]>
Commit | Line | Data |
---|---|---|
f045b2c9 | 1 | /* Definitions of target machine for GNU compiler, for IBM RS/6000. |
6a7ec0a7 RK |
2 | Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. |
3 | Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu) | |
f045b2c9 RS |
4 | |
5 | This file is part of GNU CC. | |
6 | ||
7 | GNU CC is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2, or (at your option) | |
10 | any later version. | |
11 | ||
12 | GNU CC is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with GNU CC; see the file COPYING. If not, write to | |
19 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
20 | ||
21 | ||
22 | /* Note that some other tm.h files include this one and then override | |
23 | many of the definitions that relate to assembler syntax. */ | |
24 | ||
25 | ||
26 | /* Names to predefine in the preprocessor for this target machine. */ | |
27 | ||
84b49fa7 RK |
28 | #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \ |
29 | -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)" | |
f045b2c9 RS |
30 | |
31 | /* Print subsidiary information on the compiler version in use. */ | |
32 | #define TARGET_VERSION ; | |
33 | ||
fdaff8ba RS |
34 | /* Tell the assembler to assume that all undefined names are external. |
35 | ||
36 | Don't do this until the fixed IBM assembler is more generally available. | |
37 | When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL, | |
38 | ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no | |
b4d6689b RK |
39 | longer be needed. Also, the extern declaration of mcount in ASM_FILE_START |
40 | will no longer be needed. */ | |
f045b2c9 RS |
41 | |
42 | /* #define ASM_SPEC "-u" */ | |
43 | ||
84b49fa7 RK |
44 | /* Define appropriate architecture macros for preprocessor depending on |
45 | target switches. */ | |
46 | ||
47 | #define CPP_SPEC "\ | |
48 | %{!mcpu*: \ | |
49 | %{mpower: %{!mpower2: -D_ARCH_PWR}} \ | |
50 | %{mpower2: -D_ARCH_PWR2} \ | |
51 | %{mpowerpc*: -D_ARCH_PPC} \ | |
52 | %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \ | |
53 | %{!mno-power: %{!mpower2: -D_ARCH_PWR}}} \ | |
54 | %{mcpu=common: -D_ARCH_COM} \ | |
55 | %{mcpu=power: -D_ARCH_PWR} \ | |
56 | %{mcpu=powerpc: -D_ARCH_PPC} \ | |
57 | %{mcpu=rios: -D_ARCH_PWR} \ | |
58 | %{mcpu=rios1: -D_ARCH_PWR} \ | |
59 | %{mcpu=rios2: -D_ARCH_PWR2} \ | |
60 | %{mcpu=rsc: -D_ARCH_PWR} \ | |
61 | %{mcpu=rsc1: -D_ARCH_PWR} \ | |
62 | %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \ | |
63 | %{mcpu=mpc601: -D_ARCH_PPC -D_ARCH_PWR} \ | |
64 | %{mcpu=ppc601: -D_ARCH_PPC -D_ARCH_PWR} \ | |
65 | %{mcpu=603: -D_ARCH_PPC} \ | |
66 | %{mcpu=mpc603: -D_ARCH_PPC} \ | |
67 | %{mcpu=ppc603: -D_ARCH_PPC} \ | |
68 | %{mcpu=604: -D_ARCH_PPC} \ | |
69 | %{mcpu=mpc604: -D_ARCH_PPC} \ | |
70 | %{mcpu=ppc604: -D_ARCH_PPC}" | |
71 | ||
f045b2c9 RS |
72 | /* Define the options for the binder: Start text at 512, align all segments |
73 | to 512 bytes, and warn if there is text relocation. | |
74 | ||
75 | The -bhalt:4 option supposedly changes the level at which ld will abort, | |
76 | but it also suppresses warnings about multiply defined symbols and is | |
77 | used by the AIX cc command. So we use it here. | |
78 | ||
79 | -bnodelcsect undoes a poor choice of default relating to multiply-defined | |
52c0eaf8 JM |
80 | csects. See AIX documentation for more information about this. |
81 | ||
82 | -bM:SRE tells the linker that the output file is Shared REusable. Note | |
83 | that to actually build a shared library you will also need to specify an | |
84 | export list with the -Wl,-bE option. */ | |
f045b2c9 | 85 | |
c1950f1c | 86 | #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\ |
52c0eaf8 JM |
87 | %{static:-bnso -bI:/lib/syscalls.exp} %{g*:-bexport:/usr/lib/libg.exp}\ |
88 | %{shared:-bM:SRE}" | |
f045b2c9 | 89 | |
58a39e45 RS |
90 | /* Profiled library versions are used by linking with special directories. */ |
91 | #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\ | |
92 | %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc" | |
f045b2c9 RS |
93 | |
94 | /* gcc must do the search itself to find libgcc.a, not use -l. */ | |
52c0eaf8 | 95 | #define LIBGCC_SPEC "%{!shared:libgcc.a%s}" |
f045b2c9 RS |
96 | |
97 | /* Don't turn -B into -L if the argument specifies a relative file name. */ | |
98 | #define RELATIVE_PREFIX_NOT_LINKDIR | |
99 | ||
fb623df5 | 100 | /* Architecture type. */ |
f045b2c9 | 101 | |
fb623df5 RK |
102 | extern int target_flags; |
103 | ||
104 | /* Use POWER architecture instructions and MQ register. */ | |
105 | #define MASK_POWER 0x01 | |
106 | ||
6febd581 RK |
107 | /* Use POWER2 extensions to POWER architecture. */ |
108 | #define MASK_POWER2 0x02 | |
109 | ||
fb623df5 | 110 | /* Use PowerPC architecture instructions. */ |
6febd581 RK |
111 | #define MASK_POWERPC 0x04 |
112 | ||
583cf4db RK |
113 | /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */ |
114 | #define MASK_PPC_GPOPT 0x08 | |
115 | ||
116 | /* Use PowerPC Graphics group optional instructions, e.g. fsel. */ | |
117 | #define MASK_PPC_GFXOPT 0x10 | |
f045b2c9 | 118 | |
fb623df5 | 119 | /* Use PowerPC-64 architecture instructions. */ |
583cf4db | 120 | #define MASK_POWERPC64 0x20 |
f045b2c9 | 121 | |
fb623df5 | 122 | /* Use revised mnemonic names defined for PowerPC architecture. */ |
583cf4db | 123 | #define MASK_NEW_MNEMONICS 0x40 |
fb623df5 RK |
124 | |
125 | /* Disable placing fp constants in the TOC; can be turned on when the | |
126 | TOC overflows. */ | |
583cf4db | 127 | #define MASK_NO_FP_IN_TOC 0x80 |
fb623df5 | 128 | |
0b9ccabc RK |
129 | /* Disable placing symbol+offset constants in the TOC; can be turned on when |
130 | the TOC overflows. */ | |
583cf4db | 131 | #define MASK_NO_SUM_IN_TOC 0x100 |
0b9ccabc | 132 | |
fb623df5 | 133 | /* Output only one TOC entry per module. Normally linking fails if |
642a35f1 JW |
134 | there are more than 16K unique variables/constants in an executable. With |
135 | this option, linking fails only if there are more than 16K modules, or | |
136 | if there are more than 16K unique variables/constant in a single module. | |
137 | ||
138 | This is at the cost of having 2 extra loads and one extra store per | |
139 | function, and one less allocatable register. */ | |
583cf4db | 140 | #define MASK_MINIMAL_TOC 0x200 |
642a35f1 | 141 | |
9e654916 RK |
142 | /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */ |
143 | #define MASK_64BIT 0x400 | |
144 | ||
f85f4585 RK |
145 | /* Disable use of FPRs. */ |
146 | #define MASK_NO_FPR 0x800 | |
147 | ||
fb623df5 | 148 | #define TARGET_POWER (target_flags & MASK_POWER) |
6febd581 | 149 | #define TARGET_POWER2 (target_flags & MASK_POWER2) |
fb623df5 | 150 | #define TARGET_POWERPC (target_flags & MASK_POWERPC) |
583cf4db RK |
151 | #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT) |
152 | #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT) | |
fb623df5 RK |
153 | #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64) |
154 | #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS) | |
155 | #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC) | |
0b9ccabc | 156 | #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC) |
fb623df5 | 157 | #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC) |
9e654916 | 158 | #define TARGET_64BIT (target_flags & MASK_64BIT) |
f85f4585 | 159 | #define TARGET_NO_FPR (target_flags & MASK_NO_FPR) |
642a35f1 | 160 | |
fb623df5 | 161 | /* Run-time compilation parameters selecting different hardware subsets. |
f045b2c9 | 162 | |
fb623df5 | 163 | Macro to define tables used to set the flags. |
f045b2c9 RS |
164 | This is a list in braces of pairs in braces, |
165 | each pair being { "NAME", VALUE } | |
166 | where VALUE is the bits to set or minus the bits to clear. | |
167 | An empty string NAME is used to identify the default VALUE. */ | |
168 | ||
fb623df5 RK |
169 | #define TARGET_SWITCHES \ |
170 | {{"power", MASK_POWER}, \ | |
6febd581 RK |
171 | {"power2", MASK_POWER | MASK_POWER2}, \ |
172 | {"no-power2", - MASK_POWER2}, \ | |
173 | {"no-power", - (MASK_POWER | MASK_POWER2)}, \ | |
fb623df5 | 174 | {"powerpc", MASK_POWERPC}, \ |
583cf4db RK |
175 | {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \ |
176 | | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \ | |
177 | {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \ | |
178 | {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \ | |
179 | {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \ | |
180 | {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \ | |
fb623df5 RK |
181 | {"new-mnemonics", MASK_NEW_MNEMONICS}, \ |
182 | {"old-mnemonics", -MASK_NEW_MNEMONICS}, \ | |
0b9ccabc RK |
183 | {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \ |
184 | | MASK_MINIMAL_TOC)}, \ | |
fb623df5 RK |
185 | {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \ |
186 | {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \ | |
0b9ccabc RK |
187 | {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \ |
188 | {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \ | |
fb623df5 | 189 | {"minimal-toc", MASK_MINIMAL_TOC}, \ |
0b9ccabc | 190 | {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \ |
fb623df5 | 191 | {"no-minimal-toc", - MASK_MINIMAL_TOC}, \ |
f85f4585 RK |
192 | {"fp-regs", - MASK_NO_FPR}, \ |
193 | {"no-fp-regs", MASK_NO_FPR}, \ | |
fb623df5 RK |
194 | {"", TARGET_DEFAULT}} |
195 | ||
196 | #define TARGET_DEFAULT MASK_POWER | |
197 | ||
198 | /* Processor type. */ | |
199 | enum processor_type | |
f86fe1fb | 200 | {PROCESSOR_RIOS1, |
fb623df5 RK |
201 | PROCESSOR_RIOS2, |
202 | PROCESSOR_PPC601, | |
203 | PROCESSOR_PPC603, | |
204 | PROCESSOR_PPC604, | |
205 | PROCESSOR_PPC620}; | |
206 | ||
207 | extern enum processor_type rs6000_cpu; | |
208 | ||
209 | /* Recast the processor type to the cpu attribute. */ | |
210 | #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu) | |
211 | ||
8482e358 RK |
212 | /* Define generic processor types based upon current deployment. */ |
213 | #define PROCESSOR_COMMON PROCESSOR_PPC601 | |
214 | #define PROCESSOR_POWER PROCESSOR_RIOS1 | |
215 | #define PROCESSOR_POWERPC PROCESSOR_PPC601 | |
6e151478 | 216 | |
fb623df5 | 217 | /* Define the default processor. This is overridden by other tm.h files. */ |
f86fe1fb | 218 | #define PROCESSOR_DEFAULT PROCESSOR_RIOS1 |
fb623df5 | 219 | |
6febd581 RK |
220 | /* Specify the dialect of assembler to use. New mnemonics is dialect one |
221 | and the old mnemonics are dialect zero. */ | |
222 | #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0 | |
223 | ||
fb623df5 RK |
224 | /* This macro is similar to `TARGET_SWITCHES' but defines names of |
225 | command options that have values. Its definition is an | |
226 | initializer with a subgrouping for each command option. | |
227 | ||
228 | Each subgrouping contains a string constant, that defines the | |
229 | fixed part of the option name, and the address of a variable. | |
230 | The variable, type `char *', is set to the variable part of the | |
231 | given option if the fixed part matches. The actual option name | |
232 | is made by appending `-m' to the specified name. | |
233 | ||
234 | Here is an example which defines `-mshort-data-NUMBER'. If the | |
235 | given option is `-mshort-data-512', the variable `m88k_short_data' | |
236 | will be set to the string `"512"'. | |
237 | ||
238 | extern char *m88k_short_data; | |
239 | #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */ | |
240 | ||
241 | #define TARGET_OPTIONS \ | |
242 | { {"cpu=", &rs6000_cpu_string}} | |
243 | ||
244 | extern char *rs6000_cpu_string; | |
245 | ||
246 | /* Sometimes certain combinations of command options do not make sense | |
247 | on a particular target machine. You can define a macro | |
248 | `OVERRIDE_OPTIONS' to take account of this. This macro, if | |
249 | defined, is executed once just after all the command options have | |
250 | been parsed. | |
251 | ||
252 | On the RS/6000 this is used to define the target cpu type. */ | |
253 | ||
254 | #define OVERRIDE_OPTIONS rs6000_override_options () | |
f045b2c9 | 255 | |
4f074454 RK |
256 | /* Show we can debug even without a frame pointer. */ |
257 | #define CAN_DEBUG_WITHOUT_FP | |
f045b2c9 RS |
258 | \f |
259 | /* target machine storage layout */ | |
260 | ||
13d39dbc | 261 | /* Define this macro if it is advisable to hold scalars in registers |
ef457bda RK |
262 | in a wider mode than that declared by the program. In such cases, |
263 | the value is constrained to be within the bounds of the declared | |
264 | type, but kept valid in the wider mode. The signedness of the | |
265 | extension may differ from that of the type. */ | |
266 | ||
267 | #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ | |
268 | if (GET_MODE_CLASS (MODE) == MODE_INT \ | |
269 | && GET_MODE_SIZE (MODE) < 4) \ | |
dac29d65 | 270 | (MODE) = SImode; |
ef457bda | 271 | |
f045b2c9 RS |
272 | /* Define this if most significant bit is lowest numbered |
273 | in instructions that operate on numbered bit-fields. */ | |
274 | /* That is true on RS/6000. */ | |
275 | #define BITS_BIG_ENDIAN 1 | |
276 | ||
277 | /* Define this if most significant byte of a word is the lowest numbered. */ | |
278 | /* That is true on RS/6000. */ | |
279 | #define BYTES_BIG_ENDIAN 1 | |
280 | ||
281 | /* Define this if most significant word of a multiword number is lowest | |
282 | numbered. | |
283 | ||
284 | For RS/6000 we can decide arbitrarily since there are no machine | |
285 | instructions for them. Might as well be consistent with bits and bytes. */ | |
286 | #define WORDS_BIG_ENDIAN 1 | |
287 | ||
fdaff8ba | 288 | /* number of bits in an addressable storage unit */ |
f045b2c9 RS |
289 | #define BITS_PER_UNIT 8 |
290 | ||
291 | /* Width in bits of a "word", which is the contents of a machine register. | |
292 | Note that this is not necessarily the width of data type `int'; | |
293 | if using 16-bit ints on a 68000, this would still be 32. | |
294 | But on a machine with 16-bit registers, this would be 16. */ | |
2e360ab3 RK |
295 | #define BITS_PER_WORD (TARGET_POWERPC64 ? 64 : 32) |
296 | #define MAX_BITS_PER_WORD 64 | |
f045b2c9 RS |
297 | |
298 | /* Width of a word, in units (bytes). */ | |
2e360ab3 RK |
299 | #define UNITS_PER_WORD (TARGET_POWERPC64 ? 8 : 4) |
300 | #define MAX_UNITS_PER_WORD 8 | |
301 | #define UNITS_PER_FP_WORD 8 | |
f045b2c9 | 302 | |
915f619f JW |
303 | /* Type used for ptrdiff_t, as a string used in a declaration. */ |
304 | #define PTRDIFF_TYPE "int" | |
305 | ||
f045b2c9 RS |
306 | /* Type used for wchar_t, as a string used in a declaration. */ |
307 | #define WCHAR_TYPE "short unsigned int" | |
308 | ||
309 | /* Width of wchar_t in bits. */ | |
310 | #define WCHAR_TYPE_SIZE 16 | |
311 | ||
9e654916 RK |
312 | /* A C expression for the size in bits of the type `short' on the |
313 | target machine. If you don't define this, the default is half a | |
314 | word. (If this would be less than one storage unit, it is | |
315 | rounded up to one unit.) */ | |
316 | #define SHORT_TYPE_SIZE 16 | |
317 | ||
318 | /* A C expression for the size in bits of the type `int' on the | |
319 | target machine. If you don't define this, the default is one | |
320 | word. */ | |
321 | #define INT_TYPE_SIZE (TARGET_64BIT ? 64 : 32) | |
322 | #define MAX_INT_TYPE_SIZE 64 | |
323 | ||
324 | /* A C expression for the size in bits of the type `long' on the | |
325 | target machine. If you don't define this, the default is one | |
326 | word. */ | |
327 | #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32) | |
328 | #define MAX_LONG_TYPE_SIZE 64 | |
329 | ||
330 | /* A C expression for the size in bits of the type `long long' on the | |
331 | target machine. If you don't define this, the default is two | |
332 | words. */ | |
333 | #define LONG_LONG_TYPE_SIZE 64 | |
334 | ||
335 | /* A C expression for the size in bits of the type `char' on the | |
336 | target machine. If you don't define this, the default is one | |
337 | quarter of a word. (If this would be less than one storage unit, | |
338 | it is rounded up to one unit.) */ | |
339 | #define CHAR_TYPE_SIZE BITS_PER_UNIT | |
340 | ||
341 | /* A C expression for the size in bits of the type `float' on the | |
342 | target machine. If you don't define this, the default is one | |
343 | word. */ | |
344 | #define FLOAT_TYPE_SIZE 32 | |
345 | ||
346 | /* A C expression for the size in bits of the type `double' on the | |
347 | target machine. If you don't define this, the default is two | |
348 | words. */ | |
349 | #define DOUBLE_TYPE_SIZE 64 | |
350 | ||
351 | /* A C expression for the size in bits of the type `long double' on | |
352 | the target machine. If you don't define this, the default is two | |
353 | words. */ | |
354 | #define LONG_DOUBLE_TYPE_SIZE 64 | |
355 | ||
f045b2c9 RS |
356 | /* Width in bits of a pointer. |
357 | See also the macro `Pmode' defined below. */ | |
9e654916 | 358 | #define POINTER_SIZE (TARGET_64BIT ? 64 : 32) |
f045b2c9 RS |
359 | |
360 | /* Allocation boundary (in *bits*) for storing arguments in argument list. */ | |
9e654916 | 361 | #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32) |
f045b2c9 RS |
362 | |
363 | /* Boundary (in *bits*) on which stack pointer should be aligned. */ | |
364 | #define STACK_BOUNDARY 64 | |
365 | ||
366 | /* Allocation boundary (in *bits*) for the code of a function. */ | |
367 | #define FUNCTION_BOUNDARY 32 | |
368 | ||
369 | /* No data type wants to be aligned rounder than this. */ | |
9e654916 | 370 | #define BIGGEST_ALIGNMENT (TARGET_64BIT ? 64 : 32) |
f045b2c9 RS |
371 | |
372 | /* Alignment of field after `int : 0' in a structure. */ | |
373 | #define EMPTY_FIELD_BOUNDARY 32 | |
374 | ||
375 | /* Every structure's size must be a multiple of this. */ | |
376 | #define STRUCTURE_SIZE_BOUNDARY 8 | |
377 | ||
378 | /* A bitfield declared as `int' forces `int' alignment for the struct. */ | |
379 | #define PCC_BITFIELD_TYPE_MATTERS 1 | |
380 | ||
381 | /* Make strings word-aligned so strcpy from constants will be faster. */ | |
382 | #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ | |
383 | (TREE_CODE (EXP) == STRING_CST \ | |
384 | && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) | |
385 | ||
386 | /* Make arrays of chars word-aligned for the same reasons. */ | |
387 | #define DATA_ALIGNMENT(TYPE, ALIGN) \ | |
388 | (TREE_CODE (TYPE) == ARRAY_TYPE \ | |
389 | && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ | |
390 | && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) | |
391 | ||
fdaff8ba | 392 | /* Non-zero if move instructions will actually fail to work |
f045b2c9 | 393 | when given unaligned data. */ |
fdaff8ba | 394 | #define STRICT_ALIGNMENT 0 |
f045b2c9 RS |
395 | \f |
396 | /* Standard register usage. */ | |
397 | ||
398 | /* Number of actual hardware registers. | |
399 | The hardware registers are assigned numbers for the compiler | |
400 | from 0 to just below FIRST_PSEUDO_REGISTER. | |
401 | All registers that the compiler knows about must be given numbers, | |
402 | even those that are not normally considered general registers. | |
403 | ||
404 | RS/6000 has 32 fixed-point registers, 32 floating-point registers, | |
405 | an MQ register, a count register, a link register, and 8 condition | |
406 | register fields, which we view here as separate registers. | |
407 | ||
408 | In addition, the difference between the frame and argument pointers is | |
409 | a function of the number of registers saved, so we need to have a | |
410 | register for AP that will later be eliminated in favor of SP or FP. | |
411 | This is a normal register, but it is fixed. */ | |
412 | ||
413 | #define FIRST_PSEUDO_REGISTER 76 | |
414 | ||
415 | /* 1 for registers that have pervasive standard uses | |
416 | and are not available for the register allocator. | |
417 | ||
418 | On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer. | |
419 | ||
420 | cr5 is not supposed to be used. */ | |
421 | ||
422 | #define FIXED_REGISTERS \ | |
423 | {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
424 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
425 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
426 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
427 | 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0} | |
428 | ||
429 | /* 1 for registers not available across function calls. | |
430 | These must include the FIXED_REGISTERS and also any | |
431 | registers that can be used without being saved. | |
432 | The latter must include the registers where values are returned | |
433 | and the register where structure-value addresses are passed. | |
434 | Aside from that, you can include as many other registers as you like. */ | |
435 | ||
436 | #define CALL_USED_REGISTERS \ | |
437 | {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \ | |
438 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
439 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ | |
440 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ | |
441 | 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1} | |
442 | ||
443 | /* List the order in which to allocate registers. Each register must be | |
444 | listed once, even those in FIXED_REGISTERS. | |
445 | ||
446 | We allocate in the following order: | |
447 | fp0 (not saved or used for anything) | |
448 | fp13 - fp2 (not saved; incoming fp arg registers) | |
449 | fp1 (not saved; return value) | |
450 | fp31 - fp14 (saved; order given to save least number) | |
451 | cr1, cr6, cr7 (not saved or special) | |
452 | cr0 (not saved, but used for arithmetic operations) | |
453 | cr2, cr3, cr4 (saved) | |
454 | r0 (not saved; cannot be base reg) | |
455 | r9 (not saved; best for TImode) | |
456 | r11, r10, r8-r4 (not saved; highest used first to make less conflict) | |
457 | r3 (not saved; return value register) | |
458 | r31 - r13 (saved; order given to save least number) | |
459 | r12 (not saved; if used for DImode or DFmode would use r13) | |
460 | mq (not saved; best to use it if we can) | |
461 | ctr (not saved; when we have the choice ctr is better) | |
462 | lr (saved) | |
463 | cr5, r1, r2, ap (fixed) */ | |
464 | ||
465 | #define REG_ALLOC_ORDER \ | |
466 | {32, \ | |
467 | 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \ | |
468 | 33, \ | |
469 | 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \ | |
470 | 50, 49, 48, 47, 46, \ | |
471 | 69, 74, 75, 68, 70, 71, 72, \ | |
472 | 0, \ | |
473 | 9, 11, 10, 8, 7, 6, 5, 4, \ | |
474 | 3, \ | |
475 | 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \ | |
476 | 18, 17, 16, 15, 14, 13, 12, \ | |
477 | 64, 66, 65, \ | |
478 | 73, 1, 2, 67} | |
479 | ||
480 | /* True if register is floating-point. */ | |
481 | #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63) | |
482 | ||
483 | /* True if register is a condition register. */ | |
484 | #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75) | |
485 | ||
486 | /* True if register is an integer register. */ | |
487 | #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67) | |
488 | ||
489 | /* Return number of consecutive hard regs needed starting at reg REGNO | |
490 | to hold something of mode MODE. | |
491 | This is ordinarily the length in words of a value of mode MODE | |
492 | but can be less for certain modes in special long registers. | |
493 | ||
494 | On RS/6000, ordinary registers hold 32 bits worth; | |
495 | a single floating point register holds 64 bits worth. */ | |
496 | ||
497 | #define HARD_REGNO_NREGS(REGNO, MODE) \ | |
498 | (FP_REGNO_P (REGNO) \ | |
2e360ab3 | 499 | ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \ |
f045b2c9 RS |
500 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
501 | ||
502 | /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. | |
bdfd4e31 RK |
503 | For POWER and PowerPC, the GPRs can hold any mode, but the float |
504 | registers only can hold floating modes and DImode, and CR register only | |
505 | can hold CC modes. We cannot put TImode anywhere except general | |
506 | register and it must be able to fit within the register set. */ | |
f045b2c9 RS |
507 | |
508 | #define HARD_REGNO_MODE_OK(REGNO, MODE) \ | |
bdfd4e31 RK |
509 | (FP_REGNO_P (REGNO) ? \ |
510 | (GET_MODE_CLASS (MODE) == MODE_FLOAT \ | |
511 | || (GET_MODE_CLASS (MODE) == MODE_INT \ | |
2e360ab3 | 512 | && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \ |
f045b2c9 | 513 | : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \ |
bdfd4e31 RK |
514 | : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \ |
515 | && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \ | |
f045b2c9 RS |
516 | : 1) |
517 | ||
518 | /* Value is 1 if it is a good idea to tie two pseudo registers | |
519 | when one has mode MODE1 and one has mode MODE2. | |
520 | If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, | |
521 | for any hard reg, then this must be 0 for correct output. */ | |
522 | #define MODES_TIEABLE_P(MODE1, MODE2) \ | |
523 | (GET_MODE_CLASS (MODE1) == MODE_FLOAT \ | |
524 | ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \ | |
525 | : GET_MODE_CLASS (MODE2) == MODE_FLOAT \ | |
526 | ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \ | |
527 | : GET_MODE_CLASS (MODE1) == MODE_CC \ | |
528 | ? GET_MODE_CLASS (MODE2) == MODE_CC \ | |
529 | : GET_MODE_CLASS (MODE2) == MODE_CC \ | |
530 | ? GET_MODE_CLASS (MODE1) == MODE_CC \ | |
531 | : 1) | |
532 | ||
533 | /* A C expression returning the cost of moving data from a register of class | |
534 | CLASS1 to one of CLASS2. | |
535 | ||
536 | On the RS/6000, copying between floating-point and fixed-point | |
537 | registers is expensive. */ | |
538 | ||
539 | #define REGISTER_MOVE_COST(CLASS1, CLASS2) \ | |
540 | ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \ | |
541 | : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \ | |
542 | : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \ | |
a4b970a0 RK |
543 | : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \ |
544 | || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS) \ | |
545 | && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \ | |
546 | || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS)) ? 10 \ | |
f045b2c9 RS |
547 | : 2) |
548 | ||
549 | /* A C expressions returning the cost of moving data of MODE from a register to | |
550 | or from memory. | |
551 | ||
552 | On the RS/6000, bump this up a bit. */ | |
553 | ||
ab4a5fc9 RK |
554 | #define MEMORY_MOVE_COST(MODE) \ |
555 | ((GET_MODE_CLASS (MODE) == MODE_FLOAT \ | |
556 | && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \ | |
557 | ? 3 : 2) \ | |
558 | + 4) | |
f045b2c9 RS |
559 | |
560 | /* Specify the cost of a branch insn; roughly the number of extra insns that | |
561 | should be added to avoid a branch. | |
562 | ||
ef457bda | 563 | Set this to 3 on the RS/6000 since that is roughly the average cost of an |
f045b2c9 RS |
564 | unscheduled conditional branch. */ |
565 | ||
ef457bda | 566 | #define BRANCH_COST 3 |
f045b2c9 | 567 | |
5a5e4c2c RK |
568 | /* A C statement (sans semicolon) to update the integer variable COST |
569 | based on the relationship between INSN that is dependent on | |
570 | DEP_INSN through the dependence LINK. The default is to make no | |
571 | adjustment to COST. On the RS/6000, ignore the cost of anti- and | |
572 | output-dependencies. In fact, output dependencies on the CR do have | |
573 | a cost, but it is probably not worthwhile to track it. */ | |
574 | ||
575 | #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \ | |
b0634e74 | 576 | (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST) |
5a5e4c2c | 577 | |
6febd581 RK |
578 | /* Define this macro to change register usage conditional on target flags. |
579 | Set MQ register fixed (already call_used) if not POWER architecture | |
f85f4585 RK |
580 | (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated. |
581 | Conditionally disable FPRs. */ | |
582 | ||
583 | #define CONDITIONAL_REGISTER_USAGE \ | |
584 | { \ | |
585 | if (! TARGET_POWER) \ | |
586 | fixed_regs[64] = 1; \ | |
587 | if (TARGET_NO_FPR) \ | |
588 | for (i = 32; i < 64; i++) \ | |
589 | fixed_regs[i] = call_used_regs[i] = 1; \ | |
590 | } | |
6febd581 | 591 | |
f045b2c9 RS |
592 | /* Specify the registers used for certain standard purposes. |
593 | The values of these macros are register numbers. */ | |
594 | ||
595 | /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */ | |
596 | /* #define PC_REGNUM */ | |
597 | ||
598 | /* Register to use for pushing function arguments. */ | |
599 | #define STACK_POINTER_REGNUM 1 | |
600 | ||
601 | /* Base register for access to local variables of the function. */ | |
602 | #define FRAME_POINTER_REGNUM 31 | |
603 | ||
604 | /* Value should be nonzero if functions must have frame pointers. | |
605 | Zero means the frame pointer need not be set up (and parms | |
606 | may be accessed via the stack pointer) in functions that seem suitable. | |
607 | This is computed in `reload', in reload1.c. */ | |
608 | #define FRAME_POINTER_REQUIRED 0 | |
609 | ||
610 | /* Base register for access to arguments of the function. */ | |
611 | #define ARG_POINTER_REGNUM 67 | |
612 | ||
613 | /* Place to put static chain when calling a function that requires it. */ | |
614 | #define STATIC_CHAIN_REGNUM 11 | |
615 | ||
616 | /* Place that structure value return address is placed. | |
617 | ||
618 | On the RS/6000, it is passed as an extra parameter. */ | |
619 | #define STRUCT_VALUE 0 | |
620 | \f | |
621 | /* Define the classes of registers for register constraints in the | |
622 | machine description. Also define ranges of constants. | |
623 | ||
624 | One of the classes must always be named ALL_REGS and include all hard regs. | |
625 | If there is more than one class, another class must be named NO_REGS | |
626 | and contain no registers. | |
627 | ||
628 | The name GENERAL_REGS must be the name of a class (or an alias for | |
629 | another name such as ALL_REGS). This is the class of registers | |
630 | that is allowed by "g" or "r" in a register constraint. | |
631 | Also, registers outside this class are allocated only when | |
632 | instructions express preferences for them. | |
633 | ||
634 | The classes must be numbered in nondecreasing order; that is, | |
635 | a larger-numbered class must never be contained completely | |
636 | in a smaller-numbered class. | |
637 | ||
638 | For any two classes, it is very desirable that there be another | |
639 | class that represents their union. */ | |
640 | ||
641 | /* The RS/6000 has three types of registers, fixed-point, floating-point, | |
642 | and condition registers, plus three special registers, MQ, CTR, and the | |
643 | link register. | |
644 | ||
645 | However, r0 is special in that it cannot be used as a base register. | |
646 | So make a class for registers valid as base registers. | |
647 | ||
648 | Also, cr0 is the only condition code register that can be used in | |
649 | arithmetic insns, so make a separate class for it. */ | |
650 | ||
651 | enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS, | |
652 | NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS, | |
e8a8bc24 RK |
653 | SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS, |
654 | ALL_REGS, LIM_REG_CLASSES }; | |
f045b2c9 RS |
655 | |
656 | #define N_REG_CLASSES (int) LIM_REG_CLASSES | |
657 | ||
658 | /* Give names of register classes as strings for dump file. */ | |
659 | ||
660 | #define REG_CLASS_NAMES \ | |
661 | { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \ | |
662 | "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \ | |
e8a8bc24 RK |
663 | "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \ |
664 | "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" } | |
f045b2c9 RS |
665 | |
666 | /* Define which registers fit in which classes. | |
667 | This is an initializer for a vector of HARD_REG_SET | |
668 | of length N_REG_CLASSES. */ | |
669 | ||
670 | #define REG_CLASS_CONTENTS \ | |
671 | { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \ | |
e8a8bc24 RK |
672 | {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \ |
673 | {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \ | |
674 | {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \ | |
675 | {~0, ~0, 0xffff} } | |
f045b2c9 RS |
676 | |
677 | /* The same information, inverted: | |
678 | Return the class number of the smallest class containing | |
679 | reg number REGNO. This could be a conditional expression | |
680 | or could index an array. */ | |
681 | ||
682 | #define REGNO_REG_CLASS(REGNO) \ | |
683 | ((REGNO) == 0 ? GENERAL_REGS \ | |
684 | : (REGNO) < 32 ? BASE_REGS \ | |
685 | : FP_REGNO_P (REGNO) ? FLOAT_REGS \ | |
686 | : (REGNO) == 68 ? CR0_REGS \ | |
687 | : CR_REGNO_P (REGNO) ? CR_REGS \ | |
688 | : (REGNO) == 64 ? MQ_REGS \ | |
689 | : (REGNO) == 65 ? LINK_REGS \ | |
690 | : (REGNO) == 66 ? CTR_REGS \ | |
691 | : (REGNO) == 67 ? BASE_REGS \ | |
692 | : NO_REGS) | |
693 | ||
694 | /* The class value for index registers, and the one for base regs. */ | |
695 | #define INDEX_REG_CLASS GENERAL_REGS | |
696 | #define BASE_REG_CLASS BASE_REGS | |
697 | ||
698 | /* Get reg_class from a letter such as appears in the machine description. */ | |
699 | ||
700 | #define REG_CLASS_FROM_LETTER(C) \ | |
701 | ((C) == 'f' ? FLOAT_REGS \ | |
702 | : (C) == 'b' ? BASE_REGS \ | |
703 | : (C) == 'h' ? SPECIAL_REGS \ | |
704 | : (C) == 'q' ? MQ_REGS \ | |
705 | : (C) == 'c' ? CTR_REGS \ | |
706 | : (C) == 'l' ? LINK_REGS \ | |
707 | : (C) == 'x' ? CR0_REGS \ | |
708 | : (C) == 'y' ? CR_REGS \ | |
709 | : NO_REGS) | |
710 | ||
711 | /* The letters I, J, K, L, M, N, and P in a register constraint string | |
712 | can be used to stand for particular ranges of immediate operands. | |
713 | This macro defines what the ranges are. | |
714 | C is the letter, and VALUE is a constant value. | |
715 | Return 1 if VALUE is in the range specified by C. | |
716 | ||
717 | `I' is signed 16-bit constants | |
718 | `J' is a constant with only the high-order 16 bits non-zero | |
719 | `K' is a constant with only the low-order 16 bits non-zero | |
720 | `L' is a constant that can be placed into a mask operand | |
721 | `M' is a constant that is greater than 31 | |
722 | `N' is a constant that is an exact power of two | |
723 | `O' is the constant zero | |
724 | `P' is a constant whose negation is a signed 16-bit constant */ | |
725 | ||
726 | #define CONST_OK_FOR_LETTER_P(VALUE, C) \ | |
727 | ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \ | |
728 | : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \ | |
729 | : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \ | |
730 | : (C) == 'L' ? mask_constant (VALUE) \ | |
731 | : (C) == 'M' ? (VALUE) > 31 \ | |
732 | : (C) == 'N' ? exact_log2 (VALUE) >= 0 \ | |
733 | : (C) == 'O' ? (VALUE) == 0 \ | |
734 | : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \ | |
735 | : 0) | |
736 | ||
737 | /* Similar, but for floating constants, and defining letters G and H. | |
738 | Here VALUE is the CONST_DOUBLE rtx itself. | |
739 | ||
740 | We flag for special constants when we can copy the constant into | |
741 | a general register in two insns for DF and one insn for SF. */ | |
742 | ||
743 | #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ | |
744 | ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0) | |
745 | ||
746 | /* Optional extra constraints for this machine. | |
747 | ||
748 | For the RS/6000, `Q' means that this is a memory operand that is just | |
749 | an offset from a register. */ | |
750 | ||
e8a8bc24 RK |
751 | #define EXTRA_CONSTRAINT(OP, C) \ |
752 | ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \ | |
d537c24d | 753 | : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \ |
e8a8bc24 | 754 | : 0) |
f045b2c9 RS |
755 | |
756 | /* Given an rtx X being reloaded into a reg required to be | |
757 | in class CLASS, return the class of reg to actually use. | |
758 | In general this is just CLASS; but on some machines | |
759 | in some cases it is preferable to use a more restrictive class. | |
760 | ||
761 | On the RS/6000, we have to return NO_REGS when we want to reload a | |
762 | floating-point CONST_DOUBLE to force it to be copied to memory. */ | |
763 | ||
764 | #define PREFERRED_RELOAD_CLASS(X,CLASS) \ | |
765 | ((GET_CODE (X) == CONST_DOUBLE \ | |
766 | && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \ | |
767 | ? NO_REGS : (CLASS)) | |
768 | ||
769 | /* Return the register class of a scratch register needed to copy IN into | |
770 | or out of a register in CLASS in MODE. If it can be done directly, | |
771 | NO_REGS is returned. */ | |
772 | ||
773 | #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \ | |
774 | secondary_reload_class (CLASS, MODE, IN) | |
775 | ||
7ea555a4 RK |
776 | /* If we are copying between FP registers and anything else, we need a memory |
777 | location. */ | |
778 | ||
779 | #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \ | |
780 | ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS)) | |
781 | ||
f045b2c9 RS |
782 | /* Return the maximum number of consecutive registers |
783 | needed to represent mode MODE in a register of class CLASS. | |
784 | ||
785 | On RS/6000, this is the size of MODE in words, | |
786 | except in the FP regs, where a single reg is enough for two words. */ | |
787 | #define CLASS_MAX_NREGS(CLASS, MODE) \ | |
788 | ((CLASS) == FLOAT_REGS \ | |
2e360ab3 | 789 | ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \ |
f045b2c9 | 790 | : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) |
580d3230 RK |
791 | |
792 | /* If defined, gives a class of registers that cannot be used as the | |
793 | operand of a SUBREG that changes the size of the object. */ | |
794 | ||
795 | #define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS | |
f045b2c9 RS |
796 | \f |
797 | /* Stack layout; function entry, exit and calling. */ | |
798 | ||
799 | /* Define this if pushing a word on the stack | |
800 | makes the stack pointer a smaller address. */ | |
801 | #define STACK_GROWS_DOWNWARD | |
802 | ||
803 | /* Define this if the nominal address of the stack frame | |
804 | is at the high-address end of the local variables; | |
805 | that is, each additional local variable allocated | |
806 | goes at a more negative offset in the frame. | |
807 | ||
808 | On the RS/6000, we grow upwards, from the area after the outgoing | |
809 | arguments. */ | |
810 | /* #define FRAME_GROWS_DOWNWARD */ | |
811 | ||
812 | /* Offset within stack frame to start allocating local variables at. | |
813 | If FRAME_GROWS_DOWNWARD, this is the offset to the END of the | |
814 | first local allocated. Otherwise, it is the offset to the BEGINNING | |
815 | of the first local allocated. | |
816 | ||
817 | On the RS/6000, the frame pointer is the same as the stack pointer, | |
818 | except for dynamic allocations. So we start after the fixed area and | |
819 | outgoing parameter area. */ | |
820 | ||
9e654916 RK |
821 | #define STARTING_FRAME_OFFSET (current_function_outgoing_args_size \ |
822 | + (TARGET_64BIT ? 48 : 24)) | |
f045b2c9 RS |
823 | |
824 | /* If we generate an insn to push BYTES bytes, | |
825 | this says how many the stack pointer really advances by. | |
826 | On RS/6000, don't define this because there are no push insns. */ | |
827 | /* #define PUSH_ROUNDING(BYTES) */ | |
828 | ||
829 | /* Offset of first parameter from the argument pointer register value. | |
830 | On the RS/6000, we define the argument pointer to the start of the fixed | |
831 | area. */ | |
9e654916 | 832 | #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? 48 : 24) |
f045b2c9 RS |
833 | |
834 | /* Define this if stack space is still allocated for a parameter passed | |
835 | in a register. The value is the number of bytes allocated to this | |
836 | area. */ | |
9e654916 | 837 | #define REG_PARM_STACK_SPACE(FNDECL) (TARGET_64BIT ? 64 : 32) |
f045b2c9 RS |
838 | |
839 | /* Define this if the above stack space is to be considered part of the | |
840 | space allocated by the caller. */ | |
841 | #define OUTGOING_REG_PARM_STACK_SPACE | |
842 | ||
843 | /* This is the difference between the logical top of stack and the actual sp. | |
844 | ||
845 | For the RS/6000, sp points past the fixed area. */ | |
9e654916 | 846 | #define STACK_POINTER_OFFSET (TARGET_64BIT ? 48 : 24) |
f045b2c9 RS |
847 | |
848 | /* Define this if the maximum size of all the outgoing args is to be | |
849 | accumulated and pushed during the prologue. The amount can be | |
850 | found in the variable current_function_outgoing_args_size. */ | |
851 | #define ACCUMULATE_OUTGOING_ARGS | |
852 | ||
853 | /* Value is the number of bytes of arguments automatically | |
854 | popped when returning from a subroutine call. | |
855 | FUNTYPE is the data type of the function (as a tree), | |
856 | or for a library call it is an identifier node for the subroutine name. | |
857 | SIZE is the number of bytes of arguments passed on the stack. */ | |
858 | ||
859 | #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0 | |
860 | ||
861 | /* Define how to find the value returned by a function. | |
862 | VALTYPE is the data type of the value (as a tree). | |
863 | If the precise function being called is known, FUNC is its FUNCTION_DECL; | |
864 | otherwise, FUNC is 0. | |
865 | ||
866 | On RS/6000 an integer value is in r3 and a floating-point value is in | |
867 | fp1. */ | |
868 | ||
869 | #define FUNCTION_VALUE(VALTYPE, FUNC) \ | |
870 | gen_rtx (REG, TYPE_MODE (VALTYPE), \ | |
871 | TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3) | |
872 | ||
873 | /* Define how to find the value returned by a library function | |
874 | assuming the value has mode MODE. */ | |
875 | ||
876 | #define LIBCALL_VALUE(MODE) \ | |
877 | gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3) | |
878 | ||
879 | /* The definition of this macro implies that there are cases where | |
880 | a scalar value cannot be returned in registers. | |
881 | ||
882 | For the RS/6000, any structure or union type is returned in memory. */ | |
883 | ||
884 | #define RETURN_IN_MEMORY(TYPE) \ | |
e419152d | 885 | (TYPE_MODE (TYPE) == BLKmode) |
f045b2c9 RS |
886 | |
887 | /* 1 if N is a possible register number for a function value | |
888 | as seen by the caller. | |
889 | ||
890 | On RS/6000, this is r3 and fp1. */ | |
891 | ||
892 | #define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33)) | |
893 | ||
894 | /* 1 if N is a possible register number for function argument passing. | |
895 | On RS/6000, these are r3-r10 and fp1-fp13. */ | |
896 | ||
897 | #define FUNCTION_ARG_REGNO_P(N) \ | |
898 | (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45)) | |
899 | \f | |
900 | /* Define a data type for recording info about an argument list | |
901 | during the scan of that argument list. This data type should | |
902 | hold all necessary information about the function itself | |
903 | and about the args processed so far, enough to enable macros | |
904 | such as FUNCTION_ARG to determine where the next arg should go. | |
905 | ||
906 | On the RS/6000, this is a structure. The first element is the number of | |
907 | total argument words, the second is used to store the next | |
908 | floating-point register number, and the third says how many more args we | |
909 | have prototype types for. */ | |
910 | ||
911 | struct rs6000_args {int words, fregno, nargs_prototype; }; | |
912 | #define CUMULATIVE_ARGS struct rs6000_args | |
913 | ||
914 | /* Define intermediate macro to compute the size (in registers) of an argument | |
915 | for the RS/6000. */ | |
916 | ||
917 | #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \ | |
918 | (! (NAMED) ? 0 \ | |
919 | : (MODE) != BLKmode \ | |
920 | ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \ | |
921 | : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) | |
922 | ||
923 | /* Initialize a variable CUM of type CUMULATIVE_ARGS | |
924 | for a call to a function whose data type is FNTYPE. | |
925 | For a library call, FNTYPE is 0. */ | |
926 | ||
927 | #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \ | |
928 | (CUM).words = 0, \ | |
929 | (CUM).fregno = 33, \ | |
930 | (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \ | |
931 | ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \ | |
932 | + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \ | |
933 | || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \ | |
934 | : 0) | |
935 | ||
936 | /* Similar, but when scanning the definition of a procedure. We always | |
937 | set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */ | |
938 | ||
939 | #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \ | |
940 | (CUM).words = 0, \ | |
941 | (CUM).fregno = 33, \ | |
942 | (CUM).nargs_prototype = 1000 | |
943 | ||
944 | /* Update the data in CUM to advance over an argument | |
945 | of mode MODE and data type TYPE. | |
946 | (TYPE is null for libcalls where that information may not be available.) */ | |
947 | ||
948 | #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ | |
949 | { (CUM).nargs_prototype--; \ | |
950 | if (NAMED) \ | |
951 | { \ | |
952 | (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \ | |
953 | if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \ | |
954 | (CUM).fregno++; \ | |
955 | } \ | |
956 | } | |
957 | ||
958 | /* Non-zero if we can use a floating-point register to pass this arg. */ | |
959 | #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \ | |
960 | (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46) | |
961 | ||
962 | /* Determine where to put an argument to a function. | |
963 | Value is zero to push the argument on the stack, | |
964 | or a hard register in which to store the argument. | |
965 | ||
966 | MODE is the argument's machine mode. | |
967 | TYPE is the data type of the argument (as a tree). | |
968 | This is null for libcalls where that information may | |
969 | not be available. | |
970 | CUM is a variable of type CUMULATIVE_ARGS which gives info about | |
971 | the preceding args and about the function being called. | |
972 | NAMED is nonzero if this argument is a named parameter | |
973 | (otherwise it is an extra parameter matching an ellipsis). | |
974 | ||
975 | On RS/6000 the first eight words of non-FP are normally in registers | |
976 | and the rest are pushed. The first 13 FP args are in registers. | |
977 | ||
978 | If this is floating-point and no prototype is specified, we use | |
4d6697ca RK |
979 | both an FP and integer register (or possibly FP reg and stack). Library |
980 | functions (when TYPE is zero) always have the proper types for args, | |
981 | so we can pass the FP value just in one register. emit_library_function | |
982 | doesn't support EXPR_LIST anyway. */ | |
f045b2c9 RS |
983 | |
984 | #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ | |
985 | (! (NAMED) ? 0 \ | |
38bd31fc | 986 | : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \ |
d072107f | 987 | : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \ |
4d6697ca | 988 | ? ((CUM).nargs_prototype > 0 || (TYPE) == 0 \ |
f045b2c9 RS |
989 | ? gen_rtx (REG, MODE, (CUM).fregno) \ |
990 | : ((CUM).words < 8 \ | |
991 | ? gen_rtx (EXPR_LIST, VOIDmode, \ | |
992 | gen_rtx (REG, (MODE), 3 + (CUM).words), \ | |
993 | gen_rtx (REG, (MODE), (CUM).fregno)) \ | |
994 | : gen_rtx (EXPR_LIST, VOIDmode, 0, \ | |
995 | gen_rtx (REG, (MODE), (CUM).fregno)))) \ | |
996 | : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0) | |
997 | ||
998 | /* For an arg passed partly in registers and partly in memory, | |
999 | this is the number of registers used. | |
1000 | For args passed entirely in registers or entirely in memory, zero. */ | |
1001 | ||
1002 | #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \ | |
1003 | (! (NAMED) ? 0 \ | |
1004 | : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \ | |
1005 | : (((CUM).words < 8 \ | |
1006 | && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \ | |
1007 | ? 8 - (CUM).words : 0)) | |
1008 | ||
1009 | /* Perform any needed actions needed for a function that is receiving a | |
1010 | variable number of arguments. | |
1011 | ||
1012 | CUM is as above. | |
1013 | ||
1014 | MODE and TYPE are the mode and type of the current parameter. | |
1015 | ||
1016 | PRETEND_SIZE is a variable that should be set to the amount of stack | |
1017 | that must be pushed by the prolog to pretend that our caller pushed | |
1018 | it. | |
1019 | ||
1020 | Normally, this macro will push all remaining incoming registers on the | |
1021 | stack and set PRETEND_SIZE to the length of the registers pushed. */ | |
1022 | ||
1023 | #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ | |
1024 | { if ((CUM).words < 8) \ | |
1025 | { \ | |
1026 | int first_reg_offset = (CUM).words; \ | |
1027 | \ | |
1028 | if (MUST_PASS_IN_STACK (MODE, TYPE)) \ | |
1029 | first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \ | |
1030 | \ | |
1031 | if (first_reg_offset > 8) \ | |
1032 | first_reg_offset = 8; \ | |
1033 | \ | |
1034 | if (! (NO_RTL) && first_reg_offset != 8) \ | |
1035 | move_block_from_reg \ | |
1036 | (3 + first_reg_offset, \ | |
1037 | gen_rtx (MEM, BLKmode, \ | |
1038 | plus_constant (virtual_incoming_args_rtx, \ | |
1039 | first_reg_offset * 4)), \ | |
02892e06 | 1040 | 8 - first_reg_offset, (8 - first_reg_offset) * UNITS_PER_WORD); \ |
f045b2c9 RS |
1041 | PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \ |
1042 | } \ | |
1043 | } | |
1044 | ||
1045 | /* This macro generates the assembly code for function entry. | |
1046 | FILE is a stdio stream to output the code to. | |
1047 | SIZE is an int: how many units of temporary storage to allocate. | |
1048 | Refer to the array `regs_ever_live' to determine which registers | |
1049 | to save; `regs_ever_live[I]' is nonzero if register number I | |
1050 | is ever used in the function. This macro is responsible for | |
1051 | knowing which registers should not be saved even if used. */ | |
1052 | ||
1053 | #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE) | |
1054 | ||
1055 | /* Output assembler code to FILE to increment profiler label # LABELNO | |
58a39e45 | 1056 | for profiling a function entry. */ |
f045b2c9 RS |
1057 | |
1058 | #define FUNCTION_PROFILER(FILE, LABELNO) \ | |
58a39e45 | 1059 | output_function_profiler ((FILE), (LABELNO)); |
f045b2c9 RS |
1060 | |
1061 | /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, | |
1062 | the stack pointer does not matter. No definition is equivalent to | |
1063 | always zero. | |
1064 | ||
1065 | On the RS/6000, this is non-zero because we can restore the stack from | |
1066 | its backpointer, which we maintain. */ | |
1067 | #define EXIT_IGNORE_STACK 1 | |
1068 | ||
1069 | /* This macro generates the assembly code for function exit, | |
1070 | on machines that need it. If FUNCTION_EPILOGUE is not defined | |
1071 | then individual return instructions are generated for each | |
1072 | return statement. Args are same as for FUNCTION_PROLOGUE. | |
1073 | ||
1074 | The function epilogue should not depend on the current stack pointer! | |
1075 | It should use the frame pointer only. This is mandatory because | |
1076 | of alloca; we also take advantage of it to omit stack adjustments | |
1077 | before returning. */ | |
1078 | ||
1079 | #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE) | |
1080 | \f | |
1081 | /* Output assembler code for a block containing the constant parts | |
1082 | of a trampoline, leaving space for the variable parts. | |
1083 | ||
1084 | The trampoline should set the static chain pointer to value placed | |
1085 | into the trampoline and should branch to the specified routine. | |
1086 | ||
1087 | On the RS/6000, this is not code at all, but merely a data area, | |
1088 | since that is the way all functions are called. The first word is | |
1089 | the address of the function, the second word is the TOC pointer (r2), | |
1090 | and the third word is the static chain value. */ | |
1091 | ||
1092 | #define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); } | |
1093 | ||
1094 | /* Length in units of the trampoline for entering a nested function. */ | |
1095 | ||
1096 | #define TRAMPOLINE_SIZE 12 | |
1097 | ||
1098 | /* Emit RTL insns to initialize the variable parts of a trampoline. | |
1099 | FNADDR is an RTX for the address of the function's pure code. | |
1100 | CXT is an RTX for the static chain value for the function. */ | |
1101 | ||
1102 | #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \ | |
1103 | { \ | |
f045b2c9 | 1104 | emit_move_insn (gen_rtx (MEM, SImode, \ |
858b728c RK |
1105 | memory_address (SImode, (ADDR))), \ |
1106 | gen_rtx (MEM, SImode, \ | |
1107 | memory_address (SImode, (FNADDR)))); \ | |
f045b2c9 | 1108 | emit_move_insn (gen_rtx (MEM, SImode, \ |
858b728c RK |
1109 | memory_address (SImode, \ |
1110 | plus_constant ((ADDR), 4))), \ | |
1111 | gen_rtx (MEM, SImode, \ | |
1112 | memory_address (SImode, \ | |
1113 | plus_constant ((FNADDR), 4)))); \ | |
1114 | emit_move_insn (gen_rtx (MEM, SImode, \ | |
1115 | memory_address (SImode, \ | |
1116 | plus_constant ((ADDR), 8))), \ | |
1117 | force_reg (SImode, (CXT))); \ | |
f045b2c9 RS |
1118 | } |
1119 | \f | |
1120 | /* Definitions for register eliminations. | |
1121 | ||
1122 | We have two registers that can be eliminated on the RS/6000. First, the | |
1123 | frame pointer register can often be eliminated in favor of the stack | |
1124 | pointer register. Secondly, the argument pointer register can always be | |
642a35f1 JW |
1125 | eliminated; it is replaced with either the stack or frame pointer. |
1126 | ||
1127 | In addition, we use the elimination mechanism to see if r30 is needed | |
1128 | Initially we assume that it isn't. If it is, we spill it. This is done | |
1129 | by making it an eliminable register. We replace it with itself so that | |
1130 | if it isn't needed, then existing uses won't be modified. */ | |
f045b2c9 RS |
1131 | |
1132 | /* This is an array of structures. Each structure initializes one pair | |
1133 | of eliminable registers. The "from" register number is given first, | |
1134 | followed by "to". Eliminations of the same "from" register are listed | |
1135 | in order of preference. */ | |
1136 | #define ELIMINABLE_REGS \ | |
1137 | {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ | |
1138 | { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ | |
642a35f1 JW |
1139 | { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ |
1140 | { 30, 30} } | |
f045b2c9 RS |
1141 | |
1142 | /* Given FROM and TO register numbers, say whether this elimination is allowed. | |
1143 | Frame pointer elimination is automatically handled. | |
1144 | ||
1145 | For the RS/6000, if frame pointer elimination is being done, we would like | |
642a35f1 JW |
1146 | to convert ap into fp, not sp. |
1147 | ||
1148 | We need r30 if -mmininal-toc was specified, and there are constant pool | |
1149 | references. */ | |
f045b2c9 RS |
1150 | |
1151 | #define CAN_ELIMINATE(FROM, TO) \ | |
1152 | ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \ | |
1153 | ? ! frame_pointer_needed \ | |
642a35f1 | 1154 | : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || get_pool_size () == 0 \ |
f045b2c9 RS |
1155 | : 1) |
1156 | ||
1157 | /* Define the offset between two registers, one to be eliminated, and the other | |
1158 | its replacement, at the start of a routine. */ | |
1159 | #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ | |
1160 | { \ | |
1161 | int total_stack_size = (rs6000_sa_size () + get_frame_size () \ | |
1162 | + current_function_outgoing_args_size); \ | |
1163 | \ | |
1164 | total_stack_size = (total_stack_size + 7) & ~7; \ | |
1165 | \ | |
1166 | if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ | |
1167 | { \ | |
1168 | if (rs6000_pushes_stack ()) \ | |
1169 | (OFFSET) = 0; \ | |
1170 | else \ | |
1171 | (OFFSET) = - total_stack_size; \ | |
1172 | } \ | |
1173 | else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ | |
1174 | (OFFSET) = total_stack_size; \ | |
1175 | else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ | |
1176 | { \ | |
1177 | if (rs6000_pushes_stack ()) \ | |
1178 | (OFFSET) = total_stack_size; \ | |
1179 | else \ | |
1180 | (OFFSET) = 0; \ | |
1181 | } \ | |
642a35f1 JW |
1182 | else if ((FROM) == 30) \ |
1183 | (OFFSET) = 0; \ | |
f045b2c9 RS |
1184 | else \ |
1185 | abort (); \ | |
1186 | } | |
1187 | \f | |
1188 | /* Addressing modes, and classification of registers for them. */ | |
1189 | ||
1190 | /* #define HAVE_POST_INCREMENT */ | |
1191 | /* #define HAVE_POST_DECREMENT */ | |
1192 | ||
1193 | #define HAVE_PRE_DECREMENT | |
1194 | #define HAVE_PRE_INCREMENT | |
1195 | ||
1196 | /* Macros to check register numbers against specific register classes. */ | |
1197 | ||
1198 | /* These assume that REGNO is a hard or pseudo reg number. | |
1199 | They give nonzero only if REGNO is a hard reg of the suitable class | |
1200 | or a pseudo reg currently allocated to a suitable hard reg. | |
1201 | Since they use reg_renumber, they are safe only once reg_renumber | |
1202 | has been allocated, which happens in local-alloc.c. */ | |
1203 | ||
1204 | #define REGNO_OK_FOR_INDEX_P(REGNO) \ | |
1205 | ((REGNO) < FIRST_PSEUDO_REGISTER \ | |
1206 | ? (REGNO) <= 31 || (REGNO) == 67 \ | |
1207 | : (reg_renumber[REGNO] >= 0 \ | |
1208 | && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67))) | |
1209 | ||
1210 | #define REGNO_OK_FOR_BASE_P(REGNO) \ | |
1211 | ((REGNO) < FIRST_PSEUDO_REGISTER \ | |
1212 | ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \ | |
1213 | : (reg_renumber[REGNO] > 0 \ | |
1214 | && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67))) | |
1215 | \f | |
1216 | /* Maximum number of registers that can appear in a valid memory address. */ | |
1217 | ||
1218 | #define MAX_REGS_PER_ADDRESS 2 | |
1219 | ||
1220 | /* Recognize any constant value that is a valid address. */ | |
1221 | ||
6eff269e BK |
1222 | #define CONSTANT_ADDRESS_P(X) \ |
1223 | (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ | |
1224 | || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \ | |
1225 | || GET_CODE (X) == HIGH) | |
f045b2c9 RS |
1226 | |
1227 | /* Nonzero if the constant value X is a legitimate general operand. | |
1228 | It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. | |
1229 | ||
1230 | On the RS/6000, all integer constants are acceptable, most won't be valid | |
1231 | for particular insns, though. Only easy FP constants are | |
1232 | acceptable. */ | |
1233 | ||
1234 | #define LEGITIMATE_CONSTANT_P(X) \ | |
1235 | (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \ | |
1236 | || easy_fp_constant (X, GET_MODE (X))) | |
1237 | ||
1238 | /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx | |
1239 | and check its validity for a certain class. | |
1240 | We have two alternate definitions for each of them. | |
1241 | The usual definition accepts all pseudo regs; the other rejects | |
1242 | them unless they have been allocated suitable hard regs. | |
1243 | The symbol REG_OK_STRICT causes the latter definition to be used. | |
1244 | ||
1245 | Most source files want to accept pseudo regs in the hope that | |
1246 | they will get allocated to the class that the insn wants them to be in. | |
1247 | Source files for reload pass need to be strict. | |
1248 | After reload, it makes no difference, since pseudo regs have | |
1249 | been eliminated by then. */ | |
1250 | ||
1251 | #ifndef REG_OK_STRICT | |
1252 | ||
1253 | /* Nonzero if X is a hard reg that can be used as an index | |
1254 | or if it is a pseudo reg. */ | |
1255 | #define REG_OK_FOR_INDEX_P(X) \ | |
1256 | (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER) | |
1257 | ||
1258 | /* Nonzero if X is a hard reg that can be used as a base reg | |
1259 | or if it is a pseudo reg. */ | |
1260 | #define REG_OK_FOR_BASE_P(X) \ | |
1261 | (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X)) | |
1262 | ||
1263 | #else | |
1264 | ||
1265 | /* Nonzero if X is a hard reg that can be used as an index. */ | |
1266 | #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) | |
1267 | /* Nonzero if X is a hard reg that can be used as a base reg. */ | |
1268 | #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) | |
1269 | ||
1270 | #endif | |
1271 | \f | |
1272 | /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression | |
1273 | that is a valid memory address for an instruction. | |
1274 | The MODE argument is the machine mode for the MEM expression | |
1275 | that wants to use this address. | |
1276 | ||
1277 | On the RS/6000, there are four valid address: a SYMBOL_REF that | |
1278 | refers to a constant pool entry of an address (or the sum of it | |
1279 | plus a constant), a short (16-bit signed) constant plus a register, | |
1280 | the sum of two registers, or a register indirect, possibly with an | |
1281 | auto-increment. For DFmode and DImode with an constant plus register, | |
1282 | we must ensure that both words are addressable. */ | |
1283 | ||
1284 | #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \ | |
1285 | (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \ | |
1286 | && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X))) | |
1287 | ||
1288 | #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \ | |
1289 | (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \ | |
1290 | || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \ | |
1291 | && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ | |
1292 | && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0)))) | |
1293 | ||
1294 | #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \ | |
1295 | (GET_CODE (X) == CONST_INT \ | |
1296 | && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000) | |
1297 | ||
1298 | #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \ | |
1299 | (GET_CODE (X) == PLUS \ | |
1300 | && GET_CODE (XEXP (X, 0)) == REG \ | |
1301 | && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ | |
1302 | && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \ | |
1303 | && (((MODE) != DFmode && (MODE) != DImode) \ | |
1304 | || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4))) | |
1305 | ||
1306 | #define LEGITIMATE_INDEXED_ADDRESS_P(X) \ | |
1307 | (GET_CODE (X) == PLUS \ | |
1308 | && GET_CODE (XEXP (X, 0)) == REG \ | |
1309 | && GET_CODE (XEXP (X, 1)) == REG \ | |
1310 | && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \ | |
1311 | && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \ | |
1312 | || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \ | |
1313 | && REG_OK_FOR_INDEX_P (XEXP (X, 0))))) | |
1314 | ||
1315 | #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \ | |
1316 | (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) | |
1317 | ||
1318 | #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ | |
1319 | { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \ | |
1320 | goto ADDR; \ | |
1321 | if (GET_CODE (X) == PRE_INC \ | |
1322 | && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \ | |
1323 | goto ADDR; \ | |
1324 | if (GET_CODE (X) == PRE_DEC \ | |
1325 | && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \ | |
1326 | goto ADDR; \ | |
1327 | if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \ | |
1328 | goto ADDR; \ | |
1329 | if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \ | |
1330 | goto ADDR; \ | |
1331 | if ((MODE) != DImode && (MODE) != TImode \ | |
1332 | && LEGITIMATE_INDEXED_ADDRESS_P (X)) \ | |
1333 | goto ADDR; \ | |
1334 | } | |
1335 | \f | |
1336 | /* Try machine-dependent ways of modifying an illegitimate address | |
1337 | to be legitimate. If we find one, return the new, valid address. | |
1338 | This macro is used in only one place: `memory_address' in explow.c. | |
1339 | ||
1340 | OLDX is the address as it was before break_out_memory_refs was called. | |
1341 | In some cases it is useful to look at this to decide what needs to be done. | |
1342 | ||
1343 | MODE and WIN are passed so that this macro can use | |
1344 | GO_IF_LEGITIMATE_ADDRESS. | |
1345 | ||
1346 | It is always safe for this macro to do nothing. It exists to recognize | |
1347 | opportunities to optimize the output. | |
1348 | ||
1349 | On RS/6000, first check for the sum of a register with a constant | |
1350 | integer that is out of range. If so, generate code to add the | |
1351 | constant with the low-order 16 bits masked to the register and force | |
1352 | this result into another register (this can be done with `cau'). | |
1353 | Then generate an address of REG+(CONST&0xffff), allowing for the | |
1354 | possibility of bit 16 being a one. | |
1355 | ||
1356 | Then check for the sum of a register and something not constant, try to | |
1357 | load the other things into a register and return the sum. */ | |
1358 | ||
1359 | #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ | |
1360 | { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ | |
1361 | && GET_CODE (XEXP (X, 1)) == CONST_INT \ | |
1362 | && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \ | |
1363 | { int high_int, low_int; \ | |
1364 | high_int = INTVAL (XEXP (X, 1)) >> 16; \ | |
1365 | low_int = INTVAL (XEXP (X, 1)) & 0xffff; \ | |
1366 | if (low_int & 0x8000) \ | |
1367 | high_int += 1, low_int |= 0xffff0000; \ | |
1368 | (X) = gen_rtx (PLUS, SImode, \ | |
1369 | force_operand \ | |
1370 | (gen_rtx (PLUS, SImode, XEXP (X, 0), \ | |
1371 | gen_rtx (CONST_INT, VOIDmode, \ | |
1372 | high_int << 16)), 0),\ | |
1373 | gen_rtx (CONST_INT, VOIDmode, low_int)); \ | |
f357808b | 1374 | goto WIN; \ |
f045b2c9 RS |
1375 | } \ |
1376 | else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \ | |
27a2a2f1 RK |
1377 | && GET_CODE (XEXP (X, 1)) != CONST_INT \ |
1378 | && (MODE) != DImode && (MODE) != TImode) \ | |
f357808b RK |
1379 | { \ |
1380 | (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \ | |
1381 | force_reg (SImode, force_operand (XEXP (X, 1), 0))); \ | |
1382 | goto WIN; \ | |
1383 | } \ | |
f045b2c9 RS |
1384 | } |
1385 | ||
1386 | /* Go to LABEL if ADDR (a legitimate address expression) | |
1387 | has an effect that depends on the machine mode it is used for. | |
1388 | ||
1389 | On the RS/6000 this is true if the address is valid with a zero offset | |
1390 | but not with an offset of four (this means it cannot be used as an | |
1391 | address for DImode or DFmode) or is a pre-increment or decrement. Since | |
1392 | we know it is valid, we just check for an address that is not valid with | |
1393 | an offset of four. */ | |
1394 | ||
1395 | #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \ | |
1396 | { if (GET_CODE (ADDR) == PLUS \ | |
1397 | && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \ | |
1398 | && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \ | |
1399 | goto LABEL; \ | |
1400 | if (GET_CODE (ADDR) == PRE_INC) \ | |
1401 | goto LABEL; \ | |
1402 | if (GET_CODE (ADDR) == PRE_DEC) \ | |
1403 | goto LABEL; \ | |
1404 | } | |
1405 | \f | |
1406 | /* Define this if some processing needs to be done immediately before | |
4255474b | 1407 | emitting code for an insn. */ |
f045b2c9 | 1408 | |
4255474b | 1409 | /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */ |
f045b2c9 RS |
1410 | |
1411 | /* Specify the machine mode that this machine uses | |
1412 | for the index in the tablejump instruction. */ | |
1413 | #define CASE_VECTOR_MODE SImode | |
1414 | ||
1415 | /* Define this if the tablejump instruction expects the table | |
1416 | to contain offsets from the address of the table. | |
1417 | Do not define this if the table should contain absolute addresses. */ | |
1418 | #define CASE_VECTOR_PC_RELATIVE | |
1419 | ||
1420 | /* Specify the tree operation to be used to convert reals to integers. */ | |
1421 | #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR | |
1422 | ||
1423 | /* This is the kind of divide that is easiest to do in the general case. */ | |
1424 | #define EASY_DIV_EXPR TRUNC_DIV_EXPR | |
1425 | ||
1426 | /* Define this as 1 if `char' should by default be signed; else as 0. */ | |
1427 | #define DEFAULT_SIGNED_CHAR 0 | |
1428 | ||
1429 | /* This flag, if defined, says the same insns that convert to a signed fixnum | |
1430 | also convert validly to an unsigned one. */ | |
1431 | ||
1432 | /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */ | |
1433 | ||
1434 | /* Max number of bytes we can move from memory to memory | |
1435 | in one reasonably fast instruction. */ | |
2e360ab3 RK |
1436 | #define MOVE_MAX (TARGET_POWER ? 16 : (TARGET_POWERPC64 ? 8 : 4)) |
1437 | #define MAX_MOVE_MAX 16 | |
f045b2c9 RS |
1438 | |
1439 | /* Nonzero if access to memory by bytes is no faster than for words. | |
1440 | Also non-zero if doing byte operations (specifically shifts) in registers | |
1441 | is undesirable. */ | |
1442 | #define SLOW_BYTE_ACCESS 1 | |
1443 | ||
9a63901f RK |
1444 | /* Define if operations between registers always perform the operation |
1445 | on the full register even if a narrower mode is specified. */ | |
1446 | #define WORD_REGISTER_OPERATIONS | |
1447 | ||
1448 | /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD | |
1449 | will either zero-extend or sign-extend. The value of this macro should | |
1450 | be the code that says which one of the two operations is implicitly | |
1451 | done, NIL if none. */ | |
1452 | #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND | |
225211e2 RK |
1453 | |
1454 | /* Define if loading short immediate values into registers sign extends. */ | |
1455 | #define SHORT_IMMEDIATES_SIGN_EXTEND | |
fdaff8ba RS |
1456 | \f |
1457 | /* The RS/6000 uses the XCOFF format. */ | |
f045b2c9 | 1458 | |
fdaff8ba | 1459 | #define XCOFF_DEBUGGING_INFO |
f045b2c9 | 1460 | |
c5abcf1d CH |
1461 | /* Define if the object format being used is COFF or a superset. */ |
1462 | #define OBJECT_FORMAT_COFF | |
1463 | ||
2c440f06 RK |
1464 | /* Define the magic numbers that we recognize as COFF. */ |
1465 | ||
1466 | #define MY_ISCOFF(magic) \ | |
1467 | ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC) | |
1468 | ||
115e69a9 RK |
1469 | /* This is the only version of nm that collect2 can work with. */ |
1470 | #define REAL_NM_FILE_NAME "/usr/ucb/nm" | |
1471 | ||
f045b2c9 RS |
1472 | /* We don't have GAS for the RS/6000 yet, so don't write out special |
1473 | .stabs in cc1plus. */ | |
1474 | ||
1475 | #define FASCIST_ASSEMBLER | |
1476 | ||
f045b2c9 RS |
1477 | /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits |
1478 | is done just by pretending it is already truncated. */ | |
1479 | #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 | |
1480 | ||
1481 | /* Specify the machine mode that pointers have. | |
1482 | After generation of rtl, the compiler makes no further distinction | |
1483 | between pointers and any other objects of this machine mode. */ | |
9e654916 | 1484 | #define Pmode (TARGET_64BIT ? DImode : SImode) |
f045b2c9 RS |
1485 | |
1486 | /* Mode of a function address in a call instruction (for indexing purposes). | |
1487 | ||
1488 | Doesn't matter on RS/6000. */ | |
9e654916 | 1489 | #define FUNCTION_MODE (TARGET_64BIT ? DImode : SImode) |
f045b2c9 RS |
1490 | |
1491 | /* Define this if addresses of constant functions | |
1492 | shouldn't be put through pseudo regs where they can be cse'd. | |
1493 | Desirable on machines where ordinary constants are expensive | |
1494 | but a CALL with constant address is cheap. */ | |
1495 | #define NO_FUNCTION_CSE | |
1496 | ||
d969caf8 | 1497 | /* Define this to be nonzero if shift instructions ignore all but the low-order |
6febd581 RK |
1498 | few bits. |
1499 | ||
1500 | The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED | |
1501 | have been dropped from the PowerPC architecture. */ | |
1502 | ||
1503 | #define SHIFT_COUNT_TRUNCATED TARGET_POWER ? 1 : 0 | |
f045b2c9 RS |
1504 | |
1505 | /* Use atexit for static constructors/destructors, instead of defining | |
1506 | our own exit function. */ | |
1507 | #define HAVE_ATEXIT | |
1508 | ||
1509 | /* Compute the cost of computing a constant rtl expression RTX | |
1510 | whose rtx-code is CODE. The body of this macro is a portion | |
1511 | of a switch statement. If the code is computed here, | |
1512 | return it with a return statement. Otherwise, break from the switch. | |
1513 | ||
1514 | On the RS/6000, if it is legal in the insn, it is free. So this | |
1515 | always returns 0. */ | |
1516 | ||
3bb22aee | 1517 | #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ |
f045b2c9 RS |
1518 | case CONST_INT: \ |
1519 | case CONST: \ | |
1520 | case LABEL_REF: \ | |
1521 | case SYMBOL_REF: \ | |
1522 | case CONST_DOUBLE: \ | |
1523 | return 0; | |
1524 | ||
1525 | /* Provide the costs of a rtl expression. This is in the body of a | |
1526 | switch on CODE. */ | |
1527 | ||
3bb22aee | 1528 | #define RTX_COSTS(X,CODE,OUTER_CODE) \ |
f045b2c9 | 1529 | case MULT: \ |
bdfd4e31 RK |
1530 | switch (rs6000_cpu) \ |
1531 | { \ | |
1532 | case PROCESSOR_RIOS1: \ | |
1533 | return (GET_CODE (XEXP (X, 1)) != CONST_INT \ | |
1534 | ? COSTS_N_INSNS (5) \ | |
1535 | : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \ | |
1536 | ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \ | |
1537 | case PROCESSOR_RIOS2: \ | |
1538 | return COSTS_N_INSNS (2); \ | |
1539 | case PROCESSOR_PPC601: \ | |
1540 | case PROCESSOR_PPC603: \ | |
869c489d | 1541 | return COSTS_N_INSNS (5); \ |
bdfd4e31 RK |
1542 | case PROCESSOR_PPC604: \ |
1543 | case PROCESSOR_PPC620: \ | |
869c489d | 1544 | return COSTS_N_INSNS (4); \ |
bdfd4e31 | 1545 | } \ |
f045b2c9 RS |
1546 | case DIV: \ |
1547 | case MOD: \ | |
1548 | if (GET_CODE (XEXP (X, 1)) == CONST_INT \ | |
1549 | && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \ | |
1550 | return COSTS_N_INSNS (2); \ | |
1551 | /* otherwise fall through to normal divide. */ \ | |
1552 | case UDIV: \ | |
1553 | case UMOD: \ | |
bdfd4e31 RK |
1554 | switch (rs6000_cpu) \ |
1555 | { \ | |
1556 | case PROCESSOR_RIOS1: \ | |
1557 | return COSTS_N_INSNS (19); \ | |
1558 | case PROCESSOR_RIOS2: \ | |
1559 | return COSTS_N_INSNS (13); \ | |
1560 | case PROCESSOR_PPC601: \ | |
869c489d | 1561 | return COSTS_N_INSNS (36); \ |
bdfd4e31 | 1562 | case PROCESSOR_PPC603: \ |
869c489d | 1563 | return COSTS_N_INSNS (37); \ |
bdfd4e31 RK |
1564 | case PROCESSOR_PPC604: \ |
1565 | case PROCESSOR_PPC620: \ | |
869c489d | 1566 | return COSTS_N_INSNS (20); \ |
bdfd4e31 | 1567 | } \ |
f045b2c9 RS |
1568 | case MEM: \ |
1569 | /* MEM should be slightly more expensive than (plus (reg) (const)) */ \ | |
1570 | return 5; | |
1571 | ||
1572 | /* Compute the cost of an address. This is meant to approximate the size | |
1573 | and/or execution delay of an insn using that address. If the cost is | |
1574 | approximated by the RTL complexity, including CONST_COSTS above, as | |
1575 | is usually the case for CISC machines, this macro should not be defined. | |
1576 | For aggressively RISCy machines, only one insn format is allowed, so | |
1577 | this macro should be a constant. The value of this macro only matters | |
1578 | for valid addresses. | |
1579 | ||
1580 | For the RS/6000, everything is cost 0. */ | |
1581 | ||
1582 | #define ADDRESS_COST(RTX) 0 | |
1583 | ||
1584 | /* Adjust the length of an INSN. LENGTH is the currently-computed length and | |
1585 | should be adjusted to reflect any required changes. This macro is used when | |
1586 | there is some systematic length adjustment required that would be difficult | |
1587 | to express in the length attribute. */ | |
1588 | ||
1589 | /* #define ADJUST_INSN_LENGTH(X,LENGTH) */ | |
1590 | ||
1591 | /* Add any extra modes needed to represent the condition code. | |
1592 | ||
1593 | For the RS/6000, we need separate modes when unsigned (logical) comparisons | |
c5defebb RK |
1594 | are being done and we need a separate mode for floating-point. We also |
1595 | use a mode for the case when we are comparing the results of two | |
1596 | comparisons. */ | |
f045b2c9 | 1597 | |
c5defebb | 1598 | #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode |
f045b2c9 RS |
1599 | |
1600 | /* Define the names for the modes specified above. */ | |
c5defebb | 1601 | #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ" |
f045b2c9 RS |
1602 | |
1603 | /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, | |
1604 | return the mode to be used for the comparison. For floating-point, CCFPmode | |
c5defebb RK |
1605 | should be used. CCUNSmode should be used for unsigned comparisons. |
1606 | CCEQmode should be used when we are doing an inequality comparison on | |
1607 | the result of a comparison. CCmode should be used in all other cases. */ | |
1608 | ||
b565a316 | 1609 | #define SELECT_CC_MODE(OP,X,Y) \ |
f045b2c9 | 1610 | (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \ |
c5defebb RK |
1611 | : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \ |
1612 | : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \ | |
1613 | ? CCEQmode : CCmode)) | |
f045b2c9 RS |
1614 | |
1615 | /* Define the information needed to generate branch and scc insns. This is | |
1616 | stored from the compare operation. Note that we can't use "rtx" here | |
1617 | since it hasn't been defined! */ | |
1618 | ||
1619 | extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1; | |
1620 | extern int rs6000_compare_fp_p; | |
1621 | ||
1622 | /* Set to non-zero by "fix" operation to indicate that itrunc and | |
1623 | uitrunc must be defined. */ | |
1624 | ||
1625 | extern int rs6000_trunc_used; | |
9929b575 ILT |
1626 | |
1627 | /* Function names to call to do floating point truncation. */ | |
1628 | ||
1629 | #define RS6000_ITRUNC "itrunc" | |
1630 | #define RS6000_UITRUNC "uitrunc" | |
f045b2c9 RS |
1631 | \f |
1632 | /* Control the assembler format that we output. */ | |
1633 | ||
1634 | /* Output at beginning of assembler file. | |
1635 | ||
b4d6689b | 1636 | Initialize the section names for the RS/6000 at this point. |
fdaff8ba | 1637 | |
6355b140 | 1638 | Specify filename to assembler. |
3fc2151d | 1639 | |
b4d6689b | 1640 | We want to go into the TOC section so at least one .toc will be emitted. |
fdaff8ba | 1641 | Also, in order to output proper .bs/.es pairs, we need at least one static |
b4d6689b RK |
1642 | [RW] section emitted. |
1643 | ||
1644 | We then switch back to text to force the gcc2_compiled. label and the space | |
1645 | allocated after it (when profiling) into the text section. | |
1646 | ||
1647 | Finally, declare mcount when profiling to make the assembler happy. */ | |
f045b2c9 RS |
1648 | |
1649 | #define ASM_FILE_START(FILE) \ | |
1650 | { \ | |
fdaff8ba | 1651 | rs6000_gen_section_name (&xcoff_bss_section_name, \ |
f045b2c9 | 1652 | main_input_filename, ".bss_"); \ |
fdaff8ba | 1653 | rs6000_gen_section_name (&xcoff_private_data_section_name, \ |
f045b2c9 | 1654 | main_input_filename, ".rw_"); \ |
fdaff8ba | 1655 | rs6000_gen_section_name (&xcoff_read_only_section_name, \ |
f045b2c9 RS |
1656 | main_input_filename, ".ro_"); \ |
1657 | \ | |
6355b140 | 1658 | output_file_directive (FILE, main_input_filename); \ |
f045b2c9 | 1659 | toc_section (); \ |
fdaff8ba RS |
1660 | if (write_symbols != NO_DEBUG) \ |
1661 | private_data_section (); \ | |
b4d6689b RK |
1662 | text_section (); \ |
1663 | if (profile_flag) \ | |
1664 | fprintf (FILE, "\t.extern .mcount\n"); \ | |
f045b2c9 RS |
1665 | } |
1666 | ||
1667 | /* Output at end of assembler file. | |
1668 | ||
1669 | On the RS/6000, referencing data should automatically pull in text. */ | |
1670 | ||
1671 | #define ASM_FILE_END(FILE) \ | |
1672 | { \ | |
1673 | text_section (); \ | |
1674 | fprintf (FILE, "_section_.text:\n"); \ | |
1675 | data_section (); \ | |
1676 | fprintf (FILE, "\t.long _section_.text\n"); \ | |
1677 | } | |
1678 | ||
f045b2c9 RS |
1679 | /* We define this to prevent the name mangler from putting dollar signs into |
1680 | function names. */ | |
1681 | ||
1682 | #define NO_DOLLAR_IN_LABEL | |
1683 | ||
1684 | /* We define this to 0 so that gcc will never accept a dollar sign in a | |
1685 | variable name. This is needed because the AIX assembler will not accept | |
1686 | dollar signs. */ | |
1687 | ||
1688 | #define DOLLARS_IN_IDENTIFIERS 0 | |
1689 | ||
fdaff8ba RS |
1690 | /* Implicit library calls should use memcpy, not bcopy, etc. */ |
1691 | ||
1692 | #define TARGET_MEM_FUNCTIONS | |
1693 | ||
f045b2c9 RS |
1694 | /* Define the extra sections we need. We define three: one is the read-only |
1695 | data section which is used for constants. This is a csect whose name is | |
1696 | derived from the name of the input file. The second is for initialized | |
1697 | global variables. This is a csect whose name is that of the variable. | |
1698 | The third is the TOC. */ | |
1699 | ||
1700 | #define EXTRA_SECTIONS \ | |
1701 | read_only_data, private_data, read_only_private_data, toc, bss | |
1702 | ||
1703 | /* Define the name of our readonly data section. */ | |
1704 | ||
1705 | #define READONLY_DATA_SECTION read_only_data_section | |
1706 | ||
b4f892eb RK |
1707 | /* If we are referencing a function that is static or is known to be |
1708 | in this file, make the SYMBOL_REF special. We can use this to indicate | |
1709 | that we can branch to this function without emitting a no-op after the | |
1710 | call. */ | |
1711 | ||
1712 | #define ENCODE_SECTION_INFO(DECL) \ | |
1713 | if (TREE_CODE (DECL) == FUNCTION_DECL \ | |
1714 | && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \ | |
1715 | SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; | |
1716 | ||
f045b2c9 RS |
1717 | /* Indicate that jump tables go in the text section. */ |
1718 | ||
1719 | #define JUMP_TABLES_IN_TEXT_SECTION | |
1720 | ||
1721 | /* Define the routines to implement these extra sections. */ | |
1722 | ||
1723 | #define EXTRA_SECTION_FUNCTIONS \ | |
1724 | \ | |
1725 | void \ | |
1726 | read_only_data_section () \ | |
1727 | { \ | |
1728 | if (in_section != read_only_data) \ | |
1729 | { \ | |
469adec3 | 1730 | fprintf (asm_out_file, ".csect %s[RO]\n", \ |
fdaff8ba | 1731 | xcoff_read_only_section_name); \ |
f045b2c9 RS |
1732 | in_section = read_only_data; \ |
1733 | } \ | |
1734 | } \ | |
1735 | \ | |
1736 | void \ | |
1737 | private_data_section () \ | |
1738 | { \ | |
1739 | if (in_section != private_data) \ | |
1740 | { \ | |
469adec3 | 1741 | fprintf (asm_out_file, ".csect %s[RW]\n", \ |
fdaff8ba | 1742 | xcoff_private_data_section_name); \ |
f045b2c9 RS |
1743 | \ |
1744 | in_section = private_data; \ | |
1745 | } \ | |
1746 | } \ | |
1747 | \ | |
1748 | void \ | |
1749 | read_only_private_data_section () \ | |
1750 | { \ | |
1751 | if (in_section != read_only_private_data) \ | |
1752 | { \ | |
f25359b5 | 1753 | fprintf (asm_out_file, ".csect %s[RO]\n", \ |
fdaff8ba | 1754 | xcoff_private_data_section_name); \ |
f045b2c9 RS |
1755 | in_section = read_only_private_data; \ |
1756 | } \ | |
1757 | } \ | |
1758 | \ | |
1759 | void \ | |
1760 | toc_section () \ | |
1761 | { \ | |
642a35f1 JW |
1762 | if (TARGET_MINIMAL_TOC) \ |
1763 | { \ | |
1764 | static int toc_initialized = 0; \ | |
1765 | \ | |
1766 | /* toc_section is always called at least once from ASM_FILE_START, \ | |
1767 | so this is guaranteed to always be defined once and only once \ | |
1768 | in each file. */ \ | |
1769 | if (! toc_initialized) \ | |
1770 | { \ | |
1771 | fprintf (asm_out_file, ".toc\nLCTOC..0:\n"); \ | |
1772 | fprintf (asm_out_file, "\t.tc toc_table[TC],toc_table[RW]\n"); \ | |
1773 | toc_initialized = 1; \ | |
1774 | } \ | |
f045b2c9 | 1775 | \ |
642a35f1 JW |
1776 | if (in_section != toc) \ |
1777 | fprintf (asm_out_file, ".csect toc_table[RW]\n"); \ | |
1778 | } \ | |
1779 | else \ | |
1780 | { \ | |
1781 | if (in_section != toc) \ | |
1782 | fprintf (asm_out_file, ".toc\n"); \ | |
1783 | } \ | |
f045b2c9 | 1784 | in_section = toc; \ |
fc3ffe83 | 1785 | } |
f045b2c9 RS |
1786 | |
1787 | /* This macro produces the initial definition of a function name. | |
1788 | On the RS/6000, we need to place an extra '.' in the function name and | |
1789 | output the function descriptor. | |
1790 | ||
1791 | The csect for the function will have already been created by the | |
1792 | `text_section' call previously done. We do have to go back to that | |
1793 | csect, however. */ | |
1794 | ||
fdaff8ba RS |
1795 | /* ??? What do the 16 and 044 in the .function line really mean? */ |
1796 | ||
f045b2c9 RS |
1797 | #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \ |
1798 | { if (TREE_PUBLIC (DECL)) \ | |
1799 | { \ | |
1800 | fprintf (FILE, "\t.globl ."); \ | |
1801 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
fdaff8ba RS |
1802 | fprintf (FILE, "\n"); \ |
1803 | } \ | |
3ce428da | 1804 | else \ |
fdaff8ba RS |
1805 | { \ |
1806 | fprintf (FILE, "\t.lglobl ."); \ | |
1807 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
1808 | fprintf (FILE, "\n"); \ | |
f045b2c9 | 1809 | } \ |
f25359b5 | 1810 | fprintf (FILE, ".csect "); \ |
f045b2c9 RS |
1811 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
1812 | fprintf (FILE, "[DS]\n"); \ | |
1813 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
1814 | fprintf (FILE, ":\n"); \ | |
1815 | fprintf (FILE, "\t.long ."); \ | |
1816 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ | |
fdaff8ba | 1817 | fprintf (FILE, ", TOC[tc0], 0\n"); \ |
11117bb9 | 1818 | fprintf (FILE, ".csect .text[PR]\n."); \ |
f045b2c9 RS |
1819 | RS6000_OUTPUT_BASENAME (FILE, NAME); \ |
1820 | fprintf (FILE, ":\n"); \ | |
fdaff8ba | 1821 | if (write_symbols == XCOFF_DEBUG) \ |
c2a47e48 | 1822 | xcoffout_declare_function (FILE, DECL, NAME); \ |
f045b2c9 RS |
1823 | } |
1824 | ||
1825 | /* Return non-zero if this entry is to be written into the constant pool | |
1826 | in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST | |
1827 | containing one of them. If -mfp-in-toc (the default), we also do | |
1828 | this for floating-point constants. We actually can only do this | |
1829 | if the FP formats of the target and host machines are the same, but | |
1830 | we can't check that since not every file that uses | |
1831 | GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */ | |
1832 | ||
1833 | #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \ | |
1834 | (GET_CODE (X) == SYMBOL_REF \ | |
1835 | || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \ | |
1836 | && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \ | |
1837 | || GET_CODE (X) == LABEL_REF \ | |
72847b95 RK |
1838 | || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \ |
1839 | && GET_CODE (X) == CONST_DOUBLE \ | |
f045b2c9 RS |
1840 | && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ |
1841 | && BITS_PER_WORD == HOST_BITS_PER_INT)) | |
1842 | ||
1843 | /* Select section for constant in constant pool. | |
1844 | ||
1845 | On RS/6000, all constants are in the private read-only data area. | |
1846 | However, if this is being placed in the TOC it must be output as a | |
1847 | toc entry. */ | |
1848 | ||
1849 | #define SELECT_RTX_SECTION(MODE, X) \ | |
1850 | { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \ | |
1851 | toc_section (); \ | |
1852 | else \ | |
1853 | read_only_private_data_section (); \ | |
1854 | } | |
1855 | ||
1856 | /* Macro to output a special constant pool entry. Go to WIN if we output | |
1857 | it. Otherwise, it is written the usual way. | |
1858 | ||
1859 | On the RS/6000, toc entries are handled this way. */ | |
1860 | ||
1861 | #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \ | |
1862 | { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \ | |
1863 | { \ | |
1864 | output_toc (FILE, X, LABELNO); \ | |
1865 | goto WIN; \ | |
1866 | } \ | |
1867 | } | |
1868 | ||
1869 | /* Select the section for an initialized data object. | |
1870 | ||
1871 | On the RS/6000, we have a special section for all variables except those | |
1872 | that are static. */ | |
1873 | ||
1874 | #define SELECT_SECTION(EXP,RELOC) \ | |
1875 | { \ | |
ed8969fa JW |
1876 | if ((TREE_CODE (EXP) == STRING_CST \ |
1877 | && !flag_writable_strings) \ | |
1878 | || (TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \ | |
1879 | && DECL_INITIAL (EXP) \ | |
1880 | && (DECL_INITIAL (EXP) == error_mark_node \ | |
1881 | || TREE_CONSTANT (DECL_INITIAL (EXP))) \ | |
1882 | && ! (RELOC))) \ | |
f045b2c9 RS |
1883 | { \ |
1884 | if (TREE_PUBLIC (EXP)) \ | |
1885 | read_only_data_section (); \ | |
1886 | else \ | |
1887 | read_only_private_data_section (); \ | |
1888 | } \ | |
1889 | else \ | |
1890 | { \ | |
1891 | if (TREE_PUBLIC (EXP)) \ | |
1892 | data_section (); \ | |
1893 | else \ | |
1894 | private_data_section (); \ | |
1895 | } \ | |
1896 | } | |
1897 | ||
1898 | /* This outputs NAME to FILE up to the first null or '['. */ | |
1899 | ||
1900 | #define RS6000_OUTPUT_BASENAME(FILE, NAME) \ | |
99d3d26e | 1901 | if ((NAME)[0] == '*' || (NAME)[strlen (NAME) - 1] != ']') \ |
f045b2c9 RS |
1902 | assemble_name (FILE, NAME); \ |
1903 | else \ | |
1904 | { \ | |
99d3d26e RK |
1905 | int _len = strlen (NAME); \ |
1906 | char *_p = alloca (_len + 1); \ | |
1907 | \ | |
1908 | strcpy (_p, NAME); \ | |
1909 | _p[_len - 4] = '\0'; \ | |
1910 | assemble_name (FILE, _p); \ | |
f045b2c9 RS |
1911 | } |
1912 | ||
1913 | /* Output something to declare an external symbol to the assembler. Most | |
1914 | assemblers don't need this. | |
1915 | ||
1916 | If we haven't already, add "[RW]" (or "[DS]" for a function) to the | |
1917 | name. Normally we write this out along with the name. In the few cases | |
1918 | where we can't, it gets stripped off. */ | |
1919 | ||
1920 | #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \ | |
1921 | { rtx _symref = XEXP (DECL_RTL (DECL), 0); \ | |
1922 | if ((TREE_CODE (DECL) == VAR_DECL \ | |
1923 | || TREE_CODE (DECL) == FUNCTION_DECL) \ | |
1924 | && (NAME)[0] != '*' \ | |
1925 | && (NAME)[strlen (NAME) - 1] != ']') \ | |
1926 | { \ | |
1927 | char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \ | |
1928 | strcpy (_name, XSTR (_symref, 0)); \ | |
1929 | strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \ | |
1930 | XSTR (_symref, 0) = _name; \ | |
1931 | } \ | |
1932 | fprintf (FILE, "\t.extern "); \ | |
1933 | assemble_name (FILE, XSTR (_symref, 0)); \ | |
1934 | if (TREE_CODE (DECL) == FUNCTION_DECL) \ | |
1935 | { \ | |
1936 | fprintf (FILE, "\n\t.extern ."); \ | |
1937 | RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \ | |
1938 | } \ | |
1939 | fprintf (FILE, "\n"); \ | |
1940 | } | |
1941 | ||
1942 | /* Similar, but for libcall. We only have to worry about the function name, | |
1943 | not that of the descriptor. */ | |
1944 | ||
1945 | #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \ | |
1946 | { fprintf (FILE, "\t.extern ."); \ | |
1947 | assemble_name (FILE, XSTR (FUN, 0)); \ | |
1948 | fprintf (FILE, "\n"); \ | |
1949 | } | |
1950 | ||
1951 | /* Output to assembler file text saying following lines | |
1952 | may contain character constants, extra white space, comments, etc. */ | |
1953 | ||
1954 | #define ASM_APP_ON "" | |
1955 | ||
1956 | /* Output to assembler file text saying following lines | |
1957 | no longer contain unusual constructs. */ | |
1958 | ||
1959 | #define ASM_APP_OFF "" | |
1960 | ||
1961 | /* Output before instructions. */ | |
1962 | ||
11117bb9 | 1963 | #define TEXT_SECTION_ASM_OP ".csect .text[PR]" |
f045b2c9 RS |
1964 | |
1965 | /* Output before writable data. */ | |
1966 | ||
fdaff8ba | 1967 | #define DATA_SECTION_ASM_OP ".csect .data[RW]" |
f045b2c9 RS |
1968 | |
1969 | /* How to refer to registers in assembler output. | |
1970 | This sequence is indexed by compiler's hard-register-number (see above). */ | |
1971 | ||
1972 | #define REGISTER_NAMES \ | |
1973 | {"0", "1", "2", "3", "4", "5", "6", "7", \ | |
1974 | "8", "9", "10", "11", "12", "13", "14", "15", \ | |
1975 | "16", "17", "18", "19", "20", "21", "22", "23", \ | |
1976 | "24", "25", "26", "27", "28", "29", "30", "31", \ | |
1977 | "0", "1", "2", "3", "4", "5", "6", "7", \ | |
1978 | "8", "9", "10", "11", "12", "13", "14", "15", \ | |
1979 | "16", "17", "18", "19", "20", "21", "22", "23", \ | |
1980 | "24", "25", "26", "27", "28", "29", "30", "31", \ | |
1981 | "mq", "lr", "ctr", "ap", \ | |
1982 | "0", "1", "2", "3", "4", "5", "6", "7" } | |
1983 | ||
1984 | /* Table of additional register names to use in user input. */ | |
1985 | ||
1986 | #define ADDITIONAL_REGISTER_NAMES \ | |
1987 | {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \ | |
1988 | "r4", 4, "r5", 5, "r6", 6, "r7", 7, \ | |
1989 | "r8", 8, "r9", 9, "r10", 10, "r11", 11, \ | |
1990 | "r12", 12, "r13", 13, "r14", 14, "r15", 15, \ | |
1991 | "r16", 16, "r17", 17, "r18", 18, "r19", 19, \ | |
1992 | "r20", 20, "r21", 21, "r22", 22, "r23", 23, \ | |
1993 | "r24", 24, "r25", 25, "r26", 26, "r27", 27, \ | |
1994 | "r28", 28, "r29", 29, "r30", 30, "r31", 31, \ | |
1995 | "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \ | |
1996 | "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \ | |
1997 | "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \ | |
1998 | "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \ | |
1999 | "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \ | |
2000 | "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \ | |
2001 | "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \ | |
2002 | "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \ | |
2003 | /* no additional names for: mq, lr, ctr, ap */ \ | |
2004 | "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \ | |
fc3ffe83 RK |
2005 | "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \ |
2006 | "cc", 68 } | |
f045b2c9 RS |
2007 | |
2008 | /* How to renumber registers for dbx and gdb. */ | |
2009 | ||
2010 | #define DBX_REGISTER_NUMBER(REGNO) (REGNO) | |
2011 | ||
0da40b09 RK |
2012 | /* Text to write out after a CALL that may be replaced by glue code by |
2013 | the loader. This depends on the AIX version. */ | |
2014 | #define RS6000_CALL_GLUE "cror 31,31,31" | |
11117bb9 | 2015 | |
f045b2c9 RS |
2016 | /* This is how to output the definition of a user-level label named NAME, |
2017 | such as the label on a static function or variable NAME. */ | |
2018 | ||
2019 | #define ASM_OUTPUT_LABEL(FILE,NAME) \ | |
2020 | do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0) | |
2021 | ||
2022 | /* This is how to output a command to make the user-level label named NAME | |
2023 | defined for reference from other files. */ | |
2024 | ||
2025 | #define ASM_GLOBALIZE_LABEL(FILE,NAME) \ | |
2026 | do { fputs ("\t.globl ", FILE); \ | |
2027 | RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0) | |
2028 | ||
2029 | /* This is how to output a reference to a user-level label named NAME. | |
2030 | `assemble_name' uses this. */ | |
2031 | ||
2032 | #define ASM_OUTPUT_LABELREF(FILE,NAME) \ | |
2033 | fprintf (FILE, NAME) | |
2034 | ||
2035 | /* This is how to output an internal numbered label where | |
2036 | PREFIX is the class of label and NUM is the number within the class. */ | |
2037 | ||
2038 | #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ | |
2039 | fprintf (FILE, "%s..%d:\n", PREFIX, NUM) | |
2040 | ||
3daf36a4 ILT |
2041 | /* This is how to output an internal label prefix. rs6000.c uses this |
2042 | when generating traceback tables. */ | |
2043 | ||
2044 | #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \ | |
2045 | fprintf (FILE, "%s..", PREFIX) | |
2046 | ||
f045b2c9 RS |
2047 | /* This is how to output a label for a jump table. Arguments are the same as |
2048 | for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is | |
2049 | passed. */ | |
2050 | ||
2051 | #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \ | |
2052 | { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); } | |
2053 | ||
2054 | /* This is how to store into the string LABEL | |
2055 | the symbol_ref name of an internal numbered label where | |
2056 | PREFIX is the class of label and NUM is the number within the class. | |
2057 | This is suitable for output with `assemble_name'. */ | |
2058 | ||
2059 | #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ | |
2060 | sprintf (LABEL, "%s..%d", PREFIX, NUM) | |
2061 | ||
2062 | /* This is how to output an assembler line defining a `double' constant. */ | |
2063 | ||
a5b1eb34 RS |
2064 | #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \ |
2065 | { \ | |
2066 | if (REAL_VALUE_ISINF (VALUE) \ | |
2067 | || REAL_VALUE_ISNAN (VALUE) \ | |
2068 | || REAL_VALUE_MINUS_ZERO (VALUE)) \ | |
2069 | { \ | |
2070 | long t[2]; \ | |
2071 | REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \ | |
2072 | fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \ | |
2073 | t[0] & 0xffffffff, t[1] & 0xffffffff); \ | |
2074 | } \ | |
2075 | else \ | |
2076 | { \ | |
2077 | char str[30]; \ | |
2078 | REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \ | |
2079 | fprintf (FILE, "\t.double 0d%s\n", str); \ | |
2080 | } \ | |
2081 | } | |
f045b2c9 RS |
2082 | |
2083 | /* This is how to output an assembler line defining a `float' constant. */ | |
2084 | ||
a5b1eb34 RS |
2085 | #define ASM_OUTPUT_FLOAT(FILE, VALUE) \ |
2086 | { \ | |
2087 | if (REAL_VALUE_ISINF (VALUE) \ | |
2088 | || REAL_VALUE_ISNAN (VALUE) \ | |
2089 | || REAL_VALUE_MINUS_ZERO (VALUE)) \ | |
2090 | { \ | |
2091 | long t; \ | |
2092 | REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \ | |
2093 | fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \ | |
2094 | } \ | |
2095 | else \ | |
2096 | { \ | |
2097 | char str[30]; \ | |
2098 | REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \ | |
2099 | fprintf (FILE, "\t.float 0d%s\n", str); \ | |
2100 | } \ | |
2101 | } | |
f045b2c9 RS |
2102 | |
2103 | /* This is how to output an assembler line defining an `int' constant. */ | |
2104 | ||
2105 | #define ASM_OUTPUT_INT(FILE,VALUE) \ | |
2106 | ( fprintf (FILE, "\t.long "), \ | |
2107 | output_addr_const (FILE, (VALUE)), \ | |
2108 | fprintf (FILE, "\n")) | |
2109 | ||
2110 | /* Likewise for `char' and `short' constants. */ | |
2111 | ||
2112 | #define ASM_OUTPUT_SHORT(FILE,VALUE) \ | |
2113 | ( fprintf (FILE, "\t.short "), \ | |
2114 | output_addr_const (FILE, (VALUE)), \ | |
2115 | fprintf (FILE, "\n")) | |
2116 | ||
2117 | #define ASM_OUTPUT_CHAR(FILE,VALUE) \ | |
2118 | ( fprintf (FILE, "\t.byte "), \ | |
2119 | output_addr_const (FILE, (VALUE)), \ | |
2120 | fprintf (FILE, "\n")) | |
2121 | ||
2122 | /* This is how to output an assembler line for a numeric constant byte. */ | |
2123 | ||
2124 | #define ASM_OUTPUT_BYTE(FILE,VALUE) \ | |
2125 | fprintf (FILE, "\t.byte 0x%x\n", (VALUE)) | |
2126 | ||
2127 | /* This is how to output an assembler line to define N characters starting | |
2128 | at P to FILE. */ | |
2129 | ||
2130 | #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N)) | |
2131 | ||
2132 | /* This is how to output code to push a register on the stack. | |
2133 | It need not be very fast code. */ | |
2134 | ||
2135 | #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ | |
6febd581 | 2136 | asm_fprintf (FILE, "\{tstu|stwu} %s,-4(r1)\n", reg_names[REGNO]); |
f045b2c9 RS |
2137 | |
2138 | /* This is how to output an insn to pop a register from the stack. | |
2139 | It need not be very fast code. */ | |
2140 | ||
2141 | #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ | |
6febd581 RK |
2142 | asm_fprintf (FILE, "\t{l|lwz} %s,0(r1)\n\t{ai|addic} r1,r1,4\n", \ |
2143 | reg_names[REGNO]) | |
f045b2c9 RS |
2144 | |
2145 | /* This is how to output an element of a case-vector that is absolute. | |
2146 | (RS/6000 does not use such vectors, but we must define this macro | |
2147 | anyway.) */ | |
2148 | ||
3daf36a4 ILT |
2149 | #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ |
2150 | do { char buf[100]; \ | |
2151 | fprintf (FILE, "\t.long "); \ | |
2152 | ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ | |
2153 | assemble_name (FILE, buf); \ | |
2154 | fprintf (FILE, "\n"); \ | |
2155 | } while (0) | |
f045b2c9 RS |
2156 | |
2157 | /* This is how to output an element of a case-vector that is relative. */ | |
2158 | ||
2159 | #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \ | |
3daf36a4 ILT |
2160 | do { char buf[100]; \ |
2161 | fprintf (FILE, "\t.long "); \ | |
2162 | ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ | |
2163 | assemble_name (FILE, buf); \ | |
2164 | fprintf (FILE, "-"); \ | |
2165 | ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ | |
2166 | assemble_name (FILE, buf); \ | |
2167 | fprintf (FILE, "\n"); \ | |
2168 | } while (0) | |
f045b2c9 RS |
2169 | |
2170 | /* This is how to output an assembler line | |
2171 | that says to advance the location counter | |
2172 | to a multiple of 2**LOG bytes. */ | |
2173 | ||
2174 | #define ASM_OUTPUT_ALIGN(FILE,LOG) \ | |
2175 | if ((LOG) != 0) \ | |
2176 | fprintf (FILE, "\t.align %d\n", (LOG)) | |
2177 | ||
2178 | #define ASM_OUTPUT_SKIP(FILE,SIZE) \ | |
2179 | fprintf (FILE, "\t.space %d\n", (SIZE)) | |
2180 | ||
2181 | /* This says how to output an assembler line | |
2182 | to define a global common symbol. */ | |
2183 | ||
2184 | #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ | |
fc3ffe83 | 2185 | do { fputs (".comm ", (FILE)); \ |
f045b2c9 RS |
2186 | RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
2187 | fprintf ((FILE), ",%d\n", (SIZE)); } while (0) | |
2188 | ||
2189 | /* This says how to output an assembler line | |
2190 | to define a local common symbol. */ | |
2191 | ||
2192 | #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \ | |
fc3ffe83 | 2193 | do { fputs (".lcomm ", (FILE)); \ |
f045b2c9 | 2194 | RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \ |
fdaff8ba | 2195 | fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \ |
f045b2c9 RS |
2196 | } while (0) |
2197 | ||
2198 | /* Store in OUTPUT a string (made with alloca) containing | |
2199 | an assembler-name for a local static variable named NAME. | |
2200 | LABELNO is an integer which is different for each call. */ | |
2201 | ||
2202 | #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ | |
2203 | ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ | |
2204 | sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) | |
2205 | ||
2206 | /* Define the parentheses used to group arithmetic operations | |
2207 | in assembler code. */ | |
2208 | ||
2209 | #define ASM_OPEN_PAREN "(" | |
2210 | #define ASM_CLOSE_PAREN ")" | |
2211 | ||
2212 | /* Define results of standard character escape sequences. */ | |
2213 | #define TARGET_BELL 007 | |
2214 | #define TARGET_BS 010 | |
2215 | #define TARGET_TAB 011 | |
2216 | #define TARGET_NEWLINE 012 | |
2217 | #define TARGET_VT 013 | |
2218 | #define TARGET_FF 014 | |
2219 | #define TARGET_CR 015 | |
2220 | ||
2221 | /* Print operand X (an rtx) in assembler syntax to file FILE. | |
2222 | CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. | |
2223 | For `%' followed by punctuation, CODE is the punctuation and X is null. */ | |
2224 | ||
2225 | #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) | |
2226 | ||
2227 | /* Define which CODE values are valid. */ | |
2228 | ||
38250554 | 2229 | #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '.' || (CODE) == '*') |
f045b2c9 RS |
2230 | |
2231 | /* Print a memory address as an operand to reference that memory location. */ | |
2232 | ||
2233 | #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) | |
2234 | ||
2235 | /* Define the codes that are matched by predicates in rs6000.c. */ | |
2236 | ||
2237 | #define PREDICATE_CODES \ | |
2238 | {"short_cint_operand", {CONST_INT}}, \ | |
2239 | {"u_short_cint_operand", {CONST_INT}}, \ | |
f357808b | 2240 | {"non_short_cint_operand", {CONST_INT}}, \ |
cd2b37d9 | 2241 | {"gpc_reg_operand", {SUBREG, REG}}, \ |
f045b2c9 RS |
2242 | {"cc_reg_operand", {SUBREG, REG}}, \ |
2243 | {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \ | |
2244 | {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \ | |
2245 | {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \ | |
2246 | {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \ | |
2247 | {"easy_fp_constant", {CONST_DOUBLE}}, \ | |
2248 | {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \ | |
414d3ee4 | 2249 | {"lwa_operand", {SUBREG, MEM, REG}}, \ |
f045b2c9 RS |
2250 | {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \ |
2251 | {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \ | |
2252 | {"add_operand", {SUBREG, REG, CONST_INT}}, \ | |
f357808b | 2253 | {"non_add_cint_operand", {CONST_INT}}, \ |
f045b2c9 | 2254 | {"and_operand", {SUBREG, REG, CONST_INT}}, \ |
f357808b | 2255 | {"non_and_cint_operand", {CONST_INT}}, \ |
f045b2c9 | 2256 | {"logical_operand", {SUBREG, REG, CONST_INT}}, \ |
f357808b | 2257 | {"non_logical_cint_operand", {CONST_INT}}, \ |
f045b2c9 RS |
2258 | {"mask_operand", {CONST_INT}}, \ |
2259 | {"call_operand", {SYMBOL_REF, REG}}, \ | |
f8634644 | 2260 | {"current_file_function_operand", {SYMBOL_REF}}, \ |
38250554 | 2261 | {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \ |
f8634644 RK |
2262 | {"load_multiple_operation", {PARALLEL}}, \ |
2263 | {"store_multiple_operation", {PARALLEL}}, \ | |
2264 | {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \ | |
e477bbc7 | 2265 | GT, LEU, LTU, GEU, GTU}}, \ |
f8634644 | 2266 | {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \ |
e477bbc7 | 2267 | GT, LEU, LTU, GEU, GTU}}, |