]>
Commit | Line | Data |
---|---|---|
f045b2c9 RS |
1 | /* Definitions of target machine for GNU compiler, for IBM RS/6000. |
2 | Copyright (C) 1992 Free Software Foundation, Inc. | |
3 | Contributed by Richard Kenner (kenner@nyu.edu) | |
4 | ||
5 | This file is part of GNU CC. | |
6 | ||
7 | GNU CC is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2, or (at your option) | |
10 | any later version. | |
11 | ||
12 | GNU CC is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with GNU CC; see the file COPYING. If not, write to | |
19 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | ||
22 | /* Note that some other tm.h files include this one and then override | |
23 | many of the definitions that relate to assembler syntax. */ | |
24 | ||
25 | ||
26 | /* Names to predefine in the preprocessor for this target machine. */ | |
27 | ||
28 | #define CPP_PREDEFINES "-D_IBMR2 -D_AIX" | |
29 | ||
30 | /* Print subsidiary information on the compiler version in use. */ | |
31 | #define TARGET_VERSION ; | |
32 | ||
fdaff8ba RS |
33 | /* Tell the assembler to assume that all undefined names are external. |
34 | ||
35 | Don't do this until the fixed IBM assembler is more generally available. | |
36 | When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL, | |
37 | ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no | |
38 | longer be needed. */ | |
f045b2c9 RS |
39 | |
40 | /* #define ASM_SPEC "-u" */ | |
41 | ||
42 | /* Define the options for the binder: Start text at 512, align all segments | |
43 | to 512 bytes, and warn if there is text relocation. | |
44 | ||
45 | The -bhalt:4 option supposedly changes the level at which ld will abort, | |
46 | but it also suppresses warnings about multiply defined symbols and is | |
47 | used by the AIX cc command. So we use it here. | |
48 | ||
49 | -bnodelcsect undoes a poor choice of default relating to multiply-defined | |
50 | csects. See AIX documentation for more information about this. */ | |
51 | ||
52 | #define LINK_SPEC "-T512 -H512 -btextro -bhalt:4 -bnodelcsect" | |
53 | ||
58a39e45 RS |
54 | /* Profiled library versions are used by linking with special directories. */ |
55 | #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\ | |
56 | %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc" | |
f045b2c9 RS |
57 | |
58 | /* gcc must do the search itself to find libgcc.a, not use -l. */ | |
59 | #define LINK_LIBGCC_SPECIAL | |
60 | ||
61 | /* Don't turn -B into -L if the argument specifies a relative file name. */ | |
62 | #define RELATIVE_PREFIX_NOT_LINKDIR | |
63 | ||
64 | /* Run-time compilation parameters selecting different hardware subsets. */ | |
65 | ||
66 | /* Flag to allow putting fp constants in the TOC; can be turned off when | |
67 | the TOC overflows. */ | |
68 | ||
69 | #define TARGET_FP_IN_TOC (target_flags & 1) | |
70 | ||
71 | extern int target_flags; | |
72 | ||
73 | /* Macro to define tables used to set the flags. | |
74 | This is a list in braces of pairs in braces, | |
75 | each pair being { "NAME", VALUE } | |
76 | where VALUE is the bits to set or minus the bits to clear. | |
77 | An empty string NAME is used to identify the default VALUE. */ | |
78 | ||
79 | #define TARGET_SWITCHES \ | |
80 | {{"fp-in-toc", 1}, \ | |
81 | {"no-fp-in-toc", -1}, \ | |
82 | { "", TARGET_DEFAULT}} | |
83 | ||
84 | #define TARGET_DEFAULT 1 | |
85 | ||
86 | /* On the RS/6000, we turn on various flags if optimization is selected. */ | |
87 | ||
88 | #define OPTIMIZATION_OPTIONS(LEVEL) \ | |
89 | { \ | |
90 | if ((LEVEL) > 0) \ | |
91 | { \ | |
92 | flag_force_mem = 1; \ | |
93 | flag_omit_frame_pointer = 1; \ | |
94 | } \ | |
95 | } | |
96 | ||
58a39e45 | 97 | /* Define this to modify the options specified by the user. */ |
f045b2c9 RS |
98 | |
99 | #define OVERRIDE_OPTIONS \ | |
100 | { \ | |
58a39e45 | 101 | profile_block_flag = 0; \ |
f045b2c9 RS |
102 | } |
103 | \f | |
104 | /* target machine storage layout */ | |
105 | ||
106 | /* Define this if most significant bit is lowest numbered | |
107 | in instructions that operate on numbered bit-fields. */ | |
108 | /* That is true on RS/6000. */ | |
109 | #define BITS_BIG_ENDIAN 1 | |
110 | ||
111 | /* Define this if most significant byte of a word is the lowest numbered. */ | |
112 | /* That is true on RS/6000. */ | |
113 | #define BYTES_BIG_ENDIAN 1 | |
114 | ||
115 | /* Define this if most significant word of a multiword number is lowest | |
116 | numbered. | |
117 | ||
118 | For RS/6000 we can decide arbitrarily since there are no machine | |
119 | instructions for them. Might as well be consistent with bits and bytes. */ | |
120 | #define WORDS_BIG_ENDIAN 1 | |
121 | ||
fdaff8ba | 122 | /* number of bits in an addressable storage unit */ |
f045b2c9 RS |
123 | #define BITS_PER_UNIT 8 |
124 | ||
125 | /* Width in bits of a "word", which is the contents of a machine register. | |
126 | Note that this is not necessarily the width of data type `int'; | |
127 | if using 16-bit ints on a 68000, this would still be 32. | |
128 | But on a machine with 16-bit registers, this would be 16. */ | |
129 | #define BITS_PER_WORD 32 | |
130 | ||
131 | /* Width of a word, in units (bytes). */ | |
132 | #define UNITS_PER_WORD 4 | |
133 | ||
915f619f JW |
134 | /* Type used for ptrdiff_t, as a string used in a declaration. */ |
135 | #define PTRDIFF_TYPE "int" | |
136 | ||
f045b2c9 RS |
137 | /* Type used for wchar_t, as a string used in a declaration. */ |
138 | #define WCHAR_TYPE "short unsigned int" | |
139 | ||
140 | /* Width of wchar_t in bits. */ | |
141 | #define WCHAR_TYPE_SIZE 16 | |
142 | ||
143 | /* Width in bits of a pointer. | |
144 | See also the macro `Pmode' defined below. */ | |
145 | #define POINTER_SIZE 32 | |
146 | ||
147 | /* Allocation boundary (in *bits*) for storing arguments in argument list. */ | |
148 | #define PARM_BOUNDARY 32 | |
149 | ||
150 | /* Boundary (in *bits*) on which stack pointer should be aligned. */ | |
151 | #define STACK_BOUNDARY 64 | |
152 | ||
153 | /* Allocation boundary (in *bits*) for the code of a function. */ | |
154 | #define FUNCTION_BOUNDARY 32 | |
155 | ||
156 | /* No data type wants to be aligned rounder than this. */ | |
157 | #define BIGGEST_ALIGNMENT 32 | |
158 | ||
159 | /* Alignment of field after `int : 0' in a structure. */ | |
160 | #define EMPTY_FIELD_BOUNDARY 32 | |
161 | ||
162 | /* Every structure's size must be a multiple of this. */ | |
163 | #define STRUCTURE_SIZE_BOUNDARY 8 | |
164 | ||
165 | /* A bitfield declared as `int' forces `int' alignment for the struct. */ | |
166 | #define PCC_BITFIELD_TYPE_MATTERS 1 | |
167 | ||
168 | /* Make strings word-aligned so strcpy from constants will be faster. */ | |
169 | #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ | |
170 | (TREE_CODE (EXP) == STRING_CST \ | |
171 | && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) | |
172 | ||
173 | /* Make arrays of chars word-aligned for the same reasons. */ | |
174 | #define DATA_ALIGNMENT(TYPE, ALIGN) \ | |
175 | (TREE_CODE (TYPE) == ARRAY_TYPE \ | |
176 | && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ | |
177 | && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) | |
178 | ||
fdaff8ba | 179 | /* Non-zero if move instructions will actually fail to work |
f045b2c9 | 180 | when given unaligned data. */ |
fdaff8ba | 181 | #define STRICT_ALIGNMENT 0 |
f045b2c9 RS |
182 | \f |
183 | /* Standard register usage. */ | |
184 | ||
185 | /* Number of actual hardware registers. | |
186 | The hardware registers are assigned numbers for the compiler | |
187 | from 0 to just below FIRST_PSEUDO_REGISTER. | |
188 | All registers that the compiler knows about must be given numbers, | |
189 | even those that are not normally considered general registers. | |
190 | ||
191 | RS/6000 has 32 fixed-point registers, 32 floating-point registers, | |
192 | an MQ register, a count register, a link register, and 8 condition | |
193 | register fields, which we view here as separate registers. | |
194 | ||
195 | In addition, the difference between the frame and argument pointers is | |
196 | a function of the number of registers saved, so we need to have a | |
197 | register for AP that will later be eliminated in favor of SP or FP. | |
198 | This is a normal register, but it is fixed. */ | |
199 | ||
200 | #define FIRST_PSEUDO_REGISTER 76 | |
201 | ||
202 | /* 1 for registers that have pervasive standard uses | |
203 | and are not available for the register allocator. | |
204 | ||
205 | On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer. | |
206 | ||
207 | cr5 is not supposed to be used. */ | |
208 | ||
209 | #define FIXED_REGISTERS \ | |
210 | {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
211 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
212 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
213 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
214 | 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0} | |
215 | ||
216 | /* 1 for registers not available across function calls. | |
217 | These must include the FIXED_REGISTERS and also any | |
218 | registers that can be used without being saved. | |
219 | The latter must include the registers where values are returned | |
220 | and the register where structure-value addresses are passed. | |
221 | Aside from that, you can include as many other registers as you like. */ | |
222 | ||
223 | #define CALL_USED_REGISTERS \ | |
224 | {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \ | |
225 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
226 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ | |
227 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
228 | 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1} | |
229 | ||
230 | /* List the order in which to allocate registers. Each register must be | |
231 | listed once, even those in FIXED_REGISTERS. | |
232 | ||
233 | We allocate in the following order: | |
234 | fp0 (not saved or used for anything) | |
235 | fp13 - fp2 (not saved; incoming fp arg registers) | |
236 | fp1 (not saved; return value) | |
237 | fp31 - fp14 (saved; order given to save least number) | |
238 | cr1, cr6, cr7 (not saved or special) | |
239 | cr0 (not saved, but used for arithmetic operations) | |
240 | cr2, cr3, cr4 (saved) | |
241 | r0 (not saved; cannot be base reg) | |
242 | r9 (not saved; best for TImode) | |
243 | r11, r10, r8-r4 (not saved; highest used first to make less conflict) | |
244 | r3 (not saved; return value register) | |
245 | r31 - r13 (saved; order given to save least number) | |
246 | r12 (not saved; if used for DImode or DFmode would use r13) | |
247 | mq (not saved; best to use it if we can) | |
248 | ctr (not saved; when we have the choice ctr is better) | |
249 | lr (saved) | |
250 | cr5, r1, r2, ap (fixed) */ | |
251 | ||
252 | #define REG_ALLOC_ORDER \ | |
253 | {32, \ | |
254 | 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \ | |
255 | 33, \ | |
256 | 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ | |
257 | 50, 49, 48, 47, 46, \ | |
258 | 69, 74, 75, 68, 70, 71, 72, \ | |
259 | 0, \ | |
260 | 9, 11, 10, 8, 7, 6, 5, 4, \ | |
261 | 3, \ | |
262 | 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ | |
263 | 18, 17, 16, 15, 14, 13, 12, \ | |
264 | 64, 66, 65, \ | |
265 | 73, 1, 2, 67} | |
266 | ||
267 | /* True if register is floating-point. */ | |
268 | #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) | |
269 | ||
270 | /* True if register is a condition register. */ | |
271 | #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75) | |
272 | ||
273 | /* True if register is an integer register. */ | |
274 | #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67) | |
275 | ||
276 | /* Return number of consecutive hard regs needed starting at reg REGNO | |
277 | to hold something of mode MODE. | |
278 | This is ordinarily the length in words of a value of mode MODE | |
279 | but can be less for certain modes in special long registers. | |
280 | ||
281 | On RS/6000, ordinary registers hold 32 bits worth; | |
282 | a single floating point register holds 64 bits worth. */ | |
283 | ||
284 | #define HARD_REGNO_NREGS(REGNO, MODE) \ | |
285 | (FP_REGNO_P (REGNO) \ | |
286 | ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \ | |
287 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) | |
288 | ||
289 | /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. | |
290 | On RS/6000, the cpu registers can hold any mode but the float registers | |
291 | can hold only floating modes and CR register can only hold CC modes. We | |
292 | cannot put DImode or TImode anywhere except general register and they | |
293 | must be able to fit within the register set. */ | |
294 | ||
295 | #define HARD_REGNO_MODE_OK(REGNO, MODE) \ | |
296 | (FP_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_FLOAT \ | |
297 | : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \ | |
298 | : ! INT_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_INT \ | |
299 | : 1) | |
300 | ||
301 | /* Value is 1 if it is a good idea to tie two pseudo registers | |
302 | when one has mode MODE1 and one has mode MODE2. | |
303 | If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, | |
304 | for any hard reg, then this must be 0 for correct output. */ | |
305 | #define MODES_TIEABLE_P(MODE1, MODE2) \ | |
306 | (GET_MODE_CLASS (MODE1) == MODE_FLOAT \ | |
307 | ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \ | |
308 | : GET_MODE_CLASS (MODE2) == MODE_FLOAT \ | |
309 | ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \ | |
310 | : GET_MODE_CLASS (MODE1) == MODE_CC \ | |
311 | ? GET_MODE_CLASS (MODE2) == MODE_CC \ | |
312 | : GET_MODE_CLASS (MODE2) == MODE_CC \ | |
313 | ? GET_MODE_CLASS (MODE1) == MODE_CC \ | |
314 | : 1) | |
315 | ||
316 | /* A C expression returning the cost of moving data from a register of class | |
317 | CLASS1 to one of CLASS2. | |
318 | ||
319 | On the RS/6000, copying between floating-point and fixed-point | |
320 | registers is expensive. */ | |
321 | ||
322 | #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ | |
323 | ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \ | |
324 | : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \ | |
325 | : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \ | |
326 | : 2) | |
327 | ||
328 | /* A C expressions returning the cost of moving data of MODE from a register to | |
329 | or from memory. | |
330 | ||
331 | On the RS/6000, bump this up a bit. */ | |
332 | ||
e8a8bc24 | 333 | #define MEMORY_MOVE_COST(MODE) 6 |
f045b2c9 RS |
334 | |
335 | /* Specify the cost of a branch insn; roughly the number of extra insns that | |
336 | should be added to avoid a branch. | |
337 | ||
338 | Set this to 2 on the RS/6000 since that is roughly the average cost of an | |
339 | unscheduled conditional branch. */ | |
340 | ||
341 | #define BRANCH_COST 2 | |
342 | ||
343 | /* Specify the registers used for certain standard purposes. | |
344 | The values of these macros are register numbers. */ | |
345 | ||
346 | /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ | |
347 | /* #define PC_REGNUM */ | |
348 | ||
349 | /* Register to use for pushing function arguments. */ | |
350 | #define STACK_POINTER_REGNUM 1 | |
351 | ||
352 | /* Base register for access to local variables of the function. */ | |
353 | #define FRAME_POINTER_REGNUM 31 | |
354 | ||
355 | /* Value should be nonzero if functions must have frame pointers. | |
356 | Zero means the frame pointer need not be set up (and parms | |
357 | may be accessed via the stack pointer) in functions that seem suitable. | |
358 | This is computed in `reload', in reload1.c. */ | |
359 | #define FRAME_POINTER_REQUIRED 0 | |
360 | ||
361 | /* Base register for access to arguments of the function. */ | |
362 | #define ARG_POINTER_REGNUM 67 | |
363 | ||
364 | /* Place to put static chain when calling a function that requires it. */ | |
365 | #define STATIC_CHAIN_REGNUM 11 | |
366 | ||
367 | /* Place that structure value return address is placed. | |
368 | ||
369 | On the RS/6000, it is passed as an extra parameter. */ | |
370 | #define STRUCT_VALUE 0 | |
371 | \f | |
372 | /* Define the classes of registers for register constraints in the | |
373 | machine description. Also define ranges of constants. | |
374 | ||
375 | One of the classes must always be named ALL_REGS and include all hard regs. | |
376 | If there is more than one class, another class must be named NO_REGS | |
377 | and contain no registers. | |
378 | ||
379 | The name GENERAL_REGS must be the name of a class (or an alias for | |
380 | another name such as ALL_REGS). This is the class of registers | |
381 | that is allowed by "g" or "r" in a register constraint. | |
382 | Also, registers outside this class are allocated only when | |
383 | instructions express preferences for them. | |
384 | ||
385 | The classes must be numbered in nondecreasing order; that is, | |
386 | a larger-numbered class must never be contained completely | |
387 | in a smaller-numbered class. | |
388 | ||
389 | For any two classes, it is very desirable that there be another | |
390 | class that represents their union. */ | |
391 | ||
392 | /* The RS/6000 has three types of registers, fixed-point, floating-point, | |
393 | and condition registers, plus three special registers, MQ, CTR, and the | |
394 | link register. | |
395 | ||
396 | However, r0 is special in that it cannot be used as a base register. | |
397 | So make a class for registers valid as base registers. | |
398 | ||
399 | Also, cr0 is the only condition code register that can be used in | |
400 | arithmetic insns, so make a separate class for it. */ | |
401 | ||
402 | enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS, | |
403 | NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS, | |
e8a8bc24 RK |
404 | SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS, |
405 | ALL_REGS, LIM_REG_CLASSES }; | |
f045b2c9 RS |
406 | |
407 | #define N_REG_CLASSES (int) LIM_REG_CLASSES | |
408 | ||
409 | /* Give names of register classes as strings for dump file. */ | |
410 | ||
411 | #define REG_CLASS_NAMES \ | |
412 | { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \ | |
413 | "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \ | |
e8a8bc24 RK |
414 | "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \ |
415 | "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" } | |
f045b2c9 RS |
416 | |
417 | /* Define which registers fit in which classes. | |
418 | This is an initializer for a vector of HARD_REG_SET | |
419 | of length N_REG_CLASSES. */ | |
420 | ||
421 | #define REG_CLASS_CONTENTS \ | |
422 | { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \ | |
e8a8bc24 RK |
423 | {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \ |
424 | {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \ | |
425 | {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \ | |
426 | {~0, ~0, 0xffff} } | |
f045b2c9 RS |
427 | |
428 | /* The same information, inverted: | |
429 | Return the class number of the smallest class containing | |
430 | reg number REGNO. This could be a conditional expression | |
431 | or could index an array. */ | |
432 | ||
433 | #define REGNO_REG_CLASS(REGNO) \ | |
434 | ((REGNO) == 0 ? GENERAL_REGS \ | |
435 | : (REGNO) < 32 ? BASE_REGS \ | |
436 | : FP_REGNO_P (REGNO) ? FLOAT_REGS \ | |
437 | : (REGNO) == 68 ? CR0_REGS \ | |
438 | : CR_REGNO_P (REGNO) ? CR_REGS \ | |
439 | : (REGNO) == 64 ? MQ_REGS \ | |
440 | : (REGNO) == 65 ? LINK_REGS \ | |
441 | : (REGNO) == 66 ? CTR_REGS \ | |
442 | : (REGNO) == 67 ? BASE_REGS \ | |
443 | : NO_REGS) | |
444 | ||
445 | /* The class value for index registers, and the one for base regs. */ | |
446 | #define INDEX_REG_CLASS GENERAL_REGS | |
447 | #define BASE_REG_CLASS BASE_REGS | |
448 | ||
449 | /* Get reg_class from a letter such as appears in the machine description. */ | |
450 | ||
451 | #define REG_CLASS_FROM_LETTER(C) \ | |
452 | ((C) == 'f' ? FLOAT_REGS \ | |
453 | : (C) == 'b' ? BASE_REGS \ | |
454 | : (C) == 'h' ? SPECIAL_REGS \ | |
455 | : (C) == 'q' ? MQ_REGS \ | |
456 | : (C) == 'c' ? CTR_REGS \ | |
457 | : (C) == 'l' ? LINK_REGS \ | |
458 | : (C) == 'x' ? CR0_REGS \ | |
459 | : (C) == 'y' ? CR_REGS \ | |
460 | : NO_REGS) | |
461 | ||
462 | /* The letters I, J, K, L, M, N, and P in a register constraint string | |
463 | can be used to stand for particular ranges of immediate operands. | |
464 | This macro defines what the ranges are. | |
465 | C is the letter, and VALUE is a constant value. | |
466 | Return 1 if VALUE is in the range specified by C. | |
467 | ||
468 | `I' is signed 16-bit constants | |
469 | `J' is a constant with only the high-order 16 bits non-zero | |
470 | `K' is a constant with only the low-order 16 bits non-zero | |
471 | `L' is a constant that can be placed into a mask operand | |
472 | `M' is a constant that is greater than 31 | |
473 | `N' is a constant that is an exact power of two | |
474 | `O' is the constant zero | |
475 | `P' is a constant whose negation is a signed 16-bit constant */ | |
476 | ||
477 | #define CONST_OK_FOR_LETTER_P(VALUE, C) \ | |
478 | ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \ | |
479 | : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \ | |
480 | : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \ | |
481 | : (C) == 'L' ? mask_constant (VALUE) \ | |
482 | : (C) == 'M' ? (VALUE) > 31 \ | |
483 | : (C) == 'N' ? exact_log2 (VALUE) >= 0 \ | |
484 | : (C) == 'O' ? (VALUE) == 0 \ | |
485 | : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \ | |
486 | : 0) | |
487 | ||
488 | /* Similar, but for floating constants, and defining letters G and H. | |
489 | Here VALUE is the CONST_DOUBLE rtx itself. | |
490 | ||
491 | We flag for special constants when we can copy the constant into | |
492 | a general register in two insns for DF and one insn for SF. */ | |
493 | ||
494 | #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ | |
495 | ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0) | |
496 | ||
497 | /* Optional extra constraints for this machine. | |
498 | ||
499 | For the RS/6000, `Q' means that this is a memory operand that is just | |
500 | an offset from a register. */ | |
501 | ||
e8a8bc24 RK |
502 | #define EXTRA_CONSTRAINT(OP, C) \ |
503 | ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \ | |
504 | : 0) | |
f045b2c9 RS |
505 | |
506 | /* Given an rtx X being reloaded into a reg required to be | |
507 | in class CLASS, return the class of reg to actually use. | |
508 | In general this is just CLASS; but on some machines | |
509 | in some cases it is preferable to use a more restrictive class. | |
510 | ||
511 | On the RS/6000, we have to return NO_REGS when we want to reload a | |
512 | floating-point CONST_DOUBLE to force it to be copied to memory. */ | |
513 | ||
514 | #define PREFERRED_RELOAD_CLASS(X,CLASS) \ | |
515 | ((GET_CODE (X) == CONST_DOUBLE \ | |
516 | && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \ | |
517 | ? NO_REGS : (CLASS)) | |
518 | ||
519 | /* Return the register class of a scratch register needed to copy IN into | |
520 | or out of a register in CLASS in MODE. If it can be done directly, | |
521 | NO_REGS is returned. */ | |
522 | ||
523 | #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ | |
524 | secondary_reload_class (CLASS, MODE, IN) | |
525 | ||
526 | /* Return the maximum number of consecutive registers | |
527 | needed to represent mode MODE in a register of class CLASS. | |
528 | ||
529 | On RS/6000, this is the size of MODE in words, | |
530 | except in the FP regs, where a single reg is enough for two words. */ | |
531 | #define CLASS_MAX_NREGS(CLASS, MODE) \ | |
532 | ((CLASS) == FLOAT_REGS \ | |
533 | ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \ | |
534 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) | |
535 | \f | |
536 | /* Stack layout; function entry, exit and calling. */ | |
537 | ||
538 | /* Define this if pushing a word on the stack | |
539 | makes the stack pointer a smaller address. */ | |
540 | #define STACK_GROWS_DOWNWARD | |
541 | ||
542 | /* Define this if the nominal address of the stack frame | |
543 | is at the high-address end of the local variables; | |
544 | that is, each additional local variable allocated | |
545 | goes at a more negative offset in the frame. | |
546 | ||
547 | On the RS/6000, we grow upwards, from the area after the outgoing | |
548 | arguments. */ | |
549 | /* #define FRAME_GROWS_DOWNWARD */ | |
550 | ||
551 | /* Offset within stack frame to start allocating local variables at. | |
552 | If FRAME_GROWS_DOWNWARD, this is the offset to the END of the | |
553 | first local allocated. Otherwise, it is the offset to the BEGINNING | |
554 | of the first local allocated. | |
555 | ||
556 | On the RS/6000, the frame pointer is the same as the stack pointer, | |
557 | except for dynamic allocations. So we start after the fixed area and | |
558 | outgoing parameter area. */ | |
559 | ||
560 | #define STARTING_FRAME_OFFSET (current_function_outgoing_args_size + 24) | |
561 | ||
562 | /* If we generate an insn to push BYTES bytes, | |
563 | this says how many the stack pointer really advances by. | |
564 | On RS/6000, don't define this because there are no push insns. */ | |
565 | /* #define PUSH_ROUNDING(BYTES) */ | |
566 | ||
567 | /* Offset of first parameter from the argument pointer register value. | |
568 | On the RS/6000, we define the argument pointer to the start of the fixed | |
569 | area. */ | |
570 | #define FIRST_PARM_OFFSET(FNDECL) 24 | |
571 | ||
572 | /* Define this if stack space is still allocated for a parameter passed | |
573 | in a register. The value is the number of bytes allocated to this | |
574 | area. */ | |
575 | #define REG_PARM_STACK_SPACE(FNDECL) 32 | |
576 | ||
577 | /* Define this if the above stack space is to be considered part of the | |
578 | space allocated by the caller. */ | |
579 | #define OUTGOING_REG_PARM_STACK_SPACE | |
580 | ||
581 | /* This is the difference between the logical top of stack and the actual sp. | |
582 | ||
583 | For the RS/6000, sp points past the fixed area. */ | |
584 | #define STACK_POINTER_OFFSET 24 | |
585 | ||
586 | /* Define this if the maximum size of all the outgoing args is to be | |
587 | accumulated and pushed during the prologue. The amount can be | |
588 | found in the variable current_function_outgoing_args_size. */ | |
589 | #define ACCUMULATE_OUTGOING_ARGS | |
590 | ||
591 | /* Value is the number of bytes of arguments automatically | |
592 | popped when returning from a subroutine call. | |
593 | FUNTYPE is the data type of the function (as a tree), | |
594 | or for a library call it is an identifier node for the subroutine name. | |
595 | SIZE is the number of bytes of arguments passed on the stack. */ | |
596 | ||
597 | #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0 | |
598 | ||
599 | /* Define how to find the value returned by a function. | |
600 | VALTYPE is the data type of the value (as a tree). | |
601 | If the precise function being called is known, FUNC is its FUNCTION_DECL; | |
602 | otherwise, FUNC is 0. | |
603 | ||
604 | On RS/6000 an integer value is in r3 and a floating-point value is in | |
605 | fp1. */ | |
606 | ||
607 | #define FUNCTION_VALUE(VALTYPE, FUNC) \ | |
608 | gen_rtx (REG, TYPE_MODE (VALTYPE), \ | |
609 | TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3) | |
610 | ||
611 | /* Define how to find the value returned by a library function | |
612 | assuming the value has mode MODE. */ | |
613 | ||
614 | #define LIBCALL_VALUE(MODE) \ | |
615 | gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3) | |
616 | ||
617 | /* The definition of this macro implies that there are cases where | |
618 | a scalar value cannot be returned in registers. | |
619 | ||
620 | For the RS/6000, any structure or union type is returned in memory. */ | |
621 | ||
622 | #define RETURN_IN_MEMORY(TYPE) \ | |
623 | (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE) | |
624 | ||
625 | /* 1 if N is a possible register number for a function value | |
626 | as seen by the caller. | |
627 | ||
628 | On RS/6000, this is r3 and fp1. */ | |
629 | ||
630 | #define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33)) | |
631 | ||
632 | /* 1 if N is a possible register number for function argument passing. | |
633 | On RS/6000, these are r3-r10 and fp1-fp13. */ | |
634 | ||
635 | #define FUNCTION_ARG_REGNO_P(N) \ | |
636 | (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45)) | |
637 | \f | |
638 | /* Define a data type for recording info about an argument list | |
639 | during the scan of that argument list. This data type should | |
640 | hold all necessary information about the function itself | |
641 | and about the args processed so far, enough to enable macros | |
642 | such as FUNCTION_ARG to determine where the next arg should go. | |
643 | ||
644 | On the RS/6000, this is a structure. The first element is the number of | |
645 | total argument words, the second is used to store the next | |
646 | floating-point register number, and the third says how many more args we | |
647 | have prototype types for. */ | |
648 | ||
649 | struct rs6000_args {int words, fregno, nargs_prototype; }; | |
650 | #define CUMULATIVE_ARGS struct rs6000_args | |
651 | ||
652 | /* Define intermediate macro to compute the size (in registers) of an argument | |
653 | for the RS/6000. */ | |
654 | ||
655 | #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \ | |
656 | (! (NAMED) ? 0 \ | |
657 | : (MODE) != BLKmode \ | |
658 | ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ | |
659 | : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) | |
660 | ||
661 | /* Initialize a variable CUM of type CUMULATIVE_ARGS | |
662 | for a call to a function whose data type is FNTYPE. | |
663 | For a library call, FNTYPE is 0. */ | |
664 | ||
665 | #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ | |
666 | (CUM).words = 0, \ | |
667 | (CUM).fregno = 33, \ | |
668 | (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \ | |
669 | ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \ | |
670 | + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \ | |
671 | || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \ | |
672 | : 0) | |
673 | ||
674 | /* Similar, but when scanning the definition of a procedure. We always | |
675 | set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ | |
676 | ||
677 | #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \ | |
678 | (CUM).words = 0, \ | |
679 | (CUM).fregno = 33, \ | |
680 | (CUM).nargs_prototype = 1000 | |
681 | ||
682 | /* Update the data in CUM to advance over an argument | |
683 | of mode MODE and data type TYPE. | |
684 | (TYPE is null for libcalls where that information may not be available.) */ | |
685 | ||
686 | #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ | |
687 | { (CUM).nargs_prototype--; \ | |
688 | if (NAMED) \ | |
689 | { \ | |
690 | (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \ | |
691 | if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \ | |
692 | (CUM).fregno++; \ | |
693 | } \ | |
694 | } | |
695 | ||
696 | /* Non-zero if we can use a floating-point register to pass this arg. */ | |
697 | #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \ | |
698 | (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46) | |
699 | ||
700 | /* Determine where to put an argument to a function. | |
701 | Value is zero to push the argument on the stack, | |
702 | or a hard register in which to store the argument. | |
703 | ||
704 | MODE is the argument's machine mode. | |
705 | TYPE is the data type of the argument (as a tree). | |
706 | This is null for libcalls where that information may | |
707 | not be available. | |
708 | CUM is a variable of type CUMULATIVE_ARGS which gives info about | |
709 | the preceding args and about the function being called. | |
710 | NAMED is nonzero if this argument is a named parameter | |
711 | (otherwise it is an extra parameter matching an ellipsis). | |
712 | ||
713 | On RS/6000 the first eight words of non-FP are normally in registers | |
714 | and the rest are pushed. The first 13 FP args are in registers. | |
715 | ||
716 | If this is floating-point and no prototype is specified, we use | |
717 | both an FP and integer register (or possibly FP reg and stack). */ | |
718 | ||
719 | #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ | |
720 | (! (NAMED) ? 0 \ | |
38bd31fc | 721 | : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \ |
d072107f | 722 | : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \ |
f045b2c9 RS |
723 | ? ((CUM).nargs_prototype > 0 \ |
724 | ? gen_rtx (REG, MODE, (CUM).fregno) \ | |
725 | : ((CUM).words < 8 \ | |
726 | ? gen_rtx (EXPR_LIST, VOIDmode, \ | |
727 | gen_rtx (REG, (MODE), 3 + (CUM).words), \ | |
728 | gen_rtx (REG, (MODE), (CUM).fregno)) \ | |
729 | : gen_rtx (EXPR_LIST, VOIDmode, 0, \ | |
730 | gen_rtx (REG, (MODE), (CUM).fregno)))) \ | |
731 | : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0) | |
732 | ||
733 | /* For an arg passed partly in registers and partly in memory, | |
734 | this is the number of registers used. | |
735 | For args passed entirely in registers or entirely in memory, zero. */ | |
736 | ||
737 | #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ | |
738 | (! (NAMED) ? 0 \ | |
739 | : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \ | |
740 | : (((CUM).words < 8 \ | |
741 | && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \ | |
742 | ? 8 - (CUM).words : 0)) | |
743 | ||
744 | /* Perform any needed actions needed for a function that is receiving a | |
745 | variable number of arguments. | |
746 | ||
747 | CUM is as above. | |
748 | ||
749 | MODE and TYPE are the mode and type of the current parameter. | |
750 | ||
751 | PRETEND_SIZE is a variable that should be set to the amount of stack | |
752 | that must be pushed by the prolog to pretend that our caller pushed | |
753 | it. | |
754 | ||
755 | Normally, this macro will push all remaining incoming registers on the | |
756 | stack and set PRETEND_SIZE to the length of the registers pushed. */ | |
757 | ||
758 | #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ | |
759 | { if ((CUM).words < 8) \ | |
760 | { \ | |
761 | int first_reg_offset = (CUM).words; \ | |
762 | \ | |
763 | if (MUST_PASS_IN_STACK (MODE, TYPE)) \ | |
764 | first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \ | |
765 | \ | |
766 | if (first_reg_offset > 8) \ | |
767 | first_reg_offset = 8; \ | |
768 | \ | |
769 | if (! (NO_RTL) && first_reg_offset != 8) \ | |
770 | move_block_from_reg \ | |
771 | (3 + first_reg_offset, \ | |
772 | gen_rtx (MEM, BLKmode, \ | |
773 | plus_constant (virtual_incoming_args_rtx, \ | |
774 | first_reg_offset * 4)), \ | |
775 | 8 - first_reg_offset); \ | |
776 | PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \ | |
777 | } \ | |
778 | } | |
779 | ||
780 | /* This macro generates the assembly code for function entry. | |
781 | FILE is a stdio stream to output the code to. | |
782 | SIZE is an int: how many units of temporary storage to allocate. | |
783 | Refer to the array `regs_ever_live' to determine which registers | |
784 | to save; `regs_ever_live[I]' is nonzero if register number I | |
785 | is ever used in the function. This macro is responsible for | |
786 | knowing which registers should not be saved even if used. */ | |
787 | ||
788 | #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE) | |
789 | ||
790 | /* Output assembler code to FILE to increment profiler label # LABELNO | |
58a39e45 | 791 | for profiling a function entry. */ |
f045b2c9 RS |
792 | |
793 | #define FUNCTION_PROFILER(FILE, LABELNO) \ | |
58a39e45 | 794 | output_function_profiler ((FILE), (LABELNO)); |
f045b2c9 RS |
795 | |
796 | /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, | |
797 | the stack pointer does not matter. No definition is equivalent to | |
798 | always zero. | |
799 | ||
800 | On the RS/6000, this is non-zero because we can restore the stack from | |
801 | its backpointer, which we maintain. */ | |
802 | #define EXIT_IGNORE_STACK 1 | |
803 | ||
804 | /* This macro generates the assembly code for function exit, | |
805 | on machines that need it. If FUNCTION_EPILOGUE is not defined | |
806 | then individual return instructions are generated for each | |
807 | return statement. Args are same as for FUNCTION_PROLOGUE. | |
808 | ||
809 | The function epilogue should not depend on the current stack pointer! | |
810 | It should use the frame pointer only. This is mandatory because | |
811 | of alloca; we also take advantage of it to omit stack adjustments | |
812 | before returning. */ | |
813 | ||
814 | #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE) | |
815 | \f | |
816 | /* Output assembler code for a block containing the constant parts | |
817 | of a trampoline, leaving space for the variable parts. | |
818 | ||
819 | The trampoline should set the static chain pointer to value placed | |
820 | into the trampoline and should branch to the specified routine. | |
821 | ||
822 | On the RS/6000, this is not code at all, but merely a data area, | |
823 | since that is the way all functions are called. The first word is | |
824 | the address of the function, the second word is the TOC pointer (r2), | |
825 | and the third word is the static chain value. */ | |
826 | ||
827 | #define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); } | |
828 | ||
829 | /* Length in units of the trampoline for entering a nested function. */ | |
830 | ||
831 | #define TRAMPOLINE_SIZE 12 | |
832 | ||
833 | /* Emit RTL insns to initialize the variable parts of a trampoline. | |
834 | FNADDR is an RTX for the address of the function's pure code. | |
835 | CXT is an RTX for the static chain value for the function. */ | |
836 | ||
837 | #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \ | |
838 | { \ | |
839 | emit_move_insn (gen_rtx (MEM, SImode, memory_address (SImode, ADDR)), \ | |
840 | force_reg (SImode, FNADDR)); \ | |
841 | emit_move_insn (gen_rtx (MEM, SImode, \ | |
842 | memory_address (SImode, plus_constant (ADDR, 4))), \ | |
843 | gen_rtx (REG, SImode, 2)); \ | |
844 | emit_move_insn (gen_rtx (MEM, SImode, \ | |
845 | memory_address (SImode, plus_constant (ADDR, 8))), \ | |
846 | force_reg (SImode, CXT)); \ | |
847 | } | |
848 | \f | |
849 | /* Definitions for register eliminations. | |
850 | ||
851 | We have two registers that can be eliminated on the RS/6000. First, the | |
852 | frame pointer register can often be eliminated in favor of the stack | |
853 | pointer register. Secondly, the argument pointer register can always be | |
854 | eliminated; it is replaced with either the stack or frame pointer. */ | |
855 | ||
856 | /* This is an array of structures. Each structure initializes one pair | |
857 | of eliminable registers. The "from" register number is given first, | |
858 | followed by "to". Eliminations of the same "from" register are listed | |
859 | in order of preference. */ | |
860 | #define ELIMINABLE_REGS \ | |
861 | {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ | |
862 | { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ | |
863 | { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM} } | |
864 | ||
865 | /* Given FROM and TO register numbers, say whether this elimination is allowed. | |
866 | Frame pointer elimination is automatically handled. | |
867 | ||
868 | For the RS/6000, if frame pointer elimination is being done, we would like | |
869 | to convert ap into fp, not sp. */ | |
870 | ||
871 | #define CAN_ELIMINATE(FROM, TO) \ | |
872 | ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ | |
873 | ? ! frame_pointer_needed \ | |
874 | : 1) | |
875 | ||
876 | /* Define the offset between two registers, one to be eliminated, and the other | |
877 | its replacement, at the start of a routine. */ | |
878 | #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ | |
879 | { \ | |
880 | int total_stack_size = (rs6000_sa_size () + get_frame_size () \ | |
881 | + current_function_outgoing_args_size); \ | |
882 | \ | |
883 | total_stack_size = (total_stack_size + 7) & ~7; \ | |
884 | \ | |
885 | if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ | |
886 | { \ | |
887 | if (rs6000_pushes_stack ()) \ | |
888 | (OFFSET) = 0; \ | |
889 | else \ | |
890 | (OFFSET) = - total_stack_size; \ | |
891 | } \ | |
892 | else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ | |
893 | (OFFSET) = total_stack_size; \ | |
894 | else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ | |
895 | { \ | |
896 | if (rs6000_pushes_stack ()) \ | |
897 | (OFFSET) = total_stack_size; \ | |
898 | else \ | |
899 | (OFFSET) = 0; \ | |
900 | } \ | |
901 | else \ | |
902 | abort (); \ | |
903 | } | |
904 | \f | |
905 | /* Addressing modes, and classification of registers for them. */ | |
906 | ||
907 | /* #define HAVE_POST_INCREMENT */ | |
908 | /* #define HAVE_POST_DECREMENT */ | |
909 | ||
910 | #define HAVE_PRE_DECREMENT | |
911 | #define HAVE_PRE_INCREMENT | |
912 | ||
913 | /* Macros to check register numbers against specific register classes. */ | |
914 | ||
915 | /* These assume that REGNO is a hard or pseudo reg number. | |
916 | They give nonzero only if REGNO is a hard reg of the suitable class | |
917 | or a pseudo reg currently allocated to a suitable hard reg. | |
918 | Since they use reg_renumber, they are safe only once reg_renumber | |
919 | has been allocated, which happens in local-alloc.c. */ | |
920 | ||
921 | #define REGNO_OK_FOR_INDEX_P(REGNO) \ | |
922 | ((REGNO) < FIRST_PSEUDO_REGISTER \ | |
923 | ? (REGNO) <= 31 || (REGNO) == 67 \ | |
924 | : (reg_renumber[REGNO] >= 0 \ | |
925 | && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67))) | |
926 | ||
927 | #define REGNO_OK_FOR_BASE_P(REGNO) \ | |
928 | ((REGNO) < FIRST_PSEUDO_REGISTER \ | |
929 | ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \ | |
930 | : (reg_renumber[REGNO] > 0 \ | |
931 | && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67))) | |
932 | \f | |
933 | /* Maximum number of registers that can appear in a valid memory address. */ | |
934 | ||
935 | #define MAX_REGS_PER_ADDRESS 2 | |
936 | ||
937 | /* Recognize any constant value that is a valid address. */ | |
938 | ||
939 | #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X) | |
940 | ||
941 | /* Nonzero if the constant value X is a legitimate general operand. | |
942 | It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. | |
943 | ||
944 | On the RS/6000, all integer constants are acceptable, most won't be valid | |
945 | for particular insns, though. Only easy FP constants are | |
946 | acceptable. */ | |
947 | ||
948 | #define LEGITIMATE_CONSTANT_P(X) \ | |
949 | (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \ | |
950 | || easy_fp_constant (X, GET_MODE (X))) | |
951 | ||
952 | /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx | |
953 | and check its validity for a certain class. | |
954 | We have two alternate definitions for each of them. | |
955 | The usual definition accepts all pseudo regs; the other rejects | |
956 | them unless they have been allocated suitable hard regs. | |
957 | The symbol REG_OK_STRICT causes the latter definition to be used. | |
958 | ||
959 | Most source files want to accept pseudo regs in the hope that | |
960 | they will get allocated to the class that the insn wants them to be in. | |
961 | Source files for reload pass need to be strict. | |
962 | After reload, it makes no difference, since pseudo regs have | |
963 | been eliminated by then. */ | |
964 | ||
965 | #ifndef REG_OK_STRICT | |
966 | ||
967 | /* Nonzero if X is a hard reg that can be used as an index | |
968 | or if it is a pseudo reg. */ | |
969 | #define REG_OK_FOR_INDEX_P(X) \ | |
970 | (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER) | |
971 | ||
972 | /* Nonzero if X is a hard reg that can be used as a base reg | |
973 | or if it is a pseudo reg. */ | |
974 | #define REG_OK_FOR_BASE_P(X) \ | |
975 | (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X)) | |
976 | ||
977 | #else | |
978 | ||
979 | /* Nonzero if X is a hard reg that can be used as an index. */ | |
980 | #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) | |
981 | /* Nonzero if X is a hard reg that can be used as a base reg. */ | |
982 | #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) | |
983 | ||
984 | #endif | |
985 | \f | |
986 | /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression | |
987 | that is a valid memory address for an instruction. | |
988 | The MODE argument is the machine mode for the MEM expression | |
989 | that wants to use this address. | |
990 | ||
991 | On the RS/6000, there are four valid address: a SYMBOL_REF that | |
992 | refers to a constant pool entry of an address (or the sum of it | |
993 | plus a constant), a short (16-bit signed) constant plus a register, | |
994 | the sum of two registers, or a register indirect, possibly with an | |
995 | auto-increment. For DFmode and DImode with an constant plus register, | |
996 | we must ensure that both words are addressable. */ | |
997 | ||
998 | #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \ | |
999 | (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \ | |
1000 | && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X))) | |
1001 | ||
1002 | #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \ | |
1003 | (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \ | |
1004 | || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \ | |
1005 | && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ | |
1006 | && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0)))) | |
1007 | ||
1008 | #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \ | |
1009 | (GET_CODE (X) == CONST_INT \ | |
1010 | && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000) | |
1011 | ||
1012 | #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \ | |
1013 | (GET_CODE (X) == PLUS \ | |
1014 | && GET_CODE (XEXP (X, 0)) == REG \ | |
1015 | && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ | |
1016 | && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \ | |
1017 | && (((MODE) != DFmode && (MODE) != DImode) \ | |
1018 | || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4))) | |
1019 | ||
1020 | #define LEGITIMATE_INDEXED_ADDRESS_P(X) \ | |
1021 | (GET_CODE (X) == PLUS \ | |
1022 | && GET_CODE (XEXP (X, 0)) == REG \ | |
1023 | && GET_CODE (XEXP (X, 1)) == REG \ | |
1024 | && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \ | |
1025 | && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \ | |
1026 | || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \ | |
1027 | && REG_OK_FOR_INDEX_P (XEXP (X, 0))))) | |
1028 | ||
1029 | #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \ | |
1030 | (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) | |
1031 | ||
1032 | #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ | |
1033 | { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \ | |
1034 | goto ADDR; \ | |
1035 | if (GET_CODE (X) == PRE_INC \ | |
1036 | && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \ | |
1037 | goto ADDR; \ | |
1038 | if (GET_CODE (X) == PRE_DEC \ | |
1039 | && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \ | |
1040 | goto ADDR; \ | |
1041 | if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \ | |
1042 | goto ADDR; \ | |
1043 | if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \ | |
1044 | goto ADDR; \ | |
1045 | if ((MODE) != DImode && (MODE) != TImode \ | |
1046 | && LEGITIMATE_INDEXED_ADDRESS_P (X)) \ | |
1047 | goto ADDR; \ | |
1048 | } | |
1049 | \f | |
1050 | /* Try machine-dependent ways of modifying an illegitimate address | |
1051 | to be legitimate. If we find one, return the new, valid address. | |
1052 | This macro is used in only one place: `memory_address' in explow.c. | |
1053 | ||
1054 | OLDX is the address as it was before break_out_memory_refs was called. | |
1055 | In some cases it is useful to look at this to decide what needs to be done. | |
1056 | ||
1057 | MODE and WIN are passed so that this macro can use | |
1058 | GO_IF_LEGITIMATE_ADDRESS. | |
1059 | ||
1060 | It is always safe for this macro to do nothing. It exists to recognize | |
1061 | opportunities to optimize the output. | |
1062 | ||
1063 | On RS/6000, first check for the sum of a register with a constant | |
1064 | integer that is out of range. If so, generate code to add the | |
1065 | constant with the low-order 16 bits masked to the register and force | |
1066 | this result into another register (this can be done with `cau'). | |
1067 | Then generate an address of REG+(CONST&0xffff), allowing for the | |
1068 | possibility of bit 16 being a one. | |
1069 | ||
1070 | Then check for the sum of a register and something not constant, try to | |
1071 | load the other things into a register and return the sum. */ | |
1072 | ||
1073 | #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ | |
1074 | { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ | |
1075 | && GET_CODE (XEXP (X, 1)) == CONST_INT \ | |
1076 | && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \ | |
1077 | { int high_int, low_int; \ | |
1078 | high_int = INTVAL (XEXP (X, 1)) >> 16; \ | |
1079 | low_int = INTVAL (XEXP (X, 1)) & 0xffff; \ | |
1080 | if (low_int & 0x8000) \ | |
1081 | high_int += 1, low_int |= 0xffff0000; \ | |
1082 | (X) = gen_rtx (PLUS, SImode, \ | |
1083 | force_operand \ | |
1084 | (gen_rtx (PLUS, SImode, XEXP (X, 0), \ | |
1085 | gen_rtx (CONST_INT, VOIDmode, \ | |
1086 | high_int << 16)), 0),\ | |
1087 | gen_rtx (CONST_INT, VOIDmode, low_int)); \ | |
f357808b | 1088 | goto WIN; \ |
f045b2c9 RS |
1089 | } \ |
1090 | else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ | |
1091 | && GET_CODE (XEXP (X, 1)) != CONST_INT) \ | |
f357808b RK |
1092 | { \ |
1093 | (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \ | |
1094 | force_reg (SImode, force_operand (XEXP (X, 1), 0))); \ | |
1095 | goto WIN; \ | |
1096 | } \ | |
f045b2c9 RS |
1097 | } |
1098 | ||
1099 | /* Go to LABEL if ADDR (a legitimate address expression) | |
1100 | has an effect that depends on the machine mode it is used for. | |
1101 | ||
1102 | On the RS/6000 this is true if the address is valid with a zero offset | |
1103 | but not with an offset of four (this means it cannot be used as an | |
1104 | address for DImode or DFmode) or is a pre-increment or decrement. Since | |
1105 | we know it is valid, we just check for an address that is not valid with | |
1106 | an offset of four. */ | |
1107 | ||
1108 | #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ | |
1109 | { if (GET_CODE (ADDR) == PLUS \ | |
1110 | && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \ | |
1111 | && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \ | |
1112 | goto LABEL; \ | |
1113 | if (GET_CODE (ADDR) == PRE_INC) \ | |
1114 | goto LABEL; \ | |
1115 | if (GET_CODE (ADDR) == PRE_DEC) \ | |
1116 | goto LABEL; \ | |
1117 | } | |
1118 | \f | |
1119 | /* Define this if some processing needs to be done immediately before | |
1120 | emitting code for an insn. */ | |
1121 | ||
1122 | /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */ | |
1123 | ||
1124 | /* Specify the machine mode that this machine uses | |
1125 | for the index in the tablejump instruction. */ | |
1126 | #define CASE_VECTOR_MODE SImode | |
1127 | ||
1128 | /* Define this if the tablejump instruction expects the table | |
1129 | to contain offsets from the address of the table. | |
1130 | Do not define this if the table should contain absolute addresses. */ | |
1131 | #define CASE_VECTOR_PC_RELATIVE | |
1132 | ||
1133 | /* Specify the tree operation to be used to convert reals to integers. */ | |
1134 | #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR | |
1135 | ||
1136 | /* This is the kind of divide that is easiest to do in the general case. */ | |
1137 | #define EASY_DIV_EXPR TRUNC_DIV_EXPR | |
1138 | ||
1139 | /* Define this as 1 if `char' should by default be signed; else as 0. */ | |
1140 | #define DEFAULT_SIGNED_CHAR 0 | |
1141 | ||
1142 | /* This flag, if defined, says the same insns that convert to a signed fixnum | |
1143 | also convert validly to an unsigned one. */ | |
1144 | ||
1145 | /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */ | |
1146 | ||
1147 | /* Max number of bytes we can move from memory to memory | |
1148 | in one reasonably fast instruction. */ | |
1149 | #define MOVE_MAX 16 | |
1150 | ||
1151 | /* Nonzero if access to memory by bytes is no faster than for words. | |
1152 | Also non-zero if doing byte operations (specifically shifts) in registers | |
1153 | is undesirable. */ | |
1154 | #define SLOW_BYTE_ACCESS 1 | |
1155 | ||
1156 | /* Define if normal loads of shorter-than-word items from memory clears | |
1157 | the rest of the bigs in the register. */ | |
1158 | #define BYTE_LOADS_ZERO_EXTEND | |
fdaff8ba RS |
1159 | \f |
1160 | /* The RS/6000 uses the XCOFF format. */ | |
f045b2c9 | 1161 | |
fdaff8ba | 1162 | #define XCOFF_DEBUGGING_INFO |
f045b2c9 | 1163 | |
c5abcf1d CH |
1164 | /* Define if the object format being used is COFF or a superset. */ |
1165 | #define OBJECT_FORMAT_COFF | |
1166 | ||
f045b2c9 RS |
1167 | /* We don't have GAS for the RS/6000 yet, so don't write out special |
1168 | .stabs in cc1plus. */ | |
1169 | ||
1170 | #define FASCIST_ASSEMBLER | |
1171 | ||
f045b2c9 RS |
1172 | /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits |
1173 | is done just by pretending it is already truncated. */ | |
1174 | #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 | |
1175 | ||
1176 | /* Specify the machine mode that pointers have. | |
1177 | After generation of rtl, the compiler makes no further distinction | |
1178 | between pointers and any other objects of this machine mode. */ | |
1179 | #define Pmode SImode | |
1180 | ||
1181 | /* Mode of a function address in a call instruction (for indexing purposes). | |
1182 | ||
1183 | Doesn't matter on RS/6000. */ | |
1184 | #define FUNCTION_MODE SImode | |
1185 | ||
1186 | /* Define this if addresses of constant functions | |
1187 | shouldn't be put through pseudo regs where they can be cse'd. | |
1188 | Desirable on machines where ordinary constants are expensive | |
1189 | but a CALL with constant address is cheap. */ | |
1190 | #define NO_FUNCTION_CSE | |
1191 | ||
1192 | /* Define this if shift instructions ignore all but the low-order | |
1193 | few bits. */ | |
1194 | #define SHIFT_COUNT_TRUNCATED | |
1195 | ||
1196 | /* Use atexit for static constructors/destructors, instead of defining | |
1197 | our own exit function. */ | |
1198 | #define HAVE_ATEXIT | |
1199 | ||
1200 | /* Compute the cost of computing a constant rtl expression RTX | |
1201 | whose rtx-code is CODE. The body of this macro is a portion | |
1202 | of a switch statement. If the code is computed here, | |
1203 | return it with a return statement. Otherwise, break from the switch. | |
1204 | ||
1205 | On the RS/6000, if it is legal in the insn, it is free. So this | |
1206 | always returns 0. */ | |
1207 | ||
3bb22aee | 1208 | #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
f045b2c9 RS |
1209 | case CONST_INT: \ |
1210 | case CONST: \ | |
1211 | case LABEL_REF: \ | |
1212 | case SYMBOL_REF: \ | |
1213 | case CONST_DOUBLE: \ | |
1214 | return 0; | |
1215 | ||
1216 | /* Provide the costs of a rtl expression. This is in the body of a | |
1217 | switch on CODE. */ | |
1218 | ||
3bb22aee | 1219 | #define RTX_COSTS(X,CODE,OUTER_CODE) \ |
f045b2c9 RS |
1220 | case MULT: \ |
1221 | return (GET_CODE (XEXP (X, 1)) != CONST_INT \ | |
1222 | ? COSTS_N_INSNS (5) \ | |
1223 | : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \ | |
1224 | ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \ | |
1225 | case DIV: \ | |
1226 | case MOD: \ | |
1227 | if (GET_CODE (XEXP (X, 1)) == CONST_INT \ | |
1228 | && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \ | |
1229 | return COSTS_N_INSNS (2); \ | |
1230 | /* otherwise fall through to normal divide. */ \ | |
1231 | case UDIV: \ | |
1232 | case UMOD: \ | |
1233 | return COSTS_N_INSNS (19); \ | |
1234 | case MEM: \ | |
1235 | /* MEM should be slightly more expensive than (plus (reg) (const)) */ \ | |
1236 | return 5; | |
1237 | ||
1238 | /* Compute the cost of an address. This is meant to approximate the size | |
1239 | and/or execution delay of an insn using that address. If the cost is | |
1240 | approximated by the RTL complexity, including CONST_COSTS above, as | |
1241 | is usually the case for CISC machines, this macro should not be defined. | |
1242 | For aggressively RISCy machines, only one insn format is allowed, so | |
1243 | this macro should be a constant. The value of this macro only matters | |
1244 | for valid addresses. | |
1245 | ||
1246 | For the RS/6000, everything is cost 0. */ | |
1247 | ||
1248 | #define ADDRESS_COST(RTX) 0 | |
1249 | ||
1250 | /* Adjust the length of an INSN. LENGTH is the currently-computed length and | |
1251 | should be adjusted to reflect any required changes. This macro is used when | |
1252 | there is some systematic length adjustment required that would be difficult | |
1253 | to express in the length attribute. */ | |
1254 | ||
1255 | /* #define ADJUST_INSN_LENGTH(X,LENGTH) */ | |
1256 | ||
1257 | /* Add any extra modes needed to represent the condition code. | |
1258 | ||
1259 | For the RS/6000, we need separate modes when unsigned (logical) comparisons | |
c5defebb RK |
1260 | are being done and we need a separate mode for floating-point. We also |
1261 | use a mode for the case when we are comparing the results of two | |
1262 | comparisons. */ | |
f045b2c9 | 1263 | |
c5defebb | 1264 | #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode |
f045b2c9 RS |
1265 | |
1266 | /* Define the names for the modes specified above. */ | |
c5defebb | 1267 | #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ" |
f045b2c9 RS |
1268 | |
1269 | /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, | |
1270 | return the mode to be used for the comparison. For floating-point, CCFPmode | |
c5defebb RK |
1271 | should be used. CCUNSmode should be used for unsigned comparisons. |
1272 | CCEQmode should be used when we are doing an inequality comparison on | |
1273 | the result of a comparison. CCmode should be used in all other cases. */ | |
1274 | ||
b565a316 | 1275 | #define SELECT_CC_MODE(OP,X,Y) \ |
f045b2c9 | 1276 | (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \ |
c5defebb RK |
1277 | : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ |
1278 | : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \ | |
1279 | ? CCEQmode : CCmode)) | |
f045b2c9 RS |
1280 | |
1281 | /* Define the information needed to generate branch and scc insns. This is | |
1282 | stored from the compare operation. Note that we can't use "rtx" here | |
1283 | since it hasn't been defined! */ | |
1284 | ||
1285 | extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1; | |
1286 | extern int rs6000_compare_fp_p; | |
1287 | ||
1288 | /* Set to non-zero by "fix" operation to indicate that itrunc and | |
1289 | uitrunc must be defined. */ | |
1290 | ||
1291 | extern int rs6000_trunc_used; | |
1292 | \f | |
1293 | /* Control the assembler format that we output. */ | |
1294 | ||
1295 | /* Output at beginning of assembler file. | |
1296 | ||
1297 | On the RS/6000, we want to go into the TOC section so at least one | |
1298 | .toc will be emitted. | |
1299 | ||
fdaff8ba RS |
1300 | Also initialize the section names for the RS/6000 at this point. |
1301 | ||
1302 | Also, in order to output proper .bs/.es pairs, we need at least one static | |
1303 | [RW] section emitted. */ | |
f045b2c9 RS |
1304 | |
1305 | #define ASM_FILE_START(FILE) \ | |
1306 | { \ | |
fdaff8ba | 1307 | rs6000_gen_section_name (&xcoff_bss_section_name, \ |
f045b2c9 | 1308 | main_input_filename, ".bss_"); \ |
fdaff8ba | 1309 | rs6000_gen_section_name (&xcoff_private_data_section_name, \ |
f045b2c9 | 1310 | main_input_filename, ".rw_"); \ |
fdaff8ba | 1311 | rs6000_gen_section_name (&xcoff_read_only_section_name, \ |
f045b2c9 RS |
1312 | main_input_filename, ".ro_"); \ |
1313 | \ | |
1314 | toc_section (); \ | |
fdaff8ba RS |
1315 | if (write_symbols != NO_DEBUG) \ |
1316 | private_data_section (); \ | |
f045b2c9 RS |
1317 | } |
1318 | ||
1319 | /* Output at end of assembler file. | |
1320 | ||
1321 | On the RS/6000, referencing data should automatically pull in text. */ | |
1322 | ||
1323 | #define ASM_FILE_END(FILE) \ | |
1324 | { \ | |
1325 | text_section (); \ | |
1326 | fprintf (FILE, "_section_.text:\n"); \ | |
1327 | data_section (); \ | |
1328 | fprintf (FILE, "\t.long _section_.text\n"); \ | |
1329 | } | |
1330 | ||
f045b2c9 RS |
1331 | /* We define this to prevent the name mangler from putting dollar signs into |
1332 | function names. */ | |
1333 | ||
1334 | #define NO_DOLLAR_IN_LABEL | |
1335 | ||
1336 | /* We define this to 0 so that gcc will never accept a dollar sign in a | |
1337 | variable name. This is needed because the AIX assembler will not accept | |
1338 | dollar signs. */ | |
1339 | ||
1340 | #define DOLLARS_IN_IDENTIFIERS 0 | |
1341 | ||
fdaff8ba RS |
1342 | /* Implicit library calls should use memcpy, not bcopy, etc. */ |
1343 | ||
1344 | #define TARGET_MEM_FUNCTIONS | |
1345 | ||
f045b2c9 RS |
1346 | /* Define the extra sections we need. We define three: one is the read-only |
1347 | data section which is used for constants. This is a csect whose name is | |
1348 | derived from the name of the input file. The second is for initialized | |
1349 | global variables. This is a csect whose name is that of the variable. | |
1350 | The third is the TOC. */ | |
1351 | ||
1352 | #define EXTRA_SECTIONS \ | |
1353 | read_only_data, private_data, read_only_private_data, toc, bss | |
1354 | ||
1355 | /* Define the name of our readonly data section. */ | |
1356 | ||
1357 | #define READONLY_DATA_SECTION read_only_data_section | |
1358 | ||
1359 | /* Indicate that jump tables go in the text section. */ | |
1360 | ||
1361 | #define JUMP_TABLES_IN_TEXT_SECTION | |
1362 | ||
1363 | /* Define the routines to implement these extra sections. */ | |
1364 | ||
1365 | #define EXTRA_SECTION_FUNCTIONS \ | |
1366 | \ | |
1367 | void \ | |
1368 | read_only_data_section () \ | |
1369 | { \ | |
1370 | if (in_section != read_only_data) \ | |
1371 | { \ | |
fdaff8ba RS |
1372 | fprintf (asm_out_file, "\t.csect %s[RO]\n", \ |
1373 | xcoff_read_only_section_name); \ | |
f045b2c9 RS |
1374 | in_section = read_only_data; \ |
1375 | } \ | |
1376 | } \ | |
1377 | \ | |
1378 | void \ | |
1379 | private_data_section () \ | |
1380 | { \ | |
1381 | if (in_section != private_data) \ | |
1382 | { \ | |
1383 | fprintf (asm_out_file, "\t.csect %s[RW]\n", \ | |
fdaff8ba | 1384 | xcoff_private_data_section_name); \ |
f045b2c9 RS |
1385 | \ |
1386 | in_section = private_data; \ | |
1387 | } \ | |
1388 | } \ | |
1389 | \ | |
1390 | void \ | |
1391 | read_only_private_data_section () \ | |
1392 | { \ | |
1393 | if (in_section != read_only_private_data) \ | |
1394 | { \ | |
fdaff8ba RS |
1395 | fprintf (asm_out_file, "\t.csect %s[RO]\n", \ |
1396 | xcoff_private_data_section_name); \ | |
f045b2c9 RS |
1397 | in_section = read_only_private_data; \ |
1398 | } \ | |
1399 | } \ | |
1400 | \ | |
1401 | void \ | |
1402 | toc_section () \ | |
1403 | { \ | |
1404 | if (in_section != toc) \ | |
1405 | fprintf (asm_out_file, "\t.toc\n"); \ | |
1406 | \ | |
1407 | in_section = toc; \ | |
fc3ffe83 | 1408 | } |
f045b2c9 RS |
1409 | |
1410 | /* This macro produces the initial definition of a function name. | |
1411 | On the RS/6000, we need to place an extra '.' in the function name and | |
1412 | output the function descriptor. | |
1413 | ||
1414 | The csect for the function will have already been created by the | |
1415 | `text_section' call previously done. We do have to go back to that | |
1416 | csect, however. */ | |
1417 | ||
fdaff8ba RS |
1418 | /* ??? What do the 16 and 044 in the .function line really mean? */ |
1419 | ||
f045b2c9 RS |
1420 | #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ |
1421 | { if (TREE_PUBLIC (DECL)) \ | |
1422 | { \ | |
1423 | fprintf (FILE, "\t.globl ."); \ | |
1424 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
fdaff8ba RS |
1425 | fprintf (FILE, "\n"); \ |
1426 | } \ | |
1427 | else if (write_symbols == XCOFF_DEBUG) \ | |
1428 | { \ | |
1429 | fprintf (FILE, "\t.lglobl ."); \ | |
1430 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
1431 | fprintf (FILE, "\n"); \ | |
f045b2c9 RS |
1432 | } \ |
1433 | fprintf (FILE, "\t.csect "); \ | |
1434 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
1435 | fprintf (FILE, "[DS]\n"); \ | |
1436 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
1437 | fprintf (FILE, ":\n"); \ | |
1438 | fprintf (FILE, "\t.long ."); \ | |
1439 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
fdaff8ba | 1440 | fprintf (FILE, ", TOC[tc0], 0\n"); \ |
f045b2c9 RS |
1441 | fprintf (FILE, "\t.csect [PR]\n."); \ |
1442 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
1443 | fprintf (FILE, ":\n"); \ | |
fdaff8ba | 1444 | if (write_symbols == XCOFF_DEBUG) \ |
c2a47e48 | 1445 | xcoffout_declare_function (FILE, DECL, NAME); \ |
f045b2c9 RS |
1446 | } |
1447 | ||
1448 | /* Return non-zero if this entry is to be written into the constant pool | |
1449 | in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST | |
1450 | containing one of them. If -mfp-in-toc (the default), we also do | |
1451 | this for floating-point constants. We actually can only do this | |
1452 | if the FP formats of the target and host machines are the same, but | |
1453 | we can't check that since not every file that uses | |
1454 | GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */ | |
1455 | ||
1456 | #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \ | |
1457 | (GET_CODE (X) == SYMBOL_REF \ | |
1458 | || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \ | |
1459 | && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \ | |
1460 | || GET_CODE (X) == LABEL_REF \ | |
1461 | || (TARGET_FP_IN_TOC && GET_CODE (X) == CONST_DOUBLE \ | |
1462 | && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ | |
1463 | && BITS_PER_WORD == HOST_BITS_PER_INT)) | |
1464 | ||
1465 | /* Select section for constant in constant pool. | |
1466 | ||
1467 | On RS/6000, all constants are in the private read-only data area. | |
1468 | However, if this is being placed in the TOC it must be output as a | |
1469 | toc entry. */ | |
1470 | ||
1471 | #define SELECT_RTX_SECTION(MODE, X) \ | |
1472 | { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \ | |
1473 | toc_section (); \ | |
1474 | else \ | |
1475 | read_only_private_data_section (); \ | |
1476 | } | |
1477 | ||
1478 | /* Macro to output a special constant pool entry. Go to WIN if we output | |
1479 | it. Otherwise, it is written the usual way. | |
1480 | ||
1481 | On the RS/6000, toc entries are handled this way. */ | |
1482 | ||
1483 | #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ | |
1484 | { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \ | |
1485 | { \ | |
1486 | output_toc (FILE, X, LABELNO); \ | |
1487 | goto WIN; \ | |
1488 | } \ | |
1489 | } | |
1490 | ||
1491 | /* Select the section for an initialized data object. | |
1492 | ||
1493 | On the RS/6000, we have a special section for all variables except those | |
1494 | that are static. */ | |
1495 | ||
1496 | #define SELECT_SECTION(EXP,RELOC) \ | |
1497 | { \ | |
1498 | if ((TREE_READONLY (EXP) \ | |
1499 | || (TREE_CODE (EXP) == STRING_CST \ | |
1500 | && !flag_writable_strings)) \ | |
1501 | && ! TREE_THIS_VOLATILE (EXP) \ | |
1502 | && ! (RELOC)) \ | |
1503 | { \ | |
1504 | if (TREE_PUBLIC (EXP)) \ | |
1505 | read_only_data_section (); \ | |
1506 | else \ | |
1507 | read_only_private_data_section (); \ | |
1508 | } \ | |
1509 | else \ | |
1510 | { \ | |
1511 | if (TREE_PUBLIC (EXP)) \ | |
1512 | data_section (); \ | |
1513 | else \ | |
1514 | private_data_section (); \ | |
1515 | } \ | |
1516 | } | |
1517 | ||
1518 | /* This outputs NAME to FILE up to the first null or '['. */ | |
1519 | ||
1520 | #define RS6000_OUTPUT_BASENAME(FILE, NAME) \ | |
1521 | if ((NAME)[0] == '*') \ | |
1522 | assemble_name (FILE, NAME); \ | |
1523 | else \ | |
1524 | { \ | |
1525 | char *_p; \ | |
1526 | for (_p = (NAME); *_p && *_p != '['; _p++) \ | |
1527 | fputc (*_p, FILE); \ | |
1528 | } | |
1529 | ||
1530 | /* Output something to declare an external symbol to the assembler. Most | |
1531 | assemblers don't need this. | |
1532 | ||
1533 | If we haven't already, add "[RW]" (or "[DS]" for a function) to the | |
1534 | name. Normally we write this out along with the name. In the few cases | |
1535 | where we can't, it gets stripped off. */ | |
1536 | ||
1537 | #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \ | |
1538 | { rtx _symref = XEXP (DECL_RTL (DECL), 0); \ | |
1539 | if ((TREE_CODE (DECL) == VAR_DECL \ | |
1540 | || TREE_CODE (DECL) == FUNCTION_DECL) \ | |
1541 | && (NAME)[0] != '*' \ | |
1542 | && (NAME)[strlen (NAME) - 1] != ']') \ | |
1543 | { \ | |
1544 | char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \ | |
1545 | strcpy (_name, XSTR (_symref, 0)); \ | |
1546 | strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \ | |
1547 | XSTR (_symref, 0) = _name; \ | |
1548 | } \ | |
1549 | fprintf (FILE, "\t.extern "); \ | |
1550 | assemble_name (FILE, XSTR (_symref, 0)); \ | |
1551 | if (TREE_CODE (DECL) == FUNCTION_DECL) \ | |
1552 | { \ | |
1553 | fprintf (FILE, "\n\t.extern ."); \ | |
1554 | RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \ | |
1555 | } \ | |
1556 | fprintf (FILE, "\n"); \ | |
1557 | } | |
1558 | ||
1559 | /* Similar, but for libcall. We only have to worry about the function name, | |
1560 | not that of the descriptor. */ | |
1561 | ||
1562 | #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \ | |
1563 | { fprintf (FILE, "\t.extern ."); \ | |
1564 | assemble_name (FILE, XSTR (FUN, 0)); \ | |
1565 | fprintf (FILE, "\n"); \ | |
1566 | } | |
1567 | ||
1568 | /* Output to assembler file text saying following lines | |
1569 | may contain character constants, extra white space, comments, etc. */ | |
1570 | ||
1571 | #define ASM_APP_ON "" | |
1572 | ||
1573 | /* Output to assembler file text saying following lines | |
1574 | no longer contain unusual constructs. */ | |
1575 | ||
1576 | #define ASM_APP_OFF "" | |
1577 | ||
1578 | /* Output before instructions. */ | |
1579 | ||
fdaff8ba | 1580 | #define TEXT_SECTION_ASM_OP ".csect [PR]" |
f045b2c9 RS |
1581 | |
1582 | /* Output before writable data. */ | |
1583 | ||
fdaff8ba | 1584 | #define DATA_SECTION_ASM_OP ".csect .data[RW]" |
f045b2c9 RS |
1585 | |
1586 | /* How to refer to registers in assembler output. | |
1587 | This sequence is indexed by compiler's hard-register-number (see above). */ | |
1588 | ||
1589 | #define REGISTER_NAMES \ | |
1590 | {"0", "1", "2", "3", "4", "5", "6", "7", \ | |
1591 | "8", "9", "10", "11", "12", "13", "14", "15", \ | |
1592 | "16", "17", "18", "19", "20", "21", "22", "23", \ | |
1593 | "24", "25", "26", "27", "28", "29", "30", "31", \ | |
1594 | "0", "1", "2", "3", "4", "5", "6", "7", \ | |
1595 | "8", "9", "10", "11", "12", "13", "14", "15", \ | |
1596 | "16", "17", "18", "19", "20", "21", "22", "23", \ | |
1597 | "24", "25", "26", "27", "28", "29", "30", "31", \ | |
1598 | "mq", "lr", "ctr", "ap", \ | |
1599 | "0", "1", "2", "3", "4", "5", "6", "7" } | |
1600 | ||
1601 | /* Table of additional register names to use in user input. */ | |
1602 | ||
1603 | #define ADDITIONAL_REGISTER_NAMES \ | |
1604 | {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \ | |
1605 | "r4", 4, "r5", 5, "r6", 6, "r7", 7, \ | |
1606 | "r8", 8, "r9", 9, "r10", 10, "r11", 11, \ | |
1607 | "r12", 12, "r13", 13, "r14", 14, "r15", 15, \ | |
1608 | "r16", 16, "r17", 17, "r18", 18, "r19", 19, \ | |
1609 | "r20", 20, "r21", 21, "r22", 22, "r23", 23, \ | |
1610 | "r24", 24, "r25", 25, "r26", 26, "r27", 27, \ | |
1611 | "r28", 28, "r29", 29, "r30", 30, "r31", 31, \ | |
1612 | "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \ | |
1613 | "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \ | |
1614 | "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \ | |
1615 | "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \ | |
1616 | "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \ | |
1617 | "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \ | |
1618 | "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \ | |
1619 | "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \ | |
1620 | /* no additional names for: mq, lr, ctr, ap */ \ | |
1621 | "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \ | |
fc3ffe83 RK |
1622 | "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \ |
1623 | "cc", 68 } | |
f045b2c9 RS |
1624 | |
1625 | /* How to renumber registers for dbx and gdb. */ | |
1626 | ||
1627 | #define DBX_REGISTER_NUMBER(REGNO) (REGNO) | |
1628 | ||
1629 | /* This is how to output the definition of a user-level label named NAME, | |
1630 | such as the label on a static function or variable NAME. */ | |
1631 | ||
1632 | #define ASM_OUTPUT_LABEL(FILE,NAME) \ | |
1633 | do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0) | |
1634 | ||
1635 | /* This is how to output a command to make the user-level label named NAME | |
1636 | defined for reference from other files. */ | |
1637 | ||
1638 | #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ | |
1639 | do { fputs ("\t.globl ", FILE); \ | |
1640 | RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0) | |
1641 | ||
1642 | /* This is how to output a reference to a user-level label named NAME. | |
1643 | `assemble_name' uses this. */ | |
1644 | ||
1645 | #define ASM_OUTPUT_LABELREF(FILE,NAME) \ | |
1646 | fprintf (FILE, NAME) | |
1647 | ||
1648 | /* This is how to output an internal numbered label where | |
1649 | PREFIX is the class of label and NUM is the number within the class. */ | |
1650 | ||
1651 | #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ | |
1652 | fprintf (FILE, "%s..%d:\n", PREFIX, NUM) | |
1653 | ||
1654 | /* This is how to output a label for a jump table. Arguments are the same as | |
1655 | for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is | |
1656 | passed. */ | |
1657 | ||
1658 | #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ | |
1659 | { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } | |
1660 | ||
1661 | /* This is how to store into the string LABEL | |
1662 | the symbol_ref name of an internal numbered label where | |
1663 | PREFIX is the class of label and NUM is the number within the class. | |
1664 | This is suitable for output with `assemble_name'. */ | |
1665 | ||
1666 | #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ | |
1667 | sprintf (LABEL, "%s..%d", PREFIX, NUM) | |
1668 | ||
1669 | /* This is how to output an assembler line defining a `double' constant. */ | |
1670 | ||
1671 | #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \ | |
1672 | fprintf (FILE, "\t.double 0d%.20e\n", (VALUE)) | |
1673 | ||
1674 | /* This is how to output an assembler line defining a `float' constant. */ | |
1675 | ||
1676 | #define ASM_OUTPUT_FLOAT(FILE,VALUE) \ | |
1677 | fprintf (FILE, "\t.float 0d%.20e\n", (VALUE)) | |
1678 | ||
1679 | /* This is how to output an assembler line defining an `int' constant. */ | |
1680 | ||
1681 | #define ASM_OUTPUT_INT(FILE,VALUE) \ | |
1682 | ( fprintf (FILE, "\t.long "), \ | |
1683 | output_addr_const (FILE, (VALUE)), \ | |
1684 | fprintf (FILE, "\n")) | |
1685 | ||
1686 | /* Likewise for `char' and `short' constants. */ | |
1687 | ||
1688 | #define ASM_OUTPUT_SHORT(FILE,VALUE) \ | |
1689 | ( fprintf (FILE, "\t.short "), \ | |
1690 | output_addr_const (FILE, (VALUE)), \ | |
1691 | fprintf (FILE, "\n")) | |
1692 | ||
1693 | #define ASM_OUTPUT_CHAR(FILE,VALUE) \ | |
1694 | ( fprintf (FILE, "\t.byte "), \ | |
1695 | output_addr_const (FILE, (VALUE)), \ | |
1696 | fprintf (FILE, "\n")) | |
1697 | ||
1698 | /* This is how to output an assembler line for a numeric constant byte. */ | |
1699 | ||
1700 | #define ASM_OUTPUT_BYTE(FILE,VALUE) \ | |
1701 | fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) | |
1702 | ||
1703 | /* This is how to output an assembler line to define N characters starting | |
1704 | at P to FILE. */ | |
1705 | ||
1706 | #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N)) | |
1707 | ||
1708 | /* This is how to output code to push a register on the stack. | |
1709 | It need not be very fast code. */ | |
1710 | ||
1711 | #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ | |
1712 | fprintf (FILE, "\tstu %s,-4(r1)\n", reg_names[REGNO]); | |
1713 | ||
1714 | /* This is how to output an insn to pop a register from the stack. | |
1715 | It need not be very fast code. */ | |
1716 | ||
1717 | #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ | |
1718 | fprintf (FILE, "\tl %s,0(r1)\n\tai r1,r1,4\n", reg_names[REGNO]) | |
1719 | ||
1720 | /* This is how to output an element of a case-vector that is absolute. | |
1721 | (RS/6000 does not use such vectors, but we must define this macro | |
1722 | anyway.) */ | |
1723 | ||
1724 | #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ | |
1725 | fprintf (FILE, "\t.long L..%d\n", VALUE) | |
1726 | ||
1727 | /* This is how to output an element of a case-vector that is relative. */ | |
1728 | ||
1729 | #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ | |
1730 | fprintf (FILE, "\t.long L..%d-L..%d\n", VALUE, REL) | |
1731 | ||
1732 | /* This is how to output an assembler line | |
1733 | that says to advance the location counter | |
1734 | to a multiple of 2**LOG bytes. */ | |
1735 | ||
1736 | #define ASM_OUTPUT_ALIGN(FILE,LOG) \ | |
1737 | if ((LOG) != 0) \ | |
1738 | fprintf (FILE, "\t.align %d\n", (LOG)) | |
1739 | ||
1740 | #define ASM_OUTPUT_SKIP(FILE,SIZE) \ | |
1741 | fprintf (FILE, "\t.space %d\n", (SIZE)) | |
1742 | ||
1743 | /* This says how to output an assembler line | |
1744 | to define a global common symbol. */ | |
1745 | ||
1746 | #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ | |
fc3ffe83 | 1747 | do { fputs (".comm ", (FILE)); \ |
f045b2c9 RS |
1748 | RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
1749 | fprintf ((FILE), ",%d\n", (SIZE)); } while (0) | |
1750 | ||
1751 | /* This says how to output an assembler line | |
1752 | to define a local common symbol. */ | |
1753 | ||
1754 | #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ | |
fc3ffe83 | 1755 | do { fputs (".lcomm ", (FILE)); \ |
f045b2c9 | 1756 | RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
fdaff8ba | 1757 | fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \ |
f045b2c9 RS |
1758 | } while (0) |
1759 | ||
1760 | /* Store in OUTPUT a string (made with alloca) containing | |
1761 | an assembler-name for a local static variable named NAME. | |
1762 | LABELNO is an integer which is different for each call. */ | |
1763 | ||
1764 | #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ | |
1765 | ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ | |
1766 | sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) | |
1767 | ||
1768 | /* Define the parentheses used to group arithmetic operations | |
1769 | in assembler code. */ | |
1770 | ||
1771 | #define ASM_OPEN_PAREN "(" | |
1772 | #define ASM_CLOSE_PAREN ")" | |
1773 | ||
1774 | /* Define results of standard character escape sequences. */ | |
1775 | #define TARGET_BELL 007 | |
1776 | #define TARGET_BS 010 | |
1777 | #define TARGET_TAB 011 | |
1778 | #define TARGET_NEWLINE 012 | |
1779 | #define TARGET_VT 013 | |
1780 | #define TARGET_FF 014 | |
1781 | #define TARGET_CR 015 | |
1782 | ||
1783 | /* Print operand X (an rtx) in assembler syntax to file FILE. | |
1784 | CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. | |
1785 | For `%' followed by punctuation, CODE is the punctuation and X is null. */ | |
1786 | ||
1787 | #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) | |
1788 | ||
1789 | /* Define which CODE values are valid. */ | |
1790 | ||
1791 | #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0 | |
1792 | ||
1793 | /* Print a memory address as an operand to reference that memory location. */ | |
1794 | ||
1795 | #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) | |
1796 | ||
1797 | /* Define the codes that are matched by predicates in rs6000.c. */ | |
1798 | ||
1799 | #define PREDICATE_CODES \ | |
1800 | {"short_cint_operand", {CONST_INT}}, \ | |
1801 | {"u_short_cint_operand", {CONST_INT}}, \ | |
f357808b | 1802 | {"non_short_cint_operand", {CONST_INT}}, \ |
cd2b37d9 | 1803 | {"gpc_reg_operand", {SUBREG, REG}}, \ |
f045b2c9 RS |
1804 | {"cc_reg_operand", {SUBREG, REG}}, \ |
1805 | {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \ | |
1806 | {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \ | |
1807 | {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \ | |
1808 | {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \ | |
1809 | {"easy_fp_constant", {CONST_DOUBLE}}, \ | |
1810 | {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \ | |
1811 | {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \ | |
1812 | {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \ | |
1813 | {"add_operand", {SUBREG, REG, CONST_INT}}, \ | |
f357808b | 1814 | {"non_add_cint_operand", {CONST_INT}}, \ |
f045b2c9 | 1815 | {"and_operand", {SUBREG, REG, CONST_INT}}, \ |
f357808b | 1816 | {"non_and_cint_operand", {CONST_INT}}, \ |
f045b2c9 | 1817 | {"logical_operand", {SUBREG, REG, CONST_INT}}, \ |
f357808b | 1818 | {"non_logical_cint_operand", {CONST_INT}}, \ |
f045b2c9 RS |
1819 | {"mask_operand", {CONST_INT}}, \ |
1820 | {"call_operand", {SYMBOL_REF, REG}}, \ | |
1821 | {"input_operand", {SUBREG, MEM, REG, CONST_INT}}, \ | |
1822 | {"branch_comparison_operation", {EQ, NE, LE, LT, GE, \ | |
1823 | LT, LEU, LTU, GEU, GTU}}, \ | |
1824 | {"scc_comparison_operation", {EQ, NE, LE, LT, GE, \ | |
1825 | LT, LEU, LTU, GEU, GTU}}, |