]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
ia64.md (prefetch): Support predicate.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
c58b209a 3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9 5
5de601cf 6 This file is part of GCC.
f045b2c9 7
5de601cf
NC
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
f045b2c9 12
5de601cf
NC
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
f045b2c9 17
5de601cf
NC
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the
20 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21 MA 02111-1307, USA. */
f045b2c9
RS
22
23/* Note that some other tm.h files include this one and then override
9ebbca7d 24 many of the definitions. */
f045b2c9 25
9ebbca7d
GK
26/* Definitions for the object file format. These are set at
27 compile-time. */
f045b2c9 28
9ebbca7d
GK
29#define OBJECT_XCOFF 1
30#define OBJECT_ELF 2
31#define OBJECT_PEF 3
ee890fe2 32#define OBJECT_MACHO 4
f045b2c9 33
9ebbca7d 34#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 35#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 36#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 37#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 38
2bfcf297
DB
39#ifndef TARGET_AIX
40#define TARGET_AIX 0
41#endif
42
8e3f41e7
MM
43/* Default string to use for cpu if not specified. */
44#ifndef TARGET_CPU_DEFAULT
45#define TARGET_CPU_DEFAULT ((char *)0)
46#endif
47
f984d8df
DB
48/* Common ASM definitions used by ASM_SPEC among the various targets
49 for handling -mcpu=xxx switches. */
50#define ASM_CPU_SPEC \
51"%{!mcpu*: \
52 %{mpower: %{!mpower2: -mpwr}} \
53 %{mpower2: -mpwrx} \
54 %{mpowerpc*: -mppc} \
55 %{mno-power: %{!mpowerpc*: -mcom}} \
56 %{!mno-power: %{!mpower2: %(asm_default)}}} \
57%{mcpu=common: -mcom} \
58%{mcpu=power: -mpwr} \
59%{mcpu=power2: -mpwrx} \
309323c2 60%{mcpu=power3: -m604} \
957e9e48 61%{mcpu=power4: -mpower4} \
f984d8df
DB
62%{mcpu=powerpc: -mppc} \
63%{mcpu=rios: -mpwr} \
64%{mcpu=rios1: -mpwr} \
65%{mcpu=rios2: -mpwrx} \
66%{mcpu=rsc: -mpwr} \
67%{mcpu=rsc1: -mpwr} \
68%{mcpu=401: -mppc} \
61a8515c
JS
69%{mcpu=403: -m403} \
70%{mcpu=405: -m405} \
2c9d95ef
DE
71%{mcpu=405fp: -m405} \
72%{mcpu=440: -m440} \
73%{mcpu=440fp: -m440} \
f984d8df
DB
74%{mcpu=505: -mppc} \
75%{mcpu=601: -m601} \
76%{mcpu=602: -mppc} \
77%{mcpu=603: -mppc} \
78%{mcpu=603e: -mppc} \
79%{mcpu=ec603e: -mppc} \
80%{mcpu=604: -mppc} \
81%{mcpu=604e: -mppc} \
82%{mcpu=620: -mppc} \
309323c2 83%{mcpu=630: -m604} \
f984d8df 84%{mcpu=740: -mppc} \
fd3b43f2 85%{mcpu=7400: -mppc} \
f18c054f 86%{mcpu=7450: -mppc} \
f984d8df
DB
87%{mcpu=750: -mppc} \
88%{mcpu=801: -mppc} \
89%{mcpu=821: -mppc} \
90%{mcpu=823: -mppc} \
775db490 91%{mcpu=860: -mppc} \
a3170dc6 92%{mcpu=8540: -me500} \
775db490 93%{maltivec: -maltivec}"
f984d8df
DB
94
95#define CPP_DEFAULT_SPEC ""
96
97#define ASM_DEFAULT_SPEC ""
98
841faeed
MM
99/* This macro defines names of additional specifications to put in the specs
100 that can be used in various specifications like CC1_SPEC. Its definition
101 is an initializer with a subgrouping for each command option.
102
103 Each subgrouping contains a string constant, that defines the
5de601cf 104 specification name, and a string constant that used by the GCC driver
841faeed
MM
105 program.
106
107 Do not define this macro if it does not need to do anything. */
108
7509c759 109#define SUBTARGET_EXTRA_SPECS
7509c759 110
c81bebd7 111#define EXTRA_SPECS \
c81bebd7 112 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
113 { "asm_cpu", ASM_CPU_SPEC }, \
114 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
115 SUBTARGET_EXTRA_SPECS
116
fb623df5 117/* Architecture type. */
f045b2c9 118
fb623df5
RK
119extern int target_flags;
120
121/* Use POWER architecture instructions and MQ register. */
38c1f2d7 122#define MASK_POWER 0x00000001
fb623df5 123
6febd581 124/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 125#define MASK_POWER2 0x00000002
6febd581 126
fb623df5 127/* Use PowerPC architecture instructions. */
38c1f2d7 128#define MASK_POWERPC 0x00000004
6febd581 129
583cf4db 130/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 131#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
132
133/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 134#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 135
fb623df5 136/* Use PowerPC-64 architecture instructions. */
38c1f2d7 137#define MASK_POWERPC64 0x00000020
f045b2c9 138
fb623df5 139/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 140#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
141
142/* Disable placing fp constants in the TOC; can be turned on when the
143 TOC overflows. */
38c1f2d7 144#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 145
0b9ccabc
RK
146/* Disable placing symbol+offset constants in the TOC; can be turned on when
147 the TOC overflows. */
38c1f2d7 148#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 149
fb623df5 150/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
151 there are more than 16K unique variables/constants in an executable. With
152 this option, linking fails only if there are more than 16K modules, or
153 if there are more than 16K unique variables/constant in a single module.
154
155 This is at the cost of having 2 extra loads and one extra store per
956d6950 156 function, and one less allocable register. */
38c1f2d7 157#define MASK_MINIMAL_TOC 0x00000200
642a35f1 158
b1765bde 159/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 160#define MASK_64BIT 0x00000400
9e654916 161
f85f4585 162/* Disable use of FPRs. */
38c1f2d7 163#define MASK_SOFT_FLOAT 0x00000800
f85f4585 164
88cad84b 165/* Enable load/store multiple, even on PowerPC */
b21fb038 166#define MASK_MULTIPLE 0x00001000
4d30c363 167
7e69e155 168/* Use string instructions for block moves */
b21fb038 169#define MASK_STRING 0x00002000
7e69e155 170
38c1f2d7 171/* Disable update form of load/store */
b21fb038 172#define MASK_NO_UPDATE 0x00004000
38c1f2d7
MM
173
174/* Disable fused multiply/add operations */
b21fb038 175#define MASK_NO_FUSED_MADD 0x00008000
4697a36c 176
9ebbca7d 177/* Nonzero if we need to schedule the prolog and epilog. */
b21fb038 178#define MASK_SCHED_PROLOG 0x00010000
9ebbca7d 179
0ac081f6 180/* Use AltiVec instructions. */
b21fb038 181#define MASK_ALTIVEC 0x00020000
0ac081f6 182
6fa3f289 183/* Return small structures in memory (as the AIX ABI requires). */
b21fb038 184#define MASK_AIX_STRUCT_RET 0x00040000
0ac081f6 185
b21fb038 186/* The only remaining free bits are 0x00780000. sysv4.h uses
6fa3f289
ZW
187 0x00800000 -> 0x40000000, and 0x80000000 is not available
188 because target_flags is signed. */
06f4e019 189
7e69e155
MM
190#define TARGET_POWER (target_flags & MASK_POWER)
191#define TARGET_POWER2 (target_flags & MASK_POWER2)
192#define TARGET_POWERPC (target_flags & MASK_POWERPC)
193#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
194#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
195#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
196#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
197#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
198#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
199#define TARGET_64BIT (target_flags & MASK_64BIT)
200#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
b21fb038 201#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
7e69e155 202#define TARGET_STRING (target_flags & MASK_STRING)
38c1f2d7
MM
203#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
204#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 205#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 206#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 207#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 208
2f3e5814 209#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 210#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
211#define TARGET_UPDATE (! TARGET_NO_UPDATE)
212#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 213
c4501e62
JJ
214#ifndef HAVE_AS_TLS
215#define HAVE_AS_TLS 0
216#endif
217
996ed075
JJ
218#ifdef IN_LIBGCC2
219/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 220#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
221#define TARGET_POWERPC64 1
222#else
223#define TARGET_POWERPC64 0
224#endif
b6c9286a 225#else
9ebbca7d 226#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
227#endif
228
a3950905 229#define TARGET_XL_CALL 0
a3950905 230
fb623df5 231/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 232
fb623df5 233 Macro to define tables used to set the flags.
f045b2c9
RS
234 This is a list in braces of pairs in braces,
235 each pair being { "NAME", VALUE }
236 where VALUE is the bits to set or minus the bits to clear.
237 An empty string NAME is used to identify the default VALUE. */
238
938937d8 239#define TARGET_SWITCHES \
9ebbca7d 240 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 241 N_("Use POWER instruction set")}, \
938937d8 242 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 243 | MASK_POWER2), \
047142d3 244 N_("Use POWER2 instruction set")}, \
9ebbca7d 245 {"no-power2", - MASK_POWER2, \
047142d3 246 N_("Do not use POWER2 instruction set")}, \
938937d8 247 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 248 | MASK_STRING), \
047142d3 249 N_("Do not use POWER instruction set")}, \
9ebbca7d 250 {"powerpc", MASK_POWERPC, \
047142d3 251 N_("Use PowerPC instruction set")}, \
938937d8 252 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 253 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 254 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 255 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 256 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 257 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 258 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 259 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 260 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 261 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 262 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 263 {"powerpc64", MASK_POWERPC64, \
047142d3 264 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 265 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 266 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 267 {"altivec", MASK_ALTIVEC , \
c725bd79 268 N_("Use AltiVec instructions")}, \
f18c054f 269 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 270 N_("Don't use AltiVec instructions")}, \
9ebbca7d 271 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 272 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 273 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 274 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 275 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 276 | MASK_MINIMAL_TOC), \
047142d3 277 N_("Put everything in the regular TOC")}, \
9ebbca7d 278 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 279 N_("Place floating point constants in TOC")}, \
9ebbca7d 280 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 281 N_("Don't place floating point constants in TOC")},\
9ebbca7d 282 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 283 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 284 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 285 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
286 {"minimal-toc", MASK_MINIMAL_TOC, \
287 "Use only one TOC entry per procedure"}, \
288 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 289 ""}, \
9ebbca7d 290 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 291 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 292 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 293 N_("Use hardware fp")}, \
9ebbca7d 294 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 295 N_("Do not use hardware fp")}, \
b21fb038 296 {"multiple", MASK_MULTIPLE, \
047142d3 297 N_("Generate load/store multiple instructions")}, \
9ebbca7d 298 {"no-multiple", - MASK_MULTIPLE, \
047142d3 299 N_("Do not generate load/store multiple instructions")},\
b21fb038 300 {"string", MASK_STRING, \
047142d3 301 N_("Generate string instructions for block moves")},\
9ebbca7d 302 {"no-string", - MASK_STRING, \
047142d3 303 N_("Do not generate string instructions for block moves")},\
9ebbca7d 304 {"update", - MASK_NO_UPDATE, \
047142d3 305 N_("Generate load/store with update instructions")},\
9ebbca7d 306 {"no-update", MASK_NO_UPDATE, \
047142d3 307 N_("Do not generate load/store with update instructions")},\
9ebbca7d 308 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 309 N_("Generate fused multiply/add instructions")},\
9ebbca7d 310 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 311 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
312 {"sched-prolog", MASK_SCHED_PROLOG, \
313 ""}, \
314 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 315 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
316 {"sched-epilog", MASK_SCHED_PROLOG, \
317 ""}, \
318 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
319 ""}, \
b21fb038 320 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
6fa3f289 321 N_("Return all structures in memory (AIX default)")},\
b21fb038 322 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
6fa3f289 323 N_("Return small structures in registers (SVR4 default)")},\
b21fb038 324 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
6fa3f289 325 ""},\
b21fb038 326 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
6fa3f289 327 ""},\
938937d8 328 SUBTARGET_SWITCHES \
9ebbca7d
GK
329 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
330 ""}}
fb623df5 331
938937d8 332#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
333
334/* This is meant to be redefined in the host dependent files */
335#define SUBTARGET_SWITCHES
fb623df5 336
cac8ce95 337/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 338enum processor_type
bef84347
VM
339 {
340 PROCESSOR_RIOS1,
341 PROCESSOR_RIOS2,
3cb999d8 342 PROCESSOR_RS64A,
bef84347
VM
343 PROCESSOR_MPCCORE,
344 PROCESSOR_PPC403,
fe7f5677 345 PROCESSOR_PPC405,
b54cf83a 346 PROCESSOR_PPC440,
bef84347
VM
347 PROCESSOR_PPC601,
348 PROCESSOR_PPC603,
349 PROCESSOR_PPC604,
350 PROCESSOR_PPC604e,
351 PROCESSOR_PPC620,
3cb999d8 352 PROCESSOR_PPC630,
ed947a96
DJ
353 PROCESSOR_PPC750,
354 PROCESSOR_PPC7400,
309323c2 355 PROCESSOR_PPC7450,
a3170dc6 356 PROCESSOR_PPC8540,
309323c2 357 PROCESSOR_POWER4
bef84347 358};
fb623df5
RK
359
360extern enum processor_type rs6000_cpu;
361
362/* Recast the processor type to the cpu attribute. */
363#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
364
8482e358 365/* Define generic processor types based upon current deployment. */
3cb999d8
DE
366#define PROCESSOR_COMMON PROCESSOR_PPC601
367#define PROCESSOR_POWER PROCESSOR_RIOS1
368#define PROCESSOR_POWERPC PROCESSOR_PPC604
369#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 370
fb623df5 371/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
372#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
373#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 374
6febd581
RK
375/* Specify the dialect of assembler to use. New mnemonics is dialect one
376 and the old mnemonics are dialect zero. */
9ebbca7d 377#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 378
956d6950 379/* This is meant to be overridden in target specific files. */
b6c9286a 380#define SUBTARGET_OPTIONS
b6c9286a 381
9ebbca7d
GK
382#define TARGET_OPTIONS \
383{ \
047142d3 384 {"cpu=", &rs6000_select[1].string, \
c409ea0d 385 N_("Use features of and schedule code for given CPU"), 0}, \
047142d3 386 {"tune=", &rs6000_select[2].string, \
c409ea0d
DD
387 N_("Schedule code for given CPU"), 0}, \
388 {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0}, \
57ac7be9 389 {"traceback=", &rs6000_traceback_name, \
c409ea0d
DD
390 N_("Select full, part, or no traceback table"), 0}, \
391 {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0}, \
6fa3f289 392 {"long-double-", &rs6000_long_double_size_string, \
c409ea0d 393 N_("Specify size of long double (64 or 128 bits)"), 0}, \
a3170dc6 394 {"isel=", &rs6000_isel_string, \
c409ea0d 395 N_("Specify yes/no if isel instructions should be generated"), 0}, \
993f19a8 396 {"spe=", &rs6000_spe_string, \
c409ea0d 397 N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
5da702b1 398 {"float-gprs=", &rs6000_float_gprs_string, \
c409ea0d
DD
399 N_("Specify yes/no if using floating point in the GPRs"), 0}, \
400 {"vrsave=", &rs6000_altivec_vrsave_string, \
401 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
a5c76ee6 402 {"longcall", &rs6000_longcall_switch, \
c409ea0d
DD
403 N_("Avoid all range limits on call instructions"), 0}, \
404 {"no-longcall", &rs6000_longcall_switch, "", 0}, \
025d9908
KH
405 {"align-", &rs6000_alignment_string, \
406 N_("Specify alignment of structure fields default/natural"), 0}, \
9ebbca7d 407 SUBTARGET_OPTIONS \
b6c9286a 408}
fb623df5 409
7816bea0
DJ
410/* Support for a compile-time default CPU, et cetera. The rules are:
411 --with-cpu is ignored if -mcpu is specified.
412 --with-tune is ignored if -mtune is specified.
413 --with-float is ignored if -mhard-float or -msoft-float are
414 specified. */
415#define OPTION_DEFAULT_SPECS \
416 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
417 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
418 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
419
ff222560 420/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
421struct rs6000_cpu_select
422{
815cdc52
MM
423 const char *string;
424 const char *name;
8e3f41e7
MM
425 int set_tune_p;
426 int set_arch_p;
427};
428
429extern struct rs6000_cpu_select rs6000_select[];
fb623df5 430
38c1f2d7 431/* Debug support */
0ac081f6 432extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 433extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
434extern int rs6000_debug_stack; /* debug stack applications */
435extern int rs6000_debug_arg; /* debug argument handling */
436
437#define TARGET_DEBUG_STACK rs6000_debug_stack
438#define TARGET_DEBUG_ARG rs6000_debug_arg
439
57ac7be9
AM
440extern const char *rs6000_traceback_name; /* Type of traceback table. */
441
6fa3f289
ZW
442/* These are separate from target_flags because we've run out of bits
443 there. */
444extern const char *rs6000_long_double_size_string;
445extern int rs6000_long_double_type_size;
446extern int rs6000_altivec_abi;
a3170dc6
AH
447extern int rs6000_spe_abi;
448extern int rs6000_isel;
993f19a8 449extern int rs6000_spe;
5da702b1
AH
450extern int rs6000_float_gprs;
451extern const char *rs6000_float_gprs_string;
a3170dc6 452extern const char *rs6000_isel_string;
993f19a8 453extern const char *rs6000_spe_string;
08b57fb3
AH
454extern const char *rs6000_altivec_vrsave_string;
455extern int rs6000_altivec_vrsave;
a5c76ee6
ZW
456extern const char *rs6000_longcall_switch;
457extern int rs6000_default_long_calls;
025d9908
KH
458extern const char* rs6000_alignment_string;
459extern int rs6000_alignment_flags;
460
461/* Alignment options for fields in structures for sub-targets following
462 AIX-like ABI.
463 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
464 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
465
466 Override the macro definitions when compiling libobjc to avoid undefined
467 reference to rs6000_alignment_flags due to library's use of GCC alignment
468 macros which use the macros below. */
469
470#ifndef IN_TARGET_LIBS
471#define MASK_ALIGN_POWER 0x00000000
472#define MASK_ALIGN_NATURAL 0x00000001
473#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
474#else
475#define TARGET_ALIGN_NATURAL 0
476#endif
6fa3f289 477
2c4a9cff
DE
478/* Define TARGET_MFCRF if the target assembler supports the optional
479 field operand for mfcr and the target processor supports the
480 instruction. */
481
482#ifdef HAVE_AS_MFCRF
483#define TARGET_MFCRF (rs6000_cpu == PROCESSOR_POWER4)
484#else
485#define TARGET_MFCRF 0
486#endif
487
6fa3f289
ZW
488#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
489#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
08b57fb3 490#define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
6fa3f289 491
a3170dc6
AH
492#define TARGET_SPE_ABI 0
493#define TARGET_SPE 0
993f19a8 494#define TARGET_E500 0
a3170dc6
AH
495#define TARGET_ISEL 0
496#define TARGET_FPRS 1
497
fb623df5
RK
498/* Sometimes certain combinations of command options do not make sense
499 on a particular target machine. You can define a macro
500 `OVERRIDE_OPTIONS' to take account of this. This macro, if
501 defined, is executed once just after all the command options have
502 been parsed.
503
5accd822
DE
504 Don't use this macro to turn on various extra optimizations for
505 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
506
fb623df5
RK
507 On the RS/6000 this is used to define the target cpu type. */
508
8e3f41e7 509#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 510
5accd822
DE
511/* Define this to change the optimizations performed by default. */
512#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
513
4c4eb375
GK
514/* Show we can debug even without a frame pointer. */
515#define CAN_DEBUG_WITHOUT_FP
516
a5c76ee6 517/* Target pragma. */
c58b209a
NB
518#define REGISTER_TARGET_PRAGMAS() do { \
519 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
a5c76ee6
ZW
520} while (0)
521
4c4eb375
GK
522/* Target #defines. */
523#define TARGET_CPU_CPP_BUILTINS() \
524 rs6000_cpu_cpp_builtins (pfile)
647d340d
JT
525
526/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
527 we're compiling for. Some configurations may need to override it. */
528#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
529 do \
530 { \
531 if (BYTES_BIG_ENDIAN) \
532 { \
533 builtin_define ("__BIG_ENDIAN__"); \
534 builtin_define ("_BIG_ENDIAN"); \
535 builtin_assert ("machine=bigendian"); \
536 } \
537 else \
538 { \
539 builtin_define ("__LITTLE_ENDIAN__"); \
540 builtin_define ("_LITTLE_ENDIAN"); \
541 builtin_assert ("machine=littleendian"); \
542 } \
543 } \
544 while (0)
f045b2c9 545\f
4c4eb375 546/* Target machine storage layout. */
f045b2c9 547
13d39dbc 548/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 549 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
550 the value is constrained to be within the bounds of the declared
551 type, but kept valid in the wider mode. The signedness of the
552 extension may differ from that of the type. */
553
39403d82
DE
554#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
555 if (GET_MODE_CLASS (MODE) == MODE_INT \
556 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 557 (MODE) = word_mode;
39403d82
DE
558
559/* Define this if function arguments should also be promoted using the above
560 procedure. */
561
562#define PROMOTE_FUNCTION_ARGS
563
564/* Likewise, if the function return value is promoted. */
565
566#define PROMOTE_FUNCTION_RETURN
ef457bda 567
f045b2c9 568/* Define this if most significant bit is lowest numbered
82e41834
KH
569 in instructions that operate on numbered bit-fields. */
570/* That is true on RS/6000. */
f045b2c9
RS
571#define BITS_BIG_ENDIAN 1
572
573/* Define this if most significant byte of a word is the lowest numbered. */
574/* That is true on RS/6000. */
575#define BYTES_BIG_ENDIAN 1
576
577/* Define this if most significant word of a multiword number is lowest
c81bebd7 578 numbered.
f045b2c9
RS
579
580 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 581 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
582#define WORDS_BIG_ENDIAN 1
583
2e360ab3 584#define MAX_BITS_PER_WORD 64
f045b2c9
RS
585
586/* Width of a word, in units (bytes). */
2f3e5814 587#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
f34fc46e
DE
588#ifdef IN_LIBGCC2
589#define MIN_UNITS_PER_WORD UNITS_PER_WORD
590#else
ef0e53ce 591#define MIN_UNITS_PER_WORD 4
f34fc46e 592#endif
2e360ab3 593#define UNITS_PER_FP_WORD 8
0ac081f6 594#define UNITS_PER_ALTIVEC_WORD 16
a3170dc6 595#define UNITS_PER_SPE_WORD 8
f045b2c9 596
915f619f
JW
597/* Type used for ptrdiff_t, as a string used in a declaration. */
598#define PTRDIFF_TYPE "int"
599
058ef853
DE
600/* Type used for size_t, as a string used in a declaration. */
601#define SIZE_TYPE "long unsigned int"
602
f045b2c9
RS
603/* Type used for wchar_t, as a string used in a declaration. */
604#define WCHAR_TYPE "short unsigned int"
605
606/* Width of wchar_t in bits. */
607#define WCHAR_TYPE_SIZE 16
608
9e654916
RK
609/* A C expression for the size in bits of the type `short' on the
610 target machine. If you don't define this, the default is half a
611 word. (If this would be less than one storage unit, it is
612 rounded up to one unit.) */
613#define SHORT_TYPE_SIZE 16
614
615/* A C expression for the size in bits of the type `int' on the
616 target machine. If you don't define this, the default is one
617 word. */
19d2d16f 618#define INT_TYPE_SIZE 32
9e654916
RK
619
620/* A C expression for the size in bits of the type `long' on the
621 target machine. If you don't define this, the default is one
622 word. */
2f3e5814 623#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
624#define MAX_LONG_TYPE_SIZE 64
625
626/* A C expression for the size in bits of the type `long long' on the
627 target machine. If you don't define this, the default is two
628 words. */
629#define LONG_LONG_TYPE_SIZE 64
630
9e654916
RK
631/* A C expression for the size in bits of the type `float' on the
632 target machine. If you don't define this, the default is one
633 word. */
634#define FLOAT_TYPE_SIZE 32
635
636/* A C expression for the size in bits of the type `double' on the
637 target machine. If you don't define this, the default is two
638 words. */
639#define DOUBLE_TYPE_SIZE 64
640
641/* A C expression for the size in bits of the type `long double' on
642 the target machine. If you don't define this, the default is two
643 words. */
6fa3f289 644#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
645
646/* Constant which presents upper bound of the above value. */
647#define MAX_LONG_DOUBLE_TYPE_SIZE 128
648
649/* Define this to set long double type size to use in libgcc2.c, which can
650 not depend on target_flags. */
651#ifdef __LONG_DOUBLE_128__
652#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
653#else
654#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
655#endif
9e654916 656
5b8f5865
DE
657/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
658#define WIDEST_HARDWARE_FP_SIZE 64
659
f045b2c9
RS
660/* Width in bits of a pointer.
661 See also the macro `Pmode' defined below. */
2f3e5814 662#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
663
664/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 665#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
666
667/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 668#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
669
670/* Allocation boundary (in *bits*) for the code of a function. */
671#define FUNCTION_BOUNDARY 32
672
673/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
674#define BIGGEST_ALIGNMENT 128
675
676/* A C expression to compute the alignment for a variables in the
677 local store. TYPE is the data type, and ALIGN is the alignment
678 that the object would ordinarily have. */
679#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a3170dc6
AH
680 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
681 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
b73fd26c 682
f045b2c9
RS
683/* Alignment of field after `int : 0' in a structure. */
684#define EMPTY_FIELD_BOUNDARY 32
685
686/* Every structure's size must be a multiple of this. */
687#define STRUCTURE_SIZE_BOUNDARY 8
688
a3170dc6
AH
689/* Return 1 if a structure or array containing FIELD should be
690 accessed using `BLKMODE'.
691
692 For the SPE, simd types are V2SI, and gcc can be tempted to put the
693 entire thing in a DI and use subregs to access the internals.
694 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
695 back-end. Because a single GPR can hold a V2SI, but not a DI, the
696 best thing to do is set structs to BLKmode and avoid Severe Tire
697 Damage. */
698#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
699 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
700
43a88a8c 701/* A bit-field declared as `int' forces `int' alignment for the struct. */
f045b2c9
RS
702#define PCC_BITFIELD_TYPE_MATTERS 1
703
69ef87e2
AH
704/* Make strings word-aligned so strcpy from constants will be faster.
705 Make vector constants quadword aligned. */
706#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
707 (TREE_CODE (EXP) == STRING_CST \
708 && (ALIGN) < BITS_PER_WORD \
709 ? BITS_PER_WORD \
710 : (ALIGN))
f045b2c9 711
0ac081f6
AH
712/* Make arrays of chars word-aligned for the same reasons.
713 Align vectors to 128 bits. */
f045b2c9 714#define DATA_ALIGNMENT(TYPE, ALIGN) \
a3170dc6 715 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
0ac081f6 716 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
717 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
718 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
719
a0ab749a 720/* Nonzero if move instructions will actually fail to work
f045b2c9 721 when given unaligned data. */
fdaff8ba 722#define STRICT_ALIGNMENT 0
e1565e65
DE
723
724/* Define this macro to be the value 1 if unaligned accesses have a cost
725 many times greater than aligned accesses, for example if they are
726 emulated in a trap handler. */
41543739
GK
727#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
728 (STRICT_ALIGNMENT \
fcce224d
DE
729 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
730 || (MODE) == DImode) \
41543739 731 && (ALIGN) < 32))
f045b2c9
RS
732\f
733/* Standard register usage. */
734
735/* Number of actual hardware registers.
736 The hardware registers are assigned numbers for the compiler
737 from 0 to just below FIRST_PSEUDO_REGISTER.
738 All registers that the compiler knows about must be given numbers,
739 even those that are not normally considered general registers.
740
741 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
742 an MQ register, a count register, a link register, and 8 condition
07488f32
ZW
743 register fields, which we view here as separate registers. AltiVec
744 adds 32 vector registers and a VRsave register.
f045b2c9
RS
745
746 In addition, the difference between the frame and argument pointers is
747 a function of the number of registers saved, so we need to have a
748 register for AP that will later be eliminated in favor of SP or FP.
802a0058 749 This is a normal register, but it is fixed.
f045b2c9 750
802a0058
MM
751 We also create a pseudo register for float/int conversions, that will
752 really represent the memory location used. It is represented here as
753 a register, in order to work around problems in allocating stack storage
754 in inline functions. */
755
a3170dc6 756#define FIRST_PSEUDO_REGISTER 113
f045b2c9 757
d6a7951f 758/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 759#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 760
c19de7aa
AH
761/* Add 32 dwarf columns for synthetic SPE registers. The SPE
762 synthetic registers are 113 through 145. */
763#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
764
41f3a930
AH
765/* The SPE has an additional 32 synthetic registers starting at 1200.
766 We must map them here to sane values in the unwinder to avoid a
767 huge hole in the unwind tables.
768
769 FIXME: the AltiVec ABI has AltiVec registers being 1124-1155, and
770 the VRSAVE SPR (SPR256) assigned to register 356. When AltiVec EH
771 is verified to be working, this macro should be changed
772 accordingly. */
773#define DWARF_REG_TO_UNWIND_COLUMN(r) ((r) > 1200 ? ((r) - 1200 + 113) : (r))
774
f045b2c9
RS
775/* 1 for registers that have pervasive standard uses
776 and are not available for the register allocator.
777
5dead3e5
DJ
778 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
779 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 780
a127c4e5
RK
781 cr5 is not supposed to be used.
782
783 On System V implementations, r13 is fixed and not available for use. */
784
f045b2c9 785#define FIXED_REGISTERS \
5dead3e5 786 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
787 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
788 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
789 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
790 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
791 /* AltiVec registers. */ \
792 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
793 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 794 1, 1 \
a3170dc6 795 , 1, 1 \
0ac081f6 796}
f045b2c9
RS
797
798/* 1 for registers not available across function calls.
799 These must include the FIXED_REGISTERS and also any
800 registers that can be used without being saved.
801 The latter must include the registers where values are returned
802 and the register where structure-value addresses are passed.
803 Aside from that, you can include as many other registers as you like. */
804
805#define CALL_USED_REGISTERS \
a127c4e5 806 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
807 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
808 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
809 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
810 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
811 /* AltiVec registers. */ \
812 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
813 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 814 1, 1 \
a3170dc6 815 , 1, 1 \
0ac081f6
AH
816}
817
289e96b2
AH
818/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
819 the entire set of `FIXED_REGISTERS' be included.
820 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
821 This macro is optional. If not specified, it defaults to the value
822 of `CALL_USED_REGISTERS'. */
823
824#define CALL_REALLY_USED_REGISTERS \
825 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
826 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
827 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
828 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
829 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
830 /* AltiVec registers. */ \
831 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
832 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
5f004351 833 0, 0 \
a3170dc6 834 , 0, 0 \
289e96b2 835}
f045b2c9 836
9ebbca7d
GK
837#define MQ_REGNO 64
838#define CR0_REGNO 68
839#define CR1_REGNO 69
840#define CR2_REGNO 70
841#define CR3_REGNO 71
842#define CR4_REGNO 72
843#define MAX_CR_REGNO 75
844#define XER_REGNO 76
0ac081f6
AH
845#define FIRST_ALTIVEC_REGNO 77
846#define LAST_ALTIVEC_REGNO 108
28bcfd4d 847#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
0ac081f6 848#define VRSAVE_REGNO 109
5f004351 849#define VSCR_REGNO 110
a3170dc6
AH
850#define SPE_ACC_REGNO 111
851#define SPEFSCR_REGNO 112
9ebbca7d 852
f045b2c9
RS
853/* List the order in which to allocate registers. Each register must be
854 listed once, even those in FIXED_REGISTERS.
855
856 We allocate in the following order:
857 fp0 (not saved or used for anything)
858 fp13 - fp2 (not saved; incoming fp arg registers)
859 fp1 (not saved; return value)
860 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
861 cr7, cr6 (not saved or special)
862 cr1 (not saved, but used for FP operations)
f045b2c9 863 cr0 (not saved, but used for arithmetic operations)
5accd822 864 cr4, cr3, cr2 (saved)
f045b2c9
RS
865 r0 (not saved; cannot be base reg)
866 r9 (not saved; best for TImode)
867 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
868 r3 (not saved; return value register)
869 r31 - r13 (saved; order given to save least number)
870 r12 (not saved; if used for DImode or DFmode would use r13)
871 mq (not saved; best to use it if we can)
872 ctr (not saved; when we have the choice ctr is better)
873 lr (saved)
5f004351 874 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
a3170dc6 875 spe_acc, spefscr (fixed)
0ac081f6
AH
876
877 AltiVec registers:
878 v0 - v1 (not saved or used for anything)
879 v13 - v3 (not saved; incoming vector arg registers)
880 v2 (not saved; incoming vector arg reg; return value)
881 v19 - v14 (not saved or used for anything)
882 v31 - v20 (saved; order given to save least number)
883*/
884
6b13641d
DJ
885#if FIXED_R2 == 1
886#define MAYBE_R2_AVAILABLE
887#define MAYBE_R2_FIXED 2,
888#else
889#define MAYBE_R2_AVAILABLE 2,
890#define MAYBE_R2_FIXED
891#endif
f045b2c9
RS
892
893#define REG_ALLOC_ORDER \
894 {32, \
895 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
896 33, \
897 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
898 50, 49, 48, 47, 46, \
5accd822 899 75, 74, 69, 68, 72, 71, 70, \
6b13641d 900 0, MAYBE_R2_AVAILABLE \
f045b2c9
RS
901 9, 11, 10, 8, 7, 6, 5, 4, \
902 3, \
903 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
904 18, 17, 16, 15, 14, 13, 12, \
905 64, 66, 65, \
6b13641d 906 73, 1, MAYBE_R2_FIXED 67, 76, \
0ac081f6
AH
907 /* AltiVec registers. */ \
908 77, 78, \
909 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
910 79, \
911 96, 95, 94, 93, 92, 91, \
58568475 912 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
5f004351 913 97, 109, 110 \
a3170dc6 914 , 111, 112 \
0ac081f6 915}
f045b2c9
RS
916
917/* True if register is floating-point. */
918#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
919
920/* True if register is a condition register. */
921#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
922
815cdc52
MM
923/* True if register is a condition register, but not cr0. */
924#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
925
f045b2c9 926/* True if register is an integer register. */
9ebbca7d 927#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 928
a3170dc6
AH
929/* SPE SIMD registers are just the GPRs. */
930#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
931
0d86f538 932/* True if register is the XER register. */
9ebbca7d 933#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 934
0ac081f6
AH
935/* True if register is an AltiVec register. */
936#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
937
f045b2c9
RS
938/* Return number of consecutive hard regs needed starting at reg REGNO
939 to hold something of mode MODE.
940 This is ordinarily the length in words of a value of mode MODE
941 but can be less for certain modes in special long registers.
942
a3170dc6
AH
943 For the SPE, GPRs are 64 bits but only 32 bits are visible in
944 scalar instructions. The upper 32 bits are only available to the
945 SIMD instructions.
946
a260abc9
DE
947 POWER and PowerPC GPRs hold 32 bits worth;
948 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 949
802a0058 950#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 951 (FP_REGNO_P (REGNO) \
2e360ab3 952 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
a3170dc6
AH
953 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
954 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
0ac081f6
AH
955 : ALTIVEC_REGNO_P (REGNO) \
956 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
957 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
958
0ac081f6 959#define ALTIVEC_VECTOR_MODE(MODE) \
cb2a532e
AH
960 ((MODE) == V16QImode \
961 || (MODE) == V8HImode \
962 || (MODE) == V4SFmode \
6e1f54e2 963 || (MODE) == V4SImode)
0ac081f6 964
a3170dc6
AH
965#define SPE_VECTOR_MODE(MODE) \
966 ((MODE) == V4HImode \
967 || (MODE) == V2SFmode \
00a892b8 968 || (MODE) == V1DImode \
a3170dc6
AH
969 || (MODE) == V2SImode)
970
0ac081f6
AH
971/* Define this macro to be nonzero if the port is prepared to handle
972 insns involving vector mode MODE. At the very least, it must have
973 move patterns for this mode. */
974
a3170dc6
AH
975#define VECTOR_MODE_SUPPORTED_P(MODE) \
976 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
977 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
0ac081f6 978
f045b2c9 979/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
6b13641d
DJ
980 For POWER and PowerPC, the GPRs can hold any mode, but values bigger
981 than one register cannot go past R31. The float
bdfd4e31
RK
982 registers only can hold floating modes and DImode, and CR register only
983 can hold CC modes. We cannot put TImode anywhere except general
82e41834 984 register and it must be able to fit within the register set. */
f045b2c9 985
802a0058 986#define HARD_REGNO_MODE_OK(REGNO, MODE) \
6b13641d
DJ
987 (INT_REGNO_P (REGNO) ? \
988 INT_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1) \
989 : FP_REGNO_P (REGNO) ? \
990 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
991 || (GET_MODE_CLASS (MODE) == MODE_INT \
992 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 993 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
a3170dc6 994 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
802a0058 995 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 996 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
6b13641d 997 : GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
f045b2c9
RS
998
999/* Value is 1 if it is a good idea to tie two pseudo registers
1000 when one has mode MODE1 and one has mode MODE2.
1001 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1002 for any hard reg, then this must be 0 for correct output. */
1003#define MODES_TIEABLE_P(MODE1, MODE2) \
1004 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1005 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1006 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1007 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1008 : GET_MODE_CLASS (MODE1) == MODE_CC \
1009 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1010 : GET_MODE_CLASS (MODE2) == MODE_CC \
1011 ? GET_MODE_CLASS (MODE1) == MODE_CC \
4dcc01f3
AH
1012 : SPE_VECTOR_MODE (MODE1) \
1013 ? SPE_VECTOR_MODE (MODE2) \
1014 : SPE_VECTOR_MODE (MODE2) \
1015 ? SPE_VECTOR_MODE (MODE1) \
0ac081f6
AH
1016 : ALTIVEC_VECTOR_MODE (MODE1) \
1017 ? ALTIVEC_VECTOR_MODE (MODE2) \
1018 : ALTIVEC_VECTOR_MODE (MODE2) \
1019 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
1020 : 1)
1021
c8ae788f
SB
1022/* Post-reload, we can't use any new AltiVec registers, as we already
1023 emitted the vrsave mask. */
1024
1025#define HARD_REGNO_RENAME_OK(SRC, DST) \
1026 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
1027
f045b2c9 1028/* A C expression returning the cost of moving data from a register of class
34bb030a 1029 CLASS1 to one of CLASS2. */
f045b2c9 1030
34bb030a 1031#define REGISTER_MOVE_COST rs6000_register_move_cost
f045b2c9 1032
34bb030a
DE
1033/* A C expressions returning the cost of moving data of MODE from a register to
1034 or from memory. */
f045b2c9 1035
34bb030a 1036#define MEMORY_MOVE_COST rs6000_memory_move_cost
f045b2c9
RS
1037
1038/* Specify the cost of a branch insn; roughly the number of extra insns that
1039 should be added to avoid a branch.
1040
ef457bda 1041 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
1042 unscheduled conditional branch. */
1043
ef457bda 1044#define BRANCH_COST 3
f045b2c9 1045
85e50b6b
DE
1046/* Override BRANCH_COST heuristic which empirically produces worse
1047 performance for fold_range_test(). */
1048
1049#define RANGE_TEST_NON_SHORT_CIRCUIT 0
a3170dc6
AH
1050
1051/* A fixed register used at prologue and epilogue generation to fix
1052 addressing modes. The SPE needs heavy addressing fixes at the last
1053 minute, and it's best to save a register for it.
1054
1055 AltiVec also needs fixes, but we've gotten around using r11, which
1056 is actually wrong because when use_backchain_to_restore_sp is true,
1057 we end up clobbering r11.
1058
1059 The AltiVec case needs to be fixed. Dunno if we should break ABI
b6d08ca1 1060 compatibility and reserve a register for it as well.. */
a3170dc6
AH
1061
1062#define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1063
6febd581
RK
1064/* Define this macro to change register usage conditional on target flags.
1065 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 1066 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 1067 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
1068 Conditionally disable FPRs. */
1069
8d30c4ee
FS
1070#define CONDITIONAL_REGISTER_USAGE \
1071{ \
e9e4208a 1072 int i; \
8d30c4ee
FS
1073 if (! TARGET_POWER) \
1074 fixed_regs[64] = 1; \
1075 if (TARGET_64BIT) \
289e96b2
AH
1076 fixed_regs[13] = call_used_regs[13] \
1077 = call_really_used_regs[13] = 1; \
a3170dc6 1078 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
8d30c4ee 1079 for (i = 32; i < 64; i++) \
289e96b2
AH
1080 fixed_regs[i] = call_used_regs[i] \
1081 = call_really_used_regs[i] = 1; \
14f00213
FS
1082 if (DEFAULT_ABI == ABI_V4 \
1083 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1084 && flag_pic == 2) \
1085 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1db02437
FS
1086 if (DEFAULT_ABI == ABI_V4 \
1087 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1088 && flag_pic == 1) \
1089 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1090 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1091 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1092 if (DEFAULT_ABI == ABI_DARWIN \
1093 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1094 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1095 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1096 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1097 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
5f004351
AH
1098 if (TARGET_ALTIVEC) \
1099 global_regs[VSCR_REGNO] = 1; \
a3170dc6
AH
1100 if (TARGET_SPE) \
1101 { \
1102 global_regs[SPEFSCR_REGNO] = 1; \
1103 fixed_regs[FIXED_SCRATCH] \
1104 = call_used_regs[FIXED_SCRATCH] \
1105 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1106 } \
2473ee11 1107 if (! TARGET_ALTIVEC) \
c1f11548
DE
1108 { \
1109 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1110 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1111 call_really_used_regs[VRSAVE_REGNO] = 1; \
1112 } \
0ac081f6 1113 if (TARGET_ALTIVEC_ABI) \
2473ee11 1114 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 1115 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 1116}
6febd581 1117
f045b2c9
RS
1118/* Specify the registers used for certain standard purposes.
1119 The values of these macros are register numbers. */
1120
1121/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1122/* #define PC_REGNUM */
1123
1124/* Register to use for pushing function arguments. */
1125#define STACK_POINTER_REGNUM 1
1126
1127/* Base register for access to local variables of the function. */
1128#define FRAME_POINTER_REGNUM 31
1129
1130/* Value should be nonzero if functions must have frame pointers.
1131 Zero means the frame pointer need not be set up (and parms
1132 may be accessed via the stack pointer) in functions that seem suitable.
1133 This is computed in `reload', in reload1.c. */
1134#define FRAME_POINTER_REQUIRED 0
1135
1136/* Base register for access to arguments of the function. */
1137#define ARG_POINTER_REGNUM 67
1138
1139/* Place to put static chain when calling a function that requires it. */
1140#define STATIC_CHAIN_REGNUM 11
1141
82e41834 1142/* Link register number. */
9ebbca7d 1143#define LINK_REGISTER_REGNUM 65
b6c9286a 1144
82e41834 1145/* Count register number. */
9ebbca7d 1146#define COUNT_REGISTER_REGNUM 66
802a0058 1147
f045b2c9
RS
1148/* Place that structure value return address is placed.
1149
1150 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1151#define STRUCT_VALUE 0
f045b2c9
RS
1152\f
1153/* Define the classes of registers for register constraints in the
1154 machine description. Also define ranges of constants.
1155
1156 One of the classes must always be named ALL_REGS and include all hard regs.
1157 If there is more than one class, another class must be named NO_REGS
1158 and contain no registers.
1159
1160 The name GENERAL_REGS must be the name of a class (or an alias for
1161 another name such as ALL_REGS). This is the class of registers
1162 that is allowed by "g" or "r" in a register constraint.
1163 Also, registers outside this class are allocated only when
1164 instructions express preferences for them.
1165
1166 The classes must be numbered in nondecreasing order; that is,
1167 a larger-numbered class must never be contained completely
1168 in a smaller-numbered class.
1169
1170 For any two classes, it is very desirable that there be another
1171 class that represents their union. */
c81bebd7 1172
f045b2c9
RS
1173/* The RS/6000 has three types of registers, fixed-point, floating-point,
1174 and condition registers, plus three special registers, MQ, CTR, and the
07488f32 1175 link register. AltiVec adds a vector register class.
f045b2c9
RS
1176
1177 However, r0 is special in that it cannot be used as a base register.
1178 So make a class for registers valid as base registers.
1179
1180 Also, cr0 is the only condition code register that can be used in
0d86f538 1181 arithmetic insns, so make a separate class for it. */
f045b2c9 1182
ebedb4dd
MM
1183enum reg_class
1184{
1185 NO_REGS,
ebedb4dd
MM
1186 BASE_REGS,
1187 GENERAL_REGS,
1188 FLOAT_REGS,
0ac081f6
AH
1189 ALTIVEC_REGS,
1190 VRSAVE_REGS,
5f004351 1191 VSCR_REGS,
a3170dc6
AH
1192 SPE_ACC_REGS,
1193 SPEFSCR_REGS,
ebedb4dd
MM
1194 NON_SPECIAL_REGS,
1195 MQ_REGS,
1196 LINK_REGS,
1197 CTR_REGS,
1198 LINK_OR_CTR_REGS,
1199 SPECIAL_REGS,
1200 SPEC_OR_GEN_REGS,
1201 CR0_REGS,
ebedb4dd
MM
1202 CR_REGS,
1203 NON_FLOAT_REGS,
9ebbca7d 1204 XER_REGS,
ebedb4dd
MM
1205 ALL_REGS,
1206 LIM_REG_CLASSES
1207};
f045b2c9
RS
1208
1209#define N_REG_CLASSES (int) LIM_REG_CLASSES
1210
82e41834 1211/* Give names of register classes as strings for dump file. */
f045b2c9 1212
ebedb4dd
MM
1213#define REG_CLASS_NAMES \
1214{ \
1215 "NO_REGS", \
ebedb4dd
MM
1216 "BASE_REGS", \
1217 "GENERAL_REGS", \
1218 "FLOAT_REGS", \
0ac081f6
AH
1219 "ALTIVEC_REGS", \
1220 "VRSAVE_REGS", \
5f004351 1221 "VSCR_REGS", \
a3170dc6
AH
1222 "SPE_ACC_REGS", \
1223 "SPEFSCR_REGS", \
ebedb4dd
MM
1224 "NON_SPECIAL_REGS", \
1225 "MQ_REGS", \
1226 "LINK_REGS", \
1227 "CTR_REGS", \
1228 "LINK_OR_CTR_REGS", \
1229 "SPECIAL_REGS", \
1230 "SPEC_OR_GEN_REGS", \
1231 "CR0_REGS", \
ebedb4dd
MM
1232 "CR_REGS", \
1233 "NON_FLOAT_REGS", \
9ebbca7d 1234 "XER_REGS", \
ebedb4dd
MM
1235 "ALL_REGS" \
1236}
f045b2c9
RS
1237
1238/* Define which registers fit in which classes.
1239 This is an initializer for a vector of HARD_REG_SET
1240 of length N_REG_CLASSES. */
1241
0ac081f6
AH
1242#define REG_CLASS_CONTENTS \
1243{ \
1244 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1245 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1246 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1247 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1248 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1249 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
5f004351 1250 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
a3170dc6
AH
1251 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1252 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
0ac081f6
AH
1253 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1254 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1255 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1256 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1257 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1258 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1259 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1260 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1261 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1262 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1263 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1264 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1265}
f045b2c9
RS
1266
1267/* The same information, inverted:
1268 Return the class number of the smallest class containing
1269 reg number REGNO. This could be a conditional expression
1270 or could index an array. */
1271
0d86f538
GK
1272#define REGNO_REG_CLASS(REGNO) \
1273 ((REGNO) == 0 ? GENERAL_REGS \
1274 : (REGNO) < 32 ? BASE_REGS \
1275 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1276 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1277 : (REGNO) == CR0_REGNO ? CR0_REGS \
1278 : CR_REGNO_P (REGNO) ? CR_REGS \
1279 : (REGNO) == MQ_REGNO ? MQ_REGS \
1280 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1281 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1282 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1283 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1284 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
5f004351 1285 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
a3170dc6
AH
1286 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1287 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
f045b2c9
RS
1288 : NO_REGS)
1289
1290/* The class value for index registers, and the one for base regs. */
1291#define INDEX_REG_CLASS GENERAL_REGS
1292#define BASE_REG_CLASS BASE_REGS
1293
1294/* Get reg_class from a letter such as appears in the machine description. */
1295
1296#define REG_CLASS_FROM_LETTER(C) \
1297 ((C) == 'f' ? FLOAT_REGS \
1298 : (C) == 'b' ? BASE_REGS \
1299 : (C) == 'h' ? SPECIAL_REGS \
1300 : (C) == 'q' ? MQ_REGS \
1301 : (C) == 'c' ? CTR_REGS \
1302 : (C) == 'l' ? LINK_REGS \
0ac081f6 1303 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1304 : (C) == 'x' ? CR0_REGS \
1305 : (C) == 'y' ? CR_REGS \
9ebbca7d 1306 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1307 : NO_REGS)
1308
1309/* The letters I, J, K, L, M, N, and P in a register constraint string
1310 can be used to stand for particular ranges of immediate operands.
1311 This macro defines what the ranges are.
1312 C is the letter, and VALUE is a constant value.
1313 Return 1 if VALUE is in the range specified by C.
1314
9615f239 1315 `I' is a signed 16-bit constant
a0ab749a
KH
1316 `J' is a constant with only the high-order 16 bits nonzero
1317 `K' is a constant with only the low-order 16 bits nonzero
9615f239 1318 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1319 `M' is a constant that is greater than 31
2bfcf297 1320 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1321 `O' is the constant zero
1322 `P' is a constant whose negation is a signed 16-bit constant */
1323
5b6f7b96
RK
1324#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1325 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1326 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1327 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1328 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1329 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1330 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1331 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1332 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1333 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1334 : 0)
1335
1336/* Similar, but for floating constants, and defining letters G and H.
1337 Here VALUE is the CONST_DOUBLE rtx itself.
1338
1339 We flag for special constants when we can copy the constant into
4e74d8ec 1340 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1341
c4c40373 1342 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1343
1344#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1345 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1346 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1347 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1348 : 0)
f045b2c9
RS
1349
1350/* Optional extra constraints for this machine.
1351
b6c9286a
MM
1352 'Q' means that is a memory operand that is just an offset from a reg.
1353 'R' is for AIX TOC entries.
a260abc9 1354 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1355 'T' is a constant that can be placed into a 32-bit mask operand
0ba1b2ff 1356 'U' is for V.4 small data references.
d744e06e 1357 'W' is a vector constant that can be easily generated (no mem refs).
0ba1b2ff 1358 't' is for AND masks that can be performed by two rldic{l,r} insns. */
f045b2c9 1359
e8a8bc24
RK
1360#define EXTRA_CONSTRAINT(OP, C) \
1361 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
4d588c14 1362 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
b1765bde
DE
1363 : (C) == 'S' ? mask64_operand (OP, DImode) \
1364 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1365 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1366 && small_data_operand (OP, GET_MODE (OP))) \
0ba1b2ff
AM
1367 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1368 && (fixed_regs[CR0_REGNO] \
1369 || !logical_operand (OP, DImode)) \
1370 && !mask64_operand (OP, DImode)) \
d744e06e 1371 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
e8a8bc24 1372 : 0)
f045b2c9
RS
1373
1374/* Given an rtx X being reloaded into a reg required to be
1375 in class CLASS, return the class of reg to actually use.
1376 In general this is just CLASS; but on some machines
c81bebd7 1377 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1378
1379 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1380 floating-point CONST_DOUBLE to force it to be copied to memory.
1381
1382 We also don't want to reload integer values into floating-point
1383 registers if we can at all help it. In fact, this can
1384 cause reload to abort, if it tries to generate a reload of CTR
1385 into a FP register and discovers it doesn't have the memory location
1386 required.
1387
1388 ??? Would it be a good idea to have reload do the converse, that is
1389 try to reload floating modes into FP registers if possible?
1390 */
f045b2c9 1391
802a0058 1392#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1393 (((GET_CODE (X) == CONST_DOUBLE \
1394 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1395 ? NO_REGS \
1396 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1397 && (CLASS) == NON_SPECIAL_REGS) \
1398 ? GENERAL_REGS \
1399 : (CLASS)))
c81bebd7 1400
f045b2c9
RS
1401/* Return the register class of a scratch register needed to copy IN into
1402 or out of a register in CLASS in MODE. If it can be done directly,
1403 NO_REGS is returned. */
1404
1405#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1406 secondary_reload_class (CLASS, MODE, IN)
1407
0ac081f6
AH
1408/* If we are copying between FP or AltiVec registers and anything
1409 else, we need a memory location. */
7ea555a4 1410
0ac081f6
AH
1411#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1412 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1413 || (CLASS2) == FLOAT_REGS \
1414 || (CLASS1) == ALTIVEC_REGS \
1415 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1416
f045b2c9
RS
1417/* Return the maximum number of consecutive registers
1418 needed to represent mode MODE in a register of class CLASS.
1419
1420 On RS/6000, this is the size of MODE in words,
1421 except in the FP regs, where a single reg is enough for two words. */
802a0058 1422#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1423 (((CLASS) == FLOAT_REGS) \
2e360ab3 1424 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1425 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230 1426
580d3230 1427
cff9f8d5 1428/* Return a class of registers that cannot change FROM mode to TO mode. */
02188693 1429
b0c42aed
JH
1430#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1431 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1432 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
28636c6e 1433 : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
b0c42aed
JH
1434 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1435 : 0)
02188693 1436
f045b2c9
RS
1437/* Stack layout; function entry, exit and calling. */
1438
6b67933e
RK
1439/* Enumeration to give which calling sequence to use. */
1440enum rs6000_abi {
1441 ABI_NONE,
1442 ABI_AIX, /* IBM's AIX */
b6c9286a 1443 ABI_V4, /* System V.4/eabi */
ee890fe2 1444 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1445};
1446
b6c9286a
MM
1447extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1448
4697a36c
MM
1449/* Structure used to define the rs6000 stack */
1450typedef struct rs6000_stack {
1451 int first_gp_reg_save; /* first callee saved GP register used */
1452 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1453 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1454 int lr_save_p; /* true if the link reg needs to be saved */
1455 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1456 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1457 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1458 int push_p; /* true if we need to allocate stack space */
1459 int calls_p; /* true if the function makes any calls */
6b67933e 1460 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1461 int gp_save_offset; /* offset to save GP regs from initial SP */
1462 int fp_save_offset; /* offset to save FP regs from initial SP */
b6d08ca1 1463 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
4697a36c
MM
1464 int lr_save_offset; /* offset to save LR from initial SP */
1465 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1466 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
a3170dc6 1467 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
b6c9286a 1468 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1469 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1470 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1471 int reg_size; /* register size (4 or 8) */
1472 int varargs_size; /* size to hold V.4 args passed in regs */
1473 int vars_size; /* variable save area size */
1474 int parm_size; /* outgoing parameter size */
1475 int save_size; /* save area size */
1476 int fixed_size; /* fixed size of stack frame */
1477 int gp_size; /* size of saved GP registers */
1478 int fp_size; /* size of saved FP registers */
00b960c7 1479 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1480 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1481 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1482 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1483 int altivec_padding_size; /* size of altivec alignment padding if
1484 not in save_size */
a3170dc6
AH
1485 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1486 int spe_padding_size;
b6c9286a 1487 int toc_size; /* size to hold TOC if not in save_size */
4697a36c 1488 int total_size; /* total bytes allocated for stack */
c19de7aa 1489 int spe_64bit_regs_used;
4697a36c
MM
1490} rs6000_stack_t;
1491
f045b2c9
RS
1492/* Define this if pushing a word on the stack
1493 makes the stack pointer a smaller address. */
1494#define STACK_GROWS_DOWNWARD
1495
1496/* Define this if the nominal address of the stack frame
1497 is at the high-address end of the local variables;
1498 that is, each additional local variable allocated
1499 goes at a more negative offset in the frame.
1500
1501 On the RS/6000, we grow upwards, from the area after the outgoing
1502 arguments. */
1503/* #define FRAME_GROWS_DOWNWARD */
1504
4697a36c 1505/* Size of the outgoing register save area */
9ebbca7d 1506#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1507 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1508 ? (TARGET_64BIT ? 64 : 32) \
1509 : 0)
4697a36c
MM
1510
1511/* Size of the fixed area on the stack */
9ebbca7d 1512#define RS6000_SAVE_AREA \
50d440bc 1513 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1514 << (TARGET_64BIT ? 1 : 0))
4697a36c 1515
97f6e72f
DE
1516/* MEM representing address to save the TOC register */
1517#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1518 plus_constant (stack_pointer_rtx, \
1519 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1520
4697a36c
MM
1521/* Size of the V.4 varargs area if needed */
1522#define RS6000_VARARGS_AREA 0
1523
4697a36c 1524/* Align an address */
ed33106f 1525#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1526
1527/* Size of V.4 varargs area in bytes */
1528#define RS6000_VARARGS_SIZE \
2f3e5814 1529 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1530
f045b2c9
RS
1531/* Offset within stack frame to start allocating local variables at.
1532 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1533 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1534 of the first local allocated.
f045b2c9
RS
1535
1536 On the RS/6000, the frame pointer is the same as the stack pointer,
1537 except for dynamic allocations. So we start after the fixed area and
1538 outgoing parameter area. */
1539
802a0058 1540#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1541 (RS6000_ALIGN (current_function_outgoing_args_size, \
1542 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1543 + RS6000_VARARGS_AREA \
1544 + RS6000_SAVE_AREA)
1545
1546/* Offset from the stack pointer register to an item dynamically
1547 allocated on the stack, e.g., by `alloca'.
1548
1549 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1550 length of the outgoing arguments. The default is correct for most
1551 machines. See `function.c' for details. */
1552#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1553 (RS6000_ALIGN (current_function_outgoing_args_size, \
1554 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1555 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1556
1557/* If we generate an insn to push BYTES bytes,
1558 this says how many the stack pointer really advances by.
1559 On RS/6000, don't define this because there are no push insns. */
1560/* #define PUSH_ROUNDING(BYTES) */
1561
1562/* Offset of first parameter from the argument pointer register value.
1563 On the RS/6000, we define the argument pointer to the start of the fixed
1564 area. */
4697a36c 1565#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1566
62153b61
JM
1567/* Offset from the argument pointer register value to the top of
1568 stack. This is different from FIRST_PARM_OFFSET because of the
1569 register save area. */
1570#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1571
f045b2c9
RS
1572/* Define this if stack space is still allocated for a parameter passed
1573 in a register. The value is the number of bytes allocated to this
1574 area. */
4697a36c 1575#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1576
1577/* Define this if the above stack space is to be considered part of the
1578 space allocated by the caller. */
1579#define OUTGOING_REG_PARM_STACK_SPACE
1580
1581/* This is the difference between the logical top of stack and the actual sp.
1582
82e41834 1583 For the RS/6000, sp points past the fixed area. */
4697a36c 1584#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1585
1586/* Define this if the maximum size of all the outgoing args is to be
1587 accumulated and pushed during the prologue. The amount can be
1588 found in the variable current_function_outgoing_args_size. */
f73ad30e 1589#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1590
1591/* Value is the number of bytes of arguments automatically
1592 popped when returning from a subroutine call.
8b109b37 1593 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1594 FUNTYPE is the data type of the function (as a tree),
1595 or for a library call it is an identifier node for the subroutine name.
1596 SIZE is the number of bytes of arguments passed on the stack. */
1597
8b109b37 1598#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1599
1600/* Define how to find the value returned by a function.
1601 VALTYPE is the data type of the value (as a tree).
1602 If the precise function being called is known, FUNC is its FUNCTION_DECL;
a6ebc39a
AH
1603 otherwise, FUNC is 0. */
1604
1605#define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
f045b2c9
RS
1606
1607/* Define how to find the value returned by a library function
1608 assuming the value has mode MODE. */
1609
ded9bf77 1610#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
f045b2c9 1611
6fa3f289
ZW
1612/* The AIX ABI for the RS/6000 specifies that all structures are
1613 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1614 specifies that structures <= 8 bytes are returned in r3/r4, but a
1615 draft put them in memory, and GCC used to implement the draft
1616 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1617 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1618 compatibility can change DRAFT_V4_STRUCT_RET to override the
1619 default, and -m switches get the final word. See
52acbdcb
ZW
1620 rs6000_override_options for more details.
1621
0e9f8e82
JW
1622 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1623 long double support is enabled. These values are returned in memory.
1624
52acbdcb
ZW
1625 int_size_in_bytes returns -1 for variable size objects, which go in
1626 memory always. The cast to unsigned makes -1 > 8. */
1627
6fa3f289 1628#define RETURN_IN_MEMORY(TYPE) \
0e9f8e82
JW
1629 ((AGGREGATE_TYPE_P (TYPE) \
1630 && (TARGET_AIX_STRUCT_RET \
1631 || (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8)) \
1632 || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
f045b2c9 1633
6fa3f289
ZW
1634/* DRAFT_V4_STRUCT_RET defaults off. */
1635#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1636
1637/* Let RETURN_IN_MEMORY control what happens. */
1638#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1639
a260abc9 1640/* Mode of stack savearea.
dfdfa60f
DE
1641 FUNCTION is VOIDmode because calling convention maintains SP.
1642 BLOCK needs Pmode for SP.
a260abc9
DE
1643 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1644#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1645 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1646 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1647
4697a36c
MM
1648/* Minimum and maximum general purpose registers used to hold arguments. */
1649#define GP_ARG_MIN_REG 3
1650#define GP_ARG_MAX_REG 10
1651#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1652
1653/* Minimum and maximum floating point registers used to hold arguments. */
1654#define FP_ARG_MIN_REG 33
7509c759
MM
1655#define FP_ARG_AIX_MAX_REG 45
1656#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1657#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1658 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1659 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1660#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1661
0ac081f6
AH
1662/* Minimum and maximum AltiVec registers used to hold arguments. */
1663#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1664#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1665#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1666
4697a36c
MM
1667/* Return registers */
1668#define GP_ARG_RETURN GP_ARG_MIN_REG
1669#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1670#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1671
7509c759 1672/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1673#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1674/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1675#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1676#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1677#define CALL_LONG 0x00000008 /* always call indirect */
b9599e46 1678#define CALL_LIBCALL 0x00000010 /* libcall */
7509c759 1679
f045b2c9
RS
1680/* 1 if N is a possible register number for a function value
1681 as seen by the caller.
1682
0ac081f6 1683 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
e87a88d3
AM
1684#define FUNCTION_VALUE_REGNO_P(N) \
1685 ((N) == GP_ARG_RETURN \
1686 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT) \
1687 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC))
f045b2c9
RS
1688
1689/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1690 On RS/6000, these are r3-r10 and fp1-fp13.
1691 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1692#define FUNCTION_ARG_REGNO_P(N) \
e87a88d3
AM
1693 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1694 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1695 && TARGET_ALTIVEC) \
1696 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1697 && TARGET_HARD_FLOAT))
f045b2c9 1698\f
00dba523
NC
1699/* A C structure for machine-specific, per-function data.
1700 This is added to the cfun structure. */
e2500fed 1701typedef struct machine_function GTY(())
00dba523
NC
1702{
1703 /* Whether a System V.4 varargs area was created. */
1704 int sysv_varargs_p;
71f123ca
FS
1705 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1706 int ra_needs_full_frame;
c4501e62
JJ
1707 /* Some local-dynamic symbol. */
1708 const char *some_ld_name;
9b7b447f
AH
1709 /* Whether the instruction chain has been scanned already. */
1710 int insn_chain_scanned_p;
00dba523
NC
1711} machine_function;
1712
f045b2c9
RS
1713/* Define a data type for recording info about an argument list
1714 during the scan of that argument list. This data type should
1715 hold all necessary information about the function itself
1716 and about the args processed so far, enough to enable macros
1717 such as FUNCTION_ARG to determine where the next arg should go.
1718
1719 On the RS/6000, this is a structure. The first element is the number of
1720 total argument words, the second is used to store the next
1721 floating-point register number, and the third says how many more args we
4697a36c
MM
1722 have prototype types for.
1723
4cc833b7 1724 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
07488f32 1725 the next available GP register, `fregno' is the next available FP
4cc833b7
RH
1726 register, and `words' is the number of words used on the stack.
1727
bd227acc 1728 The varargs/stdarg support requires that this structure's size
4cc833b7 1729 be a multiple of sizeof(int). */
4697a36c
MM
1730
1731typedef struct rs6000_args
1732{
4cc833b7 1733 int words; /* # words used for passing GP registers */
6a4cee5f 1734 int fregno; /* next available FP register */
0ac081f6 1735 int vregno; /* next available AltiVec register */
6a4cee5f 1736 int nargs_prototype; /* # args left in the current prototype */
6a4cee5f 1737 int prototype; /* Whether a prototype was defined */
a6c9bed4 1738 int stdarg; /* Whether function is a stdarg function. */
6a4cee5f 1739 int call_cookie; /* Do special things for this call */
4cc833b7 1740 int sysv_gregno; /* next available GP register */
4697a36c 1741} CUMULATIVE_ARGS;
f045b2c9
RS
1742
1743/* Define intermediate macro to compute the size (in registers) of an argument
1744 for the RS/6000. */
1745
d34c5b80
DE
1746#define RS6000_ARG_SIZE(MODE, TYPE) \
1747((MODE) != BLKmode \
c5d71f39 1748 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
0c769cf8 1749 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1750
1751/* Initialize a variable CUM of type CUMULATIVE_ARGS
1752 for a call to a function whose data type is FNTYPE.
1753 For a library call, FNTYPE is 0. */
1754
2c7ee1a6 1755#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
b9599e46 1756 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE)
f045b2c9
RS
1757
1758/* Similar, but when scanning the definition of a procedure. We always
1759 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1760
4697a36c 1761#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
b9599e46
FS
1762 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE)
1763
1764/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1765
1766#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1767 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE)
f045b2c9
RS
1768
1769/* Update the data in CUM to advance over an argument
1770 of mode MODE and data type TYPE.
1771 (TYPE is null for libcalls where that information may not be available.) */
1772
1773#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1774 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9 1775
a0ab749a 1776/* Nonzero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1777#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1778 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1779 && (CUM).fregno <= FP_ARG_MAX_REG \
a3170dc6 1780 && TARGET_HARD_FLOAT && TARGET_FPRS)
f045b2c9 1781
a0ab749a 1782/* Nonzero if we can use an AltiVec register to pass this arg. */
0ac081f6
AH
1783#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1784 (ALTIVEC_VECTOR_MODE (MODE) \
1785 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1786 && TARGET_ALTIVEC_ABI)
1787
f045b2c9
RS
1788/* Determine where to put an argument to a function.
1789 Value is zero to push the argument on the stack,
1790 or a hard register in which to store the argument.
1791
1792 MODE is the argument's machine mode.
1793 TYPE is the data type of the argument (as a tree).
1794 This is null for libcalls where that information may
1795 not be available.
1796 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1797 the preceding args and about the function being called.
1798 NAMED is nonzero if this argument is a named parameter
1799 (otherwise it is an extra parameter matching an ellipsis).
1800
1801 On RS/6000 the first eight words of non-FP are normally in registers
1802 and the rest are pushed. The first 13 FP args are in registers.
1803
1804 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1805 both an FP and integer register (or possibly FP reg and stack). Library
1806 functions (when TYPE is zero) always have the proper types for args,
1807 so we can pass the FP value just in one register. emit_library_function
1808 doesn't support EXPR_LIST anyway. */
f045b2c9 1809
4697a36c
MM
1810#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1811 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1812
1813/* For an arg passed partly in registers and partly in memory,
1814 this is the number of registers used.
1815 For args passed entirely in registers or entirely in memory, zero. */
1816
4697a36c
MM
1817#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1818 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1819
1820/* A C expression that indicates when an argument must be passed by
1821 reference. If nonzero for an argument, a copy of that argument is
1822 made in memory and a pointer to the argument is passed instead of
1823 the argument itself. The pointer is passed in whatever way is
82e41834 1824 appropriate for passing a pointer to that type. */
4697a36c
MM
1825
1826#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1827 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1828
c229cba9
DE
1829/* If defined, a C expression which determines whether, and in which
1830 direction, to pad out an argument with extra space. The value
1831 should be of type `enum direction': either `upward' to pad above
1832 the argument, `downward' to pad below, or `none' to inhibit
1833 padding. */
1834
9ebbca7d 1835#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1836
b6c9286a 1837/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1838 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1839 PARM_BOUNDARY is used for all arguments. */
1840
1841#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1842 function_arg_boundary (MODE, TYPE)
1843
ded9bf77
AH
1844/* Define to nonzero if complex arguments should be split into their
1845 corresponding components.
1846
1847 This should be set for Linux and Darwin as well, but we can't break
1848 the ABIs at the moment. For now, only AIX gets fixed. */
1849#define SPLIT_COMPLEX_ARGS (DEFAULT_ABI == ABI_AIX)
1850
f045b2c9 1851/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1852 variable number of arguments.
f045b2c9
RS
1853
1854 CUM is as above.
1855
1856 MODE and TYPE are the mode and type of the current parameter.
1857
1858 PRETEND_SIZE is a variable that should be set to the amount of stack
1859 that must be pushed by the prolog to pretend that our caller pushed
1860 it.
1861
1862 Normally, this macro will push all remaining incoming registers on the
1863 stack and set PRETEND_SIZE to the length of the registers pushed. */
1864
4697a36c
MM
1865#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1866 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1867
dfafc897
FS
1868/* Define the `__builtin_va_list' type for the ABI. */
1869#define BUILD_VA_LIST_TYPE(VALIST) \
1870 (VALIST) = rs6000_build_va_list ()
4697a36c 1871
dfafc897 1872/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
1873#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1874 rs6000_va_start (valist, nextarg)
dfafc897
FS
1875
1876/* Implement `va_arg'. */
1877#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1878 rs6000_va_arg (valist, type)
f045b2c9 1879
6e985040
AM
1880#define PAD_VARARGS_DOWN \
1881 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
2a55fd42 1882
d34c5b80
DE
1883/* Define this macro to be a nonzero value if the location where a function
1884 argument is passed depends on whether or not it is a named argument. */
1885#define STRICT_ARGUMENT_NAMING 1
1886
f045b2c9 1887/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1888 for profiling a function entry. */
f045b2c9
RS
1889
1890#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1891 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1892
1893/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1894 the stack pointer does not matter. No definition is equivalent to
1895 always zero.
1896
a0ab749a 1897 On the RS/6000, this is nonzero because we can restore the stack from
f045b2c9
RS
1898 its backpointer, which we maintain. */
1899#define EXIT_IGNORE_STACK 1
1900
a701949a
FS
1901/* Define this macro as a C expression that is nonzero for registers
1902 that are used by the epilogue or the return' pattern. The stack
1903 and frame pointer registers are already be assumed to be used as
1904 needed. */
1905
83720594
RH
1906#define EPILOGUE_USES(REGNO) \
1907 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1908 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1909 || (current_function_calls_eh_return \
3553b09d 1910 && TARGET_AIX \
ff3867ae 1911 && (REGNO) == 2))
2bfcf297 1912
f045b2c9 1913\f
eaf1bcf1 1914/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1915
1916/* Length in units of the trampoline for entering a nested function. */
1917
b6c9286a 1918#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1919
1920/* Emit RTL insns to initialize the variable parts of a trampoline.
1921 FNADDR is an RTX for the address of the function's pure code.
1922 CXT is an RTX for the static chain value for the function. */
1923
1924#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1925 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1926\f
f33985c6
MS
1927/* Definitions for __builtin_return_address and __builtin_frame_address.
1928 __builtin_return_address (0) should give link register (65), enable
82e41834 1929 this. */
f33985c6
MS
1930/* This should be uncommented, so that the link register is used, but
1931 currently this would result in unmatched insns and spilling fixed
1932 registers so we'll leave it for another day. When these problems are
1933 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1934 (mrs) */
1935/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1936
b6c9286a
MM
1937/* Number of bytes into the frame return addresses can be found. See
1938 rs6000_stack_info in rs6000.c for more information on how the different
1939 abi's store the return address. */
1940#define RETURN_ADDRESS_OFFSET \
1941 ((DEFAULT_ABI == ABI_AIX \
50d440bc 1942 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1943 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1944 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1945
f33985c6
MS
1946/* The current return address is in link register (65). The return address
1947 of anything farther back is accessed normally at an offset of 8 from the
1948 frame pointer. */
71f123ca
FS
1949#define RETURN_ADDR_RTX(COUNT, FRAME) \
1950 (rs6000_return_addr (COUNT, FRAME))
1951
f33985c6 1952\f
f045b2c9
RS
1953/* Definitions for register eliminations.
1954
1955 We have two registers that can be eliminated on the RS/6000. First, the
1956 frame pointer register can often be eliminated in favor of the stack
1957 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1958 eliminated; it is replaced with either the stack or frame pointer.
1959
1960 In addition, we use the elimination mechanism to see if r30 is needed
1961 Initially we assume that it isn't. If it is, we spill it. This is done
1962 by making it an eliminable register. We replace it with itself so that
1963 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1964
1965/* This is an array of structures. Each structure initializes one pair
1966 of eliminable registers. The "from" register number is given first,
1967 followed by "to". Eliminations of the same "from" register are listed
1968 in order of preference. */
1969#define ELIMINABLE_REGS \
1970{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1971 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1 1972 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
97b23853 1973 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
f045b2c9
RS
1974
1975/* Given FROM and TO register numbers, say whether this elimination is allowed.
1976 Frame pointer elimination is automatically handled.
1977
1978 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1979 to convert ap into fp, not sp.
1980
abc95ed3 1981 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1982 references. */
f045b2c9 1983
97b23853
GK
1984#define CAN_ELIMINATE(FROM, TO) \
1985 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1986 ? ! frame_pointer_needed \
1987 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1988 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1989 : 1)
1990
1991/* Define the offset between two registers, one to be eliminated, and the other
1992 its replacement, at the start of a routine. */
1993#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1994{ \
4697a36c 1995 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1996 \
1997 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1998 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1999 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
2000 (OFFSET) = info->total_size; \
2001 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
2002 (OFFSET) = (info->push_p) ? info->total_size : 0; \
97b23853 2003 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
642a35f1 2004 (OFFSET) = 0; \
f045b2c9
RS
2005 else \
2006 abort (); \
2007}
2008\f
2009/* Addressing modes, and classification of registers for them. */
2010
940da324
JL
2011#define HAVE_PRE_DECREMENT 1
2012#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
2013
2014/* Macros to check register numbers against specific register classes. */
2015
2016/* These assume that REGNO is a hard or pseudo reg number.
2017 They give nonzero only if REGNO is a hard reg of the suitable class
2018 or a pseudo reg currently allocated to a suitable hard reg.
2019 Since they use reg_renumber, they are safe only once reg_renumber
2020 has been allocated, which happens in local-alloc.c. */
2021
2022#define REGNO_OK_FOR_INDEX_P(REGNO) \
2023((REGNO) < FIRST_PSEUDO_REGISTER \
2024 ? (REGNO) <= 31 || (REGNO) == 67 \
2025 : (reg_renumber[REGNO] >= 0 \
2026 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
2027
2028#define REGNO_OK_FOR_BASE_P(REGNO) \
2029((REGNO) < FIRST_PSEUDO_REGISTER \
2030 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
2031 : (reg_renumber[REGNO] > 0 \
2032 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
2033\f
2034/* Maximum number of registers that can appear in a valid memory address. */
2035
2036#define MAX_REGS_PER_ADDRESS 2
2037
2038/* Recognize any constant value that is a valid address. */
2039
6eff269e
BK
2040#define CONSTANT_ADDRESS_P(X) \
2041 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2042 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2043 || GET_CODE (X) == HIGH)
f045b2c9
RS
2044
2045/* Nonzero if the constant value X is a legitimate general operand.
2046 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2047
2048 On the RS/6000, all integer constants are acceptable, most won't be valid
2049 for particular insns, though. Only easy FP constants are
2050 acceptable. */
2051
2052#define LEGITIMATE_CONSTANT_P(X) \
49a2166f
AH
2053 (((GET_CODE (X) != CONST_DOUBLE \
2054 && GET_CODE (X) != CONST_VECTOR) \
2055 || GET_MODE (X) == VOIDmode \
c4501e62 2056 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
49a2166f
AH
2057 || easy_fp_constant (X, GET_MODE (X)) \
2058 || easy_vector_constant (X, GET_MODE (X))) \
c4501e62 2059 && !rs6000_tls_referenced_p (X))
f045b2c9
RS
2060
2061/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2062 and check its validity for a certain class.
2063 We have two alternate definitions for each of them.
2064 The usual definition accepts all pseudo regs; the other rejects
2065 them unless they have been allocated suitable hard regs.
2066 The symbol REG_OK_STRICT causes the latter definition to be used.
2067
2068 Most source files want to accept pseudo regs in the hope that
2069 they will get allocated to the class that the insn wants them to be in.
2070 Source files for reload pass need to be strict.
2071 After reload, it makes no difference, since pseudo regs have
2072 been eliminated by then. */
2073
258bfae2
FS
2074#ifdef REG_OK_STRICT
2075# define REG_OK_STRICT_FLAG 1
2076#else
2077# define REG_OK_STRICT_FLAG 0
2078#endif
f045b2c9
RS
2079
2080/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
2081 or if it is a pseudo reg in the non-strict case. */
2082#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2083 ((! (STRICT) \
2084 && (REGNO (X) <= 31 \
2085 || REGNO (X) == ARG_POINTER_REGNUM \
2086 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2087 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
2088
2089/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
2090 or if it is a pseudo reg in the non-strict case. */
2091#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2092 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 2093
258bfae2
FS
2094#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2095#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
2096\f
2097/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2098 that is a valid memory address for an instruction.
2099 The MODE argument is the machine mode for the MEM expression
2100 that wants to use this address.
2101
2102 On the RS/6000, there are four valid address: a SYMBOL_REF that
2103 refers to a constant pool entry of an address (or the sum of it
2104 plus a constant), a short (16-bit signed) constant plus a register,
2105 the sum of two registers, or a register indirect, possibly with an
5bdc5878 2106 auto-increment. For DFmode and DImode with a constant plus register,
2f3e5814 2107 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
2108 word aligned.
2109
2110 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2111 32-bit DImode, TImode), indexed addressing cannot be used because
2112 adjacent memory cells are accessed by adding word-sized offsets
2113 during assembly output. */
f045b2c9 2114
258bfae2
FS
2115#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2116{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2117 goto ADDR; \
f045b2c9
RS
2118}
2119\f
2120/* Try machine-dependent ways of modifying an illegitimate address
2121 to be legitimate. If we find one, return the new, valid address.
2122 This macro is used in only one place: `memory_address' in explow.c.
2123
2124 OLDX is the address as it was before break_out_memory_refs was called.
2125 In some cases it is useful to look at this to decide what needs to be done.
2126
2127 MODE and WIN are passed so that this macro can use
2128 GO_IF_LEGITIMATE_ADDRESS.
2129
2130 It is always safe for this macro to do nothing. It exists to recognize
2131 opportunities to optimize the output.
2132
2133 On RS/6000, first check for the sum of a register with a constant
2134 integer that is out of range. If so, generate code to add the
2135 constant with the low-order 16 bits masked to the register and force
2136 this result into another register (this can be done with `cau').
c81bebd7 2137 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2138 possibility of bit 16 being a one.
2139
2140 Then check for the sum of a register and something not constant, try to
2141 load the other things into a register and return the sum. */
2142
9ebbca7d
GK
2143#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2144{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2145 if (result != NULL_RTX) \
2146 { \
2147 (X) = result; \
2148 goto WIN; \
2149 } \
f045b2c9
RS
2150}
2151
a260abc9
DE
2152/* Try a machine-dependent way of reloading an illegitimate address
2153 operand. If we find one, push the reload and jump to WIN. This
2154 macro is used in only one place: `find_reloads_address' in reload.c.
2155
24ea750e
DJ
2156 Implemented on rs6000 by rs6000_legitimize_reload_address.
2157 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2158
a9098fd0
GK
2159#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2160do { \
24ea750e
DJ
2161 int win; \
2162 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2163 (int)(TYPE), (IND_LEVELS), &win); \
2164 if ( win ) \
2165 goto WIN; \
a260abc9
DE
2166} while (0)
2167
f045b2c9 2168/* Go to LABEL if ADDR (a legitimate address expression)
4d588c14 2169 has an effect that depends on the machine mode it is used for. */
f045b2c9
RS
2170
2171#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
4d588c14
RH
2172do { \
2173 if (rs6000_mode_dependent_address (ADDR)) \
f045b2c9 2174 goto LABEL; \
4d588c14 2175} while (0)
766a866c
MM
2176\f
2177/* The register number of the register used to address a table of
2178 static data addresses in memory. In some cases this register is
2179 defined by a processor's "application binary interface" (ABI).
2180 When this macro is defined, RTL is generated for this register
2181 once, as with the stack pointer and frame pointer registers. If
2182 this macro is not defined, it is up to the machine-dependent files
2183 to allocate such a register (if necessary). */
2184
1db02437
FS
2185#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2186#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
766a866c 2187
97b23853 2188#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
9ebbca7d 2189
766a866c
MM
2190/* Define this macro if the register defined by
2191 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2192 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2193
2194/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2195
2196/* By generating position-independent code, when two different
2197 programs (A and B) share a common library (libC.a), the text of
2198 the library can be shared whether or not the library is linked at
2199 the same address for both programs. In some of these
2200 environments, position-independent code requires not only the use
2201 of different addressing modes, but also special code to enable the
2202 use of these addressing modes.
2203
2204 The `FINALIZE_PIC' macro serves as a hook to emit these special
2205 codes once the function is being compiled into assembly code, but
2206 not before. (It is not done before, because in the case of
2207 compiling an inline function, it would lead to multiple PIC
2208 prologues being included in functions which used inline functions
2209 and were compiled to assembly language.) */
2210
8d30c4ee 2211/* #define FINALIZE_PIC */
766a866c 2212
766a866c
MM
2213/* A C expression that is nonzero if X is a legitimate immediate
2214 operand on the target machine when generating position independent
2215 code. You can assume that X satisfies `CONSTANT_P', so you need
2216 not check this. You can also assume FLAG_PIC is true, so you need
2217 not check it either. You need not define this macro if all
2218 constants (including `SYMBOL_REF') can be immediate operands when
2219 generating position independent code. */
2220
2221/* #define LEGITIMATE_PIC_OPERAND_P (X) */
f045b2c9
RS
2222\f
2223/* Define this if some processing needs to be done immediately before
4255474b 2224 emitting code for an insn. */
f045b2c9 2225
4255474b 2226/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2227
2228/* Specify the machine mode that this machine uses
2229 for the index in the tablejump instruction. */
e1565e65 2230#define CASE_VECTOR_MODE SImode
f045b2c9 2231
18543a22
ILT
2232/* Define as C expression which evaluates to nonzero if the tablejump
2233 instruction expects the table to contain offsets from the address of the
2234 table.
82e41834 2235 Do not define this if the table should contain absolute addresses. */
18543a22 2236#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2237
f045b2c9
RS
2238/* Define this as 1 if `char' should by default be signed; else as 0. */
2239#define DEFAULT_SIGNED_CHAR 0
2240
2241/* This flag, if defined, says the same insns that convert to a signed fixnum
2242 also convert validly to an unsigned one. */
2243
2244/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2245
2246/* Max number of bytes we can move from memory to memory
2247 in one reasonably fast instruction. */
2f3e5814 2248#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2249#define MAX_MOVE_MAX 8
f045b2c9
RS
2250
2251/* Nonzero if access to memory by bytes is no faster than for words.
a0ab749a 2252 Also nonzero if doing byte operations (specifically shifts) in registers
f045b2c9
RS
2253 is undesirable. */
2254#define SLOW_BYTE_ACCESS 1
2255
9a63901f
RK
2256/* Define if operations between registers always perform the operation
2257 on the full register even if a narrower mode is specified. */
2258#define WORD_REGISTER_OPERATIONS
2259
2260/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2261 will either zero-extend or sign-extend. The value of this macro should
2262 be the code that says which one of the two operations is implicitly
2263 done, NIL if none. */
2264#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2265
2266/* Define if loading short immediate values into registers sign extends. */
2267#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2268\f
f045b2c9
RS
2269/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2270 is done just by pretending it is already truncated. */
2271#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2272
94993909 2273/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
d865b122
DE
2274#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2275 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2276
94993909
DE
2277/* The CTZ patterns return -1 for input of zero. */
2278#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2279
f045b2c9
RS
2280/* Specify the machine mode that pointers have.
2281 After generation of rtl, the compiler makes no further distinction
2282 between pointers and any other objects of this machine mode. */
2f3e5814 2283#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2284
2285/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2286 Doesn't matter on RS/6000. */
5b71a4e7 2287#define FUNCTION_MODE SImode
f045b2c9
RS
2288
2289/* Define this if addresses of constant functions
2290 shouldn't be put through pseudo regs where they can be cse'd.
2291 Desirable on machines where ordinary constants are expensive
2292 but a CALL with constant address is cheap. */
2293#define NO_FUNCTION_CSE
2294
d969caf8 2295/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2296 few bits.
2297
2298 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2299 have been dropped from the PowerPC architecture. */
2300
4697a36c 2301#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2302
f045b2c9
RS
2303/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2304 should be adjusted to reflect any required changes. This macro is used when
2305 there is some systematic length adjustment required that would be difficult
2306 to express in the length attribute. */
2307
2308/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2309
39a10a29
GK
2310/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2311 COMPARE, return the mode to be used for the comparison. For
2312 floating-point, CCFPmode should be used. CCUNSmode should be used
2313 for unsigned comparisons. CCEQmode should be used when we are
2314 doing an inequality comparison on the result of a
2315 comparison. CCmode should be used in all other cases. */
c5defebb 2316
b565a316 2317#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2318 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2319 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2320 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2321 ? CCEQmode : CCmode))
f045b2c9 2322
b39358e1
GK
2323/* Can the condition code MODE be safely reversed? This is safe in
2324 all cases on this port, because at present it doesn't use the
2325 trapping FP comparisons (fcmpo). */
2326#define REVERSIBLE_CC_MODE(MODE) 1
2327
2328/* Given a condition code and a mode, return the inverse condition. */
2329#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2330
f045b2c9 2331/* Define the information needed to generate branch and scc insns. This is
b39358e1 2332 stored from the compare operation. */
f045b2c9 2333
e2500fed
GK
2334extern GTY(()) rtx rs6000_compare_op0;
2335extern GTY(()) rtx rs6000_compare_op1;
f045b2c9 2336extern int rs6000_compare_fp_p;
f045b2c9
RS
2337\f
2338/* Control the assembler format that we output. */
2339
1b279f39
DE
2340/* A C string constant describing how to begin a comment in the target
2341 assembler language. The compiler assumes that the comment will end at
2342 the end of the line. */
2343#define ASM_COMMENT_START " #"
6b67933e 2344
fdaff8ba
RS
2345/* Implicit library calls should use memcpy, not bcopy, etc. */
2346
2347#define TARGET_MEM_FUNCTIONS
2348
38c1f2d7
MM
2349/* Flag to say the TOC is initialized */
2350extern int toc_initialized;
2351
f045b2c9
RS
2352/* Macro to output a special constant pool entry. Go to WIN if we output
2353 it. Otherwise, it is written the usual way.
2354
2355 On the RS/6000, toc entries are handled this way. */
2356
a9098fd0
GK
2357#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2358{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2359 { \
2360 output_toc (FILE, X, LABELNO, MODE); \
2361 goto WIN; \
2362 } \
f045b2c9
RS
2363}
2364
ebd97b96
DE
2365#ifdef HAVE_GAS_WEAK
2366#define RS6000_WEAK 1
2367#else
2368#define RS6000_WEAK 0
2369#endif
290ad355 2370
79c4e63f
AM
2371#if RS6000_WEAK
2372/* Used in lieu of ASM_WEAKEN_LABEL. */
2373#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2374 do \
2375 { \
2376 fputs ("\t.weak\t", (FILE)); \
cbaaba19 2377 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2378 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2379 && DEFAULT_ABI == ABI_AIX) \
2380 { \
cbaaba19
DE
2381 if (TARGET_XCOFF) \
2382 fputs ("[DS]", (FILE)); \
ca734b39 2383 fputs ("\n\t.weak\t.", (FILE)); \
cbaaba19 2384 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f
AM
2385 } \
2386 fputc ('\n', (FILE)); \
2387 if (VAL) \
2388 { \
2389 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2390 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2391 && DEFAULT_ABI == ABI_AIX) \
2392 { \
2393 fputs ("\t.set\t.", (FILE)); \
cbaaba19 2394 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
79c4e63f 2395 fputs (",.", (FILE)); \
cbaaba19 2396 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
79c4e63f
AM
2397 fputc ('\n', (FILE)); \
2398 } \
2399 } \
2400 } \
2401 while (0)
2402#endif
2403
2404/* This implements the `alias' attribute. */
2405#undef ASM_OUTPUT_DEF_FROM_DECLS
2406#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2407 do \
2408 { \
2409 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2410 const char *name = IDENTIFIER_POINTER (TARGET); \
2411 if (TREE_CODE (DECL) == FUNCTION_DECL \
2412 && DEFAULT_ABI == ABI_AIX) \
2413 { \
2414 if (TREE_PUBLIC (DECL)) \
2415 { \
2416 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2417 { \
2418 fputs ("\t.globl\t.", FILE); \
cbaaba19 2419 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2420 putc ('\n', FILE); \
2421 } \
2422 } \
2423 else if (TARGET_XCOFF) \
2424 { \
2425 fputs ("\t.lglobl\t.", FILE); \
cbaaba19 2426 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f
AM
2427 putc ('\n', FILE); \
2428 } \
2429 fputs ("\t.set\t.", FILE); \
cbaaba19 2430 RS6000_OUTPUT_BASENAME (FILE, alias); \
79c4e63f 2431 fputs (",.", FILE); \
cbaaba19 2432 RS6000_OUTPUT_BASENAME (FILE, name); \
79c4e63f
AM
2433 fputc ('\n', FILE); \
2434 } \
2435 ASM_OUTPUT_DEF (FILE, alias, name); \
2436 } \
2437 while (0)
290ad355 2438
1bc7c5b6
ZW
2439#define TARGET_ASM_FILE_START rs6000_file_start
2440
f045b2c9
RS
2441/* Output to assembler file text saying following lines
2442 may contain character constants, extra white space, comments, etc. */
2443
2444#define ASM_APP_ON ""
2445
2446/* Output to assembler file text saying following lines
2447 no longer contain unusual constructs. */
2448
2449#define ASM_APP_OFF ""
2450
f045b2c9
RS
2451/* How to refer to registers in assembler output.
2452 This sequence is indexed by compiler's hard-register-number (see above). */
2453
82e41834 2454extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2455
2456#define REGISTER_NAMES \
2457{ \
2458 &rs6000_reg_names[ 0][0], /* r0 */ \
2459 &rs6000_reg_names[ 1][0], /* r1 */ \
2460 &rs6000_reg_names[ 2][0], /* r2 */ \
2461 &rs6000_reg_names[ 3][0], /* r3 */ \
2462 &rs6000_reg_names[ 4][0], /* r4 */ \
2463 &rs6000_reg_names[ 5][0], /* r5 */ \
2464 &rs6000_reg_names[ 6][0], /* r6 */ \
2465 &rs6000_reg_names[ 7][0], /* r7 */ \
2466 &rs6000_reg_names[ 8][0], /* r8 */ \
2467 &rs6000_reg_names[ 9][0], /* r9 */ \
2468 &rs6000_reg_names[10][0], /* r10 */ \
2469 &rs6000_reg_names[11][0], /* r11 */ \
2470 &rs6000_reg_names[12][0], /* r12 */ \
2471 &rs6000_reg_names[13][0], /* r13 */ \
2472 &rs6000_reg_names[14][0], /* r14 */ \
2473 &rs6000_reg_names[15][0], /* r15 */ \
2474 &rs6000_reg_names[16][0], /* r16 */ \
2475 &rs6000_reg_names[17][0], /* r17 */ \
2476 &rs6000_reg_names[18][0], /* r18 */ \
2477 &rs6000_reg_names[19][0], /* r19 */ \
2478 &rs6000_reg_names[20][0], /* r20 */ \
2479 &rs6000_reg_names[21][0], /* r21 */ \
2480 &rs6000_reg_names[22][0], /* r22 */ \
2481 &rs6000_reg_names[23][0], /* r23 */ \
2482 &rs6000_reg_names[24][0], /* r24 */ \
2483 &rs6000_reg_names[25][0], /* r25 */ \
2484 &rs6000_reg_names[26][0], /* r26 */ \
2485 &rs6000_reg_names[27][0], /* r27 */ \
2486 &rs6000_reg_names[28][0], /* r28 */ \
2487 &rs6000_reg_names[29][0], /* r29 */ \
2488 &rs6000_reg_names[30][0], /* r30 */ \
2489 &rs6000_reg_names[31][0], /* r31 */ \
2490 \
2491 &rs6000_reg_names[32][0], /* fr0 */ \
2492 &rs6000_reg_names[33][0], /* fr1 */ \
2493 &rs6000_reg_names[34][0], /* fr2 */ \
2494 &rs6000_reg_names[35][0], /* fr3 */ \
2495 &rs6000_reg_names[36][0], /* fr4 */ \
2496 &rs6000_reg_names[37][0], /* fr5 */ \
2497 &rs6000_reg_names[38][0], /* fr6 */ \
2498 &rs6000_reg_names[39][0], /* fr7 */ \
2499 &rs6000_reg_names[40][0], /* fr8 */ \
2500 &rs6000_reg_names[41][0], /* fr9 */ \
2501 &rs6000_reg_names[42][0], /* fr10 */ \
2502 &rs6000_reg_names[43][0], /* fr11 */ \
2503 &rs6000_reg_names[44][0], /* fr12 */ \
2504 &rs6000_reg_names[45][0], /* fr13 */ \
2505 &rs6000_reg_names[46][0], /* fr14 */ \
2506 &rs6000_reg_names[47][0], /* fr15 */ \
2507 &rs6000_reg_names[48][0], /* fr16 */ \
2508 &rs6000_reg_names[49][0], /* fr17 */ \
2509 &rs6000_reg_names[50][0], /* fr18 */ \
2510 &rs6000_reg_names[51][0], /* fr19 */ \
2511 &rs6000_reg_names[52][0], /* fr20 */ \
2512 &rs6000_reg_names[53][0], /* fr21 */ \
2513 &rs6000_reg_names[54][0], /* fr22 */ \
2514 &rs6000_reg_names[55][0], /* fr23 */ \
2515 &rs6000_reg_names[56][0], /* fr24 */ \
2516 &rs6000_reg_names[57][0], /* fr25 */ \
2517 &rs6000_reg_names[58][0], /* fr26 */ \
2518 &rs6000_reg_names[59][0], /* fr27 */ \
2519 &rs6000_reg_names[60][0], /* fr28 */ \
2520 &rs6000_reg_names[61][0], /* fr29 */ \
2521 &rs6000_reg_names[62][0], /* fr30 */ \
2522 &rs6000_reg_names[63][0], /* fr31 */ \
2523 \
2524 &rs6000_reg_names[64][0], /* mq */ \
2525 &rs6000_reg_names[65][0], /* lr */ \
2526 &rs6000_reg_names[66][0], /* ctr */ \
2527 &rs6000_reg_names[67][0], /* ap */ \
2528 \
2529 &rs6000_reg_names[68][0], /* cr0 */ \
2530 &rs6000_reg_names[69][0], /* cr1 */ \
2531 &rs6000_reg_names[70][0], /* cr2 */ \
2532 &rs6000_reg_names[71][0], /* cr3 */ \
2533 &rs6000_reg_names[72][0], /* cr4 */ \
2534 &rs6000_reg_names[73][0], /* cr5 */ \
2535 &rs6000_reg_names[74][0], /* cr6 */ \
2536 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2537 \
9ebbca7d 2538 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2539 \
2540 &rs6000_reg_names[77][0], /* v0 */ \
2541 &rs6000_reg_names[78][0], /* v1 */ \
2542 &rs6000_reg_names[79][0], /* v2 */ \
2543 &rs6000_reg_names[80][0], /* v3 */ \
2544 &rs6000_reg_names[81][0], /* v4 */ \
2545 &rs6000_reg_names[82][0], /* v5 */ \
2546 &rs6000_reg_names[83][0], /* v6 */ \
2547 &rs6000_reg_names[84][0], /* v7 */ \
2548 &rs6000_reg_names[85][0], /* v8 */ \
2549 &rs6000_reg_names[86][0], /* v9 */ \
2550 &rs6000_reg_names[87][0], /* v10 */ \
2551 &rs6000_reg_names[88][0], /* v11 */ \
2552 &rs6000_reg_names[89][0], /* v12 */ \
2553 &rs6000_reg_names[90][0], /* v13 */ \
2554 &rs6000_reg_names[91][0], /* v14 */ \
2555 &rs6000_reg_names[92][0], /* v15 */ \
2556 &rs6000_reg_names[93][0], /* v16 */ \
2557 &rs6000_reg_names[94][0], /* v17 */ \
2558 &rs6000_reg_names[95][0], /* v18 */ \
2559 &rs6000_reg_names[96][0], /* v19 */ \
2560 &rs6000_reg_names[97][0], /* v20 */ \
2561 &rs6000_reg_names[98][0], /* v21 */ \
2562 &rs6000_reg_names[99][0], /* v22 */ \
2563 &rs6000_reg_names[100][0], /* v23 */ \
2564 &rs6000_reg_names[101][0], /* v24 */ \
2565 &rs6000_reg_names[102][0], /* v25 */ \
2566 &rs6000_reg_names[103][0], /* v26 */ \
2567 &rs6000_reg_names[104][0], /* v27 */ \
2568 &rs6000_reg_names[105][0], /* v28 */ \
2569 &rs6000_reg_names[106][0], /* v29 */ \
2570 &rs6000_reg_names[107][0], /* v30 */ \
2571 &rs6000_reg_names[108][0], /* v31 */ \
2572 &rs6000_reg_names[109][0], /* vrsave */ \
5f004351 2573 &rs6000_reg_names[110][0], /* vscr */ \
a3170dc6
AH
2574 &rs6000_reg_names[111][0], /* spe_acc */ \
2575 &rs6000_reg_names[112][0], /* spefscr */ \
c81bebd7
MM
2576}
2577
2578/* print-rtl can't handle the above REGISTER_NAMES, so define the
2579 following for it. Switch to use the alternate names since
2580 they are more mnemonic. */
2581
2582#define DEBUG_REGISTER_NAMES \
2583{ \
59a4c851
AH
2584 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2585 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
802a0058
MM
2586 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2587 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2588 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2589 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2590 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2591 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2592 "mq", "lr", "ctr", "ap", \
2593 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
59a4c851 2594 "xer", \
0ac081f6
AH
2595 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2596 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2597 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2598 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
59a4c851
AH
2599 "vrsave", "vscr", \
2600 "spe_acc", "spefscr" \
c81bebd7 2601}
f045b2c9
RS
2602
2603/* Table of additional register names to use in user input. */
2604
2605#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2606 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2607 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2608 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2609 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2610 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2611 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2612 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2613 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2614 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2615 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2616 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2617 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2618 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2619 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2620 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2621 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2622 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2623 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2624 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2625 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2626 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2627 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2628 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2629 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
5f004351 2630 {"vrsave", 109}, {"vscr", 110}, \
a3170dc6 2631 {"spe_acc", 111}, {"spefscr", 112}, \
c4d38ccb
MM
2632 /* no additional names for: mq, lr, ctr, ap */ \
2633 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2634 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2635 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2636
0da40b09
RK
2637/* Text to write out after a CALL that may be replaced by glue code by
2638 the loader. This depends on the AIX version. */
2639#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2640
f045b2c9
RS
2641/* This is how to output an element of a case-vector that is relative. */
2642
e1565e65 2643#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2644 do { char buf[100]; \
e1565e65 2645 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2646 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2647 assemble_name (FILE, buf); \
19d2d16f 2648 putc ('-', FILE); \
3daf36a4
ILT
2649 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2650 assemble_name (FILE, buf); \
19d2d16f 2651 putc ('\n', FILE); \
3daf36a4 2652 } while (0)
f045b2c9
RS
2653
2654/* This is how to output an assembler line
2655 that says to advance the location counter
2656 to a multiple of 2**LOG bytes. */
2657
2658#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2659 if ((LOG) != 0) \
2660 fprintf (FILE, "\t.align %d\n", (LOG))
2661
9ebbca7d
GK
2662/* Pick up the return address upon entry to a procedure. Used for
2663 dwarf2 unwind information. This also enables the table driven
2664 mechanism. */
2665
2666#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2667#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2668
83720594
RH
2669/* Describe how we implement __builtin_eh_return. */
2670#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2671#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2672
f045b2c9
RS
2673/* Print operand X (an rtx) in assembler syntax to file FILE.
2674 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2675 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2676
2677#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2678
2679/* Define which CODE values are valid. */
2680
c81bebd7 2681#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
c4501e62 2682 ((CODE) == '.' || (CODE) == '&')
f045b2c9
RS
2683
2684/* Print a memory address as an operand to reference that memory location. */
2685
2686#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2687
2688/* Define the codes that are matched by predicates in rs6000.c. */
2689
39a10a29 2690#define PREDICATE_CODES \
a65c591c 2691 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
df15fbc7 2692 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
a65c591c
DE
2693 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2694 LABEL_REF, SUBREG, REG, MEM}}, \
39a10a29
GK
2695 {"short_cint_operand", {CONST_INT}}, \
2696 {"u_short_cint_operand", {CONST_INT}}, \
2697 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2698 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2699 {"gpc_reg_operand", {SUBREG, REG}}, \
2700 {"cc_reg_operand", {SUBREG, REG}}, \
2701 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2702 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2703 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2704 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2705 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2706 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2707 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2708 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2709 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2710 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2711 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2712 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
c4501e62 2713 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
39a10a29 2714 {"easy_fp_constant", {CONST_DOUBLE}}, \
d744e06e
AH
2715 {"easy_vector_constant", {CONST_VECTOR}}, \
2716 {"easy_vector_constant_add_self", {CONST_VECTOR}}, \
50a0b056 2717 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2718 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2719 {"lwa_operand", {SUBREG, MEM, REG}}, \
2720 {"volatile_mem_operand", {MEM}}, \
2721 {"offsettable_mem_operand", {MEM}}, \
2722 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2723 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2724 {"non_add_cint_operand", {CONST_INT}}, \
2725 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2726 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
0ba1b2ff 2727 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2728 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2729 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2730 {"mask_operand", {CONST_INT}}, \
0ba1b2ff
AM
2731 {"mask_operand_wrap", {CONST_INT}}, \
2732 {"mask64_operand", {CONST_INT}}, \
2733 {"mask64_2_operand", {CONST_INT}}, \
39a10a29
GK
2734 {"count_register_operand", {REG}}, \
2735 {"xer_operand", {REG}}, \
cc4d5fec 2736 {"symbol_ref_operand", {SYMBOL_REF}}, \
c4501e62 2737 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
39a10a29
GK
2738 {"call_operand", {SYMBOL_REF, REG}}, \
2739 {"current_file_function_operand", {SYMBOL_REF}}, \
2740 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2741 CONST_DOUBLE, SYMBOL_REF}}, \
2742 {"load_multiple_operation", {PARALLEL}}, \
2743 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2744 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2745 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2746 GT, LEU, LTU, GEU, GTU, \
2747 UNORDERED, ORDERED, \
2748 UNGE, UNLE }}, \
2749 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2750 UNORDERED }}, \
2751 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2752 GT, LEU, LTU, GEU, GTU, \
2753 UNORDERED, ORDERED, \
2754 UNGE, UNLE }}, \
2755 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2756 GT, LEU, LTU, GEU, GTU}}, \
2757 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2758 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2759 {"altivec_register_operand", {REG}}, \
50a0b056 2760 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2761
b6c9286a
MM
2762/* uncomment for disabling the corresponding default options */
2763/* #define MACHINE_no_sched_interblock */
2764/* #define MACHINE_no_sched_speculative */
2765/* #define MACHINE_no_sched_speculative_load */
2766
766a866c
MM
2767/* General flags. */
2768extern int flag_pic;
354b734b
MM
2769extern int optimize;
2770extern int flag_expensive_optimizations;
a7df97e6 2771extern int frame_pointer_needed;
0ac081f6
AH
2772
2773enum rs6000_builtins
2774{
2775 /* AltiVec builtins. */
f18c054f
DB
2776 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2777 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2778 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2779 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2780 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2781 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2782 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2783 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2784 ALTIVEC_BUILTIN_VADDUBM,
2785 ALTIVEC_BUILTIN_VADDUHM,
2786 ALTIVEC_BUILTIN_VADDUWM,
2787 ALTIVEC_BUILTIN_VADDFP,
2788 ALTIVEC_BUILTIN_VADDCUW,
2789 ALTIVEC_BUILTIN_VADDUBS,
2790 ALTIVEC_BUILTIN_VADDSBS,
2791 ALTIVEC_BUILTIN_VADDUHS,
2792 ALTIVEC_BUILTIN_VADDSHS,
2793 ALTIVEC_BUILTIN_VADDUWS,
2794 ALTIVEC_BUILTIN_VADDSWS,
2795 ALTIVEC_BUILTIN_VAND,
2796 ALTIVEC_BUILTIN_VANDC,
2797 ALTIVEC_BUILTIN_VAVGUB,
2798 ALTIVEC_BUILTIN_VAVGSB,
2799 ALTIVEC_BUILTIN_VAVGUH,
2800 ALTIVEC_BUILTIN_VAVGSH,
2801 ALTIVEC_BUILTIN_VAVGUW,
2802 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2803 ALTIVEC_BUILTIN_VCFUX,
2804 ALTIVEC_BUILTIN_VCFSX,
2805 ALTIVEC_BUILTIN_VCTSXS,
2806 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2807 ALTIVEC_BUILTIN_VCMPBFP,
2808 ALTIVEC_BUILTIN_VCMPEQUB,
2809 ALTIVEC_BUILTIN_VCMPEQUH,
2810 ALTIVEC_BUILTIN_VCMPEQUW,
2811 ALTIVEC_BUILTIN_VCMPEQFP,
2812 ALTIVEC_BUILTIN_VCMPGEFP,
2813 ALTIVEC_BUILTIN_VCMPGTUB,
2814 ALTIVEC_BUILTIN_VCMPGTSB,
2815 ALTIVEC_BUILTIN_VCMPGTUH,
2816 ALTIVEC_BUILTIN_VCMPGTSH,
2817 ALTIVEC_BUILTIN_VCMPGTUW,
2818 ALTIVEC_BUILTIN_VCMPGTSW,
2819 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2820 ALTIVEC_BUILTIN_VEXPTEFP,
2821 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2822 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2823 ALTIVEC_BUILTIN_VMAXUB,
2824 ALTIVEC_BUILTIN_VMAXSB,
2825 ALTIVEC_BUILTIN_VMAXUH,
2826 ALTIVEC_BUILTIN_VMAXSH,
2827 ALTIVEC_BUILTIN_VMAXUW,
2828 ALTIVEC_BUILTIN_VMAXSW,
2829 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2830 ALTIVEC_BUILTIN_VMHADDSHS,
2831 ALTIVEC_BUILTIN_VMHRADDSHS,
2832 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2833 ALTIVEC_BUILTIN_VMRGHB,
2834 ALTIVEC_BUILTIN_VMRGHH,
2835 ALTIVEC_BUILTIN_VMRGHW,
2836 ALTIVEC_BUILTIN_VMRGLB,
2837 ALTIVEC_BUILTIN_VMRGLH,
2838 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2839 ALTIVEC_BUILTIN_VMSUMUBM,
2840 ALTIVEC_BUILTIN_VMSUMMBM,
2841 ALTIVEC_BUILTIN_VMSUMUHM,
2842 ALTIVEC_BUILTIN_VMSUMSHM,
2843 ALTIVEC_BUILTIN_VMSUMUHS,
2844 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2845 ALTIVEC_BUILTIN_VMINUB,
2846 ALTIVEC_BUILTIN_VMINSB,
2847 ALTIVEC_BUILTIN_VMINUH,
2848 ALTIVEC_BUILTIN_VMINSH,
2849 ALTIVEC_BUILTIN_VMINUW,
2850 ALTIVEC_BUILTIN_VMINSW,
2851 ALTIVEC_BUILTIN_VMINFP,
2852 ALTIVEC_BUILTIN_VMULEUB,
2853 ALTIVEC_BUILTIN_VMULESB,
2854 ALTIVEC_BUILTIN_VMULEUH,
2855 ALTIVEC_BUILTIN_VMULESH,
2856 ALTIVEC_BUILTIN_VMULOUB,
2857 ALTIVEC_BUILTIN_VMULOSB,
2858 ALTIVEC_BUILTIN_VMULOUH,
2859 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2860 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2861 ALTIVEC_BUILTIN_VNOR,
2862 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2863 ALTIVEC_BUILTIN_VSEL_4SI,
2864 ALTIVEC_BUILTIN_VSEL_4SF,
2865 ALTIVEC_BUILTIN_VSEL_8HI,
2866 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2867 ALTIVEC_BUILTIN_VPERM_4SI,
2868 ALTIVEC_BUILTIN_VPERM_4SF,
2869 ALTIVEC_BUILTIN_VPERM_8HI,
2870 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2871 ALTIVEC_BUILTIN_VPKUHUM,
2872 ALTIVEC_BUILTIN_VPKUWUM,
2873 ALTIVEC_BUILTIN_VPKPX,
2874 ALTIVEC_BUILTIN_VPKUHSS,
2875 ALTIVEC_BUILTIN_VPKSHSS,
2876 ALTIVEC_BUILTIN_VPKUWSS,
2877 ALTIVEC_BUILTIN_VPKSWSS,
2878 ALTIVEC_BUILTIN_VPKUHUS,
2879 ALTIVEC_BUILTIN_VPKSHUS,
2880 ALTIVEC_BUILTIN_VPKUWUS,
2881 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2882 ALTIVEC_BUILTIN_VREFP,
2883 ALTIVEC_BUILTIN_VRFIM,
2884 ALTIVEC_BUILTIN_VRFIN,
2885 ALTIVEC_BUILTIN_VRFIP,
2886 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2887 ALTIVEC_BUILTIN_VRLB,
2888 ALTIVEC_BUILTIN_VRLH,
2889 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2890 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2891 ALTIVEC_BUILTIN_VSLB,
2892 ALTIVEC_BUILTIN_VSLH,
2893 ALTIVEC_BUILTIN_VSLW,
2894 ALTIVEC_BUILTIN_VSL,
2895 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2896 ALTIVEC_BUILTIN_VSPLTB,
2897 ALTIVEC_BUILTIN_VSPLTH,
2898 ALTIVEC_BUILTIN_VSPLTW,
2899 ALTIVEC_BUILTIN_VSPLTISB,
2900 ALTIVEC_BUILTIN_VSPLTISH,
2901 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2902 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2903 ALTIVEC_BUILTIN_VSRH,
2904 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2905 ALTIVEC_BUILTIN_VSRAB,
2906 ALTIVEC_BUILTIN_VSRAH,
2907 ALTIVEC_BUILTIN_VSRAW,
2908 ALTIVEC_BUILTIN_VSR,
2909 ALTIVEC_BUILTIN_VSRO,
2910 ALTIVEC_BUILTIN_VSUBUBM,
2911 ALTIVEC_BUILTIN_VSUBUHM,
2912 ALTIVEC_BUILTIN_VSUBUWM,
2913 ALTIVEC_BUILTIN_VSUBFP,
2914 ALTIVEC_BUILTIN_VSUBCUW,
2915 ALTIVEC_BUILTIN_VSUBUBS,
2916 ALTIVEC_BUILTIN_VSUBSBS,
2917 ALTIVEC_BUILTIN_VSUBUHS,
2918 ALTIVEC_BUILTIN_VSUBSHS,
2919 ALTIVEC_BUILTIN_VSUBUWS,
2920 ALTIVEC_BUILTIN_VSUBSWS,
2921 ALTIVEC_BUILTIN_VSUM4UBS,
2922 ALTIVEC_BUILTIN_VSUM4SBS,
2923 ALTIVEC_BUILTIN_VSUM4SHS,
2924 ALTIVEC_BUILTIN_VSUM2SWS,
2925 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2926 ALTIVEC_BUILTIN_VXOR,
2927 ALTIVEC_BUILTIN_VSLDOI_16QI,
2928 ALTIVEC_BUILTIN_VSLDOI_8HI,
2929 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2930 ALTIVEC_BUILTIN_VSLDOI_4SF,
2931 ALTIVEC_BUILTIN_VUPKHSB,
2932 ALTIVEC_BUILTIN_VUPKHPX,
2933 ALTIVEC_BUILTIN_VUPKHSH,
2934 ALTIVEC_BUILTIN_VUPKLSB,
2935 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2936 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2937 ALTIVEC_BUILTIN_MTVSCR,
2938 ALTIVEC_BUILTIN_MFVSCR,
2939 ALTIVEC_BUILTIN_DSSALL,
2940 ALTIVEC_BUILTIN_DSS,
2941 ALTIVEC_BUILTIN_LVSL,
2942 ALTIVEC_BUILTIN_LVSR,
2943 ALTIVEC_BUILTIN_DSTT,
2944 ALTIVEC_BUILTIN_DSTST,
2945 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2946 ALTIVEC_BUILTIN_DST,
2947 ALTIVEC_BUILTIN_LVEBX,
2948 ALTIVEC_BUILTIN_LVEHX,
2949 ALTIVEC_BUILTIN_LVEWX,
2950 ALTIVEC_BUILTIN_LVXL,
2951 ALTIVEC_BUILTIN_LVX,
2952 ALTIVEC_BUILTIN_STVX,
2953 ALTIVEC_BUILTIN_STVEBX,
2954 ALTIVEC_BUILTIN_STVEHX,
2955 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
2956 ALTIVEC_BUILTIN_STVXL,
2957 ALTIVEC_BUILTIN_VCMPBFP_P,
2958 ALTIVEC_BUILTIN_VCMPEQFP_P,
2959 ALTIVEC_BUILTIN_VCMPEQUB_P,
2960 ALTIVEC_BUILTIN_VCMPEQUH_P,
2961 ALTIVEC_BUILTIN_VCMPEQUW_P,
2962 ALTIVEC_BUILTIN_VCMPGEFP_P,
2963 ALTIVEC_BUILTIN_VCMPGTFP_P,
2964 ALTIVEC_BUILTIN_VCMPGTSB_P,
2965 ALTIVEC_BUILTIN_VCMPGTSH_P,
2966 ALTIVEC_BUILTIN_VCMPGTSW_P,
2967 ALTIVEC_BUILTIN_VCMPGTUB_P,
2968 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
2969 ALTIVEC_BUILTIN_VCMPGTUW_P,
2970 ALTIVEC_BUILTIN_ABSS_V4SI,
2971 ALTIVEC_BUILTIN_ABSS_V8HI,
2972 ALTIVEC_BUILTIN_ABSS_V16QI,
2973 ALTIVEC_BUILTIN_ABS_V4SI,
2974 ALTIVEC_BUILTIN_ABS_V4SF,
2975 ALTIVEC_BUILTIN_ABS_V8HI,
2976 ALTIVEC_BUILTIN_ABS_V16QI
a3170dc6
AH
2977 /* SPE builtins. */
2978 , SPE_BUILTIN_EVADDW,
2979 SPE_BUILTIN_EVAND,
2980 SPE_BUILTIN_EVANDC,
2981 SPE_BUILTIN_EVDIVWS,
2982 SPE_BUILTIN_EVDIVWU,
2983 SPE_BUILTIN_EVEQV,
2984 SPE_BUILTIN_EVFSADD,
2985 SPE_BUILTIN_EVFSDIV,
2986 SPE_BUILTIN_EVFSMUL,
2987 SPE_BUILTIN_EVFSSUB,
2988 SPE_BUILTIN_EVLDDX,
2989 SPE_BUILTIN_EVLDHX,
2990 SPE_BUILTIN_EVLDWX,
2991 SPE_BUILTIN_EVLHHESPLATX,
2992 SPE_BUILTIN_EVLHHOSSPLATX,
2993 SPE_BUILTIN_EVLHHOUSPLATX,
2994 SPE_BUILTIN_EVLWHEX,
2995 SPE_BUILTIN_EVLWHOSX,
2996 SPE_BUILTIN_EVLWHOUX,
2997 SPE_BUILTIN_EVLWHSPLATX,
2998 SPE_BUILTIN_EVLWWSPLATX,
2999 SPE_BUILTIN_EVMERGEHI,
3000 SPE_BUILTIN_EVMERGEHILO,
3001 SPE_BUILTIN_EVMERGELO,
3002 SPE_BUILTIN_EVMERGELOHI,
3003 SPE_BUILTIN_EVMHEGSMFAA,
3004 SPE_BUILTIN_EVMHEGSMFAN,
3005 SPE_BUILTIN_EVMHEGSMIAA,
3006 SPE_BUILTIN_EVMHEGSMIAN,
3007 SPE_BUILTIN_EVMHEGUMIAA,
3008 SPE_BUILTIN_EVMHEGUMIAN,
3009 SPE_BUILTIN_EVMHESMF,
3010 SPE_BUILTIN_EVMHESMFA,
3011 SPE_BUILTIN_EVMHESMFAAW,
3012 SPE_BUILTIN_EVMHESMFANW,
3013 SPE_BUILTIN_EVMHESMI,
3014 SPE_BUILTIN_EVMHESMIA,
3015 SPE_BUILTIN_EVMHESMIAAW,
3016 SPE_BUILTIN_EVMHESMIANW,
3017 SPE_BUILTIN_EVMHESSF,
3018 SPE_BUILTIN_EVMHESSFA,
3019 SPE_BUILTIN_EVMHESSFAAW,
3020 SPE_BUILTIN_EVMHESSFANW,
3021 SPE_BUILTIN_EVMHESSIAAW,
3022 SPE_BUILTIN_EVMHESSIANW,
3023 SPE_BUILTIN_EVMHEUMI,
3024 SPE_BUILTIN_EVMHEUMIA,
3025 SPE_BUILTIN_EVMHEUMIAAW,
3026 SPE_BUILTIN_EVMHEUMIANW,
3027 SPE_BUILTIN_EVMHEUSIAAW,
3028 SPE_BUILTIN_EVMHEUSIANW,
3029 SPE_BUILTIN_EVMHOGSMFAA,
3030 SPE_BUILTIN_EVMHOGSMFAN,
3031 SPE_BUILTIN_EVMHOGSMIAA,
3032 SPE_BUILTIN_EVMHOGSMIAN,
3033 SPE_BUILTIN_EVMHOGUMIAA,
3034 SPE_BUILTIN_EVMHOGUMIAN,
3035 SPE_BUILTIN_EVMHOSMF,
3036 SPE_BUILTIN_EVMHOSMFA,
3037 SPE_BUILTIN_EVMHOSMFAAW,
3038 SPE_BUILTIN_EVMHOSMFANW,
3039 SPE_BUILTIN_EVMHOSMI,
3040 SPE_BUILTIN_EVMHOSMIA,
3041 SPE_BUILTIN_EVMHOSMIAAW,
3042 SPE_BUILTIN_EVMHOSMIANW,
3043 SPE_BUILTIN_EVMHOSSF,
3044 SPE_BUILTIN_EVMHOSSFA,
3045 SPE_BUILTIN_EVMHOSSFAAW,
3046 SPE_BUILTIN_EVMHOSSFANW,
3047 SPE_BUILTIN_EVMHOSSIAAW,
3048 SPE_BUILTIN_EVMHOSSIANW,
3049 SPE_BUILTIN_EVMHOUMI,
3050 SPE_BUILTIN_EVMHOUMIA,
3051 SPE_BUILTIN_EVMHOUMIAAW,
3052 SPE_BUILTIN_EVMHOUMIANW,
3053 SPE_BUILTIN_EVMHOUSIAAW,
3054 SPE_BUILTIN_EVMHOUSIANW,
3055 SPE_BUILTIN_EVMWHSMF,
3056 SPE_BUILTIN_EVMWHSMFA,
3057 SPE_BUILTIN_EVMWHSMI,
3058 SPE_BUILTIN_EVMWHSMIA,
3059 SPE_BUILTIN_EVMWHSSF,
3060 SPE_BUILTIN_EVMWHSSFA,
3061 SPE_BUILTIN_EVMWHUMI,
3062 SPE_BUILTIN_EVMWHUMIA,
a3170dc6
AH
3063 SPE_BUILTIN_EVMWLSMIAAW,
3064 SPE_BUILTIN_EVMWLSMIANW,
a3170dc6
AH
3065 SPE_BUILTIN_EVMWLSSIAAW,
3066 SPE_BUILTIN_EVMWLSSIANW,
3067 SPE_BUILTIN_EVMWLUMI,
3068 SPE_BUILTIN_EVMWLUMIA,
3069 SPE_BUILTIN_EVMWLUMIAAW,
3070 SPE_BUILTIN_EVMWLUMIANW,
3071 SPE_BUILTIN_EVMWLUSIAAW,
3072 SPE_BUILTIN_EVMWLUSIANW,
3073 SPE_BUILTIN_EVMWSMF,
3074 SPE_BUILTIN_EVMWSMFA,
3075 SPE_BUILTIN_EVMWSMFAA,
3076 SPE_BUILTIN_EVMWSMFAN,
3077 SPE_BUILTIN_EVMWSMI,
3078 SPE_BUILTIN_EVMWSMIA,
3079 SPE_BUILTIN_EVMWSMIAA,
3080 SPE_BUILTIN_EVMWSMIAN,
3081 SPE_BUILTIN_EVMWHSSFAA,
3082 SPE_BUILTIN_EVMWSSF,
3083 SPE_BUILTIN_EVMWSSFA,
3084 SPE_BUILTIN_EVMWSSFAA,
3085 SPE_BUILTIN_EVMWSSFAN,
3086 SPE_BUILTIN_EVMWUMI,
3087 SPE_BUILTIN_EVMWUMIA,
3088 SPE_BUILTIN_EVMWUMIAA,
3089 SPE_BUILTIN_EVMWUMIAN,
3090 SPE_BUILTIN_EVNAND,
3091 SPE_BUILTIN_EVNOR,
3092 SPE_BUILTIN_EVOR,
3093 SPE_BUILTIN_EVORC,
3094 SPE_BUILTIN_EVRLW,
3095 SPE_BUILTIN_EVSLW,
3096 SPE_BUILTIN_EVSRWS,
3097 SPE_BUILTIN_EVSRWU,
3098 SPE_BUILTIN_EVSTDDX,
3099 SPE_BUILTIN_EVSTDHX,
3100 SPE_BUILTIN_EVSTDWX,
3101 SPE_BUILTIN_EVSTWHEX,
3102 SPE_BUILTIN_EVSTWHOX,
3103 SPE_BUILTIN_EVSTWWEX,
3104 SPE_BUILTIN_EVSTWWOX,
3105 SPE_BUILTIN_EVSUBFW,
3106 SPE_BUILTIN_EVXOR,
3107 SPE_BUILTIN_EVABS,
3108 SPE_BUILTIN_EVADDSMIAAW,
3109 SPE_BUILTIN_EVADDSSIAAW,
3110 SPE_BUILTIN_EVADDUMIAAW,
3111 SPE_BUILTIN_EVADDUSIAAW,
3112 SPE_BUILTIN_EVCNTLSW,
3113 SPE_BUILTIN_EVCNTLZW,
3114 SPE_BUILTIN_EVEXTSB,
3115 SPE_BUILTIN_EVEXTSH,
3116 SPE_BUILTIN_EVFSABS,
3117 SPE_BUILTIN_EVFSCFSF,
3118 SPE_BUILTIN_EVFSCFSI,
3119 SPE_BUILTIN_EVFSCFUF,
3120 SPE_BUILTIN_EVFSCFUI,
3121 SPE_BUILTIN_EVFSCTSF,
3122 SPE_BUILTIN_EVFSCTSI,
3123 SPE_BUILTIN_EVFSCTSIZ,
3124 SPE_BUILTIN_EVFSCTUF,
3125 SPE_BUILTIN_EVFSCTUI,
3126 SPE_BUILTIN_EVFSCTUIZ,
3127 SPE_BUILTIN_EVFSNABS,
3128 SPE_BUILTIN_EVFSNEG,
3129 SPE_BUILTIN_EVMRA,
3130 SPE_BUILTIN_EVNEG,
3131 SPE_BUILTIN_EVRNDW,
3132 SPE_BUILTIN_EVSUBFSMIAAW,
3133 SPE_BUILTIN_EVSUBFSSIAAW,
3134 SPE_BUILTIN_EVSUBFUMIAAW,
3135 SPE_BUILTIN_EVSUBFUSIAAW,
3136 SPE_BUILTIN_EVADDIW,
3137 SPE_BUILTIN_EVLDD,
3138 SPE_BUILTIN_EVLDH,
3139 SPE_BUILTIN_EVLDW,
3140 SPE_BUILTIN_EVLHHESPLAT,
3141 SPE_BUILTIN_EVLHHOSSPLAT,
3142 SPE_BUILTIN_EVLHHOUSPLAT,
3143 SPE_BUILTIN_EVLWHE,
3144 SPE_BUILTIN_EVLWHOS,
3145 SPE_BUILTIN_EVLWHOU,
3146 SPE_BUILTIN_EVLWHSPLAT,
3147 SPE_BUILTIN_EVLWWSPLAT,
3148 SPE_BUILTIN_EVRLWI,
3149 SPE_BUILTIN_EVSLWI,
3150 SPE_BUILTIN_EVSRWIS,
3151 SPE_BUILTIN_EVSRWIU,
3152 SPE_BUILTIN_EVSTDD,
3153 SPE_BUILTIN_EVSTDH,
3154 SPE_BUILTIN_EVSTDW,
3155 SPE_BUILTIN_EVSTWHE,
3156 SPE_BUILTIN_EVSTWHO,
3157 SPE_BUILTIN_EVSTWWE,
3158 SPE_BUILTIN_EVSTWWO,
3159 SPE_BUILTIN_EVSUBIFW,
3160
3161 /* Compares. */
3162 SPE_BUILTIN_EVCMPEQ,
3163 SPE_BUILTIN_EVCMPGTS,
3164 SPE_BUILTIN_EVCMPGTU,
3165 SPE_BUILTIN_EVCMPLTS,
3166 SPE_BUILTIN_EVCMPLTU,
3167 SPE_BUILTIN_EVFSCMPEQ,
3168 SPE_BUILTIN_EVFSCMPGT,
3169 SPE_BUILTIN_EVFSCMPLT,
3170 SPE_BUILTIN_EVFSTSTEQ,
3171 SPE_BUILTIN_EVFSTSTGT,
3172 SPE_BUILTIN_EVFSTSTLT,
3173
3174 /* EVSEL compares. */
3175 SPE_BUILTIN_EVSEL_CMPEQ,
3176 SPE_BUILTIN_EVSEL_CMPGTS,
3177 SPE_BUILTIN_EVSEL_CMPGTU,
3178 SPE_BUILTIN_EVSEL_CMPLTS,
3179 SPE_BUILTIN_EVSEL_CMPLTU,
3180 SPE_BUILTIN_EVSEL_FSCMPEQ,
3181 SPE_BUILTIN_EVSEL_FSCMPGT,
3182 SPE_BUILTIN_EVSEL_FSCMPLT,
3183 SPE_BUILTIN_EVSEL_FSTSTEQ,
3184 SPE_BUILTIN_EVSEL_FSTSTGT,
3185 SPE_BUILTIN_EVSEL_FSTSTLT,
3186
3187 SPE_BUILTIN_EVSPLATFI,
3188 SPE_BUILTIN_EVSPLATI,
3189 SPE_BUILTIN_EVMWHSSMAA,
3190 SPE_BUILTIN_EVMWHSMFAA,
3191 SPE_BUILTIN_EVMWHSMIAA,
3192 SPE_BUILTIN_EVMWHUSIAA,
3193 SPE_BUILTIN_EVMWHUMIAA,
3194 SPE_BUILTIN_EVMWHSSFAN,
3195 SPE_BUILTIN_EVMWHSSIAN,
3196 SPE_BUILTIN_EVMWHSMFAN,
3197 SPE_BUILTIN_EVMWHSMIAN,
3198 SPE_BUILTIN_EVMWHUSIAN,
3199 SPE_BUILTIN_EVMWHUMIAN,
3200 SPE_BUILTIN_EVMWHGSSFAA,
3201 SPE_BUILTIN_EVMWHGSMFAA,
3202 SPE_BUILTIN_EVMWHGSMIAA,
3203 SPE_BUILTIN_EVMWHGUMIAA,
3204 SPE_BUILTIN_EVMWHGSSFAN,
3205 SPE_BUILTIN_EVMWHGSMFAN,
3206 SPE_BUILTIN_EVMWHGSMIAN,
3207 SPE_BUILTIN_EVMWHGUMIAN,
3208 SPE_BUILTIN_MTSPEFSCR,
3209 SPE_BUILTIN_MFSPEFSCR,
3210 SPE_BUILTIN_BRINC
0ac081f6 3211};
This page took 1.858712 seconds and 5 git commands to generate.