]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
Add pointer support to the reflection code.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common CPP definitions used by CPP_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define CPP_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
54 %{mpower2: -D_ARCH_PWR2} \
55 %{mpowerpc*: -D_ARCH_PPC} \
56 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
57 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
58%{mcpu=common: -D_ARCH_COM} \
59%{mcpu=power: -D_ARCH_PWR} \
60%{mcpu=power2: -D_ARCH_PWR2} \
61%{mcpu=powerpc: -D_ARCH_PPC} \
62%{mcpu=rios: -D_ARCH_PWR} \
63%{mcpu=rios1: -D_ARCH_PWR} \
64%{mcpu=rios2: -D_ARCH_PWR2} \
65%{mcpu=rsc: -D_ARCH_PWR} \
66%{mcpu=rsc1: -D_ARCH_PWR} \
67%{mcpu=401: -D_ARCH_PPC} \
68%{mcpu=403: -D_ARCH_PPC} \
3b370352 69%{mcpu=405: -D_ARCH_PPC} \
f984d8df
DB
70%{mcpu=505: -D_ARCH_PPC} \
71%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
72%{mcpu=602: -D_ARCH_PPC} \
73%{mcpu=603: -D_ARCH_PPC} \
74%{mcpu=603e: -D_ARCH_PPC} \
75%{mcpu=ec603e: -D_ARCH_PPC} \
76%{mcpu=604: -D_ARCH_PPC} \
77%{mcpu=604e: -D_ARCH_PPC} \
78%{mcpu=620: -D_ARCH_PPC} \
79%{mcpu=740: -D_ARCH_PPC} \
fd3b43f2 80%{mcpu=7400: -D_ARCH_PPC} \
f18c054f 81%{mcpu=7450: -D_ARCH_PPC} \
f984d8df
DB
82%{mcpu=750: -D_ARCH_PPC} \
83%{mcpu=801: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
85%{mcpu=823: -D_ARCH_PPC} \
0ac081f6
AH
86%{mcpu=860: -D_ARCH_PPC} \
87%{maltivec: -D__ALTIVEC__}"
f984d8df
DB
88
89/* Common ASM definitions used by ASM_SPEC among the various targets
90 for handling -mcpu=xxx switches. */
91#define ASM_CPU_SPEC \
92"%{!mcpu*: \
93 %{mpower: %{!mpower2: -mpwr}} \
94 %{mpower2: -mpwrx} \
95 %{mpowerpc*: -mppc} \
96 %{mno-power: %{!mpowerpc*: -mcom}} \
97 %{!mno-power: %{!mpower2: %(asm_default)}}} \
98%{mcpu=common: -mcom} \
99%{mcpu=power: -mpwr} \
100%{mcpu=power2: -mpwrx} \
101%{mcpu=powerpc: -mppc} \
102%{mcpu=rios: -mpwr} \
103%{mcpu=rios1: -mpwr} \
104%{mcpu=rios2: -mpwrx} \
105%{mcpu=rsc: -mpwr} \
106%{mcpu=rsc1: -mpwr} \
107%{mcpu=401: -mppc} \
108%{mcpu=403: -mppc} \
3b370352 109%{mcpu=405: -mppc} \
f984d8df
DB
110%{mcpu=505: -mppc} \
111%{mcpu=601: -m601} \
112%{mcpu=602: -mppc} \
113%{mcpu=603: -mppc} \
114%{mcpu=603e: -mppc} \
115%{mcpu=ec603e: -mppc} \
116%{mcpu=604: -mppc} \
117%{mcpu=604e: -mppc} \
118%{mcpu=620: -mppc} \
119%{mcpu=740: -mppc} \
fd3b43f2 120%{mcpu=7400: -mppc} \
f18c054f 121%{mcpu=7450: -mppc} \
f984d8df
DB
122%{mcpu=750: -mppc} \
123%{mcpu=801: -mppc} \
124%{mcpu=821: -mppc} \
125%{mcpu=823: -mppc} \
775db490
AH
126%{mcpu=860: -mppc} \
127%{maltivec: -maltivec}"
f984d8df
DB
128
129#define CPP_DEFAULT_SPEC ""
130
131#define ASM_DEFAULT_SPEC ""
132
841faeed
MM
133/* This macro defines names of additional specifications to put in the specs
134 that can be used in various specifications like CC1_SPEC. Its definition
135 is an initializer with a subgrouping for each command option.
136
137 Each subgrouping contains a string constant, that defines the
138 specification name, and a string constant that used by the GNU CC driver
139 program.
140
141 Do not define this macro if it does not need to do anything. */
142
7509c759 143#define SUBTARGET_EXTRA_SPECS
7509c759 144
c81bebd7
MM
145#define EXTRA_SPECS \
146 { "cpp_cpu", CPP_CPU_SPEC }, \
147 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
148 { "asm_cpu", ASM_CPU_SPEC }, \
149 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
150 SUBTARGET_EXTRA_SPECS
151
fb623df5 152/* Architecture type. */
f045b2c9 153
fb623df5
RK
154extern int target_flags;
155
156/* Use POWER architecture instructions and MQ register. */
38c1f2d7 157#define MASK_POWER 0x00000001
fb623df5 158
6febd581 159/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 160#define MASK_POWER2 0x00000002
6febd581 161
fb623df5 162/* Use PowerPC architecture instructions. */
38c1f2d7 163#define MASK_POWERPC 0x00000004
6febd581 164
583cf4db 165/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 166#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
167
168/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 169#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 170
fb623df5 171/* Use PowerPC-64 architecture instructions. */
38c1f2d7 172#define MASK_POWERPC64 0x00000020
f045b2c9 173
fb623df5 174/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 175#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
176
177/* Disable placing fp constants in the TOC; can be turned on when the
178 TOC overflows. */
38c1f2d7 179#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 180
0b9ccabc
RK
181/* Disable placing symbol+offset constants in the TOC; can be turned on when
182 the TOC overflows. */
38c1f2d7 183#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 184
fb623df5 185/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
186 there are more than 16K unique variables/constants in an executable. With
187 this option, linking fails only if there are more than 16K modules, or
188 if there are more than 16K unique variables/constant in a single module.
189
190 This is at the cost of having 2 extra loads and one extra store per
956d6950 191 function, and one less allocable register. */
38c1f2d7 192#define MASK_MINIMAL_TOC 0x00000200
642a35f1 193
b1765bde 194/* Nonzero for the 64bit model: longs and pointers are 64 bits. */
38c1f2d7 195#define MASK_64BIT 0x00000400
9e654916 196
f85f4585 197/* Disable use of FPRs. */
38c1f2d7 198#define MASK_SOFT_FLOAT 0x00000800
f85f4585 199
4d30c363 200/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
201#define MASK_MULTIPLE 0x00001000
202#define MASK_MULTIPLE_SET 0x00002000
4d30c363 203
7e69e155 204/* Use string instructions for block moves */
38c1f2d7
MM
205#define MASK_STRING 0x00004000
206#define MASK_STRING_SET 0x00008000
7e69e155 207
38c1f2d7
MM
208/* Disable update form of load/store */
209#define MASK_NO_UPDATE 0x00010000
210
211/* Disable fused multiply/add operations */
212#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 213
9ebbca7d
GK
214/* Nonzero if we need to schedule the prolog and epilog. */
215#define MASK_SCHED_PROLOG 0x00040000
216
0ac081f6
AH
217/* Use AltiVec instructions. */
218#define MASK_ALTIVEC 0x00080000
219
6fa3f289
ZW
220/* Return small structures in memory (as the AIX ABI requires). */
221#define MASK_AIX_STRUCT_RET 0x00100000
222#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 223
6fa3f289
ZW
224/* The only remaining free bit is 0x00400000. sysv4.h uses
225 0x00800000 -> 0x40000000, and 0x80000000 is not available
226 because target_flags is signed. */
06f4e019 227
7e69e155
MM
228#define TARGET_POWER (target_flags & MASK_POWER)
229#define TARGET_POWER2 (target_flags & MASK_POWER2)
230#define TARGET_POWERPC (target_flags & MASK_POWERPC)
231#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
232#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
233#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
234#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
235#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
236#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
237#define TARGET_64BIT (target_flags & MASK_64BIT)
238#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
239#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
240#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
241#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 242#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
243#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
244#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 245#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 246#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 247#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 248
2f3e5814 249#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 250#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
251#define TARGET_UPDATE (! TARGET_NO_UPDATE)
252#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 253
996ed075
JJ
254#ifdef IN_LIBGCC2
255/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 256#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
257#define TARGET_POWERPC64 1
258#else
259#define TARGET_POWERPC64 0
260#endif
b6c9286a 261#else
9ebbca7d 262#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
263#endif
264
a3950905 265#define TARGET_XL_CALL 0
a3950905 266
fb623df5 267/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 268
fb623df5 269 Macro to define tables used to set the flags.
f045b2c9
RS
270 This is a list in braces of pairs in braces,
271 each pair being { "NAME", VALUE }
272 where VALUE is the bits to set or minus the bits to clear.
273 An empty string NAME is used to identify the default VALUE. */
274
938937d8 275#define TARGET_SWITCHES \
9ebbca7d 276 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 277 N_("Use POWER instruction set")}, \
938937d8 278 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 279 | MASK_POWER2), \
047142d3 280 N_("Use POWER2 instruction set")}, \
9ebbca7d 281 {"no-power2", - MASK_POWER2, \
047142d3 282 N_("Do not use POWER2 instruction set")}, \
938937d8 283 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 284 | MASK_STRING), \
047142d3 285 N_("Do not use POWER instruction set")}, \
9ebbca7d 286 {"powerpc", MASK_POWERPC, \
047142d3 287 N_("Use PowerPC instruction set")}, \
938937d8 288 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 289 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 290 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 291 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 292 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 293 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 294 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 295 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 296 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 297 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 298 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 299 {"powerpc64", MASK_POWERPC64, \
047142d3 300 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 301 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 302 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 303 {"altivec", MASK_ALTIVEC , \
c725bd79 304 N_("Use AltiVec instructions")}, \
f18c054f 305 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 306 N_("Don't use AltiVec instructions")}, \
9ebbca7d 307 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 308 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 309 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 310 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 311 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 312 | MASK_MINIMAL_TOC), \
047142d3 313 N_("Put everything in the regular TOC")}, \
9ebbca7d 314 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 315 N_("Place floating point constants in TOC")}, \
9ebbca7d 316 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 317 N_("Don't place floating point constants in TOC")},\
9ebbca7d 318 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 319 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 320 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 321 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
322 {"minimal-toc", MASK_MINIMAL_TOC, \
323 "Use only one TOC entry per procedure"}, \
324 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 325 ""}, \
9ebbca7d 326 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 327 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 328 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 329 N_("Use hardware fp")}, \
9ebbca7d 330 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 331 N_("Do not use hardware fp")}, \
9ebbca7d 332 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 333 N_("Generate load/store multiple instructions")}, \
9ebbca7d 334 {"no-multiple", - MASK_MULTIPLE, \
047142d3 335 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 336 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 337 ""}, \
9ebbca7d 338 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 339 N_("Generate string instructions for block moves")},\
9ebbca7d 340 {"no-string", - MASK_STRING, \
047142d3 341 N_("Do not generate string instructions for block moves")},\
9ebbca7d 342 {"no-string", MASK_STRING_SET, \
047142d3 343 ""}, \
9ebbca7d 344 {"update", - MASK_NO_UPDATE, \
047142d3 345 N_("Generate load/store with update instructions")},\
9ebbca7d 346 {"no-update", MASK_NO_UPDATE, \
047142d3 347 N_("Do not generate load/store with update instructions")},\
9ebbca7d 348 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 349 N_("Generate fused multiply/add instructions")},\
9ebbca7d 350 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 351 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
352 {"sched-prolog", MASK_SCHED_PROLOG, \
353 ""}, \
354 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 355 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
356 {"sched-epilog", MASK_SCHED_PROLOG, \
357 ""}, \
358 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
359 ""}, \
6fa3f289
ZW
360 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
361 N_("Return all structures in memory (AIX default)")},\
362 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
363 N_("Return small structures in registers (SVR4 default)")},\
364 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
365 ""},\
366 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
367 ""},\
368 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
369 ""},\
370 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
371 ""},\
938937d8 372 SUBTARGET_SWITCHES \
9ebbca7d
GK
373 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
374 ""}}
fb623df5 375
938937d8 376#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
377
378/* This is meant to be redefined in the host dependent files */
379#define SUBTARGET_SWITCHES
fb623df5 380
cac8ce95 381/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 382enum processor_type
bef84347
VM
383 {
384 PROCESSOR_RIOS1,
385 PROCESSOR_RIOS2,
3cb999d8 386 PROCESSOR_RS64A,
bef84347
VM
387 PROCESSOR_MPCCORE,
388 PROCESSOR_PPC403,
fe7f5677 389 PROCESSOR_PPC405,
bef84347
VM
390 PROCESSOR_PPC601,
391 PROCESSOR_PPC603,
392 PROCESSOR_PPC604,
393 PROCESSOR_PPC604e,
394 PROCESSOR_PPC620,
3cb999d8 395 PROCESSOR_PPC630,
ed947a96
DJ
396 PROCESSOR_PPC750,
397 PROCESSOR_PPC7400,
398 PROCESSOR_PPC7450
bef84347 399};
fb623df5
RK
400
401extern enum processor_type rs6000_cpu;
402
403/* Recast the processor type to the cpu attribute. */
404#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
405
8482e358 406/* Define generic processor types based upon current deployment. */
3cb999d8
DE
407#define PROCESSOR_COMMON PROCESSOR_PPC601
408#define PROCESSOR_POWER PROCESSOR_RIOS1
409#define PROCESSOR_POWERPC PROCESSOR_PPC604
410#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 411
fb623df5 412/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
413#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
414#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 415
6febd581
RK
416/* Specify the dialect of assembler to use. New mnemonics is dialect one
417 and the old mnemonics are dialect zero. */
9ebbca7d 418#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 419
956d6950 420/* This is meant to be overridden in target specific files. */
b6c9286a 421#define SUBTARGET_OPTIONS
b6c9286a 422
9ebbca7d
GK
423#define TARGET_OPTIONS \
424{ \
047142d3
PT
425 {"cpu=", &rs6000_select[1].string, \
426 N_("Use features of and schedule code for given CPU") }, \
427 {"tune=", &rs6000_select[2].string, \
428 N_("Schedule code for given CPU") }, \
429 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
0ac081f6 430 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
431 {"long-double-", &rs6000_long_double_size_string, \
432 N_("Specify size of long double (64 or 128 bits)") }, \
9ebbca7d 433 SUBTARGET_OPTIONS \
b6c9286a 434}
fb623df5 435
ff222560 436/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
437struct rs6000_cpu_select
438{
815cdc52
MM
439 const char *string;
440 const char *name;
8e3f41e7
MM
441 int set_tune_p;
442 int set_arch_p;
443};
444
445extern struct rs6000_cpu_select rs6000_select[];
fb623df5 446
38c1f2d7 447/* Debug support */
0ac081f6 448extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 449extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
450extern int rs6000_debug_stack; /* debug stack applications */
451extern int rs6000_debug_arg; /* debug argument handling */
452
453#define TARGET_DEBUG_STACK rs6000_debug_stack
454#define TARGET_DEBUG_ARG rs6000_debug_arg
455
6fa3f289
ZW
456/* These are separate from target_flags because we've run out of bits
457 there. */
458extern const char *rs6000_long_double_size_string;
459extern int rs6000_long_double_type_size;
460extern int rs6000_altivec_abi;
461
462#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
463#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
464
fb623df5
RK
465/* Sometimes certain combinations of command options do not make sense
466 on a particular target machine. You can define a macro
467 `OVERRIDE_OPTIONS' to take account of this. This macro, if
468 defined, is executed once just after all the command options have
469 been parsed.
470
5accd822
DE
471 Don't use this macro to turn on various extra optimizations for
472 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
473
fb623df5
RK
474 On the RS/6000 this is used to define the target cpu type. */
475
8e3f41e7 476#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 477
5accd822
DE
478/* Define this to change the optimizations performed by default. */
479#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
480
4f074454
RK
481/* Show we can debug even without a frame pointer. */
482#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
483\f
484/* target machine storage layout */
485
df44fa77
RK
486/* Define to support cross compilation to an RS6000 target. */
487#define REAL_ARITHMETIC
488
13d39dbc 489/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 490 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
491 the value is constrained to be within the bounds of the declared
492 type, but kept valid in the wider mode. The signedness of the
493 extension may differ from that of the type. */
494
39403d82
DE
495#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
496 if (GET_MODE_CLASS (MODE) == MODE_INT \
497 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 498 (MODE) = word_mode;
39403d82
DE
499
500/* Define this if function arguments should also be promoted using the above
501 procedure. */
502
503#define PROMOTE_FUNCTION_ARGS
504
505/* Likewise, if the function return value is promoted. */
506
507#define PROMOTE_FUNCTION_RETURN
ef457bda 508
f045b2c9 509/* Define this if most significant bit is lowest numbered
82e41834
KH
510 in instructions that operate on numbered bit-fields. */
511/* That is true on RS/6000. */
f045b2c9
RS
512#define BITS_BIG_ENDIAN 1
513
514/* Define this if most significant byte of a word is the lowest numbered. */
515/* That is true on RS/6000. */
516#define BYTES_BIG_ENDIAN 1
517
518/* Define this if most significant word of a multiword number is lowest
c81bebd7 519 numbered.
f045b2c9
RS
520
521 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 522 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
523#define WORDS_BIG_ENDIAN 1
524
fdaff8ba 525/* number of bits in an addressable storage unit */
f045b2c9
RS
526#define BITS_PER_UNIT 8
527
528/* Width in bits of a "word", which is the contents of a machine register.
529 Note that this is not necessarily the width of data type `int';
530 if using 16-bit ints on a 68000, this would still be 32.
531 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 532#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 533#define MAX_BITS_PER_WORD 64
f045b2c9
RS
534
535/* Width of a word, in units (bytes). */
2f3e5814 536#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 537#define MIN_UNITS_PER_WORD 4
2e360ab3 538#define UNITS_PER_FP_WORD 8
0ac081f6 539#define UNITS_PER_ALTIVEC_WORD 16
f045b2c9 540
915f619f
JW
541/* Type used for ptrdiff_t, as a string used in a declaration. */
542#define PTRDIFF_TYPE "int"
543
058ef853
DE
544/* Type used for size_t, as a string used in a declaration. */
545#define SIZE_TYPE "long unsigned int"
546
f045b2c9
RS
547/* Type used for wchar_t, as a string used in a declaration. */
548#define WCHAR_TYPE "short unsigned int"
549
550/* Width of wchar_t in bits. */
551#define WCHAR_TYPE_SIZE 16
552
9e654916
RK
553/* A C expression for the size in bits of the type `short' on the
554 target machine. If you don't define this, the default is half a
555 word. (If this would be less than one storage unit, it is
556 rounded up to one unit.) */
557#define SHORT_TYPE_SIZE 16
558
559/* A C expression for the size in bits of the type `int' on the
560 target machine. If you don't define this, the default is one
561 word. */
19d2d16f 562#define INT_TYPE_SIZE 32
9e654916
RK
563
564/* A C expression for the size in bits of the type `long' on the
565 target machine. If you don't define this, the default is one
566 word. */
2f3e5814 567#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
568#define MAX_LONG_TYPE_SIZE 64
569
570/* A C expression for the size in bits of the type `long long' on the
571 target machine. If you don't define this, the default is two
572 words. */
573#define LONG_LONG_TYPE_SIZE 64
574
575/* A C expression for the size in bits of the type `char' on the
576 target machine. If you don't define this, the default is one
577 quarter of a word. (If this would be less than one storage unit,
578 it is rounded up to one unit.) */
579#define CHAR_TYPE_SIZE BITS_PER_UNIT
580
581/* A C expression for the size in bits of the type `float' on the
582 target machine. If you don't define this, the default is one
583 word. */
584#define FLOAT_TYPE_SIZE 32
585
586/* A C expression for the size in bits of the type `double' on the
587 target machine. If you don't define this, the default is two
588 words. */
589#define DOUBLE_TYPE_SIZE 64
590
591/* A C expression for the size in bits of the type `long double' on
592 the target machine. If you don't define this, the default is two
593 words. */
6fa3f289 594#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
595
596/* Constant which presents upper bound of the above value. */
597#define MAX_LONG_DOUBLE_TYPE_SIZE 128
598
599/* Define this to set long double type size to use in libgcc2.c, which can
600 not depend on target_flags. */
601#ifdef __LONG_DOUBLE_128__
602#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
603#else
604#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
605#endif
9e654916 606
f045b2c9
RS
607/* Width in bits of a pointer.
608 See also the macro `Pmode' defined below. */
2f3e5814 609#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
610
611/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 612#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
613
614/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 615#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
616
617/* Allocation boundary (in *bits*) for the code of a function. */
618#define FUNCTION_BOUNDARY 32
619
620/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
621#define BIGGEST_ALIGNMENT 128
622
623/* A C expression to compute the alignment for a variables in the
624 local store. TYPE is the data type, and ALIGN is the alignment
625 that the object would ordinarily have. */
626#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a4edd584 627 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
b73fd26c 628
e1565e65
DE
629/* Handle #pragma pack. */
630#define HANDLE_PRAGMA_PACK 1
631
f045b2c9
RS
632/* Alignment of field after `int : 0' in a structure. */
633#define EMPTY_FIELD_BOUNDARY 32
634
635/* Every structure's size must be a multiple of this. */
636#define STRUCTURE_SIZE_BOUNDARY 8
637
638/* A bitfield declared as `int' forces `int' alignment for the struct. */
639#define PCC_BITFIELD_TYPE_MATTERS 1
640
69ef87e2
AH
641/* Make strings word-aligned so strcpy from constants will be faster.
642 Make vector constants quadword aligned. */
643#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
644 (TREE_CODE (EXP) == STRING_CST \
645 && (ALIGN) < BITS_PER_WORD \
646 ? BITS_PER_WORD \
647 : (ALIGN))
f045b2c9 648
0ac081f6
AH
649/* Make arrays of chars word-aligned for the same reasons.
650 Align vectors to 128 bits. */
f045b2c9 651#define DATA_ALIGNMENT(TYPE, ALIGN) \
0ac081f6
AH
652 (TREE_CODE (TYPE) == VECTOR_TYPE ? 128 \
653 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
654 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
655 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
656
fdaff8ba 657/* Non-zero if move instructions will actually fail to work
f045b2c9 658 when given unaligned data. */
fdaff8ba 659#define STRICT_ALIGNMENT 0
e1565e65
DE
660
661/* Define this macro to be the value 1 if unaligned accesses have a cost
662 many times greater than aligned accesses, for example if they are
663 emulated in a trap handler. */
41543739
GK
664#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
665 (STRICT_ALIGNMENT \
666 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
667 && (ALIGN) < 32))
f045b2c9
RS
668\f
669/* Standard register usage. */
670
671/* Number of actual hardware registers.
672 The hardware registers are assigned numbers for the compiler
673 from 0 to just below FIRST_PSEUDO_REGISTER.
674 All registers that the compiler knows about must be given numbers,
675 even those that are not normally considered general registers.
676
677 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
678 an MQ register, a count register, a link register, and 8 condition
679 register fields, which we view here as separate registers.
680
681 In addition, the difference between the frame and argument pointers is
682 a function of the number of registers saved, so we need to have a
683 register for AP that will later be eliminated in favor of SP or FP.
802a0058 684 This is a normal register, but it is fixed.
f045b2c9 685
802a0058
MM
686 We also create a pseudo register for float/int conversions, that will
687 really represent the memory location used. It is represented here as
688 a register, in order to work around problems in allocating stack storage
689 in inline functions. */
690
0ac081f6 691#define FIRST_PSEUDO_REGISTER 110
f045b2c9 692
d6a7951f 693/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 694#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 695
f045b2c9
RS
696/* 1 for registers that have pervasive standard uses
697 and are not available for the register allocator.
698
5dead3e5
DJ
699 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
700 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 701
a127c4e5
RK
702 cr5 is not supposed to be used.
703
704 On System V implementations, r13 is fixed and not available for use. */
705
f045b2c9 706#define FIXED_REGISTERS \
5dead3e5 707 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
708 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
709 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
710 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
711 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
712 /* AltiVec registers. */ \
713 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
714 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 715 1 \
0ac081f6 716}
f045b2c9
RS
717
718/* 1 for registers not available across function calls.
719 These must include the FIXED_REGISTERS and also any
720 registers that can be used without being saved.
721 The latter must include the registers where values are returned
722 and the register where structure-value addresses are passed.
723 Aside from that, you can include as many other registers as you like. */
724
725#define CALL_USED_REGISTERS \
a127c4e5 726 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
728 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
729 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
730 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
731 /* AltiVec registers. */ \
732 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
733 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 734 1 \
0ac081f6
AH
735}
736
289e96b2
AH
737/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
738 the entire set of `FIXED_REGISTERS' be included.
739 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
740 This macro is optional. If not specified, it defaults to the value
741 of `CALL_USED_REGISTERS'. */
742
743#define CALL_REALLY_USED_REGISTERS \
744 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
745 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
746 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
749 /* AltiVec registers. */ \
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
752 0 \
753}
f045b2c9 754
9ebbca7d
GK
755#define MQ_REGNO 64
756#define CR0_REGNO 68
757#define CR1_REGNO 69
758#define CR2_REGNO 70
759#define CR3_REGNO 71
760#define CR4_REGNO 72
761#define MAX_CR_REGNO 75
762#define XER_REGNO 76
0ac081f6
AH
763#define FIRST_ALTIVEC_REGNO 77
764#define LAST_ALTIVEC_REGNO 108
00b960c7 765#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO)
0ac081f6 766#define VRSAVE_REGNO 109
9ebbca7d 767
f045b2c9
RS
768/* List the order in which to allocate registers. Each register must be
769 listed once, even those in FIXED_REGISTERS.
770
771 We allocate in the following order:
772 fp0 (not saved or used for anything)
773 fp13 - fp2 (not saved; incoming fp arg registers)
774 fp1 (not saved; return value)
775 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
776 cr7, cr6 (not saved or special)
777 cr1 (not saved, but used for FP operations)
f045b2c9 778 cr0 (not saved, but used for arithmetic operations)
5accd822 779 cr4, cr3, cr2 (saved)
f045b2c9
RS
780 r0 (not saved; cannot be base reg)
781 r9 (not saved; best for TImode)
782 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
783 r3 (not saved; return value register)
784 r31 - r13 (saved; order given to save least number)
785 r12 (not saved; if used for DImode or DFmode would use r13)
786 mq (not saved; best to use it if we can)
787 ctr (not saved; when we have the choice ctr is better)
788 lr (saved)
0ac081f6
AH
789 cr5, r1, r2, ap, xer, vrsave (fixed)
790
791 AltiVec registers:
792 v0 - v1 (not saved or used for anything)
793 v13 - v3 (not saved; incoming vector arg registers)
794 v2 (not saved; incoming vector arg reg; return value)
795 v19 - v14 (not saved or used for anything)
796 v31 - v20 (saved; order given to save least number)
797*/
798
f045b2c9
RS
799
800#define REG_ALLOC_ORDER \
801 {32, \
802 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
803 33, \
804 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
805 50, 49, 48, 47, 46, \
5accd822 806 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
807 0, \
808 9, 11, 10, 8, 7, 6, 5, 4, \
809 3, \
810 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
811 18, 17, 16, 15, 14, 13, 12, \
812 64, 66, 65, \
0ac081f6
AH
813 73, 1, 2, 67, 76, \
814 /* AltiVec registers. */ \
815 77, 78, \
816 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
817 79, \
818 96, 95, 94, 93, 92, 91, \
58568475
AH
819 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
820 97, 109 \
0ac081f6 821}
f045b2c9
RS
822
823/* True if register is floating-point. */
824#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
825
826/* True if register is a condition register. */
827#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
828
815cdc52
MM
829/* True if register is a condition register, but not cr0. */
830#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
831
f045b2c9 832/* True if register is an integer register. */
9ebbca7d 833#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 834
0d86f538 835/* True if register is the XER register. */
9ebbca7d 836#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 837
0ac081f6
AH
838/* True if register is an AltiVec register. */
839#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
840
f045b2c9
RS
841/* Return number of consecutive hard regs needed starting at reg REGNO
842 to hold something of mode MODE.
843 This is ordinarily the length in words of a value of mode MODE
844 but can be less for certain modes in special long registers.
845
a260abc9
DE
846 POWER and PowerPC GPRs hold 32 bits worth;
847 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 848
802a0058 849#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 850 (FP_REGNO_P (REGNO) \
2e360ab3 851 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
0ac081f6
AH
852 : ALTIVEC_REGNO_P (REGNO) \
853 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
854 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
855
0ac081f6
AH
856#define ALTIVEC_VECTOR_MODE(MODE) \
857 ((MODE) == V16QImode \
858 || (MODE) == V8HImode \
859 || (MODE) == V4SFmode \
860 || (MODE) == V4SImode)
861
862/* Define this macro to be nonzero if the port is prepared to handle
863 insns involving vector mode MODE. At the very least, it must have
864 move patterns for this mode. */
865
866#define VECTOR_MODE_SUPPORTED_P(MODE) \
867 (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
868
f045b2c9 869/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
870 For POWER and PowerPC, the GPRs can hold any mode, but the float
871 registers only can hold floating modes and DImode, and CR register only
872 can hold CC modes. We cannot put TImode anywhere except general
82e41834 873 register and it must be able to fit within the register set. */
f045b2c9 874
802a0058
MM
875#define HARD_REGNO_MODE_OK(REGNO, MODE) \
876 (FP_REGNO_P (REGNO) ? \
877 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
878 || (GET_MODE_CLASS (MODE) == MODE_INT \
879 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 880 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
802a0058 881 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 882 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
802a0058 883 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 884 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
885 : 1)
886
887/* Value is 1 if it is a good idea to tie two pseudo registers
888 when one has mode MODE1 and one has mode MODE2.
889 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
890 for any hard reg, then this must be 0 for correct output. */
891#define MODES_TIEABLE_P(MODE1, MODE2) \
892 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
893 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
894 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
895 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
896 : GET_MODE_CLASS (MODE1) == MODE_CC \
897 ? GET_MODE_CLASS (MODE2) == MODE_CC \
898 : GET_MODE_CLASS (MODE2) == MODE_CC \
899 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
900 : ALTIVEC_VECTOR_MODE (MODE1) \
901 ? ALTIVEC_VECTOR_MODE (MODE2) \
902 : ALTIVEC_VECTOR_MODE (MODE2) \
903 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
904 : 1)
905
906/* A C expression returning the cost of moving data from a register of class
907 CLASS1 to one of CLASS2.
908
909 On the RS/6000, copying between floating-point and fixed-point
910 registers is expensive. */
911
cf011243 912#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
0ac081f6 913 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
f045b2c9
RS
914 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
915 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
0ac081f6
AH
916 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
917 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
a4b970a0 918 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
919 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
920 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 921 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 922 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 923 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
924 : 2)
925
926/* A C expressions returning the cost of moving data of MODE from a register to
927 or from memory.
928
929 On the RS/6000, bump this up a bit. */
930
e1565e65
DE
931#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
932 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
ab4a5fc9
RK
933 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
934 ? 3 : 2) \
935 + 4)
f045b2c9
RS
936
937/* Specify the cost of a branch insn; roughly the number of extra insns that
938 should be added to avoid a branch.
939
ef457bda 940 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
941 unscheduled conditional branch. */
942
ef457bda 943#define BRANCH_COST 3
f045b2c9 944
6febd581
RK
945/* Define this macro to change register usage conditional on target flags.
946 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 947 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 948 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
949 Conditionally disable FPRs. */
950
8d30c4ee
FS
951#define CONDITIONAL_REGISTER_USAGE \
952{ \
e9e4208a 953 int i; \
8d30c4ee
FS
954 if (! TARGET_POWER) \
955 fixed_regs[64] = 1; \
956 if (TARGET_64BIT) \
289e96b2
AH
957 fixed_regs[13] = call_used_regs[13] \
958 = call_really_used_regs[13] = 1; \
8d30c4ee
FS
959 if (TARGET_SOFT_FLOAT) \
960 for (i = 32; i < 64; i++) \
289e96b2
AH
961 fixed_regs[i] = call_used_regs[i] \
962 = call_really_used_regs[i] = 1; \
f607bc57 963 if (DEFAULT_ABI == ABI_V4 && flag_pic == 1) \
8d30c4ee 964 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
289e96b2
AH
965 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
966 = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
ee890fe2
SS
967 if (DEFAULT_ABI == ABI_DARWIN && flag_pic) \
968 global_regs[PIC_OFFSET_TABLE_REGNUM] \
969 = fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
289e96b2
AH
970 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
971 = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
2473ee11 972 if (! TARGET_ALTIVEC) \
c1f11548
DE
973 { \
974 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
975 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
976 call_really_used_regs[VRSAVE_REGNO] = 1; \
977 } \
0ac081f6 978 if (TARGET_ALTIVEC_ABI) \
2473ee11 979 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 980 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 981}
6febd581 982
f045b2c9
RS
983/* Specify the registers used for certain standard purposes.
984 The values of these macros are register numbers. */
985
986/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
987/* #define PC_REGNUM */
988
989/* Register to use for pushing function arguments. */
990#define STACK_POINTER_REGNUM 1
991
992/* Base register for access to local variables of the function. */
993#define FRAME_POINTER_REGNUM 31
994
995/* Value should be nonzero if functions must have frame pointers.
996 Zero means the frame pointer need not be set up (and parms
997 may be accessed via the stack pointer) in functions that seem suitable.
998 This is computed in `reload', in reload1.c. */
999#define FRAME_POINTER_REQUIRED 0
1000
1001/* Base register for access to arguments of the function. */
1002#define ARG_POINTER_REGNUM 67
1003
1004/* Place to put static chain when calling a function that requires it. */
1005#define STATIC_CHAIN_REGNUM 11
1006
82e41834 1007/* Link register number. */
9ebbca7d 1008#define LINK_REGISTER_REGNUM 65
b6c9286a 1009
82e41834 1010/* Count register number. */
9ebbca7d 1011#define COUNT_REGISTER_REGNUM 66
802a0058 1012
f045b2c9
RS
1013/* Place that structure value return address is placed.
1014
1015 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1016#define STRUCT_VALUE 0
f045b2c9
RS
1017\f
1018/* Define the classes of registers for register constraints in the
1019 machine description. Also define ranges of constants.
1020
1021 One of the classes must always be named ALL_REGS and include all hard regs.
1022 If there is more than one class, another class must be named NO_REGS
1023 and contain no registers.
1024
1025 The name GENERAL_REGS must be the name of a class (or an alias for
1026 another name such as ALL_REGS). This is the class of registers
1027 that is allowed by "g" or "r" in a register constraint.
1028 Also, registers outside this class are allocated only when
1029 instructions express preferences for them.
1030
1031 The classes must be numbered in nondecreasing order; that is,
1032 a larger-numbered class must never be contained completely
1033 in a smaller-numbered class.
1034
1035 For any two classes, it is very desirable that there be another
1036 class that represents their union. */
c81bebd7 1037
f045b2c9
RS
1038/* The RS/6000 has three types of registers, fixed-point, floating-point,
1039 and condition registers, plus three special registers, MQ, CTR, and the
1040 link register.
1041
1042 However, r0 is special in that it cannot be used as a base register.
1043 So make a class for registers valid as base registers.
1044
1045 Also, cr0 is the only condition code register that can be used in
0d86f538 1046 arithmetic insns, so make a separate class for it. */
f045b2c9 1047
ebedb4dd
MM
1048enum reg_class
1049{
1050 NO_REGS,
ebedb4dd
MM
1051 BASE_REGS,
1052 GENERAL_REGS,
1053 FLOAT_REGS,
0ac081f6
AH
1054 ALTIVEC_REGS,
1055 VRSAVE_REGS,
ebedb4dd
MM
1056 NON_SPECIAL_REGS,
1057 MQ_REGS,
1058 LINK_REGS,
1059 CTR_REGS,
1060 LINK_OR_CTR_REGS,
1061 SPECIAL_REGS,
1062 SPEC_OR_GEN_REGS,
1063 CR0_REGS,
ebedb4dd
MM
1064 CR_REGS,
1065 NON_FLOAT_REGS,
9ebbca7d 1066 XER_REGS,
ebedb4dd
MM
1067 ALL_REGS,
1068 LIM_REG_CLASSES
1069};
f045b2c9
RS
1070
1071#define N_REG_CLASSES (int) LIM_REG_CLASSES
1072
82e41834 1073/* Give names of register classes as strings for dump file. */
f045b2c9 1074
ebedb4dd
MM
1075#define REG_CLASS_NAMES \
1076{ \
1077 "NO_REGS", \
ebedb4dd
MM
1078 "BASE_REGS", \
1079 "GENERAL_REGS", \
1080 "FLOAT_REGS", \
0ac081f6
AH
1081 "ALTIVEC_REGS", \
1082 "VRSAVE_REGS", \
ebedb4dd
MM
1083 "NON_SPECIAL_REGS", \
1084 "MQ_REGS", \
1085 "LINK_REGS", \
1086 "CTR_REGS", \
1087 "LINK_OR_CTR_REGS", \
1088 "SPECIAL_REGS", \
1089 "SPEC_OR_GEN_REGS", \
1090 "CR0_REGS", \
ebedb4dd
MM
1091 "CR_REGS", \
1092 "NON_FLOAT_REGS", \
9ebbca7d 1093 "XER_REGS", \
ebedb4dd
MM
1094 "ALL_REGS" \
1095}
f045b2c9
RS
1096
1097/* Define which registers fit in which classes.
1098 This is an initializer for a vector of HARD_REG_SET
1099 of length N_REG_CLASSES. */
1100
0ac081f6
AH
1101#define REG_CLASS_CONTENTS \
1102{ \
1103 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1104 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1105 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1106 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1107 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1108 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
0ac081f6
AH
1109 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1110 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1111 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1112 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1113 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1114 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1115 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1116 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1117 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1118 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1119 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1120 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1121}
f045b2c9
RS
1122
1123/* The same information, inverted:
1124 Return the class number of the smallest class containing
1125 reg number REGNO. This could be a conditional expression
1126 or could index an array. */
1127
0d86f538
GK
1128#define REGNO_REG_CLASS(REGNO) \
1129 ((REGNO) == 0 ? GENERAL_REGS \
1130 : (REGNO) < 32 ? BASE_REGS \
1131 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1132 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1133 : (REGNO) == CR0_REGNO ? CR0_REGS \
1134 : CR_REGNO_P (REGNO) ? CR_REGS \
1135 : (REGNO) == MQ_REGNO ? MQ_REGS \
1136 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1137 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1138 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1139 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1140 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
f045b2c9
RS
1141 : NO_REGS)
1142
1143/* The class value for index registers, and the one for base regs. */
1144#define INDEX_REG_CLASS GENERAL_REGS
1145#define BASE_REG_CLASS BASE_REGS
1146
1147/* Get reg_class from a letter such as appears in the machine description. */
1148
1149#define REG_CLASS_FROM_LETTER(C) \
1150 ((C) == 'f' ? FLOAT_REGS \
1151 : (C) == 'b' ? BASE_REGS \
1152 : (C) == 'h' ? SPECIAL_REGS \
1153 : (C) == 'q' ? MQ_REGS \
1154 : (C) == 'c' ? CTR_REGS \
1155 : (C) == 'l' ? LINK_REGS \
0ac081f6 1156 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1157 : (C) == 'x' ? CR0_REGS \
1158 : (C) == 'y' ? CR_REGS \
9ebbca7d 1159 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1160 : NO_REGS)
1161
1162/* The letters I, J, K, L, M, N, and P in a register constraint string
1163 can be used to stand for particular ranges of immediate operands.
1164 This macro defines what the ranges are.
1165 C is the letter, and VALUE is a constant value.
1166 Return 1 if VALUE is in the range specified by C.
1167
9615f239 1168 `I' is a signed 16-bit constant
f045b2c9
RS
1169 `J' is a constant with only the high-order 16 bits non-zero
1170 `K' is a constant with only the low-order 16 bits non-zero
9615f239 1171 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1172 `M' is a constant that is greater than 31
2bfcf297 1173 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1174 `O' is the constant zero
1175 `P' is a constant whose negation is a signed 16-bit constant */
1176
5b6f7b96
RK
1177#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1178 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1179 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1180 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1181 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1182 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1183 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1184 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1185 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1186 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1187 : 0)
1188
1189/* Similar, but for floating constants, and defining letters G and H.
1190 Here VALUE is the CONST_DOUBLE rtx itself.
1191
1192 We flag for special constants when we can copy the constant into
4e74d8ec 1193 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1194
c4c40373 1195 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1196
1197#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1198 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1199 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1200 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1201 : 0)
f045b2c9
RS
1202
1203/* Optional extra constraints for this machine.
1204
b6c9286a
MM
1205 'Q' means that is a memory operand that is just an offset from a reg.
1206 'R' is for AIX TOC entries.
a260abc9 1207 'S' is a constant that can be placed into a 64-bit mask operand
b1765bde 1208 'T' is a constant that can be placed into a 32-bit mask operand
88228c4b 1209 'U' is for V.4 small data references. */
f045b2c9 1210
e8a8bc24
RK
1211#define EXTRA_CONSTRAINT(OP, C) \
1212 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1213 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b1765bde
DE
1214 : (C) == 'S' ? mask64_operand (OP, DImode) \
1215 : (C) == 'T' ? mask_operand (OP, SImode) \
f607bc57 1216 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1217 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1218 : 0)
f045b2c9
RS
1219
1220/* Given an rtx X being reloaded into a reg required to be
1221 in class CLASS, return the class of reg to actually use.
1222 In general this is just CLASS; but on some machines
c81bebd7 1223 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1224
1225 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1226 floating-point CONST_DOUBLE to force it to be copied to memory.
1227
1228 We also don't want to reload integer values into floating-point
1229 registers if we can at all help it. In fact, this can
1230 cause reload to abort, if it tries to generate a reload of CTR
1231 into a FP register and discovers it doesn't have the memory location
1232 required.
1233
1234 ??? Would it be a good idea to have reload do the converse, that is
1235 try to reload floating modes into FP registers if possible?
1236 */
f045b2c9 1237
802a0058 1238#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1239 (((GET_CODE (X) == CONST_DOUBLE \
1240 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1241 ? NO_REGS \
1242 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1243 && (CLASS) == NON_SPECIAL_REGS) \
1244 ? GENERAL_REGS \
1245 : (CLASS)))
c81bebd7 1246
f045b2c9
RS
1247/* Return the register class of a scratch register needed to copy IN into
1248 or out of a register in CLASS in MODE. If it can be done directly,
1249 NO_REGS is returned. */
1250
1251#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1252 secondary_reload_class (CLASS, MODE, IN)
1253
0ac081f6
AH
1254/* If we are copying between FP or AltiVec registers and anything
1255 else, we need a memory location. */
7ea555a4 1256
0ac081f6
AH
1257#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1258 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1259 || (CLASS2) == FLOAT_REGS \
1260 || (CLASS1) == ALTIVEC_REGS \
1261 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1262
f045b2c9
RS
1263/* Return the maximum number of consecutive registers
1264 needed to represent mode MODE in a register of class CLASS.
1265
1266 On RS/6000, this is the size of MODE in words,
1267 except in the FP regs, where a single reg is enough for two words. */
802a0058 1268#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1269 (((CLASS) == FLOAT_REGS) \
2e360ab3 1270 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1271 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1272
1273/* If defined, gives a class of registers that cannot be used as the
02188693 1274 operand of a SUBREG that changes the mode of the object illegally. */
580d3230 1275
02188693
RH
1276#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1277
1278/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1279
1280#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1281 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
f045b2c9
RS
1282\f
1283/* Stack layout; function entry, exit and calling. */
1284
6b67933e
RK
1285/* Enumeration to give which calling sequence to use. */
1286enum rs6000_abi {
1287 ABI_NONE,
1288 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1289 ABI_AIX_NODESC, /* AIX calling sequence minus
1290 function descriptors */
b6c9286a 1291 ABI_V4, /* System V.4/eabi */
ee890fe2 1292 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1293};
1294
b6c9286a
MM
1295extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1296
4697a36c
MM
1297/* Structure used to define the rs6000 stack */
1298typedef struct rs6000_stack {
1299 int first_gp_reg_save; /* first callee saved GP register used */
1300 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1301 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1302 int lr_save_p; /* true if the link reg needs to be saved */
1303 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1304 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1305 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1306 int push_p; /* true if we need to allocate stack space */
1307 int calls_p; /* true if the function makes any calls */
6b67933e 1308 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1309 int gp_save_offset; /* offset to save GP regs from initial SP */
1310 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1311 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1312 int lr_save_offset; /* offset to save LR from initial SP */
1313 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1314 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
b6c9286a 1315 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1316 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1317 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1318 int reg_size; /* register size (4 or 8) */
1319 int varargs_size; /* size to hold V.4 args passed in regs */
1320 int vars_size; /* variable save area size */
1321 int parm_size; /* outgoing parameter size */
1322 int save_size; /* save area size */
1323 int fixed_size; /* fixed size of stack frame */
1324 int gp_size; /* size of saved GP registers */
1325 int fp_size; /* size of saved FP registers */
00b960c7 1326 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1327 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1328 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1329 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1330 int altivec_padding_size; /* size of altivec alignment padding if
1331 not in save_size */
b6c9286a 1332 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1333 int total_size; /* total bytes allocated for stack */
1334} rs6000_stack_t;
1335
f045b2c9
RS
1336/* Define this if pushing a word on the stack
1337 makes the stack pointer a smaller address. */
1338#define STACK_GROWS_DOWNWARD
1339
1340/* Define this if the nominal address of the stack frame
1341 is at the high-address end of the local variables;
1342 that is, each additional local variable allocated
1343 goes at a more negative offset in the frame.
1344
1345 On the RS/6000, we grow upwards, from the area after the outgoing
1346 arguments. */
1347/* #define FRAME_GROWS_DOWNWARD */
1348
4697a36c 1349/* Size of the outgoing register save area */
9ebbca7d 1350#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1351 || DEFAULT_ABI == ABI_AIX_NODESC \
1352 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1353 ? (TARGET_64BIT ? 64 : 32) \
1354 : 0)
4697a36c
MM
1355
1356/* Size of the fixed area on the stack */
9ebbca7d 1357#define RS6000_SAVE_AREA \
ee890fe2 1358 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1359 << (TARGET_64BIT ? 1 : 0))
4697a36c 1360
97f6e72f
DE
1361/* MEM representing address to save the TOC register */
1362#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1363 plus_constant (stack_pointer_rtx, \
1364 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1365
4697a36c
MM
1366/* Size of the V.4 varargs area if needed */
1367#define RS6000_VARARGS_AREA 0
1368
4697a36c 1369/* Align an address */
ed33106f 1370#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1371
1372/* Size of V.4 varargs area in bytes */
1373#define RS6000_VARARGS_SIZE \
2f3e5814 1374 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1375
f045b2c9
RS
1376/* Offset within stack frame to start allocating local variables at.
1377 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1378 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1379 of the first local allocated.
f045b2c9
RS
1380
1381 On the RS/6000, the frame pointer is the same as the stack pointer,
1382 except for dynamic allocations. So we start after the fixed area and
1383 outgoing parameter area. */
1384
802a0058 1385#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1386 (RS6000_ALIGN (current_function_outgoing_args_size, \
1387 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1388 + RS6000_VARARGS_AREA \
1389 + RS6000_SAVE_AREA)
1390
1391/* Offset from the stack pointer register to an item dynamically
1392 allocated on the stack, e.g., by `alloca'.
1393
1394 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1395 length of the outgoing arguments. The default is correct for most
1396 machines. See `function.c' for details. */
1397#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1398 (RS6000_ALIGN (current_function_outgoing_args_size, \
1399 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1400 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1401
1402/* If we generate an insn to push BYTES bytes,
1403 this says how many the stack pointer really advances by.
1404 On RS/6000, don't define this because there are no push insns. */
1405/* #define PUSH_ROUNDING(BYTES) */
1406
1407/* Offset of first parameter from the argument pointer register value.
1408 On the RS/6000, we define the argument pointer to the start of the fixed
1409 area. */
4697a36c 1410#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1411
62153b61
JM
1412/* Offset from the argument pointer register value to the top of
1413 stack. This is different from FIRST_PARM_OFFSET because of the
1414 register save area. */
1415#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1416
f045b2c9
RS
1417/* Define this if stack space is still allocated for a parameter passed
1418 in a register. The value is the number of bytes allocated to this
1419 area. */
4697a36c 1420#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1421
1422/* Define this if the above stack space is to be considered part of the
1423 space allocated by the caller. */
1424#define OUTGOING_REG_PARM_STACK_SPACE
1425
1426/* This is the difference between the logical top of stack and the actual sp.
1427
82e41834 1428 For the RS/6000, sp points past the fixed area. */
4697a36c 1429#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1430
1431/* Define this if the maximum size of all the outgoing args is to be
1432 accumulated and pushed during the prologue. The amount can be
1433 found in the variable current_function_outgoing_args_size. */
f73ad30e 1434#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1435
1436/* Value is the number of bytes of arguments automatically
1437 popped when returning from a subroutine call.
8b109b37 1438 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1439 FUNTYPE is the data type of the function (as a tree),
1440 or for a library call it is an identifier node for the subroutine name.
1441 SIZE is the number of bytes of arguments passed on the stack. */
1442
8b109b37 1443#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1444
1445/* Define how to find the value returned by a function.
1446 VALTYPE is the data type of the value (as a tree).
1447 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1448 otherwise, FUNC is 0.
1449
c81bebd7 1450 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1451 fp1, unless -msoft-float. */
f045b2c9 1452
39403d82
DE
1453#define FUNCTION_VALUE(VALTYPE, FUNC) \
1454 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1455 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1456 || POINTER_TYPE_P (VALTYPE) \
1457 ? word_mode : TYPE_MODE (VALTYPE), \
0ac081f6
AH
1458 TREE_CODE (VALTYPE) == VECTOR_TYPE ? ALTIVEC_ARG_RETURN \
1459 : TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
e9cf9523 1460 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1461
1462/* Define how to find the value returned by a library function
1463 assuming the value has mode MODE. */
1464
0ac081f6
AH
1465#define LIBCALL_VALUE(MODE) \
1466 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1467 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1468 && TARGET_HARD_FLOAT \
1469 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1470
6fa3f289
ZW
1471/* The AIX ABI for the RS/6000 specifies that all structures are
1472 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1473 specifies that structures <= 8 bytes are returned in r3/r4, but a
1474 draft put them in memory, and GCC used to implement the draft
1475 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1476 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1477 compatibility can change DRAFT_V4_STRUCT_RET to override the
1478 default, and -m switches get the final word. See
52acbdcb
ZW
1479 rs6000_override_options for more details.
1480
1481 int_size_in_bytes returns -1 for variable size objects, which go in
1482 memory always. The cast to unsigned makes -1 > 8. */
1483
6fa3f289
ZW
1484#define RETURN_IN_MEMORY(TYPE) \
1485 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb
ZW
1486 (TARGET_AIX_STRUCT_RET || \
1487 (unsigned HOST_WIDEST_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1488
6fa3f289
ZW
1489/* DRAFT_V4_STRUCT_RET defaults off. */
1490#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1491
1492/* Let RETURN_IN_MEMORY control what happens. */
1493#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1494
a260abc9 1495/* Mode of stack savearea.
dfdfa60f
DE
1496 FUNCTION is VOIDmode because calling convention maintains SP.
1497 BLOCK needs Pmode for SP.
a260abc9
DE
1498 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1499#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1500 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1501 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1502
4697a36c
MM
1503/* Minimum and maximum general purpose registers used to hold arguments. */
1504#define GP_ARG_MIN_REG 3
1505#define GP_ARG_MAX_REG 10
1506#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1507
1508/* Minimum and maximum floating point registers used to hold arguments. */
1509#define FP_ARG_MIN_REG 33
7509c759
MM
1510#define FP_ARG_AIX_MAX_REG 45
1511#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1512#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1513 || DEFAULT_ABI == ABI_AIX_NODESC \
1514 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1515 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1516#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1517
0ac081f6
AH
1518/* Minimum and maximum AltiVec registers used to hold arguments. */
1519#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1520#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1521#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1522
4697a36c
MM
1523/* Return registers */
1524#define GP_ARG_RETURN GP_ARG_MIN_REG
1525#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1526#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1527
7509c759 1528/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1529#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1530/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1531#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1532#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1533#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1534
f045b2c9
RS
1535/* 1 if N is a possible register number for a function value
1536 as seen by the caller.
1537
0ac081f6
AH
1538 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1539#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1540 || ((N) == FP_ARG_RETURN) \
1541 || (TARGET_ALTIVEC && \
1542 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1543
1544/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1545 On RS/6000, these are r3-r10 and fp1-fp13.
1546 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1547#define FUNCTION_ARG_REGNO_P(N) \
b1765bde 1548 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1549 || (TARGET_ALTIVEC && \
1a3ab9e1 1550 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1551 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1552
f045b2c9 1553\f
00dba523
NC
1554/* A C structure for machine-specific, per-function data.
1555 This is added to the cfun structure. */
1556typedef struct machine_function
1557{
1558 /* Whether a System V.4 varargs area was created. */
1559 int sysv_varargs_p;
71f123ca
FS
1560 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1561 int ra_needs_full_frame;
00dba523
NC
1562} machine_function;
1563
f045b2c9
RS
1564/* Define a data type for recording info about an argument list
1565 during the scan of that argument list. This data type should
1566 hold all necessary information about the function itself
1567 and about the args processed so far, enough to enable macros
1568 such as FUNCTION_ARG to determine where the next arg should go.
1569
1570 On the RS/6000, this is a structure. The first element is the number of
1571 total argument words, the second is used to store the next
1572 floating-point register number, and the third says how many more args we
4697a36c
MM
1573 have prototype types for.
1574
4cc833b7
RH
1575 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1576 the next availible GP register, `fregno' is the next available FP
1577 register, and `words' is the number of words used on the stack.
1578
bd227acc 1579 The varargs/stdarg support requires that this structure's size
4cc833b7 1580 be a multiple of sizeof(int). */
4697a36c
MM
1581
1582typedef struct rs6000_args
1583{
4cc833b7 1584 int words; /* # words used for passing GP registers */
6a4cee5f 1585 int fregno; /* next available FP register */
0ac081f6 1586 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1587 int nargs_prototype; /* # args left in the current prototype */
1588 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1589 int prototype; /* Whether a prototype was defined */
1590 int call_cookie; /* Do special things for this call */
4cc833b7 1591 int sysv_gregno; /* next available GP register */
4697a36c 1592} CUMULATIVE_ARGS;
f045b2c9
RS
1593
1594/* Define intermediate macro to compute the size (in registers) of an argument
1595 for the RS/6000. */
1596
d34c5b80
DE
1597#define RS6000_ARG_SIZE(MODE, TYPE) \
1598((MODE) != BLKmode \
c5d71f39
GK
1599 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1600 : ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
1601 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1602
1603/* Initialize a variable CUM of type CUMULATIVE_ARGS
1604 for a call to a function whose data type is FNTYPE.
1605 For a library call, FNTYPE is 0. */
1606
2c7ee1a6 1607#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1608 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1609
1610/* Similar, but when scanning the definition of a procedure. We always
1611 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1612
4697a36c
MM
1613#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1614 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1615
1616/* Update the data in CUM to advance over an argument
1617 of mode MODE and data type TYPE.
1618 (TYPE is null for libcalls where that information may not be available.) */
1619
1620#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1621 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1622
1623/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1624#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1625 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1626 && (CUM).fregno <= FP_ARG_MAX_REG \
1627 && TARGET_HARD_FLOAT)
f045b2c9 1628
0ac081f6
AH
1629/* Non-zero if we can use an AltiVec register to pass this arg. */
1630#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1631 (ALTIVEC_VECTOR_MODE (MODE) \
1632 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1633 && TARGET_ALTIVEC_ABI)
1634
f045b2c9
RS
1635/* Determine where to put an argument to a function.
1636 Value is zero to push the argument on the stack,
1637 or a hard register in which to store the argument.
1638
1639 MODE is the argument's machine mode.
1640 TYPE is the data type of the argument (as a tree).
1641 This is null for libcalls where that information may
1642 not be available.
1643 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1644 the preceding args and about the function being called.
1645 NAMED is nonzero if this argument is a named parameter
1646 (otherwise it is an extra parameter matching an ellipsis).
1647
1648 On RS/6000 the first eight words of non-FP are normally in registers
1649 and the rest are pushed. The first 13 FP args are in registers.
1650
1651 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1652 both an FP and integer register (or possibly FP reg and stack). Library
1653 functions (when TYPE is zero) always have the proper types for args,
1654 so we can pass the FP value just in one register. emit_library_function
1655 doesn't support EXPR_LIST anyway. */
f045b2c9 1656
4697a36c
MM
1657#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1658 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1659
1660/* For an arg passed partly in registers and partly in memory,
1661 this is the number of registers used.
1662 For args passed entirely in registers or entirely in memory, zero. */
1663
4697a36c
MM
1664#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1665 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1666
1667/* A C expression that indicates when an argument must be passed by
1668 reference. If nonzero for an argument, a copy of that argument is
1669 made in memory and a pointer to the argument is passed instead of
1670 the argument itself. The pointer is passed in whatever way is
82e41834 1671 appropriate for passing a pointer to that type. */
4697a36c
MM
1672
1673#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1674 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1675
c229cba9
DE
1676/* If defined, a C expression which determines whether, and in which
1677 direction, to pad out an argument with extra space. The value
1678 should be of type `enum direction': either `upward' to pad above
1679 the argument, `downward' to pad below, or `none' to inhibit
1680 padding. */
1681
9ebbca7d 1682#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1683
b6c9286a 1684/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1685 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1686 PARM_BOUNDARY is used for all arguments. */
1687
1688#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1689 function_arg_boundary (MODE, TYPE)
1690
f045b2c9 1691/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1692 variable number of arguments.
f045b2c9
RS
1693
1694 CUM is as above.
1695
1696 MODE and TYPE are the mode and type of the current parameter.
1697
1698 PRETEND_SIZE is a variable that should be set to the amount of stack
1699 that must be pushed by the prolog to pretend that our caller pushed
1700 it.
1701
1702 Normally, this macro will push all remaining incoming registers on the
1703 stack and set PRETEND_SIZE to the length of the registers pushed. */
1704
4697a36c
MM
1705#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1706 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1707
dfafc897
FS
1708/* Define the `__builtin_va_list' type for the ABI. */
1709#define BUILD_VA_LIST_TYPE(VALIST) \
1710 (VALIST) = rs6000_build_va_list ()
4697a36c 1711
dfafc897
FS
1712/* Implement `va_start' for varargs and stdarg. */
1713#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1714 rs6000_va_start (stdarg, valist, nextarg)
1715
1716/* Implement `va_arg'. */
1717#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1718 rs6000_va_arg (valist, type)
f045b2c9 1719
d34c5b80
DE
1720/* Define this macro to be a nonzero value if the location where a function
1721 argument is passed depends on whether or not it is a named argument. */
1722#define STRICT_ARGUMENT_NAMING 1
1723
f045b2c9 1724/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1725 for profiling a function entry. */
f045b2c9
RS
1726
1727#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1728 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1729
1730/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1731 the stack pointer does not matter. No definition is equivalent to
1732 always zero.
1733
1734 On the RS/6000, this is non-zero because we can restore the stack from
1735 its backpointer, which we maintain. */
1736#define EXIT_IGNORE_STACK 1
1737
a701949a
FS
1738/* Define this macro as a C expression that is nonzero for registers
1739 that are used by the epilogue or the return' pattern. The stack
1740 and frame pointer registers are already be assumed to be used as
1741 needed. */
1742
83720594
RH
1743#define EPILOGUE_USES(REGNO) \
1744 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
b1765bde 1745 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
83720594 1746 || (current_function_calls_eh_return \
3553b09d 1747 && TARGET_AIX \
83720594 1748 && (REGNO) == TOC_REGISTER))
2bfcf297 1749
f045b2c9 1750\f
eaf1bcf1 1751/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1752
1753/* Length in units of the trampoline for entering a nested function. */
1754
b6c9286a 1755#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1756
1757/* Emit RTL insns to initialize the variable parts of a trampoline.
1758 FNADDR is an RTX for the address of the function's pure code.
1759 CXT is an RTX for the static chain value for the function. */
1760
1761#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1762 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1763\f
f33985c6
MS
1764/* Definitions for __builtin_return_address and __builtin_frame_address.
1765 __builtin_return_address (0) should give link register (65), enable
82e41834 1766 this. */
f33985c6
MS
1767/* This should be uncommented, so that the link register is used, but
1768 currently this would result in unmatched insns and spilling fixed
1769 registers so we'll leave it for another day. When these problems are
1770 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1771 (mrs) */
1772/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1773
b6c9286a
MM
1774/* Number of bytes into the frame return addresses can be found. See
1775 rs6000_stack_info in rs6000.c for more information on how the different
1776 abi's store the return address. */
1777#define RETURN_ADDRESS_OFFSET \
1778 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1779 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1780 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1781 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1782 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1783
f33985c6
MS
1784/* The current return address is in link register (65). The return address
1785 of anything farther back is accessed normally at an offset of 8 from the
1786 frame pointer. */
71f123ca
FS
1787#define RETURN_ADDR_RTX(COUNT, FRAME) \
1788 (rs6000_return_addr (COUNT, FRAME))
1789
f33985c6 1790\f
f045b2c9
RS
1791/* Definitions for register eliminations.
1792
1793 We have two registers that can be eliminated on the RS/6000. First, the
1794 frame pointer register can often be eliminated in favor of the stack
1795 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1796 eliminated; it is replaced with either the stack or frame pointer.
1797
1798 In addition, we use the elimination mechanism to see if r30 is needed
1799 Initially we assume that it isn't. If it is, we spill it. This is done
1800 by making it an eliminable register. We replace it with itself so that
1801 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1802
1803/* This is an array of structures. Each structure initializes one pair
1804 of eliminable registers. The "from" register number is given first,
1805 followed by "to". Eliminations of the same "from" register are listed
1806 in order of preference. */
1807#define ELIMINABLE_REGS \
1808{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1809 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1810 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1811 { 30, 30} }
f045b2c9
RS
1812
1813/* Given FROM and TO register numbers, say whether this elimination is allowed.
1814 Frame pointer elimination is automatically handled.
1815
1816 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1817 to convert ap into fp, not sp.
1818
abc95ed3 1819 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1820 references. */
f045b2c9
RS
1821
1822#define CAN_ELIMINATE(FROM, TO) \
1823 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1824 ? ! frame_pointer_needed \
4697a36c 1825 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1826 : 1)
1827
1828/* Define the offset between two registers, one to be eliminated, and the other
1829 its replacement, at the start of a routine. */
1830#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1831{ \
4697a36c 1832 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1833 \
1834 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1835 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1836 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1837 (OFFSET) = info->total_size; \
1838 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1839 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1840 else if ((FROM) == 30) \
1841 (OFFSET) = 0; \
f045b2c9
RS
1842 else \
1843 abort (); \
1844}
1845\f
1846/* Addressing modes, and classification of registers for them. */
1847
940da324
JL
1848/* #define HAVE_POST_INCREMENT 0 */
1849/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1850
940da324
JL
1851#define HAVE_PRE_DECREMENT 1
1852#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1853
1854/* Macros to check register numbers against specific register classes. */
1855
1856/* These assume that REGNO is a hard or pseudo reg number.
1857 They give nonzero only if REGNO is a hard reg of the suitable class
1858 or a pseudo reg currently allocated to a suitable hard reg.
1859 Since they use reg_renumber, they are safe only once reg_renumber
1860 has been allocated, which happens in local-alloc.c. */
1861
1862#define REGNO_OK_FOR_INDEX_P(REGNO) \
1863((REGNO) < FIRST_PSEUDO_REGISTER \
1864 ? (REGNO) <= 31 || (REGNO) == 67 \
1865 : (reg_renumber[REGNO] >= 0 \
1866 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1867
1868#define REGNO_OK_FOR_BASE_P(REGNO) \
1869((REGNO) < FIRST_PSEUDO_REGISTER \
1870 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1871 : (reg_renumber[REGNO] > 0 \
1872 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1873\f
1874/* Maximum number of registers that can appear in a valid memory address. */
1875
1876#define MAX_REGS_PER_ADDRESS 2
1877
1878/* Recognize any constant value that is a valid address. */
1879
6eff269e
BK
1880#define CONSTANT_ADDRESS_P(X) \
1881 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1882 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1883 || GET_CODE (X) == HIGH)
f045b2c9
RS
1884
1885/* Nonzero if the constant value X is a legitimate general operand.
1886 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1887
1888 On the RS/6000, all integer constants are acceptable, most won't be valid
1889 for particular insns, though. Only easy FP constants are
1890 acceptable. */
1891
1892#define LEGITIMATE_CONSTANT_P(X) \
1893 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1894 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1895 || easy_fp_constant (X, GET_MODE (X)))
1896
1897/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1898 and check its validity for a certain class.
1899 We have two alternate definitions for each of them.
1900 The usual definition accepts all pseudo regs; the other rejects
1901 them unless they have been allocated suitable hard regs.
1902 The symbol REG_OK_STRICT causes the latter definition to be used.
1903
1904 Most source files want to accept pseudo regs in the hope that
1905 they will get allocated to the class that the insn wants them to be in.
1906 Source files for reload pass need to be strict.
1907 After reload, it makes no difference, since pseudo regs have
1908 been eliminated by then. */
1909
258bfae2
FS
1910#ifdef REG_OK_STRICT
1911# define REG_OK_STRICT_FLAG 1
1912#else
1913# define REG_OK_STRICT_FLAG 0
1914#endif
f045b2c9
RS
1915
1916/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1917 or if it is a pseudo reg in the non-strict case. */
1918#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1919 ((! (STRICT) \
1920 && (REGNO (X) <= 31 \
1921 || REGNO (X) == ARG_POINTER_REGNUM \
1922 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1923 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
1924
1925/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1926 or if it is a pseudo reg in the non-strict case. */
1927#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1928 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 1929
258bfae2
FS
1930#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1931#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1932\f
1933/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1934 that is a valid memory address for an instruction.
1935 The MODE argument is the machine mode for the MEM expression
1936 that wants to use this address.
1937
1938 On the RS/6000, there are four valid address: a SYMBOL_REF that
1939 refers to a constant pool entry of an address (or the sum of it
1940 plus a constant), a short (16-bit signed) constant plus a register,
1941 the sum of two registers, or a register indirect, possibly with an
1942 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1943 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1944 word aligned.
1945
1946 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1947 32-bit DImode, TImode), indexed addressing cannot be used because
1948 adjacent memory cells are accessed by adding word-sized offsets
1949 during assembly output. */
f045b2c9 1950
9ebbca7d
GK
1951#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
1952
1953#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9
RS
1954
1955#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
1956 (TARGET_TOC \
1957 && GET_CODE (X) == PLUS \
1958 && GET_CODE (XEXP (X, 0)) == REG \
1959 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
1960 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 1961
7509c759 1962#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 1963 (DEFAULT_ABI == ABI_V4 \
81795281 1964 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1965 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1966 && small_data_operand (X, MODE))
7509c759 1967
258bfae2 1968#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 1969 (GET_CODE (X) == CONST_INT \
5b6f7b96 1970 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 1971
258bfae2
FS
1972#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
1973 (GET_CODE (X) == PLUS \
1974 && GET_CODE (XEXP (X, 0)) == REG \
1975 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1976 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
37fa124a
AM
1977 && (! ALTIVEC_VECTOR_MODE (MODE) \
1978 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
258bfae2
FS
1979 && (((MODE) != DFmode && (MODE) != DImode) \
1980 || (TARGET_32BIT \
1981 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1982 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1983 && ((MODE) != TImode \
1984 || (TARGET_32BIT \
1985 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1986 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 1987 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 1988
258bfae2
FS
1989#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
1990 (GET_CODE (X) == PLUS \
1991 && GET_CODE (XEXP (X, 0)) == REG \
1992 && GET_CODE (XEXP (X, 1)) == REG \
1993 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1994 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
1995 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
1996 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
1997
1998#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
1999 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2000
6ac7bf2c
GK
2001#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2002 (TARGET_ELF \
2003 && ! flag_pic && ! TARGET_TOC \
2004 && GET_MODE_NUNITS (MODE) == 1 \
2005 && (GET_MODE_BITSIZE (MODE) <= 32 \
c3bb62b9 2006 || (TARGET_HARD_FLOAT && (MODE) == DFmode)) \
6ac7bf2c
GK
2007 && GET_CODE (X) == LO_SUM \
2008 && GET_CODE (XEXP (X, 0)) == REG \
2009 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2010 && CONSTANT_P (XEXP (X, 1)))
2011
258bfae2
FS
2012#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2013{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2014 goto ADDR; \
f045b2c9
RS
2015}
2016\f
2017/* Try machine-dependent ways of modifying an illegitimate address
2018 to be legitimate. If we find one, return the new, valid address.
2019 This macro is used in only one place: `memory_address' in explow.c.
2020
2021 OLDX is the address as it was before break_out_memory_refs was called.
2022 In some cases it is useful to look at this to decide what needs to be done.
2023
2024 MODE and WIN are passed so that this macro can use
2025 GO_IF_LEGITIMATE_ADDRESS.
2026
2027 It is always safe for this macro to do nothing. It exists to recognize
2028 opportunities to optimize the output.
2029
2030 On RS/6000, first check for the sum of a register with a constant
2031 integer that is out of range. If so, generate code to add the
2032 constant with the low-order 16 bits masked to the register and force
2033 this result into another register (this can be done with `cau').
c81bebd7 2034 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2035 possibility of bit 16 being a one.
2036
2037 Then check for the sum of a register and something not constant, try to
2038 load the other things into a register and return the sum. */
2039
9ebbca7d
GK
2040#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2041{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2042 if (result != NULL_RTX) \
2043 { \
2044 (X) = result; \
2045 goto WIN; \
2046 } \
f045b2c9
RS
2047}
2048
a260abc9
DE
2049/* Try a machine-dependent way of reloading an illegitimate address
2050 operand. If we find one, push the reload and jump to WIN. This
2051 macro is used in only one place: `find_reloads_address' in reload.c.
2052
24ea750e
DJ
2053 Implemented on rs6000 by rs6000_legitimize_reload_address.
2054 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2055
a9098fd0
GK
2056#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2057do { \
24ea750e
DJ
2058 int win; \
2059 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2060 (int)(TYPE), (IND_LEVELS), &win); \
2061 if ( win ) \
2062 goto WIN; \
a260abc9
DE
2063} while (0)
2064
f045b2c9
RS
2065/* Go to LABEL if ADDR (a legitimate address expression)
2066 has an effect that depends on the machine mode it is used for.
2067
2068 On the RS/6000 this is true if the address is valid with a zero offset
2069 but not with an offset of four (this means it cannot be used as an
2070 address for DImode or DFmode) or is a pre-increment or decrement. Since
2071 we know it is valid, we just check for an address that is not valid with
2072 an offset of four. */
2073
2074#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2075{ if (GET_CODE (ADDR) == PLUS \
2076 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2077 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2078 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2079 goto LABEL; \
38c1f2d7 2080 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2081 goto LABEL; \
38c1f2d7 2082 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2083 goto LABEL; \
4697a36c
MM
2084 if (GET_CODE (ADDR) == LO_SUM) \
2085 goto LABEL; \
f045b2c9 2086}
766a866c
MM
2087\f
2088/* The register number of the register used to address a table of
2089 static data addresses in memory. In some cases this register is
2090 defined by a processor's "application binary interface" (ABI).
2091 When this macro is defined, RTL is generated for this register
2092 once, as with the stack pointer and frame pointer registers. If
2093 this macro is not defined, it is up to the machine-dependent files
2094 to allocate such a register (if necessary). */
2095
8d30c4ee 2096#define PIC_OFFSET_TABLE_REGNUM 30
766a866c 2097
9ebbca7d
GK
2098#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2099
766a866c
MM
2100/* Define this macro if the register defined by
2101 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2102 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2103
2104/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2105
2106/* By generating position-independent code, when two different
2107 programs (A and B) share a common library (libC.a), the text of
2108 the library can be shared whether or not the library is linked at
2109 the same address for both programs. In some of these
2110 environments, position-independent code requires not only the use
2111 of different addressing modes, but also special code to enable the
2112 use of these addressing modes.
2113
2114 The `FINALIZE_PIC' macro serves as a hook to emit these special
2115 codes once the function is being compiled into assembly code, but
2116 not before. (It is not done before, because in the case of
2117 compiling an inline function, it would lead to multiple PIC
2118 prologues being included in functions which used inline functions
2119 and were compiled to assembly language.) */
2120
8d30c4ee 2121/* #define FINALIZE_PIC */
766a866c 2122
766a866c
MM
2123/* A C expression that is nonzero if X is a legitimate immediate
2124 operand on the target machine when generating position independent
2125 code. You can assume that X satisfies `CONSTANT_P', so you need
2126 not check this. You can also assume FLAG_PIC is true, so you need
2127 not check it either. You need not define this macro if all
2128 constants (including `SYMBOL_REF') can be immediate operands when
2129 generating position independent code. */
2130
2131/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2132
30ea98f1
MM
2133/* In rare cases, correct code generation requires extra machine
2134 dependent processing between the second jump optimization pass and
2135 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2136 as a C statement to act on the code starting at INSN. */
30ea98f1 2137
9ebbca7d 2138/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2139
f045b2c9
RS
2140\f
2141/* Define this if some processing needs to be done immediately before
4255474b 2142 emitting code for an insn. */
f045b2c9 2143
4255474b 2144/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2145
2146/* Specify the machine mode that this machine uses
2147 for the index in the tablejump instruction. */
e1565e65 2148#define CASE_VECTOR_MODE SImode
f045b2c9 2149
18543a22
ILT
2150/* Define as C expression which evaluates to nonzero if the tablejump
2151 instruction expects the table to contain offsets from the address of the
2152 table.
82e41834 2153 Do not define this if the table should contain absolute addresses. */
18543a22 2154#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2155
f045b2c9
RS
2156/* Define this as 1 if `char' should by default be signed; else as 0. */
2157#define DEFAULT_SIGNED_CHAR 0
2158
2159/* This flag, if defined, says the same insns that convert to a signed fixnum
2160 also convert validly to an unsigned one. */
2161
2162/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2163
2164/* Max number of bytes we can move from memory to memory
2165 in one reasonably fast instruction. */
2f3e5814 2166#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2167#define MAX_MOVE_MAX 8
f045b2c9
RS
2168
2169/* Nonzero if access to memory by bytes is no faster than for words.
2170 Also non-zero if doing byte operations (specifically shifts) in registers
2171 is undesirable. */
2172#define SLOW_BYTE_ACCESS 1
2173
9a63901f
RK
2174/* Define if operations between registers always perform the operation
2175 on the full register even if a narrower mode is specified. */
2176#define WORD_REGISTER_OPERATIONS
2177
2178/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2179 will either zero-extend or sign-extend. The value of this macro should
2180 be the code that says which one of the two operations is implicitly
2181 done, NIL if none. */
2182#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2183
2184/* Define if loading short immediate values into registers sign extends. */
2185#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2186\f
f045b2c9
RS
2187/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2188 is done just by pretending it is already truncated. */
2189#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2190
2191/* Specify the machine mode that pointers have.
2192 After generation of rtl, the compiler makes no further distinction
2193 between pointers and any other objects of this machine mode. */
2f3e5814 2194#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2195
2196/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2197 Doesn't matter on RS/6000. */
2f3e5814 2198#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2199
2200/* Define this if addresses of constant functions
2201 shouldn't be put through pseudo regs where they can be cse'd.
2202 Desirable on machines where ordinary constants are expensive
2203 but a CALL with constant address is cheap. */
2204#define NO_FUNCTION_CSE
2205
d969caf8 2206/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2207 few bits.
2208
2209 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2210 have been dropped from the PowerPC architecture. */
2211
4697a36c 2212#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2213
f045b2c9
RS
2214/* Compute the cost of computing a constant rtl expression RTX
2215 whose rtx-code is CODE. The body of this macro is a portion
2216 of a switch statement. If the code is computed here,
2217 return it with a return statement. Otherwise, break from the switch.
2218
01554f00 2219 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2220 always returns 0. */
2221
4697a36c 2222#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2223 case CONST_INT: \
2224 case CONST: \
2225 case LABEL_REF: \
2226 case SYMBOL_REF: \
2227 case CONST_DOUBLE: \
4697a36c 2228 case HIGH: \
f045b2c9
RS
2229 return 0;
2230
2231/* Provide the costs of a rtl expression. This is in the body of a
2232 switch on CODE. */
2233
38c1f2d7
MM
2234#define RTX_COSTS(X,CODE,OUTER_CODE) \
2235 case PLUS: \
2236 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2237 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2238 + 0x8000) >= 0x10000) \
296b8152 2239 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2240 ? COSTS_N_INSNS (2) \
2241 : COSTS_N_INSNS (1)); \
2242 case AND: \
38c1f2d7
MM
2243 case IOR: \
2244 case XOR: \
a260abc9
DE
2245 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2246 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2247 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2248 ? COSTS_N_INSNS (2) \
2249 : COSTS_N_INSNS (1)); \
2250 case MULT: \
2251 switch (rs6000_cpu) \
2252 { \
2253 case PROCESSOR_RIOS1: \
fe7f5677 2254 case PROCESSOR_PPC405: \
38c1f2d7
MM
2255 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2256 ? COSTS_N_INSNS (5) \
2257 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2258 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2259 case PROCESSOR_RS64A: \
2260 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2261 ? GET_MODE (XEXP (X, 1)) != DImode \
2262 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2263 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2264 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2265 case PROCESSOR_RIOS2: \
2266 case PROCESSOR_MPCCORE: \
5a41b476 2267 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2268 return COSTS_N_INSNS (2); \
2269 case PROCESSOR_PPC601: \
2270 return COSTS_N_INSNS (5); \
2271 case PROCESSOR_PPC603: \
7960cfbb 2272 case PROCESSOR_PPC7400: \
bef84347 2273 case PROCESSOR_PPC750: \
38c1f2d7
MM
2274 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2275 ? COSTS_N_INSNS (5) \
2276 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2277 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2278 case PROCESSOR_PPC7450: \
2279 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2280 ? COSTS_N_INSNS (4) \
2281 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2282 case PROCESSOR_PPC403: \
2283 case PROCESSOR_PPC604: \
38c1f2d7 2284 return COSTS_N_INSNS (4); \
3cb999d8
DE
2285 case PROCESSOR_PPC620: \
2286 case PROCESSOR_PPC630: \
2287 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2288 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2289 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2290 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2291 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2292 } \
2293 case DIV: \
2294 case MOD: \
2295 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2296 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2297 return COSTS_N_INSNS (2); \
2298 /* otherwise fall through to normal divide. */ \
2299 case UDIV: \
2300 case UMOD: \
2301 switch (rs6000_cpu) \
2302 { \
2303 case PROCESSOR_RIOS1: \
2304 return COSTS_N_INSNS (19); \
2305 case PROCESSOR_RIOS2: \
2306 return COSTS_N_INSNS (13); \
3cb999d8
DE
2307 case PROCESSOR_RS64A: \
2308 return (GET_MODE (XEXP (X, 1)) != DImode \
2309 ? COSTS_N_INSNS (65) \
2310 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2311 case PROCESSOR_MPCCORE: \
2312 return COSTS_N_INSNS (6); \
2313 case PROCESSOR_PPC403: \
2314 return COSTS_N_INSNS (33); \
fe7f5677
DE
2315 case PROCESSOR_PPC405: \
2316 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2317 case PROCESSOR_PPC601: \
2318 return COSTS_N_INSNS (36); \
2319 case PROCESSOR_PPC603: \
2320 return COSTS_N_INSNS (37); \
2321 case PROCESSOR_PPC604: \
5a41b476 2322 case PROCESSOR_PPC604e: \
38c1f2d7 2323 return COSTS_N_INSNS (20); \
3cb999d8
DE
2324 case PROCESSOR_PPC620: \
2325 case PROCESSOR_PPC630: \
2326 return (GET_MODE (XEXP (X, 1)) != DImode \
2327 ? COSTS_N_INSNS (21) \
2328 : COSTS_N_INSNS (37)); \
bef84347 2329 case PROCESSOR_PPC750: \
ed947a96 2330 case PROCESSOR_PPC7400: \
bef84347 2331 return COSTS_N_INSNS (19); \
ed947a96
DJ
2332 case PROCESSOR_PPC7450: \
2333 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2334 } \
2335 case FFS: \
2336 return COSTS_N_INSNS (4); \
2337 case MEM: \
f045b2c9
RS
2338 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2339 return 5;
2340
2341/* Compute the cost of an address. This is meant to approximate the size
2342 and/or execution delay of an insn using that address. If the cost is
2343 approximated by the RTL complexity, including CONST_COSTS above, as
2344 is usually the case for CISC machines, this macro should not be defined.
2345 For aggressively RISCy machines, only one insn format is allowed, so
2346 this macro should be a constant. The value of this macro only matters
2347 for valid addresses.
2348
2349 For the RS/6000, everything is cost 0. */
2350
2351#define ADDRESS_COST(RTX) 0
2352
2353/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2354 should be adjusted to reflect any required changes. This macro is used when
2355 there is some systematic length adjustment required that would be difficult
2356 to express in the length attribute. */
2357
2358/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2359
2360/* Add any extra modes needed to represent the condition code.
2361
2362 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2363 are being done and we need a separate mode for floating-point. We also
2364 use a mode for the case when we are comparing the results of two
39a10a29 2365 comparisons, as then only the EQ bit is valid in the register. */
f045b2c9 2366
aa0b4465
ZW
2367#define EXTRA_CC_MODES \
2368 CC(CCUNSmode, "CCUNS") \
2369 CC(CCFPmode, "CCFP") \
2370 CC(CCEQmode, "CCEQ")
f045b2c9 2371
39a10a29
GK
2372/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2373 COMPARE, return the mode to be used for the comparison. For
2374 floating-point, CCFPmode should be used. CCUNSmode should be used
2375 for unsigned comparisons. CCEQmode should be used when we are
2376 doing an inequality comparison on the result of a
2377 comparison. CCmode should be used in all other cases. */
c5defebb 2378
b565a316 2379#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2380 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2381 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2382 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2383 ? CCEQmode : CCmode))
f045b2c9
RS
2384
2385/* Define the information needed to generate branch and scc insns. This is
2386 stored from the compare operation. Note that we can't use "rtx" here
2387 since it hasn't been defined! */
2388
2389extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2390extern int rs6000_compare_fp_p;
f045b2c9
RS
2391\f
2392/* Control the assembler format that we output. */
2393
1b279f39
DE
2394/* A C string constant describing how to begin a comment in the target
2395 assembler language. The compiler assumes that the comment will end at
2396 the end of the line. */
2397#define ASM_COMMENT_START " #"
6b67933e 2398
fdaff8ba
RS
2399/* Implicit library calls should use memcpy, not bcopy, etc. */
2400
2401#define TARGET_MEM_FUNCTIONS
2402
38c1f2d7
MM
2403/* Flag to say the TOC is initialized */
2404extern int toc_initialized;
2405
f045b2c9
RS
2406/* Macro to output a special constant pool entry. Go to WIN if we output
2407 it. Otherwise, it is written the usual way.
2408
2409 On the RS/6000, toc entries are handled this way. */
2410
a9098fd0
GK
2411#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2412{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2413 { \
2414 output_toc (FILE, X, LABELNO, MODE); \
2415 goto WIN; \
2416 } \
f045b2c9
RS
2417}
2418
ebd97b96
DE
2419#ifdef HAVE_GAS_WEAK
2420#define RS6000_WEAK 1
2421#else
2422#define RS6000_WEAK 0
2423#endif
290ad355 2424
ebd97b96 2425/* This implementes the `alias' attribute. */
9ebbca7d
GK
2426#define ASM_OUTPUT_DEF_FROM_DECLS(FILE,decl,target) \
2427do { \
53cd5d6c 2428 const char * alias = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
72b05af1 2429 const char * name = IDENTIFIER_POINTER (target); \
9ebbca7d
GK
2430 if (TREE_CODE (decl) == FUNCTION_DECL \
2431 && DEFAULT_ABI == ABI_AIX) \
2432 { \
2433 if (TREE_PUBLIC (decl)) \
2434 { \
ebd97b96
DE
2435 if (RS6000_WEAK && DECL_WEAK (decl)) \
2436 { \
2437 fputs ("\t.weak .", FILE); \
2438 assemble_name (FILE, alias); \
2439 putc ('\n', FILE); \
2440 } \
2441 else \
2442 { \
2443 fputs ("\t.globl .", FILE); \
2444 assemble_name (FILE, alias); \
2445 putc ('\n', FILE); \
2446 } \
9ebbca7d
GK
2447 } \
2448 else \
2449 { \
2450 fputs ("\t.lglobl .", FILE); \
2451 assemble_name (FILE, alias); \
2452 putc ('\n', FILE); \
2453 } \
2454 fputs ("\t.set .", FILE); \
2455 assemble_name (FILE, alias); \
2456 fputs (",.", FILE); \
2457 assemble_name (FILE, name); \
2458 fputc ('\n', FILE); \
2459 } \
2460 ASM_OUTPUT_DEF (FILE, alias, name); \
290ad355
RH
2461} while (0)
2462
f045b2c9
RS
2463/* Output to assembler file text saying following lines
2464 may contain character constants, extra white space, comments, etc. */
2465
2466#define ASM_APP_ON ""
2467
2468/* Output to assembler file text saying following lines
2469 no longer contain unusual constructs. */
2470
2471#define ASM_APP_OFF ""
2472
f045b2c9
RS
2473/* How to refer to registers in assembler output.
2474 This sequence is indexed by compiler's hard-register-number (see above). */
2475
82e41834 2476extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2477
2478#define REGISTER_NAMES \
2479{ \
2480 &rs6000_reg_names[ 0][0], /* r0 */ \
2481 &rs6000_reg_names[ 1][0], /* r1 */ \
2482 &rs6000_reg_names[ 2][0], /* r2 */ \
2483 &rs6000_reg_names[ 3][0], /* r3 */ \
2484 &rs6000_reg_names[ 4][0], /* r4 */ \
2485 &rs6000_reg_names[ 5][0], /* r5 */ \
2486 &rs6000_reg_names[ 6][0], /* r6 */ \
2487 &rs6000_reg_names[ 7][0], /* r7 */ \
2488 &rs6000_reg_names[ 8][0], /* r8 */ \
2489 &rs6000_reg_names[ 9][0], /* r9 */ \
2490 &rs6000_reg_names[10][0], /* r10 */ \
2491 &rs6000_reg_names[11][0], /* r11 */ \
2492 &rs6000_reg_names[12][0], /* r12 */ \
2493 &rs6000_reg_names[13][0], /* r13 */ \
2494 &rs6000_reg_names[14][0], /* r14 */ \
2495 &rs6000_reg_names[15][0], /* r15 */ \
2496 &rs6000_reg_names[16][0], /* r16 */ \
2497 &rs6000_reg_names[17][0], /* r17 */ \
2498 &rs6000_reg_names[18][0], /* r18 */ \
2499 &rs6000_reg_names[19][0], /* r19 */ \
2500 &rs6000_reg_names[20][0], /* r20 */ \
2501 &rs6000_reg_names[21][0], /* r21 */ \
2502 &rs6000_reg_names[22][0], /* r22 */ \
2503 &rs6000_reg_names[23][0], /* r23 */ \
2504 &rs6000_reg_names[24][0], /* r24 */ \
2505 &rs6000_reg_names[25][0], /* r25 */ \
2506 &rs6000_reg_names[26][0], /* r26 */ \
2507 &rs6000_reg_names[27][0], /* r27 */ \
2508 &rs6000_reg_names[28][0], /* r28 */ \
2509 &rs6000_reg_names[29][0], /* r29 */ \
2510 &rs6000_reg_names[30][0], /* r30 */ \
2511 &rs6000_reg_names[31][0], /* r31 */ \
2512 \
2513 &rs6000_reg_names[32][0], /* fr0 */ \
2514 &rs6000_reg_names[33][0], /* fr1 */ \
2515 &rs6000_reg_names[34][0], /* fr2 */ \
2516 &rs6000_reg_names[35][0], /* fr3 */ \
2517 &rs6000_reg_names[36][0], /* fr4 */ \
2518 &rs6000_reg_names[37][0], /* fr5 */ \
2519 &rs6000_reg_names[38][0], /* fr6 */ \
2520 &rs6000_reg_names[39][0], /* fr7 */ \
2521 &rs6000_reg_names[40][0], /* fr8 */ \
2522 &rs6000_reg_names[41][0], /* fr9 */ \
2523 &rs6000_reg_names[42][0], /* fr10 */ \
2524 &rs6000_reg_names[43][0], /* fr11 */ \
2525 &rs6000_reg_names[44][0], /* fr12 */ \
2526 &rs6000_reg_names[45][0], /* fr13 */ \
2527 &rs6000_reg_names[46][0], /* fr14 */ \
2528 &rs6000_reg_names[47][0], /* fr15 */ \
2529 &rs6000_reg_names[48][0], /* fr16 */ \
2530 &rs6000_reg_names[49][0], /* fr17 */ \
2531 &rs6000_reg_names[50][0], /* fr18 */ \
2532 &rs6000_reg_names[51][0], /* fr19 */ \
2533 &rs6000_reg_names[52][0], /* fr20 */ \
2534 &rs6000_reg_names[53][0], /* fr21 */ \
2535 &rs6000_reg_names[54][0], /* fr22 */ \
2536 &rs6000_reg_names[55][0], /* fr23 */ \
2537 &rs6000_reg_names[56][0], /* fr24 */ \
2538 &rs6000_reg_names[57][0], /* fr25 */ \
2539 &rs6000_reg_names[58][0], /* fr26 */ \
2540 &rs6000_reg_names[59][0], /* fr27 */ \
2541 &rs6000_reg_names[60][0], /* fr28 */ \
2542 &rs6000_reg_names[61][0], /* fr29 */ \
2543 &rs6000_reg_names[62][0], /* fr30 */ \
2544 &rs6000_reg_names[63][0], /* fr31 */ \
2545 \
2546 &rs6000_reg_names[64][0], /* mq */ \
2547 &rs6000_reg_names[65][0], /* lr */ \
2548 &rs6000_reg_names[66][0], /* ctr */ \
2549 &rs6000_reg_names[67][0], /* ap */ \
2550 \
2551 &rs6000_reg_names[68][0], /* cr0 */ \
2552 &rs6000_reg_names[69][0], /* cr1 */ \
2553 &rs6000_reg_names[70][0], /* cr2 */ \
2554 &rs6000_reg_names[71][0], /* cr3 */ \
2555 &rs6000_reg_names[72][0], /* cr4 */ \
2556 &rs6000_reg_names[73][0], /* cr5 */ \
2557 &rs6000_reg_names[74][0], /* cr6 */ \
2558 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2559 \
9ebbca7d 2560 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2561 \
2562 &rs6000_reg_names[77][0], /* v0 */ \
2563 &rs6000_reg_names[78][0], /* v1 */ \
2564 &rs6000_reg_names[79][0], /* v2 */ \
2565 &rs6000_reg_names[80][0], /* v3 */ \
2566 &rs6000_reg_names[81][0], /* v4 */ \
2567 &rs6000_reg_names[82][0], /* v5 */ \
2568 &rs6000_reg_names[83][0], /* v6 */ \
2569 &rs6000_reg_names[84][0], /* v7 */ \
2570 &rs6000_reg_names[85][0], /* v8 */ \
2571 &rs6000_reg_names[86][0], /* v9 */ \
2572 &rs6000_reg_names[87][0], /* v10 */ \
2573 &rs6000_reg_names[88][0], /* v11 */ \
2574 &rs6000_reg_names[89][0], /* v12 */ \
2575 &rs6000_reg_names[90][0], /* v13 */ \
2576 &rs6000_reg_names[91][0], /* v14 */ \
2577 &rs6000_reg_names[92][0], /* v15 */ \
2578 &rs6000_reg_names[93][0], /* v16 */ \
2579 &rs6000_reg_names[94][0], /* v17 */ \
2580 &rs6000_reg_names[95][0], /* v18 */ \
2581 &rs6000_reg_names[96][0], /* v19 */ \
2582 &rs6000_reg_names[97][0], /* v20 */ \
2583 &rs6000_reg_names[98][0], /* v21 */ \
2584 &rs6000_reg_names[99][0], /* v22 */ \
2585 &rs6000_reg_names[100][0], /* v23 */ \
2586 &rs6000_reg_names[101][0], /* v24 */ \
2587 &rs6000_reg_names[102][0], /* v25 */ \
2588 &rs6000_reg_names[103][0], /* v26 */ \
2589 &rs6000_reg_names[104][0], /* v27 */ \
2590 &rs6000_reg_names[105][0], /* v28 */ \
2591 &rs6000_reg_names[106][0], /* v29 */ \
2592 &rs6000_reg_names[107][0], /* v30 */ \
2593 &rs6000_reg_names[108][0], /* v31 */ \
2594 &rs6000_reg_names[109][0], /* vrsave */ \
c81bebd7
MM
2595}
2596
2597/* print-rtl can't handle the above REGISTER_NAMES, so define the
2598 following for it. Switch to use the alternate names since
2599 they are more mnemonic. */
2600
2601#define DEBUG_REGISTER_NAMES \
2602{ \
802a0058
MM
2603 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2604 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2605 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2606 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2607 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2608 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2609 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2610 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2611 "mq", "lr", "ctr", "ap", \
2612 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2613 "xer", \
2614 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2615 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2616 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2617 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2618 "vrsave" \
c81bebd7 2619}
f045b2c9
RS
2620
2621/* Table of additional register names to use in user input. */
2622
2623#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2624 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2625 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2626 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2627 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2628 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2629 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2630 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2631 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2632 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2633 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2634 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2635 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2636 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2637 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2638 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2639 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2640 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2641 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2642 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2643 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2644 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2645 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2646 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2647 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2648 {"vrsave", 109}, \
c4d38ccb
MM
2649 /* no additional names for: mq, lr, ctr, ap */ \
2650 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2651 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2652 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2653
0da40b09
RK
2654/* Text to write out after a CALL that may be replaced by glue code by
2655 the loader. This depends on the AIX version. */
2656#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2657
f045b2c9
RS
2658/* This is how to output an element of a case-vector that is relative. */
2659
e1565e65 2660#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2661 do { char buf[100]; \
e1565e65 2662 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2663 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2664 assemble_name (FILE, buf); \
19d2d16f 2665 putc ('-', FILE); \
3daf36a4
ILT
2666 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2667 assemble_name (FILE, buf); \
19d2d16f 2668 putc ('\n', FILE); \
3daf36a4 2669 } while (0)
f045b2c9
RS
2670
2671/* This is how to output an assembler line
2672 that says to advance the location counter
2673 to a multiple of 2**LOG bytes. */
2674
2675#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2676 if ((LOG) != 0) \
2677 fprintf (FILE, "\t.align %d\n", (LOG))
2678
f045b2c9
RS
2679/* Store in OUTPUT a string (made with alloca) containing
2680 an assembler-name for a local static variable named NAME.
2681 LABELNO is an integer which is different for each call. */
2682
2683#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2684( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2685 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2686
9ebbca7d
GK
2687/* Pick up the return address upon entry to a procedure. Used for
2688 dwarf2 unwind information. This also enables the table driven
2689 mechanism. */
2690
2691#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2692#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2693
83720594
RH
2694/* Describe how we implement __builtin_eh_return. */
2695#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2696#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2697
f045b2c9
RS
2698/* Print operand X (an rtx) in assembler syntax to file FILE.
2699 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2700 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2701
2702#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2703
2704/* Define which CODE values are valid. */
2705
c81bebd7 2706#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2707 ((CODE) == '.')
f045b2c9
RS
2708
2709/* Print a memory address as an operand to reference that memory location. */
2710
2711#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2712
2713/* Define the codes that are matched by predicates in rs6000.c. */
2714
39a10a29
GK
2715#define PREDICATE_CODES \
2716 {"short_cint_operand", {CONST_INT}}, \
2717 {"u_short_cint_operand", {CONST_INT}}, \
2718 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2719 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2720 {"gpc_reg_operand", {SUBREG, REG}}, \
2721 {"cc_reg_operand", {SUBREG, REG}}, \
2722 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2723 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2724 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2725 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2726 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2727 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2728 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2729 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2730 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2731 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2732 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2733 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2734 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2735 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2736 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2737 {"lwa_operand", {SUBREG, MEM, REG}}, \
2738 {"volatile_mem_operand", {MEM}}, \
2739 {"offsettable_mem_operand", {MEM}}, \
2740 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2741 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2742 {"non_add_cint_operand", {CONST_INT}}, \
2743 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2744 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2745 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2746 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2747 {"mask_operand", {CONST_INT}}, \
2748 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2749 {"count_register_operand", {REG}}, \
2750 {"xer_operand", {REG}}, \
2751 {"call_operand", {SYMBOL_REF, REG}}, \
2752 {"current_file_function_operand", {SYMBOL_REF}}, \
2753 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2754 CONST_DOUBLE, SYMBOL_REF}}, \
2755 {"load_multiple_operation", {PARALLEL}}, \
2756 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2757 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2758 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2759 GT, LEU, LTU, GEU, GTU, \
2760 UNORDERED, ORDERED, \
2761 UNGE, UNLE }}, \
2762 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2763 UNORDERED }}, \
2764 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2765 GT, LEU, LTU, GEU, GTU, \
2766 UNORDERED, ORDERED, \
2767 UNGE, UNLE }}, \
2768 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2769 GT, LEU, LTU, GEU, GTU}}, \
2770 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2771 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2772 {"altivec_register_operand", {REG}}, \
50a0b056 2773 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2774
b6c9286a
MM
2775/* uncomment for disabling the corresponding default options */
2776/* #define MACHINE_no_sched_interblock */
2777/* #define MACHINE_no_sched_speculative */
2778/* #define MACHINE_no_sched_speculative_load */
2779
766a866c
MM
2780/* General flags. */
2781extern int flag_pic;
354b734b
MM
2782extern int optimize;
2783extern int flag_expensive_optimizations;
a7df97e6 2784extern int frame_pointer_needed;
0ac081f6
AH
2785
2786enum rs6000_builtins
2787{
2788 /* AltiVec builtins. */
f18c054f
DB
2789 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2790 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2791 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2792 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2793 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2794 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2795 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2796 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2797 ALTIVEC_BUILTIN_VADDUBM,
2798 ALTIVEC_BUILTIN_VADDUHM,
2799 ALTIVEC_BUILTIN_VADDUWM,
2800 ALTIVEC_BUILTIN_VADDFP,
2801 ALTIVEC_BUILTIN_VADDCUW,
2802 ALTIVEC_BUILTIN_VADDUBS,
2803 ALTIVEC_BUILTIN_VADDSBS,
2804 ALTIVEC_BUILTIN_VADDUHS,
2805 ALTIVEC_BUILTIN_VADDSHS,
2806 ALTIVEC_BUILTIN_VADDUWS,
2807 ALTIVEC_BUILTIN_VADDSWS,
2808 ALTIVEC_BUILTIN_VAND,
2809 ALTIVEC_BUILTIN_VANDC,
2810 ALTIVEC_BUILTIN_VAVGUB,
2811 ALTIVEC_BUILTIN_VAVGSB,
2812 ALTIVEC_BUILTIN_VAVGUH,
2813 ALTIVEC_BUILTIN_VAVGSH,
2814 ALTIVEC_BUILTIN_VAVGUW,
2815 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2816 ALTIVEC_BUILTIN_VCFUX,
2817 ALTIVEC_BUILTIN_VCFSX,
2818 ALTIVEC_BUILTIN_VCTSXS,
2819 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2820 ALTIVEC_BUILTIN_VCMPBFP,
2821 ALTIVEC_BUILTIN_VCMPEQUB,
2822 ALTIVEC_BUILTIN_VCMPEQUH,
2823 ALTIVEC_BUILTIN_VCMPEQUW,
2824 ALTIVEC_BUILTIN_VCMPEQFP,
2825 ALTIVEC_BUILTIN_VCMPGEFP,
2826 ALTIVEC_BUILTIN_VCMPGTUB,
2827 ALTIVEC_BUILTIN_VCMPGTSB,
2828 ALTIVEC_BUILTIN_VCMPGTUH,
2829 ALTIVEC_BUILTIN_VCMPGTSH,
2830 ALTIVEC_BUILTIN_VCMPGTUW,
2831 ALTIVEC_BUILTIN_VCMPGTSW,
2832 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2833 ALTIVEC_BUILTIN_VEXPTEFP,
2834 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2835 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2836 ALTIVEC_BUILTIN_VMAXUB,
2837 ALTIVEC_BUILTIN_VMAXSB,
2838 ALTIVEC_BUILTIN_VMAXUH,
2839 ALTIVEC_BUILTIN_VMAXSH,
2840 ALTIVEC_BUILTIN_VMAXUW,
2841 ALTIVEC_BUILTIN_VMAXSW,
2842 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2843 ALTIVEC_BUILTIN_VMHADDSHS,
2844 ALTIVEC_BUILTIN_VMHRADDSHS,
2845 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2846 ALTIVEC_BUILTIN_VMRGHB,
2847 ALTIVEC_BUILTIN_VMRGHH,
2848 ALTIVEC_BUILTIN_VMRGHW,
2849 ALTIVEC_BUILTIN_VMRGLB,
2850 ALTIVEC_BUILTIN_VMRGLH,
2851 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2852 ALTIVEC_BUILTIN_VMSUMUBM,
2853 ALTIVEC_BUILTIN_VMSUMMBM,
2854 ALTIVEC_BUILTIN_VMSUMUHM,
2855 ALTIVEC_BUILTIN_VMSUMSHM,
2856 ALTIVEC_BUILTIN_VMSUMUHS,
2857 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2858 ALTIVEC_BUILTIN_VMINUB,
2859 ALTIVEC_BUILTIN_VMINSB,
2860 ALTIVEC_BUILTIN_VMINUH,
2861 ALTIVEC_BUILTIN_VMINSH,
2862 ALTIVEC_BUILTIN_VMINUW,
2863 ALTIVEC_BUILTIN_VMINSW,
2864 ALTIVEC_BUILTIN_VMINFP,
2865 ALTIVEC_BUILTIN_VMULEUB,
2866 ALTIVEC_BUILTIN_VMULESB,
2867 ALTIVEC_BUILTIN_VMULEUH,
2868 ALTIVEC_BUILTIN_VMULESH,
2869 ALTIVEC_BUILTIN_VMULOUB,
2870 ALTIVEC_BUILTIN_VMULOSB,
2871 ALTIVEC_BUILTIN_VMULOUH,
2872 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2873 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2874 ALTIVEC_BUILTIN_VNOR,
2875 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2876 ALTIVEC_BUILTIN_VSEL_4SI,
2877 ALTIVEC_BUILTIN_VSEL_4SF,
2878 ALTIVEC_BUILTIN_VSEL_8HI,
2879 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2880 ALTIVEC_BUILTIN_VPERM_4SI,
2881 ALTIVEC_BUILTIN_VPERM_4SF,
2882 ALTIVEC_BUILTIN_VPERM_8HI,
2883 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2884 ALTIVEC_BUILTIN_VPKUHUM,
2885 ALTIVEC_BUILTIN_VPKUWUM,
2886 ALTIVEC_BUILTIN_VPKPX,
2887 ALTIVEC_BUILTIN_VPKUHSS,
2888 ALTIVEC_BUILTIN_VPKSHSS,
2889 ALTIVEC_BUILTIN_VPKUWSS,
2890 ALTIVEC_BUILTIN_VPKSWSS,
2891 ALTIVEC_BUILTIN_VPKUHUS,
2892 ALTIVEC_BUILTIN_VPKSHUS,
2893 ALTIVEC_BUILTIN_VPKUWUS,
2894 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2895 ALTIVEC_BUILTIN_VREFP,
2896 ALTIVEC_BUILTIN_VRFIM,
2897 ALTIVEC_BUILTIN_VRFIN,
2898 ALTIVEC_BUILTIN_VRFIP,
2899 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2900 ALTIVEC_BUILTIN_VRLB,
2901 ALTIVEC_BUILTIN_VRLH,
2902 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2903 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2904 ALTIVEC_BUILTIN_VSLB,
2905 ALTIVEC_BUILTIN_VSLH,
2906 ALTIVEC_BUILTIN_VSLW,
2907 ALTIVEC_BUILTIN_VSL,
2908 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2909 ALTIVEC_BUILTIN_VSPLTB,
2910 ALTIVEC_BUILTIN_VSPLTH,
2911 ALTIVEC_BUILTIN_VSPLTW,
2912 ALTIVEC_BUILTIN_VSPLTISB,
2913 ALTIVEC_BUILTIN_VSPLTISH,
2914 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2915 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2916 ALTIVEC_BUILTIN_VSRH,
2917 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2918 ALTIVEC_BUILTIN_VSRAB,
2919 ALTIVEC_BUILTIN_VSRAH,
2920 ALTIVEC_BUILTIN_VSRAW,
2921 ALTIVEC_BUILTIN_VSR,
2922 ALTIVEC_BUILTIN_VSRO,
2923 ALTIVEC_BUILTIN_VSUBUBM,
2924 ALTIVEC_BUILTIN_VSUBUHM,
2925 ALTIVEC_BUILTIN_VSUBUWM,
2926 ALTIVEC_BUILTIN_VSUBFP,
2927 ALTIVEC_BUILTIN_VSUBCUW,
2928 ALTIVEC_BUILTIN_VSUBUBS,
2929 ALTIVEC_BUILTIN_VSUBSBS,
2930 ALTIVEC_BUILTIN_VSUBUHS,
2931 ALTIVEC_BUILTIN_VSUBSHS,
2932 ALTIVEC_BUILTIN_VSUBUWS,
2933 ALTIVEC_BUILTIN_VSUBSWS,
2934 ALTIVEC_BUILTIN_VSUM4UBS,
2935 ALTIVEC_BUILTIN_VSUM4SBS,
2936 ALTIVEC_BUILTIN_VSUM4SHS,
2937 ALTIVEC_BUILTIN_VSUM2SWS,
2938 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2939 ALTIVEC_BUILTIN_VXOR,
2940 ALTIVEC_BUILTIN_VSLDOI_16QI,
2941 ALTIVEC_BUILTIN_VSLDOI_8HI,
2942 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2943 ALTIVEC_BUILTIN_VSLDOI_4SF,
2944 ALTIVEC_BUILTIN_VUPKHSB,
2945 ALTIVEC_BUILTIN_VUPKHPX,
2946 ALTIVEC_BUILTIN_VUPKHSH,
2947 ALTIVEC_BUILTIN_VUPKLSB,
2948 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2949 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2950 ALTIVEC_BUILTIN_MTVSCR,
2951 ALTIVEC_BUILTIN_MFVSCR,
2952 ALTIVEC_BUILTIN_DSSALL,
2953 ALTIVEC_BUILTIN_DSS,
2954 ALTIVEC_BUILTIN_LVSL,
2955 ALTIVEC_BUILTIN_LVSR,
2956 ALTIVEC_BUILTIN_DSTT,
2957 ALTIVEC_BUILTIN_DSTST,
2958 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2959 ALTIVEC_BUILTIN_DST,
2960 ALTIVEC_BUILTIN_LVEBX,
2961 ALTIVEC_BUILTIN_LVEHX,
2962 ALTIVEC_BUILTIN_LVEWX,
2963 ALTIVEC_BUILTIN_LVXL,
2964 ALTIVEC_BUILTIN_LVX,
2965 ALTIVEC_BUILTIN_STVX,
2966 ALTIVEC_BUILTIN_STVEBX,
2967 ALTIVEC_BUILTIN_STVEHX,
2968 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
2969 ALTIVEC_BUILTIN_STVXL,
2970 ALTIVEC_BUILTIN_VCMPBFP_P,
2971 ALTIVEC_BUILTIN_VCMPEQFP_P,
2972 ALTIVEC_BUILTIN_VCMPEQUB_P,
2973 ALTIVEC_BUILTIN_VCMPEQUH_P,
2974 ALTIVEC_BUILTIN_VCMPEQUW_P,
2975 ALTIVEC_BUILTIN_VCMPGEFP_P,
2976 ALTIVEC_BUILTIN_VCMPGTFP_P,
2977 ALTIVEC_BUILTIN_VCMPGTSB_P,
2978 ALTIVEC_BUILTIN_VCMPGTSH_P,
2979 ALTIVEC_BUILTIN_VCMPGTSW_P,
2980 ALTIVEC_BUILTIN_VCMPGTUB_P,
2981 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
2982 ALTIVEC_BUILTIN_VCMPGTUW_P,
2983 ALTIVEC_BUILTIN_ABSS_V4SI,
2984 ALTIVEC_BUILTIN_ABSS_V8HI,
2985 ALTIVEC_BUILTIN_ABSS_V16QI,
2986 ALTIVEC_BUILTIN_ABS_V4SI,
2987 ALTIVEC_BUILTIN_ABS_V4SF,
2988 ALTIVEC_BUILTIN_ABS_V8HI,
2989 ALTIVEC_BUILTIN_ABS_V16QI
0ac081f6 2990};
This page took 1.629896 seconds and 5 git commands to generate.