]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
* tree.h (TYPE_BINFO): Document.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
a260abc9 2 Copyright (C) 1992, 93-7, 1998 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
a238cd8b 29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 -D_LONG_LONG \
84b49fa7 30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
956d6950 55/* Common CPP definitions used by CPP_SPEC among the various targets
841faeed
MM
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
b91d2c10 73%{mcpu=401: -D_ARCH_PPC} \
49a0b204 74%{mcpu=403: -D_ARCH_PPC} \
cf27b467 75%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 76%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 77%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
78%{mcpu=603: -D_ARCH_PPC} \
79%{mcpu=603e: -D_ARCH_PPC} \
b91d2c10 80%{mcpu=ec603e: -D_ARCH_PPC} \
fada905b 81%{mcpu=604: -D_ARCH_PPC} \
b91d2c10 82%{mcpu=604e: -D_ARCH_PPC} \
cf27b467
MM
83%{mcpu=620: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
b91d2c10 85%{mcpu=823: -D_ARCH_PPC} \
cf27b467 86%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 87
841faeed
MM
88#ifndef CPP_DEFAULT_SPEC
89#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
90#endif
91
92#ifndef CPP_SYSV_SPEC
93#define CPP_SYSV_SPEC ""
94#endif
95
96#ifndef CPP_ENDIAN_SPEC
97#define CPP_ENDIAN_SPEC ""
98#endif
99
c81bebd7
MM
100#ifndef CPP_ENDIAN_DEFAULT_SPEC
101#define CPP_ENDIAN_DEFAULT_SPEC ""
102#endif
103
841faeed
MM
104#ifndef CPP_SYSV_DEFAULT_SPEC
105#define CPP_SYSV_DEFAULT_SPEC ""
106#endif
107
956d6950 108/* Common ASM definitions used by ASM_SPEC among the various targets
841faeed
MM
109 for handling -mcpu=xxx switches. */
110#define ASM_CPU_SPEC \
111"%{!mcpu*: \
112 %{mpower: %{!mpower2: -mpwr}} \
113 %{mpower2: -mpwrx} \
114 %{mpowerpc*: -mppc} \
115 %{mno-power: %{!mpowerpc*: -mcom}} \
116 %{!mno-power: %{!mpower2: %(asm_default)}}} \
117%{mcpu=common: -mcom} \
118%{mcpu=power: -mpwr} \
119%{mcpu=power2: -mpwrx} \
120%{mcpu=powerpc: -mppc} \
121%{mcpu=rios: -mpwr} \
122%{mcpu=rios1: -mpwr} \
123%{mcpu=rios2: -mpwrx} \
124%{mcpu=rsc: -mpwr} \
125%{mcpu=rsc1: -mpwr} \
b91d2c10 126%{mcpu=401: -mppc} \
841faeed
MM
127%{mcpu=403: -mppc} \
128%{mcpu=505: -mppc} \
129%{mcpu=601: -m601} \
130%{mcpu=602: -mppc} \
131%{mcpu=603: -mppc} \
132%{mcpu=603e: -mppc} \
b91d2c10 133%{mcpu=ec603e: -mppc} \
841faeed 134%{mcpu=604: -mppc} \
b91d2c10 135%{mcpu=604e: -mppc} \
841faeed
MM
136%{mcpu=620: -mppc} \
137%{mcpu=821: -mppc} \
b91d2c10 138%{mcpu=823: -mppc} \
841faeed
MM
139%{mcpu=860: -mppc}"
140
141#ifndef ASM_DEFAULT_SPEC
fba29a8c 142#define ASM_DEFAULT_SPEC ""
841faeed
MM
143#endif
144
145/* This macro defines names of additional specifications to put in the specs
146 that can be used in various specifications like CC1_SPEC. Its definition
147 is an initializer with a subgrouping for each command option.
148
149 Each subgrouping contains a string constant, that defines the
150 specification name, and a string constant that used by the GNU CC driver
151 program.
152
153 Do not define this macro if it does not need to do anything. */
154
7509c759
MM
155#ifndef SUBTARGET_EXTRA_SPECS
156#define SUBTARGET_EXTRA_SPECS
157#endif
158
c81bebd7
MM
159#define EXTRA_SPECS \
160 { "cpp_cpu", CPP_CPU_SPEC }, \
161 { "cpp_default", CPP_DEFAULT_SPEC }, \
162 { "cpp_sysv", CPP_SYSV_SPEC }, \
163 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
164 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
165 { "cpp_endian", CPP_ENDIAN_SPEC }, \
166 { "asm_cpu", ASM_CPU_SPEC }, \
167 { "asm_default", ASM_DEFAULT_SPEC }, \
168 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
169 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
170 SUBTARGET_EXTRA_SPECS
171
7509c759
MM
172/* Default location of syscalls.exp under AIX */
173#ifndef CROSS_COMPILE
174#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
175#else
176#define LINK_SYSCALLS_SPEC ""
177#endif
178
179/* Default location of libg.exp under AIX */
180#ifndef CROSS_COMPILE
181#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
182#else
183#define LINK_LIBG_SPEC ""
184#endif
185
f045b2c9
RS
186/* Define the options for the binder: Start text at 512, align all segments
187 to 512 bytes, and warn if there is text relocation.
188
189 The -bhalt:4 option supposedly changes the level at which ld will abort,
190 but it also suppresses warnings about multiply defined symbols and is
191 used by the AIX cc command. So we use it here.
192
193 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
194 csects. See AIX documentation for more information about this.
195
196 -bM:SRE tells the linker that the output file is Shared REusable. Note
197 that to actually build a shared library you will also need to specify an
198 export list with the -Wl,-bE option. */
f045b2c9 199
c1950f1c 200#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
201 %{static:-bnso %(link_syscalls) } \
202 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 203
58a39e45
RS
204/* Profiled library versions are used by linking with special directories. */
205#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 206 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
207
208/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 209#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
210
211/* Don't turn -B into -L if the argument specifies a relative file name. */
212#define RELATIVE_PREFIX_NOT_LINKDIR
213
fb623df5 214/* Architecture type. */
f045b2c9 215
fb623df5
RK
216extern int target_flags;
217
218/* Use POWER architecture instructions and MQ register. */
38c1f2d7 219#define MASK_POWER 0x00000001
fb623df5 220
6febd581 221/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 222#define MASK_POWER2 0x00000002
6febd581 223
fb623df5 224/* Use PowerPC architecture instructions. */
38c1f2d7 225#define MASK_POWERPC 0x00000004
6febd581 226
583cf4db 227/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 228#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
229
230/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 231#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 232
fb623df5 233/* Use PowerPC-64 architecture instructions. */
38c1f2d7 234#define MASK_POWERPC64 0x00000020
f045b2c9 235
fb623df5 236/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 237#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
238
239/* Disable placing fp constants in the TOC; can be turned on when the
240 TOC overflows. */
38c1f2d7 241#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 242
0b9ccabc
RK
243/* Disable placing symbol+offset constants in the TOC; can be turned on when
244 the TOC overflows. */
38c1f2d7 245#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 246
fb623df5 247/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
248 there are more than 16K unique variables/constants in an executable. With
249 this option, linking fails only if there are more than 16K modules, or
250 if there are more than 16K unique variables/constant in a single module.
251
252 This is at the cost of having 2 extra loads and one extra store per
956d6950 253 function, and one less allocable register. */
38c1f2d7 254#define MASK_MINIMAL_TOC 0x00000200
642a35f1 255
9e654916 256/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
38c1f2d7 257#define MASK_64BIT 0x00000400
9e654916 258
f85f4585 259/* Disable use of FPRs. */
38c1f2d7 260#define MASK_SOFT_FLOAT 0x00000800
f85f4585 261
4d30c363 262/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
263#define MASK_MULTIPLE 0x00001000
264#define MASK_MULTIPLE_SET 0x00002000
4d30c363 265
7e69e155 266/* Use string instructions for block moves */
38c1f2d7
MM
267#define MASK_STRING 0x00004000
268#define MASK_STRING_SET 0x00008000
7e69e155 269
38c1f2d7
MM
270/* Disable update form of load/store */
271#define MASK_NO_UPDATE 0x00010000
272
273/* Disable fused multiply/add operations */
274#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 275
7e69e155
MM
276#define TARGET_POWER (target_flags & MASK_POWER)
277#define TARGET_POWER2 (target_flags & MASK_POWER2)
278#define TARGET_POWERPC (target_flags & MASK_POWERPC)
279#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
280#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
281#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
282#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
283#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
284#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
285#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
286#define TARGET_64BIT (target_flags & MASK_64BIT)
287#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
288#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
289#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
290#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 291#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
292#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
293#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
7e69e155 294
2f3e5814 295#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 296#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
297#define TARGET_UPDATE (! TARGET_NO_UPDATE)
298#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 299
4697a36c
MM
300/* Pseudo target to indicate whether the object format is ELF
301 (to get around not having conditional compilation in the md file) */
302#ifndef TARGET_ELF
303#define TARGET_ELF 0
304#endif
305
306/* If this isn't V.4, don't support -mno-toc. */
307#ifndef TARGET_NO_TOC
308#define TARGET_NO_TOC 0
309#define TARGET_TOC 1
310#endif
311
b6c9286a
MM
312/* Pseudo target to say whether this is Windows NT */
313#ifndef TARGET_WINDOWS_NT
314#define TARGET_WINDOWS_NT 0
315#endif
316
317/* Pseudo target to say whether this is MAC */
318#ifndef TARGET_MACOS
319#define TARGET_MACOS 0
320#endif
321
322/* Pseudo target to say whether this is AIX */
323#ifndef TARGET_AIX
324#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
325#define TARGET_AIX 0
326#else
327#define TARGET_AIX 1
328#endif
329#endif
330
a3950905
MM
331#ifndef TARGET_XL_CALL
332#define TARGET_XL_CALL 0
333#endif
334
fb623df5 335/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 336
fb623df5 337 Macro to define tables used to set the flags.
f045b2c9
RS
338 This is a list in braces of pairs in braces,
339 each pair being { "NAME", VALUE }
340 where VALUE is the bits to set or minus the bits to clear.
341 An empty string NAME is used to identify the default VALUE. */
342
4d30c363
MM
343/* This is meant to be redefined in the host dependent files */
344#ifndef SUBTARGET_SWITCHES
345#define SUBTARGET_SWITCHES
346#endif
347
938937d8
MM
348#define TARGET_SWITCHES \
349 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
350 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
351 | MASK_POWER2)}, \
352 {"no-power2", - MASK_POWER2}, \
353 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
354 | MASK_STRING)}, \
355 {"powerpc", MASK_POWERPC}, \
356 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
357 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
358 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
359 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
360 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
361 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
a260abc9
DE
362 {"powerpc64", MASK_POWERPC64}, \
363 {"no-powerpc64", - MASK_POWERPC64}, \
938937d8
MM
364 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
365 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
366 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
367 | MASK_MINIMAL_TOC)}, \
368 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
369 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
370 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
371 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
372 {"minimal-toc", MASK_MINIMAL_TOC}, \
373 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
374 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
375 {"hard-float", - MASK_SOFT_FLOAT}, \
376 {"soft-float", MASK_SOFT_FLOAT}, \
377 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
378 {"no-multiple", - MASK_MULTIPLE}, \
379 {"no-multiple", MASK_MULTIPLE_SET}, \
380 {"string", MASK_STRING | MASK_STRING_SET}, \
381 {"no-string", - MASK_STRING}, \
bbdd88df 382 {"no-string", MASK_STRING_SET}, \
38c1f2d7
MM
383 {"update", - MASK_NO_UPDATE}, \
384 {"no-update", MASK_NO_UPDATE}, \
385 {"fused-madd", - MASK_NO_FUSED_MADD}, \
386 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
938937d8 387 SUBTARGET_SWITCHES \
fb623df5
RK
388 {"", TARGET_DEFAULT}}
389
938937d8 390#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5
RK
391
392/* Processor type. */
393enum processor_type
f86fe1fb 394 {PROCESSOR_RIOS1,
fb623df5 395 PROCESSOR_RIOS2,
cf27b467 396 PROCESSOR_MPCCORE,
49a0b204 397 PROCESSOR_PPC403,
fb623df5
RK
398 PROCESSOR_PPC601,
399 PROCESSOR_PPC603,
400 PROCESSOR_PPC604,
401 PROCESSOR_PPC620};
402
403extern enum processor_type rs6000_cpu;
404
405/* Recast the processor type to the cpu attribute. */
406#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
407
8482e358 408/* Define generic processor types based upon current deployment. */
8e3f41e7 409#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 410#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 411#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 412
fb623df5 413/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 414#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 415
6febd581
RK
416/* Specify the dialect of assembler to use. New mnemonics is dialect one
417 and the old mnemonics are dialect zero. */
418#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
419
fb623df5
RK
420/* This macro is similar to `TARGET_SWITCHES' but defines names of
421 command options that have values. Its definition is an
422 initializer with a subgrouping for each command option.
423
424 Each subgrouping contains a string constant, that defines the
425 fixed part of the option name, and the address of a variable.
426 The variable, type `char *', is set to the variable part of the
427 given option if the fixed part matches. The actual option name
428 is made by appending `-m' to the specified name.
429
430 Here is an example which defines `-mshort-data-NUMBER'. If the
431 given option is `-mshort-data-512', the variable `m88k_short_data'
432 will be set to the string `"512"'.
433
434 extern char *m88k_short_data;
435 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
436
956d6950 437/* This is meant to be overridden in target specific files. */
b6c9286a
MM
438#ifndef SUBTARGET_OPTIONS
439#define SUBTARGET_OPTIONS
440#endif
441
8e3f41e7
MM
442#define TARGET_OPTIONS \
443{ \
444 {"cpu=", &rs6000_select[1].string}, \
445 {"tune=", &rs6000_select[2].string}, \
38c1f2d7
MM
446 {"debug-", &rs6000_debug_name}, \
447 {"debug=", &rs6000_debug_name}, \
8e3f41e7 448 SUBTARGET_OPTIONS \
b6c9286a 449}
fb623df5 450
ff222560 451/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
452struct rs6000_cpu_select
453{
454 char *string;
455 char *name;
456 int set_tune_p;
457 int set_arch_p;
458};
459
460extern struct rs6000_cpu_select rs6000_select[];
fb623df5 461
38c1f2d7
MM
462/* Debug support */
463extern char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
464extern int rs6000_debug_stack; /* debug stack applications */
465extern int rs6000_debug_arg; /* debug argument handling */
466
467#define TARGET_DEBUG_STACK rs6000_debug_stack
468#define TARGET_DEBUG_ARG rs6000_debug_arg
469
fb623df5
RK
470/* Sometimes certain combinations of command options do not make sense
471 on a particular target machine. You can define a macro
472 `OVERRIDE_OPTIONS' to take account of this. This macro, if
473 defined, is executed once just after all the command options have
474 been parsed.
475
5accd822
DE
476 Don't use this macro to turn on various extra optimizations for
477 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
478
fb623df5
RK
479 On the RS/6000 this is used to define the target cpu type. */
480
8e3f41e7 481#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 482
5accd822
DE
483/* Define this to change the optimizations performed by default. */
484#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
485
486
4f074454
RK
487/* Show we can debug even without a frame pointer. */
488#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
489\f
490/* target machine storage layout */
491
df44fa77
RK
492/* Define to support cross compilation to an RS6000 target. */
493#define REAL_ARITHMETIC
494
13d39dbc 495/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 496 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
497 the value is constrained to be within the bounds of the declared
498 type, but kept valid in the wider mode. The signedness of the
499 extension may differ from that of the type. */
500
39403d82
DE
501#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
502 if (GET_MODE_CLASS (MODE) == MODE_INT \
503 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
504 (MODE) = (! TARGET_POWERPC64 ? SImode : DImode);
505
506/* Define this if function arguments should also be promoted using the above
507 procedure. */
508
509#define PROMOTE_FUNCTION_ARGS
510
511/* Likewise, if the function return value is promoted. */
512
513#define PROMOTE_FUNCTION_RETURN
ef457bda 514
f045b2c9
RS
515/* Define this if most significant bit is lowest numbered
516 in instructions that operate on numbered bit-fields. */
517/* That is true on RS/6000. */
518#define BITS_BIG_ENDIAN 1
519
520/* Define this if most significant byte of a word is the lowest numbered. */
521/* That is true on RS/6000. */
522#define BYTES_BIG_ENDIAN 1
523
524/* Define this if most significant word of a multiword number is lowest
c81bebd7 525 numbered.
f045b2c9
RS
526
527 For RS/6000 we can decide arbitrarily since there are no machine
528 instructions for them. Might as well be consistent with bits and bytes. */
529#define WORDS_BIG_ENDIAN 1
530
fdaff8ba 531/* number of bits in an addressable storage unit */
f045b2c9
RS
532#define BITS_PER_UNIT 8
533
534/* Width in bits of a "word", which is the contents of a machine register.
535 Note that this is not necessarily the width of data type `int';
536 if using 16-bit ints on a 68000, this would still be 32.
537 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 538#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 539#define MAX_BITS_PER_WORD 64
f045b2c9
RS
540
541/* Width of a word, in units (bytes). */
2f3e5814 542#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 543#define MIN_UNITS_PER_WORD 4
2e360ab3 544#define UNITS_PER_FP_WORD 8
f045b2c9 545
915f619f
JW
546/* Type used for ptrdiff_t, as a string used in a declaration. */
547#define PTRDIFF_TYPE "int"
548
f045b2c9
RS
549/* Type used for wchar_t, as a string used in a declaration. */
550#define WCHAR_TYPE "short unsigned int"
551
552/* Width of wchar_t in bits. */
553#define WCHAR_TYPE_SIZE 16
554
9e654916
RK
555/* A C expression for the size in bits of the type `short' on the
556 target machine. If you don't define this, the default is half a
557 word. (If this would be less than one storage unit, it is
558 rounded up to one unit.) */
559#define SHORT_TYPE_SIZE 16
560
561/* A C expression for the size in bits of the type `int' on the
562 target machine. If you don't define this, the default is one
563 word. */
19d2d16f 564#define INT_TYPE_SIZE 32
9e654916
RK
565
566/* A C expression for the size in bits of the type `long' on the
567 target machine. If you don't define this, the default is one
568 word. */
2f3e5814 569#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
570#define MAX_LONG_TYPE_SIZE 64
571
572/* A C expression for the size in bits of the type `long long' on the
573 target machine. If you don't define this, the default is two
574 words. */
575#define LONG_LONG_TYPE_SIZE 64
576
577/* A C expression for the size in bits of the type `char' on the
578 target machine. If you don't define this, the default is one
579 quarter of a word. (If this would be less than one storage unit,
580 it is rounded up to one unit.) */
581#define CHAR_TYPE_SIZE BITS_PER_UNIT
582
583/* A C expression for the size in bits of the type `float' on the
584 target machine. If you don't define this, the default is one
585 word. */
586#define FLOAT_TYPE_SIZE 32
587
588/* A C expression for the size in bits of the type `double' on the
589 target machine. If you don't define this, the default is two
590 words. */
591#define DOUBLE_TYPE_SIZE 64
592
593/* A C expression for the size in bits of the type `long double' on
594 the target machine. If you don't define this, the default is two
595 words. */
596#define LONG_DOUBLE_TYPE_SIZE 64
597
f045b2c9
RS
598/* Width in bits of a pointer.
599 See also the macro `Pmode' defined below. */
2f3e5814 600#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
601
602/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 603#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
604
605/* Boundary (in *bits*) on which stack pointer should be aligned. */
a260abc9 606#define STACK_BOUNDARY (TARGET_32BIT ? 64 : 128)
f045b2c9
RS
607
608/* Allocation boundary (in *bits*) for the code of a function. */
609#define FUNCTION_BOUNDARY 32
610
611/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
612#define BIGGEST_ALIGNMENT 64
613
6bc3403c
DE
614/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
615#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
a260abc9
DE
616 (TYPE_MODE (TREE_CODE (TREE_TYPE (FIELD)) == ARRAY_TYPE \
617 ? get_inner_array_type (FIELD) \
618 : TREE_TYPE (FIELD)) == DFmode \
619 ? MIN ((COMPUTED), 32) : (COMPUTED))
f045b2c9
RS
620
621/* Alignment of field after `int : 0' in a structure. */
622#define EMPTY_FIELD_BOUNDARY 32
623
624/* Every structure's size must be a multiple of this. */
625#define STRUCTURE_SIZE_BOUNDARY 8
626
627/* A bitfield declared as `int' forces `int' alignment for the struct. */
628#define PCC_BITFIELD_TYPE_MATTERS 1
629
6bc3403c
DE
630/* AIX increases natural record alignment to doubleword if the first
631 field is an FP double while the FP fields remain word aligned. */
632#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
633 ((TREE_CODE (STRUCT) == RECORD_TYPE \
634 || TREE_CODE (STRUCT) == UNION_TYPE \
635 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
02bef6da 636 && TYPE_FIELDS (STRUCT) != 0 \
6bc3403c
DE
637 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
638 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
639 : MAX ((COMPUTED), (SPECIFIED)))
640
f045b2c9
RS
641/* Make strings word-aligned so strcpy from constants will be faster. */
642#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
643 (TREE_CODE (EXP) == STRING_CST \
644 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
645
646/* Make arrays of chars word-aligned for the same reasons. */
647#define DATA_ALIGNMENT(TYPE, ALIGN) \
648 (TREE_CODE (TYPE) == ARRAY_TYPE \
649 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
650 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
651
fdaff8ba 652/* Non-zero if move instructions will actually fail to work
f045b2c9 653 when given unaligned data. */
fdaff8ba 654#define STRICT_ALIGNMENT 0
f045b2c9
RS
655\f
656/* Standard register usage. */
657
658/* Number of actual hardware registers.
659 The hardware registers are assigned numbers for the compiler
660 from 0 to just below FIRST_PSEUDO_REGISTER.
661 All registers that the compiler knows about must be given numbers,
662 even those that are not normally considered general registers.
663
664 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
665 an MQ register, a count register, a link register, and 8 condition
666 register fields, which we view here as separate registers.
667
668 In addition, the difference between the frame and argument pointers is
669 a function of the number of registers saved, so we need to have a
670 register for AP that will later be eliminated in favor of SP or FP.
802a0058 671 This is a normal register, but it is fixed.
f045b2c9 672
802a0058
MM
673 We also create a pseudo register for float/int conversions, that will
674 really represent the memory location used. It is represented here as
675 a register, in order to work around problems in allocating stack storage
676 in inline functions. */
677
678#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
679
680/* 1 for registers that have pervasive standard uses
681 and are not available for the register allocator.
682
c81bebd7 683 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 684
a127c4e5
RK
685 cr5 is not supposed to be used.
686
687 On System V implementations, r13 is fixed and not available for use. */
688
689#ifndef FIXED_R13
690#define FIXED_R13 0
691#endif
f045b2c9
RS
692
693#define FIXED_REGISTERS \
a127c4e5 694 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
695 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
697 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 698 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
699
700/* 1 for registers not available across function calls.
701 These must include the FIXED_REGISTERS and also any
702 registers that can be used without being saved.
703 The latter must include the registers where values are returned
704 and the register where structure-value addresses are passed.
705 Aside from that, you can include as many other registers as you like. */
706
707#define CALL_USED_REGISTERS \
a127c4e5 708 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
709 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
710 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
711 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 712 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
713
714/* List the order in which to allocate registers. Each register must be
715 listed once, even those in FIXED_REGISTERS.
716
717 We allocate in the following order:
718 fp0 (not saved or used for anything)
719 fp13 - fp2 (not saved; incoming fp arg registers)
720 fp1 (not saved; return value)
721 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
722 cr7, cr6 (not saved or special)
723 cr1 (not saved, but used for FP operations)
f045b2c9 724 cr0 (not saved, but used for arithmetic operations)
5accd822 725 cr4, cr3, cr2 (saved)
f045b2c9
RS
726 r0 (not saved; cannot be base reg)
727 r9 (not saved; best for TImode)
728 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
729 r3 (not saved; return value register)
730 r31 - r13 (saved; order given to save least number)
731 r12 (not saved; if used for DImode or DFmode would use r13)
732 mq (not saved; best to use it if we can)
733 ctr (not saved; when we have the choice ctr is better)
734 lr (saved)
1427100a 735 cr5, r1, r2, ap, fpmem (fixed) */
f045b2c9
RS
736
737#define REG_ALLOC_ORDER \
738 {32, \
739 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
740 33, \
741 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
742 50, 49, 48, 47, 46, \
5accd822 743 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
744 0, \
745 9, 11, 10, 8, 7, 6, 5, 4, \
746 3, \
747 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
748 18, 17, 16, 15, 14, 13, 12, \
749 64, 66, 65, \
802a0058 750 73, 1, 2, 67, 76}
f045b2c9
RS
751
752/* True if register is floating-point. */
753#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
754
755/* True if register is a condition register. */
756#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
757
758/* True if register is an integer register. */
759#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
760
802a0058
MM
761/* True if register is the temporary memory location used for int/float
762 conversion. */
763#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
764
f045b2c9
RS
765/* Return number of consecutive hard regs needed starting at reg REGNO
766 to hold something of mode MODE.
767 This is ordinarily the length in words of a value of mode MODE
768 but can be less for certain modes in special long registers.
769
a260abc9
DE
770 POWER and PowerPC GPRs hold 32 bits worth;
771 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 772
802a0058
MM
773#define HARD_REGNO_NREGS(REGNO, MODE) \
774 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 775 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
776 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
777
778/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
779 For POWER and PowerPC, the GPRs can hold any mode, but the float
780 registers only can hold floating modes and DImode, and CR register only
781 can hold CC modes. We cannot put TImode anywhere except general
782 register and it must be able to fit within the register set. */
f045b2c9 783
802a0058
MM
784#define HARD_REGNO_MODE_OK(REGNO, MODE) \
785 (FP_REGNO_P (REGNO) ? \
786 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
787 || (GET_MODE_CLASS (MODE) == MODE_INT \
788 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
789 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
790 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
791 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 792 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
793 : 1)
794
795/* Value is 1 if it is a good idea to tie two pseudo registers
796 when one has mode MODE1 and one has mode MODE2.
797 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
798 for any hard reg, then this must be 0 for correct output. */
799#define MODES_TIEABLE_P(MODE1, MODE2) \
800 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
801 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
802 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
803 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
804 : GET_MODE_CLASS (MODE1) == MODE_CC \
805 ? GET_MODE_CLASS (MODE2) == MODE_CC \
806 : GET_MODE_CLASS (MODE2) == MODE_CC \
807 ? GET_MODE_CLASS (MODE1) == MODE_CC \
808 : 1)
809
810/* A C expression returning the cost of moving data from a register of class
811 CLASS1 to one of CLASS2.
812
813 On the RS/6000, copying between floating-point and fixed-point
814 registers is expensive. */
815
816#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
817 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
818 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
819 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 820 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
821 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
822 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 823 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 824 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 825 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
826 : 2)
827
828/* A C expressions returning the cost of moving data of MODE from a register to
829 or from memory.
830
831 On the RS/6000, bump this up a bit. */
832
cbd5b9a2 833#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
ab4a5fc9
RK
834 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
835 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
836 ? 3 : 2) \
837 + 4)
f045b2c9
RS
838
839/* Specify the cost of a branch insn; roughly the number of extra insns that
840 should be added to avoid a branch.
841
ef457bda 842 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
843 unscheduled conditional branch. */
844
ef457bda 845#define BRANCH_COST 3
f045b2c9 846
5a5e4c2c
RK
847/* A C statement (sans semicolon) to update the integer variable COST
848 based on the relationship between INSN that is dependent on
849 DEP_INSN through the dependence LINK. The default is to make no
850 adjustment to COST. On the RS/6000, ignore the cost of anti- and
851 output-dependencies. In fact, output dependencies on the CR do have
852 a cost, but it is probably not worthwhile to track it. */
853
854#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 855 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 856
6febd581
RK
857/* Define this macro to change register usage conditional on target flags.
858 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 859 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 860 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
861 Conditionally disable FPRs. */
862
863#define CONDITIONAL_REGISTER_USAGE \
864{ \
865 if (! TARGET_POWER) \
866 fixed_regs[64] = 1; \
a238cd8b
DE
867 if (TARGET_64BIT) \
868 fixed_regs[13] = call_used_regs[13] = 1; \
d14a6d05
MM
869 if (TARGET_SOFT_FLOAT) \
870 for (i = 32; i < 64; i++) \
f85f4585
RK
871 fixed_regs[i] = call_used_regs[i] = 1; \
872}
6febd581 873
f045b2c9
RS
874/* Specify the registers used for certain standard purposes.
875 The values of these macros are register numbers. */
876
877/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
878/* #define PC_REGNUM */
879
880/* Register to use for pushing function arguments. */
881#define STACK_POINTER_REGNUM 1
882
883/* Base register for access to local variables of the function. */
884#define FRAME_POINTER_REGNUM 31
885
886/* Value should be nonzero if functions must have frame pointers.
887 Zero means the frame pointer need not be set up (and parms
888 may be accessed via the stack pointer) in functions that seem suitable.
889 This is computed in `reload', in reload1.c. */
890#define FRAME_POINTER_REQUIRED 0
891
892/* Base register for access to arguments of the function. */
893#define ARG_POINTER_REGNUM 67
894
895/* Place to put static chain when calling a function that requires it. */
896#define STATIC_CHAIN_REGNUM 11
897
b6c9286a
MM
898/* count register number for special purposes */
899#define COUNT_REGISTER_REGNUM 66
900
802a0058
MM
901/* Special register that represents memory, used for float/int conversions. */
902#define FPMEM_REGNUM 76
903
1ff7789b
MM
904/* Register to use as a placeholder for the GOT/allocated TOC register.
905 FINALIZE_PIC will change all uses of this register to a an appropriate
906 pseudo register when it adds the code to setup the GOT. We use r2
907 because it is a reserved register in all of the ABI's. */
908#define GOT_TOC_REGNUM 2
909
f045b2c9
RS
910/* Place that structure value return address is placed.
911
912 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 913#define STRUCT_VALUE 0
f045b2c9
RS
914\f
915/* Define the classes of registers for register constraints in the
916 machine description. Also define ranges of constants.
917
918 One of the classes must always be named ALL_REGS and include all hard regs.
919 If there is more than one class, another class must be named NO_REGS
920 and contain no registers.
921
922 The name GENERAL_REGS must be the name of a class (or an alias for
923 another name such as ALL_REGS). This is the class of registers
924 that is allowed by "g" or "r" in a register constraint.
925 Also, registers outside this class are allocated only when
926 instructions express preferences for them.
927
928 The classes must be numbered in nondecreasing order; that is,
929 a larger-numbered class must never be contained completely
930 in a smaller-numbered class.
931
932 For any two classes, it is very desirable that there be another
933 class that represents their union. */
c81bebd7 934
f045b2c9
RS
935/* The RS/6000 has three types of registers, fixed-point, floating-point,
936 and condition registers, plus three special registers, MQ, CTR, and the
937 link register.
938
939 However, r0 is special in that it cannot be used as a base register.
940 So make a class for registers valid as base registers.
941
942 Also, cr0 is the only condition code register that can be used in
802a0058
MM
943 arithmetic insns, so make a separate class for it.
944
956d6950 945 There is a special 'register' (76), which is not a register, but a
802a0058
MM
946 placeholder for memory allocated to convert between floating point and
947 integral types. This works around a problem where if we allocate memory
948 with allocate_stack_{local,temp} and the function is an inline function, the
949 memory allocated will clobber memory in the caller. So we use a special
950 register, and if that is used, we allocate stack space for it. */
f045b2c9 951
ebedb4dd
MM
952enum reg_class
953{
954 NO_REGS,
ebedb4dd
MM
955 BASE_REGS,
956 GENERAL_REGS,
957 FLOAT_REGS,
958 NON_SPECIAL_REGS,
959 MQ_REGS,
960 LINK_REGS,
961 CTR_REGS,
962 LINK_OR_CTR_REGS,
963 SPECIAL_REGS,
964 SPEC_OR_GEN_REGS,
965 CR0_REGS,
ebedb4dd
MM
966 CR_REGS,
967 NON_FLOAT_REGS,
802a0058
MM
968 FPMEM_REGS,
969 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
970 ALL_REGS,
971 LIM_REG_CLASSES
972};
f045b2c9
RS
973
974#define N_REG_CLASSES (int) LIM_REG_CLASSES
975
976/* Give names of register classes as strings for dump file. */
977
ebedb4dd
MM
978#define REG_CLASS_NAMES \
979{ \
980 "NO_REGS", \
ebedb4dd
MM
981 "BASE_REGS", \
982 "GENERAL_REGS", \
983 "FLOAT_REGS", \
984 "NON_SPECIAL_REGS", \
985 "MQ_REGS", \
986 "LINK_REGS", \
987 "CTR_REGS", \
988 "LINK_OR_CTR_REGS", \
989 "SPECIAL_REGS", \
990 "SPEC_OR_GEN_REGS", \
991 "CR0_REGS", \
ebedb4dd
MM
992 "CR_REGS", \
993 "NON_FLOAT_REGS", \
802a0058
MM
994 "FPMEM_REGS", \
995 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
996 "ALL_REGS" \
997}
f045b2c9
RS
998
999/* Define which registers fit in which classes.
1000 This is an initializer for a vector of HARD_REG_SET
1001 of length N_REG_CLASSES. */
1002
ebedb4dd
MM
1003#define REG_CLASS_CONTENTS \
1004{ \
1005 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
1006 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
1007 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
1008 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
1009 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
1010 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
1011 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
1012 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
1013 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
1014 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
1015 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
1016 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
1017 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
1018 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
1019 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
1020 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
1021 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 1022}
f045b2c9
RS
1023
1024/* The same information, inverted:
1025 Return the class number of the smallest class containing
1026 reg number REGNO. This could be a conditional expression
1027 or could index an array. */
1028
802a0058
MM
1029#define REGNO_REG_CLASS(REGNO) \
1030 ((REGNO) == 0 ? GENERAL_REGS \
1031 : (REGNO) < 32 ? BASE_REGS \
1032 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1033 : (REGNO) == 68 ? CR0_REGS \
1034 : CR_REGNO_P (REGNO) ? CR_REGS \
1035 : (REGNO) == 64 ? MQ_REGS \
1036 : (REGNO) == 65 ? LINK_REGS \
1037 : (REGNO) == 66 ? CTR_REGS \
1038 : (REGNO) == 67 ? BASE_REGS \
1039 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
1040 : NO_REGS)
1041
1042/* The class value for index registers, and the one for base regs. */
1043#define INDEX_REG_CLASS GENERAL_REGS
1044#define BASE_REG_CLASS BASE_REGS
1045
1046/* Get reg_class from a letter such as appears in the machine description. */
1047
1048#define REG_CLASS_FROM_LETTER(C) \
1049 ((C) == 'f' ? FLOAT_REGS \
1050 : (C) == 'b' ? BASE_REGS \
1051 : (C) == 'h' ? SPECIAL_REGS \
1052 : (C) == 'q' ? MQ_REGS \
1053 : (C) == 'c' ? CTR_REGS \
1054 : (C) == 'l' ? LINK_REGS \
1055 : (C) == 'x' ? CR0_REGS \
1056 : (C) == 'y' ? CR_REGS \
802a0058 1057 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
1058 : NO_REGS)
1059
1060/* The letters I, J, K, L, M, N, and P in a register constraint string
1061 can be used to stand for particular ranges of immediate operands.
1062 This macro defines what the ranges are.
1063 C is the letter, and VALUE is a constant value.
1064 Return 1 if VALUE is in the range specified by C.
1065
c81bebd7 1066 `I' is signed 16-bit constants
f045b2c9
RS
1067 `J' is a constant with only the high-order 16 bits non-zero
1068 `K' is a constant with only the low-order 16 bits non-zero
1069 `L' is a constant that can be placed into a mask operand
1070 `M' is a constant that is greater than 31
1071 `N' is a constant that is an exact power of two
1072 `O' is the constant zero
1073 `P' is a constant whose negation is a signed 16-bit constant */
1074
5b6f7b96
RK
1075#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1076 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1077 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
a260abc9 1078 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
5b6f7b96
RK
1079 : (C) == 'L' ? mask_constant (VALUE) \
1080 : (C) == 'M' ? (VALUE) > 31 \
1081 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1082 : (C) == 'O' ? (VALUE) == 0 \
1083 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x1000 \
f045b2c9
RS
1084 : 0)
1085
1086/* Similar, but for floating constants, and defining letters G and H.
1087 Here VALUE is the CONST_DOUBLE rtx itself.
1088
1089 We flag for special constants when we can copy the constant into
4e74d8ec 1090 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1091
c4c40373 1092 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1093
1094#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1095 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1096 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1097 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1098 : 0)
f045b2c9
RS
1099
1100/* Optional extra constraints for this machine.
1101
b6c9286a
MM
1102 'Q' means that is a memory operand that is just an offset from a reg.
1103 'R' is for AIX TOC entries.
a260abc9 1104 'S' is a constant that can be placed into a 64-bit mask operand
88228c4b 1105 'U' is for V.4 small data references. */
f045b2c9 1106
e8a8bc24
RK
1107#define EXTRA_CONSTRAINT(OP, C) \
1108 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1109 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
a260abc9 1110 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
c81bebd7
MM
1111 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1112 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1113 : 0)
f045b2c9
RS
1114
1115/* Given an rtx X being reloaded into a reg required to be
1116 in class CLASS, return the class of reg to actually use.
1117 In general this is just CLASS; but on some machines
c81bebd7 1118 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1119
1120 On the RS/6000, we have to return NO_REGS when we want to reload a
1121 floating-point CONST_DOUBLE to force it to be copied to memory. */
1122
802a0058 1123#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1124 ((GET_CODE (X) == CONST_DOUBLE \
1125 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1126 ? NO_REGS : (CLASS))
c81bebd7 1127
f045b2c9
RS
1128/* Return the register class of a scratch register needed to copy IN into
1129 or out of a register in CLASS in MODE. If it can be done directly,
1130 NO_REGS is returned. */
1131
1132#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1133 secondary_reload_class (CLASS, MODE, IN)
1134
7ea555a4
RK
1135/* If we are copying between FP registers and anything else, we need a memory
1136 location. */
1137
1138#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1139 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1140
f045b2c9
RS
1141/* Return the maximum number of consecutive registers
1142 needed to represent mode MODE in a register of class CLASS.
1143
1144 On RS/6000, this is the size of MODE in words,
1145 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1146#define CLASS_MAX_NREGS(CLASS, MODE) \
1147 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1148 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1149 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1150 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1151
1152/* If defined, gives a class of registers that cannot be used as the
1153 operand of a SUBREG that changes the size of the object. */
1154
802a0058 1155#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1156\f
1157/* Stack layout; function entry, exit and calling. */
1158
6b67933e
RK
1159/* Enumeration to give which calling sequence to use. */
1160enum rs6000_abi {
1161 ABI_NONE,
1162 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1163 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1164 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1165 ABI_NT, /* Windows/NT */
1166 ABI_SOLARIS /* Solaris */
6b67933e
RK
1167};
1168
b6c9286a
MM
1169extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1170
1171/* Default ABI to compile code for */
1172#ifndef DEFAULT_ABI
1173#define DEFAULT_ABI ABI_AIX
fb19c17f
RK
1174/* The prefix to add to user-visible assembler symbols. */
1175#define USER_LABEL_PREFIX "."
b6c9286a
MM
1176#endif
1177
4697a36c
MM
1178/* Structure used to define the rs6000 stack */
1179typedef struct rs6000_stack {
1180 int first_gp_reg_save; /* first callee saved GP register used */
1181 int first_fp_reg_save; /* first callee saved FP register used */
1182 int lr_save_p; /* true if the link reg needs to be saved */
1183 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1184 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1185 int push_p; /* true if we need to allocate stack space */
1186 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1187 int main_p; /* true if this is main */
1188 int main_save_p; /* true if this is main and we need to save args */
802a0058 1189 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1190 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1191 int gp_save_offset; /* offset to save GP regs from initial SP */
1192 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1193 int lr_save_offset; /* offset to save LR from initial SP */
1194 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1195 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1196 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1197 int main_save_offset; /* offset to save main's args */
802a0058 1198 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1199 int reg_size; /* register size (4 or 8) */
1200 int varargs_size; /* size to hold V.4 args passed in regs */
1201 int vars_size; /* variable save area size */
1202 int parm_size; /* outgoing parameter size */
b6c9286a 1203 int main_size; /* size to hold saving main's args */
4697a36c
MM
1204 int save_size; /* save area size */
1205 int fixed_size; /* fixed size of stack frame */
1206 int gp_size; /* size of saved GP registers */
1207 int fp_size; /* size of saved FP registers */
1208 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1209 int lr_size; /* size to hold LR if not in save_size */
802a0058 1210 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1211 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1212 int total_size; /* total bytes allocated for stack */
1213} rs6000_stack_t;
1214
f045b2c9
RS
1215/* Define this if pushing a word on the stack
1216 makes the stack pointer a smaller address. */
1217#define STACK_GROWS_DOWNWARD
1218
1219/* Define this if the nominal address of the stack frame
1220 is at the high-address end of the local variables;
1221 that is, each additional local variable allocated
1222 goes at a more negative offset in the frame.
1223
1224 On the RS/6000, we grow upwards, from the area after the outgoing
1225 arguments. */
1226/* #define FRAME_GROWS_DOWNWARD */
1227
4697a36c 1228/* Size of the outgoing register save area */
2f3e5814 1229#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1230
1231/* Size of the fixed area on the stack */
2f3e5814 1232#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1233
b6c9286a 1234/* Address to save the TOC register */
a260abc9 1235#define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, (TARGET_32BIT ? 20 : 40))
b6c9286a 1236
802a0058
MM
1237/* Offset & size for fpmem stack locations used for converting between
1238 float and integral types. */
1239extern int rs6000_fpmem_offset;
1240extern int rs6000_fpmem_size;
1241
4697a36c
MM
1242/* Size of the V.4 varargs area if needed */
1243#define RS6000_VARARGS_AREA 0
1244
1245/* Whether a V.4 varargs area is needed */
1246extern int rs6000_sysv_varargs_p;
1247
1248/* Align an address */
ed33106f 1249#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c 1250
a7df97e6
MM
1251/* Initialize data used by insn expanders. This is called from
1252 init_emit, once for each function, before code is generated. */
1253#define INIT_EXPANDERS rs6000_init_expanders ()
1254
4697a36c
MM
1255/* Size of V.4 varargs area in bytes */
1256#define RS6000_VARARGS_SIZE \
2f3e5814 1257 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c
MM
1258
1259/* Offset of V.4 varargs area */
802a0058 1260#define RS6000_VARARGS_OFFSET \
ed33106f 1261 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1262 + RS6000_SAVE_AREA)
4697a36c 1263
f045b2c9
RS
1264/* Offset within stack frame to start allocating local variables at.
1265 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1266 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1267 of the first local allocated.
f045b2c9
RS
1268
1269 On the RS/6000, the frame pointer is the same as the stack pointer,
1270 except for dynamic allocations. So we start after the fixed area and
1271 outgoing parameter area. */
1272
802a0058 1273#define STARTING_FRAME_OFFSET \
ed33106f 1274 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058
MM
1275 + RS6000_VARARGS_AREA \
1276 + RS6000_SAVE_AREA)
1277
1278/* Offset from the stack pointer register to an item dynamically
1279 allocated on the stack, e.g., by `alloca'.
1280
1281 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1282 length of the outgoing arguments. The default is correct for most
1283 machines. See `function.c' for details. */
1284#define STACK_DYNAMIC_OFFSET(FUNDECL) \
ed33106f 1285 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1286 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1287
1288/* If we generate an insn to push BYTES bytes,
1289 this says how many the stack pointer really advances by.
1290 On RS/6000, don't define this because there are no push insns. */
1291/* #define PUSH_ROUNDING(BYTES) */
1292
1293/* Offset of first parameter from the argument pointer register value.
1294 On the RS/6000, we define the argument pointer to the start of the fixed
1295 area. */
4697a36c 1296#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1297
1298/* Define this if stack space is still allocated for a parameter passed
1299 in a register. The value is the number of bytes allocated to this
1300 area. */
4697a36c 1301#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1302
1303/* Define this if the above stack space is to be considered part of the
1304 space allocated by the caller. */
1305#define OUTGOING_REG_PARM_STACK_SPACE
1306
1307/* This is the difference between the logical top of stack and the actual sp.
1308
1309 For the RS/6000, sp points past the fixed area. */
4697a36c 1310#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1311
1312/* Define this if the maximum size of all the outgoing args is to be
1313 accumulated and pushed during the prologue. The amount can be
1314 found in the variable current_function_outgoing_args_size. */
1315#define ACCUMULATE_OUTGOING_ARGS
1316
1317/* Value is the number of bytes of arguments automatically
1318 popped when returning from a subroutine call.
8b109b37 1319 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1320 FUNTYPE is the data type of the function (as a tree),
1321 or for a library call it is an identifier node for the subroutine name.
1322 SIZE is the number of bytes of arguments passed on the stack. */
1323
8b109b37 1324#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1325
1326/* Define how to find the value returned by a function.
1327 VALTYPE is the data type of the value (as a tree).
1328 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1329 otherwise, FUNC is 0.
1330
c81bebd7 1331 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1332 fp1, unless -msoft-float. */
f045b2c9 1333
39403d82
DE
1334#define FUNCTION_VALUE(VALTYPE, FUNC) \
1335 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1336 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1337 || POINTER_TYPE_P (VALTYPE) \
1338 ? word_mode : TYPE_MODE (VALTYPE), \
1339 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1340
1341/* Define how to find the value returned by a library function
1342 assuming the value has mode MODE. */
1343
1344#define LIBCALL_VALUE(MODE) \
39403d82
DE
1345 gen_rtx_REG (MODE, \
1346 GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1347
1348/* The definition of this macro implies that there are cases where
1349 a scalar value cannot be returned in registers.
1350
c81bebd7
MM
1351 For the RS/6000, any structure or union type is returned in memory, except for
1352 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1353
c81bebd7
MM
1354#define RETURN_IN_MEMORY(TYPE) \
1355 (TYPE_MODE (TYPE) == BLKmode \
1356 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1357
a260abc9 1358/* Mode of stack savearea.
dfdfa60f
DE
1359 FUNCTION is VOIDmode because calling convention maintains SP.
1360 BLOCK needs Pmode for SP.
a260abc9
DE
1361 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1362#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1363 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1364 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1365
4697a36c
MM
1366/* Minimum and maximum general purpose registers used to hold arguments. */
1367#define GP_ARG_MIN_REG 3
1368#define GP_ARG_MAX_REG 10
1369#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1370
1371/* Minimum and maximum floating point registers used to hold arguments. */
1372#define FP_ARG_MIN_REG 33
7509c759
MM
1373#define FP_ARG_AIX_MAX_REG 45
1374#define FP_ARG_V4_MAX_REG 40
1375#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1376#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1377
1378/* Return registers */
1379#define GP_ARG_RETURN GP_ARG_MIN_REG
1380#define FP_ARG_RETURN FP_ARG_MIN_REG
1381
7509c759 1382/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1383#define CALL_NORMAL 0x00000000 /* no special processing */
1384#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1385#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1386#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1387#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1388
4697a36c
MM
1389/* Define cutoff for using external functions to save floating point */
1390#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1391
f045b2c9
RS
1392/* 1 if N is a possible register number for a function value
1393 as seen by the caller.
1394
1395 On RS/6000, this is r3 and fp1. */
4697a36c 1396#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1397
1398/* 1 if N is a possible register number for function argument passing.
1399 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1400#define FUNCTION_ARG_REGNO_P(N) \
1401 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1402 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1403
f045b2c9
RS
1404\f
1405/* Define a data type for recording info about an argument list
1406 during the scan of that argument list. This data type should
1407 hold all necessary information about the function itself
1408 and about the args processed so far, enough to enable macros
1409 such as FUNCTION_ARG to determine where the next arg should go.
1410
1411 On the RS/6000, this is a structure. The first element is the number of
1412 total argument words, the second is used to store the next
1413 floating-point register number, and the third says how many more args we
4697a36c
MM
1414 have prototype types for.
1415
1416 The System V.4 varargs/stdarg support requires that this structure's size
1417 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1418 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1419
1420typedef struct rs6000_args
1421{
6a4cee5f
MM
1422 int words; /* # words uses for passing GP registers */
1423 int fregno; /* next available FP register */
1424 int nargs_prototype; /* # args left in the current prototype */
1425 int orig_nargs; /* Original value of nargs_prototype */
1426 int varargs_offset; /* offset of the varargs save area */
1427 int prototype; /* Whether a prototype was defined */
1428 int call_cookie; /* Do special things for this call */
4697a36c 1429} CUMULATIVE_ARGS;
f045b2c9
RS
1430
1431/* Define intermediate macro to compute the size (in registers) of an argument
1432 for the RS/6000. */
1433
1434#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1435(! (NAMED) ? 0 \
1436 : (MODE) != BLKmode \
1437 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1438 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1439
1440/* Initialize a variable CUM of type CUMULATIVE_ARGS
1441 for a call to a function whose data type is FNTYPE.
1442 For a library call, FNTYPE is 0. */
1443
2c7ee1a6 1444#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1445 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1446
1447/* Similar, but when scanning the definition of a procedure. We always
1448 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1449
4697a36c
MM
1450#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1451 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1452
1453/* Update the data in CUM to advance over an argument
1454 of mode MODE and data type TYPE.
1455 (TYPE is null for libcalls where that information may not be available.) */
1456
1457#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1458 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1459
1460/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1461#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1462 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1463 && (CUM).fregno <= FP_ARG_MAX_REG \
1464 && TARGET_HARD_FLOAT)
f045b2c9
RS
1465
1466/* Determine where to put an argument to a function.
1467 Value is zero to push the argument on the stack,
1468 or a hard register in which to store the argument.
1469
1470 MODE is the argument's machine mode.
1471 TYPE is the data type of the argument (as a tree).
1472 This is null for libcalls where that information may
1473 not be available.
1474 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1475 the preceding args and about the function being called.
1476 NAMED is nonzero if this argument is a named parameter
1477 (otherwise it is an extra parameter matching an ellipsis).
1478
1479 On RS/6000 the first eight words of non-FP are normally in registers
1480 and the rest are pushed. The first 13 FP args are in registers.
1481
1482 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1483 both an FP and integer register (or possibly FP reg and stack). Library
1484 functions (when TYPE is zero) always have the proper types for args,
1485 so we can pass the FP value just in one register. emit_library_function
1486 doesn't support EXPR_LIST anyway. */
f045b2c9 1487
4697a36c
MM
1488#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1489 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1490
1491/* For an arg passed partly in registers and partly in memory,
1492 this is the number of registers used.
1493 For args passed entirely in registers or entirely in memory, zero. */
1494
4697a36c
MM
1495#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1496 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1497
1498/* A C expression that indicates when an argument must be passed by
1499 reference. If nonzero for an argument, a copy of that argument is
1500 made in memory and a pointer to the argument is passed instead of
1501 the argument itself. The pointer is passed in whatever way is
1502 appropriate for passing a pointer to that type. */
1503
1504#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1505 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1506
c229cba9
DE
1507/* If defined, a C expression which determines whether, and in which
1508 direction, to pad out an argument with extra space. The value
1509 should be of type `enum direction': either `upward' to pad above
1510 the argument, `downward' to pad below, or `none' to inhibit
1511 padding. */
1512
1513#define FUNCTION_ARG_PADDING(MODE, TYPE) \
c4d38ccb 1514 (enum direction) function_arg_padding (MODE, TYPE)
c229cba9 1515
b6c9286a 1516/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1517 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1518 PARM_BOUNDARY is used for all arguments. */
1519
1520#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1521 function_arg_boundary (MODE, TYPE)
1522
f045b2c9 1523/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1524 variable number of arguments.
f045b2c9
RS
1525
1526 CUM is as above.
1527
1528 MODE and TYPE are the mode and type of the current parameter.
1529
1530 PRETEND_SIZE is a variable that should be set to the amount of stack
1531 that must be pushed by the prolog to pretend that our caller pushed
1532 it.
1533
1534 Normally, this macro will push all remaining incoming registers on the
1535 stack and set PRETEND_SIZE to the length of the registers pushed. */
1536
4697a36c
MM
1537#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1538 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1539
1540/* If defined, is a C expression that produces the machine-specific
1541 code for a call to `__builtin_saveregs'. This code will be moved
1542 to the very beginning of the function, before any parameter access
1543 are made. The return value of this function should be an RTX that
1544 contains the value to use as the return of `__builtin_saveregs'.
1545
1546 The argument ARGS is a `tree_list' containing the arguments that
1547 were passed to `__builtin_saveregs'.
1548
1549 If this macro is not defined, the compiler will output an ordinary
1550 call to the library function `__builtin_saveregs'. */
1551
1552#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1553 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1554
1555/* This macro generates the assembly code for function entry.
1556 FILE is a stdio stream to output the code to.
1557 SIZE is an int: how many units of temporary storage to allocate.
1558 Refer to the array `regs_ever_live' to determine which registers
1559 to save; `regs_ever_live[I]' is nonzero if register number I
1560 is ever used in the function. This macro is responsible for
1561 knowing which registers should not be saved even if used. */
1562
1563#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1564
1565/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1566 for profiling a function entry. */
f045b2c9
RS
1567
1568#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1569 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1570
1571/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1572 the stack pointer does not matter. No definition is equivalent to
1573 always zero.
1574
1575 On the RS/6000, this is non-zero because we can restore the stack from
1576 its backpointer, which we maintain. */
1577#define EXIT_IGNORE_STACK 1
1578
1579/* This macro generates the assembly code for function exit,
1580 on machines that need it. If FUNCTION_EPILOGUE is not defined
1581 then individual return instructions are generated for each
1582 return statement. Args are same as for FUNCTION_PROLOGUE.
1583
1584 The function epilogue should not depend on the current stack pointer!
1585 It should use the frame pointer only. This is mandatory because
1586 of alloca; we also take advantage of it to omit stack adjustments
1587 before returning. */
1588
1589#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
17167fd8
MM
1590
1591/* A C compound statement that outputs the assembler code for a thunk function,
1592 used to implement C++ virtual function calls with multiple inheritance. The
1593 thunk acts as a wrapper around a virtual function, adjusting the implicit
1594 object parameter before handing control off to the real function.
1595
1596 First, emit code to add the integer DELTA to the location that contains the
1597 incoming first argument. Assume that this argument contains a pointer, and
1598 is the one used to pass the `this' pointer in C++. This is the incoming
1599 argument *before* the function prologue, e.g. `%o0' on a sparc. The
1600 addition must preserve the values of all other incoming arguments.
1601
1602 After the addition, emit code to jump to FUNCTION, which is a
1603 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
1604 the return address. Hence returning from FUNCTION will return to whoever
1605 called the current `thunk'.
1606
1607 The effect must be as if FUNCTION had been called directly with the adjusted
1608 first argument. This macro is responsible for emitting all of the code for
1609 a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
1610 invoked.
1611
1612 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
1613 extracted from it.) It might possibly be useful on some targets, but
1614 probably not.
1615
1616 If you do not define this macro, the target-independent code in the C++
1617 frontend will generate a less efficient heavyweight thunk that calls
1618 FUNCTION instead of jumping to it. The generic approach does not support
1619 varargs. */
1620#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1621 output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
f045b2c9 1622\f
eaf1bcf1 1623/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1624
1625/* Length in units of the trampoline for entering a nested function. */
1626
b6c9286a 1627#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1628
1629/* Emit RTL insns to initialize the variable parts of a trampoline.
1630 FNADDR is an RTX for the address of the function's pure code.
1631 CXT is an RTX for the static chain value for the function. */
1632
1633#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1634 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1635\f
7509c759
MM
1636/* If defined, a C expression whose value is nonzero if IDENTIFIER
1637 with arguments ARGS is a valid machine specific attribute for DECL.
1638 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1639
1640#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1641 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1642
1643/* If defined, a C expression whose value is nonzero if IDENTIFIER
1644 with arguments ARGS is a valid machine specific attribute for TYPE.
1645 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1646
1647#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1648 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1649
1650/* If defined, a C expression whose value is zero if the attributes on
1651 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1652 two if they are nearly compatible (which causes a warning to be
1653 generated). */
1654
1655#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1656 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1657
1658/* If defined, a C statement that assigns default attributes to newly
1659 defined TYPE. */
1660
1661#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1662 (rs6000_set_default_type_attributes (TYPE))
1663
1664\f
f33985c6
MS
1665/* Definitions for __builtin_return_address and __builtin_frame_address.
1666 __builtin_return_address (0) should give link register (65), enable
1667 this. */
1668/* This should be uncommented, so that the link register is used, but
1669 currently this would result in unmatched insns and spilling fixed
1670 registers so we'll leave it for another day. When these problems are
1671 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1672 (mrs) */
1673/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1674
b6c9286a
MM
1675/* Number of bytes into the frame return addresses can be found. See
1676 rs6000_stack_info in rs6000.c for more information on how the different
1677 abi's store the return address. */
1678#define RETURN_ADDRESS_OFFSET \
1679 ((DEFAULT_ABI == ABI_AIX \
1680 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1681 (DEFAULT_ABI == ABI_V4 \
1682 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1683 (DEFAULT_ABI == ABI_NT) ? -4 : \
1684 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1685
f33985c6
MS
1686/* The current return address is in link register (65). The return address
1687 of anything farther back is accessed normally at an offset of 8 from the
1688 frame pointer. */
1689#define RETURN_ADDR_RTX(count, frame) \
1690 ((count == -1) \
39403d82
DE
1691 ? gen_rtx_REG (Pmode, 65) \
1692 : gen_rtx_MEM (Pmode, \
f09d4c33 1693 memory_address (Pmode, \
39403d82 1694 plus_constant (copy_to_reg (gen_rtx_MEM (Pmode, \
f09d4c33
RK
1695 memory_address (Pmode, frame))), \
1696 RETURN_ADDRESS_OFFSET))))
f33985c6 1697\f
f045b2c9
RS
1698/* Definitions for register eliminations.
1699
1700 We have two registers that can be eliminated on the RS/6000. First, the
1701 frame pointer register can often be eliminated in favor of the stack
1702 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1703 eliminated; it is replaced with either the stack or frame pointer.
1704
1705 In addition, we use the elimination mechanism to see if r30 is needed
1706 Initially we assume that it isn't. If it is, we spill it. This is done
1707 by making it an eliminable register. We replace it with itself so that
1708 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1709
1710/* This is an array of structures. Each structure initializes one pair
1711 of eliminable registers. The "from" register number is given first,
1712 followed by "to". Eliminations of the same "from" register are listed
1713 in order of preference. */
1714#define ELIMINABLE_REGS \
1715{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1716 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1717 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1718 { 30, 30} }
f045b2c9
RS
1719
1720/* Given FROM and TO register numbers, say whether this elimination is allowed.
1721 Frame pointer elimination is automatically handled.
1722
1723 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1724 to convert ap into fp, not sp.
1725
abc95ed3 1726 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1727 references. */
f045b2c9
RS
1728
1729#define CAN_ELIMINATE(FROM, TO) \
1730 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1731 ? ! frame_pointer_needed \
4697a36c 1732 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1733 : 1)
1734
1735/* Define the offset between two registers, one to be eliminated, and the other
1736 its replacement, at the start of a routine. */
1737#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1738{ \
4697a36c 1739 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1740 \
1741 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1742 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1743 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1744 (OFFSET) = info->total_size; \
1745 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1746 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1747 else if ((FROM) == 30) \
1748 (OFFSET) = 0; \
f045b2c9
RS
1749 else \
1750 abort (); \
1751}
1752\f
1753/* Addressing modes, and classification of registers for them. */
1754
1755/* #define HAVE_POST_INCREMENT */
1756/* #define HAVE_POST_DECREMENT */
1757
1758#define HAVE_PRE_DECREMENT
1759#define HAVE_PRE_INCREMENT
1760
1761/* Macros to check register numbers against specific register classes. */
1762
1763/* These assume that REGNO is a hard or pseudo reg number.
1764 They give nonzero only if REGNO is a hard reg of the suitable class
1765 or a pseudo reg currently allocated to a suitable hard reg.
1766 Since they use reg_renumber, they are safe only once reg_renumber
1767 has been allocated, which happens in local-alloc.c. */
1768
1769#define REGNO_OK_FOR_INDEX_P(REGNO) \
1770((REGNO) < FIRST_PSEUDO_REGISTER \
1771 ? (REGNO) <= 31 || (REGNO) == 67 \
1772 : (reg_renumber[REGNO] >= 0 \
1773 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1774
1775#define REGNO_OK_FOR_BASE_P(REGNO) \
1776((REGNO) < FIRST_PSEUDO_REGISTER \
1777 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1778 : (reg_renumber[REGNO] > 0 \
1779 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1780\f
1781/* Maximum number of registers that can appear in a valid memory address. */
1782
1783#define MAX_REGS_PER_ADDRESS 2
1784
1785/* Recognize any constant value that is a valid address. */
1786
6eff269e
BK
1787#define CONSTANT_ADDRESS_P(X) \
1788 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1789 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1790 || GET_CODE (X) == HIGH)
f045b2c9
RS
1791
1792/* Nonzero if the constant value X is a legitimate general operand.
1793 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1794
1795 On the RS/6000, all integer constants are acceptable, most won't be valid
1796 for particular insns, though. Only easy FP constants are
1797 acceptable. */
1798
1799#define LEGITIMATE_CONSTANT_P(X) \
1800 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1801 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1802 || easy_fp_constant (X, GET_MODE (X)))
1803
1804/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1805 and check its validity for a certain class.
1806 We have two alternate definitions for each of them.
1807 The usual definition accepts all pseudo regs; the other rejects
1808 them unless they have been allocated suitable hard regs.
1809 The symbol REG_OK_STRICT causes the latter definition to be used.
1810
1811 Most source files want to accept pseudo regs in the hope that
1812 they will get allocated to the class that the insn wants them to be in.
1813 Source files for reload pass need to be strict.
1814 After reload, it makes no difference, since pseudo regs have
1815 been eliminated by then. */
1816
1817#ifndef REG_OK_STRICT
1818
1819/* Nonzero if X is a hard reg that can be used as an index
1820 or if it is a pseudo reg. */
1821#define REG_OK_FOR_INDEX_P(X) \
1822 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1823
1824/* Nonzero if X is a hard reg that can be used as a base reg
1825 or if it is a pseudo reg. */
1826#define REG_OK_FOR_BASE_P(X) \
1827 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1828
1829#else
1830
1831/* Nonzero if X is a hard reg that can be used as an index. */
1832#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1833/* Nonzero if X is a hard reg that can be used as a base reg. */
1834#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1835
1836#endif
1837\f
1838/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1839 that is a valid memory address for an instruction.
1840 The MODE argument is the machine mode for the MEM expression
1841 that wants to use this address.
1842
1843 On the RS/6000, there are four valid address: a SYMBOL_REF that
1844 refers to a constant pool entry of an address (or the sum of it
1845 plus a constant), a short (16-bit signed) constant plus a register,
1846 the sum of two registers, or a register indirect, possibly with an
1847 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1848 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1849 word aligned.
1850
1851 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1852 32-bit DImode, TImode), indexed addressing cannot be used because
1853 adjacent memory cells are accessed by adding word-sized offsets
1854 during assembly output. */
f045b2c9
RS
1855
1856#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1857 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1858 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1859 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1860
a260abc9 1861/* AIX64 guaranteed to have 64 bit TOC alignment. */
f045b2c9
RS
1862#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1863 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1864 || (TARGET_TOC \
1865 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1866 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1867 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1868
7509c759 1869#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1870 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
81795281 1871 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1872 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1873 && small_data_operand (X, MODE))
7509c759 1874
f045b2c9
RS
1875#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1876 (GET_CODE (X) == CONST_INT \
5b6f7b96 1877 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9
RS
1878
1879#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1880 (GET_CODE (X) == PLUS \
1881 && GET_CODE (XEXP (X, 0)) == REG \
1882 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1883 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1884 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1885 || (TARGET_32BIT \
1465faec
DE
1886 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1887 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1888 && ((MODE) != TImode \
644d82dd 1889 || (TARGET_32BIT \
1465faec
DE
1890 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1891 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1892 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1893
1894#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1895 (GET_CODE (X) == PLUS \
1896 && GET_CODE (XEXP (X, 0)) == REG \
1897 && GET_CODE (XEXP (X, 1)) == REG \
1898 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1899 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1900 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1901 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1902
1903#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1904 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1905
4697a36c
MM
1906#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1907 (TARGET_ELF \
81795281 1908 && !flag_pic && !TARGET_TOC \
4697a36c
MM
1909 && (MODE) != DImode \
1910 && (MODE) != TImode \
1911 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1912 && GET_CODE (X) == LO_SUM \
1913 && GET_CODE (XEXP (X, 0)) == REG \
1914 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1915 && CONSTANT_P (XEXP (X, 1)))
1916
f045b2c9
RS
1917#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1918{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1919 goto ADDR; \
0a90c336 1920 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
38c1f2d7 1921 && TARGET_UPDATE \
f045b2c9
RS
1922 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1923 goto ADDR; \
7509c759
MM
1924 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1925 goto ADDR; \
f045b2c9
RS
1926 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1927 goto ADDR; \
1928 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1929 goto ADDR; \
2f3e5814 1930 if ((MODE) != TImode \
1427100a
DE
1931 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
1932 && (TARGET_POWERPC64 || (MODE) != DImode) \
f045b2c9
RS
1933 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1934 goto ADDR; \
4697a36c
MM
1935 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1936 goto ADDR; \
f045b2c9
RS
1937}
1938\f
1939/* Try machine-dependent ways of modifying an illegitimate address
1940 to be legitimate. If we find one, return the new, valid address.
1941 This macro is used in only one place: `memory_address' in explow.c.
1942
1943 OLDX is the address as it was before break_out_memory_refs was called.
1944 In some cases it is useful to look at this to decide what needs to be done.
1945
1946 MODE and WIN are passed so that this macro can use
1947 GO_IF_LEGITIMATE_ADDRESS.
1948
1949 It is always safe for this macro to do nothing. It exists to recognize
1950 opportunities to optimize the output.
1951
1952 On RS/6000, first check for the sum of a register with a constant
1953 integer that is out of range. If so, generate code to add the
1954 constant with the low-order 16 bits masked to the register and force
1955 this result into another register (this can be done with `cau').
c81bebd7 1956 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1957 possibility of bit 16 being a one.
1958
1959 Then check for the sum of a register and something not constant, try to
1960 load the other things into a register and return the sum. */
1961
4697a36c
MM
1962#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1963{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1964 && GET_CODE (XEXP (X, 1)) == CONST_INT \
5b6f7b96 1965 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1966 { HOST_WIDE_INT high_int, low_int; \
1967 rtx sum; \
1968 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1969 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1970 if (low_int & 0x8000) \
354b734b 1971 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
39403d82 1972 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (X, 0), \
354b734b 1973 GEN_INT (high_int)), 0); \
39403d82 1974 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1975 goto WIN; \
1976 } \
1977 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1978 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1427100a
DE
1979 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
1980 && (TARGET_POWERPC64 || (MODE) != DImode) \
2f3e5814 1981 && (MODE) != TImode) \
4697a36c 1982 { \
39403d82 1983 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
0a90c336 1984 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
1985 goto WIN; \
1986 } \
2f3e5814 1987 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
461422d5 1988 && !flag_pic \
4697a36c
MM
1989 && GET_CODE (X) != CONST_INT \
1990 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1991 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1992 && (MODE) != DImode && (MODE) != TImode) \
1993 { \
1994 rtx reg = gen_reg_rtx (Pmode); \
1995 emit_insn (gen_elf_high (reg, (X))); \
39403d82 1996 (X) = gen_rtx_LO_SUM (Pmode, reg, (X)); \
4697a36c 1997 } \
f045b2c9
RS
1998}
1999
a260abc9
DE
2000/* Try a machine-dependent way of reloading an illegitimate address
2001 operand. If we find one, push the reload and jump to WIN. This
2002 macro is used in only one place: `find_reloads_address' in reload.c.
2003
2004 For RS/6000, we wish to handle large displacements off a base
2005 register by splitting the addend across an addiu/addis and the mem insn.
2006 This cuts number of extra insns needed from 3 to 1. */
2007
2008#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2009do { \
2010 if (GET_CODE (X) == PLUS \
2011 && GET_CODE (XEXP (X, 0)) == REG \
2012 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
2013 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
2014 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2015 { \
2016 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
2017 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
2018 HOST_WIDE_INT high \
2019 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
2020 \
2021 /* Check for 32-bit overflow. */ \
2022 if (high + low != val) \
2023 break; \
2024 \
2025 /* Reload the high part into a base reg; leave the low part \
2026 in the mem directly. */ \
2027 \
2028 X = gen_rtx_PLUS (GET_MODE (X), \
2029 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
2030 GEN_INT (high)), \
2031 GEN_INT (low)); \
2032 \
2033 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2034 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2035 OPNUM, TYPE); \
2036 goto WIN; \
2037 } \
2038} while (0)
2039
f045b2c9
RS
2040/* Go to LABEL if ADDR (a legitimate address expression)
2041 has an effect that depends on the machine mode it is used for.
2042
2043 On the RS/6000 this is true if the address is valid with a zero offset
2044 but not with an offset of four (this means it cannot be used as an
2045 address for DImode or DFmode) or is a pre-increment or decrement. Since
2046 we know it is valid, we just check for an address that is not valid with
2047 an offset of four. */
2048
2049#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2050{ if (GET_CODE (ADDR) == PLUS \
2051 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2052 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2053 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2054 goto LABEL; \
38c1f2d7 2055 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2056 goto LABEL; \
38c1f2d7 2057 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2058 goto LABEL; \
4697a36c
MM
2059 if (GET_CODE (ADDR) == LO_SUM) \
2060 goto LABEL; \
f045b2c9 2061}
766a866c
MM
2062\f
2063/* The register number of the register used to address a table of
2064 static data addresses in memory. In some cases this register is
2065 defined by a processor's "application binary interface" (ABI).
2066 When this macro is defined, RTL is generated for this register
2067 once, as with the stack pointer and frame pointer registers. If
2068 this macro is not defined, it is up to the machine-dependent files
2069 to allocate such a register (if necessary). */
2070
2071/* #define PIC_OFFSET_TABLE_REGNUM */
2072
2073/* Define this macro if the register defined by
2074 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2075 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
2076
2077/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2078
2079/* By generating position-independent code, when two different
2080 programs (A and B) share a common library (libC.a), the text of
2081 the library can be shared whether or not the library is linked at
2082 the same address for both programs. In some of these
2083 environments, position-independent code requires not only the use
2084 of different addressing modes, but also special code to enable the
2085 use of these addressing modes.
2086
2087 The `FINALIZE_PIC' macro serves as a hook to emit these special
2088 codes once the function is being compiled into assembly code, but
2089 not before. (It is not done before, because in the case of
2090 compiling an inline function, it would lead to multiple PIC
2091 prologues being included in functions which used inline functions
2092 and were compiled to assembly language.) */
2093
d266da75 2094#define FINALIZE_PIC rs6000_finalize_pic ()
766a866c 2095
766a866c
MM
2096/* A C expression that is nonzero if X is a legitimate immediate
2097 operand on the target machine when generating position independent
2098 code. You can assume that X satisfies `CONSTANT_P', so you need
2099 not check this. You can also assume FLAG_PIC is true, so you need
2100 not check it either. You need not define this macro if all
2101 constants (including `SYMBOL_REF') can be immediate operands when
2102 generating position independent code. */
2103
2104/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2105
30ea98f1
MM
2106/* In rare cases, correct code generation requires extra machine
2107 dependent processing between the second jump optimization pass and
2108 delayed branch scheduling. On those machines, define this macro
2109 as a C statement to act on the code starting at INSN.
2110
2111 On the RS/6000, we use it to make sure the GOT_TOC register marker
2112 that FINALIZE_PIC is supposed to remove actually got removed. */
2113
2114#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
2115
f045b2c9
RS
2116\f
2117/* Define this if some processing needs to be done immediately before
4255474b 2118 emitting code for an insn. */
f045b2c9 2119
4255474b 2120/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2121
2122/* Specify the machine mode that this machine uses
2123 for the index in the tablejump instruction. */
2f3e5814 2124#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9 2125
18543a22
ILT
2126/* Define as C expression which evaluates to nonzero if the tablejump
2127 instruction expects the table to contain offsets from the address of the
2128 table.
2129 Do not define this if the table should contain absolute addresses. */
2130#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9
RS
2131
2132/* Specify the tree operation to be used to convert reals to integers. */
2133#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2134
2135/* This is the kind of divide that is easiest to do in the general case. */
2136#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2137
2138/* Define this as 1 if `char' should by default be signed; else as 0. */
2139#define DEFAULT_SIGNED_CHAR 0
2140
2141/* This flag, if defined, says the same insns that convert to a signed fixnum
2142 also convert validly to an unsigned one. */
2143
2144/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2145
2146/* Max number of bytes we can move from memory to memory
2147 in one reasonably fast instruction. */
2f3e5814 2148#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2149#define MAX_MOVE_MAX 8
f045b2c9
RS
2150
2151/* Nonzero if access to memory by bytes is no faster than for words.
2152 Also non-zero if doing byte operations (specifically shifts) in registers
2153 is undesirable. */
2154#define SLOW_BYTE_ACCESS 1
2155
9a63901f
RK
2156/* Define if operations between registers always perform the operation
2157 on the full register even if a narrower mode is specified. */
2158#define WORD_REGISTER_OPERATIONS
2159
2160/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2161 will either zero-extend or sign-extend. The value of this macro should
2162 be the code that says which one of the two operations is implicitly
2163 done, NIL if none. */
2164#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2165
2166/* Define if loading short immediate values into registers sign extends. */
2167#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2168\f
2169/* The RS/6000 uses the XCOFF format. */
f045b2c9 2170
fdaff8ba 2171#define XCOFF_DEBUGGING_INFO
f045b2c9 2172
c5abcf1d
CH
2173/* Define if the object format being used is COFF or a superset. */
2174#define OBJECT_FORMAT_COFF
2175
b9af8fb0 2176/* Define the magic numbers that we recognize as COFF.
a260abc9
DE
2177 AIX 4.3 adds U803XTOCMAGIC (0757) for 64-bit objects, but collect2.c
2178 does not include files in the correct order to conditionally define
2179 the symbolic name in this macro. */
2c440f06 2180#define MY_ISCOFF(magic) \
b9af8fb0
DE
2181 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC \
2182 || (magic) == U802TOCMAGIC || (magic) == 0757)
2c440f06 2183
115e69a9
RK
2184/* This is the only version of nm that collect2 can work with. */
2185#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2186
f045b2c9
RS
2187/* We don't have GAS for the RS/6000 yet, so don't write out special
2188 .stabs in cc1plus. */
c81bebd7 2189
f045b2c9 2190#define FASCIST_ASSEMBLER
b6c9286a 2191
4cacd7a0
KE
2192/* AIX does not have any init/fini or ctor/dtor sections, so create
2193 static constructors and destructors as normal functions. */
2194/* #define ASM_OUTPUT_CONSTRUCTOR(file, name) */
2195/* #define ASM_OUTPUT_DESTRUCTOR(file, name) */
f045b2c9 2196
f045b2c9
RS
2197/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2198 is done just by pretending it is already truncated. */
2199#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2200
2201/* Specify the machine mode that pointers have.
2202 After generation of rtl, the compiler makes no further distinction
2203 between pointers and any other objects of this machine mode. */
2f3e5814 2204#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2205
2206/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2207 Doesn't matter on RS/6000. */
2f3e5814 2208#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2209
2210/* Define this if addresses of constant functions
2211 shouldn't be put through pseudo regs where they can be cse'd.
2212 Desirable on machines where ordinary constants are expensive
2213 but a CALL with constant address is cheap. */
2214#define NO_FUNCTION_CSE
2215
d969caf8 2216/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2217 few bits.
2218
2219 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2220 have been dropped from the PowerPC architecture. */
2221
4697a36c 2222#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2223
2224/* Use atexit for static constructors/destructors, instead of defining
2225 our own exit function. */
2226#define HAVE_ATEXIT
2227
2228/* Compute the cost of computing a constant rtl expression RTX
2229 whose rtx-code is CODE. The body of this macro is a portion
2230 of a switch statement. If the code is computed here,
2231 return it with a return statement. Otherwise, break from the switch.
2232
01554f00 2233 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2234 always returns 0. */
2235
4697a36c 2236#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2237 case CONST_INT: \
2238 case CONST: \
2239 case LABEL_REF: \
2240 case SYMBOL_REF: \
2241 case CONST_DOUBLE: \
4697a36c 2242 case HIGH: \
f045b2c9
RS
2243 return 0;
2244
2245/* Provide the costs of a rtl expression. This is in the body of a
2246 switch on CODE. */
2247
38c1f2d7
MM
2248#define RTX_COSTS(X,CODE,OUTER_CODE) \
2249 case PLUS: \
2250 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2251 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2252 + 0x8000) >= 0x10000) \
296b8152 2253 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2254 ? COSTS_N_INSNS (2) \
2255 : COSTS_N_INSNS (1)); \
2256 case AND: \
38c1f2d7
MM
2257 case IOR: \
2258 case XOR: \
a260abc9
DE
2259 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2260 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2261 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2262 ? COSTS_N_INSNS (2) \
2263 : COSTS_N_INSNS (1)); \
2264 case MULT: \
2265 switch (rs6000_cpu) \
2266 { \
2267 case PROCESSOR_RIOS1: \
2268 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2269 ? COSTS_N_INSNS (5) \
2270 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2271 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2272 case PROCESSOR_RIOS2: \
2273 case PROCESSOR_MPCCORE: \
2274 return COSTS_N_INSNS (2); \
2275 case PROCESSOR_PPC601: \
2276 return COSTS_N_INSNS (5); \
2277 case PROCESSOR_PPC603: \
2278 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2279 ? COSTS_N_INSNS (5) \
2280 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2281 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2282 case PROCESSOR_PPC403: \
2283 case PROCESSOR_PPC604: \
2284 case PROCESSOR_PPC620: \
2285 return COSTS_N_INSNS (4); \
2286 } \
2287 case DIV: \
2288 case MOD: \
2289 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2290 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2291 return COSTS_N_INSNS (2); \
2292 /* otherwise fall through to normal divide. */ \
2293 case UDIV: \
2294 case UMOD: \
2295 switch (rs6000_cpu) \
2296 { \
2297 case PROCESSOR_RIOS1: \
2298 return COSTS_N_INSNS (19); \
2299 case PROCESSOR_RIOS2: \
2300 return COSTS_N_INSNS (13); \
2301 case PROCESSOR_MPCCORE: \
2302 return COSTS_N_INSNS (6); \
2303 case PROCESSOR_PPC403: \
2304 return COSTS_N_INSNS (33); \
2305 case PROCESSOR_PPC601: \
2306 return COSTS_N_INSNS (36); \
2307 case PROCESSOR_PPC603: \
2308 return COSTS_N_INSNS (37); \
2309 case PROCESSOR_PPC604: \
2310 case PROCESSOR_PPC620: \
2311 return COSTS_N_INSNS (20); \
2312 } \
2313 case FFS: \
2314 return COSTS_N_INSNS (4); \
2315 case MEM: \
f045b2c9
RS
2316 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2317 return 5;
2318
2319/* Compute the cost of an address. This is meant to approximate the size
2320 and/or execution delay of an insn using that address. If the cost is
2321 approximated by the RTL complexity, including CONST_COSTS above, as
2322 is usually the case for CISC machines, this macro should not be defined.
2323 For aggressively RISCy machines, only one insn format is allowed, so
2324 this macro should be a constant. The value of this macro only matters
2325 for valid addresses.
2326
2327 For the RS/6000, everything is cost 0. */
2328
2329#define ADDRESS_COST(RTX) 0
2330
2331/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2332 should be adjusted to reflect any required changes. This macro is used when
2333 there is some systematic length adjustment required that would be difficult
2334 to express in the length attribute. */
2335
2336/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2337
2338/* Add any extra modes needed to represent the condition code.
2339
2340 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2341 are being done and we need a separate mode for floating-point. We also
2342 use a mode for the case when we are comparing the results of two
2343 comparisons. */
f045b2c9 2344
c5defebb 2345#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2346
2347/* Define the names for the modes specified above. */
c5defebb 2348#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2349
2350/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2351 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2352 should be used. CCUNSmode should be used for unsigned comparisons.
2353 CCEQmode should be used when we are doing an inequality comparison on
2354 the result of a comparison. CCmode should be used in all other cases. */
2355
b565a316 2356#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2357 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2358 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2359 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2360 ? CCEQmode : CCmode))
f045b2c9
RS
2361
2362/* Define the information needed to generate branch and scc insns. This is
2363 stored from the compare operation. Note that we can't use "rtx" here
2364 since it hasn't been defined! */
2365
2366extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2367extern int rs6000_compare_fp_p;
2368
2369/* Set to non-zero by "fix" operation to indicate that itrunc and
2370 uitrunc must be defined. */
2371
2372extern int rs6000_trunc_used;
9929b575
ILT
2373
2374/* Function names to call to do floating point truncation. */
2375
5bf6466a
DE
2376#define RS6000_ITRUNC "__itrunc"
2377#define RS6000_UITRUNC "__uitrunc"
4d30c363
MM
2378
2379/* Prefix and suffix to use to saving floating point */
2380#ifndef SAVE_FP_PREFIX
2381#define SAVE_FP_PREFIX "._savef"
2382#define SAVE_FP_SUFFIX ""
2383#endif
2384
2385/* Prefix and suffix to use to restoring floating point */
2386#ifndef RESTORE_FP_PREFIX
2387#define RESTORE_FP_PREFIX "._restf"
2388#define RESTORE_FP_SUFFIX ""
2389#endif
2390
5bf6466a
DE
2391/* Function name to call to do profiling. */
2392#define RS6000_MCOUNT ".__mcount"
2393
f045b2c9
RS
2394\f
2395/* Control the assembler format that we output. */
2396
1b279f39
DE
2397/* A C string constant describing how to begin a comment in the target
2398 assembler language. The compiler assumes that the comment will end at
2399 the end of the line. */
2400#define ASM_COMMENT_START " #"
6b67933e 2401
f045b2c9
RS
2402/* Output at beginning of assembler file.
2403
b4d6689b 2404 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2405
6355b140 2406 Specify filename to assembler.
3fc2151d 2407
b4d6689b 2408 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2409 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2410 [RW] section emitted.
2411
2412 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2413 allocated after it (when profiling) into the text section.
b4d6689b
RK
2414
2415 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2416
2417#define ASM_FILE_START(FILE) \
2418{ \
fdaff8ba 2419 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2420 main_input_filename, ".bss_"); \
fdaff8ba 2421 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2422 main_input_filename, ".rw_"); \
fdaff8ba 2423 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2424 main_input_filename, ".ro_"); \
2425 \
6355b140 2426 output_file_directive (FILE, main_input_filename); \
a260abc9
DE
2427 if (TARGET_64BIT) \
2428 fputs ("\t.machine\t\"ppc64\"\n", FILE); \
f045b2c9 2429 toc_section (); \
fdaff8ba
RS
2430 if (write_symbols != NO_DEBUG) \
2431 private_data_section (); \
b4d6689b
RK
2432 text_section (); \
2433 if (profile_flag) \
5bf6466a 2434 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
3cfa4909 2435 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2436}
2437
2438/* Output at end of assembler file.
2439
2440 On the RS/6000, referencing data should automatically pull in text. */
2441
2442#define ASM_FILE_END(FILE) \
2443{ \
2444 text_section (); \
19d2d16f 2445 fputs ("_section_.text:\n", FILE); \
f045b2c9 2446 data_section (); \
19d2d16f 2447 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2448}
2449
f045b2c9
RS
2450/* We define this to prevent the name mangler from putting dollar signs into
2451 function names. */
2452
2453#define NO_DOLLAR_IN_LABEL
2454
2455/* We define this to 0 so that gcc will never accept a dollar sign in a
2456 variable name. This is needed because the AIX assembler will not accept
2457 dollar signs. */
2458
2459#define DOLLARS_IN_IDENTIFIERS 0
2460
fdaff8ba
RS
2461/* Implicit library calls should use memcpy, not bcopy, etc. */
2462
2463#define TARGET_MEM_FUNCTIONS
2464
f045b2c9
RS
2465/* Define the extra sections we need. We define three: one is the read-only
2466 data section which is used for constants. This is a csect whose name is
2467 derived from the name of the input file. The second is for initialized
2468 global variables. This is a csect whose name is that of the variable.
2469 The third is the TOC. */
2470
2471#define EXTRA_SECTIONS \
2472 read_only_data, private_data, read_only_private_data, toc, bss
2473
2474/* Define the name of our readonly data section. */
2475
2476#define READONLY_DATA_SECTION read_only_data_section
2477
9704efe6
MS
2478
2479/* Define the name of the section to use for the exception tables.
2480 TODO: test and see if we can use read_only_data_section, if so,
2481 remove this. */
2482
2483#define EXCEPTION_SECTION data_section
2484
b4f892eb
RK
2485/* If we are referencing a function that is static or is known to be
2486 in this file, make the SYMBOL_REF special. We can use this to indicate
2487 that we can branch to this function without emitting a no-op after the
2488 call. */
2489
2490#define ENCODE_SECTION_INFO(DECL) \
2491 if (TREE_CODE (DECL) == FUNCTION_DECL \
2492 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2493 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2494
f045b2c9
RS
2495/* Indicate that jump tables go in the text section. */
2496
75197b37 2497#define JUMP_TABLES_IN_TEXT_SECTION 1
f045b2c9
RS
2498
2499/* Define the routines to implement these extra sections. */
2500
2501#define EXTRA_SECTION_FUNCTIONS \
2502 \
2503void \
2504read_only_data_section () \
2505{ \
2506 if (in_section != read_only_data) \
2507 { \
469adec3 2508 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2509 xcoff_read_only_section_name); \
f045b2c9
RS
2510 in_section = read_only_data; \
2511 } \
2512} \
2513 \
2514void \
2515private_data_section () \
2516{ \
2517 if (in_section != private_data) \
2518 { \
469adec3 2519 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 2520 xcoff_private_data_section_name); \
f045b2c9
RS
2521 \
2522 in_section = private_data; \
2523 } \
2524} \
2525 \
2526void \
2527read_only_private_data_section () \
2528{ \
2529 if (in_section != read_only_private_data) \
2530 { \
f25359b5 2531 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2532 xcoff_private_data_section_name); \
f045b2c9
RS
2533 in_section = read_only_private_data; \
2534 } \
2535} \
2536 \
2537void \
2538toc_section () \
2539{ \
642a35f1
JW
2540 if (TARGET_MINIMAL_TOC) \
2541 { \
642a35f1
JW
2542 /* toc_section is always called at least once from ASM_FILE_START, \
2543 so this is guaranteed to always be defined once and only once \
2544 in each file. */ \
2545 if (! toc_initialized) \
2546 { \
19d2d16f
MM
2547 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2548 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2549 toc_initialized = 1; \
2550 } \
f045b2c9 2551 \
642a35f1 2552 if (in_section != toc) \
19d2d16f 2553 fputs (".csect toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2554 } \
2555 else \
2556 { \
2557 if (in_section != toc) \
19d2d16f 2558 fputs (".toc\n", asm_out_file); \
642a35f1 2559 } \
f045b2c9 2560 in_section = toc; \
fc3ffe83 2561}
f045b2c9 2562
38c1f2d7
MM
2563/* Flag to say the TOC is initialized */
2564extern int toc_initialized;
2565
f045b2c9
RS
2566/* This macro produces the initial definition of a function name.
2567 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2568 output the function descriptor.
f045b2c9
RS
2569
2570 The csect for the function will have already been created by the
2571 `text_section' call previously done. We do have to go back to that
2572 csect, however. */
2573
fdaff8ba
RS
2574/* ??? What do the 16 and 044 in the .function line really mean? */
2575
f045b2c9
RS
2576#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2577{ if (TREE_PUBLIC (DECL)) \
2578 { \
19d2d16f 2579 fputs ("\t.globl .", FILE); \
f045b2c9 2580 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2581 putc ('\n', FILE); \
fdaff8ba 2582 } \
3ce428da 2583 else \
fdaff8ba 2584 { \
19d2d16f 2585 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2586 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2587 putc ('\n', FILE); \
f045b2c9 2588 } \
19d2d16f 2589 fputs (".csect ", FILE); \
f045b2c9 2590 RS6000_OUTPUT_BASENAME (FILE, NAME); \
a260abc9 2591 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", FILE); \
f045b2c9 2592 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2593 fputs (":\n", FILE); \
a260abc9 2594 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2595 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2596 fputs (", TOC[tc0], 0\n", FILE); \
2597 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2598 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2599 fputs (":\n", FILE); \
fdaff8ba 2600 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2601 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2602}
2603
2604/* Return non-zero if this entry is to be written into the constant pool
2605 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2606 containing one of them. If -mfp-in-toc (the default), we also do
2607 this for floating-point constants. We actually can only do this
2608 if the FP formats of the target and host machines are the same, but
2609 we can't check that since not every file that uses
2610 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2611
4697a36c
MM
2612#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2613 (TARGET_TOC \
2614 && (GET_CODE (X) == SYMBOL_REF \
2615 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2616 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2617 || GET_CODE (X) == LABEL_REF \
2618 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2619 && GET_CODE (X) == CONST_DOUBLE \
a260abc9
DE
2620 && (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2621 || (TARGET_POWERPC64 && GET_MODE (X) == DImode)))))
2622#if 0
4697a36c 2623 && BITS_PER_WORD == HOST_BITS_PER_INT)))
a260abc9 2624#endif
f045b2c9
RS
2625
2626/* Select section for constant in constant pool.
2627
2628 On RS/6000, all constants are in the private read-only data area.
2629 However, if this is being placed in the TOC it must be output as a
2630 toc entry. */
2631
2632#define SELECT_RTX_SECTION(MODE, X) \
2633{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2634 toc_section (); \
2635 else \
2636 read_only_private_data_section (); \
2637}
2638
2639/* Macro to output a special constant pool entry. Go to WIN if we output
2640 it. Otherwise, it is written the usual way.
2641
2642 On the RS/6000, toc entries are handled this way. */
2643
2644#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2645{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2646 { \
2647 output_toc (FILE, X, LABELNO); \
2648 goto WIN; \
2649 } \
2650}
2651
2652/* Select the section for an initialized data object.
2653
2654 On the RS/6000, we have a special section for all variables except those
2655 that are static. */
2656
2657#define SELECT_SECTION(EXP,RELOC) \
2658{ \
ed8969fa
JW
2659 if ((TREE_CODE (EXP) == STRING_CST \
2660 && !flag_writable_strings) \
128e5769 2661 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2662 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2663 && DECL_INITIAL (EXP) \
2664 && (DECL_INITIAL (EXP) == error_mark_node \
2665 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2666 && ! (RELOC))) \
f045b2c9
RS
2667 { \
2668 if (TREE_PUBLIC (EXP)) \
2669 read_only_data_section (); \
2670 else \
2671 read_only_private_data_section (); \
2672 } \
2673 else \
2674 { \
2675 if (TREE_PUBLIC (EXP)) \
2676 data_section (); \
2677 else \
2678 private_data_section (); \
2679 } \
2680}
2681
2682/* This outputs NAME to FILE up to the first null or '['. */
2683
2684#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2685 { \
2686 char *_p; \
99d3d26e 2687 \
c23a9d0e
JM
2688 STRIP_NAME_ENCODING (_p, (NAME)); \
2689 assemble_name ((FILE), _p); \
2690 }
2691
2692/* Remove any trailing [DS] or the like from the symbol name. */
2693
28c57785
MM
2694#define STRIP_NAME_ENCODING(VAR,NAME) \
2695 do \
2696 { \
2697 char *_name = (NAME); \
b6c9286a 2698 int _len; \
28c57785 2699 if (_name[0] == '*') \
b6c9286a
MM
2700 _name++; \
2701 _len = strlen (_name); \
2702 if (_name[_len - 1] != ']') \
2703 (VAR) = _name; \
28c57785
MM
2704 else \
2705 { \
b6c9286a
MM
2706 (VAR) = (char *) alloca (_len + 1); \
2707 strcpy ((VAR), _name); \
2708 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2709 } \
2710 } \
c23a9d0e 2711 while (0)
f045b2c9
RS
2712
2713/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2714 assemblers don't need this.
f045b2c9
RS
2715
2716 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2717 name. Normally we write this out along with the name. In the few cases
2718 where we can't, it gets stripped off. */
2719
2720#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2721{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2722 if ((TREE_CODE (DECL) == VAR_DECL \
2723 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2724 && (NAME)[strlen (NAME) - 1] != ']') \
2725 { \
2726 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2727 strcpy (_name, XSTR (_symref, 0)); \
2728 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2729 XSTR (_symref, 0) = _name; \
2730 } \
19d2d16f 2731 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2732 assemble_name (FILE, XSTR (_symref, 0)); \
2733 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2734 { \
19d2d16f 2735 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2736 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2737 } \
19d2d16f 2738 putc ('\n', FILE); \
f045b2c9
RS
2739}
2740
2741/* Similar, but for libcall. We only have to worry about the function name,
2742 not that of the descriptor. */
2743
2744#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2745{ fputs ("\t.extern .", FILE); \
f045b2c9 2746 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2747 putc ('\n', FILE); \
f045b2c9
RS
2748}
2749
2750/* Output to assembler file text saying following lines
2751 may contain character constants, extra white space, comments, etc. */
2752
2753#define ASM_APP_ON ""
2754
2755/* Output to assembler file text saying following lines
2756 no longer contain unusual constructs. */
2757
2758#define ASM_APP_OFF ""
2759
2760/* Output before instructions. */
2761
11117bb9 2762#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
2763
2764/* Output before writable data. */
2765
fdaff8ba 2766#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
2767
2768/* How to refer to registers in assembler output.
2769 This sequence is indexed by compiler's hard-register-number (see above). */
2770
802a0058 2771extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2772
2773#define REGISTER_NAMES \
2774{ \
2775 &rs6000_reg_names[ 0][0], /* r0 */ \
2776 &rs6000_reg_names[ 1][0], /* r1 */ \
2777 &rs6000_reg_names[ 2][0], /* r2 */ \
2778 &rs6000_reg_names[ 3][0], /* r3 */ \
2779 &rs6000_reg_names[ 4][0], /* r4 */ \
2780 &rs6000_reg_names[ 5][0], /* r5 */ \
2781 &rs6000_reg_names[ 6][0], /* r6 */ \
2782 &rs6000_reg_names[ 7][0], /* r7 */ \
2783 &rs6000_reg_names[ 8][0], /* r8 */ \
2784 &rs6000_reg_names[ 9][0], /* r9 */ \
2785 &rs6000_reg_names[10][0], /* r10 */ \
2786 &rs6000_reg_names[11][0], /* r11 */ \
2787 &rs6000_reg_names[12][0], /* r12 */ \
2788 &rs6000_reg_names[13][0], /* r13 */ \
2789 &rs6000_reg_names[14][0], /* r14 */ \
2790 &rs6000_reg_names[15][0], /* r15 */ \
2791 &rs6000_reg_names[16][0], /* r16 */ \
2792 &rs6000_reg_names[17][0], /* r17 */ \
2793 &rs6000_reg_names[18][0], /* r18 */ \
2794 &rs6000_reg_names[19][0], /* r19 */ \
2795 &rs6000_reg_names[20][0], /* r20 */ \
2796 &rs6000_reg_names[21][0], /* r21 */ \
2797 &rs6000_reg_names[22][0], /* r22 */ \
2798 &rs6000_reg_names[23][0], /* r23 */ \
2799 &rs6000_reg_names[24][0], /* r24 */ \
2800 &rs6000_reg_names[25][0], /* r25 */ \
2801 &rs6000_reg_names[26][0], /* r26 */ \
2802 &rs6000_reg_names[27][0], /* r27 */ \
2803 &rs6000_reg_names[28][0], /* r28 */ \
2804 &rs6000_reg_names[29][0], /* r29 */ \
2805 &rs6000_reg_names[30][0], /* r30 */ \
2806 &rs6000_reg_names[31][0], /* r31 */ \
2807 \
2808 &rs6000_reg_names[32][0], /* fr0 */ \
2809 &rs6000_reg_names[33][0], /* fr1 */ \
2810 &rs6000_reg_names[34][0], /* fr2 */ \
2811 &rs6000_reg_names[35][0], /* fr3 */ \
2812 &rs6000_reg_names[36][0], /* fr4 */ \
2813 &rs6000_reg_names[37][0], /* fr5 */ \
2814 &rs6000_reg_names[38][0], /* fr6 */ \
2815 &rs6000_reg_names[39][0], /* fr7 */ \
2816 &rs6000_reg_names[40][0], /* fr8 */ \
2817 &rs6000_reg_names[41][0], /* fr9 */ \
2818 &rs6000_reg_names[42][0], /* fr10 */ \
2819 &rs6000_reg_names[43][0], /* fr11 */ \
2820 &rs6000_reg_names[44][0], /* fr12 */ \
2821 &rs6000_reg_names[45][0], /* fr13 */ \
2822 &rs6000_reg_names[46][0], /* fr14 */ \
2823 &rs6000_reg_names[47][0], /* fr15 */ \
2824 &rs6000_reg_names[48][0], /* fr16 */ \
2825 &rs6000_reg_names[49][0], /* fr17 */ \
2826 &rs6000_reg_names[50][0], /* fr18 */ \
2827 &rs6000_reg_names[51][0], /* fr19 */ \
2828 &rs6000_reg_names[52][0], /* fr20 */ \
2829 &rs6000_reg_names[53][0], /* fr21 */ \
2830 &rs6000_reg_names[54][0], /* fr22 */ \
2831 &rs6000_reg_names[55][0], /* fr23 */ \
2832 &rs6000_reg_names[56][0], /* fr24 */ \
2833 &rs6000_reg_names[57][0], /* fr25 */ \
2834 &rs6000_reg_names[58][0], /* fr26 */ \
2835 &rs6000_reg_names[59][0], /* fr27 */ \
2836 &rs6000_reg_names[60][0], /* fr28 */ \
2837 &rs6000_reg_names[61][0], /* fr29 */ \
2838 &rs6000_reg_names[62][0], /* fr30 */ \
2839 &rs6000_reg_names[63][0], /* fr31 */ \
2840 \
2841 &rs6000_reg_names[64][0], /* mq */ \
2842 &rs6000_reg_names[65][0], /* lr */ \
2843 &rs6000_reg_names[66][0], /* ctr */ \
2844 &rs6000_reg_names[67][0], /* ap */ \
2845 \
2846 &rs6000_reg_names[68][0], /* cr0 */ \
2847 &rs6000_reg_names[69][0], /* cr1 */ \
2848 &rs6000_reg_names[70][0], /* cr2 */ \
2849 &rs6000_reg_names[71][0], /* cr3 */ \
2850 &rs6000_reg_names[72][0], /* cr4 */ \
2851 &rs6000_reg_names[73][0], /* cr5 */ \
2852 &rs6000_reg_names[74][0], /* cr6 */ \
2853 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2854 \
2855 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2856}
2857
2858/* print-rtl can't handle the above REGISTER_NAMES, so define the
2859 following for it. Switch to use the alternate names since
2860 they are more mnemonic. */
2861
2862#define DEBUG_REGISTER_NAMES \
2863{ \
802a0058
MM
2864 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2865 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2866 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2867 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2868 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2869 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2870 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2871 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2872 "mq", "lr", "ctr", "ap", \
2873 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2874 "fpmem" \
c81bebd7 2875}
f045b2c9
RS
2876
2877/* Table of additional register names to use in user input. */
2878
2879#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2880 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2881 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2882 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2883 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2884 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2885 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2886 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2887 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2888 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2889 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2890 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2891 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2892 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2893 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2894 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2895 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2896 /* no additional names for: mq, lr, ctr, ap */ \
2897 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2898 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2899 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9
RS
2900
2901/* How to renumber registers for dbx and gdb. */
2902
2903#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2904
0da40b09
RK
2905/* Text to write out after a CALL that may be replaced by glue code by
2906 the loader. This depends on the AIX version. */
2907#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2908
f045b2c9
RS
2909/* This is how to output the definition of a user-level label named NAME,
2910 such as the label on a static function or variable NAME. */
2911
2912#define ASM_OUTPUT_LABEL(FILE,NAME) \
2913 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2914
2915/* This is how to output a command to make the user-level label named NAME
2916 defined for reference from other files. */
2917
2918#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2919 do { fputs ("\t.globl ", FILE); \
2920 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2921
2922/* This is how to output a reference to a user-level label named NAME.
2923 `assemble_name' uses this. */
2924
2925#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2926 fputs (NAME, FILE)
f045b2c9
RS
2927
2928/* This is how to output an internal numbered label where
2929 PREFIX is the class of label and NUM is the number within the class. */
2930
2931#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2932 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2933
3daf36a4
ILT
2934/* This is how to output an internal label prefix. rs6000.c uses this
2935 when generating traceback tables. */
2936
2937#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2938 fprintf (FILE, "%s..", PREFIX)
2939
f045b2c9
RS
2940/* This is how to output a label for a jump table. Arguments are the same as
2941 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2942 passed. */
2943
2944#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2945{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2946
2947/* This is how to store into the string LABEL
2948 the symbol_ref name of an internal numbered label where
2949 PREFIX is the class of label and NUM is the number within the class.
2950 This is suitable for output with `assemble_name'. */
2951
2952#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 2953 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
2954
2955/* This is how to output an assembler line defining a `double' constant. */
2956
a5b1eb34
RS
2957#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2958 { \
2959 if (REAL_VALUE_ISINF (VALUE) \
2960 || REAL_VALUE_ISNAN (VALUE) \
2961 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2962 { \
2963 long t[2]; \
2964 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2965 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2966 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2967 } \
2968 else \
2969 { \
2970 char str[30]; \
2971 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2972 fprintf (FILE, "\t.double 0d%s\n", str); \
2973 } \
2974 }
f045b2c9
RS
2975
2976/* This is how to output an assembler line defining a `float' constant. */
2977
a5b1eb34
RS
2978#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2979 { \
2980 if (REAL_VALUE_ISINF (VALUE) \
2981 || REAL_VALUE_ISNAN (VALUE) \
2982 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2983 { \
2984 long t; \
2985 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2986 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2987 } \
2988 else \
2989 { \
2990 char str[30]; \
2991 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2992 fprintf (FILE, "\t.float 0d%s\n", str); \
2993 } \
2994 }
f045b2c9
RS
2995
2996/* This is how to output an assembler line defining an `int' constant. */
2997
5854b0d0
DE
2998#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2999do { \
3000 if (TARGET_32BIT) \
3001 { \
3002 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3003 UNITS_PER_WORD, 1); \
3004 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3005 UNITS_PER_WORD, 1); \
3006 } \
3007 else \
3008 { \
3009 fputs ("\t.llong ", FILE); \
3010 output_addr_const (FILE, (VALUE)); \
3011 putc ('\n', FILE); \
3012 } \
3013} while (0)
3014
f045b2c9 3015#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 3016( fputs ("\t.long ", FILE), \
f045b2c9 3017 output_addr_const (FILE, (VALUE)), \
19d2d16f 3018 putc ('\n', FILE))
f045b2c9
RS
3019
3020/* Likewise for `char' and `short' constants. */
3021
3022#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 3023( fputs ("\t.short ", FILE), \
f045b2c9 3024 output_addr_const (FILE, (VALUE)), \
19d2d16f 3025 putc ('\n', FILE))
f045b2c9
RS
3026
3027#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 3028( fputs ("\t.byte ", FILE), \
f045b2c9 3029 output_addr_const (FILE, (VALUE)), \
19d2d16f 3030 putc ('\n', FILE))
f045b2c9
RS
3031
3032/* This is how to output an assembler line for a numeric constant byte. */
3033
3034#define ASM_OUTPUT_BYTE(FILE,VALUE) \
3035 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
3036
3037/* This is how to output an assembler line to define N characters starting
3038 at P to FILE. */
3039
3040#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
3041
3042/* This is how to output code to push a register on the stack.
034e84c4
MM
3043 It need not be very fast code.
3044
3045 On the rs6000, we must keep the backchain up to date. In order
3046 to simplify things, always allocate 16 bytes for a push (System V
3047 wants to keep stack aligned to a 16 byte boundary). */
f045b2c9 3048
4697a36c
MM
3049#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
3050do { \
3051 extern char *reg_names[]; \
034e84c4
MM
3052 asm_fprintf (FILE, "\t{stu|stwu} %s,-16(%s)\n\t{st|stw} %s,8(%s)\n", \
3053 reg_names[1], reg_names[1], reg_names[REGNO], \
4697a36c
MM
3054 reg_names[1]); \
3055} while (0)
f045b2c9
RS
3056
3057/* This is how to output an insn to pop a register from the stack.
3058 It need not be very fast code. */
3059
4697a36c
MM
3060#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
3061do { \
3062 extern char *reg_names[]; \
034e84c4 3063 asm_fprintf (FILE, "\t{l|lwz} %s,8(%s)\n\t{ai|addic} %s,%s,16\n", \
4697a36c
MM
3064 reg_names[REGNO], reg_names[1], reg_names[1], \
3065 reg_names[1]); \
3066} while (0)
f045b2c9 3067
c81bebd7 3068/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
3069 (RS/6000 does not use such vectors, but we must define this macro
3070 anyway.) */
3071
3daf36a4
ILT
3072#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3073 do { char buf[100]; \
a260abc9 3074 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3075 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3076 assemble_name (FILE, buf); \
19d2d16f 3077 putc ('\n', FILE); \
3daf36a4 3078 } while (0)
f045b2c9
RS
3079
3080/* This is how to output an element of a case-vector that is relative. */
3081
33f7f353 3082#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
3daf36a4 3083 do { char buf[100]; \
a260abc9 3084 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
3085 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3086 assemble_name (FILE, buf); \
19d2d16f 3087 putc ('-', FILE); \
3daf36a4
ILT
3088 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
3089 assemble_name (FILE, buf); \
19d2d16f 3090 putc ('\n', FILE); \
3daf36a4 3091 } while (0)
f045b2c9
RS
3092
3093/* This is how to output an assembler line
3094 that says to advance the location counter
3095 to a multiple of 2**LOG bytes. */
3096
3097#define ASM_OUTPUT_ALIGN(FILE,LOG) \
3098 if ((LOG) != 0) \
3099 fprintf (FILE, "\t.align %d\n", (LOG))
3100
3101#define ASM_OUTPUT_SKIP(FILE,SIZE) \
3102 fprintf (FILE, "\t.space %d\n", (SIZE))
3103
3104/* This says how to output an assembler line
3105 to define a global common symbol. */
3106
b73fd26c 3107#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 3108 do { fputs (".comm ", (FILE)); \
f045b2c9 3109 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
3110 if ( (SIZE) > 4) \
3111 fprintf ((FILE), ",%d,3\n", (SIZE)); \
3112 else \
3113 fprintf( (FILE), ",%d\n", (SIZE)); \
3114 } while (0)
f045b2c9
RS
3115
3116/* This says how to output an assembler line
3117 to define a local common symbol. */
3118
3119#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 3120 do { fputs (".lcomm ", (FILE)); \
f045b2c9 3121 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 3122 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
3123 } while (0)
3124
3125/* Store in OUTPUT a string (made with alloca) containing
3126 an assembler-name for a local static variable named NAME.
3127 LABELNO is an integer which is different for each call. */
3128
3129#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3130( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3131 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3132
3133/* Define the parentheses used to group arithmetic operations
3134 in assembler code. */
3135
3136#define ASM_OPEN_PAREN "("
3137#define ASM_CLOSE_PAREN ")"
3138
3139/* Define results of standard character escape sequences. */
3140#define TARGET_BELL 007
3141#define TARGET_BS 010
3142#define TARGET_TAB 011
3143#define TARGET_NEWLINE 012
3144#define TARGET_VT 013
3145#define TARGET_FF 014
3146#define TARGET_CR 015
3147
3148/* Print operand X (an rtx) in assembler syntax to file FILE.
3149 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3150 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3151
3152#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3153
3154/* Define which CODE values are valid. */
3155
c81bebd7
MM
3156#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3157 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
3158
3159/* Print a memory address as an operand to reference that memory location. */
3160
3161#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3162
3163/* Define the codes that are matched by predicates in rs6000.c. */
3164
802a0058 3165#define PREDICATE_CODES \
e675f625
DE
3166 {"short_cint_operand", {CONST_INT, CONSTANT_P_RTX}}, \
3167 {"u_short_cint_operand", {CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3168 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 3169 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9 3170 {"cc_reg_operand", {SUBREG, REG}}, \
e675f625 3171 {"reg_or_short_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f045b2c9 3172 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
e675f625
DE
3173 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
3174 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
766a866c 3175 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
38c1f2d7 3176 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
f045b2c9
RS
3177 {"easy_fp_constant", {CONST_DOUBLE}}, \
3178 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 3179 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 3180 {"volatile_mem_operand", {MEM}}, \
b7676b46 3181 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
f045b2c9 3182 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
e675f625 3183 {"add_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3184 {"non_add_cint_operand", {CONST_INT}}, \
e675f625
DE
3185 {"and_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
3186 {"and64_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX, \
3187 CONST_DOUBLE}}, \
3188 {"logical_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
f357808b 3189 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 3190 {"mask_operand", {CONST_INT}}, \
a260abc9 3191 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
b6c9286a 3192 {"count_register_operand", {REG}}, \
802a0058 3193 {"fpmem_operand", {REG}}, \
f045b2c9 3194 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 3195 {"current_file_function_operand", {SYMBOL_REF}}, \
e675f625
DE
3196 {"input_operand", {SUBREG, MEM, REG, CONST_INT, CONSTANT_P_RTX, \
3197 CONST_DOUBLE, SYMBOL_REF}}, \
f8634644
RK
3198 {"load_multiple_operation", {PARALLEL}}, \
3199 {"store_multiple_operation", {PARALLEL}}, \
3200 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3201 GT, LEU, LTU, GEU, GTU}}, \
f8634644 3202 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
d2a0c2ee
JC
3203 GT, LEU, LTU, GEU, GTU}}, \
3204 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
3205 GT, LEU, LTU, GEU, GTU}},
75814ad4 3206
b6c9286a
MM
3207/* uncomment for disabling the corresponding default options */
3208/* #define MACHINE_no_sched_interblock */
3209/* #define MACHINE_no_sched_speculative */
3210/* #define MACHINE_no_sched_speculative_load */
3211
3212/* indicate that issue rate is defined for this machine
3213 (no need to use the default) */
246853b9 3214#define ISSUE_RATE get_issue_rate ()
b6c9286a 3215
766a866c
MM
3216/* General flags. */
3217extern int flag_pic;
354b734b
MM
3218extern int optimize;
3219extern int flag_expensive_optimizations;
a7df97e6 3220extern int frame_pointer_needed;
354b734b 3221
75814ad4 3222/* Declare functions in rs6000.c */
6b67933e 3223extern void output_options ();
75814ad4 3224extern void rs6000_override_options ();
3cfa4909 3225extern void rs6000_file_start ();
6b67933e 3226extern struct rtx_def *rs6000_float_const ();
c4c40373 3227extern struct rtx_def *rs6000_got_register ();
75814ad4 3228extern int direct_return ();
c4d38ccb 3229extern int get_issue_rate ();
75814ad4
MM
3230extern int any_operand ();
3231extern int short_cint_operand ();
3232extern int u_short_cint_operand ();
3233extern int non_short_cint_operand ();
3234extern int gpc_reg_operand ();
3235extern int cc_reg_operand ();
3236extern int reg_or_short_operand ();
3237extern int reg_or_neg_short_operand ();
3238extern int reg_or_u_short_operand ();
3239extern int reg_or_cint_operand ();
766a866c 3240extern int got_operand ();
38c1f2d7 3241extern int got_no_const_operand ();
4e74d8ec 3242extern int num_insns_constant ();
75814ad4 3243extern int easy_fp_constant ();
b7676b46
RK
3244extern int volatile_mem_operand ();
3245extern int offsettable_addr_operand ();
75814ad4
MM
3246extern int mem_or_easy_const_operand ();
3247extern int add_operand ();
3248extern int non_add_cint_operand ();
c4d38ccb 3249extern int non_logical_cint_operand ();
75814ad4 3250extern int logical_operand ();
75814ad4
MM
3251extern int mask_constant ();
3252extern int mask_operand ();
a260abc9
DE
3253extern int mask64_operand ();
3254extern int and64_operand ();
75814ad4 3255extern int and_operand ();
802a0058
MM
3256extern int count_register_operand ();
3257extern int fpmem_operand ();
75814ad4
MM
3258extern int reg_or_mem_operand ();
3259extern int lwa_operand ();
3260extern int call_operand ();
3261extern int current_file_function_operand ();
3262extern int input_operand ();
7509c759 3263extern int small_data_operand ();
4697a36c
MM
3264extern void init_cumulative_args ();
3265extern void function_arg_advance ();
b6c9286a 3266extern int function_arg_boundary ();
4697a36c
MM
3267extern struct rtx_def *function_arg ();
3268extern int function_arg_partial_nregs ();
3269extern int function_arg_pass_by_reference ();
3270extern void setup_incoming_varargs ();
3271extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3272extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3273extern int expand_block_move ();
75814ad4
MM
3274extern int load_multiple_operation ();
3275extern int store_multiple_operation ();
3276extern int branch_comparison_operator ();
3277extern int scc_comparison_operator ();
d2a0c2ee 3278extern int trap_comparison_operator ();
75814ad4
MM
3279extern int includes_lshift_p ();
3280extern int includes_rshift_p ();
3281extern int registers_ok_for_quad_peep ();
3282extern int addrs_ok_for_quad_peep ();
3283extern enum reg_class secondary_reload_class ();
3284extern int ccr_bit ();
d266da75 3285extern void rs6000_finalize_pic ();
30ea98f1 3286extern void rs6000_reorg ();
a7df97e6
MM
3287extern void rs6000_save_machine_status ();
3288extern void rs6000_restore_machine_status ();
3289extern void rs6000_init_expanders ();
75814ad4
MM
3290extern void print_operand ();
3291extern void print_operand_address ();
3292extern int first_reg_to_save ();
3293extern int first_fp_reg_to_save ();
75814ad4 3294extern int rs6000_makes_calls ();
4697a36c 3295extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3296extern void output_prolog ();
3297extern void output_epilog ();
17167fd8 3298extern void output_mi_thunk ();
75814ad4
MM
3299extern void output_toc ();
3300extern void output_ascii ();
3301extern void rs6000_gen_section_name ();
3302extern void output_function_profiler ();
3303extern int rs6000_adjust_cost ();
b6c9286a
MM
3304extern void rs6000_trampoline_template ();
3305extern int rs6000_trampoline_size ();
3306extern void rs6000_initialize_trampoline ();
c4d38ccb 3307extern void rs6000_output_load_toc_table ();
7509c759
MM
3308extern int rs6000_comp_type_attributes ();
3309extern int rs6000_valid_decl_attribute_p ();
3310extern int rs6000_valid_type_attribute_p ();
3311extern void rs6000_set_default_type_attributes ();
3312extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3313extern struct rtx_def *rs6000_longcall_ref ();
c4d38ccb 3314extern int function_arg_padding ();
296b8152
KG
3315extern void toc_section ();
3316extern void private_data_section ();
a6c2a102 3317extern void rs6000_fatal_bad_address ();
28174a14
MS
3318
3319/* See nonlocal_goto_receiver for when this must be set. */
3320
3321#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)
This page took 1.032825 seconds and 5 git commands to generate.