]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
install EH code
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
cf27b467 2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
84b49fa7
RK
29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55/* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
49a0b204 73%{mcpu=403: -D_ARCH_PPC} \
cf27b467 74%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 75%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 76%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
77%{mcpu=603: -D_ARCH_PPC} \
78%{mcpu=603e: -D_ARCH_PPC} \
79%{mcpu=604: -D_ARCH_PPC} \
cf27b467
MM
80%{mcpu=620: -D_ARCH_PPC} \
81%{mcpu=821: -D_ARCH_PPC} \
82%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 83
841faeed
MM
84#ifndef CPP_DEFAULT_SPEC
85#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86#endif
87
88#ifndef CPP_SYSV_SPEC
89#define CPP_SYSV_SPEC ""
90#endif
91
92#ifndef CPP_ENDIAN_SPEC
93#define CPP_ENDIAN_SPEC ""
94#endif
95
c81bebd7
MM
96#ifndef CPP_ENDIAN_DEFAULT_SPEC
97#define CPP_ENDIAN_DEFAULT_SPEC ""
98#endif
99
841faeed
MM
100#ifndef CPP_SYSV_DEFAULT_SPEC
101#define CPP_SYSV_DEFAULT_SPEC ""
102#endif
103
104/* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106#define ASM_CPU_SPEC \
107"%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113%{mcpu=common: -mcom} \
114%{mcpu=power: -mpwr} \
115%{mcpu=power2: -mpwrx} \
116%{mcpu=powerpc: -mppc} \
117%{mcpu=rios: -mpwr} \
118%{mcpu=rios1: -mpwr} \
119%{mcpu=rios2: -mpwrx} \
120%{mcpu=rsc: -mpwr} \
121%{mcpu=rsc1: -mpwr} \
122%{mcpu=403: -mppc} \
123%{mcpu=505: -mppc} \
124%{mcpu=601: -m601} \
125%{mcpu=602: -mppc} \
126%{mcpu=603: -mppc} \
127%{mcpu=603e: -mppc} \
128%{mcpu=604: -mppc} \
129%{mcpu=620: -mppc} \
130%{mcpu=821: -mppc} \
131%{mcpu=860: -mppc}"
132
133#ifndef ASM_DEFAULT_SPEC
fba29a8c 134#define ASM_DEFAULT_SPEC ""
841faeed
MM
135#endif
136
137/* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
7509c759
MM
147#ifndef SUBTARGET_EXTRA_SPECS
148#define SUBTARGET_EXTRA_SPECS
149#endif
150
c81bebd7
MM
151#define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
162 SUBTARGET_EXTRA_SPECS
163
7509c759
MM
164/* Default location of syscalls.exp under AIX */
165#ifndef CROSS_COMPILE
166#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167#else
168#define LINK_SYSCALLS_SPEC ""
169#endif
170
171/* Default location of libg.exp under AIX */
172#ifndef CROSS_COMPILE
173#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174#else
175#define LINK_LIBG_SPEC ""
176#endif
177
f045b2c9
RS
178/* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
f045b2c9 191
c1950f1c 192#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 195
58a39e45
RS
196/* Profiled library versions are used by linking with special directories. */
197#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
199
200/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 201#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
202
203/* Don't turn -B into -L if the argument specifies a relative file name. */
204#define RELATIVE_PREFIX_NOT_LINKDIR
205
fb623df5 206/* Architecture type. */
f045b2c9 207
fb623df5
RK
208extern int target_flags;
209
210/* Use POWER architecture instructions and MQ register. */
211#define MASK_POWER 0x01
212
6febd581
RK
213/* Use POWER2 extensions to POWER architecture. */
214#define MASK_POWER2 0x02
215
fb623df5 216/* Use PowerPC architecture instructions. */
6febd581
RK
217#define MASK_POWERPC 0x04
218
583cf4db
RK
219/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
220#define MASK_PPC_GPOPT 0x08
221
222/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
223#define MASK_PPC_GFXOPT 0x10
f045b2c9 224
fb623df5 225/* Use PowerPC-64 architecture instructions. */
583cf4db 226#define MASK_POWERPC64 0x20
f045b2c9 227
fb623df5 228/* Use revised mnemonic names defined for PowerPC architecture. */
583cf4db 229#define MASK_NEW_MNEMONICS 0x40
fb623df5
RK
230
231/* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
583cf4db 233#define MASK_NO_FP_IN_TOC 0x80
fb623df5 234
0b9ccabc
RK
235/* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
583cf4db 237#define MASK_NO_SUM_IN_TOC 0x100
0b9ccabc 238
fb623df5 239/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
583cf4db 246#define MASK_MINIMAL_TOC 0x200
642a35f1 247
9e654916
RK
248/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
249#define MASK_64BIT 0x400
250
f85f4585 251/* Disable use of FPRs. */
d14a6d05 252#define MASK_SOFT_FLOAT 0x800
f85f4585 253
4d30c363
MM
254/* Enable load/store multiple, even on powerpc */
255#define MASK_MULTIPLE 0x1000
8a61d227 256#define MASK_MULTIPLE_SET 0x2000
4d30c363 257
7e69e155
MM
258/* Use string instructions for block moves */
259#define MASK_STRING 0x4000
938937d8 260#define MASK_STRING_SET 0x8000
7e69e155 261
4697a36c
MM
262/* Temporary debug switches */
263#define MASK_DEBUG_STACK 0x10000
264#define MASK_DEBUG_ARG 0x20000
265
7e69e155
MM
266#define TARGET_POWER (target_flags & MASK_POWER)
267#define TARGET_POWER2 (target_flags & MASK_POWER2)
268#define TARGET_POWERPC (target_flags & MASK_POWERPC)
269#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
270#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
271#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
272#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
273#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
274#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
275#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
276#define TARGET_64BIT (target_flags & MASK_64BIT)
277#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
278#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
279#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
280#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 281#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
4697a36c
MM
282#define TARGET_DEBUG_STACK (target_flags & MASK_DEBUG_STACK)
283#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
7e69e155 284
2f3e5814 285#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 286#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
d14a6d05 287
4697a36c
MM
288/* Pseudo target to indicate whether the object format is ELF
289 (to get around not having conditional compilation in the md file) */
290#ifndef TARGET_ELF
291#define TARGET_ELF 0
292#endif
293
294/* If this isn't V.4, don't support -mno-toc. */
295#ifndef TARGET_NO_TOC
296#define TARGET_NO_TOC 0
297#define TARGET_TOC 1
298#endif
299
b6c9286a
MM
300/* Pseudo target to say whether this is Windows NT */
301#ifndef TARGET_WINDOWS_NT
302#define TARGET_WINDOWS_NT 0
303#endif
304
305/* Pseudo target to say whether this is MAC */
306#ifndef TARGET_MACOS
307#define TARGET_MACOS 0
308#endif
309
310/* Pseudo target to say whether this is AIX */
311#ifndef TARGET_AIX
312#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
313#define TARGET_AIX 0
314#else
315#define TARGET_AIX 1
316#endif
317#endif
318
a3950905
MM
319#ifndef TARGET_XL_CALL
320#define TARGET_XL_CALL 0
321#endif
322
fb623df5 323/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 324
fb623df5 325 Macro to define tables used to set the flags.
f045b2c9
RS
326 This is a list in braces of pairs in braces,
327 each pair being { "NAME", VALUE }
328 where VALUE is the bits to set or minus the bits to clear.
329 An empty string NAME is used to identify the default VALUE. */
330
4d30c363
MM
331/* This is meant to be redefined in the host dependent files */
332#ifndef SUBTARGET_SWITCHES
333#define SUBTARGET_SWITCHES
334#endif
335
938937d8
MM
336#define TARGET_SWITCHES \
337 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
338 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
339 | MASK_POWER2)}, \
340 {"no-power2", - MASK_POWER2}, \
341 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
342 | MASK_STRING)}, \
343 {"powerpc", MASK_POWERPC}, \
344 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
345 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
346 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
347 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
348 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
349 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
350 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
351 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
352 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
353 | MASK_MINIMAL_TOC)}, \
354 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
355 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
356 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
357 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
358 {"minimal-toc", MASK_MINIMAL_TOC}, \
359 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
360 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
361 {"hard-float", - MASK_SOFT_FLOAT}, \
362 {"soft-float", MASK_SOFT_FLOAT}, \
363 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
364 {"no-multiple", - MASK_MULTIPLE}, \
365 {"no-multiple", MASK_MULTIPLE_SET}, \
366 {"string", MASK_STRING | MASK_STRING_SET}, \
367 {"no-string", - MASK_STRING}, \
bbdd88df 368 {"no-string", MASK_STRING_SET}, \
4697a36c
MM
369 {"debug-stack", MASK_DEBUG_STACK}, \
370 {"debug-arg", MASK_DEBUG_ARG}, \
938937d8 371 SUBTARGET_SWITCHES \
fb623df5
RK
372 {"", TARGET_DEFAULT}}
373
938937d8 374#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5
RK
375
376/* Processor type. */
377enum processor_type
f86fe1fb 378 {PROCESSOR_RIOS1,
fb623df5 379 PROCESSOR_RIOS2,
cf27b467 380 PROCESSOR_MPCCORE,
49a0b204 381 PROCESSOR_PPC403,
fb623df5
RK
382 PROCESSOR_PPC601,
383 PROCESSOR_PPC603,
384 PROCESSOR_PPC604,
385 PROCESSOR_PPC620};
386
387extern enum processor_type rs6000_cpu;
388
389/* Recast the processor type to the cpu attribute. */
390#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
391
8482e358 392/* Define generic processor types based upon current deployment. */
8e3f41e7 393#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 394#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 395#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 396
fb623df5 397/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 398#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 399
6febd581
RK
400/* Specify the dialect of assembler to use. New mnemonics is dialect one
401 and the old mnemonics are dialect zero. */
402#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
403
fb623df5
RK
404/* This macro is similar to `TARGET_SWITCHES' but defines names of
405 command options that have values. Its definition is an
406 initializer with a subgrouping for each command option.
407
408 Each subgrouping contains a string constant, that defines the
409 fixed part of the option name, and the address of a variable.
410 The variable, type `char *', is set to the variable part of the
411 given option if the fixed part matches. The actual option name
412 is made by appending `-m' to the specified name.
413
414 Here is an example which defines `-mshort-data-NUMBER'. If the
415 given option is `-mshort-data-512', the variable `m88k_short_data'
416 will be set to the string `"512"'.
417
418 extern char *m88k_short_data;
419 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
420
b6c9286a
MM
421/* This is meant to be overriden in target specific files. */
422#ifndef SUBTARGET_OPTIONS
423#define SUBTARGET_OPTIONS
424#endif
425
8e3f41e7
MM
426#define TARGET_OPTIONS \
427{ \
428 {"cpu=", &rs6000_select[1].string}, \
429 {"tune=", &rs6000_select[2].string}, \
430 SUBTARGET_OPTIONS \
b6c9286a 431}
fb623df5 432
ff222560 433/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
434struct rs6000_cpu_select
435{
436 char *string;
437 char *name;
438 int set_tune_p;
439 int set_arch_p;
440};
441
442extern struct rs6000_cpu_select rs6000_select[];
fb623df5 443
a3950905 444
fb623df5
RK
445/* Sometimes certain combinations of command options do not make sense
446 on a particular target machine. You can define a macro
447 `OVERRIDE_OPTIONS' to take account of this. This macro, if
448 defined, is executed once just after all the command options have
449 been parsed.
450
451 On the RS/6000 this is used to define the target cpu type. */
452
8e3f41e7 453#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 454
4f074454
RK
455/* Show we can debug even without a frame pointer. */
456#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
457\f
458/* target machine storage layout */
459
df44fa77
RK
460/* Define to support cross compilation to an RS6000 target. */
461#define REAL_ARITHMETIC
462
13d39dbc 463/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 464 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
465 the value is constrained to be within the bounds of the declared
466 type, but kept valid in the wider mode. The signedness of the
467 extension may differ from that of the type. */
468
469#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
470 if (GET_MODE_CLASS (MODE) == MODE_INT \
471 && GET_MODE_SIZE (MODE) < 4) \
dac29d65 472 (MODE) = SImode;
ef457bda 473
f045b2c9
RS
474/* Define this if most significant bit is lowest numbered
475 in instructions that operate on numbered bit-fields. */
476/* That is true on RS/6000. */
477#define BITS_BIG_ENDIAN 1
478
479/* Define this if most significant byte of a word is the lowest numbered. */
480/* That is true on RS/6000. */
481#define BYTES_BIG_ENDIAN 1
482
483/* Define this if most significant word of a multiword number is lowest
c81bebd7 484 numbered.
f045b2c9
RS
485
486 For RS/6000 we can decide arbitrarily since there are no machine
487 instructions for them. Might as well be consistent with bits and bytes. */
488#define WORDS_BIG_ENDIAN 1
489
fdaff8ba 490/* number of bits in an addressable storage unit */
f045b2c9
RS
491#define BITS_PER_UNIT 8
492
493/* Width in bits of a "word", which is the contents of a machine register.
494 Note that this is not necessarily the width of data type `int';
495 if using 16-bit ints on a 68000, this would still be 32.
496 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 497#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 498#define MAX_BITS_PER_WORD 64
f045b2c9
RS
499
500/* Width of a word, in units (bytes). */
2f3e5814 501#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 502#define MIN_UNITS_PER_WORD 4
2e360ab3 503#define UNITS_PER_FP_WORD 8
f045b2c9 504
915f619f
JW
505/* Type used for ptrdiff_t, as a string used in a declaration. */
506#define PTRDIFF_TYPE "int"
507
f045b2c9
RS
508/* Type used for wchar_t, as a string used in a declaration. */
509#define WCHAR_TYPE "short unsigned int"
510
511/* Width of wchar_t in bits. */
512#define WCHAR_TYPE_SIZE 16
513
9e654916
RK
514/* A C expression for the size in bits of the type `short' on the
515 target machine. If you don't define this, the default is half a
516 word. (If this would be less than one storage unit, it is
517 rounded up to one unit.) */
518#define SHORT_TYPE_SIZE 16
519
520/* A C expression for the size in bits of the type `int' on the
521 target machine. If you don't define this, the default is one
522 word. */
19d2d16f 523#define INT_TYPE_SIZE 32
9e654916
RK
524
525/* A C expression for the size in bits of the type `long' on the
526 target machine. If you don't define this, the default is one
527 word. */
2f3e5814 528#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
529#define MAX_LONG_TYPE_SIZE 64
530
531/* A C expression for the size in bits of the type `long long' on the
532 target machine. If you don't define this, the default is two
533 words. */
534#define LONG_LONG_TYPE_SIZE 64
535
536/* A C expression for the size in bits of the type `char' on the
537 target machine. If you don't define this, the default is one
538 quarter of a word. (If this would be less than one storage unit,
539 it is rounded up to one unit.) */
540#define CHAR_TYPE_SIZE BITS_PER_UNIT
541
542/* A C expression for the size in bits of the type `float' on the
543 target machine. If you don't define this, the default is one
544 word. */
545#define FLOAT_TYPE_SIZE 32
546
547/* A C expression for the size in bits of the type `double' on the
548 target machine. If you don't define this, the default is two
549 words. */
550#define DOUBLE_TYPE_SIZE 64
551
552/* A C expression for the size in bits of the type `long double' on
553 the target machine. If you don't define this, the default is two
554 words. */
555#define LONG_DOUBLE_TYPE_SIZE 64
556
f045b2c9
RS
557/* Width in bits of a pointer.
558 See also the macro `Pmode' defined below. */
2f3e5814 559#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
560
561/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 562#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
563
564/* Boundary (in *bits*) on which stack pointer should be aligned. */
565#define STACK_BOUNDARY 64
566
567/* Allocation boundary (in *bits*) for the code of a function. */
568#define FUNCTION_BOUNDARY 32
569
570/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
571#define BIGGEST_ALIGNMENT 64
572
6bc3403c
DE
573/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
574#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
575 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
f045b2c9
RS
576
577/* Alignment of field after `int : 0' in a structure. */
578#define EMPTY_FIELD_BOUNDARY 32
579
580/* Every structure's size must be a multiple of this. */
581#define STRUCTURE_SIZE_BOUNDARY 8
582
583/* A bitfield declared as `int' forces `int' alignment for the struct. */
584#define PCC_BITFIELD_TYPE_MATTERS 1
585
6bc3403c
DE
586/* AIX increases natural record alignment to doubleword if the first
587 field is an FP double while the FP fields remain word aligned. */
588#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
589 ((TREE_CODE (STRUCT) == RECORD_TYPE \
590 || TREE_CODE (STRUCT) == UNION_TYPE \
591 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
592 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
593 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
594 : MAX ((COMPUTED), (SPECIFIED)))
595
f045b2c9
RS
596/* Make strings word-aligned so strcpy from constants will be faster. */
597#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
598 (TREE_CODE (EXP) == STRING_CST \
599 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
600
601/* Make arrays of chars word-aligned for the same reasons. */
602#define DATA_ALIGNMENT(TYPE, ALIGN) \
603 (TREE_CODE (TYPE) == ARRAY_TYPE \
604 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
605 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
606
fdaff8ba 607/* Non-zero if move instructions will actually fail to work
f045b2c9 608 when given unaligned data. */
fdaff8ba 609#define STRICT_ALIGNMENT 0
f045b2c9
RS
610\f
611/* Standard register usage. */
612
613/* Number of actual hardware registers.
614 The hardware registers are assigned numbers for the compiler
615 from 0 to just below FIRST_PSEUDO_REGISTER.
616 All registers that the compiler knows about must be given numbers,
617 even those that are not normally considered general registers.
618
619 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
620 an MQ register, a count register, a link register, and 8 condition
621 register fields, which we view here as separate registers.
622
623 In addition, the difference between the frame and argument pointers is
624 a function of the number of registers saved, so we need to have a
625 register for AP that will later be eliminated in favor of SP or FP.
802a0058 626 This is a normal register, but it is fixed.
f045b2c9 627
802a0058
MM
628 We also create a pseudo register for float/int conversions, that will
629 really represent the memory location used. It is represented here as
630 a register, in order to work around problems in allocating stack storage
631 in inline functions. */
632
633#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
634
635/* 1 for registers that have pervasive standard uses
636 and are not available for the register allocator.
637
c81bebd7 638 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 639
a127c4e5
RK
640 cr5 is not supposed to be used.
641
642 On System V implementations, r13 is fixed and not available for use. */
643
644#ifndef FIXED_R13
645#define FIXED_R13 0
646#endif
f045b2c9
RS
647
648#define FIXED_REGISTERS \
a127c4e5 649 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
650 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
651 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
652 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 653 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
654
655/* 1 for registers not available across function calls.
656 These must include the FIXED_REGISTERS and also any
657 registers that can be used without being saved.
658 The latter must include the registers where values are returned
659 and the register where structure-value addresses are passed.
660 Aside from that, you can include as many other registers as you like. */
661
662#define CALL_USED_REGISTERS \
a127c4e5 663 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
664 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
665 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 667 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
668
669/* List the order in which to allocate registers. Each register must be
670 listed once, even those in FIXED_REGISTERS.
671
672 We allocate in the following order:
673 fp0 (not saved or used for anything)
674 fp13 - fp2 (not saved; incoming fp arg registers)
675 fp1 (not saved; return value)
676 fp31 - fp14 (saved; order given to save least number)
677 cr1, cr6, cr7 (not saved or special)
678 cr0 (not saved, but used for arithmetic operations)
679 cr2, cr3, cr4 (saved)
680 r0 (not saved; cannot be base reg)
681 r9 (not saved; best for TImode)
682 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
683 r3 (not saved; return value register)
684 r31 - r13 (saved; order given to save least number)
685 r12 (not saved; if used for DImode or DFmode would use r13)
686 mq (not saved; best to use it if we can)
687 ctr (not saved; when we have the choice ctr is better)
688 lr (saved)
689 cr5, r1, r2, ap (fixed) */
690
691#define REG_ALLOC_ORDER \
692 {32, \
693 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
694 33, \
695 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
696 50, 49, 48, 47, 46, \
697 69, 74, 75, 68, 70, 71, 72, \
698 0, \
699 9, 11, 10, 8, 7, 6, 5, 4, \
700 3, \
701 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
702 18, 17, 16, 15, 14, 13, 12, \
703 64, 66, 65, \
802a0058 704 73, 1, 2, 67, 76}
f045b2c9
RS
705
706/* True if register is floating-point. */
707#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
708
709/* True if register is a condition register. */
710#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
711
712/* True if register is an integer register. */
713#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
714
802a0058
MM
715/* True if register is the temporary memory location used for int/float
716 conversion. */
717#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
718
f045b2c9
RS
719/* Return number of consecutive hard regs needed starting at reg REGNO
720 to hold something of mode MODE.
721 This is ordinarily the length in words of a value of mode MODE
722 but can be less for certain modes in special long registers.
723
724 On RS/6000, ordinary registers hold 32 bits worth;
725 a single floating point register holds 64 bits worth. */
726
802a0058
MM
727#define HARD_REGNO_NREGS(REGNO, MODE) \
728 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 729 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
730 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
731
732/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
733 For POWER and PowerPC, the GPRs can hold any mode, but the float
734 registers only can hold floating modes and DImode, and CR register only
735 can hold CC modes. We cannot put TImode anywhere except general
736 register and it must be able to fit within the register set. */
f045b2c9 737
802a0058
MM
738#define HARD_REGNO_MODE_OK(REGNO, MODE) \
739 (FP_REGNO_P (REGNO) ? \
740 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
741 || (GET_MODE_CLASS (MODE) == MODE_INT \
742 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
743 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
744 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
745 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 746 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
747 : 1)
748
749/* Value is 1 if it is a good idea to tie two pseudo registers
750 when one has mode MODE1 and one has mode MODE2.
751 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
752 for any hard reg, then this must be 0 for correct output. */
753#define MODES_TIEABLE_P(MODE1, MODE2) \
754 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
755 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
756 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
757 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
758 : GET_MODE_CLASS (MODE1) == MODE_CC \
759 ? GET_MODE_CLASS (MODE2) == MODE_CC \
760 : GET_MODE_CLASS (MODE2) == MODE_CC \
761 ? GET_MODE_CLASS (MODE1) == MODE_CC \
762 : 1)
763
764/* A C expression returning the cost of moving data from a register of class
765 CLASS1 to one of CLASS2.
766
767 On the RS/6000, copying between floating-point and fixed-point
768 registers is expensive. */
769
770#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
771 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
772 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
773 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 774 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
775 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
776 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 777 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 778 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 779 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
780 : 2)
781
782/* A C expressions returning the cost of moving data of MODE from a register to
783 or from memory.
784
785 On the RS/6000, bump this up a bit. */
786
ab4a5fc9
RK
787#define MEMORY_MOVE_COST(MODE) \
788 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
789 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
790 ? 3 : 2) \
791 + 4)
f045b2c9
RS
792
793/* Specify the cost of a branch insn; roughly the number of extra insns that
794 should be added to avoid a branch.
795
ef457bda 796 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
797 unscheduled conditional branch. */
798
ef457bda 799#define BRANCH_COST 3
f045b2c9 800
5a5e4c2c
RK
801/* A C statement (sans semicolon) to update the integer variable COST
802 based on the relationship between INSN that is dependent on
803 DEP_INSN through the dependence LINK. The default is to make no
804 adjustment to COST. On the RS/6000, ignore the cost of anti- and
805 output-dependencies. In fact, output dependencies on the CR do have
806 a cost, but it is probably not worthwhile to track it. */
807
808#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 809 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 810
6febd581
RK
811/* Define this macro to change register usage conditional on target flags.
812 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585
RK
813 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
814 Conditionally disable FPRs. */
815
816#define CONDITIONAL_REGISTER_USAGE \
817{ \
818 if (! TARGET_POWER) \
819 fixed_regs[64] = 1; \
d14a6d05
MM
820 if (TARGET_SOFT_FLOAT) \
821 for (i = 32; i < 64; i++) \
f85f4585
RK
822 fixed_regs[i] = call_used_regs[i] = 1; \
823}
6febd581 824
f045b2c9
RS
825/* Specify the registers used for certain standard purposes.
826 The values of these macros are register numbers. */
827
828/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
829/* #define PC_REGNUM */
830
831/* Register to use for pushing function arguments. */
832#define STACK_POINTER_REGNUM 1
833
834/* Base register for access to local variables of the function. */
835#define FRAME_POINTER_REGNUM 31
836
837/* Value should be nonzero if functions must have frame pointers.
838 Zero means the frame pointer need not be set up (and parms
839 may be accessed via the stack pointer) in functions that seem suitable.
840 This is computed in `reload', in reload1.c. */
841#define FRAME_POINTER_REQUIRED 0
842
843/* Base register for access to arguments of the function. */
844#define ARG_POINTER_REGNUM 67
845
846/* Place to put static chain when calling a function that requires it. */
847#define STATIC_CHAIN_REGNUM 11
848
b6c9286a
MM
849/* count register number for special purposes */
850#define COUNT_REGISTER_REGNUM 66
851
802a0058
MM
852/* Special register that represents memory, used for float/int conversions. */
853#define FPMEM_REGNUM 76
854
1ff7789b
MM
855/* Register to use as a placeholder for the GOT/allocated TOC register.
856 FINALIZE_PIC will change all uses of this register to a an appropriate
857 pseudo register when it adds the code to setup the GOT. We use r2
858 because it is a reserved register in all of the ABI's. */
859#define GOT_TOC_REGNUM 2
860
f045b2c9
RS
861/* Place that structure value return address is placed.
862
863 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 864#define STRUCT_VALUE 0
f045b2c9
RS
865\f
866/* Define the classes of registers for register constraints in the
867 machine description. Also define ranges of constants.
868
869 One of the classes must always be named ALL_REGS and include all hard regs.
870 If there is more than one class, another class must be named NO_REGS
871 and contain no registers.
872
873 The name GENERAL_REGS must be the name of a class (or an alias for
874 another name such as ALL_REGS). This is the class of registers
875 that is allowed by "g" or "r" in a register constraint.
876 Also, registers outside this class are allocated only when
877 instructions express preferences for them.
878
879 The classes must be numbered in nondecreasing order; that is,
880 a larger-numbered class must never be contained completely
881 in a smaller-numbered class.
882
883 For any two classes, it is very desirable that there be another
884 class that represents their union. */
c81bebd7 885
f045b2c9
RS
886/* The RS/6000 has three types of registers, fixed-point, floating-point,
887 and condition registers, plus three special registers, MQ, CTR, and the
888 link register.
889
890 However, r0 is special in that it cannot be used as a base register.
891 So make a class for registers valid as base registers.
892
893 Also, cr0 is the only condition code register that can be used in
802a0058
MM
894 arithmetic insns, so make a separate class for it.
895
896 There is a special 'registrer' (76), which is not a register, but a
897 placeholder for memory allocated to convert between floating point and
898 integral types. This works around a problem where if we allocate memory
899 with allocate_stack_{local,temp} and the function is an inline function, the
900 memory allocated will clobber memory in the caller. So we use a special
901 register, and if that is used, we allocate stack space for it. */
f045b2c9 902
ebedb4dd
MM
903enum reg_class
904{
905 NO_REGS,
ebedb4dd
MM
906 BASE_REGS,
907 GENERAL_REGS,
908 FLOAT_REGS,
909 NON_SPECIAL_REGS,
910 MQ_REGS,
911 LINK_REGS,
912 CTR_REGS,
913 LINK_OR_CTR_REGS,
914 SPECIAL_REGS,
915 SPEC_OR_GEN_REGS,
916 CR0_REGS,
ebedb4dd
MM
917 CR_REGS,
918 NON_FLOAT_REGS,
802a0058
MM
919 FPMEM_REGS,
920 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
921 ALL_REGS,
922 LIM_REG_CLASSES
923};
f045b2c9
RS
924
925#define N_REG_CLASSES (int) LIM_REG_CLASSES
926
927/* Give names of register classes as strings for dump file. */
928
ebedb4dd
MM
929#define REG_CLASS_NAMES \
930{ \
931 "NO_REGS", \
ebedb4dd
MM
932 "BASE_REGS", \
933 "GENERAL_REGS", \
934 "FLOAT_REGS", \
935 "NON_SPECIAL_REGS", \
936 "MQ_REGS", \
937 "LINK_REGS", \
938 "CTR_REGS", \
939 "LINK_OR_CTR_REGS", \
940 "SPECIAL_REGS", \
941 "SPEC_OR_GEN_REGS", \
942 "CR0_REGS", \
ebedb4dd
MM
943 "CR_REGS", \
944 "NON_FLOAT_REGS", \
802a0058
MM
945 "FPMEM_REGS", \
946 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
947 "ALL_REGS" \
948}
f045b2c9
RS
949
950/* Define which registers fit in which classes.
951 This is an initializer for a vector of HARD_REG_SET
952 of length N_REG_CLASSES. */
953
ebedb4dd
MM
954#define REG_CLASS_CONTENTS \
955{ \
956 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
957 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
958 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
959 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
960 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
961 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
962 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
963 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
964 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
965 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
966 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
967 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
968 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
969 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
970 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
971 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
972 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 973}
f045b2c9
RS
974
975/* The same information, inverted:
976 Return the class number of the smallest class containing
977 reg number REGNO. This could be a conditional expression
978 or could index an array. */
979
802a0058
MM
980#define REGNO_REG_CLASS(REGNO) \
981 ((REGNO) == 0 ? GENERAL_REGS \
982 : (REGNO) < 32 ? BASE_REGS \
983 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
984 : (REGNO) == 68 ? CR0_REGS \
985 : CR_REGNO_P (REGNO) ? CR_REGS \
986 : (REGNO) == 64 ? MQ_REGS \
987 : (REGNO) == 65 ? LINK_REGS \
988 : (REGNO) == 66 ? CTR_REGS \
989 : (REGNO) == 67 ? BASE_REGS \
990 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
991 : NO_REGS)
992
993/* The class value for index registers, and the one for base regs. */
994#define INDEX_REG_CLASS GENERAL_REGS
995#define BASE_REG_CLASS BASE_REGS
996
997/* Get reg_class from a letter such as appears in the machine description. */
998
999#define REG_CLASS_FROM_LETTER(C) \
1000 ((C) == 'f' ? FLOAT_REGS \
1001 : (C) == 'b' ? BASE_REGS \
1002 : (C) == 'h' ? SPECIAL_REGS \
1003 : (C) == 'q' ? MQ_REGS \
1004 : (C) == 'c' ? CTR_REGS \
1005 : (C) == 'l' ? LINK_REGS \
1006 : (C) == 'x' ? CR0_REGS \
1007 : (C) == 'y' ? CR_REGS \
802a0058 1008 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
1009 : NO_REGS)
1010
1011/* The letters I, J, K, L, M, N, and P in a register constraint string
1012 can be used to stand for particular ranges of immediate operands.
1013 This macro defines what the ranges are.
1014 C is the letter, and VALUE is a constant value.
1015 Return 1 if VALUE is in the range specified by C.
1016
c81bebd7 1017 `I' is signed 16-bit constants
f045b2c9
RS
1018 `J' is a constant with only the high-order 16 bits non-zero
1019 `K' is a constant with only the low-order 16 bits non-zero
1020 `L' is a constant that can be placed into a mask operand
1021 `M' is a constant that is greater than 31
1022 `N' is a constant that is an exact power of two
1023 `O' is the constant zero
1024 `P' is a constant whose negation is a signed 16-bit constant */
1025
1026#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1027 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
1028 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1029 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1030 : (C) == 'L' ? mask_constant (VALUE) \
1031 : (C) == 'M' ? (VALUE) > 31 \
1032 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1033 : (C) == 'O' ? (VALUE) == 0 \
1034 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
1035 : 0)
1036
1037/* Similar, but for floating constants, and defining letters G and H.
1038 Here VALUE is the CONST_DOUBLE rtx itself.
1039
1040 We flag for special constants when we can copy the constant into
4e74d8ec 1041 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1042
c4c40373 1043 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1044
1045#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1046 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1047 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1048 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1049 : 0)
f045b2c9
RS
1050
1051/* Optional extra constraints for this machine.
1052
b6c9286a
MM
1053 'Q' means that is a memory operand that is just an offset from a reg.
1054 'R' is for AIX TOC entries.
1055 'S' is for Windows NT SYMBOL_REFs
88228c4b
MM
1056 'T' is for Windows NT LABEL_REFs.
1057 'U' is for V.4 small data references. */
f045b2c9 1058
e8a8bc24
RK
1059#define EXTRA_CONSTRAINT(OP, C) \
1060 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1061 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b6c9286a
MM
1062 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1063 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
c81bebd7
MM
1064 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1065 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1066 : 0)
f045b2c9
RS
1067
1068/* Given an rtx X being reloaded into a reg required to be
1069 in class CLASS, return the class of reg to actually use.
1070 In general this is just CLASS; but on some machines
c81bebd7 1071 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1072
1073 On the RS/6000, we have to return NO_REGS when we want to reload a
1074 floating-point CONST_DOUBLE to force it to be copied to memory. */
1075
802a0058 1076#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1077 ((GET_CODE (X) == CONST_DOUBLE \
1078 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1079 ? NO_REGS : (CLASS))
c81bebd7 1080
f045b2c9
RS
1081/* Return the register class of a scratch register needed to copy IN into
1082 or out of a register in CLASS in MODE. If it can be done directly,
1083 NO_REGS is returned. */
1084
1085#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1086 secondary_reload_class (CLASS, MODE, IN)
1087
7ea555a4
RK
1088/* If we are copying between FP registers and anything else, we need a memory
1089 location. */
1090
1091#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1092 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1093
f045b2c9
RS
1094/* Return the maximum number of consecutive registers
1095 needed to represent mode MODE in a register of class CLASS.
1096
1097 On RS/6000, this is the size of MODE in words,
1098 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1099#define CLASS_MAX_NREGS(CLASS, MODE) \
1100 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1101 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1102 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1103 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1104
1105/* If defined, gives a class of registers that cannot be used as the
1106 operand of a SUBREG that changes the size of the object. */
1107
802a0058 1108#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1109\f
1110/* Stack layout; function entry, exit and calling. */
1111
6b67933e
RK
1112/* Enumeration to give which calling sequence to use. */
1113enum rs6000_abi {
1114 ABI_NONE,
1115 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1116 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1117 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1118 ABI_NT, /* Windows/NT */
1119 ABI_SOLARIS /* Solaris */
6b67933e
RK
1120};
1121
b6c9286a
MM
1122extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1123
1124/* Default ABI to compile code for */
1125#ifndef DEFAULT_ABI
1126#define DEFAULT_ABI ABI_AIX
1127#endif
1128
4697a36c
MM
1129/* Structure used to define the rs6000 stack */
1130typedef struct rs6000_stack {
1131 int first_gp_reg_save; /* first callee saved GP register used */
1132 int first_fp_reg_save; /* first callee saved FP register used */
1133 int lr_save_p; /* true if the link reg needs to be saved */
1134 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1135 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1136 int push_p; /* true if we need to allocate stack space */
1137 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1138 int main_p; /* true if this is main */
1139 int main_save_p; /* true if this is main and we need to save args */
802a0058 1140 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1141 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1142 int gp_save_offset; /* offset to save GP regs from initial SP */
1143 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1144 int lr_save_offset; /* offset to save LR from initial SP */
1145 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1146 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1147 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1148 int main_save_offset; /* offset to save main's args */
802a0058 1149 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1150 int reg_size; /* register size (4 or 8) */
1151 int varargs_size; /* size to hold V.4 args passed in regs */
1152 int vars_size; /* variable save area size */
1153 int parm_size; /* outgoing parameter size */
b6c9286a 1154 int main_size; /* size to hold saving main's args */
4697a36c
MM
1155 int save_size; /* save area size */
1156 int fixed_size; /* fixed size of stack frame */
1157 int gp_size; /* size of saved GP registers */
1158 int fp_size; /* size of saved FP registers */
1159 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1160 int lr_size; /* size to hold LR if not in save_size */
802a0058 1161 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1162 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1163 int total_size; /* total bytes allocated for stack */
1164} rs6000_stack_t;
1165
f045b2c9
RS
1166/* Define this if pushing a word on the stack
1167 makes the stack pointer a smaller address. */
1168#define STACK_GROWS_DOWNWARD
1169
1170/* Define this if the nominal address of the stack frame
1171 is at the high-address end of the local variables;
1172 that is, each additional local variable allocated
1173 goes at a more negative offset in the frame.
1174
1175 On the RS/6000, we grow upwards, from the area after the outgoing
1176 arguments. */
1177/* #define FRAME_GROWS_DOWNWARD */
1178
4697a36c 1179/* Size of the outgoing register save area */
2f3e5814 1180#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1181
1182/* Size of the fixed area on the stack */
2f3e5814 1183#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1184
b6c9286a
MM
1185/* Address to save the TOC register */
1186#define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1187
1188/* Whether a separate TOC save area is needed */
1189extern int rs6000_save_toc_p;
1190
802a0058
MM
1191/* Offset & size for fpmem stack locations used for converting between
1192 float and integral types. */
1193extern int rs6000_fpmem_offset;
1194extern int rs6000_fpmem_size;
1195
4697a36c
MM
1196/* Size of the V.4 varargs area if needed */
1197#define RS6000_VARARGS_AREA 0
1198
1199/* Whether a V.4 varargs area is needed */
1200extern int rs6000_sysv_varargs_p;
1201
1202/* Align an address */
1203#define ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1204
a7df97e6
MM
1205/* Initialize data used by insn expanders. This is called from
1206 init_emit, once for each function, before code is generated. */
1207#define INIT_EXPANDERS rs6000_init_expanders ()
1208
4697a36c
MM
1209/* Size of V.4 varargs area in bytes */
1210#define RS6000_VARARGS_SIZE \
2f3e5814 1211 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c
MM
1212
1213/* Offset of V.4 varargs area */
802a0058
MM
1214#define RS6000_VARARGS_OFFSET \
1215 (ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1216 + RS6000_SAVE_AREA)
4697a36c 1217
f045b2c9
RS
1218/* Offset within stack frame to start allocating local variables at.
1219 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1220 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1221 of the first local allocated.
f045b2c9
RS
1222
1223 On the RS/6000, the frame pointer is the same as the stack pointer,
1224 except for dynamic allocations. So we start after the fixed area and
1225 outgoing parameter area. */
1226
802a0058
MM
1227#define STARTING_FRAME_OFFSET \
1228 (ALIGN (current_function_outgoing_args_size, 8) \
802a0058
MM
1229 + RS6000_VARARGS_AREA \
1230 + RS6000_SAVE_AREA)
1231
1232/* Offset from the stack pointer register to an item dynamically
1233 allocated on the stack, e.g., by `alloca'.
1234
1235 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1236 length of the outgoing arguments. The default is correct for most
1237 machines. See `function.c' for details. */
1238#define STACK_DYNAMIC_OFFSET(FUNDECL) \
1239 (ALIGN (current_function_outgoing_args_size, 8) \
802a0058 1240 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1241
1242/* If we generate an insn to push BYTES bytes,
1243 this says how many the stack pointer really advances by.
1244 On RS/6000, don't define this because there are no push insns. */
1245/* #define PUSH_ROUNDING(BYTES) */
1246
1247/* Offset of first parameter from the argument pointer register value.
1248 On the RS/6000, we define the argument pointer to the start of the fixed
1249 area. */
4697a36c 1250#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1251
1252/* Define this if stack space is still allocated for a parameter passed
1253 in a register. The value is the number of bytes allocated to this
1254 area. */
4697a36c 1255#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1256
1257/* Define this if the above stack space is to be considered part of the
1258 space allocated by the caller. */
1259#define OUTGOING_REG_PARM_STACK_SPACE
1260
1261/* This is the difference between the logical top of stack and the actual sp.
1262
1263 For the RS/6000, sp points past the fixed area. */
4697a36c 1264#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1265
1266/* Define this if the maximum size of all the outgoing args is to be
1267 accumulated and pushed during the prologue. The amount can be
1268 found in the variable current_function_outgoing_args_size. */
1269#define ACCUMULATE_OUTGOING_ARGS
1270
1271/* Value is the number of bytes of arguments automatically
1272 popped when returning from a subroutine call.
8b109b37 1273 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1274 FUNTYPE is the data type of the function (as a tree),
1275 or for a library call it is an identifier node for the subroutine name.
1276 SIZE is the number of bytes of arguments passed on the stack. */
1277
8b109b37 1278#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1279
1280/* Define how to find the value returned by a function.
1281 VALTYPE is the data type of the value (as a tree).
1282 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1283 otherwise, FUNC is 0.
1284
c81bebd7 1285 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1286 fp1, unless -msoft-float. */
f045b2c9
RS
1287
1288#define FUNCTION_VALUE(VALTYPE, FUNC) \
1289 gen_rtx (REG, TYPE_MODE (VALTYPE), \
d14a6d05 1290 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1291
1292/* Define how to find the value returned by a library function
1293 assuming the value has mode MODE. */
1294
1295#define LIBCALL_VALUE(MODE) \
d14a6d05 1296 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1297
1298/* The definition of this macro implies that there are cases where
1299 a scalar value cannot be returned in registers.
1300
c81bebd7
MM
1301 For the RS/6000, any structure or union type is returned in memory, except for
1302 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1303
c81bebd7
MM
1304#define RETURN_IN_MEMORY(TYPE) \
1305 (TYPE_MODE (TYPE) == BLKmode \
1306 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1307
4697a36c
MM
1308/* Minimum and maximum general purpose registers used to hold arguments. */
1309#define GP_ARG_MIN_REG 3
1310#define GP_ARG_MAX_REG 10
1311#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1312
1313/* Minimum and maximum floating point registers used to hold arguments. */
1314#define FP_ARG_MIN_REG 33
7509c759
MM
1315#define FP_ARG_AIX_MAX_REG 45
1316#define FP_ARG_V4_MAX_REG 40
1317#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1318#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1319
1320/* Return registers */
1321#define GP_ARG_RETURN GP_ARG_MIN_REG
1322#define FP_ARG_RETURN FP_ARG_MIN_REG
1323
7509c759 1324/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1325#define CALL_NORMAL 0x00000000 /* no special processing */
1326#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1327#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1328#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1329#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1330
4697a36c
MM
1331/* Define cutoff for using external functions to save floating point */
1332#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1333
f045b2c9
RS
1334/* 1 if N is a possible register number for a function value
1335 as seen by the caller.
1336
1337 On RS/6000, this is r3 and fp1. */
4697a36c 1338#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1339
1340/* 1 if N is a possible register number for function argument passing.
1341 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1342#define FUNCTION_ARG_REGNO_P(N) \
1343 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1344 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1345
f045b2c9
RS
1346\f
1347/* Define a data type for recording info about an argument list
1348 during the scan of that argument list. This data type should
1349 hold all necessary information about the function itself
1350 and about the args processed so far, enough to enable macros
1351 such as FUNCTION_ARG to determine where the next arg should go.
1352
1353 On the RS/6000, this is a structure. The first element is the number of
1354 total argument words, the second is used to store the next
1355 floating-point register number, and the third says how many more args we
4697a36c
MM
1356 have prototype types for.
1357
1358 The System V.4 varargs/stdarg support requires that this structure's size
1359 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1360 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1361
1362typedef struct rs6000_args
1363{
6a4cee5f
MM
1364 int words; /* # words uses for passing GP registers */
1365 int fregno; /* next available FP register */
1366 int nargs_prototype; /* # args left in the current prototype */
1367 int orig_nargs; /* Original value of nargs_prototype */
1368 int varargs_offset; /* offset of the varargs save area */
1369 int prototype; /* Whether a prototype was defined */
1370 int call_cookie; /* Do special things for this call */
4697a36c 1371} CUMULATIVE_ARGS;
f045b2c9
RS
1372
1373/* Define intermediate macro to compute the size (in registers) of an argument
1374 for the RS/6000. */
1375
1376#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1377(! (NAMED) ? 0 \
1378 : (MODE) != BLKmode \
1379 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1380 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1381
1382/* Initialize a variable CUM of type CUMULATIVE_ARGS
1383 for a call to a function whose data type is FNTYPE.
1384 For a library call, FNTYPE is 0. */
1385
2c7ee1a6 1386#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1387 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1388
1389/* Similar, but when scanning the definition of a procedure. We always
1390 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1391
4697a36c
MM
1392#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1393 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1394
1395/* Update the data in CUM to advance over an argument
1396 of mode MODE and data type TYPE.
1397 (TYPE is null for libcalls where that information may not be available.) */
1398
1399#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1400 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1401
1402/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1403#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1404 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1405 && (CUM).fregno <= FP_ARG_MAX_REG \
1406 && TARGET_HARD_FLOAT)
f045b2c9
RS
1407
1408/* Determine where to put an argument to a function.
1409 Value is zero to push the argument on the stack,
1410 or a hard register in which to store the argument.
1411
1412 MODE is the argument's machine mode.
1413 TYPE is the data type of the argument (as a tree).
1414 This is null for libcalls where that information may
1415 not be available.
1416 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1417 the preceding args and about the function being called.
1418 NAMED is nonzero if this argument is a named parameter
1419 (otherwise it is an extra parameter matching an ellipsis).
1420
1421 On RS/6000 the first eight words of non-FP are normally in registers
1422 and the rest are pushed. The first 13 FP args are in registers.
1423
1424 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1425 both an FP and integer register (or possibly FP reg and stack). Library
1426 functions (when TYPE is zero) always have the proper types for args,
1427 so we can pass the FP value just in one register. emit_library_function
1428 doesn't support EXPR_LIST anyway. */
f045b2c9 1429
4697a36c
MM
1430#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1431 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1432
1433/* For an arg passed partly in registers and partly in memory,
1434 this is the number of registers used.
1435 For args passed entirely in registers or entirely in memory, zero. */
1436
4697a36c
MM
1437#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1438 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1439
1440/* A C expression that indicates when an argument must be passed by
1441 reference. If nonzero for an argument, a copy of that argument is
1442 made in memory and a pointer to the argument is passed instead of
1443 the argument itself. The pointer is passed in whatever way is
1444 appropriate for passing a pointer to that type. */
1445
1446#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1447 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1448
b6c9286a 1449/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1450 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1451 PARM_BOUNDARY is used for all arguments. */
1452
1453#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1454 function_arg_boundary (MODE, TYPE)
1455
f045b2c9 1456/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1457 variable number of arguments.
f045b2c9
RS
1458
1459 CUM is as above.
1460
1461 MODE and TYPE are the mode and type of the current parameter.
1462
1463 PRETEND_SIZE is a variable that should be set to the amount of stack
1464 that must be pushed by the prolog to pretend that our caller pushed
1465 it.
1466
1467 Normally, this macro will push all remaining incoming registers on the
1468 stack and set PRETEND_SIZE to the length of the registers pushed. */
1469
4697a36c
MM
1470#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1471 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1472
1473/* If defined, is a C expression that produces the machine-specific
1474 code for a call to `__builtin_saveregs'. This code will be moved
1475 to the very beginning of the function, before any parameter access
1476 are made. The return value of this function should be an RTX that
1477 contains the value to use as the return of `__builtin_saveregs'.
1478
1479 The argument ARGS is a `tree_list' containing the arguments that
1480 were passed to `__builtin_saveregs'.
1481
1482 If this macro is not defined, the compiler will output an ordinary
1483 call to the library function `__builtin_saveregs'. */
1484
1485#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1486 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1487
1488/* This macro generates the assembly code for function entry.
1489 FILE is a stdio stream to output the code to.
1490 SIZE is an int: how many units of temporary storage to allocate.
1491 Refer to the array `regs_ever_live' to determine which registers
1492 to save; `regs_ever_live[I]' is nonzero if register number I
1493 is ever used in the function. This macro is responsible for
1494 knowing which registers should not be saved even if used. */
1495
1496#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1497
1498/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1499 for profiling a function entry. */
f045b2c9
RS
1500
1501#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1502 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1503
1504/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1505 the stack pointer does not matter. No definition is equivalent to
1506 always zero.
1507
1508 On the RS/6000, this is non-zero because we can restore the stack from
1509 its backpointer, which we maintain. */
1510#define EXIT_IGNORE_STACK 1
1511
1512/* This macro generates the assembly code for function exit,
1513 on machines that need it. If FUNCTION_EPILOGUE is not defined
1514 then individual return instructions are generated for each
1515 return statement. Args are same as for FUNCTION_PROLOGUE.
1516
1517 The function epilogue should not depend on the current stack pointer!
1518 It should use the frame pointer only. This is mandatory because
1519 of alloca; we also take advantage of it to omit stack adjustments
1520 before returning. */
1521
1522#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1523\f
1524/* Output assembler code for a block containing the constant parts
1525 of a trampoline, leaving space for the variable parts.
1526
1527 The trampoline should set the static chain pointer to value placed
b6c9286a
MM
1528 into the trampoline and should branch to the specified routine. */
1529#define TRAMPOLINE_TEMPLATE(FILE) rs6000_trampoline_template (FILE)
f045b2c9
RS
1530
1531/* Length in units of the trampoline for entering a nested function. */
1532
b6c9286a 1533#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1534
1535/* Emit RTL insns to initialize the variable parts of a trampoline.
1536 FNADDR is an RTX for the address of the function's pure code.
1537 CXT is an RTX for the static chain value for the function. */
1538
1539#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1540 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1541\f
7509c759
MM
1542/* If defined, a C expression whose value is nonzero if IDENTIFIER
1543 with arguments ARGS is a valid machine specific attribute for DECL.
1544 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1545
1546#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1547 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1548
1549/* If defined, a C expression whose value is nonzero if IDENTIFIER
1550 with arguments ARGS is a valid machine specific attribute for TYPE.
1551 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1552
1553#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1554 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1555
1556/* If defined, a C expression whose value is zero if the attributes on
1557 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1558 two if they are nearly compatible (which causes a warning to be
1559 generated). */
1560
1561#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1562 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1563
1564/* If defined, a C statement that assigns default attributes to newly
1565 defined TYPE. */
1566
1567#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1568 (rs6000_set_default_type_attributes (TYPE))
1569
1570\f
f33985c6
MS
1571/* Definitions for __builtin_return_address and __builtin_frame_address.
1572 __builtin_return_address (0) should give link register (65), enable
1573 this. */
1574/* This should be uncommented, so that the link register is used, but
1575 currently this would result in unmatched insns and spilling fixed
1576 registers so we'll leave it for another day. When these problems are
1577 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1578 (mrs) */
1579/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1580
b6c9286a
MM
1581/* Number of bytes into the frame return addresses can be found. See
1582 rs6000_stack_info in rs6000.c for more information on how the different
1583 abi's store the return address. */
1584#define RETURN_ADDRESS_OFFSET \
1585 ((DEFAULT_ABI == ABI_AIX \
1586 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1587 (DEFAULT_ABI == ABI_V4 \
1588 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1589 (DEFAULT_ABI == ABI_NT) ? -4 : \
1590 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1591
f33985c6
MS
1592/* The current return address is in link register (65). The return address
1593 of anything farther back is accessed normally at an offset of 8 from the
1594 frame pointer. */
1595#define RETURN_ADDR_RTX(count, frame) \
1596 ((count == -1) \
1597 ? gen_rtx (REG, Pmode, 65) \
f09d4c33
RK
1598 : gen_rtx (MEM, Pmode, \
1599 memory_address (Pmode, \
1600 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1601 memory_address (Pmode, frame))), \
1602 RETURN_ADDRESS_OFFSET))))
f33985c6 1603\f
f045b2c9
RS
1604/* Definitions for register eliminations.
1605
1606 We have two registers that can be eliminated on the RS/6000. First, the
1607 frame pointer register can often be eliminated in favor of the stack
1608 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1609 eliminated; it is replaced with either the stack or frame pointer.
1610
1611 In addition, we use the elimination mechanism to see if r30 is needed
1612 Initially we assume that it isn't. If it is, we spill it. This is done
1613 by making it an eliminable register. We replace it with itself so that
1614 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1615
1616/* This is an array of structures. Each structure initializes one pair
1617 of eliminable registers. The "from" register number is given first,
1618 followed by "to". Eliminations of the same "from" register are listed
1619 in order of preference. */
1620#define ELIMINABLE_REGS \
1621{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1622 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1623 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1624 { 30, 30} }
f045b2c9
RS
1625
1626/* Given FROM and TO register numbers, say whether this elimination is allowed.
1627 Frame pointer elimination is automatically handled.
1628
1629 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1630 to convert ap into fp, not sp.
1631
abc95ed3 1632 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1633 references. */
f045b2c9
RS
1634
1635#define CAN_ELIMINATE(FROM, TO) \
1636 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1637 ? ! frame_pointer_needed \
4697a36c 1638 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1639 : 1)
1640
1641/* Define the offset between two registers, one to be eliminated, and the other
1642 its replacement, at the start of a routine. */
1643#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1644{ \
4697a36c 1645 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1646 \
1647 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1648 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1649 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1650 (OFFSET) = info->total_size; \
1651 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1652 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1653 else if ((FROM) == 30) \
1654 (OFFSET) = 0; \
f045b2c9
RS
1655 else \
1656 abort (); \
1657}
1658\f
1659/* Addressing modes, and classification of registers for them. */
1660
1661/* #define HAVE_POST_INCREMENT */
1662/* #define HAVE_POST_DECREMENT */
1663
1664#define HAVE_PRE_DECREMENT
1665#define HAVE_PRE_INCREMENT
1666
1667/* Macros to check register numbers against specific register classes. */
1668
1669/* These assume that REGNO is a hard or pseudo reg number.
1670 They give nonzero only if REGNO is a hard reg of the suitable class
1671 or a pseudo reg currently allocated to a suitable hard reg.
1672 Since they use reg_renumber, they are safe only once reg_renumber
1673 has been allocated, which happens in local-alloc.c. */
1674
1675#define REGNO_OK_FOR_INDEX_P(REGNO) \
1676((REGNO) < FIRST_PSEUDO_REGISTER \
1677 ? (REGNO) <= 31 || (REGNO) == 67 \
1678 : (reg_renumber[REGNO] >= 0 \
1679 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1680
1681#define REGNO_OK_FOR_BASE_P(REGNO) \
1682((REGNO) < FIRST_PSEUDO_REGISTER \
1683 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1684 : (reg_renumber[REGNO] > 0 \
1685 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1686\f
1687/* Maximum number of registers that can appear in a valid memory address. */
1688
1689#define MAX_REGS_PER_ADDRESS 2
1690
1691/* Recognize any constant value that is a valid address. */
1692
6eff269e
BK
1693#define CONSTANT_ADDRESS_P(X) \
1694 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1695 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1696 || GET_CODE (X) == HIGH)
f045b2c9
RS
1697
1698/* Nonzero if the constant value X is a legitimate general operand.
1699 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1700
1701 On the RS/6000, all integer constants are acceptable, most won't be valid
1702 for particular insns, though. Only easy FP constants are
1703 acceptable. */
1704
1705#define LEGITIMATE_CONSTANT_P(X) \
1706 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1707 || easy_fp_constant (X, GET_MODE (X)))
1708
1709/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1710 and check its validity for a certain class.
1711 We have two alternate definitions for each of them.
1712 The usual definition accepts all pseudo regs; the other rejects
1713 them unless they have been allocated suitable hard regs.
1714 The symbol REG_OK_STRICT causes the latter definition to be used.
1715
1716 Most source files want to accept pseudo regs in the hope that
1717 they will get allocated to the class that the insn wants them to be in.
1718 Source files for reload pass need to be strict.
1719 After reload, it makes no difference, since pseudo regs have
1720 been eliminated by then. */
1721
1722#ifndef REG_OK_STRICT
1723
1724/* Nonzero if X is a hard reg that can be used as an index
1725 or if it is a pseudo reg. */
1726#define REG_OK_FOR_INDEX_P(X) \
1727 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1728
1729/* Nonzero if X is a hard reg that can be used as a base reg
1730 or if it is a pseudo reg. */
1731#define REG_OK_FOR_BASE_P(X) \
1732 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1733
1734#else
1735
1736/* Nonzero if X is a hard reg that can be used as an index. */
1737#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1738/* Nonzero if X is a hard reg that can be used as a base reg. */
1739#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1740
1741#endif
1742\f
1743/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1744 that is a valid memory address for an instruction.
1745 The MODE argument is the machine mode for the MEM expression
1746 that wants to use this address.
1747
1748 On the RS/6000, there are four valid address: a SYMBOL_REF that
1749 refers to a constant pool entry of an address (or the sum of it
1750 plus a constant), a short (16-bit signed) constant plus a register,
1751 the sum of two registers, or a register indirect, possibly with an
1752 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814
DE
1753 we must ensure that both words are addressable or PowerPC64 with offset
1754 word aligned. */
f045b2c9
RS
1755
1756#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1757 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1758 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1759 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1760
2f3e5814 1761/* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
f045b2c9
RS
1762#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1763 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1764 || (TARGET_TOC \
1765 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1766 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1767 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1768
7509c759 1769#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1770 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
88228c4b
MM
1771 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1772 && small_data_operand (X, MODE))
7509c759 1773
f045b2c9
RS
1774#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1775 (GET_CODE (X) == CONST_INT \
1776 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1777
1778#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1779 (GET_CODE (X) == PLUS \
1780 && GET_CODE (XEXP (X, 0)) == REG \
1781 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1782 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1783 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1784 || (TARGET_32BIT \
1465faec
DE
1785 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1786 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1787 && ((MODE) != TImode \
644d82dd 1788 || (TARGET_32BIT \
1465faec
DE
1789 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1790 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1791 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1792
1793#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1794 (GET_CODE (X) == PLUS \
1795 && GET_CODE (XEXP (X, 0)) == REG \
1796 && GET_CODE (XEXP (X, 1)) == REG \
1797 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1798 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1799 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1800 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1801
1802#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1803 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1804
4697a36c
MM
1805#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1806 (TARGET_ELF \
1807 && (MODE) != DImode \
1808 && (MODE) != TImode \
1809 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1810 && GET_CODE (X) == LO_SUM \
1811 && GET_CODE (XEXP (X, 0)) == REG \
1812 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1813 && CONSTANT_P (XEXP (X, 1)))
1814
f045b2c9
RS
1815#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1816{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1817 goto ADDR; \
0a90c336 1818 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
f045b2c9
RS
1819 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1820 goto ADDR; \
7509c759
MM
1821 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1822 goto ADDR; \
f045b2c9
RS
1823 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1824 goto ADDR; \
1825 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1826 goto ADDR; \
2f3e5814
DE
1827 if ((MODE) != TImode \
1828 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1829 && (TARGET_64BIT || (MODE) != DImode) \
f045b2c9
RS
1830 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1831 goto ADDR; \
4697a36c
MM
1832 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1833 goto ADDR; \
f045b2c9
RS
1834}
1835\f
1836/* Try machine-dependent ways of modifying an illegitimate address
1837 to be legitimate. If we find one, return the new, valid address.
1838 This macro is used in only one place: `memory_address' in explow.c.
1839
1840 OLDX is the address as it was before break_out_memory_refs was called.
1841 In some cases it is useful to look at this to decide what needs to be done.
1842
1843 MODE and WIN are passed so that this macro can use
1844 GO_IF_LEGITIMATE_ADDRESS.
1845
1846 It is always safe for this macro to do nothing. It exists to recognize
1847 opportunities to optimize the output.
1848
1849 On RS/6000, first check for the sum of a register with a constant
1850 integer that is out of range. If so, generate code to add the
1851 constant with the low-order 16 bits masked to the register and force
1852 this result into another register (this can be done with `cau').
c81bebd7 1853 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1854 possibility of bit 16 being a one.
1855
1856 Then check for the sum of a register and something not constant, try to
1857 load the other things into a register and return the sum. */
1858
4697a36c
MM
1859#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1860{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1861 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1862 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1863 { HOST_WIDE_INT high_int, low_int; \
1864 rtx sum; \
1865 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1866 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1867 if (low_int & 0x8000) \
354b734b
MM
1868 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1869 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1870 GEN_INT (high_int)), 0); \
1871 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1872 goto WIN; \
1873 } \
1874 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1875 && GET_CODE (XEXP (X, 1)) != CONST_INT \
2f3e5814
DE
1876 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1877 && (TARGET_64BIT || (MODE) != DImode) \
1878 && (MODE) != TImode) \
4697a36c 1879 { \
0a90c336
DE
1880 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1881 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
1882 goto WIN; \
1883 } \
2f3e5814 1884 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
4697a36c
MM
1885 && GET_CODE (X) != CONST_INT \
1886 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1887 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1888 && (MODE) != DImode && (MODE) != TImode) \
1889 { \
1890 rtx reg = gen_reg_rtx (Pmode); \
1891 emit_insn (gen_elf_high (reg, (X))); \
1892 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1893 } \
f045b2c9
RS
1894}
1895
1896/* Go to LABEL if ADDR (a legitimate address expression)
1897 has an effect that depends on the machine mode it is used for.
1898
1899 On the RS/6000 this is true if the address is valid with a zero offset
1900 but not with an offset of four (this means it cannot be used as an
1901 address for DImode or DFmode) or is a pre-increment or decrement. Since
1902 we know it is valid, we just check for an address that is not valid with
1903 an offset of four. */
1904
1905#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1906{ if (GET_CODE (ADDR) == PLUS \
1907 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
1908 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1909 (TARGET_32BIT ? 4 : 8))) \
f045b2c9
RS
1910 goto LABEL; \
1911 if (GET_CODE (ADDR) == PRE_INC) \
1912 goto LABEL; \
1913 if (GET_CODE (ADDR) == PRE_DEC) \
1914 goto LABEL; \
4697a36c
MM
1915 if (GET_CODE (ADDR) == LO_SUM) \
1916 goto LABEL; \
f045b2c9 1917}
766a866c
MM
1918\f
1919/* The register number of the register used to address a table of
1920 static data addresses in memory. In some cases this register is
1921 defined by a processor's "application binary interface" (ABI).
1922 When this macro is defined, RTL is generated for this register
1923 once, as with the stack pointer and frame pointer registers. If
1924 this macro is not defined, it is up to the machine-dependent files
1925 to allocate such a register (if necessary). */
1926
1927/* #define PIC_OFFSET_TABLE_REGNUM */
1928
1929/* Define this macro if the register defined by
1930 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1931 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1932
1933/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1934
1935/* By generating position-independent code, when two different
1936 programs (A and B) share a common library (libC.a), the text of
1937 the library can be shared whether or not the library is linked at
1938 the same address for both programs. In some of these
1939 environments, position-independent code requires not only the use
1940 of different addressing modes, but also special code to enable the
1941 use of these addressing modes.
1942
1943 The `FINALIZE_PIC' macro serves as a hook to emit these special
1944 codes once the function is being compiled into assembly code, but
1945 not before. (It is not done before, because in the case of
1946 compiling an inline function, it would lead to multiple PIC
1947 prologues being included in functions which used inline functions
1948 and were compiled to assembly language.) */
1949
d266da75 1950#define FINALIZE_PIC rs6000_finalize_pic ()
766a866c 1951
766a866c
MM
1952/* A C expression that is nonzero if X is a legitimate immediate
1953 operand on the target machine when generating position independent
1954 code. You can assume that X satisfies `CONSTANT_P', so you need
1955 not check this. You can also assume FLAG_PIC is true, so you need
1956 not check it either. You need not define this macro if all
1957 constants (including `SYMBOL_REF') can be immediate operands when
1958 generating position independent code. */
1959
1960/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1961
30ea98f1
MM
1962/* In rare cases, correct code generation requires extra machine
1963 dependent processing between the second jump optimization pass and
1964 delayed branch scheduling. On those machines, define this macro
1965 as a C statement to act on the code starting at INSN.
1966
1967 On the RS/6000, we use it to make sure the GOT_TOC register marker
1968 that FINALIZE_PIC is supposed to remove actually got removed. */
1969
1970#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
1971
f045b2c9
RS
1972\f
1973/* Define this if some processing needs to be done immediately before
4255474b 1974 emitting code for an insn. */
f045b2c9 1975
4255474b 1976/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
1977
1978/* Specify the machine mode that this machine uses
1979 for the index in the tablejump instruction. */
2f3e5814 1980#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
1981
1982/* Define this if the tablejump instruction expects the table
1983 to contain offsets from the address of the table.
1984 Do not define this if the table should contain absolute addresses. */
1985#define CASE_VECTOR_PC_RELATIVE
1986
1987/* Specify the tree operation to be used to convert reals to integers. */
1988#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1989
1990/* This is the kind of divide that is easiest to do in the general case. */
1991#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1992
1993/* Define this as 1 if `char' should by default be signed; else as 0. */
1994#define DEFAULT_SIGNED_CHAR 0
1995
1996/* This flag, if defined, says the same insns that convert to a signed fixnum
1997 also convert validly to an unsigned one. */
1998
1999/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2000
2001/* Max number of bytes we can move from memory to memory
2002 in one reasonably fast instruction. */
2f3e5814 2003#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2004#define MAX_MOVE_MAX 8
f045b2c9
RS
2005
2006/* Nonzero if access to memory by bytes is no faster than for words.
2007 Also non-zero if doing byte operations (specifically shifts) in registers
2008 is undesirable. */
2009#define SLOW_BYTE_ACCESS 1
2010
9a63901f
RK
2011/* Define if operations between registers always perform the operation
2012 on the full register even if a narrower mode is specified. */
2013#define WORD_REGISTER_OPERATIONS
2014
2015/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2016 will either zero-extend or sign-extend. The value of this macro should
2017 be the code that says which one of the two operations is implicitly
2018 done, NIL if none. */
2019#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2020
2021/* Define if loading short immediate values into registers sign extends. */
2022#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2023\f
2024/* The RS/6000 uses the XCOFF format. */
f045b2c9 2025
fdaff8ba 2026#define XCOFF_DEBUGGING_INFO
f045b2c9 2027
c5abcf1d
CH
2028/* Define if the object format being used is COFF or a superset. */
2029#define OBJECT_FORMAT_COFF
2030
2c440f06
RK
2031/* Define the magic numbers that we recognize as COFF. */
2032
2033#define MY_ISCOFF(magic) \
2034 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2035
115e69a9
RK
2036/* This is the only version of nm that collect2 can work with. */
2037#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2038
f045b2c9
RS
2039/* We don't have GAS for the RS/6000 yet, so don't write out special
2040 .stabs in cc1plus. */
c81bebd7 2041
f045b2c9 2042#define FASCIST_ASSEMBLER
b6c9286a
MM
2043
2044#ifndef ASM_OUTPUT_CONSTRUCTOR
a6cf191b 2045#define ASM_OUTPUT_CONSTRUCTOR(file, name)
b6c9286a
MM
2046#endif
2047#ifndef ASM_OUTPUT_DESTRUCTOR
a6cf191b 2048#define ASM_OUTPUT_DESTRUCTOR(file, name)
b6c9286a 2049#endif
f045b2c9 2050
f045b2c9
RS
2051/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2052 is done just by pretending it is already truncated. */
2053#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2054
2055/* Specify the machine mode that pointers have.
2056 After generation of rtl, the compiler makes no further distinction
2057 between pointers and any other objects of this machine mode. */
2f3e5814 2058#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2059
2060/* Mode of a function address in a call instruction (for indexing purposes).
2061
2062 Doesn't matter on RS/6000. */
2f3e5814 2063#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2064
2065/* Define this if addresses of constant functions
2066 shouldn't be put through pseudo regs where they can be cse'd.
2067 Desirable on machines where ordinary constants are expensive
2068 but a CALL with constant address is cheap. */
2069#define NO_FUNCTION_CSE
2070
d969caf8 2071/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2072 few bits.
2073
2074 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2075 have been dropped from the PowerPC architecture. */
2076
4697a36c 2077#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2078
2079/* Use atexit for static constructors/destructors, instead of defining
2080 our own exit function. */
2081#define HAVE_ATEXIT
2082
2083/* Compute the cost of computing a constant rtl expression RTX
2084 whose rtx-code is CODE. The body of this macro is a portion
2085 of a switch statement. If the code is computed here,
2086 return it with a return statement. Otherwise, break from the switch.
2087
01554f00 2088 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2089 always returns 0. */
2090
4697a36c 2091#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2092 case CONST_INT: \
2093 case CONST: \
2094 case LABEL_REF: \
2095 case SYMBOL_REF: \
2096 case CONST_DOUBLE: \
4697a36c 2097 case HIGH: \
f045b2c9
RS
2098 return 0;
2099
2100/* Provide the costs of a rtl expression. This is in the body of a
2101 switch on CODE. */
2102
3bb22aee 2103#define RTX_COSTS(X,CODE,OUTER_CODE) \
f045b2c9 2104 case MULT: \
bdfd4e31
RK
2105 switch (rs6000_cpu) \
2106 { \
2107 case PROCESSOR_RIOS1: \
2108 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2109 ? COSTS_N_INSNS (5) \
2110 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2111 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2112 case PROCESSOR_RIOS2: \
cf27b467 2113 case PROCESSOR_MPCCORE: \
bdfd4e31
RK
2114 return COSTS_N_INSNS (2); \
2115 case PROCESSOR_PPC601: \
869c489d 2116 return COSTS_N_INSNS (5); \
1ec26da6
DE
2117 case PROCESSOR_PPC603: \
2118 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2119 ? COSTS_N_INSNS (5) \
2120 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2121 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
49a0b204 2122 case PROCESSOR_PPC403: \
bdfd4e31
RK
2123 case PROCESSOR_PPC604: \
2124 case PROCESSOR_PPC620: \
869c489d 2125 return COSTS_N_INSNS (4); \
bdfd4e31 2126 } \
f045b2c9
RS
2127 case DIV: \
2128 case MOD: \
2129 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2130 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2131 return COSTS_N_INSNS (2); \
2132 /* otherwise fall through to normal divide. */ \
2133 case UDIV: \
2134 case UMOD: \
bdfd4e31
RK
2135 switch (rs6000_cpu) \
2136 { \
2137 case PROCESSOR_RIOS1: \
2138 return COSTS_N_INSNS (19); \
2139 case PROCESSOR_RIOS2: \
2140 return COSTS_N_INSNS (13); \
cf27b467
MM
2141 case PROCESSOR_MPCCORE: \
2142 return COSTS_N_INSNS (6); \
49a0b204
MM
2143 case PROCESSOR_PPC403: \
2144 return COSTS_N_INSNS (33); \
bdfd4e31 2145 case PROCESSOR_PPC601: \
869c489d 2146 return COSTS_N_INSNS (36); \
bdfd4e31 2147 case PROCESSOR_PPC603: \
869c489d 2148 return COSTS_N_INSNS (37); \
bdfd4e31
RK
2149 case PROCESSOR_PPC604: \
2150 case PROCESSOR_PPC620: \
869c489d 2151 return COSTS_N_INSNS (20); \
bdfd4e31 2152 } \
3a942930
RK
2153 case FFS: \
2154 return COSTS_N_INSNS (4); \
f045b2c9
RS
2155 case MEM: \
2156 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2157 return 5;
2158
2159/* Compute the cost of an address. This is meant to approximate the size
2160 and/or execution delay of an insn using that address. If the cost is
2161 approximated by the RTL complexity, including CONST_COSTS above, as
2162 is usually the case for CISC machines, this macro should not be defined.
2163 For aggressively RISCy machines, only one insn format is allowed, so
2164 this macro should be a constant. The value of this macro only matters
2165 for valid addresses.
2166
2167 For the RS/6000, everything is cost 0. */
2168
2169#define ADDRESS_COST(RTX) 0
2170
2171/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2172 should be adjusted to reflect any required changes. This macro is used when
2173 there is some systematic length adjustment required that would be difficult
2174 to express in the length attribute. */
2175
2176/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2177
2178/* Add any extra modes needed to represent the condition code.
2179
2180 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2181 are being done and we need a separate mode for floating-point. We also
2182 use a mode for the case when we are comparing the results of two
2183 comparisons. */
f045b2c9 2184
c5defebb 2185#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2186
2187/* Define the names for the modes specified above. */
c5defebb 2188#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2189
2190/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2191 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2192 should be used. CCUNSmode should be used for unsigned comparisons.
2193 CCEQmode should be used when we are doing an inequality comparison on
2194 the result of a comparison. CCmode should be used in all other cases. */
2195
b565a316 2196#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2197 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2198 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2199 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2200 ? CCEQmode : CCmode))
f045b2c9
RS
2201
2202/* Define the information needed to generate branch and scc insns. This is
2203 stored from the compare operation. Note that we can't use "rtx" here
2204 since it hasn't been defined! */
2205
2206extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2207extern int rs6000_compare_fp_p;
2208
2209/* Set to non-zero by "fix" operation to indicate that itrunc and
2210 uitrunc must be defined. */
2211
2212extern int rs6000_trunc_used;
9929b575
ILT
2213
2214/* Function names to call to do floating point truncation. */
2215
2216#define RS6000_ITRUNC "itrunc"
2217#define RS6000_UITRUNC "uitrunc"
4d30c363
MM
2218
2219/* Prefix and suffix to use to saving floating point */
2220#ifndef SAVE_FP_PREFIX
2221#define SAVE_FP_PREFIX "._savef"
2222#define SAVE_FP_SUFFIX ""
2223#endif
2224
2225/* Prefix and suffix to use to restoring floating point */
2226#ifndef RESTORE_FP_PREFIX
2227#define RESTORE_FP_PREFIX "._restf"
2228#define RESTORE_FP_SUFFIX ""
2229#endif
2230
f045b2c9
RS
2231\f
2232/* Control the assembler format that we output. */
2233
1b279f39
DE
2234/* A C string constant describing how to begin a comment in the target
2235 assembler language. The compiler assumes that the comment will end at
2236 the end of the line. */
2237#define ASM_COMMENT_START " #"
6b67933e 2238
f045b2c9
RS
2239/* Output at beginning of assembler file.
2240
b4d6689b 2241 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2242
6355b140 2243 Specify filename to assembler.
3fc2151d 2244
b4d6689b 2245 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2246 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2247 [RW] section emitted.
2248
2249 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2250 allocated after it (when profiling) into the text section.
b4d6689b
RK
2251
2252 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2253
2254#define ASM_FILE_START(FILE) \
2255{ \
fdaff8ba 2256 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2257 main_input_filename, ".bss_"); \
fdaff8ba 2258 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2259 main_input_filename, ".rw_"); \
fdaff8ba 2260 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2261 main_input_filename, ".ro_"); \
2262 \
6355b140 2263 output_file_directive (FILE, main_input_filename); \
f045b2c9 2264 toc_section (); \
fdaff8ba
RS
2265 if (write_symbols != NO_DEBUG) \
2266 private_data_section (); \
b4d6689b
RK
2267 text_section (); \
2268 if (profile_flag) \
19d2d16f 2269 fputs ("\t.extern .mcount\n", FILE); \
3cfa4909 2270 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2271}
2272
2273/* Output at end of assembler file.
2274
2275 On the RS/6000, referencing data should automatically pull in text. */
2276
2277#define ASM_FILE_END(FILE) \
2278{ \
2279 text_section (); \
19d2d16f 2280 fputs ("_section_.text:\n", FILE); \
f045b2c9 2281 data_section (); \
19d2d16f 2282 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2283}
2284
f045b2c9
RS
2285/* We define this to prevent the name mangler from putting dollar signs into
2286 function names. */
2287
2288#define NO_DOLLAR_IN_LABEL
2289
2290/* We define this to 0 so that gcc will never accept a dollar sign in a
2291 variable name. This is needed because the AIX assembler will not accept
2292 dollar signs. */
2293
2294#define DOLLARS_IN_IDENTIFIERS 0
2295
fdaff8ba
RS
2296/* Implicit library calls should use memcpy, not bcopy, etc. */
2297
2298#define TARGET_MEM_FUNCTIONS
2299
f045b2c9
RS
2300/* Define the extra sections we need. We define three: one is the read-only
2301 data section which is used for constants. This is a csect whose name is
2302 derived from the name of the input file. The second is for initialized
2303 global variables. This is a csect whose name is that of the variable.
2304 The third is the TOC. */
2305
2306#define EXTRA_SECTIONS \
2307 read_only_data, private_data, read_only_private_data, toc, bss
2308
2309/* Define the name of our readonly data section. */
2310
2311#define READONLY_DATA_SECTION read_only_data_section
2312
b4f892eb
RK
2313/* If we are referencing a function that is static or is known to be
2314 in this file, make the SYMBOL_REF special. We can use this to indicate
2315 that we can branch to this function without emitting a no-op after the
2316 call. */
2317
2318#define ENCODE_SECTION_INFO(DECL) \
2319 if (TREE_CODE (DECL) == FUNCTION_DECL \
2320 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2321 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2322
f045b2c9
RS
2323/* Indicate that jump tables go in the text section. */
2324
2325#define JUMP_TABLES_IN_TEXT_SECTION
2326
2327/* Define the routines to implement these extra sections. */
2328
2329#define EXTRA_SECTION_FUNCTIONS \
2330 \
2331void \
2332read_only_data_section () \
2333{ \
2334 if (in_section != read_only_data) \
2335 { \
469adec3 2336 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2337 xcoff_read_only_section_name); \
f045b2c9
RS
2338 in_section = read_only_data; \
2339 } \
2340} \
2341 \
2342void \
2343private_data_section () \
2344{ \
2345 if (in_section != private_data) \
2346 { \
469adec3 2347 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 2348 xcoff_private_data_section_name); \
f045b2c9
RS
2349 \
2350 in_section = private_data; \
2351 } \
2352} \
2353 \
2354void \
2355read_only_private_data_section () \
2356{ \
2357 if (in_section != read_only_private_data) \
2358 { \
f25359b5 2359 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2360 xcoff_private_data_section_name); \
f045b2c9
RS
2361 in_section = read_only_private_data; \
2362 } \
2363} \
2364 \
2365void \
2366toc_section () \
2367{ \
642a35f1
JW
2368 if (TARGET_MINIMAL_TOC) \
2369 { \
2370 static int toc_initialized = 0; \
2371 \
2372 /* toc_section is always called at least once from ASM_FILE_START, \
2373 so this is guaranteed to always be defined once and only once \
2374 in each file. */ \
2375 if (! toc_initialized) \
2376 { \
19d2d16f
MM
2377 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2378 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2379 toc_initialized = 1; \
2380 } \
f045b2c9 2381 \
642a35f1 2382 if (in_section != toc) \
19d2d16f 2383 fputs (".csect toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2384 } \
2385 else \
2386 { \
2387 if (in_section != toc) \
19d2d16f 2388 fputs (".toc\n", asm_out_file); \
642a35f1 2389 } \
f045b2c9 2390 in_section = toc; \
fc3ffe83 2391}
f045b2c9
RS
2392
2393/* This macro produces the initial definition of a function name.
2394 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2395 output the function descriptor.
f045b2c9
RS
2396
2397 The csect for the function will have already been created by the
2398 `text_section' call previously done. We do have to go back to that
2399 csect, however. */
2400
fdaff8ba
RS
2401/* ??? What do the 16 and 044 in the .function line really mean? */
2402
f045b2c9
RS
2403#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2404{ if (TREE_PUBLIC (DECL)) \
2405 { \
19d2d16f 2406 fputs ("\t.globl .", FILE); \
f045b2c9 2407 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2408 putc ('\n', FILE); \
fdaff8ba 2409 } \
3ce428da 2410 else \
fdaff8ba 2411 { \
19d2d16f 2412 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2413 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2414 putc ('\n', FILE); \
f045b2c9 2415 } \
19d2d16f 2416 fputs (".csect ", FILE); \
f045b2c9 2417 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2418 fputs ("[DS]\n", FILE); \
f045b2c9 2419 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2420 fputs (":\n", FILE); \
5854b0d0 2421 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2422 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2423 fputs (", TOC[tc0], 0\n", FILE); \
2424 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2425 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2426 fputs (":\n", FILE); \
fdaff8ba 2427 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2428 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2429}
2430
2431/* Return non-zero if this entry is to be written into the constant pool
2432 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2433 containing one of them. If -mfp-in-toc (the default), we also do
2434 this for floating-point constants. We actually can only do this
2435 if the FP formats of the target and host machines are the same, but
2436 we can't check that since not every file that uses
2437 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2438
4697a36c
MM
2439#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2440 (TARGET_TOC \
2441 && (GET_CODE (X) == SYMBOL_REF \
2442 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2443 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2444 || GET_CODE (X) == LABEL_REF \
2445 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2446 && GET_CODE (X) == CONST_DOUBLE \
2447 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2448 && BITS_PER_WORD == HOST_BITS_PER_INT)))
f045b2c9
RS
2449
2450/* Select section for constant in constant pool.
2451
2452 On RS/6000, all constants are in the private read-only data area.
2453 However, if this is being placed in the TOC it must be output as a
2454 toc entry. */
2455
2456#define SELECT_RTX_SECTION(MODE, X) \
2457{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2458 toc_section (); \
2459 else \
2460 read_only_private_data_section (); \
2461}
2462
2463/* Macro to output a special constant pool entry. Go to WIN if we output
2464 it. Otherwise, it is written the usual way.
2465
2466 On the RS/6000, toc entries are handled this way. */
2467
2468#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2469{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2470 { \
2471 output_toc (FILE, X, LABELNO); \
2472 goto WIN; \
2473 } \
2474}
2475
2476/* Select the section for an initialized data object.
2477
2478 On the RS/6000, we have a special section for all variables except those
2479 that are static. */
2480
2481#define SELECT_SECTION(EXP,RELOC) \
2482{ \
ed8969fa
JW
2483 if ((TREE_CODE (EXP) == STRING_CST \
2484 && !flag_writable_strings) \
128e5769 2485 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2486 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2487 && DECL_INITIAL (EXP) \
2488 && (DECL_INITIAL (EXP) == error_mark_node \
2489 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2490 && ! (RELOC))) \
f045b2c9
RS
2491 { \
2492 if (TREE_PUBLIC (EXP)) \
2493 read_only_data_section (); \
2494 else \
2495 read_only_private_data_section (); \
2496 } \
2497 else \
2498 { \
2499 if (TREE_PUBLIC (EXP)) \
2500 data_section (); \
2501 else \
2502 private_data_section (); \
2503 } \
2504}
2505
2506/* This outputs NAME to FILE up to the first null or '['. */
2507
2508#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2509 { \
2510 char *_p; \
99d3d26e 2511 \
c23a9d0e
JM
2512 STRIP_NAME_ENCODING (_p, (NAME)); \
2513 assemble_name ((FILE), _p); \
2514 }
2515
2516/* Remove any trailing [DS] or the like from the symbol name. */
2517
28c57785
MM
2518#define STRIP_NAME_ENCODING(VAR,NAME) \
2519 do \
2520 { \
2521 char *_name = (NAME); \
b6c9286a 2522 int _len; \
28c57785 2523 if (_name[0] == '*') \
b6c9286a
MM
2524 _name++; \
2525 _len = strlen (_name); \
2526 if (_name[_len - 1] != ']') \
2527 (VAR) = _name; \
28c57785
MM
2528 else \
2529 { \
b6c9286a
MM
2530 (VAR) = (char *) alloca (_len + 1); \
2531 strcpy ((VAR), _name); \
2532 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2533 } \
2534 } \
c23a9d0e 2535 while (0)
f045b2c9
RS
2536
2537/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2538 assemblers don't need this.
f045b2c9
RS
2539
2540 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2541 name. Normally we write this out along with the name. In the few cases
2542 where we can't, it gets stripped off. */
2543
2544#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2545{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2546 if ((TREE_CODE (DECL) == VAR_DECL \
2547 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2548 && (NAME)[strlen (NAME) - 1] != ']') \
2549 { \
2550 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2551 strcpy (_name, XSTR (_symref, 0)); \
2552 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2553 XSTR (_symref, 0) = _name; \
2554 } \
19d2d16f 2555 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2556 assemble_name (FILE, XSTR (_symref, 0)); \
2557 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2558 { \
19d2d16f 2559 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2560 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2561 } \
19d2d16f 2562 putc ('\n', FILE); \
f045b2c9
RS
2563}
2564
2565/* Similar, but for libcall. We only have to worry about the function name,
2566 not that of the descriptor. */
2567
2568#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2569{ fputs ("\t.extern .", FILE); \
f045b2c9 2570 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2571 putc ('\n', FILE); \
f045b2c9
RS
2572}
2573
2574/* Output to assembler file text saying following lines
2575 may contain character constants, extra white space, comments, etc. */
2576
2577#define ASM_APP_ON ""
2578
2579/* Output to assembler file text saying following lines
2580 no longer contain unusual constructs. */
2581
2582#define ASM_APP_OFF ""
2583
2584/* Output before instructions. */
2585
11117bb9 2586#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
2587
2588/* Output before writable data. */
2589
fdaff8ba 2590#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
2591
2592/* How to refer to registers in assembler output.
2593 This sequence is indexed by compiler's hard-register-number (see above). */
2594
802a0058 2595extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2596
2597#define REGISTER_NAMES \
2598{ \
2599 &rs6000_reg_names[ 0][0], /* r0 */ \
2600 &rs6000_reg_names[ 1][0], /* r1 */ \
2601 &rs6000_reg_names[ 2][0], /* r2 */ \
2602 &rs6000_reg_names[ 3][0], /* r3 */ \
2603 &rs6000_reg_names[ 4][0], /* r4 */ \
2604 &rs6000_reg_names[ 5][0], /* r5 */ \
2605 &rs6000_reg_names[ 6][0], /* r6 */ \
2606 &rs6000_reg_names[ 7][0], /* r7 */ \
2607 &rs6000_reg_names[ 8][0], /* r8 */ \
2608 &rs6000_reg_names[ 9][0], /* r9 */ \
2609 &rs6000_reg_names[10][0], /* r10 */ \
2610 &rs6000_reg_names[11][0], /* r11 */ \
2611 &rs6000_reg_names[12][0], /* r12 */ \
2612 &rs6000_reg_names[13][0], /* r13 */ \
2613 &rs6000_reg_names[14][0], /* r14 */ \
2614 &rs6000_reg_names[15][0], /* r15 */ \
2615 &rs6000_reg_names[16][0], /* r16 */ \
2616 &rs6000_reg_names[17][0], /* r17 */ \
2617 &rs6000_reg_names[18][0], /* r18 */ \
2618 &rs6000_reg_names[19][0], /* r19 */ \
2619 &rs6000_reg_names[20][0], /* r20 */ \
2620 &rs6000_reg_names[21][0], /* r21 */ \
2621 &rs6000_reg_names[22][0], /* r22 */ \
2622 &rs6000_reg_names[23][0], /* r23 */ \
2623 &rs6000_reg_names[24][0], /* r24 */ \
2624 &rs6000_reg_names[25][0], /* r25 */ \
2625 &rs6000_reg_names[26][0], /* r26 */ \
2626 &rs6000_reg_names[27][0], /* r27 */ \
2627 &rs6000_reg_names[28][0], /* r28 */ \
2628 &rs6000_reg_names[29][0], /* r29 */ \
2629 &rs6000_reg_names[30][0], /* r30 */ \
2630 &rs6000_reg_names[31][0], /* r31 */ \
2631 \
2632 &rs6000_reg_names[32][0], /* fr0 */ \
2633 &rs6000_reg_names[33][0], /* fr1 */ \
2634 &rs6000_reg_names[34][0], /* fr2 */ \
2635 &rs6000_reg_names[35][0], /* fr3 */ \
2636 &rs6000_reg_names[36][0], /* fr4 */ \
2637 &rs6000_reg_names[37][0], /* fr5 */ \
2638 &rs6000_reg_names[38][0], /* fr6 */ \
2639 &rs6000_reg_names[39][0], /* fr7 */ \
2640 &rs6000_reg_names[40][0], /* fr8 */ \
2641 &rs6000_reg_names[41][0], /* fr9 */ \
2642 &rs6000_reg_names[42][0], /* fr10 */ \
2643 &rs6000_reg_names[43][0], /* fr11 */ \
2644 &rs6000_reg_names[44][0], /* fr12 */ \
2645 &rs6000_reg_names[45][0], /* fr13 */ \
2646 &rs6000_reg_names[46][0], /* fr14 */ \
2647 &rs6000_reg_names[47][0], /* fr15 */ \
2648 &rs6000_reg_names[48][0], /* fr16 */ \
2649 &rs6000_reg_names[49][0], /* fr17 */ \
2650 &rs6000_reg_names[50][0], /* fr18 */ \
2651 &rs6000_reg_names[51][0], /* fr19 */ \
2652 &rs6000_reg_names[52][0], /* fr20 */ \
2653 &rs6000_reg_names[53][0], /* fr21 */ \
2654 &rs6000_reg_names[54][0], /* fr22 */ \
2655 &rs6000_reg_names[55][0], /* fr23 */ \
2656 &rs6000_reg_names[56][0], /* fr24 */ \
2657 &rs6000_reg_names[57][0], /* fr25 */ \
2658 &rs6000_reg_names[58][0], /* fr26 */ \
2659 &rs6000_reg_names[59][0], /* fr27 */ \
2660 &rs6000_reg_names[60][0], /* fr28 */ \
2661 &rs6000_reg_names[61][0], /* fr29 */ \
2662 &rs6000_reg_names[62][0], /* fr30 */ \
2663 &rs6000_reg_names[63][0], /* fr31 */ \
2664 \
2665 &rs6000_reg_names[64][0], /* mq */ \
2666 &rs6000_reg_names[65][0], /* lr */ \
2667 &rs6000_reg_names[66][0], /* ctr */ \
2668 &rs6000_reg_names[67][0], /* ap */ \
2669 \
2670 &rs6000_reg_names[68][0], /* cr0 */ \
2671 &rs6000_reg_names[69][0], /* cr1 */ \
2672 &rs6000_reg_names[70][0], /* cr2 */ \
2673 &rs6000_reg_names[71][0], /* cr3 */ \
2674 &rs6000_reg_names[72][0], /* cr4 */ \
2675 &rs6000_reg_names[73][0], /* cr5 */ \
2676 &rs6000_reg_names[74][0], /* cr6 */ \
2677 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2678 \
2679 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2680}
2681
2682/* print-rtl can't handle the above REGISTER_NAMES, so define the
2683 following for it. Switch to use the alternate names since
2684 they are more mnemonic. */
2685
2686#define DEBUG_REGISTER_NAMES \
2687{ \
802a0058
MM
2688 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2689 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2690 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2691 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2692 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2693 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2694 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2695 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2696 "mq", "lr", "ctr", "ap", \
2697 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2698 "fpmem" \
c81bebd7 2699}
f045b2c9
RS
2700
2701/* Table of additional register names to use in user input. */
2702
2703#define ADDITIONAL_REGISTER_NAMES \
2704 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2705 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2706 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2707 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2708 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2709 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2710 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2711 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2712 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2713 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2714 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2715 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2716 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2717 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2718 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2719 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2720 /* no additional names for: mq, lr, ctr, ap */ \
2721 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
fc3ffe83 2722 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
c81bebd7 2723 "cc", 68, "sp", 1, "toc", 2 }
f045b2c9
RS
2724
2725/* How to renumber registers for dbx and gdb. */
2726
2727#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2728
0da40b09
RK
2729/* Text to write out after a CALL that may be replaced by glue code by
2730 the loader. This depends on the AIX version. */
2731#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2732
f045b2c9
RS
2733/* This is how to output the definition of a user-level label named NAME,
2734 such as the label on a static function or variable NAME. */
2735
2736#define ASM_OUTPUT_LABEL(FILE,NAME) \
2737 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2738
2739/* This is how to output a command to make the user-level label named NAME
2740 defined for reference from other files. */
2741
2742#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2743 do { fputs ("\t.globl ", FILE); \
2744 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2745
2746/* This is how to output a reference to a user-level label named NAME.
2747 `assemble_name' uses this. */
2748
2749#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2750 fputs (NAME, FILE)
f045b2c9
RS
2751
2752/* This is how to output an internal numbered label where
2753 PREFIX is the class of label and NUM is the number within the class. */
2754
2755#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2756 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2757
3daf36a4
ILT
2758/* This is how to output an internal label prefix. rs6000.c uses this
2759 when generating traceback tables. */
2760
2761#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2762 fprintf (FILE, "%s..", PREFIX)
2763
f045b2c9
RS
2764/* This is how to output a label for a jump table. Arguments are the same as
2765 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2766 passed. */
2767
2768#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2769{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2770
2771/* This is how to store into the string LABEL
2772 the symbol_ref name of an internal numbered label where
2773 PREFIX is the class of label and NUM is the number within the class.
2774 This is suitable for output with `assemble_name'. */
2775
2776#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 2777 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
2778
2779/* This is how to output an assembler line defining a `double' constant. */
2780
a5b1eb34
RS
2781#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2782 { \
2783 if (REAL_VALUE_ISINF (VALUE) \
2784 || REAL_VALUE_ISNAN (VALUE) \
2785 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2786 { \
2787 long t[2]; \
2788 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2789 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2790 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2791 } \
2792 else \
2793 { \
2794 char str[30]; \
2795 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2796 fprintf (FILE, "\t.double 0d%s\n", str); \
2797 } \
2798 }
f045b2c9
RS
2799
2800/* This is how to output an assembler line defining a `float' constant. */
2801
a5b1eb34
RS
2802#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2803 { \
2804 if (REAL_VALUE_ISINF (VALUE) \
2805 || REAL_VALUE_ISNAN (VALUE) \
2806 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2807 { \
2808 long t; \
2809 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2810 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2811 } \
2812 else \
2813 { \
2814 char str[30]; \
2815 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2816 fprintf (FILE, "\t.float 0d%s\n", str); \
2817 } \
2818 }
f045b2c9
RS
2819
2820/* This is how to output an assembler line defining an `int' constant. */
2821
5854b0d0
DE
2822#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2823do { \
2824 if (TARGET_32BIT) \
2825 { \
2826 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2827 UNITS_PER_WORD, 1); \
2828 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2829 UNITS_PER_WORD, 1); \
2830 } \
2831 else \
2832 { \
2833 fputs ("\t.llong ", FILE); \
2834 output_addr_const (FILE, (VALUE)); \
2835 putc ('\n', FILE); \
2836 } \
2837} while (0)
2838
f045b2c9 2839#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 2840( fputs ("\t.long ", FILE), \
f045b2c9 2841 output_addr_const (FILE, (VALUE)), \
19d2d16f 2842 putc ('\n', FILE))
f045b2c9
RS
2843
2844/* Likewise for `char' and `short' constants. */
2845
2846#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 2847( fputs ("\t.short ", FILE), \
f045b2c9 2848 output_addr_const (FILE, (VALUE)), \
19d2d16f 2849 putc ('\n', FILE))
f045b2c9
RS
2850
2851#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 2852( fputs ("\t.byte ", FILE), \
f045b2c9 2853 output_addr_const (FILE, (VALUE)), \
19d2d16f 2854 putc ('\n', FILE))
f045b2c9
RS
2855
2856/* This is how to output an assembler line for a numeric constant byte. */
2857
2858#define ASM_OUTPUT_BYTE(FILE,VALUE) \
2859 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2860
2861/* This is how to output an assembler line to define N characters starting
2862 at P to FILE. */
2863
2864#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2865
2866/* This is how to output code to push a register on the stack.
2867 It need not be very fast code. */
2868
4697a36c
MM
2869#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2870do { \
2871 extern char *reg_names[]; \
2872 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \
2873 reg_names[1]); \
2874} while (0)
f045b2c9
RS
2875
2876/* This is how to output an insn to pop a register from the stack.
2877 It need not be very fast code. */
2878
4697a36c
MM
2879#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2880do { \
2881 extern char *reg_names[]; \
2882 asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \
2883 reg_names[REGNO], reg_names[1], reg_names[1], \
2884 reg_names[1]); \
2885} while (0)
f045b2c9 2886
c81bebd7 2887/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
2888 (RS/6000 does not use such vectors, but we must define this macro
2889 anyway.) */
2890
3daf36a4
ILT
2891#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2892 do { char buf[100]; \
5854b0d0 2893 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2894 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2895 assemble_name (FILE, buf); \
19d2d16f 2896 putc ('\n', FILE); \
3daf36a4 2897 } while (0)
f045b2c9
RS
2898
2899/* This is how to output an element of a case-vector that is relative. */
2900
2901#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
3daf36a4 2902 do { char buf[100]; \
5854b0d0 2903 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2904 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2905 assemble_name (FILE, buf); \
19d2d16f 2906 putc ('-', FILE); \
3daf36a4
ILT
2907 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2908 assemble_name (FILE, buf); \
19d2d16f 2909 putc ('\n', FILE); \
3daf36a4 2910 } while (0)
f045b2c9
RS
2911
2912/* This is how to output an assembler line
2913 that says to advance the location counter
2914 to a multiple of 2**LOG bytes. */
2915
2916#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2917 if ((LOG) != 0) \
2918 fprintf (FILE, "\t.align %d\n", (LOG))
2919
2920#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2921 fprintf (FILE, "\t.space %d\n", (SIZE))
2922
2923/* This says how to output an assembler line
2924 to define a global common symbol. */
2925
b73fd26c 2926#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 2927 do { fputs (".comm ", (FILE)); \
f045b2c9 2928 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
2929 if ( (SIZE) > 4) \
2930 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2931 else \
2932 fprintf( (FILE), ",%d\n", (SIZE)); \
2933 } while (0)
f045b2c9
RS
2934
2935/* This says how to output an assembler line
2936 to define a local common symbol. */
2937
2938#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 2939 do { fputs (".lcomm ", (FILE)); \
f045b2c9 2940 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 2941 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
2942 } while (0)
2943
2944/* Store in OUTPUT a string (made with alloca) containing
2945 an assembler-name for a local static variable named NAME.
2946 LABELNO is an integer which is different for each call. */
2947
2948#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2949( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2950 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2951
2952/* Define the parentheses used to group arithmetic operations
2953 in assembler code. */
2954
2955#define ASM_OPEN_PAREN "("
2956#define ASM_CLOSE_PAREN ")"
2957
2958/* Define results of standard character escape sequences. */
2959#define TARGET_BELL 007
2960#define TARGET_BS 010
2961#define TARGET_TAB 011
2962#define TARGET_NEWLINE 012
2963#define TARGET_VT 013
2964#define TARGET_FF 014
2965#define TARGET_CR 015
2966
2967/* Print operand X (an rtx) in assembler syntax to file FILE.
2968 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2969 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2970
2971#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2972
2973/* Define which CODE values are valid. */
2974
c81bebd7
MM
2975#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2976 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
2977
2978/* Print a memory address as an operand to reference that memory location. */
2979
2980#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2981
2982/* Define the codes that are matched by predicates in rs6000.c. */
2983
802a0058 2984#define PREDICATE_CODES \
f045b2c9
RS
2985 {"short_cint_operand", {CONST_INT}}, \
2986 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 2987 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 2988 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9
RS
2989 {"cc_reg_operand", {SUBREG, REG}}, \
2990 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2991 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2992 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2993 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
766a866c 2994 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
f045b2c9
RS
2995 {"easy_fp_constant", {CONST_DOUBLE}}, \
2996 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 2997 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 2998 {"volatile_mem_operand", {MEM}}, \
b7676b46 2999 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
f045b2c9
RS
3000 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3001 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3002 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3003 {"non_add_cint_operand", {CONST_INT}}, \
f045b2c9 3004 {"and_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3005 {"non_and_cint_operand", {CONST_INT}}, \
f045b2c9 3006 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 3007 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 3008 {"mask_operand", {CONST_INT}}, \
b6c9286a 3009 {"count_register_operand", {REG}}, \
802a0058 3010 {"fpmem_operand", {REG}}, \
f045b2c9 3011 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 3012 {"current_file_function_operand", {SYMBOL_REF}}, \
38250554 3013 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
f8634644
RK
3014 {"load_multiple_operation", {PARALLEL}}, \
3015 {"store_multiple_operation", {PARALLEL}}, \
3016 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3017 GT, LEU, LTU, GEU, GTU}}, \
f8634644 3018 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 3019 GT, LEU, LTU, GEU, GTU}},
75814ad4 3020
b6c9286a
MM
3021
3022/* uncomment for disabling the corresponding default options */
3023/* #define MACHINE_no_sched_interblock */
3024/* #define MACHINE_no_sched_speculative */
3025/* #define MACHINE_no_sched_speculative_load */
3026
3027/* indicate that issue rate is defined for this machine
3028 (no need to use the default) */
3029#define MACHINE_issue_rate
3030
766a866c
MM
3031/* General flags. */
3032extern int flag_pic;
354b734b
MM
3033extern int optimize;
3034extern int flag_expensive_optimizations;
a7df97e6 3035extern int frame_pointer_needed;
354b734b 3036
75814ad4 3037/* Declare functions in rs6000.c */
6b67933e 3038extern void output_options ();
75814ad4 3039extern void rs6000_override_options ();
3cfa4909 3040extern void rs6000_file_start ();
6b67933e 3041extern struct rtx_def *rs6000_float_const ();
75814ad4 3042extern struct rtx_def *rs6000_immed_double_const ();
c4c40373 3043extern struct rtx_def *rs6000_got_register ();
75814ad4
MM
3044extern int direct_return ();
3045extern int any_operand ();
3046extern int short_cint_operand ();
3047extern int u_short_cint_operand ();
3048extern int non_short_cint_operand ();
3049extern int gpc_reg_operand ();
3050extern int cc_reg_operand ();
3051extern int reg_or_short_operand ();
3052extern int reg_or_neg_short_operand ();
3053extern int reg_or_u_short_operand ();
3054extern int reg_or_cint_operand ();
766a866c 3055extern int got_operand ();
4e74d8ec 3056extern int num_insns_constant ();
75814ad4 3057extern int easy_fp_constant ();
b7676b46
RK
3058extern int volatile_mem_operand ();
3059extern int offsettable_addr_operand ();
75814ad4
MM
3060extern int fp_reg_or_mem_operand ();
3061extern int mem_or_easy_const_operand ();
3062extern int add_operand ();
3063extern int non_add_cint_operand ();
3064extern int logical_operand ();
3065extern int non_logical_operand ();
3066extern int mask_constant ();
3067extern int mask_operand ();
3068extern int and_operand ();
802a0058
MM
3069extern int count_register_operand ();
3070extern int fpmem_operand ();
75814ad4
MM
3071extern int non_and_cint_operand ();
3072extern int reg_or_mem_operand ();
3073extern int lwa_operand ();
3074extern int call_operand ();
3075extern int current_file_function_operand ();
3076extern int input_operand ();
7509c759 3077extern int small_data_operand ();
4697a36c
MM
3078extern void init_cumulative_args ();
3079extern void function_arg_advance ();
b6c9286a 3080extern int function_arg_boundary ();
4697a36c
MM
3081extern struct rtx_def *function_arg ();
3082extern int function_arg_partial_nregs ();
3083extern int function_arg_pass_by_reference ();
3084extern void setup_incoming_varargs ();
3085extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3086extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3087extern int expand_block_move ();
75814ad4
MM
3088extern int load_multiple_operation ();
3089extern int store_multiple_operation ();
3090extern int branch_comparison_operator ();
3091extern int scc_comparison_operator ();
3092extern int includes_lshift_p ();
3093extern int includes_rshift_p ();
3094extern int registers_ok_for_quad_peep ();
3095extern int addrs_ok_for_quad_peep ();
3096extern enum reg_class secondary_reload_class ();
3097extern int ccr_bit ();
d266da75 3098extern void rs6000_finalize_pic ();
30ea98f1 3099extern void rs6000_reorg ();
a7df97e6
MM
3100extern void rs6000_save_machine_status ();
3101extern void rs6000_restore_machine_status ();
3102extern void rs6000_init_expanders ();
75814ad4
MM
3103extern void print_operand ();
3104extern void print_operand_address ();
3105extern int first_reg_to_save ();
3106extern int first_fp_reg_to_save ();
75814ad4 3107extern int rs6000_makes_calls ();
4697a36c 3108extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3109extern void output_prolog ();
3110extern void output_epilog ();
3111extern void output_toc ();
3112extern void output_ascii ();
3113extern void rs6000_gen_section_name ();
3114extern void output_function_profiler ();
3115extern int rs6000_adjust_cost ();
b6c9286a
MM
3116extern void rs6000_trampoline_template ();
3117extern int rs6000_trampoline_size ();
3118extern void rs6000_initialize_trampoline ();
7509c759
MM
3119extern int rs6000_comp_type_attributes ();
3120extern int rs6000_valid_decl_attribute_p ();
3121extern int rs6000_valid_type_attribute_p ();
3122extern void rs6000_set_default_type_attributes ();
3123extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3124extern struct rtx_def *rs6000_longcall_ref ();
This page took 0.729056 seconds and 5 git commands to generate.