]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
alpha.c (alpha_return_addr_rtx): New variable.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
5b6f7b96 2 Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
84b49fa7
RK
29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55/* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
49a0b204 73%{mcpu=403: -D_ARCH_PPC} \
cf27b467 74%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 75%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 76%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
77%{mcpu=603: -D_ARCH_PPC} \
78%{mcpu=603e: -D_ARCH_PPC} \
79%{mcpu=604: -D_ARCH_PPC} \
cf27b467
MM
80%{mcpu=620: -D_ARCH_PPC} \
81%{mcpu=821: -D_ARCH_PPC} \
82%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 83
841faeed
MM
84#ifndef CPP_DEFAULT_SPEC
85#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86#endif
87
88#ifndef CPP_SYSV_SPEC
89#define CPP_SYSV_SPEC ""
90#endif
91
92#ifndef CPP_ENDIAN_SPEC
93#define CPP_ENDIAN_SPEC ""
94#endif
95
c81bebd7
MM
96#ifndef CPP_ENDIAN_DEFAULT_SPEC
97#define CPP_ENDIAN_DEFAULT_SPEC ""
98#endif
99
841faeed
MM
100#ifndef CPP_SYSV_DEFAULT_SPEC
101#define CPP_SYSV_DEFAULT_SPEC ""
102#endif
103
104/* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106#define ASM_CPU_SPEC \
107"%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113%{mcpu=common: -mcom} \
114%{mcpu=power: -mpwr} \
115%{mcpu=power2: -mpwrx} \
116%{mcpu=powerpc: -mppc} \
117%{mcpu=rios: -mpwr} \
118%{mcpu=rios1: -mpwr} \
119%{mcpu=rios2: -mpwrx} \
120%{mcpu=rsc: -mpwr} \
121%{mcpu=rsc1: -mpwr} \
122%{mcpu=403: -mppc} \
123%{mcpu=505: -mppc} \
124%{mcpu=601: -m601} \
125%{mcpu=602: -mppc} \
126%{mcpu=603: -mppc} \
127%{mcpu=603e: -mppc} \
128%{mcpu=604: -mppc} \
129%{mcpu=620: -mppc} \
130%{mcpu=821: -mppc} \
131%{mcpu=860: -mppc}"
132
133#ifndef ASM_DEFAULT_SPEC
fba29a8c 134#define ASM_DEFAULT_SPEC ""
841faeed
MM
135#endif
136
137/* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
7509c759
MM
147#ifndef SUBTARGET_EXTRA_SPECS
148#define SUBTARGET_EXTRA_SPECS
149#endif
150
c81bebd7
MM
151#define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
162 SUBTARGET_EXTRA_SPECS
163
7509c759
MM
164/* Default location of syscalls.exp under AIX */
165#ifndef CROSS_COMPILE
166#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167#else
168#define LINK_SYSCALLS_SPEC ""
169#endif
170
171/* Default location of libg.exp under AIX */
172#ifndef CROSS_COMPILE
173#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174#else
175#define LINK_LIBG_SPEC ""
176#endif
177
f045b2c9
RS
178/* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
f045b2c9 191
c1950f1c 192#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 195
58a39e45
RS
196/* Profiled library versions are used by linking with special directories. */
197#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
199
200/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 201#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
202
203/* Don't turn -B into -L if the argument specifies a relative file name. */
204#define RELATIVE_PREFIX_NOT_LINKDIR
205
fb623df5 206/* Architecture type. */
f045b2c9 207
fb623df5
RK
208extern int target_flags;
209
210/* Use POWER architecture instructions and MQ register. */
38c1f2d7 211#define MASK_POWER 0x00000001
fb623df5 212
6febd581 213/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 214#define MASK_POWER2 0x00000002
6febd581 215
fb623df5 216/* Use PowerPC architecture instructions. */
38c1f2d7 217#define MASK_POWERPC 0x00000004
6febd581 218
583cf4db 219/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 220#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
221
222/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 223#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 224
fb623df5 225/* Use PowerPC-64 architecture instructions. */
38c1f2d7 226#define MASK_POWERPC64 0x00000020
f045b2c9 227
fb623df5 228/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 229#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
230
231/* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
38c1f2d7 233#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 234
0b9ccabc
RK
235/* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
38c1f2d7 237#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 238
fb623df5 239/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
38c1f2d7 246#define MASK_MINIMAL_TOC 0x00000200
642a35f1 247
9e654916 248/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
38c1f2d7 249#define MASK_64BIT 0x00000400
9e654916 250
f85f4585 251/* Disable use of FPRs. */
38c1f2d7 252#define MASK_SOFT_FLOAT 0x00000800
f85f4585 253
4d30c363 254/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
255#define MASK_MULTIPLE 0x00001000
256#define MASK_MULTIPLE_SET 0x00002000
4d30c363 257
7e69e155 258/* Use string instructions for block moves */
38c1f2d7
MM
259#define MASK_STRING 0x00004000
260#define MASK_STRING_SET 0x00008000
7e69e155 261
38c1f2d7
MM
262/* Disable update form of load/store */
263#define MASK_NO_UPDATE 0x00010000
264
265/* Disable fused multiply/add operations */
266#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 267
7e69e155
MM
268#define TARGET_POWER (target_flags & MASK_POWER)
269#define TARGET_POWER2 (target_flags & MASK_POWER2)
270#define TARGET_POWERPC (target_flags & MASK_POWERPC)
271#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
272#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
273#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
274#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
275#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
276#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
277#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
278#define TARGET_64BIT (target_flags & MASK_64BIT)
279#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
280#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
281#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
282#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 283#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
284#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
285#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
7e69e155 286
2f3e5814 287#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 288#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
289#define TARGET_UPDATE (! TARGET_NO_UPDATE)
290#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 291
4697a36c
MM
292/* Pseudo target to indicate whether the object format is ELF
293 (to get around not having conditional compilation in the md file) */
294#ifndef TARGET_ELF
295#define TARGET_ELF 0
296#endif
297
298/* If this isn't V.4, don't support -mno-toc. */
299#ifndef TARGET_NO_TOC
300#define TARGET_NO_TOC 0
301#define TARGET_TOC 1
302#endif
303
b6c9286a
MM
304/* Pseudo target to say whether this is Windows NT */
305#ifndef TARGET_WINDOWS_NT
306#define TARGET_WINDOWS_NT 0
307#endif
308
309/* Pseudo target to say whether this is MAC */
310#ifndef TARGET_MACOS
311#define TARGET_MACOS 0
312#endif
313
314/* Pseudo target to say whether this is AIX */
315#ifndef TARGET_AIX
316#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
317#define TARGET_AIX 0
318#else
319#define TARGET_AIX 1
320#endif
321#endif
322
a3950905
MM
323#ifndef TARGET_XL_CALL
324#define TARGET_XL_CALL 0
325#endif
326
fb623df5 327/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 328
fb623df5 329 Macro to define tables used to set the flags.
f045b2c9
RS
330 This is a list in braces of pairs in braces,
331 each pair being { "NAME", VALUE }
332 where VALUE is the bits to set or minus the bits to clear.
333 An empty string NAME is used to identify the default VALUE. */
334
4d30c363
MM
335/* This is meant to be redefined in the host dependent files */
336#ifndef SUBTARGET_SWITCHES
337#define SUBTARGET_SWITCHES
338#endif
339
938937d8
MM
340#define TARGET_SWITCHES \
341 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
342 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
343 | MASK_POWER2)}, \
344 {"no-power2", - MASK_POWER2}, \
345 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
346 | MASK_STRING)}, \
347 {"powerpc", MASK_POWERPC}, \
348 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
349 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
350 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
351 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
352 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
353 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
354 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
355 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
356 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
357 | MASK_MINIMAL_TOC)}, \
358 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
359 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
360 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
361 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
362 {"minimal-toc", MASK_MINIMAL_TOC}, \
363 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
364 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
365 {"hard-float", - MASK_SOFT_FLOAT}, \
366 {"soft-float", MASK_SOFT_FLOAT}, \
367 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
368 {"no-multiple", - MASK_MULTIPLE}, \
369 {"no-multiple", MASK_MULTIPLE_SET}, \
370 {"string", MASK_STRING | MASK_STRING_SET}, \
371 {"no-string", - MASK_STRING}, \
bbdd88df 372 {"no-string", MASK_STRING_SET}, \
38c1f2d7
MM
373 {"update", - MASK_NO_UPDATE}, \
374 {"no-update", MASK_NO_UPDATE}, \
375 {"fused-madd", - MASK_NO_FUSED_MADD}, \
376 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
938937d8 377 SUBTARGET_SWITCHES \
fb623df5
RK
378 {"", TARGET_DEFAULT}}
379
938937d8 380#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5
RK
381
382/* Processor type. */
383enum processor_type
f86fe1fb 384 {PROCESSOR_RIOS1,
fb623df5 385 PROCESSOR_RIOS2,
cf27b467 386 PROCESSOR_MPCCORE,
49a0b204 387 PROCESSOR_PPC403,
fb623df5
RK
388 PROCESSOR_PPC601,
389 PROCESSOR_PPC603,
390 PROCESSOR_PPC604,
391 PROCESSOR_PPC620};
392
393extern enum processor_type rs6000_cpu;
394
395/* Recast the processor type to the cpu attribute. */
396#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
397
8482e358 398/* Define generic processor types based upon current deployment. */
8e3f41e7 399#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 400#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 401#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 402
fb623df5 403/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 404#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 405
6febd581
RK
406/* Specify the dialect of assembler to use. New mnemonics is dialect one
407 and the old mnemonics are dialect zero. */
408#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
409
fb623df5
RK
410/* This macro is similar to `TARGET_SWITCHES' but defines names of
411 command options that have values. Its definition is an
412 initializer with a subgrouping for each command option.
413
414 Each subgrouping contains a string constant, that defines the
415 fixed part of the option name, and the address of a variable.
416 The variable, type `char *', is set to the variable part of the
417 given option if the fixed part matches. The actual option name
418 is made by appending `-m' to the specified name.
419
420 Here is an example which defines `-mshort-data-NUMBER'. If the
421 given option is `-mshort-data-512', the variable `m88k_short_data'
422 will be set to the string `"512"'.
423
424 extern char *m88k_short_data;
425 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
426
b6c9286a
MM
427/* This is meant to be overriden in target specific files. */
428#ifndef SUBTARGET_OPTIONS
429#define SUBTARGET_OPTIONS
430#endif
431
8e3f41e7
MM
432#define TARGET_OPTIONS \
433{ \
434 {"cpu=", &rs6000_select[1].string}, \
435 {"tune=", &rs6000_select[2].string}, \
38c1f2d7
MM
436 {"debug-", &rs6000_debug_name}, \
437 {"debug=", &rs6000_debug_name}, \
8e3f41e7 438 SUBTARGET_OPTIONS \
b6c9286a 439}
fb623df5 440
ff222560 441/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
442struct rs6000_cpu_select
443{
444 char *string;
445 char *name;
446 int set_tune_p;
447 int set_arch_p;
448};
449
450extern struct rs6000_cpu_select rs6000_select[];
fb623df5 451
38c1f2d7
MM
452/* Debug support */
453extern char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
454extern int rs6000_debug_stack; /* debug stack applications */
455extern int rs6000_debug_arg; /* debug argument handling */
456
457#define TARGET_DEBUG_STACK rs6000_debug_stack
458#define TARGET_DEBUG_ARG rs6000_debug_arg
459
fb623df5
RK
460/* Sometimes certain combinations of command options do not make sense
461 on a particular target machine. You can define a macro
462 `OVERRIDE_OPTIONS' to take account of this. This macro, if
463 defined, is executed once just after all the command options have
464 been parsed.
465
466 On the RS/6000 this is used to define the target cpu type. */
467
8e3f41e7 468#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 469
4f074454
RK
470/* Show we can debug even without a frame pointer. */
471#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
472\f
473/* target machine storage layout */
474
df44fa77
RK
475/* Define to support cross compilation to an RS6000 target. */
476#define REAL_ARITHMETIC
477
13d39dbc 478/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 479 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
480 the value is constrained to be within the bounds of the declared
481 type, but kept valid in the wider mode. The signedness of the
482 extension may differ from that of the type. */
483
484#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
485 if (GET_MODE_CLASS (MODE) == MODE_INT \
486 && GET_MODE_SIZE (MODE) < 4) \
dac29d65 487 (MODE) = SImode;
ef457bda 488
f045b2c9
RS
489/* Define this if most significant bit is lowest numbered
490 in instructions that operate on numbered bit-fields. */
491/* That is true on RS/6000. */
492#define BITS_BIG_ENDIAN 1
493
494/* Define this if most significant byte of a word is the lowest numbered. */
495/* That is true on RS/6000. */
496#define BYTES_BIG_ENDIAN 1
497
498/* Define this if most significant word of a multiword number is lowest
c81bebd7 499 numbered.
f045b2c9
RS
500
501 For RS/6000 we can decide arbitrarily since there are no machine
502 instructions for them. Might as well be consistent with bits and bytes. */
503#define WORDS_BIG_ENDIAN 1
504
fdaff8ba 505/* number of bits in an addressable storage unit */
f045b2c9
RS
506#define BITS_PER_UNIT 8
507
508/* Width in bits of a "word", which is the contents of a machine register.
509 Note that this is not necessarily the width of data type `int';
510 if using 16-bit ints on a 68000, this would still be 32.
511 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 512#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 513#define MAX_BITS_PER_WORD 64
f045b2c9
RS
514
515/* Width of a word, in units (bytes). */
2f3e5814 516#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 517#define MIN_UNITS_PER_WORD 4
2e360ab3 518#define UNITS_PER_FP_WORD 8
f045b2c9 519
915f619f
JW
520/* Type used for ptrdiff_t, as a string used in a declaration. */
521#define PTRDIFF_TYPE "int"
522
f045b2c9
RS
523/* Type used for wchar_t, as a string used in a declaration. */
524#define WCHAR_TYPE "short unsigned int"
525
526/* Width of wchar_t in bits. */
527#define WCHAR_TYPE_SIZE 16
528
9e654916
RK
529/* A C expression for the size in bits of the type `short' on the
530 target machine. If you don't define this, the default is half a
531 word. (If this would be less than one storage unit, it is
532 rounded up to one unit.) */
533#define SHORT_TYPE_SIZE 16
534
535/* A C expression for the size in bits of the type `int' on the
536 target machine. If you don't define this, the default is one
537 word. */
19d2d16f 538#define INT_TYPE_SIZE 32
9e654916
RK
539
540/* A C expression for the size in bits of the type `long' on the
541 target machine. If you don't define this, the default is one
542 word. */
2f3e5814 543#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
544#define MAX_LONG_TYPE_SIZE 64
545
546/* A C expression for the size in bits of the type `long long' on the
547 target machine. If you don't define this, the default is two
548 words. */
549#define LONG_LONG_TYPE_SIZE 64
550
551/* A C expression for the size in bits of the type `char' on the
552 target machine. If you don't define this, the default is one
553 quarter of a word. (If this would be less than one storage unit,
554 it is rounded up to one unit.) */
555#define CHAR_TYPE_SIZE BITS_PER_UNIT
556
557/* A C expression for the size in bits of the type `float' on the
558 target machine. If you don't define this, the default is one
559 word. */
560#define FLOAT_TYPE_SIZE 32
561
562/* A C expression for the size in bits of the type `double' on the
563 target machine. If you don't define this, the default is two
564 words. */
565#define DOUBLE_TYPE_SIZE 64
566
567/* A C expression for the size in bits of the type `long double' on
568 the target machine. If you don't define this, the default is two
569 words. */
570#define LONG_DOUBLE_TYPE_SIZE 64
571
f045b2c9
RS
572/* Width in bits of a pointer.
573 See also the macro `Pmode' defined below. */
2f3e5814 574#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
575
576/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 577#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
578
579/* Boundary (in *bits*) on which stack pointer should be aligned. */
580#define STACK_BOUNDARY 64
581
582/* Allocation boundary (in *bits*) for the code of a function. */
583#define FUNCTION_BOUNDARY 32
584
585/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
586#define BIGGEST_ALIGNMENT 64
587
6bc3403c
DE
588/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
589#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
590 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
f045b2c9
RS
591
592/* Alignment of field after `int : 0' in a structure. */
593#define EMPTY_FIELD_BOUNDARY 32
594
595/* Every structure's size must be a multiple of this. */
596#define STRUCTURE_SIZE_BOUNDARY 8
597
598/* A bitfield declared as `int' forces `int' alignment for the struct. */
599#define PCC_BITFIELD_TYPE_MATTERS 1
600
6bc3403c
DE
601/* AIX increases natural record alignment to doubleword if the first
602 field is an FP double while the FP fields remain word aligned. */
603#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
604 ((TREE_CODE (STRUCT) == RECORD_TYPE \
605 || TREE_CODE (STRUCT) == UNION_TYPE \
606 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
607 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
608 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
609 : MAX ((COMPUTED), (SPECIFIED)))
610
f045b2c9
RS
611/* Make strings word-aligned so strcpy from constants will be faster. */
612#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
613 (TREE_CODE (EXP) == STRING_CST \
614 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
615
616/* Make arrays of chars word-aligned for the same reasons. */
617#define DATA_ALIGNMENT(TYPE, ALIGN) \
618 (TREE_CODE (TYPE) == ARRAY_TYPE \
619 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
620 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
621
fdaff8ba 622/* Non-zero if move instructions will actually fail to work
f045b2c9 623 when given unaligned data. */
fdaff8ba 624#define STRICT_ALIGNMENT 0
f045b2c9
RS
625\f
626/* Standard register usage. */
627
628/* Number of actual hardware registers.
629 The hardware registers are assigned numbers for the compiler
630 from 0 to just below FIRST_PSEUDO_REGISTER.
631 All registers that the compiler knows about must be given numbers,
632 even those that are not normally considered general registers.
633
634 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
635 an MQ register, a count register, a link register, and 8 condition
636 register fields, which we view here as separate registers.
637
638 In addition, the difference between the frame and argument pointers is
639 a function of the number of registers saved, so we need to have a
640 register for AP that will later be eliminated in favor of SP or FP.
802a0058 641 This is a normal register, but it is fixed.
f045b2c9 642
802a0058
MM
643 We also create a pseudo register for float/int conversions, that will
644 really represent the memory location used. It is represented here as
645 a register, in order to work around problems in allocating stack storage
646 in inline functions. */
647
648#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
649
650/* 1 for registers that have pervasive standard uses
651 and are not available for the register allocator.
652
c81bebd7 653 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 654
a127c4e5
RK
655 cr5 is not supposed to be used.
656
657 On System V implementations, r13 is fixed and not available for use. */
658
659#ifndef FIXED_R13
660#define FIXED_R13 0
661#endif
f045b2c9
RS
662
663#define FIXED_REGISTERS \
a127c4e5 664 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
665 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
667 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 668 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
669
670/* 1 for registers not available across function calls.
671 These must include the FIXED_REGISTERS and also any
672 registers that can be used without being saved.
673 The latter must include the registers where values are returned
674 and the register where structure-value addresses are passed.
675 Aside from that, you can include as many other registers as you like. */
676
677#define CALL_USED_REGISTERS \
a127c4e5 678 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
679 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
680 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
681 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 682 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
683
684/* List the order in which to allocate registers. Each register must be
685 listed once, even those in FIXED_REGISTERS.
686
687 We allocate in the following order:
688 fp0 (not saved or used for anything)
689 fp13 - fp2 (not saved; incoming fp arg registers)
690 fp1 (not saved; return value)
691 fp31 - fp14 (saved; order given to save least number)
692 cr1, cr6, cr7 (not saved or special)
693 cr0 (not saved, but used for arithmetic operations)
694 cr2, cr3, cr4 (saved)
695 r0 (not saved; cannot be base reg)
696 r9 (not saved; best for TImode)
697 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
698 r3 (not saved; return value register)
699 r31 - r13 (saved; order given to save least number)
700 r12 (not saved; if used for DImode or DFmode would use r13)
701 mq (not saved; best to use it if we can)
702 ctr (not saved; when we have the choice ctr is better)
703 lr (saved)
704 cr5, r1, r2, ap (fixed) */
705
706#define REG_ALLOC_ORDER \
707 {32, \
708 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
709 33, \
710 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
711 50, 49, 48, 47, 46, \
712 69, 74, 75, 68, 70, 71, 72, \
713 0, \
714 9, 11, 10, 8, 7, 6, 5, 4, \
715 3, \
716 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
717 18, 17, 16, 15, 14, 13, 12, \
718 64, 66, 65, \
802a0058 719 73, 1, 2, 67, 76}
f045b2c9
RS
720
721/* True if register is floating-point. */
722#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
723
724/* True if register is a condition register. */
725#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
726
727/* True if register is an integer register. */
728#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
729
802a0058
MM
730/* True if register is the temporary memory location used for int/float
731 conversion. */
732#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
733
f045b2c9
RS
734/* Return number of consecutive hard regs needed starting at reg REGNO
735 to hold something of mode MODE.
736 This is ordinarily the length in words of a value of mode MODE
737 but can be less for certain modes in special long registers.
738
739 On RS/6000, ordinary registers hold 32 bits worth;
740 a single floating point register holds 64 bits worth. */
741
802a0058
MM
742#define HARD_REGNO_NREGS(REGNO, MODE) \
743 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 744 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
745 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
746
747/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
748 For POWER and PowerPC, the GPRs can hold any mode, but the float
749 registers only can hold floating modes and DImode, and CR register only
750 can hold CC modes. We cannot put TImode anywhere except general
751 register and it must be able to fit within the register set. */
f045b2c9 752
802a0058
MM
753#define HARD_REGNO_MODE_OK(REGNO, MODE) \
754 (FP_REGNO_P (REGNO) ? \
755 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
756 || (GET_MODE_CLASS (MODE) == MODE_INT \
757 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
758 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
759 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
760 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 761 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
762 : 1)
763
764/* Value is 1 if it is a good idea to tie two pseudo registers
765 when one has mode MODE1 and one has mode MODE2.
766 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
767 for any hard reg, then this must be 0 for correct output. */
768#define MODES_TIEABLE_P(MODE1, MODE2) \
769 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
770 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
771 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
772 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
773 : GET_MODE_CLASS (MODE1) == MODE_CC \
774 ? GET_MODE_CLASS (MODE2) == MODE_CC \
775 : GET_MODE_CLASS (MODE2) == MODE_CC \
776 ? GET_MODE_CLASS (MODE1) == MODE_CC \
777 : 1)
778
779/* A C expression returning the cost of moving data from a register of class
780 CLASS1 to one of CLASS2.
781
782 On the RS/6000, copying between floating-point and fixed-point
783 registers is expensive. */
784
785#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
786 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
787 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
788 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 789 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
790 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
791 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 792 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 793 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 794 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
795 : 2)
796
797/* A C expressions returning the cost of moving data of MODE from a register to
798 or from memory.
799
800 On the RS/6000, bump this up a bit. */
801
ab4a5fc9
RK
802#define MEMORY_MOVE_COST(MODE) \
803 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
804 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
805 ? 3 : 2) \
806 + 4)
f045b2c9
RS
807
808/* Specify the cost of a branch insn; roughly the number of extra insns that
809 should be added to avoid a branch.
810
ef457bda 811 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
812 unscheduled conditional branch. */
813
ef457bda 814#define BRANCH_COST 3
f045b2c9 815
5a5e4c2c
RK
816/* A C statement (sans semicolon) to update the integer variable COST
817 based on the relationship between INSN that is dependent on
818 DEP_INSN through the dependence LINK. The default is to make no
819 adjustment to COST. On the RS/6000, ignore the cost of anti- and
820 output-dependencies. In fact, output dependencies on the CR do have
821 a cost, but it is probably not worthwhile to track it. */
822
823#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 824 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 825
6febd581
RK
826/* Define this macro to change register usage conditional on target flags.
827 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585
RK
828 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
829 Conditionally disable FPRs. */
830
831#define CONDITIONAL_REGISTER_USAGE \
832{ \
833 if (! TARGET_POWER) \
834 fixed_regs[64] = 1; \
d14a6d05
MM
835 if (TARGET_SOFT_FLOAT) \
836 for (i = 32; i < 64; i++) \
f85f4585
RK
837 fixed_regs[i] = call_used_regs[i] = 1; \
838}
6febd581 839
f045b2c9
RS
840/* Specify the registers used for certain standard purposes.
841 The values of these macros are register numbers. */
842
843/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
844/* #define PC_REGNUM */
845
846/* Register to use for pushing function arguments. */
847#define STACK_POINTER_REGNUM 1
848
849/* Base register for access to local variables of the function. */
850#define FRAME_POINTER_REGNUM 31
851
852/* Value should be nonzero if functions must have frame pointers.
853 Zero means the frame pointer need not be set up (and parms
854 may be accessed via the stack pointer) in functions that seem suitable.
855 This is computed in `reload', in reload1.c. */
856#define FRAME_POINTER_REQUIRED 0
857
858/* Base register for access to arguments of the function. */
859#define ARG_POINTER_REGNUM 67
860
861/* Place to put static chain when calling a function that requires it. */
862#define STATIC_CHAIN_REGNUM 11
863
b6c9286a
MM
864/* count register number for special purposes */
865#define COUNT_REGISTER_REGNUM 66
866
802a0058
MM
867/* Special register that represents memory, used for float/int conversions. */
868#define FPMEM_REGNUM 76
869
1ff7789b
MM
870/* Register to use as a placeholder for the GOT/allocated TOC register.
871 FINALIZE_PIC will change all uses of this register to a an appropriate
872 pseudo register when it adds the code to setup the GOT. We use r2
873 because it is a reserved register in all of the ABI's. */
874#define GOT_TOC_REGNUM 2
875
f045b2c9
RS
876/* Place that structure value return address is placed.
877
878 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 879#define STRUCT_VALUE 0
f045b2c9
RS
880\f
881/* Define the classes of registers for register constraints in the
882 machine description. Also define ranges of constants.
883
884 One of the classes must always be named ALL_REGS and include all hard regs.
885 If there is more than one class, another class must be named NO_REGS
886 and contain no registers.
887
888 The name GENERAL_REGS must be the name of a class (or an alias for
889 another name such as ALL_REGS). This is the class of registers
890 that is allowed by "g" or "r" in a register constraint.
891 Also, registers outside this class are allocated only when
892 instructions express preferences for them.
893
894 The classes must be numbered in nondecreasing order; that is,
895 a larger-numbered class must never be contained completely
896 in a smaller-numbered class.
897
898 For any two classes, it is very desirable that there be another
899 class that represents their union. */
c81bebd7 900
f045b2c9
RS
901/* The RS/6000 has three types of registers, fixed-point, floating-point,
902 and condition registers, plus three special registers, MQ, CTR, and the
903 link register.
904
905 However, r0 is special in that it cannot be used as a base register.
906 So make a class for registers valid as base registers.
907
908 Also, cr0 is the only condition code register that can be used in
802a0058
MM
909 arithmetic insns, so make a separate class for it.
910
911 There is a special 'registrer' (76), which is not a register, but a
912 placeholder for memory allocated to convert between floating point and
913 integral types. This works around a problem where if we allocate memory
914 with allocate_stack_{local,temp} and the function is an inline function, the
915 memory allocated will clobber memory in the caller. So we use a special
916 register, and if that is used, we allocate stack space for it. */
f045b2c9 917
ebedb4dd
MM
918enum reg_class
919{
920 NO_REGS,
ebedb4dd
MM
921 BASE_REGS,
922 GENERAL_REGS,
923 FLOAT_REGS,
924 NON_SPECIAL_REGS,
925 MQ_REGS,
926 LINK_REGS,
927 CTR_REGS,
928 LINK_OR_CTR_REGS,
929 SPECIAL_REGS,
930 SPEC_OR_GEN_REGS,
931 CR0_REGS,
ebedb4dd
MM
932 CR_REGS,
933 NON_FLOAT_REGS,
802a0058
MM
934 FPMEM_REGS,
935 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
936 ALL_REGS,
937 LIM_REG_CLASSES
938};
f045b2c9
RS
939
940#define N_REG_CLASSES (int) LIM_REG_CLASSES
941
942/* Give names of register classes as strings for dump file. */
943
ebedb4dd
MM
944#define REG_CLASS_NAMES \
945{ \
946 "NO_REGS", \
ebedb4dd
MM
947 "BASE_REGS", \
948 "GENERAL_REGS", \
949 "FLOAT_REGS", \
950 "NON_SPECIAL_REGS", \
951 "MQ_REGS", \
952 "LINK_REGS", \
953 "CTR_REGS", \
954 "LINK_OR_CTR_REGS", \
955 "SPECIAL_REGS", \
956 "SPEC_OR_GEN_REGS", \
957 "CR0_REGS", \
ebedb4dd
MM
958 "CR_REGS", \
959 "NON_FLOAT_REGS", \
802a0058
MM
960 "FPMEM_REGS", \
961 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
962 "ALL_REGS" \
963}
f045b2c9
RS
964
965/* Define which registers fit in which classes.
966 This is an initializer for a vector of HARD_REG_SET
967 of length N_REG_CLASSES. */
968
ebedb4dd
MM
969#define REG_CLASS_CONTENTS \
970{ \
971 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
972 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
973 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
974 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
975 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
976 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
977 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
978 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
979 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
980 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
981 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
982 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
983 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
984 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
985 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
986 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
987 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 988}
f045b2c9
RS
989
990/* The same information, inverted:
991 Return the class number of the smallest class containing
992 reg number REGNO. This could be a conditional expression
993 or could index an array. */
994
802a0058
MM
995#define REGNO_REG_CLASS(REGNO) \
996 ((REGNO) == 0 ? GENERAL_REGS \
997 : (REGNO) < 32 ? BASE_REGS \
998 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
999 : (REGNO) == 68 ? CR0_REGS \
1000 : CR_REGNO_P (REGNO) ? CR_REGS \
1001 : (REGNO) == 64 ? MQ_REGS \
1002 : (REGNO) == 65 ? LINK_REGS \
1003 : (REGNO) == 66 ? CTR_REGS \
1004 : (REGNO) == 67 ? BASE_REGS \
1005 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
1006 : NO_REGS)
1007
1008/* The class value for index registers, and the one for base regs. */
1009#define INDEX_REG_CLASS GENERAL_REGS
1010#define BASE_REG_CLASS BASE_REGS
1011
1012/* Get reg_class from a letter such as appears in the machine description. */
1013
1014#define REG_CLASS_FROM_LETTER(C) \
1015 ((C) == 'f' ? FLOAT_REGS \
1016 : (C) == 'b' ? BASE_REGS \
1017 : (C) == 'h' ? SPECIAL_REGS \
1018 : (C) == 'q' ? MQ_REGS \
1019 : (C) == 'c' ? CTR_REGS \
1020 : (C) == 'l' ? LINK_REGS \
1021 : (C) == 'x' ? CR0_REGS \
1022 : (C) == 'y' ? CR_REGS \
802a0058 1023 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
1024 : NO_REGS)
1025
1026/* The letters I, J, K, L, M, N, and P in a register constraint string
1027 can be used to stand for particular ranges of immediate operands.
1028 This macro defines what the ranges are.
1029 C is the letter, and VALUE is a constant value.
1030 Return 1 if VALUE is in the range specified by C.
1031
c81bebd7 1032 `I' is signed 16-bit constants
f045b2c9
RS
1033 `J' is a constant with only the high-order 16 bits non-zero
1034 `K' is a constant with only the low-order 16 bits non-zero
1035 `L' is a constant that can be placed into a mask operand
1036 `M' is a constant that is greater than 31
1037 `N' is a constant that is an exact power of two
1038 `O' is the constant zero
1039 `P' is a constant whose negation is a signed 16-bit constant */
1040
5b6f7b96
RK
1041#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1042 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1043 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1044 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1045 : (C) == 'L' ? mask_constant (VALUE) \
1046 : (C) == 'M' ? (VALUE) > 31 \
1047 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1048 : (C) == 'O' ? (VALUE) == 0 \
1049 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
f045b2c9
RS
1050 : 0)
1051
1052/* Similar, but for floating constants, and defining letters G and H.
1053 Here VALUE is the CONST_DOUBLE rtx itself.
1054
1055 We flag for special constants when we can copy the constant into
4e74d8ec 1056 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1057
c4c40373 1058 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1059
1060#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1061 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1062 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1063 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1064 : 0)
f045b2c9
RS
1065
1066/* Optional extra constraints for this machine.
1067
b6c9286a
MM
1068 'Q' means that is a memory operand that is just an offset from a reg.
1069 'R' is for AIX TOC entries.
1070 'S' is for Windows NT SYMBOL_REFs
88228c4b
MM
1071 'T' is for Windows NT LABEL_REFs.
1072 'U' is for V.4 small data references. */
f045b2c9 1073
e8a8bc24
RK
1074#define EXTRA_CONSTRAINT(OP, C) \
1075 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1076 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b6c9286a
MM
1077 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1078 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
c81bebd7
MM
1079 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1080 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1081 : 0)
f045b2c9
RS
1082
1083/* Given an rtx X being reloaded into a reg required to be
1084 in class CLASS, return the class of reg to actually use.
1085 In general this is just CLASS; but on some machines
c81bebd7 1086 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1087
1088 On the RS/6000, we have to return NO_REGS when we want to reload a
1089 floating-point CONST_DOUBLE to force it to be copied to memory. */
1090
802a0058 1091#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1092 ((GET_CODE (X) == CONST_DOUBLE \
1093 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1094 ? NO_REGS : (CLASS))
c81bebd7 1095
f045b2c9
RS
1096/* Return the register class of a scratch register needed to copy IN into
1097 or out of a register in CLASS in MODE. If it can be done directly,
1098 NO_REGS is returned. */
1099
1100#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1101 secondary_reload_class (CLASS, MODE, IN)
1102
7ea555a4
RK
1103/* If we are copying between FP registers and anything else, we need a memory
1104 location. */
1105
1106#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1107 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1108
f045b2c9
RS
1109/* Return the maximum number of consecutive registers
1110 needed to represent mode MODE in a register of class CLASS.
1111
1112 On RS/6000, this is the size of MODE in words,
1113 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1114#define CLASS_MAX_NREGS(CLASS, MODE) \
1115 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1116 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1117 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1118 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1119
1120/* If defined, gives a class of registers that cannot be used as the
1121 operand of a SUBREG that changes the size of the object. */
1122
802a0058 1123#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1124\f
1125/* Stack layout; function entry, exit and calling. */
1126
6b67933e
RK
1127/* Enumeration to give which calling sequence to use. */
1128enum rs6000_abi {
1129 ABI_NONE,
1130 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1131 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1132 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1133 ABI_NT, /* Windows/NT */
1134 ABI_SOLARIS /* Solaris */
6b67933e
RK
1135};
1136
b6c9286a
MM
1137extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1138
1139/* Default ABI to compile code for */
1140#ifndef DEFAULT_ABI
1141#define DEFAULT_ABI ABI_AIX
fb19c17f
RK
1142/* The prefix to add to user-visible assembler symbols. */
1143#define USER_LABEL_PREFIX "."
b6c9286a
MM
1144#endif
1145
4697a36c
MM
1146/* Structure used to define the rs6000 stack */
1147typedef struct rs6000_stack {
1148 int first_gp_reg_save; /* first callee saved GP register used */
1149 int first_fp_reg_save; /* first callee saved FP register used */
1150 int lr_save_p; /* true if the link reg needs to be saved */
1151 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1152 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1153 int push_p; /* true if we need to allocate stack space */
1154 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1155 int main_p; /* true if this is main */
1156 int main_save_p; /* true if this is main and we need to save args */
802a0058 1157 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1158 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1159 int gp_save_offset; /* offset to save GP regs from initial SP */
1160 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1161 int lr_save_offset; /* offset to save LR from initial SP */
1162 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1163 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1164 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1165 int main_save_offset; /* offset to save main's args */
802a0058 1166 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1167 int reg_size; /* register size (4 or 8) */
1168 int varargs_size; /* size to hold V.4 args passed in regs */
1169 int vars_size; /* variable save area size */
1170 int parm_size; /* outgoing parameter size */
b6c9286a 1171 int main_size; /* size to hold saving main's args */
4697a36c
MM
1172 int save_size; /* save area size */
1173 int fixed_size; /* fixed size of stack frame */
1174 int gp_size; /* size of saved GP registers */
1175 int fp_size; /* size of saved FP registers */
1176 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1177 int lr_size; /* size to hold LR if not in save_size */
802a0058 1178 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1179 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1180 int total_size; /* total bytes allocated for stack */
1181} rs6000_stack_t;
1182
f045b2c9
RS
1183/* Define this if pushing a word on the stack
1184 makes the stack pointer a smaller address. */
1185#define STACK_GROWS_DOWNWARD
1186
1187/* Define this if the nominal address of the stack frame
1188 is at the high-address end of the local variables;
1189 that is, each additional local variable allocated
1190 goes at a more negative offset in the frame.
1191
1192 On the RS/6000, we grow upwards, from the area after the outgoing
1193 arguments. */
1194/* #define FRAME_GROWS_DOWNWARD */
1195
4697a36c 1196/* Size of the outgoing register save area */
2f3e5814 1197#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1198
1199/* Size of the fixed area on the stack */
2f3e5814 1200#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1201
b6c9286a
MM
1202/* Address to save the TOC register */
1203#define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1204
802a0058
MM
1205/* Offset & size for fpmem stack locations used for converting between
1206 float and integral types. */
1207extern int rs6000_fpmem_offset;
1208extern int rs6000_fpmem_size;
1209
4697a36c
MM
1210/* Size of the V.4 varargs area if needed */
1211#define RS6000_VARARGS_AREA 0
1212
1213/* Whether a V.4 varargs area is needed */
1214extern int rs6000_sysv_varargs_p;
1215
1216/* Align an address */
ed33106f 1217#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1218
a7df97e6
MM
1219/* Initialize data used by insn expanders. This is called from
1220 init_emit, once for each function, before code is generated. */
1221#define INIT_EXPANDERS rs6000_init_expanders ()
1222
4697a36c
MM
1223/* Size of V.4 varargs area in bytes */
1224#define RS6000_VARARGS_SIZE \
2f3e5814 1225 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c
MM
1226
1227/* Offset of V.4 varargs area */
802a0058 1228#define RS6000_VARARGS_OFFSET \
ed33106f 1229 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1230 + RS6000_SAVE_AREA)
4697a36c 1231
f045b2c9
RS
1232/* Offset within stack frame to start allocating local variables at.
1233 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1234 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1235 of the first local allocated.
f045b2c9
RS
1236
1237 On the RS/6000, the frame pointer is the same as the stack pointer,
1238 except for dynamic allocations. So we start after the fixed area and
1239 outgoing parameter area. */
1240
802a0058 1241#define STARTING_FRAME_OFFSET \
ed33106f 1242 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058
MM
1243 + RS6000_VARARGS_AREA \
1244 + RS6000_SAVE_AREA)
1245
1246/* Offset from the stack pointer register to an item dynamically
1247 allocated on the stack, e.g., by `alloca'.
1248
1249 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1250 length of the outgoing arguments. The default is correct for most
1251 machines. See `function.c' for details. */
1252#define STACK_DYNAMIC_OFFSET(FUNDECL) \
ed33106f 1253 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1254 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1255
1256/* If we generate an insn to push BYTES bytes,
1257 this says how many the stack pointer really advances by.
1258 On RS/6000, don't define this because there are no push insns. */
1259/* #define PUSH_ROUNDING(BYTES) */
1260
1261/* Offset of first parameter from the argument pointer register value.
1262 On the RS/6000, we define the argument pointer to the start of the fixed
1263 area. */
4697a36c 1264#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1265
1266/* Define this if stack space is still allocated for a parameter passed
1267 in a register. The value is the number of bytes allocated to this
1268 area. */
4697a36c 1269#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1270
1271/* Define this if the above stack space is to be considered part of the
1272 space allocated by the caller. */
1273#define OUTGOING_REG_PARM_STACK_SPACE
1274
1275/* This is the difference between the logical top of stack and the actual sp.
1276
1277 For the RS/6000, sp points past the fixed area. */
4697a36c 1278#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1279
1280/* Define this if the maximum size of all the outgoing args is to be
1281 accumulated and pushed during the prologue. The amount can be
1282 found in the variable current_function_outgoing_args_size. */
1283#define ACCUMULATE_OUTGOING_ARGS
1284
1285/* Value is the number of bytes of arguments automatically
1286 popped when returning from a subroutine call.
8b109b37 1287 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1288 FUNTYPE is the data type of the function (as a tree),
1289 or for a library call it is an identifier node for the subroutine name.
1290 SIZE is the number of bytes of arguments passed on the stack. */
1291
8b109b37 1292#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1293
1294/* Define how to find the value returned by a function.
1295 VALTYPE is the data type of the value (as a tree).
1296 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1297 otherwise, FUNC is 0.
1298
c81bebd7 1299 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1300 fp1, unless -msoft-float. */
f045b2c9
RS
1301
1302#define FUNCTION_VALUE(VALTYPE, FUNC) \
1303 gen_rtx (REG, TYPE_MODE (VALTYPE), \
d14a6d05 1304 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1305
1306/* Define how to find the value returned by a library function
1307 assuming the value has mode MODE. */
1308
1309#define LIBCALL_VALUE(MODE) \
d14a6d05 1310 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1311
1312/* The definition of this macro implies that there are cases where
1313 a scalar value cannot be returned in registers.
1314
c81bebd7
MM
1315 For the RS/6000, any structure or union type is returned in memory, except for
1316 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1317
c81bebd7
MM
1318#define RETURN_IN_MEMORY(TYPE) \
1319 (TYPE_MODE (TYPE) == BLKmode \
1320 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1321
4697a36c
MM
1322/* Minimum and maximum general purpose registers used to hold arguments. */
1323#define GP_ARG_MIN_REG 3
1324#define GP_ARG_MAX_REG 10
1325#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1326
1327/* Minimum and maximum floating point registers used to hold arguments. */
1328#define FP_ARG_MIN_REG 33
7509c759
MM
1329#define FP_ARG_AIX_MAX_REG 45
1330#define FP_ARG_V4_MAX_REG 40
1331#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1332#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1333
1334/* Return registers */
1335#define GP_ARG_RETURN GP_ARG_MIN_REG
1336#define FP_ARG_RETURN FP_ARG_MIN_REG
1337
7509c759 1338/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1339#define CALL_NORMAL 0x00000000 /* no special processing */
1340#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1341#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1342#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1343#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1344
4697a36c
MM
1345/* Define cutoff for using external functions to save floating point */
1346#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1347
f045b2c9
RS
1348/* 1 if N is a possible register number for a function value
1349 as seen by the caller.
1350
1351 On RS/6000, this is r3 and fp1. */
4697a36c 1352#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1353
1354/* 1 if N is a possible register number for function argument passing.
1355 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1356#define FUNCTION_ARG_REGNO_P(N) \
1357 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1358 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1359
f045b2c9
RS
1360\f
1361/* Define a data type for recording info about an argument list
1362 during the scan of that argument list. This data type should
1363 hold all necessary information about the function itself
1364 and about the args processed so far, enough to enable macros
1365 such as FUNCTION_ARG to determine where the next arg should go.
1366
1367 On the RS/6000, this is a structure. The first element is the number of
1368 total argument words, the second is used to store the next
1369 floating-point register number, and the third says how many more args we
4697a36c
MM
1370 have prototype types for.
1371
1372 The System V.4 varargs/stdarg support requires that this structure's size
1373 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1374 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1375
1376typedef struct rs6000_args
1377{
6a4cee5f
MM
1378 int words; /* # words uses for passing GP registers */
1379 int fregno; /* next available FP register */
1380 int nargs_prototype; /* # args left in the current prototype */
1381 int orig_nargs; /* Original value of nargs_prototype */
1382 int varargs_offset; /* offset of the varargs save area */
1383 int prototype; /* Whether a prototype was defined */
1384 int call_cookie; /* Do special things for this call */
4697a36c 1385} CUMULATIVE_ARGS;
f045b2c9
RS
1386
1387/* Define intermediate macro to compute the size (in registers) of an argument
1388 for the RS/6000. */
1389
1390#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1391(! (NAMED) ? 0 \
1392 : (MODE) != BLKmode \
1393 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1394 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1395
1396/* Initialize a variable CUM of type CUMULATIVE_ARGS
1397 for a call to a function whose data type is FNTYPE.
1398 For a library call, FNTYPE is 0. */
1399
2c7ee1a6 1400#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1401 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1402
1403/* Similar, but when scanning the definition of a procedure. We always
1404 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1405
4697a36c
MM
1406#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1407 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1408
1409/* Update the data in CUM to advance over an argument
1410 of mode MODE and data type TYPE.
1411 (TYPE is null for libcalls where that information may not be available.) */
1412
1413#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1414 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1415
1416/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1417#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1418 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1419 && (CUM).fregno <= FP_ARG_MAX_REG \
1420 && TARGET_HARD_FLOAT)
f045b2c9
RS
1421
1422/* Determine where to put an argument to a function.
1423 Value is zero to push the argument on the stack,
1424 or a hard register in which to store the argument.
1425
1426 MODE is the argument's machine mode.
1427 TYPE is the data type of the argument (as a tree).
1428 This is null for libcalls where that information may
1429 not be available.
1430 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1431 the preceding args and about the function being called.
1432 NAMED is nonzero if this argument is a named parameter
1433 (otherwise it is an extra parameter matching an ellipsis).
1434
1435 On RS/6000 the first eight words of non-FP are normally in registers
1436 and the rest are pushed. The first 13 FP args are in registers.
1437
1438 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1439 both an FP and integer register (or possibly FP reg and stack). Library
1440 functions (when TYPE is zero) always have the proper types for args,
1441 so we can pass the FP value just in one register. emit_library_function
1442 doesn't support EXPR_LIST anyway. */
f045b2c9 1443
4697a36c
MM
1444#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1445 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1446
1447/* For an arg passed partly in registers and partly in memory,
1448 this is the number of registers used.
1449 For args passed entirely in registers or entirely in memory, zero. */
1450
4697a36c
MM
1451#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1452 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1453
1454/* A C expression that indicates when an argument must be passed by
1455 reference. If nonzero for an argument, a copy of that argument is
1456 made in memory and a pointer to the argument is passed instead of
1457 the argument itself. The pointer is passed in whatever way is
1458 appropriate for passing a pointer to that type. */
1459
1460#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1461 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1462
b6c9286a 1463/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1464 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1465 PARM_BOUNDARY is used for all arguments. */
1466
1467#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1468 function_arg_boundary (MODE, TYPE)
1469
f045b2c9 1470/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1471 variable number of arguments.
f045b2c9
RS
1472
1473 CUM is as above.
1474
1475 MODE and TYPE are the mode and type of the current parameter.
1476
1477 PRETEND_SIZE is a variable that should be set to the amount of stack
1478 that must be pushed by the prolog to pretend that our caller pushed
1479 it.
1480
1481 Normally, this macro will push all remaining incoming registers on the
1482 stack and set PRETEND_SIZE to the length of the registers pushed. */
1483
4697a36c
MM
1484#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1485 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1486
1487/* If defined, is a C expression that produces the machine-specific
1488 code for a call to `__builtin_saveregs'. This code will be moved
1489 to the very beginning of the function, before any parameter access
1490 are made. The return value of this function should be an RTX that
1491 contains the value to use as the return of `__builtin_saveregs'.
1492
1493 The argument ARGS is a `tree_list' containing the arguments that
1494 were passed to `__builtin_saveregs'.
1495
1496 If this macro is not defined, the compiler will output an ordinary
1497 call to the library function `__builtin_saveregs'. */
1498
1499#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1500 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1501
1502/* This macro generates the assembly code for function entry.
1503 FILE is a stdio stream to output the code to.
1504 SIZE is an int: how many units of temporary storage to allocate.
1505 Refer to the array `regs_ever_live' to determine which registers
1506 to save; `regs_ever_live[I]' is nonzero if register number I
1507 is ever used in the function. This macro is responsible for
1508 knowing which registers should not be saved even if used. */
1509
1510#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1511
1512/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1513 for profiling a function entry. */
f045b2c9
RS
1514
1515#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1516 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1517
1518/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1519 the stack pointer does not matter. No definition is equivalent to
1520 always zero.
1521
1522 On the RS/6000, this is non-zero because we can restore the stack from
1523 its backpointer, which we maintain. */
1524#define EXIT_IGNORE_STACK 1
1525
1526/* This macro generates the assembly code for function exit,
1527 on machines that need it. If FUNCTION_EPILOGUE is not defined
1528 then individual return instructions are generated for each
1529 return statement. Args are same as for FUNCTION_PROLOGUE.
1530
1531 The function epilogue should not depend on the current stack pointer!
1532 It should use the frame pointer only. This is mandatory because
1533 of alloca; we also take advantage of it to omit stack adjustments
1534 before returning. */
1535
1536#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1537\f
eaf1bcf1 1538/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1539
1540/* Length in units of the trampoline for entering a nested function. */
1541
b6c9286a 1542#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1543
1544/* Emit RTL insns to initialize the variable parts of a trampoline.
1545 FNADDR is an RTX for the address of the function's pure code.
1546 CXT is an RTX for the static chain value for the function. */
1547
1548#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1549 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1550\f
7509c759
MM
1551/* If defined, a C expression whose value is nonzero if IDENTIFIER
1552 with arguments ARGS is a valid machine specific attribute for DECL.
1553 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1554
1555#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1556 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1557
1558/* If defined, a C expression whose value is nonzero if IDENTIFIER
1559 with arguments ARGS is a valid machine specific attribute for TYPE.
1560 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1561
1562#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1563 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1564
1565/* If defined, a C expression whose value is zero if the attributes on
1566 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1567 two if they are nearly compatible (which causes a warning to be
1568 generated). */
1569
1570#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1571 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1572
1573/* If defined, a C statement that assigns default attributes to newly
1574 defined TYPE. */
1575
1576#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1577 (rs6000_set_default_type_attributes (TYPE))
1578
1579\f
f33985c6
MS
1580/* Definitions for __builtin_return_address and __builtin_frame_address.
1581 __builtin_return_address (0) should give link register (65), enable
1582 this. */
1583/* This should be uncommented, so that the link register is used, but
1584 currently this would result in unmatched insns and spilling fixed
1585 registers so we'll leave it for another day. When these problems are
1586 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1587 (mrs) */
1588/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1589
b6c9286a
MM
1590/* Number of bytes into the frame return addresses can be found. See
1591 rs6000_stack_info in rs6000.c for more information on how the different
1592 abi's store the return address. */
1593#define RETURN_ADDRESS_OFFSET \
1594 ((DEFAULT_ABI == ABI_AIX \
1595 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1596 (DEFAULT_ABI == ABI_V4 \
1597 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1598 (DEFAULT_ABI == ABI_NT) ? -4 : \
1599 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1600
f33985c6
MS
1601/* The current return address is in link register (65). The return address
1602 of anything farther back is accessed normally at an offset of 8 from the
1603 frame pointer. */
1604#define RETURN_ADDR_RTX(count, frame) \
1605 ((count == -1) \
1606 ? gen_rtx (REG, Pmode, 65) \
f09d4c33
RK
1607 : gen_rtx (MEM, Pmode, \
1608 memory_address (Pmode, \
1609 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1610 memory_address (Pmode, frame))), \
1611 RETURN_ADDRESS_OFFSET))))
f33985c6 1612\f
f045b2c9
RS
1613/* Definitions for register eliminations.
1614
1615 We have two registers that can be eliminated on the RS/6000. First, the
1616 frame pointer register can often be eliminated in favor of the stack
1617 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1618 eliminated; it is replaced with either the stack or frame pointer.
1619
1620 In addition, we use the elimination mechanism to see if r30 is needed
1621 Initially we assume that it isn't. If it is, we spill it. This is done
1622 by making it an eliminable register. We replace it with itself so that
1623 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1624
1625/* This is an array of structures. Each structure initializes one pair
1626 of eliminable registers. The "from" register number is given first,
1627 followed by "to". Eliminations of the same "from" register are listed
1628 in order of preference. */
1629#define ELIMINABLE_REGS \
1630{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1631 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1632 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1633 { 30, 30} }
f045b2c9
RS
1634
1635/* Given FROM and TO register numbers, say whether this elimination is allowed.
1636 Frame pointer elimination is automatically handled.
1637
1638 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1639 to convert ap into fp, not sp.
1640
abc95ed3 1641 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1642 references. */
f045b2c9
RS
1643
1644#define CAN_ELIMINATE(FROM, TO) \
1645 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1646 ? ! frame_pointer_needed \
4697a36c 1647 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1648 : 1)
1649
1650/* Define the offset between two registers, one to be eliminated, and the other
1651 its replacement, at the start of a routine. */
1652#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1653{ \
4697a36c 1654 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1655 \
1656 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1657 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1658 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1659 (OFFSET) = info->total_size; \
1660 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1661 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1662 else if ((FROM) == 30) \
1663 (OFFSET) = 0; \
f045b2c9
RS
1664 else \
1665 abort (); \
1666}
1667\f
1668/* Addressing modes, and classification of registers for them. */
1669
1670/* #define HAVE_POST_INCREMENT */
1671/* #define HAVE_POST_DECREMENT */
1672
1673#define HAVE_PRE_DECREMENT
1674#define HAVE_PRE_INCREMENT
1675
1676/* Macros to check register numbers against specific register classes. */
1677
1678/* These assume that REGNO is a hard or pseudo reg number.
1679 They give nonzero only if REGNO is a hard reg of the suitable class
1680 or a pseudo reg currently allocated to a suitable hard reg.
1681 Since they use reg_renumber, they are safe only once reg_renumber
1682 has been allocated, which happens in local-alloc.c. */
1683
1684#define REGNO_OK_FOR_INDEX_P(REGNO) \
1685((REGNO) < FIRST_PSEUDO_REGISTER \
1686 ? (REGNO) <= 31 || (REGNO) == 67 \
1687 : (reg_renumber[REGNO] >= 0 \
1688 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1689
1690#define REGNO_OK_FOR_BASE_P(REGNO) \
1691((REGNO) < FIRST_PSEUDO_REGISTER \
1692 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1693 : (reg_renumber[REGNO] > 0 \
1694 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1695\f
1696/* Maximum number of registers that can appear in a valid memory address. */
1697
1698#define MAX_REGS_PER_ADDRESS 2
1699
1700/* Recognize any constant value that is a valid address. */
1701
6eff269e
BK
1702#define CONSTANT_ADDRESS_P(X) \
1703 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1704 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1705 || GET_CODE (X) == HIGH)
f045b2c9
RS
1706
1707/* Nonzero if the constant value X is a legitimate general operand.
1708 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1709
1710 On the RS/6000, all integer constants are acceptable, most won't be valid
1711 for particular insns, though. Only easy FP constants are
1712 acceptable. */
1713
1714#define LEGITIMATE_CONSTANT_P(X) \
1715 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1716 || easy_fp_constant (X, GET_MODE (X)))
1717
1718/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1719 and check its validity for a certain class.
1720 We have two alternate definitions for each of them.
1721 The usual definition accepts all pseudo regs; the other rejects
1722 them unless they have been allocated suitable hard regs.
1723 The symbol REG_OK_STRICT causes the latter definition to be used.
1724
1725 Most source files want to accept pseudo regs in the hope that
1726 they will get allocated to the class that the insn wants them to be in.
1727 Source files for reload pass need to be strict.
1728 After reload, it makes no difference, since pseudo regs have
1729 been eliminated by then. */
1730
1731#ifndef REG_OK_STRICT
1732
1733/* Nonzero if X is a hard reg that can be used as an index
1734 or if it is a pseudo reg. */
1735#define REG_OK_FOR_INDEX_P(X) \
1736 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1737
1738/* Nonzero if X is a hard reg that can be used as a base reg
1739 or if it is a pseudo reg. */
1740#define REG_OK_FOR_BASE_P(X) \
1741 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1742
1743#else
1744
1745/* Nonzero if X is a hard reg that can be used as an index. */
1746#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1747/* Nonzero if X is a hard reg that can be used as a base reg. */
1748#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1749
1750#endif
1751\f
1752/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1753 that is a valid memory address for an instruction.
1754 The MODE argument is the machine mode for the MEM expression
1755 that wants to use this address.
1756
1757 On the RS/6000, there are four valid address: a SYMBOL_REF that
1758 refers to a constant pool entry of an address (or the sum of it
1759 plus a constant), a short (16-bit signed) constant plus a register,
1760 the sum of two registers, or a register indirect, possibly with an
1761 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814
DE
1762 we must ensure that both words are addressable or PowerPC64 with offset
1763 word aligned. */
f045b2c9
RS
1764
1765#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1766 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1767 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1768 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1769
2f3e5814 1770/* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
f045b2c9
RS
1771#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1772 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1773 || (TARGET_TOC \
1774 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1775 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1776 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1777
7509c759 1778#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1779 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
81795281 1780 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1781 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1782 && small_data_operand (X, MODE))
7509c759 1783
f045b2c9
RS
1784#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1785 (GET_CODE (X) == CONST_INT \
5b6f7b96 1786 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9
RS
1787
1788#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1789 (GET_CODE (X) == PLUS \
1790 && GET_CODE (XEXP (X, 0)) == REG \
1791 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1792 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1793 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1794 || (TARGET_32BIT \
1465faec
DE
1795 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1796 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1797 && ((MODE) != TImode \
644d82dd 1798 || (TARGET_32BIT \
1465faec
DE
1799 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1800 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1801 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1802
1803#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1804 (GET_CODE (X) == PLUS \
1805 && GET_CODE (XEXP (X, 0)) == REG \
1806 && GET_CODE (XEXP (X, 1)) == REG \
1807 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1808 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1809 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1810 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1811
1812#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1813 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1814
4697a36c
MM
1815#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1816 (TARGET_ELF \
81795281 1817 && !flag_pic && !TARGET_TOC \
4697a36c
MM
1818 && (MODE) != DImode \
1819 && (MODE) != TImode \
1820 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1821 && GET_CODE (X) == LO_SUM \
1822 && GET_CODE (XEXP (X, 0)) == REG \
1823 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1824 && CONSTANT_P (XEXP (X, 1)))
1825
f045b2c9
RS
1826#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1827{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1828 goto ADDR; \
0a90c336 1829 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
38c1f2d7 1830 && TARGET_UPDATE \
f045b2c9
RS
1831 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1832 goto ADDR; \
7509c759
MM
1833 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1834 goto ADDR; \
f045b2c9
RS
1835 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1836 goto ADDR; \
1837 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1838 goto ADDR; \
2f3e5814
DE
1839 if ((MODE) != TImode \
1840 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1841 && (TARGET_64BIT || (MODE) != DImode) \
f045b2c9
RS
1842 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1843 goto ADDR; \
4697a36c
MM
1844 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1845 goto ADDR; \
f045b2c9
RS
1846}
1847\f
1848/* Try machine-dependent ways of modifying an illegitimate address
1849 to be legitimate. If we find one, return the new, valid address.
1850 This macro is used in only one place: `memory_address' in explow.c.
1851
1852 OLDX is the address as it was before break_out_memory_refs was called.
1853 In some cases it is useful to look at this to decide what needs to be done.
1854
1855 MODE and WIN are passed so that this macro can use
1856 GO_IF_LEGITIMATE_ADDRESS.
1857
1858 It is always safe for this macro to do nothing. It exists to recognize
1859 opportunities to optimize the output.
1860
1861 On RS/6000, first check for the sum of a register with a constant
1862 integer that is out of range. If so, generate code to add the
1863 constant with the low-order 16 bits masked to the register and force
1864 this result into another register (this can be done with `cau').
c81bebd7 1865 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1866 possibility of bit 16 being a one.
1867
1868 Then check for the sum of a register and something not constant, try to
1869 load the other things into a register and return the sum. */
1870
4697a36c
MM
1871#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1872{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1873 && GET_CODE (XEXP (X, 1)) == CONST_INT \
5b6f7b96 1874 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1875 { HOST_WIDE_INT high_int, low_int; \
1876 rtx sum; \
1877 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1878 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1879 if (low_int & 0x8000) \
354b734b
MM
1880 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1881 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1882 GEN_INT (high_int)), 0); \
1883 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1884 goto WIN; \
1885 } \
1886 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1887 && GET_CODE (XEXP (X, 1)) != CONST_INT \
2f3e5814
DE
1888 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1889 && (TARGET_64BIT || (MODE) != DImode) \
1890 && (MODE) != TImode) \
4697a36c 1891 { \
0a90c336
DE
1892 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1893 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
1894 goto WIN; \
1895 } \
2f3e5814 1896 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
461422d5 1897 && !flag_pic \
4697a36c
MM
1898 && GET_CODE (X) != CONST_INT \
1899 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1900 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1901 && (MODE) != DImode && (MODE) != TImode) \
1902 { \
1903 rtx reg = gen_reg_rtx (Pmode); \
1904 emit_insn (gen_elf_high (reg, (X))); \
1905 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1906 } \
f045b2c9
RS
1907}
1908
1909/* Go to LABEL if ADDR (a legitimate address expression)
1910 has an effect that depends on the machine mode it is used for.
1911
1912 On the RS/6000 this is true if the address is valid with a zero offset
1913 but not with an offset of four (this means it cannot be used as an
1914 address for DImode or DFmode) or is a pre-increment or decrement. Since
1915 we know it is valid, we just check for an address that is not valid with
1916 an offset of four. */
1917
1918#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1919{ if (GET_CODE (ADDR) == PLUS \
1920 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
1921 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1922 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 1923 goto LABEL; \
38c1f2d7 1924 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 1925 goto LABEL; \
38c1f2d7 1926 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 1927 goto LABEL; \
4697a36c
MM
1928 if (GET_CODE (ADDR) == LO_SUM) \
1929 goto LABEL; \
f045b2c9 1930}
766a866c
MM
1931\f
1932/* The register number of the register used to address a table of
1933 static data addresses in memory. In some cases this register is
1934 defined by a processor's "application binary interface" (ABI).
1935 When this macro is defined, RTL is generated for this register
1936 once, as with the stack pointer and frame pointer registers. If
1937 this macro is not defined, it is up to the machine-dependent files
1938 to allocate such a register (if necessary). */
1939
1940/* #define PIC_OFFSET_TABLE_REGNUM */
1941
1942/* Define this macro if the register defined by
1943 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1944 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1945
1946/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1947
1948/* By generating position-independent code, when two different
1949 programs (A and B) share a common library (libC.a), the text of
1950 the library can be shared whether or not the library is linked at
1951 the same address for both programs. In some of these
1952 environments, position-independent code requires not only the use
1953 of different addressing modes, but also special code to enable the
1954 use of these addressing modes.
1955
1956 The `FINALIZE_PIC' macro serves as a hook to emit these special
1957 codes once the function is being compiled into assembly code, but
1958 not before. (It is not done before, because in the case of
1959 compiling an inline function, it would lead to multiple PIC
1960 prologues being included in functions which used inline functions
1961 and were compiled to assembly language.) */
1962
d266da75 1963#define FINALIZE_PIC rs6000_finalize_pic ()
766a866c 1964
766a866c
MM
1965/* A C expression that is nonzero if X is a legitimate immediate
1966 operand on the target machine when generating position independent
1967 code. You can assume that X satisfies `CONSTANT_P', so you need
1968 not check this. You can also assume FLAG_PIC is true, so you need
1969 not check it either. You need not define this macro if all
1970 constants (including `SYMBOL_REF') can be immediate operands when
1971 generating position independent code. */
1972
1973/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1974
30ea98f1
MM
1975/* In rare cases, correct code generation requires extra machine
1976 dependent processing between the second jump optimization pass and
1977 delayed branch scheduling. On those machines, define this macro
1978 as a C statement to act on the code starting at INSN.
1979
1980 On the RS/6000, we use it to make sure the GOT_TOC register marker
1981 that FINALIZE_PIC is supposed to remove actually got removed. */
1982
1983#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
1984
f045b2c9
RS
1985\f
1986/* Define this if some processing needs to be done immediately before
4255474b 1987 emitting code for an insn. */
f045b2c9 1988
4255474b 1989/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
1990
1991/* Specify the machine mode that this machine uses
1992 for the index in the tablejump instruction. */
2f3e5814 1993#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
1994
1995/* Define this if the tablejump instruction expects the table
1996 to contain offsets from the address of the table.
1997 Do not define this if the table should contain absolute addresses. */
1998#define CASE_VECTOR_PC_RELATIVE
1999
2000/* Specify the tree operation to be used to convert reals to integers. */
2001#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2002
2003/* This is the kind of divide that is easiest to do in the general case. */
2004#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2005
2006/* Define this as 1 if `char' should by default be signed; else as 0. */
2007#define DEFAULT_SIGNED_CHAR 0
2008
2009/* This flag, if defined, says the same insns that convert to a signed fixnum
2010 also convert validly to an unsigned one. */
2011
2012/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2013
2014/* Max number of bytes we can move from memory to memory
2015 in one reasonably fast instruction. */
2f3e5814 2016#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2017#define MAX_MOVE_MAX 8
f045b2c9
RS
2018
2019/* Nonzero if access to memory by bytes is no faster than for words.
2020 Also non-zero if doing byte operations (specifically shifts) in registers
2021 is undesirable. */
2022#define SLOW_BYTE_ACCESS 1
2023
9a63901f
RK
2024/* Define if operations between registers always perform the operation
2025 on the full register even if a narrower mode is specified. */
2026#define WORD_REGISTER_OPERATIONS
2027
2028/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2029 will either zero-extend or sign-extend. The value of this macro should
2030 be the code that says which one of the two operations is implicitly
2031 done, NIL if none. */
2032#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2033
2034/* Define if loading short immediate values into registers sign extends. */
2035#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2036\f
2037/* The RS/6000 uses the XCOFF format. */
f045b2c9 2038
fdaff8ba 2039#define XCOFF_DEBUGGING_INFO
f045b2c9 2040
c5abcf1d
CH
2041/* Define if the object format being used is COFF or a superset. */
2042#define OBJECT_FORMAT_COFF
2043
2c440f06
RK
2044/* Define the magic numbers that we recognize as COFF. */
2045
2046#define MY_ISCOFF(magic) \
2047 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2048
115e69a9
RK
2049/* This is the only version of nm that collect2 can work with. */
2050#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2051
f045b2c9
RS
2052/* We don't have GAS for the RS/6000 yet, so don't write out special
2053 .stabs in cc1plus. */
c81bebd7 2054
f045b2c9 2055#define FASCIST_ASSEMBLER
b6c9286a
MM
2056
2057#ifndef ASM_OUTPUT_CONSTRUCTOR
a6cf191b 2058#define ASM_OUTPUT_CONSTRUCTOR(file, name)
b6c9286a
MM
2059#endif
2060#ifndef ASM_OUTPUT_DESTRUCTOR
a6cf191b 2061#define ASM_OUTPUT_DESTRUCTOR(file, name)
b6c9286a 2062#endif
f045b2c9 2063
f045b2c9
RS
2064/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2065 is done just by pretending it is already truncated. */
2066#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2067
2068/* Specify the machine mode that pointers have.
2069 After generation of rtl, the compiler makes no further distinction
2070 between pointers and any other objects of this machine mode. */
2f3e5814 2071#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2072
2073/* Mode of a function address in a call instruction (for indexing purposes).
2074
2075 Doesn't matter on RS/6000. */
2f3e5814 2076#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2077
2078/* Define this if addresses of constant functions
2079 shouldn't be put through pseudo regs where they can be cse'd.
2080 Desirable on machines where ordinary constants are expensive
2081 but a CALL with constant address is cheap. */
2082#define NO_FUNCTION_CSE
2083
d969caf8 2084/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2085 few bits.
2086
2087 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2088 have been dropped from the PowerPC architecture. */
2089
4697a36c 2090#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2091
2092/* Use atexit for static constructors/destructors, instead of defining
2093 our own exit function. */
2094#define HAVE_ATEXIT
2095
2096/* Compute the cost of computing a constant rtl expression RTX
2097 whose rtx-code is CODE. The body of this macro is a portion
2098 of a switch statement. If the code is computed here,
2099 return it with a return statement. Otherwise, break from the switch.
2100
01554f00 2101 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2102 always returns 0. */
2103
4697a36c 2104#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2105 case CONST_INT: \
2106 case CONST: \
2107 case LABEL_REF: \
2108 case SYMBOL_REF: \
2109 case CONST_DOUBLE: \
4697a36c 2110 case HIGH: \
f045b2c9
RS
2111 return 0;
2112
2113/* Provide the costs of a rtl expression. This is in the body of a
2114 switch on CODE. */
2115
38c1f2d7
MM
2116#define RTX_COSTS(X,CODE,OUTER_CODE) \
2117 case PLUS: \
2118 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2119 && (unsigned HOST_WIDE_INT) ((INTVAL (XEXP (X, 1)) \
2120 + 0x8000) >= 0x10000)) \
2121 ? COSTS_N_INSNS (2) \
2122 : COSTS_N_INSNS (1)); \
2123 case AND: \
2124 return ((non_and_cint_operand (XEXP (X, 1), SImode)) \
2125 ? COSTS_N_INSNS (2) \
2126 : COSTS_N_INSNS (1)); \
2127 case IOR: \
2128 case XOR: \
2129 return ((non_logical_cint_operand (XEXP (X, 1), SImode)) \
2130 ? COSTS_N_INSNS (2) \
2131 : COSTS_N_INSNS (1)); \
2132 case MULT: \
2133 switch (rs6000_cpu) \
2134 { \
2135 case PROCESSOR_RIOS1: \
2136 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2137 ? COSTS_N_INSNS (5) \
2138 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2139 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2140 case PROCESSOR_RIOS2: \
2141 case PROCESSOR_MPCCORE: \
2142 return COSTS_N_INSNS (2); \
2143 case PROCESSOR_PPC601: \
2144 return COSTS_N_INSNS (5); \
2145 case PROCESSOR_PPC603: \
2146 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2147 ? COSTS_N_INSNS (5) \
2148 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2149 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2150 case PROCESSOR_PPC403: \
2151 case PROCESSOR_PPC604: \
2152 case PROCESSOR_PPC620: \
2153 return COSTS_N_INSNS (4); \
2154 } \
2155 case DIV: \
2156 case MOD: \
2157 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2158 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2159 return COSTS_N_INSNS (2); \
2160 /* otherwise fall through to normal divide. */ \
2161 case UDIV: \
2162 case UMOD: \
2163 switch (rs6000_cpu) \
2164 { \
2165 case PROCESSOR_RIOS1: \
2166 return COSTS_N_INSNS (19); \
2167 case PROCESSOR_RIOS2: \
2168 return COSTS_N_INSNS (13); \
2169 case PROCESSOR_MPCCORE: \
2170 return COSTS_N_INSNS (6); \
2171 case PROCESSOR_PPC403: \
2172 return COSTS_N_INSNS (33); \
2173 case PROCESSOR_PPC601: \
2174 return COSTS_N_INSNS (36); \
2175 case PROCESSOR_PPC603: \
2176 return COSTS_N_INSNS (37); \
2177 case PROCESSOR_PPC604: \
2178 case PROCESSOR_PPC620: \
2179 return COSTS_N_INSNS (20); \
2180 } \
2181 case FFS: \
2182 return COSTS_N_INSNS (4); \
2183 case MEM: \
f045b2c9
RS
2184 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2185 return 5;
2186
2187/* Compute the cost of an address. This is meant to approximate the size
2188 and/or execution delay of an insn using that address. If the cost is
2189 approximated by the RTL complexity, including CONST_COSTS above, as
2190 is usually the case for CISC machines, this macro should not be defined.
2191 For aggressively RISCy machines, only one insn format is allowed, so
2192 this macro should be a constant. The value of this macro only matters
2193 for valid addresses.
2194
2195 For the RS/6000, everything is cost 0. */
2196
2197#define ADDRESS_COST(RTX) 0
2198
2199/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2200 should be adjusted to reflect any required changes. This macro is used when
2201 there is some systematic length adjustment required that would be difficult
2202 to express in the length attribute. */
2203
2204/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2205
2206/* Add any extra modes needed to represent the condition code.
2207
2208 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2209 are being done and we need a separate mode for floating-point. We also
2210 use a mode for the case when we are comparing the results of two
2211 comparisons. */
f045b2c9 2212
c5defebb 2213#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2214
2215/* Define the names for the modes specified above. */
c5defebb 2216#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2217
2218/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2219 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2220 should be used. CCUNSmode should be used for unsigned comparisons.
2221 CCEQmode should be used when we are doing an inequality comparison on
2222 the result of a comparison. CCmode should be used in all other cases. */
2223
b565a316 2224#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2225 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2226 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2227 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2228 ? CCEQmode : CCmode))
f045b2c9
RS
2229
2230/* Define the information needed to generate branch and scc insns. This is
2231 stored from the compare operation. Note that we can't use "rtx" here
2232 since it hasn't been defined! */
2233
2234extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2235extern int rs6000_compare_fp_p;
2236
2237/* Set to non-zero by "fix" operation to indicate that itrunc and
2238 uitrunc must be defined. */
2239
2240extern int rs6000_trunc_used;
9929b575
ILT
2241
2242/* Function names to call to do floating point truncation. */
2243
5bf6466a
DE
2244#define RS6000_ITRUNC "__itrunc"
2245#define RS6000_UITRUNC "__uitrunc"
4d30c363
MM
2246
2247/* Prefix and suffix to use to saving floating point */
2248#ifndef SAVE_FP_PREFIX
2249#define SAVE_FP_PREFIX "._savef"
2250#define SAVE_FP_SUFFIX ""
2251#endif
2252
2253/* Prefix and suffix to use to restoring floating point */
2254#ifndef RESTORE_FP_PREFIX
2255#define RESTORE_FP_PREFIX "._restf"
2256#define RESTORE_FP_SUFFIX ""
2257#endif
2258
5bf6466a
DE
2259/* Function name to call to do profiling. */
2260#define RS6000_MCOUNT ".__mcount"
2261
f045b2c9
RS
2262\f
2263/* Control the assembler format that we output. */
2264
1b279f39
DE
2265/* A C string constant describing how to begin a comment in the target
2266 assembler language. The compiler assumes that the comment will end at
2267 the end of the line. */
2268#define ASM_COMMENT_START " #"
6b67933e 2269
f045b2c9
RS
2270/* Output at beginning of assembler file.
2271
b4d6689b 2272 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2273
6355b140 2274 Specify filename to assembler.
3fc2151d 2275
b4d6689b 2276 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2277 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2278 [RW] section emitted.
2279
2280 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2281 allocated after it (when profiling) into the text section.
b4d6689b
RK
2282
2283 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2284
2285#define ASM_FILE_START(FILE) \
2286{ \
fdaff8ba 2287 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2288 main_input_filename, ".bss_"); \
fdaff8ba 2289 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2290 main_input_filename, ".rw_"); \
fdaff8ba 2291 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2292 main_input_filename, ".ro_"); \
2293 \
6355b140 2294 output_file_directive (FILE, main_input_filename); \
f045b2c9 2295 toc_section (); \
fdaff8ba
RS
2296 if (write_symbols != NO_DEBUG) \
2297 private_data_section (); \
b4d6689b
RK
2298 text_section (); \
2299 if (profile_flag) \
5bf6466a 2300 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
3cfa4909 2301 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2302}
2303
2304/* Output at end of assembler file.
2305
2306 On the RS/6000, referencing data should automatically pull in text. */
2307
2308#define ASM_FILE_END(FILE) \
2309{ \
2310 text_section (); \
19d2d16f 2311 fputs ("_section_.text:\n", FILE); \
f045b2c9 2312 data_section (); \
19d2d16f 2313 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2314}
2315
f045b2c9
RS
2316/* We define this to prevent the name mangler from putting dollar signs into
2317 function names. */
2318
2319#define NO_DOLLAR_IN_LABEL
2320
2321/* We define this to 0 so that gcc will never accept a dollar sign in a
2322 variable name. This is needed because the AIX assembler will not accept
2323 dollar signs. */
2324
2325#define DOLLARS_IN_IDENTIFIERS 0
2326
fdaff8ba
RS
2327/* Implicit library calls should use memcpy, not bcopy, etc. */
2328
2329#define TARGET_MEM_FUNCTIONS
2330
f045b2c9
RS
2331/* Define the extra sections we need. We define three: one is the read-only
2332 data section which is used for constants. This is a csect whose name is
2333 derived from the name of the input file. The second is for initialized
2334 global variables. This is a csect whose name is that of the variable.
2335 The third is the TOC. */
2336
2337#define EXTRA_SECTIONS \
2338 read_only_data, private_data, read_only_private_data, toc, bss
2339
2340/* Define the name of our readonly data section. */
2341
2342#define READONLY_DATA_SECTION read_only_data_section
2343
9704efe6
MS
2344
2345/* Define the name of the section to use for the exception tables.
2346 TODO: test and see if we can use read_only_data_section, if so,
2347 remove this. */
2348
2349#define EXCEPTION_SECTION data_section
2350
b4f892eb
RK
2351/* If we are referencing a function that is static or is known to be
2352 in this file, make the SYMBOL_REF special. We can use this to indicate
2353 that we can branch to this function without emitting a no-op after the
2354 call. */
2355
2356#define ENCODE_SECTION_INFO(DECL) \
2357 if (TREE_CODE (DECL) == FUNCTION_DECL \
2358 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2359 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2360
f045b2c9
RS
2361/* Indicate that jump tables go in the text section. */
2362
2363#define JUMP_TABLES_IN_TEXT_SECTION
2364
2365/* Define the routines to implement these extra sections. */
2366
2367#define EXTRA_SECTION_FUNCTIONS \
2368 \
2369void \
2370read_only_data_section () \
2371{ \
2372 if (in_section != read_only_data) \
2373 { \
469adec3 2374 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2375 xcoff_read_only_section_name); \
f045b2c9
RS
2376 in_section = read_only_data; \
2377 } \
2378} \
2379 \
2380void \
2381private_data_section () \
2382{ \
2383 if (in_section != private_data) \
2384 { \
469adec3 2385 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 2386 xcoff_private_data_section_name); \
f045b2c9
RS
2387 \
2388 in_section = private_data; \
2389 } \
2390} \
2391 \
2392void \
2393read_only_private_data_section () \
2394{ \
2395 if (in_section != read_only_private_data) \
2396 { \
f25359b5 2397 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2398 xcoff_private_data_section_name); \
f045b2c9
RS
2399 in_section = read_only_private_data; \
2400 } \
2401} \
2402 \
2403void \
2404toc_section () \
2405{ \
642a35f1
JW
2406 if (TARGET_MINIMAL_TOC) \
2407 { \
642a35f1
JW
2408 /* toc_section is always called at least once from ASM_FILE_START, \
2409 so this is guaranteed to always be defined once and only once \
2410 in each file. */ \
2411 if (! toc_initialized) \
2412 { \
19d2d16f
MM
2413 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2414 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2415 toc_initialized = 1; \
2416 } \
f045b2c9 2417 \
642a35f1 2418 if (in_section != toc) \
19d2d16f 2419 fputs (".csect toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2420 } \
2421 else \
2422 { \
2423 if (in_section != toc) \
19d2d16f 2424 fputs (".toc\n", asm_out_file); \
642a35f1 2425 } \
f045b2c9 2426 in_section = toc; \
fc3ffe83 2427}
f045b2c9 2428
38c1f2d7
MM
2429/* Flag to say the TOC is initialized */
2430extern int toc_initialized;
2431
f045b2c9
RS
2432/* This macro produces the initial definition of a function name.
2433 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2434 output the function descriptor.
f045b2c9
RS
2435
2436 The csect for the function will have already been created by the
2437 `text_section' call previously done. We do have to go back to that
2438 csect, however. */
2439
fdaff8ba
RS
2440/* ??? What do the 16 and 044 in the .function line really mean? */
2441
f045b2c9
RS
2442#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2443{ if (TREE_PUBLIC (DECL)) \
2444 { \
19d2d16f 2445 fputs ("\t.globl .", FILE); \
f045b2c9 2446 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2447 putc ('\n', FILE); \
fdaff8ba 2448 } \
3ce428da 2449 else \
fdaff8ba 2450 { \
19d2d16f 2451 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2452 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2453 putc ('\n', FILE); \
f045b2c9 2454 } \
19d2d16f 2455 fputs (".csect ", FILE); \
f045b2c9 2456 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2457 fputs ("[DS]\n", FILE); \
f045b2c9 2458 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2459 fputs (":\n", FILE); \
5854b0d0 2460 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2461 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2462 fputs (", TOC[tc0], 0\n", FILE); \
2463 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2464 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2465 fputs (":\n", FILE); \
fdaff8ba 2466 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2467 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2468}
2469
2470/* Return non-zero if this entry is to be written into the constant pool
2471 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2472 containing one of them. If -mfp-in-toc (the default), we also do
2473 this for floating-point constants. We actually can only do this
2474 if the FP formats of the target and host machines are the same, but
2475 we can't check that since not every file that uses
2476 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2477
4697a36c
MM
2478#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2479 (TARGET_TOC \
2480 && (GET_CODE (X) == SYMBOL_REF \
2481 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2482 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2483 || GET_CODE (X) == LABEL_REF \
2484 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2485 && GET_CODE (X) == CONST_DOUBLE \
2486 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2487 && BITS_PER_WORD == HOST_BITS_PER_INT)))
f045b2c9
RS
2488
2489/* Select section for constant in constant pool.
2490
2491 On RS/6000, all constants are in the private read-only data area.
2492 However, if this is being placed in the TOC it must be output as a
2493 toc entry. */
2494
2495#define SELECT_RTX_SECTION(MODE, X) \
2496{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2497 toc_section (); \
2498 else \
2499 read_only_private_data_section (); \
2500}
2501
2502/* Macro to output a special constant pool entry. Go to WIN if we output
2503 it. Otherwise, it is written the usual way.
2504
2505 On the RS/6000, toc entries are handled this way. */
2506
2507#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2508{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2509 { \
2510 output_toc (FILE, X, LABELNO); \
2511 goto WIN; \
2512 } \
2513}
2514
2515/* Select the section for an initialized data object.
2516
2517 On the RS/6000, we have a special section for all variables except those
2518 that are static. */
2519
2520#define SELECT_SECTION(EXP,RELOC) \
2521{ \
ed8969fa
JW
2522 if ((TREE_CODE (EXP) == STRING_CST \
2523 && !flag_writable_strings) \
128e5769 2524 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2525 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2526 && DECL_INITIAL (EXP) \
2527 && (DECL_INITIAL (EXP) == error_mark_node \
2528 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2529 && ! (RELOC))) \
f045b2c9
RS
2530 { \
2531 if (TREE_PUBLIC (EXP)) \
2532 read_only_data_section (); \
2533 else \
2534 read_only_private_data_section (); \
2535 } \
2536 else \
2537 { \
2538 if (TREE_PUBLIC (EXP)) \
2539 data_section (); \
2540 else \
2541 private_data_section (); \
2542 } \
2543}
2544
2545/* This outputs NAME to FILE up to the first null or '['. */
2546
2547#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2548 { \
2549 char *_p; \
99d3d26e 2550 \
c23a9d0e
JM
2551 STRIP_NAME_ENCODING (_p, (NAME)); \
2552 assemble_name ((FILE), _p); \
2553 }
2554
2555/* Remove any trailing [DS] or the like from the symbol name. */
2556
28c57785
MM
2557#define STRIP_NAME_ENCODING(VAR,NAME) \
2558 do \
2559 { \
2560 char *_name = (NAME); \
b6c9286a 2561 int _len; \
28c57785 2562 if (_name[0] == '*') \
b6c9286a
MM
2563 _name++; \
2564 _len = strlen (_name); \
2565 if (_name[_len - 1] != ']') \
2566 (VAR) = _name; \
28c57785
MM
2567 else \
2568 { \
b6c9286a
MM
2569 (VAR) = (char *) alloca (_len + 1); \
2570 strcpy ((VAR), _name); \
2571 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2572 } \
2573 } \
c23a9d0e 2574 while (0)
f045b2c9
RS
2575
2576/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2577 assemblers don't need this.
f045b2c9
RS
2578
2579 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2580 name. Normally we write this out along with the name. In the few cases
2581 where we can't, it gets stripped off. */
2582
2583#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2584{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2585 if ((TREE_CODE (DECL) == VAR_DECL \
2586 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2587 && (NAME)[strlen (NAME) - 1] != ']') \
2588 { \
2589 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2590 strcpy (_name, XSTR (_symref, 0)); \
2591 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2592 XSTR (_symref, 0) = _name; \
2593 } \
19d2d16f 2594 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2595 assemble_name (FILE, XSTR (_symref, 0)); \
2596 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2597 { \
19d2d16f 2598 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2599 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2600 } \
19d2d16f 2601 putc ('\n', FILE); \
f045b2c9
RS
2602}
2603
2604/* Similar, but for libcall. We only have to worry about the function name,
2605 not that of the descriptor. */
2606
2607#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2608{ fputs ("\t.extern .", FILE); \
f045b2c9 2609 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2610 putc ('\n', FILE); \
f045b2c9
RS
2611}
2612
2613/* Output to assembler file text saying following lines
2614 may contain character constants, extra white space, comments, etc. */
2615
2616#define ASM_APP_ON ""
2617
2618/* Output to assembler file text saying following lines
2619 no longer contain unusual constructs. */
2620
2621#define ASM_APP_OFF ""
2622
2623/* Output before instructions. */
2624
11117bb9 2625#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
2626
2627/* Output before writable data. */
2628
fdaff8ba 2629#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
2630
2631/* How to refer to registers in assembler output.
2632 This sequence is indexed by compiler's hard-register-number (see above). */
2633
802a0058 2634extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2635
2636#define REGISTER_NAMES \
2637{ \
2638 &rs6000_reg_names[ 0][0], /* r0 */ \
2639 &rs6000_reg_names[ 1][0], /* r1 */ \
2640 &rs6000_reg_names[ 2][0], /* r2 */ \
2641 &rs6000_reg_names[ 3][0], /* r3 */ \
2642 &rs6000_reg_names[ 4][0], /* r4 */ \
2643 &rs6000_reg_names[ 5][0], /* r5 */ \
2644 &rs6000_reg_names[ 6][0], /* r6 */ \
2645 &rs6000_reg_names[ 7][0], /* r7 */ \
2646 &rs6000_reg_names[ 8][0], /* r8 */ \
2647 &rs6000_reg_names[ 9][0], /* r9 */ \
2648 &rs6000_reg_names[10][0], /* r10 */ \
2649 &rs6000_reg_names[11][0], /* r11 */ \
2650 &rs6000_reg_names[12][0], /* r12 */ \
2651 &rs6000_reg_names[13][0], /* r13 */ \
2652 &rs6000_reg_names[14][0], /* r14 */ \
2653 &rs6000_reg_names[15][0], /* r15 */ \
2654 &rs6000_reg_names[16][0], /* r16 */ \
2655 &rs6000_reg_names[17][0], /* r17 */ \
2656 &rs6000_reg_names[18][0], /* r18 */ \
2657 &rs6000_reg_names[19][0], /* r19 */ \
2658 &rs6000_reg_names[20][0], /* r20 */ \
2659 &rs6000_reg_names[21][0], /* r21 */ \
2660 &rs6000_reg_names[22][0], /* r22 */ \
2661 &rs6000_reg_names[23][0], /* r23 */ \
2662 &rs6000_reg_names[24][0], /* r24 */ \
2663 &rs6000_reg_names[25][0], /* r25 */ \
2664 &rs6000_reg_names[26][0], /* r26 */ \
2665 &rs6000_reg_names[27][0], /* r27 */ \
2666 &rs6000_reg_names[28][0], /* r28 */ \
2667 &rs6000_reg_names[29][0], /* r29 */ \
2668 &rs6000_reg_names[30][0], /* r30 */ \
2669 &rs6000_reg_names[31][0], /* r31 */ \
2670 \
2671 &rs6000_reg_names[32][0], /* fr0 */ \
2672 &rs6000_reg_names[33][0], /* fr1 */ \
2673 &rs6000_reg_names[34][0], /* fr2 */ \
2674 &rs6000_reg_names[35][0], /* fr3 */ \
2675 &rs6000_reg_names[36][0], /* fr4 */ \
2676 &rs6000_reg_names[37][0], /* fr5 */ \
2677 &rs6000_reg_names[38][0], /* fr6 */ \
2678 &rs6000_reg_names[39][0], /* fr7 */ \
2679 &rs6000_reg_names[40][0], /* fr8 */ \
2680 &rs6000_reg_names[41][0], /* fr9 */ \
2681 &rs6000_reg_names[42][0], /* fr10 */ \
2682 &rs6000_reg_names[43][0], /* fr11 */ \
2683 &rs6000_reg_names[44][0], /* fr12 */ \
2684 &rs6000_reg_names[45][0], /* fr13 */ \
2685 &rs6000_reg_names[46][0], /* fr14 */ \
2686 &rs6000_reg_names[47][0], /* fr15 */ \
2687 &rs6000_reg_names[48][0], /* fr16 */ \
2688 &rs6000_reg_names[49][0], /* fr17 */ \
2689 &rs6000_reg_names[50][0], /* fr18 */ \
2690 &rs6000_reg_names[51][0], /* fr19 */ \
2691 &rs6000_reg_names[52][0], /* fr20 */ \
2692 &rs6000_reg_names[53][0], /* fr21 */ \
2693 &rs6000_reg_names[54][0], /* fr22 */ \
2694 &rs6000_reg_names[55][0], /* fr23 */ \
2695 &rs6000_reg_names[56][0], /* fr24 */ \
2696 &rs6000_reg_names[57][0], /* fr25 */ \
2697 &rs6000_reg_names[58][0], /* fr26 */ \
2698 &rs6000_reg_names[59][0], /* fr27 */ \
2699 &rs6000_reg_names[60][0], /* fr28 */ \
2700 &rs6000_reg_names[61][0], /* fr29 */ \
2701 &rs6000_reg_names[62][0], /* fr30 */ \
2702 &rs6000_reg_names[63][0], /* fr31 */ \
2703 \
2704 &rs6000_reg_names[64][0], /* mq */ \
2705 &rs6000_reg_names[65][0], /* lr */ \
2706 &rs6000_reg_names[66][0], /* ctr */ \
2707 &rs6000_reg_names[67][0], /* ap */ \
2708 \
2709 &rs6000_reg_names[68][0], /* cr0 */ \
2710 &rs6000_reg_names[69][0], /* cr1 */ \
2711 &rs6000_reg_names[70][0], /* cr2 */ \
2712 &rs6000_reg_names[71][0], /* cr3 */ \
2713 &rs6000_reg_names[72][0], /* cr4 */ \
2714 &rs6000_reg_names[73][0], /* cr5 */ \
2715 &rs6000_reg_names[74][0], /* cr6 */ \
2716 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2717 \
2718 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2719}
2720
2721/* print-rtl can't handle the above REGISTER_NAMES, so define the
2722 following for it. Switch to use the alternate names since
2723 they are more mnemonic. */
2724
2725#define DEBUG_REGISTER_NAMES \
2726{ \
802a0058
MM
2727 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2728 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2729 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2730 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2731 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2732 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2733 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2734 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2735 "mq", "lr", "ctr", "ap", \
2736 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2737 "fpmem" \
c81bebd7 2738}
f045b2c9
RS
2739
2740/* Table of additional register names to use in user input. */
2741
2742#define ADDITIONAL_REGISTER_NAMES \
2743 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2744 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2745 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2746 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2747 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2748 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2749 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2750 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2751 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2752 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2753 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2754 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2755 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2756 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2757 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2758 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2759 /* no additional names for: mq, lr, ctr, ap */ \
2760 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
fc3ffe83 2761 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
c81bebd7 2762 "cc", 68, "sp", 1, "toc", 2 }
f045b2c9
RS
2763
2764/* How to renumber registers for dbx and gdb. */
2765
2766#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2767
0da40b09
RK
2768/* Text to write out after a CALL that may be replaced by glue code by
2769 the loader. This depends on the AIX version. */
2770#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2771
f045b2c9
RS
2772/* This is how to output the definition of a user-level label named NAME,
2773 such as the label on a static function or variable NAME. */
2774
2775#define ASM_OUTPUT_LABEL(FILE,NAME) \
2776 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2777
2778/* This is how to output a command to make the user-level label named NAME
2779 defined for reference from other files. */
2780
2781#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2782 do { fputs ("\t.globl ", FILE); \
2783 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2784
2785/* This is how to output a reference to a user-level label named NAME.
2786 `assemble_name' uses this. */
2787
2788#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2789 fputs (NAME, FILE)
f045b2c9
RS
2790
2791/* This is how to output an internal numbered label where
2792 PREFIX is the class of label and NUM is the number within the class. */
2793
2794#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2795 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2796
3daf36a4
ILT
2797/* This is how to output an internal label prefix. rs6000.c uses this
2798 when generating traceback tables. */
2799
2800#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2801 fprintf (FILE, "%s..", PREFIX)
2802
f045b2c9
RS
2803/* This is how to output a label for a jump table. Arguments are the same as
2804 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2805 passed. */
2806
2807#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2808{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2809
2810/* This is how to store into the string LABEL
2811 the symbol_ref name of an internal numbered label where
2812 PREFIX is the class of label and NUM is the number within the class.
2813 This is suitable for output with `assemble_name'. */
2814
2815#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 2816 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
2817
2818/* This is how to output an assembler line defining a `double' constant. */
2819
a5b1eb34
RS
2820#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2821 { \
2822 if (REAL_VALUE_ISINF (VALUE) \
2823 || REAL_VALUE_ISNAN (VALUE) \
2824 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2825 { \
2826 long t[2]; \
2827 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2828 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2829 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2830 } \
2831 else \
2832 { \
2833 char str[30]; \
2834 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2835 fprintf (FILE, "\t.double 0d%s\n", str); \
2836 } \
2837 }
f045b2c9
RS
2838
2839/* This is how to output an assembler line defining a `float' constant. */
2840
a5b1eb34
RS
2841#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2842 { \
2843 if (REAL_VALUE_ISINF (VALUE) \
2844 || REAL_VALUE_ISNAN (VALUE) \
2845 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2846 { \
2847 long t; \
2848 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2849 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2850 } \
2851 else \
2852 { \
2853 char str[30]; \
2854 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2855 fprintf (FILE, "\t.float 0d%s\n", str); \
2856 } \
2857 }
f045b2c9
RS
2858
2859/* This is how to output an assembler line defining an `int' constant. */
2860
5854b0d0
DE
2861#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2862do { \
2863 if (TARGET_32BIT) \
2864 { \
2865 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2866 UNITS_PER_WORD, 1); \
2867 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2868 UNITS_PER_WORD, 1); \
2869 } \
2870 else \
2871 { \
2872 fputs ("\t.llong ", FILE); \
2873 output_addr_const (FILE, (VALUE)); \
2874 putc ('\n', FILE); \
2875 } \
2876} while (0)
2877
f045b2c9 2878#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 2879( fputs ("\t.long ", FILE), \
f045b2c9 2880 output_addr_const (FILE, (VALUE)), \
19d2d16f 2881 putc ('\n', FILE))
f045b2c9
RS
2882
2883/* Likewise for `char' and `short' constants. */
2884
2885#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 2886( fputs ("\t.short ", FILE), \
f045b2c9 2887 output_addr_const (FILE, (VALUE)), \
19d2d16f 2888 putc ('\n', FILE))
f045b2c9
RS
2889
2890#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 2891( fputs ("\t.byte ", FILE), \
f045b2c9 2892 output_addr_const (FILE, (VALUE)), \
19d2d16f 2893 putc ('\n', FILE))
f045b2c9
RS
2894
2895/* This is how to output an assembler line for a numeric constant byte. */
2896
2897#define ASM_OUTPUT_BYTE(FILE,VALUE) \
2898 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2899
2900/* This is how to output an assembler line to define N characters starting
2901 at P to FILE. */
2902
2903#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2904
2905/* This is how to output code to push a register on the stack.
2906 It need not be very fast code. */
2907
4697a36c
MM
2908#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2909do { \
2910 extern char *reg_names[]; \
2911 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \
2912 reg_names[1]); \
2913} while (0)
f045b2c9
RS
2914
2915/* This is how to output an insn to pop a register from the stack.
2916 It need not be very fast code. */
2917
4697a36c
MM
2918#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2919do { \
2920 extern char *reg_names[]; \
2921 asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \
2922 reg_names[REGNO], reg_names[1], reg_names[1], \
2923 reg_names[1]); \
2924} while (0)
f045b2c9 2925
c81bebd7 2926/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
2927 (RS/6000 does not use such vectors, but we must define this macro
2928 anyway.) */
2929
3daf36a4
ILT
2930#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2931 do { char buf[100]; \
5854b0d0 2932 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2933 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2934 assemble_name (FILE, buf); \
19d2d16f 2935 putc ('\n', FILE); \
3daf36a4 2936 } while (0)
f045b2c9
RS
2937
2938/* This is how to output an element of a case-vector that is relative. */
2939
2940#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
3daf36a4 2941 do { char buf[100]; \
5854b0d0 2942 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2943 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2944 assemble_name (FILE, buf); \
19d2d16f 2945 putc ('-', FILE); \
3daf36a4
ILT
2946 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2947 assemble_name (FILE, buf); \
19d2d16f 2948 putc ('\n', FILE); \
3daf36a4 2949 } while (0)
f045b2c9
RS
2950
2951/* This is how to output an assembler line
2952 that says to advance the location counter
2953 to a multiple of 2**LOG bytes. */
2954
2955#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2956 if ((LOG) != 0) \
2957 fprintf (FILE, "\t.align %d\n", (LOG))
2958
2959#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2960 fprintf (FILE, "\t.space %d\n", (SIZE))
2961
2962/* This says how to output an assembler line
2963 to define a global common symbol. */
2964
b73fd26c 2965#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 2966 do { fputs (".comm ", (FILE)); \
f045b2c9 2967 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
2968 if ( (SIZE) > 4) \
2969 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2970 else \
2971 fprintf( (FILE), ",%d\n", (SIZE)); \
2972 } while (0)
f045b2c9
RS
2973
2974/* This says how to output an assembler line
2975 to define a local common symbol. */
2976
2977#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 2978 do { fputs (".lcomm ", (FILE)); \
f045b2c9 2979 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 2980 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
2981 } while (0)
2982
2983/* Store in OUTPUT a string (made with alloca) containing
2984 an assembler-name for a local static variable named NAME.
2985 LABELNO is an integer which is different for each call. */
2986
2987#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2988( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2989 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2990
2991/* Define the parentheses used to group arithmetic operations
2992 in assembler code. */
2993
2994#define ASM_OPEN_PAREN "("
2995#define ASM_CLOSE_PAREN ")"
2996
2997/* Define results of standard character escape sequences. */
2998#define TARGET_BELL 007
2999#define TARGET_BS 010
3000#define TARGET_TAB 011
3001#define TARGET_NEWLINE 012
3002#define TARGET_VT 013
3003#define TARGET_FF 014
3004#define TARGET_CR 015
3005
3006/* Print operand X (an rtx) in assembler syntax to file FILE.
3007 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3008 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3009
3010#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3011
3012/* Define which CODE values are valid. */
3013
c81bebd7
MM
3014#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3015 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
3016
3017/* Print a memory address as an operand to reference that memory location. */
3018
3019#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3020
3021/* Define the codes that are matched by predicates in rs6000.c. */
3022
802a0058 3023#define PREDICATE_CODES \
f045b2c9
RS
3024 {"short_cint_operand", {CONST_INT}}, \
3025 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 3026 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 3027 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9
RS
3028 {"cc_reg_operand", {SUBREG, REG}}, \
3029 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
3030 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
3031 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
3032 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
766a866c 3033 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
38c1f2d7 3034 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
f045b2c9
RS
3035 {"easy_fp_constant", {CONST_DOUBLE}}, \
3036 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 3037 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 3038 {"volatile_mem_operand", {MEM}}, \
b7676b46 3039 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
f045b2c9
RS
3040 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3041 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3042 {"non_add_cint_operand", {CONST_INT}}, \
f045b2c9 3043 {"and_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3044 {"non_and_cint_operand", {CONST_INT}}, \
f045b2c9 3045 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3046 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 3047 {"mask_operand", {CONST_INT}}, \
b6c9286a 3048 {"count_register_operand", {REG}}, \
802a0058 3049 {"fpmem_operand", {REG}}, \
f045b2c9 3050 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 3051 {"current_file_function_operand", {SYMBOL_REF}}, \
38250554 3052 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
f8634644
RK
3053 {"load_multiple_operation", {PARALLEL}}, \
3054 {"store_multiple_operation", {PARALLEL}}, \
3055 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3056 GT, LEU, LTU, GEU, GTU}}, \
f8634644 3057 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3058 GT, LEU, LTU, GEU, GTU}},
75814ad4 3059
b6c9286a
MM
3060
3061/* uncomment for disabling the corresponding default options */
3062/* #define MACHINE_no_sched_interblock */
3063/* #define MACHINE_no_sched_speculative */
3064/* #define MACHINE_no_sched_speculative_load */
3065
3066/* indicate that issue rate is defined for this machine
3067 (no need to use the default) */
246853b9 3068#define ISSUE_RATE get_issue_rate ()
b6c9286a 3069
766a866c
MM
3070/* General flags. */
3071extern int flag_pic;
354b734b
MM
3072extern int optimize;
3073extern int flag_expensive_optimizations;
a7df97e6 3074extern int frame_pointer_needed;
354b734b 3075
75814ad4 3076/* Declare functions in rs6000.c */
6b67933e 3077extern void output_options ();
75814ad4 3078extern void rs6000_override_options ();
3cfa4909 3079extern void rs6000_file_start ();
6b67933e 3080extern struct rtx_def *rs6000_float_const ();
75814ad4 3081extern struct rtx_def *rs6000_immed_double_const ();
c4c40373 3082extern struct rtx_def *rs6000_got_register ();
75814ad4
MM
3083extern int direct_return ();
3084extern int any_operand ();
3085extern int short_cint_operand ();
3086extern int u_short_cint_operand ();
3087extern int non_short_cint_operand ();
3088extern int gpc_reg_operand ();
3089extern int cc_reg_operand ();
3090extern int reg_or_short_operand ();
3091extern int reg_or_neg_short_operand ();
3092extern int reg_or_u_short_operand ();
3093extern int reg_or_cint_operand ();
766a866c 3094extern int got_operand ();
38c1f2d7 3095extern int got_no_const_operand ();
4e74d8ec 3096extern int num_insns_constant ();
75814ad4 3097extern int easy_fp_constant ();
b7676b46
RK
3098extern int volatile_mem_operand ();
3099extern int offsettable_addr_operand ();
75814ad4
MM
3100extern int mem_or_easy_const_operand ();
3101extern int add_operand ();
3102extern int non_add_cint_operand ();
3103extern int logical_operand ();
3104extern int non_logical_operand ();
3105extern int mask_constant ();
3106extern int mask_operand ();
3107extern int and_operand ();
802a0058
MM
3108extern int count_register_operand ();
3109extern int fpmem_operand ();
75814ad4
MM
3110extern int non_and_cint_operand ();
3111extern int reg_or_mem_operand ();
3112extern int lwa_operand ();
3113extern int call_operand ();
3114extern int current_file_function_operand ();
3115extern int input_operand ();
7509c759 3116extern int small_data_operand ();
4697a36c
MM
3117extern void init_cumulative_args ();
3118extern void function_arg_advance ();
b6c9286a 3119extern int function_arg_boundary ();
4697a36c
MM
3120extern struct rtx_def *function_arg ();
3121extern int function_arg_partial_nregs ();
3122extern int function_arg_pass_by_reference ();
3123extern void setup_incoming_varargs ();
3124extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3125extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3126extern int expand_block_move ();
75814ad4
MM
3127extern int load_multiple_operation ();
3128extern int store_multiple_operation ();
3129extern int branch_comparison_operator ();
3130extern int scc_comparison_operator ();
3131extern int includes_lshift_p ();
3132extern int includes_rshift_p ();
3133extern int registers_ok_for_quad_peep ();
3134extern int addrs_ok_for_quad_peep ();
3135extern enum reg_class secondary_reload_class ();
3136extern int ccr_bit ();
d266da75 3137extern void rs6000_finalize_pic ();
30ea98f1 3138extern void rs6000_reorg ();
a7df97e6
MM
3139extern void rs6000_save_machine_status ();
3140extern void rs6000_restore_machine_status ();
3141extern void rs6000_init_expanders ();
75814ad4
MM
3142extern void print_operand ();
3143extern void print_operand_address ();
3144extern int first_reg_to_save ();
3145extern int first_fp_reg_to_save ();
75814ad4 3146extern int rs6000_makes_calls ();
4697a36c 3147extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3148extern void output_prolog ();
3149extern void output_epilog ();
3150extern void output_toc ();
3151extern void output_ascii ();
3152extern void rs6000_gen_section_name ();
3153extern void output_function_profiler ();
3154extern int rs6000_adjust_cost ();
b6c9286a
MM
3155extern void rs6000_trampoline_template ();
3156extern int rs6000_trampoline_size ();
3157extern void rs6000_initialize_trampoline ();
7509c759
MM
3158extern int rs6000_comp_type_attributes ();
3159extern int rs6000_valid_decl_attribute_p ();
3160extern int rs6000_valid_type_attribute_p ();
3161extern void rs6000_set_default_type_attributes ();
3162extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3163extern struct rtx_def *rs6000_longcall_ref ();
28174a14
MS
3164
3165/* See nonlocal_goto_receiver for when this must be set. */
3166
3167#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)
This page took 0.920641 seconds and 5 git commands to generate.