]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
re PR other/5390 ([3.3 only?] Libiberty fails to demangle multi-digit template parame...
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
9ebbca7d 2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
16c484c7 3 2000, 2001, 2002 Free Software Foundation, Inc.
6a7ec0a7 4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
20the Free Software Foundation, 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
f045b2c9
RS
22
23
24/* Note that some other tm.h files include this one and then override
9ebbca7d 25 many of the definitions. */
f045b2c9 26
9ebbca7d
GK
27/* Definitions for the object file format. These are set at
28 compile-time. */
f045b2c9 29
9ebbca7d
GK
30#define OBJECT_XCOFF 1
31#define OBJECT_ELF 2
32#define OBJECT_PEF 3
ee890fe2 33#define OBJECT_MACHO 4
f045b2c9 34
9ebbca7d 35#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
2bfcf297 36#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
9ebbca7d 37#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
ee890fe2 38#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
f045b2c9 39
2bfcf297
DB
40#ifndef TARGET_AIX
41#define TARGET_AIX 0
42#endif
43
8e3f41e7
MM
44/* Default string to use for cpu if not specified. */
45#ifndef TARGET_CPU_DEFAULT
46#define TARGET_CPU_DEFAULT ((char *)0)
47#endif
48
f984d8df
DB
49/* Common CPP definitions used by CPP_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51#define CPP_CPU_SPEC \
52"%{!mcpu*: \
53 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
54 %{mpower2: -D_ARCH_PWR2} \
55 %{mpowerpc*: -D_ARCH_PPC} \
56 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
57 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
58%{mcpu=common: -D_ARCH_COM} \
59%{mcpu=power: -D_ARCH_PWR} \
60%{mcpu=power2: -D_ARCH_PWR2} \
61%{mcpu=powerpc: -D_ARCH_PPC} \
62%{mcpu=rios: -D_ARCH_PWR} \
63%{mcpu=rios1: -D_ARCH_PWR} \
64%{mcpu=rios2: -D_ARCH_PWR2} \
65%{mcpu=rsc: -D_ARCH_PWR} \
66%{mcpu=rsc1: -D_ARCH_PWR} \
67%{mcpu=401: -D_ARCH_PPC} \
68%{mcpu=403: -D_ARCH_PPC} \
3b370352 69%{mcpu=405: -D_ARCH_PPC} \
f984d8df
DB
70%{mcpu=505: -D_ARCH_PPC} \
71%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
72%{mcpu=602: -D_ARCH_PPC} \
73%{mcpu=603: -D_ARCH_PPC} \
74%{mcpu=603e: -D_ARCH_PPC} \
75%{mcpu=ec603e: -D_ARCH_PPC} \
76%{mcpu=604: -D_ARCH_PPC} \
77%{mcpu=604e: -D_ARCH_PPC} \
78%{mcpu=620: -D_ARCH_PPC} \
79%{mcpu=740: -D_ARCH_PPC} \
fd3b43f2 80%{mcpu=7400: -D_ARCH_PPC} \
f18c054f 81%{mcpu=7450: -D_ARCH_PPC} \
f984d8df
DB
82%{mcpu=750: -D_ARCH_PPC} \
83%{mcpu=801: -D_ARCH_PPC} \
84%{mcpu=821: -D_ARCH_PPC} \
85%{mcpu=823: -D_ARCH_PPC} \
0ac081f6
AH
86%{mcpu=860: -D_ARCH_PPC} \
87%{maltivec: -D__ALTIVEC__}"
f984d8df
DB
88
89/* Common ASM definitions used by ASM_SPEC among the various targets
90 for handling -mcpu=xxx switches. */
91#define ASM_CPU_SPEC \
92"%{!mcpu*: \
93 %{mpower: %{!mpower2: -mpwr}} \
94 %{mpower2: -mpwrx} \
95 %{mpowerpc*: -mppc} \
96 %{mno-power: %{!mpowerpc*: -mcom}} \
97 %{!mno-power: %{!mpower2: %(asm_default)}}} \
98%{mcpu=common: -mcom} \
99%{mcpu=power: -mpwr} \
100%{mcpu=power2: -mpwrx} \
101%{mcpu=powerpc: -mppc} \
102%{mcpu=rios: -mpwr} \
103%{mcpu=rios1: -mpwr} \
104%{mcpu=rios2: -mpwrx} \
105%{mcpu=rsc: -mpwr} \
106%{mcpu=rsc1: -mpwr} \
107%{mcpu=401: -mppc} \
108%{mcpu=403: -mppc} \
3b370352 109%{mcpu=405: -mppc} \
f984d8df
DB
110%{mcpu=505: -mppc} \
111%{mcpu=601: -m601} \
112%{mcpu=602: -mppc} \
113%{mcpu=603: -mppc} \
114%{mcpu=603e: -mppc} \
115%{mcpu=ec603e: -mppc} \
116%{mcpu=604: -mppc} \
117%{mcpu=604e: -mppc} \
118%{mcpu=620: -mppc} \
119%{mcpu=740: -mppc} \
fd3b43f2 120%{mcpu=7400: -mppc} \
f18c054f 121%{mcpu=7450: -mppc} \
f984d8df
DB
122%{mcpu=750: -mppc} \
123%{mcpu=801: -mppc} \
124%{mcpu=821: -mppc} \
125%{mcpu=823: -mppc} \
775db490
AH
126%{mcpu=860: -mppc} \
127%{maltivec: -maltivec}"
f984d8df
DB
128
129#define CPP_DEFAULT_SPEC ""
130
131#define ASM_DEFAULT_SPEC ""
132
841faeed
MM
133/* This macro defines names of additional specifications to put in the specs
134 that can be used in various specifications like CC1_SPEC. Its definition
135 is an initializer with a subgrouping for each command option.
136
137 Each subgrouping contains a string constant, that defines the
138 specification name, and a string constant that used by the GNU CC driver
139 program.
140
141 Do not define this macro if it does not need to do anything. */
142
7509c759 143#define SUBTARGET_EXTRA_SPECS
7509c759 144
c81bebd7
MM
145#define EXTRA_SPECS \
146 { "cpp_cpu", CPP_CPU_SPEC }, \
147 { "cpp_default", CPP_DEFAULT_SPEC }, \
c81bebd7
MM
148 { "asm_cpu", ASM_CPU_SPEC }, \
149 { "asm_default", ASM_DEFAULT_SPEC }, \
7509c759
MM
150 SUBTARGET_EXTRA_SPECS
151
fb623df5 152/* Architecture type. */
f045b2c9 153
fb623df5
RK
154extern int target_flags;
155
156/* Use POWER architecture instructions and MQ register. */
38c1f2d7 157#define MASK_POWER 0x00000001
fb623df5 158
6febd581 159/* Use POWER2 extensions to POWER architecture. */
38c1f2d7 160#define MASK_POWER2 0x00000002
6febd581 161
fb623df5 162/* Use PowerPC architecture instructions. */
38c1f2d7 163#define MASK_POWERPC 0x00000004
6febd581 164
583cf4db 165/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
38c1f2d7 166#define MASK_PPC_GPOPT 0x00000008
583cf4db
RK
167
168/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
38c1f2d7 169#define MASK_PPC_GFXOPT 0x00000010
f045b2c9 170
fb623df5 171/* Use PowerPC-64 architecture instructions. */
38c1f2d7 172#define MASK_POWERPC64 0x00000020
f045b2c9 173
fb623df5 174/* Use revised mnemonic names defined for PowerPC architecture. */
38c1f2d7 175#define MASK_NEW_MNEMONICS 0x00000040
fb623df5
RK
176
177/* Disable placing fp constants in the TOC; can be turned on when the
178 TOC overflows. */
38c1f2d7 179#define MASK_NO_FP_IN_TOC 0x00000080
fb623df5 180
0b9ccabc
RK
181/* Disable placing symbol+offset constants in the TOC; can be turned on when
182 the TOC overflows. */
38c1f2d7 183#define MASK_NO_SUM_IN_TOC 0x00000100
0b9ccabc 184
fb623df5 185/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
186 there are more than 16K unique variables/constants in an executable. With
187 this option, linking fails only if there are more than 16K modules, or
188 if there are more than 16K unique variables/constant in a single module.
189
190 This is at the cost of having 2 extra loads and one extra store per
956d6950 191 function, and one less allocable register. */
38c1f2d7 192#define MASK_MINIMAL_TOC 0x00000200
642a35f1 193
9e654916 194/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
38c1f2d7 195#define MASK_64BIT 0x00000400
9e654916 196
f85f4585 197/* Disable use of FPRs. */
38c1f2d7 198#define MASK_SOFT_FLOAT 0x00000800
f85f4585 199
4d30c363 200/* Enable load/store multiple, even on powerpc */
38c1f2d7
MM
201#define MASK_MULTIPLE 0x00001000
202#define MASK_MULTIPLE_SET 0x00002000
4d30c363 203
7e69e155 204/* Use string instructions for block moves */
38c1f2d7
MM
205#define MASK_STRING 0x00004000
206#define MASK_STRING_SET 0x00008000
7e69e155 207
38c1f2d7
MM
208/* Disable update form of load/store */
209#define MASK_NO_UPDATE 0x00010000
210
211/* Disable fused multiply/add operations */
212#define MASK_NO_FUSED_MADD 0x00020000
4697a36c 213
9ebbca7d
GK
214/* Nonzero if we need to schedule the prolog and epilog. */
215#define MASK_SCHED_PROLOG 0x00040000
216
0ac081f6
AH
217/* Use AltiVec instructions. */
218#define MASK_ALTIVEC 0x00080000
219
6fa3f289
ZW
220/* Return small structures in memory (as the AIX ABI requires). */
221#define MASK_AIX_STRUCT_RET 0x00100000
222#define MASK_AIX_STRUCT_RET_SET 0x00200000
0ac081f6 223
6fa3f289
ZW
224/* The only remaining free bit is 0x00400000. sysv4.h uses
225 0x00800000 -> 0x40000000, and 0x80000000 is not available
226 because target_flags is signed. */
06f4e019 227
7e69e155
MM
228#define TARGET_POWER (target_flags & MASK_POWER)
229#define TARGET_POWER2 (target_flags & MASK_POWER2)
230#define TARGET_POWERPC (target_flags & MASK_POWERPC)
231#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
232#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
7e69e155
MM
233#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
234#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
235#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
236#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
237#define TARGET_64BIT (target_flags & MASK_64BIT)
238#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
239#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
240#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
241#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 242#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
38c1f2d7
MM
243#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
244#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
9ebbca7d 245#define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
0ac081f6 246#define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
6fa3f289 247#define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
7e69e155 248
2f3e5814 249#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 250#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
38c1f2d7
MM
251#define TARGET_UPDATE (! TARGET_NO_UPDATE)
252#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
d14a6d05 253
996ed075
JJ
254#ifdef IN_LIBGCC2
255/* For libgcc2 we make sure this is a compile time constant */
0134bf2d 256#if defined (__64BIT__) || defined (__powerpc64__)
996ed075
JJ
257#define TARGET_POWERPC64 1
258#else
259#define TARGET_POWERPC64 0
260#endif
b6c9286a 261#else
9ebbca7d 262#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
b6c9286a
MM
263#endif
264
a3950905 265#define TARGET_XL_CALL 0
a3950905 266
fb623df5 267/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 268
fb623df5 269 Macro to define tables used to set the flags.
f045b2c9
RS
270 This is a list in braces of pairs in braces,
271 each pair being { "NAME", VALUE }
272 where VALUE is the bits to set or minus the bits to clear.
273 An empty string NAME is used to identify the default VALUE. */
274
938937d8 275#define TARGET_SWITCHES \
9ebbca7d 276 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
047142d3 277 N_("Use POWER instruction set")}, \
938937d8 278 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
9ebbca7d 279 | MASK_POWER2), \
047142d3 280 N_("Use POWER2 instruction set")}, \
9ebbca7d 281 {"no-power2", - MASK_POWER2, \
047142d3 282 N_("Do not use POWER2 instruction set")}, \
938937d8 283 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
9ebbca7d 284 | MASK_STRING), \
047142d3 285 N_("Do not use POWER instruction set")}, \
9ebbca7d 286 {"powerpc", MASK_POWERPC, \
047142d3 287 N_("Use PowerPC instruction set")}, \
938937d8 288 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
9ebbca7d 289 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
047142d3 290 N_("Do not use PowerPC instruction set")}, \
9ebbca7d 291 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
047142d3 292 N_("Use PowerPC General Purpose group optional instructions")},\
9ebbca7d 293 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
047142d3 294 N_("Don't use PowerPC General Purpose group optional instructions")},\
9ebbca7d 295 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
047142d3 296 N_("Use PowerPC Graphics group optional instructions")},\
9ebbca7d 297 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
047142d3 298 N_("Don't use PowerPC Graphics group optional instructions")},\
9ebbca7d 299 {"powerpc64", MASK_POWERPC64, \
047142d3 300 N_("Use PowerPC-64 instruction set")}, \
9ebbca7d 301 {"no-powerpc64", - MASK_POWERPC64, \
047142d3 302 N_("Don't use PowerPC-64 instruction set")}, \
f18c054f 303 {"altivec", MASK_ALTIVEC , \
c725bd79 304 N_("Use AltiVec instructions")}, \
f18c054f 305 {"no-altivec", - MASK_ALTIVEC , \
c725bd79 306 N_("Don't use AltiVec instructions")}, \
9ebbca7d 307 {"new-mnemonics", MASK_NEW_MNEMONICS, \
047142d3 308 N_("Use new mnemonics for PowerPC architecture")},\
9ebbca7d 309 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
047142d3 310 N_("Use old mnemonics for PowerPC architecture")},\
938937d8 311 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
9ebbca7d 312 | MASK_MINIMAL_TOC), \
047142d3 313 N_("Put everything in the regular TOC")}, \
9ebbca7d 314 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
047142d3 315 N_("Place floating point constants in TOC")}, \
9ebbca7d 316 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
047142d3 317 N_("Don't place floating point constants in TOC")},\
9ebbca7d 318 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
047142d3 319 N_("Place symbol+offset constants in TOC")}, \
9ebbca7d 320 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
047142d3 321 N_("Don't place symbol+offset constants in TOC")},\
9ebbca7d
GK
322 {"minimal-toc", MASK_MINIMAL_TOC, \
323 "Use only one TOC entry per procedure"}, \
324 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
047142d3 325 ""}, \
9ebbca7d 326 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
047142d3 327 N_("Place variable addresses in the regular TOC")},\
9ebbca7d 328 {"hard-float", - MASK_SOFT_FLOAT, \
047142d3 329 N_("Use hardware fp")}, \
9ebbca7d 330 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 331 N_("Do not use hardware fp")}, \
9ebbca7d 332 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET, \
047142d3 333 N_("Generate load/store multiple instructions")}, \
9ebbca7d 334 {"no-multiple", - MASK_MULTIPLE, \
047142d3 335 N_("Do not generate load/store multiple instructions")},\
9ebbca7d 336 {"no-multiple", MASK_MULTIPLE_SET, \
047142d3 337 ""}, \
9ebbca7d 338 {"string", MASK_STRING | MASK_STRING_SET, \
047142d3 339 N_("Generate string instructions for block moves")},\
9ebbca7d 340 {"no-string", - MASK_STRING, \
047142d3 341 N_("Do not generate string instructions for block moves")},\
9ebbca7d 342 {"no-string", MASK_STRING_SET, \
047142d3 343 ""}, \
9ebbca7d 344 {"update", - MASK_NO_UPDATE, \
047142d3 345 N_("Generate load/store with update instructions")},\
9ebbca7d 346 {"no-update", MASK_NO_UPDATE, \
047142d3 347 N_("Do not generate load/store with update instructions")},\
9ebbca7d 348 {"fused-madd", - MASK_NO_FUSED_MADD, \
047142d3 349 N_("Generate fused multiply/add instructions")},\
9ebbca7d 350 {"no-fused-madd", MASK_NO_FUSED_MADD, \
047142d3 351 N_("Don't generate fused multiply/add instructions")},\
9ebbca7d
GK
352 {"sched-prolog", MASK_SCHED_PROLOG, \
353 ""}, \
354 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
047142d3 355 N_("Don't schedule the start and end of the procedure")},\
9ebbca7d
GK
356 {"sched-epilog", MASK_SCHED_PROLOG, \
357 ""}, \
358 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
359 ""}, \
6fa3f289
ZW
360 {"aix-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET, \
361 N_("Return all structures in memory (AIX default)")},\
362 {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
363 N_("Return small structures in registers (SVR4 default)")},\
364 {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
365 ""},\
366 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
367 ""},\
368 {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
369 ""},\
370 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
371 ""},\
938937d8 372 SUBTARGET_SWITCHES \
9ebbca7d
GK
373 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
374 ""}}
fb623df5 375
938937d8 376#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
9ebbca7d
GK
377
378/* This is meant to be redefined in the host dependent files */
379#define SUBTARGET_SWITCHES
fb623df5 380
cac8ce95 381/* Processor type. Order must match cpu attribute in MD file. */
fb623df5 382enum processor_type
bef84347
VM
383 {
384 PROCESSOR_RIOS1,
385 PROCESSOR_RIOS2,
3cb999d8 386 PROCESSOR_RS64A,
bef84347
VM
387 PROCESSOR_MPCCORE,
388 PROCESSOR_PPC403,
fe7f5677 389 PROCESSOR_PPC405,
bef84347
VM
390 PROCESSOR_PPC601,
391 PROCESSOR_PPC603,
392 PROCESSOR_PPC604,
393 PROCESSOR_PPC604e,
394 PROCESSOR_PPC620,
3cb999d8 395 PROCESSOR_PPC630,
ed947a96
DJ
396 PROCESSOR_PPC750,
397 PROCESSOR_PPC7400,
398 PROCESSOR_PPC7450
bef84347 399};
fb623df5
RK
400
401extern enum processor_type rs6000_cpu;
402
403/* Recast the processor type to the cpu attribute. */
404#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
405
8482e358 406/* Define generic processor types based upon current deployment. */
3cb999d8
DE
407#define PROCESSOR_COMMON PROCESSOR_PPC601
408#define PROCESSOR_POWER PROCESSOR_RIOS1
409#define PROCESSOR_POWERPC PROCESSOR_PPC604
410#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
6e151478 411
fb623df5 412/* Define the default processor. This is overridden by other tm.h files. */
3cb999d8
DE
413#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
414#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
fb623df5 415
6febd581
RK
416/* Specify the dialect of assembler to use. New mnemonics is dialect one
417 and the old mnemonics are dialect zero. */
9ebbca7d 418#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
6febd581 419
956d6950 420/* This is meant to be overridden in target specific files. */
b6c9286a 421#define SUBTARGET_OPTIONS
b6c9286a 422
9ebbca7d
GK
423#define TARGET_OPTIONS \
424{ \
047142d3
PT
425 {"cpu=", &rs6000_select[1].string, \
426 N_("Use features of and schedule code for given CPU") }, \
427 {"tune=", &rs6000_select[2].string, \
428 N_("Schedule code for given CPU") }, \
429 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
0ac081f6 430 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
6fa3f289
ZW
431 {"long-double-", &rs6000_long_double_size_string, \
432 N_("Specify size of long double (64 or 128 bits)") }, \
9ebbca7d 433 SUBTARGET_OPTIONS \
b6c9286a 434}
fb623df5 435
ff222560 436/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
437struct rs6000_cpu_select
438{
815cdc52
MM
439 const char *string;
440 const char *name;
8e3f41e7
MM
441 int set_tune_p;
442 int set_arch_p;
443};
444
445extern struct rs6000_cpu_select rs6000_select[];
fb623df5 446
38c1f2d7 447/* Debug support */
0ac081f6 448extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
f607bc57 449extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
38c1f2d7
MM
450extern int rs6000_debug_stack; /* debug stack applications */
451extern int rs6000_debug_arg; /* debug argument handling */
452
453#define TARGET_DEBUG_STACK rs6000_debug_stack
454#define TARGET_DEBUG_ARG rs6000_debug_arg
455
6fa3f289
ZW
456/* These are separate from target_flags because we've run out of bits
457 there. */
458extern const char *rs6000_long_double_size_string;
459extern int rs6000_long_double_type_size;
460extern int rs6000_altivec_abi;
461
462#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
463#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
464
fb623df5
RK
465/* Sometimes certain combinations of command options do not make sense
466 on a particular target machine. You can define a macro
467 `OVERRIDE_OPTIONS' to take account of this. This macro, if
468 defined, is executed once just after all the command options have
469 been parsed.
470
5accd822
DE
471 Don't use this macro to turn on various extra optimizations for
472 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
473
fb623df5
RK
474 On the RS/6000 this is used to define the target cpu type. */
475
8e3f41e7 476#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 477
5accd822
DE
478/* Define this to change the optimizations performed by default. */
479#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
480
4f074454
RK
481/* Show we can debug even without a frame pointer. */
482#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
483\f
484/* target machine storage layout */
485
df44fa77
RK
486/* Define to support cross compilation to an RS6000 target. */
487#define REAL_ARITHMETIC
488
13d39dbc 489/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 490 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
491 the value is constrained to be within the bounds of the declared
492 type, but kept valid in the wider mode. The signedness of the
493 extension may differ from that of the type. */
494
39403d82
DE
495#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
496 if (GET_MODE_CLASS (MODE) == MODE_INT \
497 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
3cb999d8 498 (MODE) = word_mode;
39403d82
DE
499
500/* Define this if function arguments should also be promoted using the above
501 procedure. */
502
503#define PROMOTE_FUNCTION_ARGS
504
505/* Likewise, if the function return value is promoted. */
506
507#define PROMOTE_FUNCTION_RETURN
ef457bda 508
f045b2c9 509/* Define this if most significant bit is lowest numbered
82e41834
KH
510 in instructions that operate on numbered bit-fields. */
511/* That is true on RS/6000. */
f045b2c9
RS
512#define BITS_BIG_ENDIAN 1
513
514/* Define this if most significant byte of a word is the lowest numbered. */
515/* That is true on RS/6000. */
516#define BYTES_BIG_ENDIAN 1
517
518/* Define this if most significant word of a multiword number is lowest
c81bebd7 519 numbered.
f045b2c9
RS
520
521 For RS/6000 we can decide arbitrarily since there are no machine
82e41834 522 instructions for them. Might as well be consistent with bits and bytes. */
f045b2c9
RS
523#define WORDS_BIG_ENDIAN 1
524
fdaff8ba 525/* number of bits in an addressable storage unit */
f045b2c9
RS
526#define BITS_PER_UNIT 8
527
528/* Width in bits of a "word", which is the contents of a machine register.
529 Note that this is not necessarily the width of data type `int';
530 if using 16-bit ints on a 68000, this would still be 32.
531 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 532#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 533#define MAX_BITS_PER_WORD 64
f045b2c9
RS
534
535/* Width of a word, in units (bytes). */
2f3e5814 536#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 537#define MIN_UNITS_PER_WORD 4
2e360ab3 538#define UNITS_PER_FP_WORD 8
0ac081f6 539#define UNITS_PER_ALTIVEC_WORD 16
f045b2c9 540
915f619f
JW
541/* Type used for ptrdiff_t, as a string used in a declaration. */
542#define PTRDIFF_TYPE "int"
543
058ef853
DE
544/* Type used for size_t, as a string used in a declaration. */
545#define SIZE_TYPE "long unsigned int"
546
f045b2c9
RS
547/* Type used for wchar_t, as a string used in a declaration. */
548#define WCHAR_TYPE "short unsigned int"
549
550/* Width of wchar_t in bits. */
551#define WCHAR_TYPE_SIZE 16
552
9e654916
RK
553/* A C expression for the size in bits of the type `short' on the
554 target machine. If you don't define this, the default is half a
555 word. (If this would be less than one storage unit, it is
556 rounded up to one unit.) */
557#define SHORT_TYPE_SIZE 16
558
559/* A C expression for the size in bits of the type `int' on the
560 target machine. If you don't define this, the default is one
561 word. */
19d2d16f 562#define INT_TYPE_SIZE 32
9e654916
RK
563
564/* A C expression for the size in bits of the type `long' on the
565 target machine. If you don't define this, the default is one
566 word. */
2f3e5814 567#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
568#define MAX_LONG_TYPE_SIZE 64
569
570/* A C expression for the size in bits of the type `long long' on the
571 target machine. If you don't define this, the default is two
572 words. */
573#define LONG_LONG_TYPE_SIZE 64
574
575/* A C expression for the size in bits of the type `char' on the
576 target machine. If you don't define this, the default is one
577 quarter of a word. (If this would be less than one storage unit,
578 it is rounded up to one unit.) */
579#define CHAR_TYPE_SIZE BITS_PER_UNIT
580
581/* A C expression for the size in bits of the type `float' on the
582 target machine. If you don't define this, the default is one
583 word. */
584#define FLOAT_TYPE_SIZE 32
585
586/* A C expression for the size in bits of the type `double' on the
587 target machine. If you don't define this, the default is two
588 words. */
589#define DOUBLE_TYPE_SIZE 64
590
591/* A C expression for the size in bits of the type `long double' on
592 the target machine. If you don't define this, the default is two
593 words. */
6fa3f289 594#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
06f4e019
DE
595
596/* Constant which presents upper bound of the above value. */
597#define MAX_LONG_DOUBLE_TYPE_SIZE 128
598
599/* Define this to set long double type size to use in libgcc2.c, which can
600 not depend on target_flags. */
601#ifdef __LONG_DOUBLE_128__
602#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
603#else
604#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
605#endif
9e654916 606
f045b2c9
RS
607/* Width in bits of a pointer.
608 See also the macro `Pmode' defined below. */
2f3e5814 609#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
610
611/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 612#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
613
614/* Boundary (in *bits*) on which stack pointer should be aligned. */
0ac081f6 615#define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
f045b2c9
RS
616
617/* Allocation boundary (in *bits*) for the code of a function. */
618#define FUNCTION_BOUNDARY 32
619
620/* No data type wants to be aligned rounder than this. */
0ac081f6
AH
621#define BIGGEST_ALIGNMENT 128
622
623/* A C expression to compute the alignment for a variables in the
624 local store. TYPE is the data type, and ALIGN is the alignment
625 that the object would ordinarily have. */
626#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
a4edd584 627 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : ALIGN)
b73fd26c 628
e1565e65
DE
629/* Handle #pragma pack. */
630#define HANDLE_PRAGMA_PACK 1
631
f045b2c9
RS
632/* Alignment of field after `int : 0' in a structure. */
633#define EMPTY_FIELD_BOUNDARY 32
634
635/* Every structure's size must be a multiple of this. */
636#define STRUCTURE_SIZE_BOUNDARY 8
637
638/* A bitfield declared as `int' forces `int' alignment for the struct. */
639#define PCC_BITFIELD_TYPE_MATTERS 1
640
641/* Make strings word-aligned so strcpy from constants will be faster. */
642#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
643 (TREE_CODE (EXP) == STRING_CST \
644 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
645
0ac081f6
AH
646/* Make arrays of chars word-aligned for the same reasons.
647 Align vectors to 128 bits. */
f045b2c9 648#define DATA_ALIGNMENT(TYPE, ALIGN) \
0ac081f6
AH
649 (TREE_CODE (TYPE) == VECTOR_TYPE ? 128 \
650 : TREE_CODE (TYPE) == ARRAY_TYPE \
f045b2c9
RS
651 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
652 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
653
fdaff8ba 654/* Non-zero if move instructions will actually fail to work
f045b2c9 655 when given unaligned data. */
fdaff8ba 656#define STRICT_ALIGNMENT 0
e1565e65
DE
657
658/* Define this macro to be the value 1 if unaligned accesses have a cost
659 many times greater than aligned accesses, for example if they are
660 emulated in a trap handler. */
41543739
GK
661#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
662 (STRICT_ALIGNMENT \
663 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == DImode) \
664 && (ALIGN) < 32))
f045b2c9
RS
665\f
666/* Standard register usage. */
667
668/* Number of actual hardware registers.
669 The hardware registers are assigned numbers for the compiler
670 from 0 to just below FIRST_PSEUDO_REGISTER.
671 All registers that the compiler knows about must be given numbers,
672 even those that are not normally considered general registers.
673
674 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
675 an MQ register, a count register, a link register, and 8 condition
676 register fields, which we view here as separate registers.
677
678 In addition, the difference between the frame and argument pointers is
679 a function of the number of registers saved, so we need to have a
680 register for AP that will later be eliminated in favor of SP or FP.
802a0058 681 This is a normal register, but it is fixed.
f045b2c9 682
802a0058
MM
683 We also create a pseudo register for float/int conversions, that will
684 really represent the memory location used. It is represented here as
685 a register, in order to work around problems in allocating stack storage
686 in inline functions. */
687
0ac081f6 688#define FIRST_PSEUDO_REGISTER 110
f045b2c9 689
d6a7951f 690/* This must be included for pre gcc 3.0 glibc compatibility. */
7d5f33bc 691#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
62153b61 692
f045b2c9
RS
693/* 1 for registers that have pervasive standard uses
694 and are not available for the register allocator.
695
5dead3e5
DJ
696 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
697 as a local register; for all other OS's r2 is the TOC pointer.
f045b2c9 698
a127c4e5
RK
699 cr5 is not supposed to be used.
700
701 On System V implementations, r13 is fixed and not available for use. */
702
f045b2c9 703#define FIXED_REGISTERS \
5dead3e5 704 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
708 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
709 /* AltiVec registers. */ \
710 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
711 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 712 1 \
0ac081f6 713}
f045b2c9
RS
714
715/* 1 for registers not available across function calls.
716 These must include the FIXED_REGISTERS and also any
717 registers that can be used without being saved.
718 The latter must include the registers where values are returned
719 and the register where structure-value addresses are passed.
720 Aside from that, you can include as many other registers as you like. */
721
722#define CALL_USED_REGISTERS \
a127c4e5 723 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
724 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
725 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
726 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0ac081f6
AH
727 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
728 /* AltiVec registers. */ \
729 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
730 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
2473ee11 731 1 \
0ac081f6
AH
732}
733
289e96b2
AH
734/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
735 the entire set of `FIXED_REGISTERS' be included.
736 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
737 This macro is optional. If not specified, it defaults to the value
738 of `CALL_USED_REGISTERS'. */
739
740#define CALL_REALLY_USED_REGISTERS \
741 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
744 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
745 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
746 /* AltiVec registers. */ \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
749 0 \
750}
f045b2c9 751
9ebbca7d
GK
752#define MQ_REGNO 64
753#define CR0_REGNO 68
754#define CR1_REGNO 69
755#define CR2_REGNO 70
756#define CR3_REGNO 71
757#define CR4_REGNO 72
758#define MAX_CR_REGNO 75
759#define XER_REGNO 76
0ac081f6
AH
760#define FIRST_ALTIVEC_REGNO 77
761#define LAST_ALTIVEC_REGNO 108
00b960c7 762#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO)
0ac081f6 763#define VRSAVE_REGNO 109
9ebbca7d 764
f045b2c9
RS
765/* List the order in which to allocate registers. Each register must be
766 listed once, even those in FIXED_REGISTERS.
767
768 We allocate in the following order:
769 fp0 (not saved or used for anything)
770 fp13 - fp2 (not saved; incoming fp arg registers)
771 fp1 (not saved; return value)
772 fp31 - fp14 (saved; order given to save least number)
5accd822
DE
773 cr7, cr6 (not saved or special)
774 cr1 (not saved, but used for FP operations)
f045b2c9 775 cr0 (not saved, but used for arithmetic operations)
5accd822 776 cr4, cr3, cr2 (saved)
f045b2c9
RS
777 r0 (not saved; cannot be base reg)
778 r9 (not saved; best for TImode)
779 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
780 r3 (not saved; return value register)
781 r31 - r13 (saved; order given to save least number)
782 r12 (not saved; if used for DImode or DFmode would use r13)
783 mq (not saved; best to use it if we can)
784 ctr (not saved; when we have the choice ctr is better)
785 lr (saved)
0ac081f6
AH
786 cr5, r1, r2, ap, xer, vrsave (fixed)
787
788 AltiVec registers:
789 v0 - v1 (not saved or used for anything)
790 v13 - v3 (not saved; incoming vector arg registers)
791 v2 (not saved; incoming vector arg reg; return value)
792 v19 - v14 (not saved or used for anything)
793 v31 - v20 (saved; order given to save least number)
794*/
795
f045b2c9
RS
796
797#define REG_ALLOC_ORDER \
798 {32, \
799 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
800 33, \
801 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
802 50, 49, 48, 47, 46, \
5accd822 803 75, 74, 69, 68, 72, 71, 70, \
f045b2c9
RS
804 0, \
805 9, 11, 10, 8, 7, 6, 5, 4, \
806 3, \
807 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
808 18, 17, 16, 15, 14, 13, 12, \
809 64, 66, 65, \
0ac081f6
AH
810 73, 1, 2, 67, 76, \
811 /* AltiVec registers. */ \
812 77, 78, \
813 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
814 79, \
815 96, 95, 94, 93, 92, 91, \
58568475
AH
816 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
817 97, 109 \
0ac081f6 818}
f045b2c9
RS
819
820/* True if register is floating-point. */
821#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
822
823/* True if register is a condition register. */
824#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
825
815cdc52
MM
826/* True if register is a condition register, but not cr0. */
827#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
828
f045b2c9 829/* True if register is an integer register. */
9ebbca7d 830#define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
f045b2c9 831
0d86f538 832/* True if register is the XER register. */
9ebbca7d 833#define XER_REGNO_P(N) ((N) == XER_REGNO)
802a0058 834
0ac081f6
AH
835/* True if register is an AltiVec register. */
836#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
837
f045b2c9
RS
838/* Return number of consecutive hard regs needed starting at reg REGNO
839 to hold something of mode MODE.
840 This is ordinarily the length in words of a value of mode MODE
841 but can be less for certain modes in special long registers.
842
a260abc9
DE
843 POWER and PowerPC GPRs hold 32 bits worth;
844 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
f045b2c9 845
802a0058 846#define HARD_REGNO_NREGS(REGNO, MODE) \
9ebbca7d 847 (FP_REGNO_P (REGNO) \
2e360ab3 848 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
0ac081f6
AH
849 : ALTIVEC_REGNO_P (REGNO) \
850 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
f045b2c9
RS
851 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
852
0ac081f6
AH
853#define ALTIVEC_VECTOR_MODE(MODE) \
854 ((MODE) == V16QImode \
855 || (MODE) == V8HImode \
856 || (MODE) == V4SFmode \
857 || (MODE) == V4SImode)
858
859/* Define this macro to be nonzero if the port is prepared to handle
860 insns involving vector mode MODE. At the very least, it must have
861 move patterns for this mode. */
862
863#define VECTOR_MODE_SUPPORTED_P(MODE) \
864 (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE))
865
f045b2c9 866/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
867 For POWER and PowerPC, the GPRs can hold any mode, but the float
868 registers only can hold floating modes and DImode, and CR register only
869 can hold CC modes. We cannot put TImode anywhere except general
82e41834 870 register and it must be able to fit within the register set. */
f045b2c9 871
802a0058
MM
872#define HARD_REGNO_MODE_OK(REGNO, MODE) \
873 (FP_REGNO_P (REGNO) ? \
874 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
875 || (GET_MODE_CLASS (MODE) == MODE_INT \
876 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
0ac081f6 877 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
802a0058 878 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
9ebbca7d 879 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
802a0058 880 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 881 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
882 : 1)
883
884/* Value is 1 if it is a good idea to tie two pseudo registers
885 when one has mode MODE1 and one has mode MODE2.
886 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
887 for any hard reg, then this must be 0 for correct output. */
888#define MODES_TIEABLE_P(MODE1, MODE2) \
889 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
890 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
891 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
892 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
893 : GET_MODE_CLASS (MODE1) == MODE_CC \
894 ? GET_MODE_CLASS (MODE2) == MODE_CC \
895 : GET_MODE_CLASS (MODE2) == MODE_CC \
896 ? GET_MODE_CLASS (MODE1) == MODE_CC \
0ac081f6
AH
897 : ALTIVEC_VECTOR_MODE (MODE1) \
898 ? ALTIVEC_VECTOR_MODE (MODE2) \
899 : ALTIVEC_VECTOR_MODE (MODE2) \
900 ? ALTIVEC_VECTOR_MODE (MODE1) \
f045b2c9
RS
901 : 1)
902
903/* A C expression returning the cost of moving data from a register of class
904 CLASS1 to one of CLASS2.
905
906 On the RS/6000, copying between floating-point and fixed-point
907 registers is expensive. */
908
cf011243 909#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
0ac081f6 910 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
f045b2c9
RS
911 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
912 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
0ac081f6
AH
913 : (CLASS1) == ALTIVEC_REGS && (CLASS2) != ALTIVEC_REGS ? 20 \
914 : (CLASS1) != ALTIVEC_REGS && (CLASS2) == ALTIVEC_REGS ? 20 \
a4b970a0 915 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
916 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
917 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 918 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 919 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 920 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
921 : 2)
922
923/* A C expressions returning the cost of moving data of MODE from a register to
924 or from memory.
925
926 On the RS/6000, bump this up a bit. */
927
e1565e65
DE
928#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
929 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
ab4a5fc9
RK
930 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
931 ? 3 : 2) \
932 + 4)
f045b2c9
RS
933
934/* Specify the cost of a branch insn; roughly the number of extra insns that
935 should be added to avoid a branch.
936
ef457bda 937 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
938 unscheduled conditional branch. */
939
ef457bda 940#define BRANCH_COST 3
f045b2c9 941
6febd581
RK
942/* Define this macro to change register usage conditional on target flags.
943 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585 944 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
a238cd8b 945 64-bit AIX reserves GPR13 for thread-private data.
f85f4585
RK
946 Conditionally disable FPRs. */
947
8d30c4ee
FS
948#define CONDITIONAL_REGISTER_USAGE \
949{ \
e9e4208a 950 int i; \
8d30c4ee
FS
951 if (! TARGET_POWER) \
952 fixed_regs[64] = 1; \
953 if (TARGET_64BIT) \
289e96b2
AH
954 fixed_regs[13] = call_used_regs[13] \
955 = call_really_used_regs[13] = 1; \
8d30c4ee
FS
956 if (TARGET_SOFT_FLOAT) \
957 for (i = 32; i < 64; i++) \
289e96b2
AH
958 fixed_regs[i] = call_used_regs[i] \
959 = call_really_used_regs[i] = 1; \
f607bc57 960 if (DEFAULT_ABI == ABI_V4 && flag_pic == 1) \
8d30c4ee 961 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
289e96b2
AH
962 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
963 = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
ee890fe2
SS
964 if (DEFAULT_ABI == ABI_DARWIN && flag_pic) \
965 global_regs[PIC_OFFSET_TABLE_REGNUM] \
966 = fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
289e96b2
AH
967 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] \
968 = call_really_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
2473ee11
AH
969 if (! TARGET_ALTIVEC) \
970 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
289e96b2 971 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
0ac081f6 972 if (TARGET_ALTIVEC_ABI) \
2473ee11 973 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
289e96b2 974 call_used_regs[i] = call_really_used_regs[i] = 1; \
f85f4585 975}
6febd581 976
f045b2c9
RS
977/* Specify the registers used for certain standard purposes.
978 The values of these macros are register numbers. */
979
980/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
981/* #define PC_REGNUM */
982
983/* Register to use for pushing function arguments. */
984#define STACK_POINTER_REGNUM 1
985
986/* Base register for access to local variables of the function. */
987#define FRAME_POINTER_REGNUM 31
988
989/* Value should be nonzero if functions must have frame pointers.
990 Zero means the frame pointer need not be set up (and parms
991 may be accessed via the stack pointer) in functions that seem suitable.
992 This is computed in `reload', in reload1.c. */
993#define FRAME_POINTER_REQUIRED 0
994
995/* Base register for access to arguments of the function. */
996#define ARG_POINTER_REGNUM 67
997
998/* Place to put static chain when calling a function that requires it. */
999#define STATIC_CHAIN_REGNUM 11
1000
82e41834 1001/* Link register number. */
9ebbca7d 1002#define LINK_REGISTER_REGNUM 65
b6c9286a 1003
82e41834 1004/* Count register number. */
9ebbca7d 1005#define COUNT_REGISTER_REGNUM 66
802a0058 1006
f045b2c9
RS
1007/* Place that structure value return address is placed.
1008
1009 On the RS/6000, it is passed as an extra parameter. */
1ff7789b 1010#define STRUCT_VALUE 0
f045b2c9
RS
1011\f
1012/* Define the classes of registers for register constraints in the
1013 machine description. Also define ranges of constants.
1014
1015 One of the classes must always be named ALL_REGS and include all hard regs.
1016 If there is more than one class, another class must be named NO_REGS
1017 and contain no registers.
1018
1019 The name GENERAL_REGS must be the name of a class (or an alias for
1020 another name such as ALL_REGS). This is the class of registers
1021 that is allowed by "g" or "r" in a register constraint.
1022 Also, registers outside this class are allocated only when
1023 instructions express preferences for them.
1024
1025 The classes must be numbered in nondecreasing order; that is,
1026 a larger-numbered class must never be contained completely
1027 in a smaller-numbered class.
1028
1029 For any two classes, it is very desirable that there be another
1030 class that represents their union. */
c81bebd7 1031
f045b2c9
RS
1032/* The RS/6000 has three types of registers, fixed-point, floating-point,
1033 and condition registers, plus three special registers, MQ, CTR, and the
1034 link register.
1035
1036 However, r0 is special in that it cannot be used as a base register.
1037 So make a class for registers valid as base registers.
1038
1039 Also, cr0 is the only condition code register that can be used in
0d86f538 1040 arithmetic insns, so make a separate class for it. */
f045b2c9 1041
ebedb4dd
MM
1042enum reg_class
1043{
1044 NO_REGS,
ebedb4dd
MM
1045 BASE_REGS,
1046 GENERAL_REGS,
1047 FLOAT_REGS,
0ac081f6
AH
1048 ALTIVEC_REGS,
1049 VRSAVE_REGS,
ebedb4dd
MM
1050 NON_SPECIAL_REGS,
1051 MQ_REGS,
1052 LINK_REGS,
1053 CTR_REGS,
1054 LINK_OR_CTR_REGS,
1055 SPECIAL_REGS,
1056 SPEC_OR_GEN_REGS,
1057 CR0_REGS,
ebedb4dd
MM
1058 CR_REGS,
1059 NON_FLOAT_REGS,
9ebbca7d 1060 XER_REGS,
ebedb4dd
MM
1061 ALL_REGS,
1062 LIM_REG_CLASSES
1063};
f045b2c9
RS
1064
1065#define N_REG_CLASSES (int) LIM_REG_CLASSES
1066
82e41834 1067/* Give names of register classes as strings for dump file. */
f045b2c9 1068
ebedb4dd
MM
1069#define REG_CLASS_NAMES \
1070{ \
1071 "NO_REGS", \
ebedb4dd
MM
1072 "BASE_REGS", \
1073 "GENERAL_REGS", \
1074 "FLOAT_REGS", \
0ac081f6
AH
1075 "ALTIVEC_REGS", \
1076 "VRSAVE_REGS", \
ebedb4dd
MM
1077 "NON_SPECIAL_REGS", \
1078 "MQ_REGS", \
1079 "LINK_REGS", \
1080 "CTR_REGS", \
1081 "LINK_OR_CTR_REGS", \
1082 "SPECIAL_REGS", \
1083 "SPEC_OR_GEN_REGS", \
1084 "CR0_REGS", \
ebedb4dd
MM
1085 "CR_REGS", \
1086 "NON_FLOAT_REGS", \
9ebbca7d 1087 "XER_REGS", \
ebedb4dd
MM
1088 "ALL_REGS" \
1089}
f045b2c9
RS
1090
1091/* Define which registers fit in which classes.
1092 This is an initializer for a vector of HARD_REG_SET
1093 of length N_REG_CLASSES. */
1094
0ac081f6
AH
1095#define REG_CLASS_CONTENTS \
1096{ \
1097 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1098 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1099 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1100 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
089a05b8
SS
1101 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1102 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
0ac081f6
AH
1103 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1104 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1105 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1106 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1107 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
a004eb82 1108 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
0ac081f6
AH
1109 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1110 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1111 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
089a05b8
SS
1112 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1113 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1114 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
ebedb4dd 1115}
f045b2c9
RS
1116
1117/* The same information, inverted:
1118 Return the class number of the smallest class containing
1119 reg number REGNO. This could be a conditional expression
1120 or could index an array. */
1121
0d86f538
GK
1122#define REGNO_REG_CLASS(REGNO) \
1123 ((REGNO) == 0 ? GENERAL_REGS \
1124 : (REGNO) < 32 ? BASE_REGS \
1125 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
0ac081f6 1126 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
0d86f538
GK
1127 : (REGNO) == CR0_REGNO ? CR0_REGS \
1128 : CR_REGNO_P (REGNO) ? CR_REGS \
1129 : (REGNO) == MQ_REGNO ? MQ_REGS \
1130 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1131 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1132 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1133 : (REGNO) == XER_REGNO ? XER_REGS \
0ac081f6 1134 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
f045b2c9
RS
1135 : NO_REGS)
1136
1137/* The class value for index registers, and the one for base regs. */
1138#define INDEX_REG_CLASS GENERAL_REGS
1139#define BASE_REG_CLASS BASE_REGS
1140
1141/* Get reg_class from a letter such as appears in the machine description. */
1142
1143#define REG_CLASS_FROM_LETTER(C) \
1144 ((C) == 'f' ? FLOAT_REGS \
1145 : (C) == 'b' ? BASE_REGS \
1146 : (C) == 'h' ? SPECIAL_REGS \
1147 : (C) == 'q' ? MQ_REGS \
1148 : (C) == 'c' ? CTR_REGS \
1149 : (C) == 'l' ? LINK_REGS \
0ac081f6 1150 : (C) == 'v' ? ALTIVEC_REGS \
f045b2c9
RS
1151 : (C) == 'x' ? CR0_REGS \
1152 : (C) == 'y' ? CR_REGS \
9ebbca7d 1153 : (C) == 'z' ? XER_REGS \
f045b2c9
RS
1154 : NO_REGS)
1155
1156/* The letters I, J, K, L, M, N, and P in a register constraint string
1157 can be used to stand for particular ranges of immediate operands.
1158 This macro defines what the ranges are.
1159 C is the letter, and VALUE is a constant value.
1160 Return 1 if VALUE is in the range specified by C.
1161
9615f239 1162 `I' is a signed 16-bit constant
f045b2c9
RS
1163 `J' is a constant with only the high-order 16 bits non-zero
1164 `K' is a constant with only the low-order 16 bits non-zero
9615f239 1165 `L' is a signed 16-bit constant shifted left 16 bits
f045b2c9 1166 `M' is a constant that is greater than 31
2bfcf297 1167 `N' is a positive constant that is an exact power of two
f045b2c9
RS
1168 `O' is the constant zero
1169 `P' is a constant whose negation is a signed 16-bit constant */
1170
5b6f7b96
RK
1171#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1172 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
0858c623 1173 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
a260abc9 1174 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
9615f239
DE
1175 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1176 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
5b6f7b96 1177 : (C) == 'M' ? (VALUE) > 31 \
2bfcf297 1178 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
5b6f7b96 1179 : (C) == 'O' ? (VALUE) == 0 \
9615f239 1180 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
f045b2c9
RS
1181 : 0)
1182
1183/* Similar, but for floating constants, and defining letters G and H.
1184 Here VALUE is the CONST_DOUBLE rtx itself.
1185
1186 We flag for special constants when we can copy the constant into
4e74d8ec 1187 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1188
c4c40373 1189 'H' is used for DI/DF constants that take 3 insns. */
4e74d8ec
MM
1190
1191#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
c4c40373
MM
1192 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1193 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1194 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1195 : 0)
f045b2c9
RS
1196
1197/* Optional extra constraints for this machine.
1198
b6c9286a
MM
1199 'Q' means that is a memory operand that is just an offset from a reg.
1200 'R' is for AIX TOC entries.
a260abc9 1201 'S' is a constant that can be placed into a 64-bit mask operand
9615f239 1202 'T' is a consatnt that can be placed into a 32-bit mask operand
88228c4b 1203 'U' is for V.4 small data references. */
f045b2c9 1204
e8a8bc24
RK
1205#define EXTRA_CONSTRAINT(OP, C) \
1206 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1207 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
a260abc9 1208 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
9615f239 1209 : (C) == 'T' ? mask_operand (OP, VOIDmode) \
f607bc57 1210 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
c81bebd7 1211 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1212 : 0)
f045b2c9
RS
1213
1214/* Given an rtx X being reloaded into a reg required to be
1215 in class CLASS, return the class of reg to actually use.
1216 In general this is just CLASS; but on some machines
c81bebd7 1217 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1218
1219 On the RS/6000, we have to return NO_REGS when we want to reload a
1e66d555
GK
1220 floating-point CONST_DOUBLE to force it to be copied to memory.
1221
1222 We also don't want to reload integer values into floating-point
1223 registers if we can at all help it. In fact, this can
1224 cause reload to abort, if it tries to generate a reload of CTR
1225 into a FP register and discovers it doesn't have the memory location
1226 required.
1227
1228 ??? Would it be a good idea to have reload do the converse, that is
1229 try to reload floating modes into FP registers if possible?
1230 */
f045b2c9 1231
802a0058 1232#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1e66d555
GK
1233 (((GET_CODE (X) == CONST_DOUBLE \
1234 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1235 ? NO_REGS \
1236 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1237 && (CLASS) == NON_SPECIAL_REGS) \
1238 ? GENERAL_REGS \
1239 : (CLASS)))
c81bebd7 1240
f045b2c9
RS
1241/* Return the register class of a scratch register needed to copy IN into
1242 or out of a register in CLASS in MODE. If it can be done directly,
1243 NO_REGS is returned. */
1244
1245#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1246 secondary_reload_class (CLASS, MODE, IN)
1247
0ac081f6
AH
1248/* If we are copying between FP or AltiVec registers and anything
1249 else, we need a memory location. */
7ea555a4 1250
0ac081f6
AH
1251#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1252 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1253 || (CLASS2) == FLOAT_REGS \
1254 || (CLASS1) == ALTIVEC_REGS \
1255 || (CLASS2) == ALTIVEC_REGS))
7ea555a4 1256
f045b2c9
RS
1257/* Return the maximum number of consecutive registers
1258 needed to represent mode MODE in a register of class CLASS.
1259
1260 On RS/6000, this is the size of MODE in words,
1261 except in the FP regs, where a single reg is enough for two words. */
802a0058 1262#define CLASS_MAX_NREGS(CLASS, MODE) \
9ebbca7d 1263 (((CLASS) == FLOAT_REGS) \
2e360ab3 1264 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1265 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1266
1267/* If defined, gives a class of registers that cannot be used as the
02188693 1268 operand of a SUBREG that changes the mode of the object illegally. */
580d3230 1269
02188693
RH
1270#define CLASS_CANNOT_CHANGE_MODE FLOAT_REGS
1271
1272/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
1273
1274#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
1275 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
f045b2c9
RS
1276\f
1277/* Stack layout; function entry, exit and calling. */
1278
6b67933e
RK
1279/* Enumeration to give which calling sequence to use. */
1280enum rs6000_abi {
1281 ABI_NONE,
1282 ABI_AIX, /* IBM's AIX */
f607bc57
ZW
1283 ABI_AIX_NODESC, /* AIX calling sequence minus
1284 function descriptors */
b6c9286a 1285 ABI_V4, /* System V.4/eabi */
ee890fe2 1286 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
6b67933e
RK
1287};
1288
b6c9286a
MM
1289extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1290
4697a36c
MM
1291/* Structure used to define the rs6000 stack */
1292typedef struct rs6000_stack {
1293 int first_gp_reg_save; /* first callee saved GP register used */
1294 int first_fp_reg_save; /* first callee saved FP register used */
00b960c7 1295 int first_altivec_reg_save; /* first callee saved AltiVec register used */
4697a36c
MM
1296 int lr_save_p; /* true if the link reg needs to be saved */
1297 int cr_save_p; /* true if the CR reg needs to be saved */
00b960c7 1298 unsigned int vrsave_mask; /* mask of vec registers to save */
b6c9286a 1299 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1300 int push_p; /* true if we need to allocate stack space */
1301 int calls_p; /* true if the function makes any calls */
6b67933e 1302 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1303 int gp_save_offset; /* offset to save GP regs from initial SP */
1304 int fp_save_offset; /* offset to save FP regs from initial SP */
00b960c7 1305 int altivec_save_offset; /* offset to save AltiVec regs from inital SP */
4697a36c
MM
1306 int lr_save_offset; /* offset to save LR from initial SP */
1307 int cr_save_offset; /* offset to save CR from initial SP */
00b960c7 1308 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
b6c9286a 1309 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1310 int varargs_save_offset; /* offset to save the varargs registers */
83720594 1311 int ehrd_offset; /* offset to EH return data */
4697a36c
MM
1312 int reg_size; /* register size (4 or 8) */
1313 int varargs_size; /* size to hold V.4 args passed in regs */
1314 int vars_size; /* variable save area size */
1315 int parm_size; /* outgoing parameter size */
1316 int save_size; /* save area size */
1317 int fixed_size; /* fixed size of stack frame */
1318 int gp_size; /* size of saved GP registers */
1319 int fp_size; /* size of saved FP registers */
00b960c7 1320 int altivec_size; /* size of saved AltiVec registers */
4697a36c 1321 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1322 int lr_size; /* size to hold LR if not in save_size */
00b960c7
AH
1323 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1324 int altivec_padding_size; /* size of altivec alignment padding if
1325 not in save_size */
b6c9286a 1326 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1327 int total_size; /* total bytes allocated for stack */
1328} rs6000_stack_t;
1329
f045b2c9
RS
1330/* Define this if pushing a word on the stack
1331 makes the stack pointer a smaller address. */
1332#define STACK_GROWS_DOWNWARD
1333
1334/* Define this if the nominal address of the stack frame
1335 is at the high-address end of the local variables;
1336 that is, each additional local variable allocated
1337 goes at a more negative offset in the frame.
1338
1339 On the RS/6000, we grow upwards, from the area after the outgoing
1340 arguments. */
1341/* #define FRAME_GROWS_DOWNWARD */
1342
4697a36c 1343/* Size of the outgoing register save area */
9ebbca7d 1344#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1345 || DEFAULT_ABI == ABI_AIX_NODESC \
1346 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d
GK
1347 ? (TARGET_64BIT ? 64 : 32) \
1348 : 0)
4697a36c
MM
1349
1350/* Size of the fixed area on the stack */
9ebbca7d 1351#define RS6000_SAVE_AREA \
ee890fe2 1352 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
9ebbca7d 1353 << (TARGET_64BIT ? 1 : 0))
4697a36c 1354
97f6e72f
DE
1355/* MEM representing address to save the TOC register */
1356#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1357 plus_constant (stack_pointer_rtx, \
1358 (TARGET_32BIT ? 20 : 40)))
b6c9286a 1359
4697a36c
MM
1360/* Size of the V.4 varargs area if needed */
1361#define RS6000_VARARGS_AREA 0
1362
4697a36c 1363/* Align an address */
ed33106f 1364#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
4697a36c
MM
1365
1366/* Size of V.4 varargs area in bytes */
1367#define RS6000_VARARGS_SIZE \
2f3e5814 1368 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c 1369
f045b2c9
RS
1370/* Offset within stack frame to start allocating local variables at.
1371 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1372 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1373 of the first local allocated.
f045b2c9
RS
1374
1375 On the RS/6000, the frame pointer is the same as the stack pointer,
1376 except for dynamic allocations. So we start after the fixed area and
1377 outgoing parameter area. */
1378
802a0058 1379#define STARTING_FRAME_OFFSET \
7b094d6e
AH
1380 (RS6000_ALIGN (current_function_outgoing_args_size, \
1381 TARGET_ALTIVEC ? 16 : 8) \
802a0058
MM
1382 + RS6000_VARARGS_AREA \
1383 + RS6000_SAVE_AREA)
1384
1385/* Offset from the stack pointer register to an item dynamically
1386 allocated on the stack, e.g., by `alloca'.
1387
1388 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1389 length of the outgoing arguments. The default is correct for most
1390 machines. See `function.c' for details. */
1391#define STACK_DYNAMIC_OFFSET(FUNDECL) \
7b094d6e
AH
1392 (RS6000_ALIGN (current_function_outgoing_args_size, \
1393 TARGET_ALTIVEC ? 16 : 8) \
802a0058 1394 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1395
1396/* If we generate an insn to push BYTES bytes,
1397 this says how many the stack pointer really advances by.
1398 On RS/6000, don't define this because there are no push insns. */
1399/* #define PUSH_ROUNDING(BYTES) */
1400
1401/* Offset of first parameter from the argument pointer register value.
1402 On the RS/6000, we define the argument pointer to the start of the fixed
1403 area. */
4697a36c 1404#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9 1405
62153b61
JM
1406/* Offset from the argument pointer register value to the top of
1407 stack. This is different from FIRST_PARM_OFFSET because of the
1408 register save area. */
1409#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1410
f045b2c9
RS
1411/* Define this if stack space is still allocated for a parameter passed
1412 in a register. The value is the number of bytes allocated to this
1413 area. */
4697a36c 1414#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1415
1416/* Define this if the above stack space is to be considered part of the
1417 space allocated by the caller. */
1418#define OUTGOING_REG_PARM_STACK_SPACE
1419
1420/* This is the difference between the logical top of stack and the actual sp.
1421
82e41834 1422 For the RS/6000, sp points past the fixed area. */
4697a36c 1423#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1424
1425/* Define this if the maximum size of all the outgoing args is to be
1426 accumulated and pushed during the prologue. The amount can be
1427 found in the variable current_function_outgoing_args_size. */
f73ad30e 1428#define ACCUMULATE_OUTGOING_ARGS 1
f045b2c9
RS
1429
1430/* Value is the number of bytes of arguments automatically
1431 popped when returning from a subroutine call.
8b109b37 1432 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1433 FUNTYPE is the data type of the function (as a tree),
1434 or for a library call it is an identifier node for the subroutine name.
1435 SIZE is the number of bytes of arguments passed on the stack. */
1436
8b109b37 1437#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1438
1439/* Define how to find the value returned by a function.
1440 VALTYPE is the data type of the value (as a tree).
1441 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1442 otherwise, FUNC is 0.
1443
c81bebd7 1444 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1445 fp1, unless -msoft-float. */
f045b2c9 1446
39403d82
DE
1447#define FUNCTION_VALUE(VALTYPE, FUNC) \
1448 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1449 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1450 || POINTER_TYPE_P (VALTYPE) \
1451 ? word_mode : TYPE_MODE (VALTYPE), \
0ac081f6
AH
1452 TREE_CODE (VALTYPE) == VECTOR_TYPE ? ALTIVEC_ARG_RETURN \
1453 : TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT \
e9cf9523 1454 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9
RS
1455
1456/* Define how to find the value returned by a library function
1457 assuming the value has mode MODE. */
1458
0ac081f6
AH
1459#define LIBCALL_VALUE(MODE) \
1460 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1461 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1462 && TARGET_HARD_FLOAT \
1463 ? FP_ARG_RETURN : GP_ARG_RETURN)
f045b2c9 1464
6fa3f289
ZW
1465/* The AIX ABI for the RS/6000 specifies that all structures are
1466 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1467 specifies that structures <= 8 bytes are returned in r3/r4, but a
1468 draft put them in memory, and GCC used to implement the draft
1469 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1470 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1471 compatibility can change DRAFT_V4_STRUCT_RET to override the
1472 default, and -m switches get the final word. See
52acbdcb
ZW
1473 rs6000_override_options for more details.
1474
1475 int_size_in_bytes returns -1 for variable size objects, which go in
1476 memory always. The cast to unsigned makes -1 > 8. */
1477
6fa3f289
ZW
1478#define RETURN_IN_MEMORY(TYPE) \
1479 (AGGREGATE_TYPE_P (TYPE) && \
52acbdcb
ZW
1480 (TARGET_AIX_STRUCT_RET || \
1481 (unsigned HOST_WIDEST_INT) int_size_in_bytes (TYPE) > 8))
f045b2c9 1482
6fa3f289
ZW
1483/* DRAFT_V4_STRUCT_RET defaults off. */
1484#define DRAFT_V4_STRUCT_RET 0
f607bc57
ZW
1485
1486/* Let RETURN_IN_MEMORY control what happens. */
1487#define DEFAULT_PCC_STRUCT_RETURN 0
f045b2c9 1488
a260abc9 1489/* Mode of stack savearea.
dfdfa60f
DE
1490 FUNCTION is VOIDmode because calling convention maintains SP.
1491 BLOCK needs Pmode for SP.
a260abc9
DE
1492 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1493#define STACK_SAVEAREA_MODE(LEVEL) \
dfdfa60f
DE
1494 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1495 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
a260abc9 1496
4697a36c
MM
1497/* Minimum and maximum general purpose registers used to hold arguments. */
1498#define GP_ARG_MIN_REG 3
1499#define GP_ARG_MAX_REG 10
1500#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1501
1502/* Minimum and maximum floating point registers used to hold arguments. */
1503#define FP_ARG_MIN_REG 33
7509c759
MM
1504#define FP_ARG_AIX_MAX_REG 45
1505#define FP_ARG_V4_MAX_REG 40
9ebbca7d 1506#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
ee890fe2
SS
1507 || DEFAULT_ABI == ABI_AIX_NODESC \
1508 || DEFAULT_ABI == ABI_DARWIN) \
9ebbca7d 1509 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
4697a36c
MM
1510#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1511
0ac081f6
AH
1512/* Minimum and maximum AltiVec registers used to hold arguments. */
1513#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1514#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1515#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1516
4697a36c
MM
1517/* Return registers */
1518#define GP_ARG_RETURN GP_ARG_MIN_REG
1519#define FP_ARG_RETURN FP_ARG_MIN_REG
0ac081f6 1520#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
4697a36c 1521
7509c759 1522/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f 1523#define CALL_NORMAL 0x00000000 /* no special processing */
9ebbca7d 1524/* Bits in 0x00000001 are unused. */
6a4cee5f
MM
1525#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1526#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1527#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1528
f045b2c9
RS
1529/* 1 if N is a possible register number for a function value
1530 as seen by the caller.
1531
0ac081f6
AH
1532 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1533#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN \
1534 || ((N) == FP_ARG_RETURN) \
1535 || (TARGET_ALTIVEC && \
1536 (N) == ALTIVEC_ARG_RETURN))
f045b2c9
RS
1537
1538/* 1 if N is a possible register number for function argument passing.
0ac081f6
AH
1539 On RS/6000, these are r3-r10 and fp1-fp13.
1540 On AltiVec, v2 - v13 are used for passing vectors. */
4697a36c 1541#define FUNCTION_ARG_REGNO_P(N) \
6d0f55e6 1542 ((unsigned)(((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
0ac081f6 1543 || (TARGET_ALTIVEC && \
1a3ab9e1 1544 (unsigned)((N) - ALTIVEC_ARG_MIN_REG) < (unsigned)(ALTIVEC_ARG_NUM_REG)) \
6d0f55e6 1545 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1546
f045b2c9 1547\f
00dba523
NC
1548/* A C structure for machine-specific, per-function data.
1549 This is added to the cfun structure. */
1550typedef struct machine_function
1551{
1552 /* Whether a System V.4 varargs area was created. */
1553 int sysv_varargs_p;
71f123ca
FS
1554 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1555 int ra_needs_full_frame;
00dba523
NC
1556} machine_function;
1557
f045b2c9
RS
1558/* Define a data type for recording info about an argument list
1559 during the scan of that argument list. This data type should
1560 hold all necessary information about the function itself
1561 and about the args processed so far, enough to enable macros
1562 such as FUNCTION_ARG to determine where the next arg should go.
1563
1564 On the RS/6000, this is a structure. The first element is the number of
1565 total argument words, the second is used to store the next
1566 floating-point register number, and the third says how many more args we
4697a36c
MM
1567 have prototype types for.
1568
4cc833b7
RH
1569 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1570 the next availible GP register, `fregno' is the next available FP
1571 register, and `words' is the number of words used on the stack.
1572
bd227acc 1573 The varargs/stdarg support requires that this structure's size
4cc833b7 1574 be a multiple of sizeof(int). */
4697a36c
MM
1575
1576typedef struct rs6000_args
1577{
4cc833b7 1578 int words; /* # words used for passing GP registers */
6a4cee5f 1579 int fregno; /* next available FP register */
0ac081f6 1580 int vregno; /* next available AltiVec register */
6a4cee5f
MM
1581 int nargs_prototype; /* # args left in the current prototype */
1582 int orig_nargs; /* Original value of nargs_prototype */
6a4cee5f
MM
1583 int prototype; /* Whether a prototype was defined */
1584 int call_cookie; /* Do special things for this call */
4cc833b7 1585 int sysv_gregno; /* next available GP register */
4697a36c 1586} CUMULATIVE_ARGS;
f045b2c9
RS
1587
1588/* Define intermediate macro to compute the size (in registers) of an argument
1589 for the RS/6000. */
1590
d34c5b80
DE
1591#define RS6000_ARG_SIZE(MODE, TYPE) \
1592((MODE) != BLKmode \
c5d71f39
GK
1593 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1594 : ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) \
1595 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
f045b2c9
RS
1596
1597/* Initialize a variable CUM of type CUMULATIVE_ARGS
1598 for a call to a function whose data type is FNTYPE.
1599 For a library call, FNTYPE is 0. */
1600
2c7ee1a6 1601#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1602 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1603
1604/* Similar, but when scanning the definition of a procedure. We always
1605 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1606
4697a36c
MM
1607#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1608 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1609
1610/* Update the data in CUM to advance over an argument
1611 of mode MODE and data type TYPE.
1612 (TYPE is null for libcalls where that information may not be available.) */
1613
1614#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1615 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1616
1617/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1618#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1619 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1620 && (CUM).fregno <= FP_ARG_MAX_REG \
1621 && TARGET_HARD_FLOAT)
f045b2c9 1622
0ac081f6
AH
1623/* Non-zero if we can use an AltiVec register to pass this arg. */
1624#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1625 (ALTIVEC_VECTOR_MODE (MODE) \
1626 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1627 && TARGET_ALTIVEC_ABI)
1628
f045b2c9
RS
1629/* Determine where to put an argument to a function.
1630 Value is zero to push the argument on the stack,
1631 or a hard register in which to store the argument.
1632
1633 MODE is the argument's machine mode.
1634 TYPE is the data type of the argument (as a tree).
1635 This is null for libcalls where that information may
1636 not be available.
1637 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1638 the preceding args and about the function being called.
1639 NAMED is nonzero if this argument is a named parameter
1640 (otherwise it is an extra parameter matching an ellipsis).
1641
1642 On RS/6000 the first eight words of non-FP are normally in registers
1643 and the rest are pushed. The first 13 FP args are in registers.
1644
1645 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1646 both an FP and integer register (or possibly FP reg and stack). Library
1647 functions (when TYPE is zero) always have the proper types for args,
1648 so we can pass the FP value just in one register. emit_library_function
1649 doesn't support EXPR_LIST anyway. */
f045b2c9 1650
4697a36c
MM
1651#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1652 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1653
1654/* For an arg passed partly in registers and partly in memory,
1655 this is the number of registers used.
1656 For args passed entirely in registers or entirely in memory, zero. */
1657
4697a36c
MM
1658#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1659 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1660
1661/* A C expression that indicates when an argument must be passed by
1662 reference. If nonzero for an argument, a copy of that argument is
1663 made in memory and a pointer to the argument is passed instead of
1664 the argument itself. The pointer is passed in whatever way is
82e41834 1665 appropriate for passing a pointer to that type. */
4697a36c
MM
1666
1667#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1668 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1669
c229cba9
DE
1670/* If defined, a C expression which determines whether, and in which
1671 direction, to pad out an argument with extra space. The value
1672 should be of type `enum direction': either `upward' to pad above
1673 the argument, `downward' to pad below, or `none' to inhibit
1674 padding. */
1675
9ebbca7d 1676#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
c229cba9 1677
b6c9286a 1678/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1679 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1680 PARM_BOUNDARY is used for all arguments. */
1681
1682#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1683 function_arg_boundary (MODE, TYPE)
1684
f045b2c9 1685/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1686 variable number of arguments.
f045b2c9
RS
1687
1688 CUM is as above.
1689
1690 MODE and TYPE are the mode and type of the current parameter.
1691
1692 PRETEND_SIZE is a variable that should be set to the amount of stack
1693 that must be pushed by the prolog to pretend that our caller pushed
1694 it.
1695
1696 Normally, this macro will push all remaining incoming registers on the
1697 stack and set PRETEND_SIZE to the length of the registers pushed. */
1698
4697a36c
MM
1699#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1700 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1701
dfafc897
FS
1702/* Define the `__builtin_va_list' type for the ABI. */
1703#define BUILD_VA_LIST_TYPE(VALIST) \
1704 (VALIST) = rs6000_build_va_list ()
4697a36c 1705
dfafc897
FS
1706/* Implement `va_start' for varargs and stdarg. */
1707#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1708 rs6000_va_start (stdarg, valist, nextarg)
1709
1710/* Implement `va_arg'. */
1711#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1712 rs6000_va_arg (valist, type)
f045b2c9 1713
d34c5b80
DE
1714/* Define this macro to be a nonzero value if the location where a function
1715 argument is passed depends on whether or not it is a named argument. */
1716#define STRICT_ARGUMENT_NAMING 1
1717
f045b2c9 1718/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1719 for profiling a function entry. */
f045b2c9
RS
1720
1721#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1722 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1723
1724/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1725 the stack pointer does not matter. No definition is equivalent to
1726 always zero.
1727
1728 On the RS/6000, this is non-zero because we can restore the stack from
1729 its backpointer, which we maintain. */
1730#define EXIT_IGNORE_STACK 1
1731
a701949a
FS
1732/* Define this macro as a C expression that is nonzero for registers
1733 that are used by the epilogue or the return' pattern. The stack
1734 and frame pointer registers are already be assumed to be used as
1735 needed. */
1736
83720594
RH
1737#define EPILOGUE_USES(REGNO) \
1738 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
00b960c7 1739 || (REGNO) == VRSAVE_REGNO \
83720594 1740 || (current_function_calls_eh_return \
3553b09d 1741 && TARGET_AIX \
83720594 1742 && (REGNO) == TOC_REGISTER))
2bfcf297 1743
f045b2c9 1744\f
eaf1bcf1 1745/* TRAMPOLINE_TEMPLATE deleted */
f045b2c9
RS
1746
1747/* Length in units of the trampoline for entering a nested function. */
1748
b6c9286a 1749#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1750
1751/* Emit RTL insns to initialize the variable parts of a trampoline.
1752 FNADDR is an RTX for the address of the function's pure code.
1753 CXT is an RTX for the static chain value for the function. */
1754
1755#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1756 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1757\f
f33985c6
MS
1758/* Definitions for __builtin_return_address and __builtin_frame_address.
1759 __builtin_return_address (0) should give link register (65), enable
82e41834 1760 this. */
f33985c6
MS
1761/* This should be uncommented, so that the link register is used, but
1762 currently this would result in unmatched insns and spilling fixed
1763 registers so we'll leave it for another day. When these problems are
1764 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1765 (mrs) */
1766/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1767
b6c9286a
MM
1768/* Number of bytes into the frame return addresses can be found. See
1769 rs6000_stack_info in rs6000.c for more information on how the different
1770 abi's store the return address. */
1771#define RETURN_ADDRESS_OFFSET \
1772 ((DEFAULT_ABI == ABI_AIX \
ee890fe2 1773 || DEFAULT_ABI == ABI_DARWIN \
05ef2698 1774 || DEFAULT_ABI == ABI_AIX_NODESC) ? (TARGET_32BIT ? 8 : 16) : \
3b370352 1775 (DEFAULT_ABI == ABI_V4) ? 4 : \
c4636dd1 1776 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1777
f33985c6
MS
1778/* The current return address is in link register (65). The return address
1779 of anything farther back is accessed normally at an offset of 8 from the
1780 frame pointer. */
71f123ca
FS
1781#define RETURN_ADDR_RTX(COUNT, FRAME) \
1782 (rs6000_return_addr (COUNT, FRAME))
1783
f33985c6 1784\f
f045b2c9
RS
1785/* Definitions for register eliminations.
1786
1787 We have two registers that can be eliminated on the RS/6000. First, the
1788 frame pointer register can often be eliminated in favor of the stack
1789 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1790 eliminated; it is replaced with either the stack or frame pointer.
1791
1792 In addition, we use the elimination mechanism to see if r30 is needed
1793 Initially we assume that it isn't. If it is, we spill it. This is done
1794 by making it an eliminable register. We replace it with itself so that
1795 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1796
1797/* This is an array of structures. Each structure initializes one pair
1798 of eliminable registers. The "from" register number is given first,
1799 followed by "to". Eliminations of the same "from" register are listed
1800 in order of preference. */
1801#define ELIMINABLE_REGS \
1802{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1803 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1804 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1805 { 30, 30} }
f045b2c9
RS
1806
1807/* Given FROM and TO register numbers, say whether this elimination is allowed.
1808 Frame pointer elimination is automatically handled.
1809
1810 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1811 to convert ap into fp, not sp.
1812
abc95ed3 1813 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1814 references. */
f045b2c9
RS
1815
1816#define CAN_ELIMINATE(FROM, TO) \
1817 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1818 ? ! frame_pointer_needed \
4697a36c 1819 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1820 : 1)
1821
1822/* Define the offset between two registers, one to be eliminated, and the other
1823 its replacement, at the start of a routine. */
1824#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1825{ \
4697a36c 1826 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1827 \
1828 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1829 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1830 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1831 (OFFSET) = info->total_size; \
1832 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1833 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1834 else if ((FROM) == 30) \
1835 (OFFSET) = 0; \
f045b2c9
RS
1836 else \
1837 abort (); \
1838}
1839\f
1840/* Addressing modes, and classification of registers for them. */
1841
940da324
JL
1842/* #define HAVE_POST_INCREMENT 0 */
1843/* #define HAVE_POST_DECREMENT 0 */
f045b2c9 1844
940da324
JL
1845#define HAVE_PRE_DECREMENT 1
1846#define HAVE_PRE_INCREMENT 1
f045b2c9
RS
1847
1848/* Macros to check register numbers against specific register classes. */
1849
1850/* These assume that REGNO is a hard or pseudo reg number.
1851 They give nonzero only if REGNO is a hard reg of the suitable class
1852 or a pseudo reg currently allocated to a suitable hard reg.
1853 Since they use reg_renumber, they are safe only once reg_renumber
1854 has been allocated, which happens in local-alloc.c. */
1855
1856#define REGNO_OK_FOR_INDEX_P(REGNO) \
1857((REGNO) < FIRST_PSEUDO_REGISTER \
1858 ? (REGNO) <= 31 || (REGNO) == 67 \
1859 : (reg_renumber[REGNO] >= 0 \
1860 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1861
1862#define REGNO_OK_FOR_BASE_P(REGNO) \
1863((REGNO) < FIRST_PSEUDO_REGISTER \
1864 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1865 : (reg_renumber[REGNO] > 0 \
1866 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1867\f
1868/* Maximum number of registers that can appear in a valid memory address. */
1869
1870#define MAX_REGS_PER_ADDRESS 2
1871
1872/* Recognize any constant value that is a valid address. */
1873
6eff269e
BK
1874#define CONSTANT_ADDRESS_P(X) \
1875 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1876 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1877 || GET_CODE (X) == HIGH)
f045b2c9
RS
1878
1879/* Nonzero if the constant value X is a legitimate general operand.
1880 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1881
1882 On the RS/6000, all integer constants are acceptable, most won't be valid
1883 for particular insns, though. Only easy FP constants are
1884 acceptable. */
1885
1886#define LEGITIMATE_CONSTANT_P(X) \
1887 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
a260abc9 1888 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
f045b2c9
RS
1889 || easy_fp_constant (X, GET_MODE (X)))
1890
1891/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1892 and check its validity for a certain class.
1893 We have two alternate definitions for each of them.
1894 The usual definition accepts all pseudo regs; the other rejects
1895 them unless they have been allocated suitable hard regs.
1896 The symbol REG_OK_STRICT causes the latter definition to be used.
1897
1898 Most source files want to accept pseudo regs in the hope that
1899 they will get allocated to the class that the insn wants them to be in.
1900 Source files for reload pass need to be strict.
1901 After reload, it makes no difference, since pseudo regs have
1902 been eliminated by then. */
1903
258bfae2
FS
1904#ifdef REG_OK_STRICT
1905# define REG_OK_STRICT_FLAG 1
1906#else
1907# define REG_OK_STRICT_FLAG 0
1908#endif
f045b2c9
RS
1909
1910/* Nonzero if X is a hard reg that can be used as an index
258bfae2
FS
1911 or if it is a pseudo reg in the non-strict case. */
1912#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1913 ((! (STRICT) \
1914 && (REGNO (X) <= 31 \
1915 || REGNO (X) == ARG_POINTER_REGNUM \
1916 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1917 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
f045b2c9
RS
1918
1919/* Nonzero if X is a hard reg that can be used as a base reg
258bfae2
FS
1920 or if it is a pseudo reg in the non-strict case. */
1921#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1922 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
f045b2c9 1923
258bfae2
FS
1924#define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1925#define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
f045b2c9
RS
1926\f
1927/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1928 that is a valid memory address for an instruction.
1929 The MODE argument is the machine mode for the MEM expression
1930 that wants to use this address.
1931
1932 On the RS/6000, there are four valid address: a SYMBOL_REF that
1933 refers to a constant pool entry of an address (or the sum of it
1934 plus a constant), a short (16-bit signed) constant plus a register,
1935 the sum of two registers, or a register indirect, possibly with an
1936 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814 1937 we must ensure that both words are addressable or PowerPC64 with offset
1427100a
DE
1938 word aligned.
1939
1940 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1941 32-bit DImode, TImode), indexed addressing cannot be used because
1942 adjacent memory cells are accessed by adding word-sized offsets
1943 during assembly output. */
f045b2c9 1944
9ebbca7d
GK
1945#define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
1946
1947#define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
f045b2c9
RS
1948
1949#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
9ebbca7d
GK
1950 (TARGET_TOC \
1951 && GET_CODE (X) == PLUS \
1952 && GET_CODE (XEXP (X, 0)) == REG \
1953 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
1954 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
f045b2c9 1955
7509c759 1956#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
f607bc57 1957 (DEFAULT_ABI == ABI_V4 \
81795281 1958 && !flag_pic && !TARGET_TOC \
88228c4b
MM
1959 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1960 && small_data_operand (X, MODE))
7509c759 1961
258bfae2 1962#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
f045b2c9 1963 (GET_CODE (X) == CONST_INT \
5b6f7b96 1964 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
f045b2c9 1965
258bfae2
FS
1966#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
1967 (GET_CODE (X) == PLUS \
1968 && GET_CODE (XEXP (X, 0)) == REG \
1969 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1970 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
0ac081f6 1971 && (! ALTIVEC_VECTOR_MODE (MODE) || INTVAL (X) == 0) \
258bfae2
FS
1972 && (((MODE) != DFmode && (MODE) != DImode) \
1973 || (TARGET_32BIT \
1974 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1975 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1976 && ((MODE) != TImode \
1977 || (TARGET_32BIT \
1978 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1979 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1465faec 1980 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9 1981
258bfae2
FS
1982#define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
1983 (GET_CODE (X) == PLUS \
1984 && GET_CODE (XEXP (X, 0)) == REG \
1985 && GET_CODE (XEXP (X, 1)) == REG \
1986 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
1987 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
1988 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
1989 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
1990
1991#define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
1992 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
1993
6ac7bf2c
GK
1994#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
1995 (TARGET_ELF \
1996 && ! flag_pic && ! TARGET_TOC \
1997 && GET_MODE_NUNITS (MODE) == 1 \
1998 && (GET_MODE_BITSIZE (MODE) <= 32 \
c3bb62b9 1999 || (TARGET_HARD_FLOAT && (MODE) == DFmode)) \
6ac7bf2c
GK
2000 && GET_CODE (X) == LO_SUM \
2001 && GET_CODE (XEXP (X, 0)) == REG \
2002 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
4697a36c
MM
2003 && CONSTANT_P (XEXP (X, 1)))
2004
258bfae2
FS
2005#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2006{ if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2007 goto ADDR; \
f045b2c9
RS
2008}
2009\f
2010/* Try machine-dependent ways of modifying an illegitimate address
2011 to be legitimate. If we find one, return the new, valid address.
2012 This macro is used in only one place: `memory_address' in explow.c.
2013
2014 OLDX is the address as it was before break_out_memory_refs was called.
2015 In some cases it is useful to look at this to decide what needs to be done.
2016
2017 MODE and WIN are passed so that this macro can use
2018 GO_IF_LEGITIMATE_ADDRESS.
2019
2020 It is always safe for this macro to do nothing. It exists to recognize
2021 opportunities to optimize the output.
2022
2023 On RS/6000, first check for the sum of a register with a constant
2024 integer that is out of range. If so, generate code to add the
2025 constant with the low-order 16 bits masked to the register and force
2026 this result into another register (this can be done with `cau').
c81bebd7 2027 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
2028 possibility of bit 16 being a one.
2029
2030 Then check for the sum of a register and something not constant, try to
2031 load the other things into a register and return the sum. */
2032
9ebbca7d
GK
2033#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2034{ rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2035 if (result != NULL_RTX) \
2036 { \
2037 (X) = result; \
2038 goto WIN; \
2039 } \
f045b2c9
RS
2040}
2041
a260abc9
DE
2042/* Try a machine-dependent way of reloading an illegitimate address
2043 operand. If we find one, push the reload and jump to WIN. This
2044 macro is used in only one place: `find_reloads_address' in reload.c.
2045
24ea750e
DJ
2046 Implemented on rs6000 by rs6000_legitimize_reload_address.
2047 Note that (X) is evaluated twice; this is safe in current usage. */
a260abc9 2048
a9098fd0
GK
2049#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2050do { \
24ea750e
DJ
2051 int win; \
2052 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2053 (int)(TYPE), (IND_LEVELS), &win); \
2054 if ( win ) \
2055 goto WIN; \
a260abc9
DE
2056} while (0)
2057
f045b2c9
RS
2058/* Go to LABEL if ADDR (a legitimate address expression)
2059 has an effect that depends on the machine mode it is used for.
2060
2061 On the RS/6000 this is true if the address is valid with a zero offset
2062 but not with an offset of four (this means it cannot be used as an
2063 address for DImode or DFmode) or is a pre-increment or decrement. Since
2064 we know it is valid, we just check for an address that is not valid with
2065 an offset of four. */
2066
2067#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2068{ if (GET_CODE (ADDR) == PLUS \
2069 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
2070 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2071 (TARGET_32BIT ? 4 : 8))) \
f045b2c9 2072 goto LABEL; \
38c1f2d7 2073 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
f045b2c9 2074 goto LABEL; \
38c1f2d7 2075 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
f045b2c9 2076 goto LABEL; \
4697a36c
MM
2077 if (GET_CODE (ADDR) == LO_SUM) \
2078 goto LABEL; \
f045b2c9 2079}
766a866c
MM
2080\f
2081/* The register number of the register used to address a table of
2082 static data addresses in memory. In some cases this register is
2083 defined by a processor's "application binary interface" (ABI).
2084 When this macro is defined, RTL is generated for this register
2085 once, as with the stack pointer and frame pointer registers. If
2086 this macro is not defined, it is up to the machine-dependent files
2087 to allocate such a register (if necessary). */
2088
8d30c4ee 2089#define PIC_OFFSET_TABLE_REGNUM 30
766a866c 2090
9ebbca7d
GK
2091#define TOC_REGISTER (TARGET_MINIMAL_TOC ? 30 : 2)
2092
766a866c
MM
2093/* Define this macro if the register defined by
2094 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
089a05b8 2095 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
766a866c
MM
2096
2097/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2098
2099/* By generating position-independent code, when two different
2100 programs (A and B) share a common library (libC.a), the text of
2101 the library can be shared whether or not the library is linked at
2102 the same address for both programs. In some of these
2103 environments, position-independent code requires not only the use
2104 of different addressing modes, but also special code to enable the
2105 use of these addressing modes.
2106
2107 The `FINALIZE_PIC' macro serves as a hook to emit these special
2108 codes once the function is being compiled into assembly code, but
2109 not before. (It is not done before, because in the case of
2110 compiling an inline function, it would lead to multiple PIC
2111 prologues being included in functions which used inline functions
2112 and were compiled to assembly language.) */
2113
8d30c4ee 2114/* #define FINALIZE_PIC */
766a866c 2115
766a866c
MM
2116/* A C expression that is nonzero if X is a legitimate immediate
2117 operand on the target machine when generating position independent
2118 code. You can assume that X satisfies `CONSTANT_P', so you need
2119 not check this. You can also assume FLAG_PIC is true, so you need
2120 not check it either. You need not define this macro if all
2121 constants (including `SYMBOL_REF') can be immediate operands when
2122 generating position independent code. */
2123
2124/* #define LEGITIMATE_PIC_OPERAND_P (X) */
2125
30ea98f1
MM
2126/* In rare cases, correct code generation requires extra machine
2127 dependent processing between the second jump optimization pass and
2128 delayed branch scheduling. On those machines, define this macro
9ebbca7d 2129 as a C statement to act on the code starting at INSN. */
30ea98f1 2130
9ebbca7d 2131/* #define MACHINE_DEPENDENT_REORG(INSN) */
30ea98f1 2132
f045b2c9
RS
2133\f
2134/* Define this if some processing needs to be done immediately before
4255474b 2135 emitting code for an insn. */
f045b2c9 2136
4255474b 2137/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
2138
2139/* Specify the machine mode that this machine uses
2140 for the index in the tablejump instruction. */
e1565e65 2141#define CASE_VECTOR_MODE SImode
f045b2c9 2142
18543a22
ILT
2143/* Define as C expression which evaluates to nonzero if the tablejump
2144 instruction expects the table to contain offsets from the address of the
2145 table.
82e41834 2146 Do not define this if the table should contain absolute addresses. */
18543a22 2147#define CASE_VECTOR_PC_RELATIVE 1
f045b2c9 2148
f045b2c9
RS
2149/* Define this as 1 if `char' should by default be signed; else as 0. */
2150#define DEFAULT_SIGNED_CHAR 0
2151
2152/* This flag, if defined, says the same insns that convert to a signed fixnum
2153 also convert validly to an unsigned one. */
2154
2155/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2156
2157/* Max number of bytes we can move from memory to memory
2158 in one reasonably fast instruction. */
2f3e5814 2159#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 2160#define MAX_MOVE_MAX 8
f045b2c9
RS
2161
2162/* Nonzero if access to memory by bytes is no faster than for words.
2163 Also non-zero if doing byte operations (specifically shifts) in registers
2164 is undesirable. */
2165#define SLOW_BYTE_ACCESS 1
2166
9a63901f
RK
2167/* Define if operations between registers always perform the operation
2168 on the full register even if a narrower mode is specified. */
2169#define WORD_REGISTER_OPERATIONS
2170
2171/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2172 will either zero-extend or sign-extend. The value of this macro should
2173 be the code that says which one of the two operations is implicitly
2174 done, NIL if none. */
2175#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
2176
2177/* Define if loading short immediate values into registers sign extends. */
2178#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba 2179\f
f045b2c9
RS
2180/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2181 is done just by pretending it is already truncated. */
2182#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2183
2184/* Specify the machine mode that pointers have.
2185 After generation of rtl, the compiler makes no further distinction
2186 between pointers and any other objects of this machine mode. */
2f3e5814 2187#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2188
2189/* Mode of a function address in a call instruction (for indexing purposes).
f045b2c9 2190 Doesn't matter on RS/6000. */
2f3e5814 2191#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2192
2193/* Define this if addresses of constant functions
2194 shouldn't be put through pseudo regs where they can be cse'd.
2195 Desirable on machines where ordinary constants are expensive
2196 but a CALL with constant address is cheap. */
2197#define NO_FUNCTION_CSE
2198
d969caf8 2199/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2200 few bits.
2201
2202 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2203 have been dropped from the PowerPC architecture. */
2204
4697a36c 2205#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9 2206
f045b2c9
RS
2207/* Compute the cost of computing a constant rtl expression RTX
2208 whose rtx-code is CODE. The body of this macro is a portion
2209 of a switch statement. If the code is computed here,
2210 return it with a return statement. Otherwise, break from the switch.
2211
01554f00 2212 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2213 always returns 0. */
2214
4697a36c 2215#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2216 case CONST_INT: \
2217 case CONST: \
2218 case LABEL_REF: \
2219 case SYMBOL_REF: \
2220 case CONST_DOUBLE: \
4697a36c 2221 case HIGH: \
f045b2c9
RS
2222 return 0;
2223
2224/* Provide the costs of a rtl expression. This is in the body of a
2225 switch on CODE. */
2226
38c1f2d7
MM
2227#define RTX_COSTS(X,CODE,OUTER_CODE) \
2228 case PLUS: \
2229 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
a260abc9
DE
2230 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2231 + 0x8000) >= 0x10000) \
296b8152 2232 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2233 ? COSTS_N_INSNS (2) \
2234 : COSTS_N_INSNS (1)); \
2235 case AND: \
38c1f2d7
MM
2236 case IOR: \
2237 case XOR: \
a260abc9
DE
2238 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2239 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
296b8152 2240 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
38c1f2d7
MM
2241 ? COSTS_N_INSNS (2) \
2242 : COSTS_N_INSNS (1)); \
2243 case MULT: \
2244 switch (rs6000_cpu) \
2245 { \
2246 case PROCESSOR_RIOS1: \
fe7f5677 2247 case PROCESSOR_PPC405: \
38c1f2d7
MM
2248 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2249 ? COSTS_N_INSNS (5) \
2250 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2251 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
3cb999d8
DE
2252 case PROCESSOR_RS64A: \
2253 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2254 ? GET_MODE (XEXP (X, 1)) != DImode \
2255 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2256 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
fe7f5677 2257 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (12)); \
38c1f2d7
MM
2258 case PROCESSOR_RIOS2: \
2259 case PROCESSOR_MPCCORE: \
5a41b476 2260 case PROCESSOR_PPC604e: \
38c1f2d7
MM
2261 return COSTS_N_INSNS (2); \
2262 case PROCESSOR_PPC601: \
2263 return COSTS_N_INSNS (5); \
2264 case PROCESSOR_PPC603: \
7960cfbb 2265 case PROCESSOR_PPC7400: \
bef84347 2266 case PROCESSOR_PPC750: \
38c1f2d7
MM
2267 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2268 ? COSTS_N_INSNS (5) \
2269 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2270 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
fd3b43f2
DJ
2271 case PROCESSOR_PPC7450: \
2272 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2273 ? COSTS_N_INSNS (4) \
2274 : COSTS_N_INSNS (3)); \
38c1f2d7
MM
2275 case PROCESSOR_PPC403: \
2276 case PROCESSOR_PPC604: \
38c1f2d7 2277 return COSTS_N_INSNS (4); \
3cb999d8
DE
2278 case PROCESSOR_PPC620: \
2279 case PROCESSOR_PPC630: \
2280 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2281 ? GET_MODE (XEXP (X, 1)) != DImode \
fe7f5677 2282 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (7) \
3cb999d8
DE
2283 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2284 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
38c1f2d7
MM
2285 } \
2286 case DIV: \
2287 case MOD: \
2288 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2289 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2290 return COSTS_N_INSNS (2); \
2291 /* otherwise fall through to normal divide. */ \
2292 case UDIV: \
2293 case UMOD: \
2294 switch (rs6000_cpu) \
2295 { \
2296 case PROCESSOR_RIOS1: \
2297 return COSTS_N_INSNS (19); \
2298 case PROCESSOR_RIOS2: \
2299 return COSTS_N_INSNS (13); \
3cb999d8
DE
2300 case PROCESSOR_RS64A: \
2301 return (GET_MODE (XEXP (X, 1)) != DImode \
2302 ? COSTS_N_INSNS (65) \
2303 : COSTS_N_INSNS (67)); \
38c1f2d7
MM
2304 case PROCESSOR_MPCCORE: \
2305 return COSTS_N_INSNS (6); \
2306 case PROCESSOR_PPC403: \
2307 return COSTS_N_INSNS (33); \
fe7f5677
DE
2308 case PROCESSOR_PPC405: \
2309 return COSTS_N_INSNS (35); \
38c1f2d7
MM
2310 case PROCESSOR_PPC601: \
2311 return COSTS_N_INSNS (36); \
2312 case PROCESSOR_PPC603: \
2313 return COSTS_N_INSNS (37); \
2314 case PROCESSOR_PPC604: \
5a41b476 2315 case PROCESSOR_PPC604e: \
38c1f2d7 2316 return COSTS_N_INSNS (20); \
3cb999d8
DE
2317 case PROCESSOR_PPC620: \
2318 case PROCESSOR_PPC630: \
2319 return (GET_MODE (XEXP (X, 1)) != DImode \
2320 ? COSTS_N_INSNS (21) \
2321 : COSTS_N_INSNS (37)); \
bef84347 2322 case PROCESSOR_PPC750: \
ed947a96 2323 case PROCESSOR_PPC7400: \
bef84347 2324 return COSTS_N_INSNS (19); \
ed947a96
DJ
2325 case PROCESSOR_PPC7450: \
2326 return COSTS_N_INSNS (23); \
38c1f2d7
MM
2327 } \
2328 case FFS: \
2329 return COSTS_N_INSNS (4); \
2330 case MEM: \
f045b2c9
RS
2331 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2332 return 5;
2333
2334/* Compute the cost of an address. This is meant to approximate the size
2335 and/or execution delay of an insn using that address. If the cost is
2336 approximated by the RTL complexity, including CONST_COSTS above, as
2337 is usually the case for CISC machines, this macro should not be defined.
2338 For aggressively RISCy machines, only one insn format is allowed, so
2339 this macro should be a constant. The value of this macro only matters
2340 for valid addresses.
2341
2342 For the RS/6000, everything is cost 0. */
2343
2344#define ADDRESS_COST(RTX) 0
2345
2346/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2347 should be adjusted to reflect any required changes. This macro is used when
2348 there is some systematic length adjustment required that would be difficult
2349 to express in the length attribute. */
2350
2351/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2352
2353/* Add any extra modes needed to represent the condition code.
2354
2355 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2356 are being done and we need a separate mode for floating-point. We also
2357 use a mode for the case when we are comparing the results of two
39a10a29 2358 comparisons, as then only the EQ bit is valid in the register. */
f045b2c9 2359
aa0b4465
ZW
2360#define EXTRA_CC_MODES \
2361 CC(CCUNSmode, "CCUNS") \
2362 CC(CCFPmode, "CCFP") \
2363 CC(CCEQmode, "CCEQ")
f045b2c9 2364
39a10a29
GK
2365/* Given a comparison code (EQ, NE, etc.) and the first operand of a
2366 COMPARE, return the mode to be used for the comparison. For
2367 floating-point, CCFPmode should be used. CCUNSmode should be used
2368 for unsigned comparisons. CCEQmode should be used when we are
2369 doing an inequality comparison on the result of a
2370 comparison. CCmode should be used in all other cases. */
c5defebb 2371
b565a316 2372#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2373 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2374 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2375 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2376 ? CCEQmode : CCmode))
f045b2c9
RS
2377
2378/* Define the information needed to generate branch and scc insns. This is
2379 stored from the compare operation. Note that we can't use "rtx" here
2380 since it hasn't been defined! */
2381
2382extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2383extern int rs6000_compare_fp_p;
f045b2c9
RS
2384\f
2385/* Control the assembler format that we output. */
2386
1b279f39
DE
2387/* A C string constant describing how to begin a comment in the target
2388 assembler language. The compiler assumes that the comment will end at
2389 the end of the line. */
2390#define ASM_COMMENT_START " #"
6b67933e 2391
fdaff8ba
RS
2392/* Implicit library calls should use memcpy, not bcopy, etc. */
2393
2394#define TARGET_MEM_FUNCTIONS
2395
38c1f2d7
MM
2396/* Flag to say the TOC is initialized */
2397extern int toc_initialized;
2398
f045b2c9
RS
2399/* Macro to output a special constant pool entry. Go to WIN if we output
2400 it. Otherwise, it is written the usual way.
2401
2402 On the RS/6000, toc entries are handled this way. */
2403
a9098fd0
GK
2404#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2405{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2406 { \
2407 output_toc (FILE, X, LABELNO, MODE); \
2408 goto WIN; \
2409 } \
f045b2c9
RS
2410}
2411
ebd97b96
DE
2412#ifdef HAVE_GAS_WEAK
2413#define RS6000_WEAK 1
2414#else
2415#define RS6000_WEAK 0
2416#endif
290ad355 2417
ebd97b96 2418/* This implementes the `alias' attribute. */
9ebbca7d
GK
2419#define ASM_OUTPUT_DEF_FROM_DECLS(FILE,decl,target) \
2420do { \
53cd5d6c 2421 const char * alias = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
9ebbca7d
GK
2422 char * name = IDENTIFIER_POINTER (target); \
2423 if (TREE_CODE (decl) == FUNCTION_DECL \
2424 && DEFAULT_ABI == ABI_AIX) \
2425 { \
2426 if (TREE_PUBLIC (decl)) \
2427 { \
ebd97b96
DE
2428 if (RS6000_WEAK && DECL_WEAK (decl)) \
2429 { \
2430 fputs ("\t.weak .", FILE); \
2431 assemble_name (FILE, alias); \
2432 putc ('\n', FILE); \
2433 } \
2434 else \
2435 { \
2436 fputs ("\t.globl .", FILE); \
2437 assemble_name (FILE, alias); \
2438 putc ('\n', FILE); \
2439 } \
9ebbca7d
GK
2440 } \
2441 else \
2442 { \
2443 fputs ("\t.lglobl .", FILE); \
2444 assemble_name (FILE, alias); \
2445 putc ('\n', FILE); \
2446 } \
2447 fputs ("\t.set .", FILE); \
2448 assemble_name (FILE, alias); \
2449 fputs (",.", FILE); \
2450 assemble_name (FILE, name); \
2451 fputc ('\n', FILE); \
2452 } \
2453 ASM_OUTPUT_DEF (FILE, alias, name); \
290ad355
RH
2454} while (0)
2455
f045b2c9
RS
2456/* Output to assembler file text saying following lines
2457 may contain character constants, extra white space, comments, etc. */
2458
2459#define ASM_APP_ON ""
2460
2461/* Output to assembler file text saying following lines
2462 no longer contain unusual constructs. */
2463
2464#define ASM_APP_OFF ""
2465
f045b2c9
RS
2466/* How to refer to registers in assembler output.
2467 This sequence is indexed by compiler's hard-register-number (see above). */
2468
82e41834 2469extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2470
2471#define REGISTER_NAMES \
2472{ \
2473 &rs6000_reg_names[ 0][0], /* r0 */ \
2474 &rs6000_reg_names[ 1][0], /* r1 */ \
2475 &rs6000_reg_names[ 2][0], /* r2 */ \
2476 &rs6000_reg_names[ 3][0], /* r3 */ \
2477 &rs6000_reg_names[ 4][0], /* r4 */ \
2478 &rs6000_reg_names[ 5][0], /* r5 */ \
2479 &rs6000_reg_names[ 6][0], /* r6 */ \
2480 &rs6000_reg_names[ 7][0], /* r7 */ \
2481 &rs6000_reg_names[ 8][0], /* r8 */ \
2482 &rs6000_reg_names[ 9][0], /* r9 */ \
2483 &rs6000_reg_names[10][0], /* r10 */ \
2484 &rs6000_reg_names[11][0], /* r11 */ \
2485 &rs6000_reg_names[12][0], /* r12 */ \
2486 &rs6000_reg_names[13][0], /* r13 */ \
2487 &rs6000_reg_names[14][0], /* r14 */ \
2488 &rs6000_reg_names[15][0], /* r15 */ \
2489 &rs6000_reg_names[16][0], /* r16 */ \
2490 &rs6000_reg_names[17][0], /* r17 */ \
2491 &rs6000_reg_names[18][0], /* r18 */ \
2492 &rs6000_reg_names[19][0], /* r19 */ \
2493 &rs6000_reg_names[20][0], /* r20 */ \
2494 &rs6000_reg_names[21][0], /* r21 */ \
2495 &rs6000_reg_names[22][0], /* r22 */ \
2496 &rs6000_reg_names[23][0], /* r23 */ \
2497 &rs6000_reg_names[24][0], /* r24 */ \
2498 &rs6000_reg_names[25][0], /* r25 */ \
2499 &rs6000_reg_names[26][0], /* r26 */ \
2500 &rs6000_reg_names[27][0], /* r27 */ \
2501 &rs6000_reg_names[28][0], /* r28 */ \
2502 &rs6000_reg_names[29][0], /* r29 */ \
2503 &rs6000_reg_names[30][0], /* r30 */ \
2504 &rs6000_reg_names[31][0], /* r31 */ \
2505 \
2506 &rs6000_reg_names[32][0], /* fr0 */ \
2507 &rs6000_reg_names[33][0], /* fr1 */ \
2508 &rs6000_reg_names[34][0], /* fr2 */ \
2509 &rs6000_reg_names[35][0], /* fr3 */ \
2510 &rs6000_reg_names[36][0], /* fr4 */ \
2511 &rs6000_reg_names[37][0], /* fr5 */ \
2512 &rs6000_reg_names[38][0], /* fr6 */ \
2513 &rs6000_reg_names[39][0], /* fr7 */ \
2514 &rs6000_reg_names[40][0], /* fr8 */ \
2515 &rs6000_reg_names[41][0], /* fr9 */ \
2516 &rs6000_reg_names[42][0], /* fr10 */ \
2517 &rs6000_reg_names[43][0], /* fr11 */ \
2518 &rs6000_reg_names[44][0], /* fr12 */ \
2519 &rs6000_reg_names[45][0], /* fr13 */ \
2520 &rs6000_reg_names[46][0], /* fr14 */ \
2521 &rs6000_reg_names[47][0], /* fr15 */ \
2522 &rs6000_reg_names[48][0], /* fr16 */ \
2523 &rs6000_reg_names[49][0], /* fr17 */ \
2524 &rs6000_reg_names[50][0], /* fr18 */ \
2525 &rs6000_reg_names[51][0], /* fr19 */ \
2526 &rs6000_reg_names[52][0], /* fr20 */ \
2527 &rs6000_reg_names[53][0], /* fr21 */ \
2528 &rs6000_reg_names[54][0], /* fr22 */ \
2529 &rs6000_reg_names[55][0], /* fr23 */ \
2530 &rs6000_reg_names[56][0], /* fr24 */ \
2531 &rs6000_reg_names[57][0], /* fr25 */ \
2532 &rs6000_reg_names[58][0], /* fr26 */ \
2533 &rs6000_reg_names[59][0], /* fr27 */ \
2534 &rs6000_reg_names[60][0], /* fr28 */ \
2535 &rs6000_reg_names[61][0], /* fr29 */ \
2536 &rs6000_reg_names[62][0], /* fr30 */ \
2537 &rs6000_reg_names[63][0], /* fr31 */ \
2538 \
2539 &rs6000_reg_names[64][0], /* mq */ \
2540 &rs6000_reg_names[65][0], /* lr */ \
2541 &rs6000_reg_names[66][0], /* ctr */ \
2542 &rs6000_reg_names[67][0], /* ap */ \
2543 \
2544 &rs6000_reg_names[68][0], /* cr0 */ \
2545 &rs6000_reg_names[69][0], /* cr1 */ \
2546 &rs6000_reg_names[70][0], /* cr2 */ \
2547 &rs6000_reg_names[71][0], /* cr3 */ \
2548 &rs6000_reg_names[72][0], /* cr4 */ \
2549 &rs6000_reg_names[73][0], /* cr5 */ \
2550 &rs6000_reg_names[74][0], /* cr6 */ \
2551 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058 2552 \
9ebbca7d 2553 &rs6000_reg_names[76][0], /* xer */ \
0ac081f6
AH
2554 \
2555 &rs6000_reg_names[77][0], /* v0 */ \
2556 &rs6000_reg_names[78][0], /* v1 */ \
2557 &rs6000_reg_names[79][0], /* v2 */ \
2558 &rs6000_reg_names[80][0], /* v3 */ \
2559 &rs6000_reg_names[81][0], /* v4 */ \
2560 &rs6000_reg_names[82][0], /* v5 */ \
2561 &rs6000_reg_names[83][0], /* v6 */ \
2562 &rs6000_reg_names[84][0], /* v7 */ \
2563 &rs6000_reg_names[85][0], /* v8 */ \
2564 &rs6000_reg_names[86][0], /* v9 */ \
2565 &rs6000_reg_names[87][0], /* v10 */ \
2566 &rs6000_reg_names[88][0], /* v11 */ \
2567 &rs6000_reg_names[89][0], /* v12 */ \
2568 &rs6000_reg_names[90][0], /* v13 */ \
2569 &rs6000_reg_names[91][0], /* v14 */ \
2570 &rs6000_reg_names[92][0], /* v15 */ \
2571 &rs6000_reg_names[93][0], /* v16 */ \
2572 &rs6000_reg_names[94][0], /* v17 */ \
2573 &rs6000_reg_names[95][0], /* v18 */ \
2574 &rs6000_reg_names[96][0], /* v19 */ \
2575 &rs6000_reg_names[97][0], /* v20 */ \
2576 &rs6000_reg_names[98][0], /* v21 */ \
2577 &rs6000_reg_names[99][0], /* v22 */ \
2578 &rs6000_reg_names[100][0], /* v23 */ \
2579 &rs6000_reg_names[101][0], /* v24 */ \
2580 &rs6000_reg_names[102][0], /* v25 */ \
2581 &rs6000_reg_names[103][0], /* v26 */ \
2582 &rs6000_reg_names[104][0], /* v27 */ \
2583 &rs6000_reg_names[105][0], /* v28 */ \
2584 &rs6000_reg_names[106][0], /* v29 */ \
2585 &rs6000_reg_names[107][0], /* v30 */ \
2586 &rs6000_reg_names[108][0], /* v31 */ \
2587 &rs6000_reg_names[109][0], /* vrsave */ \
c81bebd7
MM
2588}
2589
2590/* print-rtl can't handle the above REGISTER_NAMES, so define the
2591 following for it. Switch to use the alternate names since
2592 they are more mnemonic. */
2593
2594#define DEBUG_REGISTER_NAMES \
2595{ \
802a0058
MM
2596 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2597 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2598 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2599 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2600 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2601 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2602 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2603 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2604 "mq", "lr", "ctr", "ap", \
2605 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
0ac081f6
AH
2606 "xer", \
2607 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2608 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2609 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2610 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2611 "vrsave" \
c81bebd7 2612}
f045b2c9
RS
2613
2614/* Table of additional register names to use in user input. */
2615
2616#define ADDITIONAL_REGISTER_NAMES \
c4d38ccb
MM
2617 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2618 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2619 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2620 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2621 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2622 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2623 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2624 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2625 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2626 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2627 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2628 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2629 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2630 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2631 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2632 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
0ac081f6
AH
2633 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2634 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2635 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2636 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2637 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2638 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2639 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2640 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2641 {"vrsave", 109}, \
c4d38ccb
MM
2642 /* no additional names for: mq, lr, ctr, ap */ \
2643 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2644 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2645 {"cc", 68}, {"sp", 1}, {"toc", 2} }
f045b2c9 2646
0da40b09
RK
2647/* Text to write out after a CALL that may be replaced by glue code by
2648 the loader. This depends on the AIX version. */
2649#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2650
f045b2c9
RS
2651/* This is how to output an element of a case-vector that is relative. */
2652
e1565e65 2653#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3daf36a4 2654 do { char buf[100]; \
e1565e65 2655 fputs ("\t.long ", FILE); \
3daf36a4
ILT
2656 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2657 assemble_name (FILE, buf); \
19d2d16f 2658 putc ('-', FILE); \
3daf36a4
ILT
2659 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2660 assemble_name (FILE, buf); \
19d2d16f 2661 putc ('\n', FILE); \
3daf36a4 2662 } while (0)
f045b2c9
RS
2663
2664/* This is how to output an assembler line
2665 that says to advance the location counter
2666 to a multiple of 2**LOG bytes. */
2667
2668#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2669 if ((LOG) != 0) \
2670 fprintf (FILE, "\t.align %d\n", (LOG))
2671
f045b2c9
RS
2672/* Store in OUTPUT a string (made with alloca) containing
2673 an assembler-name for a local static variable named NAME.
2674 LABELNO is an integer which is different for each call. */
2675
2676#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2677( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2678 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2679
9ebbca7d
GK
2680/* Pick up the return address upon entry to a procedure. Used for
2681 dwarf2 unwind information. This also enables the table driven
2682 mechanism. */
2683
2684#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
8034da37 2685#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
9ebbca7d 2686
83720594
RH
2687/* Describe how we implement __builtin_eh_return. */
2688#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2689#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2690
f045b2c9
RS
2691/* Print operand X (an rtx) in assembler syntax to file FILE.
2692 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2693 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2694
2695#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2696
2697/* Define which CODE values are valid. */
2698
c81bebd7 2699#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
6fa3f289 2700 ((CODE) == '.')
f045b2c9
RS
2701
2702/* Print a memory address as an operand to reference that memory location. */
2703
2704#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2705
2706/* Define the codes that are matched by predicates in rs6000.c. */
2707
39a10a29
GK
2708#define PREDICATE_CODES \
2709 {"short_cint_operand", {CONST_INT}}, \
2710 {"u_short_cint_operand", {CONST_INT}}, \
2711 {"non_short_cint_operand", {CONST_INT}}, \
2bfcf297 2712 {"exact_log2_cint_operand", {CONST_INT}}, \
39a10a29
GK
2713 {"gpc_reg_operand", {SUBREG, REG}}, \
2714 {"cc_reg_operand", {SUBREG, REG}}, \
2715 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2716 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2717 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
768070a0 2718 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
39a10a29
GK
2719 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2720 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2721 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2bfcf297
DB
2722 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2723 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
1d328b19 2724 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2725 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2726 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2727 {"easy_fp_constant", {CONST_DOUBLE}}, \
50a0b056 2728 {"zero_fp_constant", {CONST_DOUBLE}}, \
39a10a29
GK
2729 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2730 {"lwa_operand", {SUBREG, MEM, REG}}, \
2731 {"volatile_mem_operand", {MEM}}, \
2732 {"offsettable_mem_operand", {MEM}}, \
2733 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2734 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2735 {"non_add_cint_operand", {CONST_INT}}, \
2736 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2737 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2738 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2739 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2740 {"mask_operand", {CONST_INT}}, \
2741 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
39a10a29
GK
2742 {"count_register_operand", {REG}}, \
2743 {"xer_operand", {REG}}, \
2744 {"call_operand", {SYMBOL_REF, REG}}, \
2745 {"current_file_function_operand", {SYMBOL_REF}}, \
2746 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2747 CONST_DOUBLE, SYMBOL_REF}}, \
2748 {"load_multiple_operation", {PARALLEL}}, \
2749 {"store_multiple_operation", {PARALLEL}}, \
00b960c7 2750 {"vrsave_operation", {PARALLEL}}, \
39a10a29
GK
2751 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2752 GT, LEU, LTU, GEU, GTU, \
2753 UNORDERED, ORDERED, \
2754 UNGE, UNLE }}, \
2755 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2756 UNORDERED }}, \
2757 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2758 GT, LEU, LTU, GEU, GTU, \
2759 UNORDERED, ORDERED, \
2760 UNGE, UNLE }}, \
2761 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2762 GT, LEU, LTU, GEU, GTU}}, \
2763 {"boolean_operator", {AND, IOR, XOR}}, \
50a0b056 2764 {"boolean_or_operator", {IOR, XOR}}, \
0ec4e2a8 2765 {"altivec_register_operand", {REG}}, \
50a0b056 2766 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
75814ad4 2767
b6c9286a
MM
2768/* uncomment for disabling the corresponding default options */
2769/* #define MACHINE_no_sched_interblock */
2770/* #define MACHINE_no_sched_speculative */
2771/* #define MACHINE_no_sched_speculative_load */
2772
766a866c
MM
2773/* General flags. */
2774extern int flag_pic;
354b734b
MM
2775extern int optimize;
2776extern int flag_expensive_optimizations;
a7df97e6 2777extern int frame_pointer_needed;
0ac081f6
AH
2778
2779enum rs6000_builtins
2780{
2781 /* AltiVec builtins. */
f18c054f
DB
2782 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2783 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2784 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2785 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2786 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2787 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2788 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2789 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
0ac081f6
AH
2790 ALTIVEC_BUILTIN_VADDUBM,
2791 ALTIVEC_BUILTIN_VADDUHM,
2792 ALTIVEC_BUILTIN_VADDUWM,
2793 ALTIVEC_BUILTIN_VADDFP,
2794 ALTIVEC_BUILTIN_VADDCUW,
2795 ALTIVEC_BUILTIN_VADDUBS,
2796 ALTIVEC_BUILTIN_VADDSBS,
2797 ALTIVEC_BUILTIN_VADDUHS,
2798 ALTIVEC_BUILTIN_VADDSHS,
2799 ALTIVEC_BUILTIN_VADDUWS,
2800 ALTIVEC_BUILTIN_VADDSWS,
2801 ALTIVEC_BUILTIN_VAND,
2802 ALTIVEC_BUILTIN_VANDC,
2803 ALTIVEC_BUILTIN_VAVGUB,
2804 ALTIVEC_BUILTIN_VAVGSB,
2805 ALTIVEC_BUILTIN_VAVGUH,
2806 ALTIVEC_BUILTIN_VAVGSH,
2807 ALTIVEC_BUILTIN_VAVGUW,
2808 ALTIVEC_BUILTIN_VAVGSW,
617e0e1d
DB
2809 ALTIVEC_BUILTIN_VCFUX,
2810 ALTIVEC_BUILTIN_VCFSX,
2811 ALTIVEC_BUILTIN_VCTSXS,
2812 ALTIVEC_BUILTIN_VCTUXS,
0ac081f6
AH
2813 ALTIVEC_BUILTIN_VCMPBFP,
2814 ALTIVEC_BUILTIN_VCMPEQUB,
2815 ALTIVEC_BUILTIN_VCMPEQUH,
2816 ALTIVEC_BUILTIN_VCMPEQUW,
2817 ALTIVEC_BUILTIN_VCMPEQFP,
2818 ALTIVEC_BUILTIN_VCMPGEFP,
2819 ALTIVEC_BUILTIN_VCMPGTUB,
2820 ALTIVEC_BUILTIN_VCMPGTSB,
2821 ALTIVEC_BUILTIN_VCMPGTUH,
2822 ALTIVEC_BUILTIN_VCMPGTSH,
2823 ALTIVEC_BUILTIN_VCMPGTUW,
2824 ALTIVEC_BUILTIN_VCMPGTSW,
2825 ALTIVEC_BUILTIN_VCMPGTFP,
617e0e1d
DB
2826 ALTIVEC_BUILTIN_VEXPTEFP,
2827 ALTIVEC_BUILTIN_VLOGEFP,
2212663f 2828 ALTIVEC_BUILTIN_VMADDFP,
0ac081f6
AH
2829 ALTIVEC_BUILTIN_VMAXUB,
2830 ALTIVEC_BUILTIN_VMAXSB,
2831 ALTIVEC_BUILTIN_VMAXUH,
2832 ALTIVEC_BUILTIN_VMAXSH,
2833 ALTIVEC_BUILTIN_VMAXUW,
2834 ALTIVEC_BUILTIN_VMAXSW,
2835 ALTIVEC_BUILTIN_VMAXFP,
2212663f
DB
2836 ALTIVEC_BUILTIN_VMHADDSHS,
2837 ALTIVEC_BUILTIN_VMHRADDSHS,
2838 ALTIVEC_BUILTIN_VMLADDUHM,
0ac081f6
AH
2839 ALTIVEC_BUILTIN_VMRGHB,
2840 ALTIVEC_BUILTIN_VMRGHH,
2841 ALTIVEC_BUILTIN_VMRGHW,
2842 ALTIVEC_BUILTIN_VMRGLB,
2843 ALTIVEC_BUILTIN_VMRGLH,
2844 ALTIVEC_BUILTIN_VMRGLW,
2212663f
DB
2845 ALTIVEC_BUILTIN_VMSUMUBM,
2846 ALTIVEC_BUILTIN_VMSUMMBM,
2847 ALTIVEC_BUILTIN_VMSUMUHM,
2848 ALTIVEC_BUILTIN_VMSUMSHM,
2849 ALTIVEC_BUILTIN_VMSUMUHS,
2850 ALTIVEC_BUILTIN_VMSUMSHS,
0ac081f6
AH
2851 ALTIVEC_BUILTIN_VMINUB,
2852 ALTIVEC_BUILTIN_VMINSB,
2853 ALTIVEC_BUILTIN_VMINUH,
2854 ALTIVEC_BUILTIN_VMINSH,
2855 ALTIVEC_BUILTIN_VMINUW,
2856 ALTIVEC_BUILTIN_VMINSW,
2857 ALTIVEC_BUILTIN_VMINFP,
2858 ALTIVEC_BUILTIN_VMULEUB,
2859 ALTIVEC_BUILTIN_VMULESB,
2860 ALTIVEC_BUILTIN_VMULEUH,
2861 ALTIVEC_BUILTIN_VMULESH,
2862 ALTIVEC_BUILTIN_VMULOUB,
2863 ALTIVEC_BUILTIN_VMULOSB,
2864 ALTIVEC_BUILTIN_VMULOUH,
2865 ALTIVEC_BUILTIN_VMULOSH,
2212663f 2866 ALTIVEC_BUILTIN_VNMSUBFP,
0ac081f6
AH
2867 ALTIVEC_BUILTIN_VNOR,
2868 ALTIVEC_BUILTIN_VOR,
617e0e1d
DB
2869 ALTIVEC_BUILTIN_VSEL_4SI,
2870 ALTIVEC_BUILTIN_VSEL_4SF,
2871 ALTIVEC_BUILTIN_VSEL_8HI,
2872 ALTIVEC_BUILTIN_VSEL_16QI,
2212663f
DB
2873 ALTIVEC_BUILTIN_VPERM_4SI,
2874 ALTIVEC_BUILTIN_VPERM_4SF,
2875 ALTIVEC_BUILTIN_VPERM_8HI,
2876 ALTIVEC_BUILTIN_VPERM_16QI,
0ac081f6
AH
2877 ALTIVEC_BUILTIN_VPKUHUM,
2878 ALTIVEC_BUILTIN_VPKUWUM,
2879 ALTIVEC_BUILTIN_VPKPX,
2880 ALTIVEC_BUILTIN_VPKUHSS,
2881 ALTIVEC_BUILTIN_VPKSHSS,
2882 ALTIVEC_BUILTIN_VPKUWSS,
2883 ALTIVEC_BUILTIN_VPKSWSS,
2884 ALTIVEC_BUILTIN_VPKUHUS,
2885 ALTIVEC_BUILTIN_VPKSHUS,
2886 ALTIVEC_BUILTIN_VPKUWUS,
2887 ALTIVEC_BUILTIN_VPKSWUS,
617e0e1d
DB
2888 ALTIVEC_BUILTIN_VREFP,
2889 ALTIVEC_BUILTIN_VRFIM,
2890 ALTIVEC_BUILTIN_VRFIN,
2891 ALTIVEC_BUILTIN_VRFIP,
2892 ALTIVEC_BUILTIN_VRFIZ,
0ac081f6
AH
2893 ALTIVEC_BUILTIN_VRLB,
2894 ALTIVEC_BUILTIN_VRLH,
2895 ALTIVEC_BUILTIN_VRLW,
617e0e1d 2896 ALTIVEC_BUILTIN_VRSQRTEFP,
0ac081f6
AH
2897 ALTIVEC_BUILTIN_VSLB,
2898 ALTIVEC_BUILTIN_VSLH,
2899 ALTIVEC_BUILTIN_VSLW,
2900 ALTIVEC_BUILTIN_VSL,
2901 ALTIVEC_BUILTIN_VSLO,
2212663f
DB
2902 ALTIVEC_BUILTIN_VSPLTB,
2903 ALTIVEC_BUILTIN_VSPLTH,
2904 ALTIVEC_BUILTIN_VSPLTW,
2905 ALTIVEC_BUILTIN_VSPLTISB,
2906 ALTIVEC_BUILTIN_VSPLTISH,
2907 ALTIVEC_BUILTIN_VSPLTISW,
0ac081f6 2908 ALTIVEC_BUILTIN_VSRB,
f18c054f
DB
2909 ALTIVEC_BUILTIN_VSRH,
2910 ALTIVEC_BUILTIN_VSRW,
0ac081f6
AH
2911 ALTIVEC_BUILTIN_VSRAB,
2912 ALTIVEC_BUILTIN_VSRAH,
2913 ALTIVEC_BUILTIN_VSRAW,
2914 ALTIVEC_BUILTIN_VSR,
2915 ALTIVEC_BUILTIN_VSRO,
2916 ALTIVEC_BUILTIN_VSUBUBM,
2917 ALTIVEC_BUILTIN_VSUBUHM,
2918 ALTIVEC_BUILTIN_VSUBUWM,
2919 ALTIVEC_BUILTIN_VSUBFP,
2920 ALTIVEC_BUILTIN_VSUBCUW,
2921 ALTIVEC_BUILTIN_VSUBUBS,
2922 ALTIVEC_BUILTIN_VSUBSBS,
2923 ALTIVEC_BUILTIN_VSUBUHS,
2924 ALTIVEC_BUILTIN_VSUBSHS,
2925 ALTIVEC_BUILTIN_VSUBUWS,
2926 ALTIVEC_BUILTIN_VSUBSWS,
2927 ALTIVEC_BUILTIN_VSUM4UBS,
2928 ALTIVEC_BUILTIN_VSUM4SBS,
2929 ALTIVEC_BUILTIN_VSUM4SHS,
2930 ALTIVEC_BUILTIN_VSUM2SWS,
2931 ALTIVEC_BUILTIN_VSUMSWS,
24408032
AH
2932 ALTIVEC_BUILTIN_VXOR,
2933 ALTIVEC_BUILTIN_VSLDOI_16QI,
2934 ALTIVEC_BUILTIN_VSLDOI_8HI,
2935 ALTIVEC_BUILTIN_VSLDOI_4SI,
20e26713
AH
2936 ALTIVEC_BUILTIN_VSLDOI_4SF,
2937 ALTIVEC_BUILTIN_VUPKHSB,
2938 ALTIVEC_BUILTIN_VUPKHPX,
2939 ALTIVEC_BUILTIN_VUPKHSH,
2940 ALTIVEC_BUILTIN_VUPKLSB,
2941 ALTIVEC_BUILTIN_VUPKLPX,
fa066a23 2942 ALTIVEC_BUILTIN_VUPKLSH,
95385cbb
AH
2943 ALTIVEC_BUILTIN_MTVSCR,
2944 ALTIVEC_BUILTIN_MFVSCR,
2945 ALTIVEC_BUILTIN_DSSALL,
2946 ALTIVEC_BUILTIN_DSS,
2947 ALTIVEC_BUILTIN_LVSL,
2948 ALTIVEC_BUILTIN_LVSR,
2949 ALTIVEC_BUILTIN_DSTT,
2950 ALTIVEC_BUILTIN_DSTST,
2951 ALTIVEC_BUILTIN_DSTSTT,
6525c0e7
AH
2952 ALTIVEC_BUILTIN_DST,
2953 ALTIVEC_BUILTIN_LVEBX,
2954 ALTIVEC_BUILTIN_LVEHX,
2955 ALTIVEC_BUILTIN_LVEWX,
2956 ALTIVEC_BUILTIN_LVXL,
2957 ALTIVEC_BUILTIN_LVX,
2958 ALTIVEC_BUILTIN_STVX,
2959 ALTIVEC_BUILTIN_STVEBX,
2960 ALTIVEC_BUILTIN_STVEHX,
2961 ALTIVEC_BUILTIN_STVEWX,
ae4b4a02
AH
2962 ALTIVEC_BUILTIN_STVXL,
2963 ALTIVEC_BUILTIN_VCMPBFP_P,
2964 ALTIVEC_BUILTIN_VCMPEQFP_P,
2965 ALTIVEC_BUILTIN_VCMPEQUB_P,
2966 ALTIVEC_BUILTIN_VCMPEQUH_P,
2967 ALTIVEC_BUILTIN_VCMPEQUW_P,
2968 ALTIVEC_BUILTIN_VCMPGEFP_P,
2969 ALTIVEC_BUILTIN_VCMPGTFP_P,
2970 ALTIVEC_BUILTIN_VCMPGTSB_P,
2971 ALTIVEC_BUILTIN_VCMPGTSH_P,
2972 ALTIVEC_BUILTIN_VCMPGTSW_P,
2973 ALTIVEC_BUILTIN_VCMPGTUB_P,
2974 ALTIVEC_BUILTIN_VCMPGTUH_P,
100c4561
AH
2975 ALTIVEC_BUILTIN_VCMPGTUW_P,
2976 ALTIVEC_BUILTIN_ABSS_V4SI,
2977 ALTIVEC_BUILTIN_ABSS_V8HI,
2978 ALTIVEC_BUILTIN_ABSS_V16QI,
2979 ALTIVEC_BUILTIN_ABS_V4SI,
2980 ALTIVEC_BUILTIN_ABS_V4SF,
2981 ALTIVEC_BUILTIN_ABS_V8HI,
2982 ALTIVEC_BUILTIN_ABS_V16QI
0ac081f6 2983};
This page took 1.641525 seconds and 5 git commands to generate.