp_constant (X, GET_MODE (X)))
951
952/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
953 and check its validity for a certain class.
954 We have two alternate definitions for each of them.
955 The usual definition accepts all pseudo regs; the other rejects
956 them unless they have been allocated suitable hard regs.
957 The symbol REG_OK_STRICT causes the latter definition to be used.
958
959 Most source files want to accept pseudo regs in the hope that
960 they will get allocated to the class that the insn wants them to be in.
961 Source files for reload pass need to be strict.
962 After reload, it makes no difference, since pseudo regs have
963 been eliminated by then. */
964
965#ifndef REG_OK_STRICT
966
967/* Nonzero if X is a hard reg that can be used as an index
968 or if it is a pseudo reg. */
969#define REG_OK_FOR_INDEX_P(X) \
970 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
971
972/* Nonzero if X is a hard reg that can be used as a base reg
973 or if it is a pseudo reg. */
974#define REG_OK_FOR_BASE_P(X) \
975 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
976
977#else
978
979/* Nonzero if X is a hard reg that can be used as an index. */
980#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
981/* Nonzero if X is a hard reg that can be used as a base reg. */
982#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
983
984#endif
985\f
986/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
987 that is a valid memory address for an instruction.
988 The MODE argument is the machine mode for the MEM expression
989 that wants to use this address.
990
991 On the RS/6000, there are four valid address: a SYMBOL_REF that
992 refers to a constant pool entry of an address (or the sum of it
993 plus a constant), a short (16-bit signed) constant plus a register,
994 the sum of two registers, or a register indirect, possibly with an
995 auto-increment. For DFmode and DImode with an constant plus register,
996 we must ensure that both words are addressable. */
997
998#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
999 (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \
1000 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1001
1002#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1003 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1004 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1005 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1006 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1007
1008#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1009 (GET_CODE (X) == CONST_INT \
1010 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1011
1012#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1013 (GET_CODE (X) == PLUS \
1014 && GET_CODE (XEXP (X, 0)) == REG \
1015 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1016 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1017 && (((MODE) != DFmode && (MODE) != DImode) \
1018 || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))
1019
1020#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1021 (GET_CODE (X) == PLUS \
1022 && GET_CODE (XEXP (X, 0)) == REG \
1023 && GET_CODE (XEXP (X, 1)) == REG \
1024 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1025 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1026 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1027 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1028
1029#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1030 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1031
1032#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1033{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1034 goto ADDR; \
1035 if (GET_CODE (X) == PRE_INC \
1036 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1037 goto ADDR; \
1038 if (GET_CODE (X) == PRE_DEC \
1039 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1040 goto ADDR; \
1041 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1042 goto ADDR; \
1043 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1044 goto ADDR; \
1045 if ((MODE) != DImode && (MODE) != TImode \
1046 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1047 goto ADDR; \
1048}
1049\f
1050/* Try machine-dependent ways of modifying an illegitimate address
1051 to be legitimate. If we find one, return the new, valid address.
1052 This macro is used in only one place: `memory_address' in explow.c.
1053
1054 OLDX is the address as it was before break_out_memory_refs was called.
1055 In some cases it is useful to look at this to decide what needs to be done.
1056
1057 MODE and WIN are passed so that this macro can use
1058 GO_IF_LEGITIMATE_ADDRESS.
1059
1060 It is always safe for this macro to do nothing. It exists to recognize
1061 opportunities to optimize the output.
1062
1063 On RS/6000, first check for the sum of a register with a constant
1064 integer that is out of range. If so, generate code to add the
1065 constant with the low-order 16 bits masked to the register and force
1066 this result into another register (this can be done with `cau').
1067 Then generate an address of REG+(CONST&0xffff), allowing for the
1068 possibility of bit 16 being a one.
1069
1070 Then check for the sum of a register and something not constant, try to
1071 load the other things into a register and return the sum. */
1072
1073#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1074{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1075 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1076 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1077 { int high_int, low_int; \
1078 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1079 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1080 if (low_int & 0x8000) \
1081 high_int += 1, low_int |= 0xffff0000; \
1082 (X) = gen_rtx (PLUS, SImode, \
1083 force_operand \
1084 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1085 gen_rtx (CONST_INT, VOIDmode, \
1086 high_int << 16)), 0),\
1087 gen_rtx (CONST_INT, VOIDmode, low_int)); \
f357808b 1088 goto WIN; \
f045b2c9
RS
1089 } \
1090 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1091 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
f357808b
RK
1092 { \
1093 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
1094 force_reg (SImode, force_operand (XEXP (X, 1), 0))); \
1095 goto WIN; \
1096 } \
f045b2c9
RS
1097}
1098
1099/* Go to LABEL if ADDR (a legitimate address expression)
1100 has an effect that depends on the machine mode it is used for.
1101
1102 On the RS/6000 this is true if the address is valid with a zero offset
1103 but not with an offset of four (this means it cannot be used as an
1104 address for DImode or DFmode) or is a pre-increment or decrement. Since
1105 we know it is valid, we just check for an address that is not valid with
1106 an offset of four. */
1107
1108#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1109{ if (GET_CODE (ADDR) == PLUS \
1110 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1111 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1112 goto LABEL; \
1113 if (GET_CODE (ADDR) == PRE_INC) \
1114 goto LABEL; \
1115 if (GET_CODE (ADDR) == PRE_DEC) \
1116 goto LABEL; \
1117}
1118\f
1119/* Define this if some processing needs to be done immediately before
1120 emitting code for an insn. */
1121
1122/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1123
1124/* Specify the machine mode that this machine uses
1125 for the index in the tablejump instruction. */
1126#define CASE_VECTOR_MODE SImode
1127
1128/* Define this if the tablejump instruction expects the table
1129 to contain offsets from the address of the table.
1130 Do not define this if the table should contain absolute addresses. */
1131#define CASE_VECTOR_PC_RELATIVE
1132
1133/* Specify the tree operation to be used to convert reals to integers. */
1134#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1135
1136/* This is the kind of divide that is easiest to do in the general case. */
1137#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1138
1139/* Define this as 1 if `char' should by default be signed; else as 0. */
1140#define DEFAULT_SIGNED_CHAR 0
1141
1142/* This flag, if defined, says the same insns that convert to a signed fixnum
1143 also convert validly to an unsigned one. */
1144
1145/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1146
1147/* Max number of bytes we can move from memory to memory
1148 in one reasonably fast instruction. */
1149#define MOVE_MAX 16
1150
1151/* Nonzero if access to memory by bytes is no faster than for words.
1152 Also non-zero if doing byte operations (specifically shifts) in registers
1153 is undesirable. */
1154#define SLOW_BYTE_ACCESS 1
1155
1156/* Define if normal loads of shorter-than-word items from memory clears
1157 the rest of the bigs in the register. */
1158#define BYTE_LOADS_ZERO_EXTEND
fdaff8ba
RS
1159\f
1160/* The RS/6000 uses the XCOFF format. */
f045b2c9 1161
fdaff8ba 1162#define XCOFF_DEBUGGING_INFO
f045b2c9 1163
c5abcf1d
CH
1164/* Define if the object format being used is COFF or a superset. */
1165#define OBJECT_FORMAT_COFF
1166
f045b2c9
RS
1167/* We don't have GAS for the RS/6000 yet, so don't write out special
1168 .stabs in cc1plus. */
1169
1170#define FASCIST_ASSEMBLER
1171
f045b2c9
RS
1172/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1173 is done just by pretending it is already truncated. */
1174#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1175
1176/* Specify the machine mode that pointers have.
1177 After generation of rtl, the compiler makes no further distinction
1178 between pointers and any other objects of this machine mode. */
1179#define Pmode SImode
1180
1181/* Mode of a function address in a call instruction (for indexing purposes).
1182
1183 Doesn't matter on RS/6000. */
1184#define FUNCTION_MODE SImode
1185
1186/* Define this if addresses of constant functions
1187 shouldn't be put through pseudo regs where they can be cse'd.
1188 Desirable on machines where ordinary constants are expensive
1189 but a CALL with constant address is cheap. */
1190#define NO_FUNCTION_CSE
1191
1192/* Define this if shift instructions ignore all but the low-order
1193 few bits. */
1194#define SHIFT_COUNT_TRUNCATED
1195
1196/* Use atexit for static constructors/destructors, instead of defining
1197 our own exit function. */
1198#define HAVE_ATEXIT
1199
1200/* Compute the cost of computing a constant rtl expression RTX
1201 whose rtx-code is CODE. The body of this macro is a portion
1202 of a switch statement. If the code is computed here,
1203 return it with a return statement. Otherwise, break from the switch.
1204
1205 On the RS/6000, if it is legal in the insn, it is free. So this
1206 always returns 0. */
1207
3bb22aee 1208#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
1209 case CONST_INT: \
1210 case CONST: \
1211 case LABEL_REF: \
1212 case SYMBOL_REF: \
1213 case CONST_DOUBLE: \
1214 return 0;
1215
1216/* Provide the costs of a rtl expression. This is in the body of a
1217 switch on CODE. */
1218
3bb22aee 1219#define RTX_COSTS(X,CODE,OUTER_CODE) \
f045b2c9
RS
1220 case MULT: \
1221 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
1222 ? COSTS_N_INSNS (5) \
1223 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
1224 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
1225 case DIV: \
1226 case MOD: \
1227 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1228 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
1229 return COSTS_N_INSNS (2); \
1230 /* otherwise fall through to normal divide. */ \
1231 case UDIV: \
1232 case UMOD: \
1233 return COSTS_N_INSNS (19); \
1234 case MEM: \
1235 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
1236 return 5;
1237
1238/* Compute the cost of an address. This is meant to approximate the size
1239 and/or execution delay of an insn using that address. If the cost is
1240 approximated by the RTL complexity, including CONST_COSTS above, as
1241 is usually the case for CISC machines, this macro should not be defined.
1242 For aggressively RISCy machines, only one insn format is allowed, so
1243 this macro should be a constant. The value of this macro only matters
1244 for valid addresses.
1245
1246 For the RS/6000, everything is cost 0. */
1247
1248#define ADDRESS_COST(RTX) 0
1249
1250/* Adjust the length of an INSN. LENGTH is the currently-computed length and
1251 should be adjusted to reflect any required changes. This macro is used when
1252 there is some systematic length adjustment required that would be difficult
1253 to express in the length attribute. */
1254
1255/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1256
1257/* Add any extra modes needed to represent the condition code.
1258
1259 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
1260 are being done and we need a separate mode for floating-point. We also
1261 use a mode for the case when we are comparing the results of two
1262 comparisons. */
f045b2c9 1263
c5defebb 1264#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
1265
1266/* Define the names for the modes specified above. */
c5defebb 1267#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
1268
1269/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1270 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
1271 should be used. CCUNSmode should be used for unsigned comparisons.
1272 CCEQmode should be used when we are doing an inequality comparison on
1273 the result of a comparison. CCmode should be used in all other cases. */
1274
b565a316 1275#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 1276 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
1277 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1278 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
1279 ? CCEQmode : CCmode))
f045b2c9
RS
1280
1281/* Define the information needed to generate branch and scc insns. This is
1282 stored from the compare operation. Note that we can't use "rtx" here
1283 since it hasn't been defined! */
1284
1285extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
1286extern int rs6000_compare_fp_p;
1287
1288/* Set to non-zero by "fix" operation to indicate that itrunc and
1289 uitrunc must be defined. */
1290
1291extern int rs6000_trunc_used;
1292\f
1293/* Control the assembler format that we output. */
1294
1295/* Output at beginning of assembler file.
1296
1297 On the RS/6000, we want to go into the TOC section so at least one
1298 .toc will be emitted.
1299
fdaff8ba
RS
1300 Also initialize the section names for the RS/6000 at this point.
1301
1302 Also, in order to output proper .bs/.es pairs, we need at least one static
1303 [RW] section emitted. */
f045b2c9
RS
1304
1305#define ASM_FILE_START(FILE) \
1306{ \
fdaff8ba 1307 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 1308 main_input_filename, ".bss_"); \
fdaff8ba 1309 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 1310 main_input_filename, ".rw_"); \
fdaff8ba 1311 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
1312 main_input_filename, ".ro_"); \
1313 \
1314 toc_section (); \
fdaff8ba
RS
1315 if (write_symbols != NO_DEBUG) \
1316 private_data_section (); \
f045b2c9
RS
1317}
1318
1319/* Output at end of assembler file.
1320
1321 On the RS/6000, referencing data should automatically pull in text. */
1322
1323#define ASM_FILE_END(FILE) \
1324{ \
1325 text_section (); \
1326 fprintf (FILE, "_section_.text:\n"); \
1327 data_section (); \
1328 fprintf (FILE, "\t.long _section_.text\n"); \
1329}
1330
f045b2c9
RS
1331/* We define this to prevent the name mangler from putting dollar signs into
1332 function names. */
1333
1334#define NO_DOLLAR_IN_LABEL
1335
1336/* We define this to 0 so that gcc will never accept a dollar sign in a
1337 variable name. This is needed because the AIX assembler will not accept
1338 dollar signs. */
1339
1340#define DOLLARS_IN_IDENTIFIERS 0
1341
fdaff8ba
RS
1342/* Implicit library calls should use memcpy, not bcopy, etc. */
1343
1344#define TARGET_MEM_FUNCTIONS
1345
f045b2c9
RS
1346/* Define the extra sections we need. We define three: one is the read-only
1347 data section which is used for constants. This is a csect whose name is
1348 derived from the name of the input file. The second is for initialized
1349 global variables. This is a csect whose name is that of the variable.
1350 The third is the TOC. */
1351
1352#define EXTRA_SECTIONS \
1353 read_only_data, private_data, read_only_private_data, toc, bss
1354
1355/* Define the name of our readonly data section. */
1356
1357#define READONLY_DATA_SECTION read_only_data_section
1358
1359/* Indicate that jump tables go in the text section. */
1360
1361#define JUMP_TABLES_IN_TEXT_SECTION
1362
1363/* Define the routines to implement these extra sections. */
1364
1365#define EXTRA_SECTION_FUNCTIONS \
1366 \
1367void \
1368read_only_data_section () \
1369{ \
1370 if (in_section != read_only_data) \
1371 { \
fdaff8ba
RS
1372 fprintf (asm_out_file, "\t.csect %s[RO]\n", \
1373 xcoff_read_only_section_name); \
f045b2c9
RS
1374 in_section = read_only_data; \
1375 } \
1376} \
1377 \
1378void \
1379private_data_section () \
1380{ \
1381 if (in_section != private_data) \
1382 { \
1383 fprintf (asm_out_file, "\t.csect %s[RW]\n", \
fdaff8ba 1384 xcoff_private_data_section_name); \
f045b2c9
RS
1385 \
1386 in_section = private_data; \
1387 } \
1388} \
1389 \
1390void \
1391read_only_private_data_section () \
1392{ \
1393 if (in_section != read_only_private_data) \
1394 { \
fdaff8ba
RS
1395 fprintf (asm_out_file, "\t.csect %s[RO]\n", \
1396 xcoff_private_data_section_name); \
f045b2c9
RS
1397 in_section = read_only_private_data; \
1398 } \
1399} \
1400 \
1401void \
1402toc_section () \
1403{ \
1404 if (in_section != toc) \
1405 fprintf (asm_out_file, "\t.toc\n"); \
1406 \
1407 in_section = toc; \
fc3ffe83 1408}
f045b2c9
RS
1409
1410/* This macro produces the initial definition of a function name.
1411 On the RS/6000, we need to place an extra '.' in the function name and
1412 output the function descriptor.
1413
1414 The csect for the function will have already been created by the
1415 `text_section' call previously done. We do have to go back to that
1416 csect, however. */
1417
fdaff8ba
RS
1418/* ??? What do the 16 and 044 in the .function line really mean? */
1419
f045b2c9
RS
1420#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1421{ if (TREE_PUBLIC (DECL)) \
1422 { \
1423 fprintf (FILE, "\t.globl ."); \
1424 RS6000_OUTPUT_BASENAME (FILE, NAME); \
fdaff8ba
RS
1425 fprintf (FILE, "\n"); \
1426 } \
1427 else if (write_symbols == XCOFF_DEBUG) \
1428 { \
1429 fprintf (FILE, "\t.lglobl ."); \
1430 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1431 fprintf (FILE, "\n"); \
f045b2c9
RS
1432 } \
1433 fprintf (FILE, "\t.csect "); \
1434 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1435 fprintf (FILE, "[DS]\n"); \
1436 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1437 fprintf (FILE, ":\n"); \
1438 fprintf (FILE, "\t.long ."); \
1439 RS6000_OUTPUT_BASENAME (FILE, NAME); \
fdaff8ba 1440 fprintf (FILE, ", TOC[tc0], 0\n"); \
f045b2c9
RS
1441 fprintf (FILE, "\t.csect [PR]\n."); \
1442 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1443 fprintf (FILE, ":\n"); \
fdaff8ba 1444 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 1445 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
1446}
1447
1448/* Return non-zero if this entry is to be written into the constant pool
1449 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
1450 containing one of them. If -mfp-in-toc (the default), we also do
1451 this for floating-point constants. We actually can only do this
1452 if the FP formats of the target and host machines are the same, but
1453 we can't check that since not every file that uses
1454 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
1455
1456#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
1457 (GET_CODE (X) == SYMBOL_REF \
1458 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1459 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
1460 || GET_CODE (X) == LABEL_REF \
1461 || (TARGET_FP_IN_TOC && GET_CODE (X) == CONST_DOUBLE \
1462 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1463 && BITS_PER_WORD == HOST_BITS_PER_INT))
1464
1465/* Select section for constant in constant pool.
1466
1467 On RS/6000, all constants are in the private read-only data area.
1468 However, if this is being placed in the TOC it must be output as a
1469 toc entry. */
1470
1471#define SELECT_RTX_SECTION(MODE, X) \
1472{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1473 toc_section (); \
1474 else \
1475 read_only_private_data_section (); \
1476}
1477
1478/* Macro to output a special constant pool entry. Go to WIN if we output
1479 it. Otherwise, it is written the usual way.
1480
1481 On the RS/6000, toc entries are handled this way. */
1482
1483#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1484{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1485 { \
1486 output_toc (FILE, X, LABELNO); \
1487 goto WIN; \
1488 } \
1489}
1490
1491/* Select the section for an initialized data object.
1492
1493 On the RS/6000, we have a special section for all variables except those
1494 that are static. */
1495
1496#define SELECT_SECTION(EXP,RELOC) \
1497{ \
1498 if ((TREE_READONLY (EXP) \
1499 || (TREE_CODE (EXP) == STRING_CST \
1500 && !flag_writable_strings)) \
1501 && ! TREE_THIS_VOLATILE (EXP) \
1502 && ! (RELOC)) \
1503 { \
1504 if (TREE_PUBLIC (EXP)) \
1505 read_only_data_section (); \
1506 else \
1507 read_only_private_data_section (); \
1508 } \
1509 else \
1510 { \
1511 if (TREE_PUBLIC (EXP)) \
1512 data_section (); \
1513 else \
1514 private_data_section (); \
1515 } \
1516}
1517
1518/* This outputs NAME to FILE up to the first null or '['. */
1519
1520#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
1521 if ((NAME)[0] == '*') \
1522 assemble_name (FILE, NAME); \
1523 else \
1524 { \
1525 char *_p; \
1526 for (_p = (NAME); *_p && *_p != '['; _p++) \
1527 fputc (*_p, FILE); \
1528 }
1529
1530/* Output something to declare an external symbol to the assembler. Most
1531 assemblers don't need this.
1532
1533 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
1534 name. Normally we write this out along with the name. In the few cases
1535 where we can't, it gets stripped off. */
1536
1537#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1538{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
1539 if ((TREE_CODE (DECL) == VAR_DECL \
1540 || TREE_CODE (DECL) == FUNCTION_DECL) \
1541 && (NAME)[0] != '*' \
1542 && (NAME)[strlen (NAME) - 1] != ']') \
1543 { \
1544 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
1545 strcpy (_name, XSTR (_symref, 0)); \
1546 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
1547 XSTR (_symref, 0) = _name; \
1548 } \
1549 fprintf (FILE, "\t.extern "); \
1550 assemble_name (FILE, XSTR (_symref, 0)); \
1551 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1552 { \
1553 fprintf (FILE, "\n\t.extern ."); \
1554 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
1555 } \
1556 fprintf (FILE, "\n"); \
1557}
1558
1559/* Similar, but for libcall. We only have to worry about the function name,
1560 not that of the descriptor. */
1561
1562#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1563{ fprintf (FILE, "\t.extern ."); \
1564 assemble_name (FILE, XSTR (FUN, 0)); \
1565 fprintf (FILE, "\n"); \
1566}
1567
1568/* Output to assembler file text saying following lines
1569 may contain character constants, extra white space, comments, etc. */
1570
1571#define ASM_APP_ON ""
1572
1573/* Output to assembler file text saying following lines
1574 no longer contain unusual constructs. */
1575
1576#define ASM_APP_OFF ""
1577
1578/* Output before instructions. */
1579
fdaff8ba 1580#define TEXT_SECTION_ASM_OP ".csect [PR]"
f045b2c9
RS
1581
1582/* Output before writable data. */
1583
fdaff8ba 1584#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
1585
1586/* How to refer to registers in assembler output.
1587 This sequence is indexed by compiler's hard-register-number (see above). */
1588
1589#define REGISTER_NAMES \
1590 {"0", "1", "2", "3", "4", "5", "6", "7", \
1591 "8", "9", "10", "11", "12", "13", "14", "15", \
1592 "16", "17", "18", "19", "20", "21", "22", "23", \
1593 "24", "25", "26", "27", "28", "29", "30", "31", \
1594 "0", "1", "2", "3", "4", "5", "6", "7", \
1595 "8", "9", "10", "11", "12", "13", "14", "15", \
1596 "16", "17", "18", "19", "20", "21", "22", "23", \
1597 "24", "25", "26", "27", "28", "29", "30", "31", \
1598 "mq", "lr", "ctr", "ap", \
1599 "0", "1", "2", "3", "4", "5", "6", "7" }
1600
1601/* Table of additional register names to use in user input. */
1602
1603#define ADDITIONAL_REGISTER_NAMES \
1604 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
1605 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
1606 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
1607 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
1608 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
1609 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
1610 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
1611 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
1612 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
1613 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
1614 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
1615 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
1616 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
1617 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
1618 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
1619 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
1620 /* no additional names for: mq, lr, ctr, ap */ \
1621 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
fc3ffe83
RK
1622 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
1623 "cc", 68 }
f045b2c9
RS
1624
1625/* How to renumber registers for dbx and gdb. */
1626
1627#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1628
1629/* This is how to output the definition of a user-level label named NAME,
1630 such as the label on a static function or variable NAME. */
1631
1632#define ASM_OUTPUT_LABEL(FILE,NAME) \
1633 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
1634
1635/* This is how to output a command to make the user-level label named NAME
1636 defined for reference from other files. */
1637
1638#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1639 do { fputs ("\t.globl ", FILE); \
1640 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
1641
1642/* This is how to output a reference to a user-level label named NAME.
1643 `assemble_name' uses this. */
1644
1645#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1646 fprintf (FILE, NAME)
1647
1648/* This is how to output an internal numbered label where
1649 PREFIX is the class of label and NUM is the number within the class. */
1650
1651#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1652 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
1653
1654/* This is how to output a label for a jump table. Arguments are the same as
1655 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1656 passed. */
1657
1658#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1659{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1660
1661/* This is how to store into the string LABEL
1662 the symbol_ref name of an internal numbered label where
1663 PREFIX is the class of label and NUM is the number within the class.
1664 This is suitable for output with `assemble_name'. */
1665
1666#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1667 sprintf (LABEL, "%s..%d", PREFIX, NUM)
1668
1669/* This is how to output an assembler line defining a `double' constant. */
1670
1671#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1672 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1673
1674/* This is how to output an assembler line defining a `float' constant. */
1675
1676#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1677 fprintf (FILE, "\t.float 0d%.20e\n", (VALUE))
1678
1679/* This is how to output an assembler line defining an `int' constant. */
1680
1681#define ASM_OUTPUT_INT(FILE,VALUE) \
1682( fprintf (FILE, "\t.long "), \
1683 output_addr_const (FILE, (VALUE)), \
1684 fprintf (FILE, "\n"))
1685
1686/* Likewise for `char' and `short' constants. */
1687
1688#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1689( fprintf (FILE, "\t.short "), \
1690 output_addr_const (FILE, (VALUE)), \
1691 fprintf (FILE, "\n"))
1692
1693#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1694( fprintf (FILE, "\t.byte "), \
1695 output_addr_const (FILE, (VALUE)), \
1696 fprintf (FILE, "\n"))
1697
1698/* This is how to output an assembler line for a numeric constant byte. */
1699
1700#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1701 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1702
1703/* This is how to output an assembler line to define N characters starting
1704 at P to FILE. */
1705
1706#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
1707
1708/* This is how to output code to push a register on the stack.
1709 It need not be very fast code. */
1710
1711#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1712 fprintf (FILE, "\tstu %s,-4(r1)\n", reg_names[REGNO]);
1713
1714/* This is how to output an insn to pop a register from the stack.
1715 It need not be very fast code. */
1716
1717#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1718 fprintf (FILE, "\tl %s,0(r1)\n\tai r1,r1,4\n", reg_names[REGNO])
1719
1720/* This is how to output an element of a case-vector that is absolute.
1721 (RS/6000 does not use such vectors, but we must define this macro
1722 anyway.) */
1723
1724#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1725 fprintf (FILE, "\t.long L..%d\n", VALUE)
1726
1727/* This is how to output an element of a case-vector that is relative. */
1728
1729#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1730 fprintf (FILE, "\t.long L..%d-L..%d\n", VALUE, REL)
1731
1732/* This is how to output an assembler line
1733 that says to advance the location counter
1734 to a multiple of 2**LOG bytes. */
1735
1736#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1737 if ((LOG) != 0) \
1738 fprintf (FILE, "\t.align %d\n", (LOG))
1739
1740#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1741 fprintf (FILE, "\t.space %d\n", (SIZE))
1742
1743/* This says how to output an assembler line
1744 to define a global common symbol. */
1745
1746#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
fc3ffe83 1747 do { fputs (".comm ", (FILE)); \
f045b2c9
RS
1748 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1749 fprintf ((FILE), ",%d\n", (SIZE)); } while (0)
1750
1751/* This says how to output an assembler line
1752 to define a local common symbol. */
1753
1754#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 1755 do { fputs (".lcomm ", (FILE)); \
f045b2c9 1756 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 1757 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
1758 } while (0)
1759
1760/* Store in OUTPUT a string (made with alloca) containing
1761 an assembler-name for a local static variable named NAME.
1762 LABELNO is an integer which is different for each call. */
1763
1764#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1765( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1766 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1767
1768/* Define the parentheses used to group arithmetic operations
1769 in assembler code. */
1770
1771#define ASM_OPEN_PAREN "("
1772#define ASM_CLOSE_PAREN ")"
1773
1774/* Define results of standard character escape sequences. */
1775#define TARGET_BELL 007
1776#define TARGET_BS 010
1777#define TARGET_TAB 011
1778#define TARGET_NEWLINE 012
1779#define TARGET_VT 013
1780#define TARGET_FF 014
1781#define TARGET_CR 015
1782
1783/* Print operand X (an rtx) in assembler syntax to file FILE.
1784 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1785 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1786
1787#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1788
1789/* Define which CODE values are valid. */
1790
1791#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1792
1793/* Print a memory address as an operand to reference that memory location. */
1794
1795#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1796
1797/* Define the codes that are matched by predicates in rs6000.c. */
1798
1799#define PREDICATE_CODES \
1800 {"short_cint_operand", {CONST_INT}}, \
1801 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 1802 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 1803 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9
RS
1804 {"cc_reg_operand", {SUBREG, REG}}, \
1805 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
1806 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
1807 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
1808 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1809 {"easy_fp_constant", {CONST_DOUBLE}}, \
1810 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
1811 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
1812 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
1813 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 1814 {"non_add_cint_operand", {CONST_INT}}, \
f045b2c9 1815 {"and_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 1816 {"non_and_cint_operand", {CONST_INT}}, \
f045b2c9 1817 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 1818 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9
RS
1819 {"mask_operand", {CONST_INT}}, \
1820 {"call_operand", {SYMBOL_REF, REG}}, \
1821 {"input_operand", {SUBREG, MEM, REG, CONST_INT}}, \
1822 {"branch_comparison_operation", {EQ, NE, LE, LT, GE, \
1823 LT, LEU, LTU, GEU, GTU}}, \
1824 {"scc_comparison_operation", {EQ, NE, LE, LT, GE, \
1825 LT, LEU, LTU, GEU, GTU}},
This page took 0.244457 seconds and 5 git commands to generate.