]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
Fix typo: TYPE_ptrdiff_t to _TYPE_ptrdiff_t.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9 1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
cf27b467 2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
6a7ec0a7 3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
f045b2c9
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
c15c9075
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
f045b2c9
RS
21
22
23/* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27/* Names to predefine in the preprocessor for this target machine. */
28
84b49fa7
RK
29#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
30-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
f045b2c9
RS
31
32/* Print subsidiary information on the compiler version in use. */
33#define TARGET_VERSION ;
34
8e3f41e7
MM
35/* Default string to use for cpu if not specified. */
36#ifndef TARGET_CPU_DEFAULT
37#define TARGET_CPU_DEFAULT ((char *)0)
38#endif
39
fdaff8ba
RS
40/* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
b4d6689b
RK
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
f045b2c9 47
841faeed 48/* #define ASM_SPEC "-u %(asm_cpu)" */
f045b2c9 49
84b49fa7
RK
50/* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
841faeed
MM
53#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55/* Common CPP definitions used by CPP_SPEC amonst the various targets
56 for handling -mcpu=xxx switches. */
57#define CPP_CPU_SPEC \
58"%{!mcpu*: \
84b49fa7
RK
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
841faeed 63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
84b49fa7
RK
64%{mcpu=common: -D_ARCH_COM} \
65%{mcpu=power: -D_ARCH_PWR} \
8e3f41e7 66%{mcpu=power2: -D_ARCH_PWR2} \
84b49fa7
RK
67%{mcpu=powerpc: -D_ARCH_PPC} \
68%{mcpu=rios: -D_ARCH_PWR} \
69%{mcpu=rios1: -D_ARCH_PWR} \
70%{mcpu=rios2: -D_ARCH_PWR2} \
71%{mcpu=rsc: -D_ARCH_PWR} \
72%{mcpu=rsc1: -D_ARCH_PWR} \
49a0b204 73%{mcpu=403: -D_ARCH_PPC} \
cf27b467 74%{mcpu=505: -D_ARCH_PPC} \
84b49fa7 75%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
841faeed 76%{mcpu=602: -D_ARCH_PPC} \
fada905b
MM
77%{mcpu=603: -D_ARCH_PPC} \
78%{mcpu=603e: -D_ARCH_PPC} \
79%{mcpu=604: -D_ARCH_PPC} \
cf27b467
MM
80%{mcpu=620: -D_ARCH_PPC} \
81%{mcpu=821: -D_ARCH_PPC} \
82%{mcpu=860: -D_ARCH_PPC}"
84b49fa7 83
841faeed
MM
84#ifndef CPP_DEFAULT_SPEC
85#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
86#endif
87
88#ifndef CPP_SYSV_SPEC
89#define CPP_SYSV_SPEC ""
90#endif
91
92#ifndef CPP_ENDIAN_SPEC
93#define CPP_ENDIAN_SPEC ""
94#endif
95
c81bebd7
MM
96#ifndef CPP_ENDIAN_DEFAULT_SPEC
97#define CPP_ENDIAN_DEFAULT_SPEC ""
98#endif
99
841faeed
MM
100#ifndef CPP_SYSV_DEFAULT_SPEC
101#define CPP_SYSV_DEFAULT_SPEC ""
102#endif
103
104/* Common ASM definitions used by ASM_SPEC amonst the various targets
105 for handling -mcpu=xxx switches. */
106#define ASM_CPU_SPEC \
107"%{!mcpu*: \
108 %{mpower: %{!mpower2: -mpwr}} \
109 %{mpower2: -mpwrx} \
110 %{mpowerpc*: -mppc} \
111 %{mno-power: %{!mpowerpc*: -mcom}} \
112 %{!mno-power: %{!mpower2: %(asm_default)}}} \
113%{mcpu=common: -mcom} \
114%{mcpu=power: -mpwr} \
115%{mcpu=power2: -mpwrx} \
116%{mcpu=powerpc: -mppc} \
117%{mcpu=rios: -mpwr} \
118%{mcpu=rios1: -mpwr} \
119%{mcpu=rios2: -mpwrx} \
120%{mcpu=rsc: -mpwr} \
121%{mcpu=rsc1: -mpwr} \
122%{mcpu=403: -mppc} \
123%{mcpu=505: -mppc} \
124%{mcpu=601: -m601} \
125%{mcpu=602: -mppc} \
126%{mcpu=603: -mppc} \
127%{mcpu=603e: -mppc} \
128%{mcpu=604: -mppc} \
129%{mcpu=620: -mppc} \
130%{mcpu=821: -mppc} \
131%{mcpu=860: -mppc}"
132
133#ifndef ASM_DEFAULT_SPEC
134#define ASM_DEFAULT_SPEC "-mpwr"
135#endif
136
137/* This macro defines names of additional specifications to put in the specs
138 that can be used in various specifications like CC1_SPEC. Its definition
139 is an initializer with a subgrouping for each command option.
140
141 Each subgrouping contains a string constant, that defines the
142 specification name, and a string constant that used by the GNU CC driver
143 program.
144
145 Do not define this macro if it does not need to do anything. */
146
7509c759
MM
147#ifndef SUBTARGET_EXTRA_SPECS
148#define SUBTARGET_EXTRA_SPECS
149#endif
150
c81bebd7
MM
151#define EXTRA_SPECS \
152 { "cpp_cpu", CPP_CPU_SPEC }, \
153 { "cpp_default", CPP_DEFAULT_SPEC }, \
154 { "cpp_sysv", CPP_SYSV_SPEC }, \
155 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
156 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
157 { "cpp_endian", CPP_ENDIAN_SPEC }, \
158 { "asm_cpu", ASM_CPU_SPEC }, \
159 { "asm_default", ASM_DEFAULT_SPEC }, \
160 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
161 { "link_libg", LINK_LIBG_SPEC }, \
7509c759
MM
162 SUBTARGET_EXTRA_SPECS
163
7509c759
MM
164/* Default location of syscalls.exp under AIX */
165#ifndef CROSS_COMPILE
166#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
167#else
168#define LINK_SYSCALLS_SPEC ""
169#endif
170
171/* Default location of libg.exp under AIX */
172#ifndef CROSS_COMPILE
173#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
174#else
175#define LINK_LIBG_SPEC ""
176#endif
177
f045b2c9
RS
178/* Define the options for the binder: Start text at 512, align all segments
179 to 512 bytes, and warn if there is text relocation.
180
181 The -bhalt:4 option supposedly changes the level at which ld will abort,
182 but it also suppresses warnings about multiply defined symbols and is
183 used by the AIX cc command. So we use it here.
184
185 -bnodelcsect undoes a poor choice of default relating to multiply-defined
52c0eaf8
JM
186 csects. See AIX documentation for more information about this.
187
188 -bM:SRE tells the linker that the output file is Shared REusable. Note
189 that to actually build a shared library you will also need to specify an
190 export list with the -Wl,-bE option. */
f045b2c9 191
c1950f1c 192#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
7509c759
MM
193 %{static:-bnso %(link_syscalls) } \
194 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
f045b2c9 195
58a39e45
RS
196/* Profiled library versions are used by linking with special directories. */
197#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
788d9012 198 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
f045b2c9
RS
199
200/* gcc must do the search itself to find libgcc.a, not use -l. */
046b1537 201#define LIBGCC_SPEC "libgcc.a%s"
f045b2c9
RS
202
203/* Don't turn -B into -L if the argument specifies a relative file name. */
204#define RELATIVE_PREFIX_NOT_LINKDIR
205
fb623df5 206/* Architecture type. */
f045b2c9 207
fb623df5
RK
208extern int target_flags;
209
210/* Use POWER architecture instructions and MQ register. */
211#define MASK_POWER 0x01
212
6febd581
RK
213/* Use POWER2 extensions to POWER architecture. */
214#define MASK_POWER2 0x02
215
fb623df5 216/* Use PowerPC architecture instructions. */
6febd581
RK
217#define MASK_POWERPC 0x04
218
583cf4db
RK
219/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
220#define MASK_PPC_GPOPT 0x08
221
222/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
223#define MASK_PPC_GFXOPT 0x10
f045b2c9 224
fb623df5 225/* Use PowerPC-64 architecture instructions. */
583cf4db 226#define MASK_POWERPC64 0x20
f045b2c9 227
fb623df5 228/* Use revised mnemonic names defined for PowerPC architecture. */
583cf4db 229#define MASK_NEW_MNEMONICS 0x40
fb623df5
RK
230
231/* Disable placing fp constants in the TOC; can be turned on when the
232 TOC overflows. */
583cf4db 233#define MASK_NO_FP_IN_TOC 0x80
fb623df5 234
0b9ccabc
RK
235/* Disable placing symbol+offset constants in the TOC; can be turned on when
236 the TOC overflows. */
583cf4db 237#define MASK_NO_SUM_IN_TOC 0x100
0b9ccabc 238
fb623df5 239/* Output only one TOC entry per module. Normally linking fails if
642a35f1
JW
240 there are more than 16K unique variables/constants in an executable. With
241 this option, linking fails only if there are more than 16K modules, or
242 if there are more than 16K unique variables/constant in a single module.
243
244 This is at the cost of having 2 extra loads and one extra store per
245 function, and one less allocatable register. */
583cf4db 246#define MASK_MINIMAL_TOC 0x200
642a35f1 247
9e654916
RK
248/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
249#define MASK_64BIT 0x400
250
f85f4585 251/* Disable use of FPRs. */
d14a6d05 252#define MASK_SOFT_FLOAT 0x800
f85f4585 253
4d30c363
MM
254/* Enable load/store multiple, even on powerpc */
255#define MASK_MULTIPLE 0x1000
8a61d227 256#define MASK_MULTIPLE_SET 0x2000
4d30c363 257
7e69e155
MM
258/* Use string instructions for block moves */
259#define MASK_STRING 0x4000
938937d8 260#define MASK_STRING_SET 0x8000
7e69e155 261
4697a36c
MM
262/* Temporary debug switches */
263#define MASK_DEBUG_STACK 0x10000
264#define MASK_DEBUG_ARG 0x20000
265
7e69e155
MM
266#define TARGET_POWER (target_flags & MASK_POWER)
267#define TARGET_POWER2 (target_flags & MASK_POWER2)
268#define TARGET_POWERPC (target_flags & MASK_POWERPC)
269#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
270#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
271#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
272#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
273#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
274#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
275#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
276#define TARGET_64BIT (target_flags & MASK_64BIT)
277#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
278#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
279#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
280#define TARGET_STRING (target_flags & MASK_STRING)
938937d8 281#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
4697a36c
MM
282#define TARGET_DEBUG_STACK (target_flags & MASK_DEBUG_STACK)
283#define TARGET_DEBUG_ARG (target_flags & MASK_DEBUG_ARG)
7e69e155 284
2f3e5814 285#define TARGET_32BIT (! TARGET_64BIT)
7e69e155 286#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
d14a6d05 287
4697a36c
MM
288/* Pseudo target to indicate whether the object format is ELF
289 (to get around not having conditional compilation in the md file) */
290#ifndef TARGET_ELF
291#define TARGET_ELF 0
292#endif
293
294/* If this isn't V.4, don't support -mno-toc. */
295#ifndef TARGET_NO_TOC
296#define TARGET_NO_TOC 0
297#define TARGET_TOC 1
298#endif
299
b6c9286a
MM
300/* Pseudo target to say whether this is Windows NT */
301#ifndef TARGET_WINDOWS_NT
302#define TARGET_WINDOWS_NT 0
303#endif
304
305/* Pseudo target to say whether this is MAC */
306#ifndef TARGET_MACOS
307#define TARGET_MACOS 0
308#endif
309
310/* Pseudo target to say whether this is AIX */
311#ifndef TARGET_AIX
312#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
313#define TARGET_AIX 0
314#else
315#define TARGET_AIX 1
316#endif
317#endif
318
fb623df5 319/* Run-time compilation parameters selecting different hardware subsets.
f045b2c9 320
fb623df5 321 Macro to define tables used to set the flags.
f045b2c9
RS
322 This is a list in braces of pairs in braces,
323 each pair being { "NAME", VALUE }
324 where VALUE is the bits to set or minus the bits to clear.
325 An empty string NAME is used to identify the default VALUE. */
326
4d30c363
MM
327/* This is meant to be redefined in the host dependent files */
328#ifndef SUBTARGET_SWITCHES
329#define SUBTARGET_SWITCHES
330#endif
331
938937d8
MM
332#define TARGET_SWITCHES \
333 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
334 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
335 | MASK_POWER2)}, \
336 {"no-power2", - MASK_POWER2}, \
337 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
338 | MASK_STRING)}, \
339 {"powerpc", MASK_POWERPC}, \
340 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
341 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
342 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
343 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
344 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
345 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
346 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
347 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
348 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
349 | MASK_MINIMAL_TOC)}, \
350 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
351 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
352 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
353 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
354 {"minimal-toc", MASK_MINIMAL_TOC}, \
355 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
356 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
357 {"hard-float", - MASK_SOFT_FLOAT}, \
358 {"soft-float", MASK_SOFT_FLOAT}, \
359 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
360 {"no-multiple", - MASK_MULTIPLE}, \
361 {"no-multiple", MASK_MULTIPLE_SET}, \
362 {"string", MASK_STRING | MASK_STRING_SET}, \
363 {"no-string", - MASK_STRING}, \
bbdd88df 364 {"no-string", MASK_STRING_SET}, \
4697a36c
MM
365 {"debug-stack", MASK_DEBUG_STACK}, \
366 {"debug-arg", MASK_DEBUG_ARG}, \
938937d8 367 SUBTARGET_SWITCHES \
fb623df5
RK
368 {"", TARGET_DEFAULT}}
369
938937d8 370#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
fb623df5
RK
371
372/* Processor type. */
373enum processor_type
f86fe1fb 374 {PROCESSOR_RIOS1,
fb623df5 375 PROCESSOR_RIOS2,
cf27b467 376 PROCESSOR_MPCCORE,
49a0b204 377 PROCESSOR_PPC403,
fb623df5
RK
378 PROCESSOR_PPC601,
379 PROCESSOR_PPC603,
380 PROCESSOR_PPC604,
381 PROCESSOR_PPC620};
382
383extern enum processor_type rs6000_cpu;
384
385/* Recast the processor type to the cpu attribute. */
386#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
387
8482e358 388/* Define generic processor types based upon current deployment. */
8e3f41e7 389#define PROCESSOR_COMMON PROCESSOR_PPC601
8482e358 390#define PROCESSOR_POWER PROCESSOR_RIOS1
8e3f41e7 391#define PROCESSOR_POWERPC PROCESSOR_PPC604
6e151478 392
fb623df5 393/* Define the default processor. This is overridden by other tm.h files. */
f86fe1fb 394#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
fb623df5 395
6febd581
RK
396/* Specify the dialect of assembler to use. New mnemonics is dialect one
397 and the old mnemonics are dialect zero. */
398#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
399
fb623df5
RK
400/* This macro is similar to `TARGET_SWITCHES' but defines names of
401 command options that have values. Its definition is an
402 initializer with a subgrouping for each command option.
403
404 Each subgrouping contains a string constant, that defines the
405 fixed part of the option name, and the address of a variable.
406 The variable, type `char *', is set to the variable part of the
407 given option if the fixed part matches. The actual option name
408 is made by appending `-m' to the specified name.
409
410 Here is an example which defines `-mshort-data-NUMBER'. If the
411 given option is `-mshort-data-512', the variable `m88k_short_data'
412 will be set to the string `"512"'.
413
414 extern char *m88k_short_data;
415 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
416
b6c9286a
MM
417/* This is meant to be overriden in target specific files. */
418#ifndef SUBTARGET_OPTIONS
419#define SUBTARGET_OPTIONS
420#endif
421
8e3f41e7
MM
422#define TARGET_OPTIONS \
423{ \
424 {"cpu=", &rs6000_select[1].string}, \
425 {"tune=", &rs6000_select[2].string}, \
426 SUBTARGET_OPTIONS \
b6c9286a 427}
fb623df5 428
ff222560 429/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
8e3f41e7
MM
430struct rs6000_cpu_select
431{
432 char *string;
433 char *name;
434 int set_tune_p;
435 int set_arch_p;
436};
437
438extern struct rs6000_cpu_select rs6000_select[];
fb623df5
RK
439
440/* Sometimes certain combinations of command options do not make sense
441 on a particular target machine. You can define a macro
442 `OVERRIDE_OPTIONS' to take account of this. This macro, if
443 defined, is executed once just after all the command options have
444 been parsed.
445
446 On the RS/6000 this is used to define the target cpu type. */
447
8e3f41e7 448#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
f045b2c9 449
4f074454
RK
450/* Show we can debug even without a frame pointer. */
451#define CAN_DEBUG_WITHOUT_FP
f045b2c9
RS
452\f
453/* target machine storage layout */
454
df44fa77
RK
455/* Define to support cross compilation to an RS6000 target. */
456#define REAL_ARITHMETIC
457
13d39dbc 458/* Define this macro if it is advisable to hold scalars in registers
c81bebd7 459 in a wider mode than that declared by the program. In such cases,
ef457bda
RK
460 the value is constrained to be within the bounds of the declared
461 type, but kept valid in the wider mode. The signedness of the
462 extension may differ from that of the type. */
463
464#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
465 if (GET_MODE_CLASS (MODE) == MODE_INT \
466 && GET_MODE_SIZE (MODE) < 4) \
dac29d65 467 (MODE) = SImode;
ef457bda 468
f045b2c9
RS
469/* Define this if most significant bit is lowest numbered
470 in instructions that operate on numbered bit-fields. */
471/* That is true on RS/6000. */
472#define BITS_BIG_ENDIAN 1
473
474/* Define this if most significant byte of a word is the lowest numbered. */
475/* That is true on RS/6000. */
476#define BYTES_BIG_ENDIAN 1
477
478/* Define this if most significant word of a multiword number is lowest
c81bebd7 479 numbered.
f045b2c9
RS
480
481 For RS/6000 we can decide arbitrarily since there are no machine
482 instructions for them. Might as well be consistent with bits and bytes. */
483#define WORDS_BIG_ENDIAN 1
484
fdaff8ba 485/* number of bits in an addressable storage unit */
f045b2c9
RS
486#define BITS_PER_UNIT 8
487
488/* Width in bits of a "word", which is the contents of a machine register.
489 Note that this is not necessarily the width of data type `int';
490 if using 16-bit ints on a 68000, this would still be 32.
491 But on a machine with 16-bit registers, this would be 16. */
2f3e5814 492#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
2e360ab3 493#define MAX_BITS_PER_WORD 64
f045b2c9
RS
494
495/* Width of a word, in units (bytes). */
2f3e5814 496#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
ef0e53ce 497#define MIN_UNITS_PER_WORD 4
2e360ab3 498#define UNITS_PER_FP_WORD 8
f045b2c9 499
915f619f
JW
500/* Type used for ptrdiff_t, as a string used in a declaration. */
501#define PTRDIFF_TYPE "int"
502
f045b2c9
RS
503/* Type used for wchar_t, as a string used in a declaration. */
504#define WCHAR_TYPE "short unsigned int"
505
506/* Width of wchar_t in bits. */
507#define WCHAR_TYPE_SIZE 16
508
9e654916
RK
509/* A C expression for the size in bits of the type `short' on the
510 target machine. If you don't define this, the default is half a
511 word. (If this would be less than one storage unit, it is
512 rounded up to one unit.) */
513#define SHORT_TYPE_SIZE 16
514
515/* A C expression for the size in bits of the type `int' on the
516 target machine. If you don't define this, the default is one
517 word. */
19d2d16f 518#define INT_TYPE_SIZE 32
9e654916
RK
519
520/* A C expression for the size in bits of the type `long' on the
521 target machine. If you don't define this, the default is one
522 word. */
2f3e5814 523#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
9e654916
RK
524#define MAX_LONG_TYPE_SIZE 64
525
526/* A C expression for the size in bits of the type `long long' on the
527 target machine. If you don't define this, the default is two
528 words. */
529#define LONG_LONG_TYPE_SIZE 64
530
531/* A C expression for the size in bits of the type `char' on the
532 target machine. If you don't define this, the default is one
533 quarter of a word. (If this would be less than one storage unit,
534 it is rounded up to one unit.) */
535#define CHAR_TYPE_SIZE BITS_PER_UNIT
536
537/* A C expression for the size in bits of the type `float' on the
538 target machine. If you don't define this, the default is one
539 word. */
540#define FLOAT_TYPE_SIZE 32
541
542/* A C expression for the size in bits of the type `double' on the
543 target machine. If you don't define this, the default is two
544 words. */
545#define DOUBLE_TYPE_SIZE 64
546
547/* A C expression for the size in bits of the type `long double' on
548 the target machine. If you don't define this, the default is two
549 words. */
550#define LONG_DOUBLE_TYPE_SIZE 64
551
f045b2c9
RS
552/* Width in bits of a pointer.
553 See also the macro `Pmode' defined below. */
2f3e5814 554#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
555
556/* Allocation boundary (in *bits*) for storing arguments in argument list. */
2f3e5814 557#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
f045b2c9
RS
558
559/* Boundary (in *bits*) on which stack pointer should be aligned. */
560#define STACK_BOUNDARY 64
561
562/* Allocation boundary (in *bits*) for the code of a function. */
563#define FUNCTION_BOUNDARY 32
564
565/* No data type wants to be aligned rounder than this. */
b73fd26c
DE
566#define BIGGEST_ALIGNMENT 64
567
6bc3403c
DE
568/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
569#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
570 (DECL_MODE (FIELD) != DFmode ? (COMPUTED) : MIN ((COMPUTED), 32))
f045b2c9
RS
571
572/* Alignment of field after `int : 0' in a structure. */
573#define EMPTY_FIELD_BOUNDARY 32
574
575/* Every structure's size must be a multiple of this. */
576#define STRUCTURE_SIZE_BOUNDARY 8
577
578/* A bitfield declared as `int' forces `int' alignment for the struct. */
579#define PCC_BITFIELD_TYPE_MATTERS 1
580
6bc3403c
DE
581/* AIX increases natural record alignment to doubleword if the first
582 field is an FP double while the FP fields remain word aligned. */
583#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
584 ((TREE_CODE (STRUCT) == RECORD_TYPE \
585 || TREE_CODE (STRUCT) == UNION_TYPE \
586 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
587 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
588 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
589 : MAX ((COMPUTED), (SPECIFIED)))
590
f045b2c9
RS
591/* Make strings word-aligned so strcpy from constants will be faster. */
592#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
593 (TREE_CODE (EXP) == STRING_CST \
594 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
595
596/* Make arrays of chars word-aligned for the same reasons. */
597#define DATA_ALIGNMENT(TYPE, ALIGN) \
598 (TREE_CODE (TYPE) == ARRAY_TYPE \
599 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
600 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
601
fdaff8ba 602/* Non-zero if move instructions will actually fail to work
f045b2c9 603 when given unaligned data. */
fdaff8ba 604#define STRICT_ALIGNMENT 0
f045b2c9
RS
605\f
606/* Standard register usage. */
607
608/* Number of actual hardware registers.
609 The hardware registers are assigned numbers for the compiler
610 from 0 to just below FIRST_PSEUDO_REGISTER.
611 All registers that the compiler knows about must be given numbers,
612 even those that are not normally considered general registers.
613
614 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
615 an MQ register, a count register, a link register, and 8 condition
616 register fields, which we view here as separate registers.
617
618 In addition, the difference between the frame and argument pointers is
619 a function of the number of registers saved, so we need to have a
620 register for AP that will later be eliminated in favor of SP or FP.
802a0058 621 This is a normal register, but it is fixed.
f045b2c9 622
802a0058
MM
623 We also create a pseudo register for float/int conversions, that will
624 really represent the memory location used. It is represented here as
625 a register, in order to work around problems in allocating stack storage
626 in inline functions. */
627
628#define FIRST_PSEUDO_REGISTER 77
f045b2c9
RS
629
630/* 1 for registers that have pervasive standard uses
631 and are not available for the register allocator.
632
c81bebd7 633 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
f045b2c9 634
a127c4e5
RK
635 cr5 is not supposed to be used.
636
637 On System V implementations, r13 is fixed and not available for use. */
638
639#ifndef FIXED_R13
640#define FIXED_R13 0
641#endif
f045b2c9
RS
642
643#define FIXED_REGISTERS \
a127c4e5 644 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
f045b2c9
RS
645 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
646 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
647 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 648 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
f045b2c9
RS
649
650/* 1 for registers not available across function calls.
651 These must include the FIXED_REGISTERS and also any
652 registers that can be used without being saved.
653 The latter must include the registers where values are returned
654 and the register where structure-value addresses are passed.
655 Aside from that, you can include as many other registers as you like. */
656
657#define CALL_USED_REGISTERS \
a127c4e5 658 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
f045b2c9
RS
659 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
660 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
661 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
802a0058 662 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
f045b2c9
RS
663
664/* List the order in which to allocate registers. Each register must be
665 listed once, even those in FIXED_REGISTERS.
666
667 We allocate in the following order:
668 fp0 (not saved or used for anything)
669 fp13 - fp2 (not saved; incoming fp arg registers)
670 fp1 (not saved; return value)
671 fp31 - fp14 (saved; order given to save least number)
672 cr1, cr6, cr7 (not saved or special)
673 cr0 (not saved, but used for arithmetic operations)
674 cr2, cr3, cr4 (saved)
675 r0 (not saved; cannot be base reg)
676 r9 (not saved; best for TImode)
677 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
678 r3 (not saved; return value register)
679 r31 - r13 (saved; order given to save least number)
680 r12 (not saved; if used for DImode or DFmode would use r13)
681 mq (not saved; best to use it if we can)
682 ctr (not saved; when we have the choice ctr is better)
683 lr (saved)
684 cr5, r1, r2, ap (fixed) */
685
686#define REG_ALLOC_ORDER \
687 {32, \
688 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
689 33, \
690 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
691 50, 49, 48, 47, 46, \
692 69, 74, 75, 68, 70, 71, 72, \
693 0, \
694 9, 11, 10, 8, 7, 6, 5, 4, \
695 3, \
696 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
697 18, 17, 16, 15, 14, 13, 12, \
698 64, 66, 65, \
802a0058 699 73, 1, 2, 67, 76}
f045b2c9
RS
700
701/* True if register is floating-point. */
702#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
703
704/* True if register is a condition register. */
705#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
706
707/* True if register is an integer register. */
708#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
709
802a0058
MM
710/* True if register is the temporary memory location used for int/float
711 conversion. */
712#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
713
f045b2c9
RS
714/* Return number of consecutive hard regs needed starting at reg REGNO
715 to hold something of mode MODE.
716 This is ordinarily the length in words of a value of mode MODE
717 but can be less for certain modes in special long registers.
718
719 On RS/6000, ordinary registers hold 32 bits worth;
720 a single floating point register holds 64 bits worth. */
721
802a0058
MM
722#define HARD_REGNO_NREGS(REGNO, MODE) \
723 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
2e360ab3 724 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9
RS
725 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
726
727/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
bdfd4e31
RK
728 For POWER and PowerPC, the GPRs can hold any mode, but the float
729 registers only can hold floating modes and DImode, and CR register only
730 can hold CC modes. We cannot put TImode anywhere except general
731 register and it must be able to fit within the register set. */
f045b2c9 732
802a0058
MM
733#define HARD_REGNO_MODE_OK(REGNO, MODE) \
734 (FP_REGNO_P (REGNO) ? \
735 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
736 || (GET_MODE_CLASS (MODE) == MODE_INT \
737 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
738 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
739 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
740 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
bdfd4e31 741 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
f045b2c9
RS
742 : 1)
743
744/* Value is 1 if it is a good idea to tie two pseudo registers
745 when one has mode MODE1 and one has mode MODE2.
746 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
747 for any hard reg, then this must be 0 for correct output. */
748#define MODES_TIEABLE_P(MODE1, MODE2) \
749 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
750 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
751 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
752 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
753 : GET_MODE_CLASS (MODE1) == MODE_CC \
754 ? GET_MODE_CLASS (MODE2) == MODE_CC \
755 : GET_MODE_CLASS (MODE2) == MODE_CC \
756 ? GET_MODE_CLASS (MODE1) == MODE_CC \
757 : 1)
758
759/* A C expression returning the cost of moving data from a register of class
760 CLASS1 to one of CLASS2.
761
762 On the RS/6000, copying between floating-point and fixed-point
763 registers is expensive. */
764
765#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
766 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
767 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
768 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
a4b970a0 769 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
5119dc13
RK
770 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
771 || (CLASS1) == LINK_OR_CTR_REGS) \
a4b970a0 772 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
5119dc13 773 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
802a0058 774 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
f045b2c9
RS
775 : 2)
776
777/* A C expressions returning the cost of moving data of MODE from a register to
778 or from memory.
779
780 On the RS/6000, bump this up a bit. */
781
ab4a5fc9
RK
782#define MEMORY_MOVE_COST(MODE) \
783 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
784 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
785 ? 3 : 2) \
786 + 4)
f045b2c9
RS
787
788/* Specify the cost of a branch insn; roughly the number of extra insns that
789 should be added to avoid a branch.
790
ef457bda 791 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
792 unscheduled conditional branch. */
793
ef457bda 794#define BRANCH_COST 3
f045b2c9 795
5a5e4c2c
RK
796/* A C statement (sans semicolon) to update the integer variable COST
797 based on the relationship between INSN that is dependent on
798 DEP_INSN through the dependence LINK. The default is to make no
799 adjustment to COST. On the RS/6000, ignore the cost of anti- and
800 output-dependencies. In fact, output dependencies on the CR do have
801 a cost, but it is probably not worthwhile to track it. */
802
803#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
b0634e74 804 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
5a5e4c2c 805
6febd581
RK
806/* Define this macro to change register usage conditional on target flags.
807 Set MQ register fixed (already call_used) if not POWER architecture
f85f4585
RK
808 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
809 Conditionally disable FPRs. */
810
811#define CONDITIONAL_REGISTER_USAGE \
812{ \
813 if (! TARGET_POWER) \
814 fixed_regs[64] = 1; \
d14a6d05
MM
815 if (TARGET_SOFT_FLOAT) \
816 for (i = 32; i < 64; i++) \
f85f4585
RK
817 fixed_regs[i] = call_used_regs[i] = 1; \
818}
6febd581 819
f045b2c9
RS
820/* Specify the registers used for certain standard purposes.
821 The values of these macros are register numbers. */
822
823/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
824/* #define PC_REGNUM */
825
826/* Register to use for pushing function arguments. */
827#define STACK_POINTER_REGNUM 1
828
829/* Base register for access to local variables of the function. */
830#define FRAME_POINTER_REGNUM 31
831
832/* Value should be nonzero if functions must have frame pointers.
833 Zero means the frame pointer need not be set up (and parms
834 may be accessed via the stack pointer) in functions that seem suitable.
835 This is computed in `reload', in reload1.c. */
836#define FRAME_POINTER_REQUIRED 0
837
838/* Base register for access to arguments of the function. */
839#define ARG_POINTER_REGNUM 67
840
841/* Place to put static chain when calling a function that requires it. */
842#define STATIC_CHAIN_REGNUM 11
843
b6c9286a
MM
844/* count register number for special purposes */
845#define COUNT_REGISTER_REGNUM 66
846
802a0058
MM
847/* Special register that represents memory, used for float/int conversions. */
848#define FPMEM_REGNUM 76
849
f045b2c9
RS
850/* Place that structure value return address is placed.
851
852 On the RS/6000, it is passed as an extra parameter. */
853#define STRUCT_VALUE 0
854\f
855/* Define the classes of registers for register constraints in the
856 machine description. Also define ranges of constants.
857
858 One of the classes must always be named ALL_REGS and include all hard regs.
859 If there is more than one class, another class must be named NO_REGS
860 and contain no registers.
861
862 The name GENERAL_REGS must be the name of a class (or an alias for
863 another name such as ALL_REGS). This is the class of registers
864 that is allowed by "g" or "r" in a register constraint.
865 Also, registers outside this class are allocated only when
866 instructions express preferences for them.
867
868 The classes must be numbered in nondecreasing order; that is,
869 a larger-numbered class must never be contained completely
870 in a smaller-numbered class.
871
872 For any two classes, it is very desirable that there be another
873 class that represents their union. */
c81bebd7 874
f045b2c9
RS
875/* The RS/6000 has three types of registers, fixed-point, floating-point,
876 and condition registers, plus three special registers, MQ, CTR, and the
877 link register.
878
879 However, r0 is special in that it cannot be used as a base register.
880 So make a class for registers valid as base registers.
881
882 Also, cr0 is the only condition code register that can be used in
802a0058
MM
883 arithmetic insns, so make a separate class for it.
884
885 There is a special 'registrer' (76), which is not a register, but a
886 placeholder for memory allocated to convert between floating point and
887 integral types. This works around a problem where if we allocate memory
888 with allocate_stack_{local,temp} and the function is an inline function, the
889 memory allocated will clobber memory in the caller. So we use a special
890 register, and if that is used, we allocate stack space for it. */
f045b2c9 891
ebedb4dd
MM
892enum reg_class
893{
894 NO_REGS,
ebedb4dd
MM
895 BASE_REGS,
896 GENERAL_REGS,
897 FLOAT_REGS,
898 NON_SPECIAL_REGS,
899 MQ_REGS,
900 LINK_REGS,
901 CTR_REGS,
902 LINK_OR_CTR_REGS,
903 SPECIAL_REGS,
904 SPEC_OR_GEN_REGS,
905 CR0_REGS,
ebedb4dd
MM
906 CR_REGS,
907 NON_FLOAT_REGS,
802a0058
MM
908 FPMEM_REGS,
909 FLOAT_OR_FPMEM_REGS,
ebedb4dd
MM
910 ALL_REGS,
911 LIM_REG_CLASSES
912};
f045b2c9
RS
913
914#define N_REG_CLASSES (int) LIM_REG_CLASSES
915
916/* Give names of register classes as strings for dump file. */
917
ebedb4dd
MM
918#define REG_CLASS_NAMES \
919{ \
920 "NO_REGS", \
ebedb4dd
MM
921 "BASE_REGS", \
922 "GENERAL_REGS", \
923 "FLOAT_REGS", \
924 "NON_SPECIAL_REGS", \
925 "MQ_REGS", \
926 "LINK_REGS", \
927 "CTR_REGS", \
928 "LINK_OR_CTR_REGS", \
929 "SPECIAL_REGS", \
930 "SPEC_OR_GEN_REGS", \
931 "CR0_REGS", \
ebedb4dd
MM
932 "CR_REGS", \
933 "NON_FLOAT_REGS", \
802a0058
MM
934 "FPMEM_REGS", \
935 "FLOAT_OR_FPMEM_REGS", \
ebedb4dd
MM
936 "ALL_REGS" \
937}
f045b2c9
RS
938
939/* Define which registers fit in which classes.
940 This is an initializer for a vector of HARD_REG_SET
941 of length N_REG_CLASSES. */
942
ebedb4dd
MM
943#define REG_CLASS_CONTENTS \
944{ \
945 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
ebedb4dd
MM
946 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
947 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
948 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
949 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
950 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
951 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
952 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
953 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
954 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
955 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
956 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
ebedb4dd
MM
957 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
958 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
802a0058
MM
959 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
960 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
961 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
ebedb4dd 962}
f045b2c9
RS
963
964/* The same information, inverted:
965 Return the class number of the smallest class containing
966 reg number REGNO. This could be a conditional expression
967 or could index an array. */
968
802a0058
MM
969#define REGNO_REG_CLASS(REGNO) \
970 ((REGNO) == 0 ? GENERAL_REGS \
971 : (REGNO) < 32 ? BASE_REGS \
972 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
973 : (REGNO) == 68 ? CR0_REGS \
974 : CR_REGNO_P (REGNO) ? CR_REGS \
975 : (REGNO) == 64 ? MQ_REGS \
976 : (REGNO) == 65 ? LINK_REGS \
977 : (REGNO) == 66 ? CTR_REGS \
978 : (REGNO) == 67 ? BASE_REGS \
979 : (REGNO) == 76 ? FPMEM_REGS \
f045b2c9
RS
980 : NO_REGS)
981
982/* The class value for index registers, and the one for base regs. */
983#define INDEX_REG_CLASS GENERAL_REGS
984#define BASE_REG_CLASS BASE_REGS
985
986/* Get reg_class from a letter such as appears in the machine description. */
987
988#define REG_CLASS_FROM_LETTER(C) \
989 ((C) == 'f' ? FLOAT_REGS \
990 : (C) == 'b' ? BASE_REGS \
991 : (C) == 'h' ? SPECIAL_REGS \
992 : (C) == 'q' ? MQ_REGS \
993 : (C) == 'c' ? CTR_REGS \
994 : (C) == 'l' ? LINK_REGS \
995 : (C) == 'x' ? CR0_REGS \
996 : (C) == 'y' ? CR_REGS \
802a0058 997 : (C) == 'z' ? FPMEM_REGS \
f045b2c9
RS
998 : NO_REGS)
999
1000/* The letters I, J, K, L, M, N, and P in a register constraint string
1001 can be used to stand for particular ranges of immediate operands.
1002 This macro defines what the ranges are.
1003 C is the letter, and VALUE is a constant value.
1004 Return 1 if VALUE is in the range specified by C.
1005
c81bebd7 1006 `I' is signed 16-bit constants
f045b2c9
RS
1007 `J' is a constant with only the high-order 16 bits non-zero
1008 `K' is a constant with only the low-order 16 bits non-zero
1009 `L' is a constant that can be placed into a mask operand
1010 `M' is a constant that is greater than 31
1011 `N' is a constant that is an exact power of two
1012 `O' is the constant zero
1013 `P' is a constant whose negation is a signed 16-bit constant */
1014
1015#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1016 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
1017 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
1018 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
1019 : (C) == 'L' ? mask_constant (VALUE) \
1020 : (C) == 'M' ? (VALUE) > 31 \
1021 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1022 : (C) == 'O' ? (VALUE) == 0 \
1023 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
1024 : 0)
1025
1026/* Similar, but for floating constants, and defining letters G and H.
1027 Here VALUE is the CONST_DOUBLE rtx itself.
1028
1029 We flag for special constants when we can copy the constant into
4e74d8ec 1030 a general register in two insns for DF/DI and one insn for SF.
f045b2c9 1031
4e74d8ec
MM
1032 'H' is used for DI constants that take 3 insns. */
1033
1034#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1035 ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : \
1036 (C) == 'H' ? (num_insns_constant (VALUE, DImode) == 3) : \
1037 0)
f045b2c9
RS
1038
1039/* Optional extra constraints for this machine.
1040
b6c9286a
MM
1041 'Q' means that is a memory operand that is just an offset from a reg.
1042 'R' is for AIX TOC entries.
1043 'S' is for Windows NT SYMBOL_REFs
88228c4b
MM
1044 'T' is for Windows NT LABEL_REFs.
1045 'U' is for V.4 small data references. */
f045b2c9 1046
e8a8bc24
RK
1047#define EXTRA_CONSTRAINT(OP, C) \
1048 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
d537c24d 1049 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
b6c9286a
MM
1050 : (C) == 'S' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == SYMBOL_REF)\
1051 : (C) == 'T' ? (TARGET_WINDOWS_NT && DEFAULT_ABI == ABI_NT && GET_CODE (OP) == LABEL_REF) \
c81bebd7
MM
1052 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1053 && small_data_operand (OP, GET_MODE (OP))) \
e8a8bc24 1054 : 0)
f045b2c9
RS
1055
1056/* Given an rtx X being reloaded into a reg required to be
1057 in class CLASS, return the class of reg to actually use.
1058 In general this is just CLASS; but on some machines
c81bebd7 1059 in some cases it is preferable to use a more restrictive class.
f045b2c9
RS
1060
1061 On the RS/6000, we have to return NO_REGS when we want to reload a
1062 floating-point CONST_DOUBLE to force it to be copied to memory. */
1063
802a0058 1064#define PREFERRED_RELOAD_CLASS(X,CLASS) \
f045b2c9
RS
1065 ((GET_CODE (X) == CONST_DOUBLE \
1066 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1067 ? NO_REGS : (CLASS))
c81bebd7 1068
f045b2c9
RS
1069/* Return the register class of a scratch register needed to copy IN into
1070 or out of a register in CLASS in MODE. If it can be done directly,
1071 NO_REGS is returned. */
1072
1073#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1074 secondary_reload_class (CLASS, MODE, IN)
1075
7ea555a4
RK
1076/* If we are copying between FP registers and anything else, we need a memory
1077 location. */
1078
1079#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1080 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1081
f045b2c9
RS
1082/* Return the maximum number of consecutive registers
1083 needed to represent mode MODE in a register of class CLASS.
1084
1085 On RS/6000, this is the size of MODE in words,
1086 except in the FP regs, where a single reg is enough for two words. */
802a0058
MM
1087#define CLASS_MAX_NREGS(CLASS, MODE) \
1088 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1089 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
2e360ab3 1090 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
f045b2c9 1091 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
580d3230
RK
1092
1093/* If defined, gives a class of registers that cannot be used as the
1094 operand of a SUBREG that changes the size of the object. */
1095
802a0058 1096#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
f045b2c9
RS
1097\f
1098/* Stack layout; function entry, exit and calling. */
1099
6b67933e
RK
1100/* Enumeration to give which calling sequence to use. */
1101enum rs6000_abi {
1102 ABI_NONE,
1103 ABI_AIX, /* IBM's AIX */
b6c9286a
MM
1104 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1105 ABI_V4, /* System V.4/eabi */
c81bebd7
MM
1106 ABI_NT, /* Windows/NT */
1107 ABI_SOLARIS /* Solaris */
6b67933e
RK
1108};
1109
b6c9286a
MM
1110extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1111
1112/* Default ABI to compile code for */
1113#ifndef DEFAULT_ABI
1114#define DEFAULT_ABI ABI_AIX
1115#endif
1116
4697a36c
MM
1117/* Structure used to define the rs6000 stack */
1118typedef struct rs6000_stack {
1119 int first_gp_reg_save; /* first callee saved GP register used */
1120 int first_fp_reg_save; /* first callee saved FP register used */
1121 int lr_save_p; /* true if the link reg needs to be saved */
1122 int cr_save_p; /* true if the CR reg needs to be saved */
b6c9286a 1123 int toc_save_p; /* true if the TOC needs to be saved */
4697a36c
MM
1124 int push_p; /* true if we need to allocate stack space */
1125 int calls_p; /* true if the function makes any calls */
b6c9286a
MM
1126 int main_p; /* true if this is main */
1127 int main_save_p; /* true if this is main and we need to save args */
802a0058 1128 int fpmem_p; /* true if float/int conversion temp needed */
6b67933e 1129 enum rs6000_abi abi; /* which ABI to use */
abc95ed3
RK
1130 int gp_save_offset; /* offset to save GP regs from initial SP */
1131 int fp_save_offset; /* offset to save FP regs from initial SP */
4697a36c
MM
1132 int lr_save_offset; /* offset to save LR from initial SP */
1133 int cr_save_offset; /* offset to save CR from initial SP */
b6c9286a 1134 int toc_save_offset; /* offset to save the TOC pointer */
4697a36c 1135 int varargs_save_offset; /* offset to save the varargs registers */
b6c9286a 1136 int main_save_offset; /* offset to save main's args */
802a0058 1137 int fpmem_offset; /* offset for float/int conversion temp */
4697a36c
MM
1138 int reg_size; /* register size (4 or 8) */
1139 int varargs_size; /* size to hold V.4 args passed in regs */
1140 int vars_size; /* variable save area size */
1141 int parm_size; /* outgoing parameter size */
b6c9286a 1142 int main_size; /* size to hold saving main's args */
4697a36c
MM
1143 int save_size; /* save area size */
1144 int fixed_size; /* fixed size of stack frame */
1145 int gp_size; /* size of saved GP registers */
1146 int fp_size; /* size of saved FP registers */
1147 int cr_size; /* size to hold CR if not in save_size */
b6c9286a 1148 int lr_size; /* size to hold LR if not in save_size */
802a0058 1149 int fpmem_size; /* size to hold float/int conversion */
b6c9286a 1150 int toc_size; /* size to hold TOC if not in save_size */
4697a36c
MM
1151 int total_size; /* total bytes allocated for stack */
1152} rs6000_stack_t;
1153
f045b2c9
RS
1154/* Define this if pushing a word on the stack
1155 makes the stack pointer a smaller address. */
1156#define STACK_GROWS_DOWNWARD
1157
1158/* Define this if the nominal address of the stack frame
1159 is at the high-address end of the local variables;
1160 that is, each additional local variable allocated
1161 goes at a more negative offset in the frame.
1162
1163 On the RS/6000, we grow upwards, from the area after the outgoing
1164 arguments. */
1165/* #define FRAME_GROWS_DOWNWARD */
1166
4697a36c 1167/* Size of the outgoing register save area */
2f3e5814 1168#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
4697a36c
MM
1169
1170/* Size of the fixed area on the stack */
2f3e5814 1171#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
4697a36c 1172
b6c9286a
MM
1173/* Address to save the TOC register */
1174#define RS6000_SAVE_TOC plus_constant (stack_pointer_rtx, 20)
1175
1176/* Whether a separate TOC save area is needed */
1177extern int rs6000_save_toc_p;
1178
802a0058
MM
1179/* Offset & size for fpmem stack locations used for converting between
1180 float and integral types. */
1181extern int rs6000_fpmem_offset;
1182extern int rs6000_fpmem_size;
1183
4697a36c
MM
1184/* Size of the V.4 varargs area if needed */
1185#define RS6000_VARARGS_AREA 0
1186
1187/* Whether a V.4 varargs area is needed */
1188extern int rs6000_sysv_varargs_p;
1189
1190/* Align an address */
1191#define ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1192
1193/* Size of V.4 varargs area in bytes */
1194#define RS6000_VARARGS_SIZE \
2f3e5814 1195 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
4697a36c
MM
1196
1197/* Offset of V.4 varargs area */
802a0058
MM
1198#define RS6000_VARARGS_OFFSET \
1199 (ALIGN (current_function_outgoing_args_size, 8) \
1200 + ALIGN (rs6000_fpmem_size, 8) \
1201 + RS6000_SAVE_AREA)
4697a36c 1202
f045b2c9
RS
1203/* Offset within stack frame to start allocating local variables at.
1204 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1205 first local allocated. Otherwise, it is the offset to the BEGINNING
c81bebd7 1206 of the first local allocated.
f045b2c9
RS
1207
1208 On the RS/6000, the frame pointer is the same as the stack pointer,
1209 except for dynamic allocations. So we start after the fixed area and
1210 outgoing parameter area. */
1211
802a0058
MM
1212#define STARTING_FRAME_OFFSET \
1213 (ALIGN (current_function_outgoing_args_size, 8) \
1214 + ALIGN (rs6000_fpmem_size, 8) \
1215 + RS6000_VARARGS_AREA \
1216 + RS6000_SAVE_AREA)
1217
1218/* Offset from the stack pointer register to an item dynamically
1219 allocated on the stack, e.g., by `alloca'.
1220
1221 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1222 length of the outgoing arguments. The default is correct for most
1223 machines. See `function.c' for details. */
1224#define STACK_DYNAMIC_OFFSET(FUNDECL) \
1225 (ALIGN (current_function_outgoing_args_size, 8) \
1226 + ALIGN (rs6000_fpmem_size, 8) \
1227 + (STACK_POINTER_OFFSET))
f045b2c9
RS
1228
1229/* If we generate an insn to push BYTES bytes,
1230 this says how many the stack pointer really advances by.
1231 On RS/6000, don't define this because there are no push insns. */
1232/* #define PUSH_ROUNDING(BYTES) */
1233
1234/* Offset of first parameter from the argument pointer register value.
1235 On the RS/6000, we define the argument pointer to the start of the fixed
1236 area. */
4697a36c 1237#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
f045b2c9
RS
1238
1239/* Define this if stack space is still allocated for a parameter passed
1240 in a register. The value is the number of bytes allocated to this
1241 area. */
4697a36c 1242#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
f045b2c9
RS
1243
1244/* Define this if the above stack space is to be considered part of the
1245 space allocated by the caller. */
1246#define OUTGOING_REG_PARM_STACK_SPACE
1247
1248/* This is the difference between the logical top of stack and the actual sp.
1249
1250 For the RS/6000, sp points past the fixed area. */
4697a36c 1251#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
f045b2c9
RS
1252
1253/* Define this if the maximum size of all the outgoing args is to be
1254 accumulated and pushed during the prologue. The amount can be
1255 found in the variable current_function_outgoing_args_size. */
1256#define ACCUMULATE_OUTGOING_ARGS
1257
1258/* Value is the number of bytes of arguments automatically
1259 popped when returning from a subroutine call.
8b109b37 1260 FUNDECL is the declaration node of the function (as a tree),
f045b2c9
RS
1261 FUNTYPE is the data type of the function (as a tree),
1262 or for a library call it is an identifier node for the subroutine name.
1263 SIZE is the number of bytes of arguments passed on the stack. */
1264
8b109b37 1265#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
f045b2c9
RS
1266
1267/* Define how to find the value returned by a function.
1268 VALTYPE is the data type of the value (as a tree).
1269 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1270 otherwise, FUNC is 0.
1271
c81bebd7 1272 On RS/6000 an integer value is in r3 and a floating-point value is in
d14a6d05 1273 fp1, unless -msoft-float. */
f045b2c9
RS
1274
1275#define FUNCTION_VALUE(VALTYPE, FUNC) \
1276 gen_rtx (REG, TYPE_MODE (VALTYPE), \
d14a6d05 1277 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1278
1279/* Define how to find the value returned by a library function
1280 assuming the value has mode MODE. */
1281
1282#define LIBCALL_VALUE(MODE) \
d14a6d05 1283 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
f045b2c9
RS
1284
1285/* The definition of this macro implies that there are cases where
1286 a scalar value cannot be returned in registers.
1287
c81bebd7
MM
1288 For the RS/6000, any structure or union type is returned in memory, except for
1289 Solaris, which returns structures <= 8 bytes in registers. */
f045b2c9 1290
c81bebd7
MM
1291#define RETURN_IN_MEMORY(TYPE) \
1292 (TYPE_MODE (TYPE) == BLKmode \
1293 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
f045b2c9 1294
4697a36c
MM
1295/* Minimum and maximum general purpose registers used to hold arguments. */
1296#define GP_ARG_MIN_REG 3
1297#define GP_ARG_MAX_REG 10
1298#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1299
1300/* Minimum and maximum floating point registers used to hold arguments. */
1301#define FP_ARG_MIN_REG 33
7509c759
MM
1302#define FP_ARG_AIX_MAX_REG 45
1303#define FP_ARG_V4_MAX_REG 40
1304#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
4697a36c
MM
1305#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1306
1307/* Return registers */
1308#define GP_ARG_RETURN GP_ARG_MIN_REG
1309#define FP_ARG_RETURN FP_ARG_MIN_REG
1310
7509c759 1311/* Flags for the call/call_value rtl operations set up by function_arg */
6a4cee5f
MM
1312#define CALL_NORMAL 0x00000000 /* no special processing */
1313#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1314#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1315#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1316#define CALL_LONG 0x00000008 /* always call indirect */
7509c759 1317
4697a36c
MM
1318/* Define cutoff for using external functions to save floating point */
1319#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1320
f045b2c9
RS
1321/* 1 if N is a possible register number for a function value
1322 as seen by the caller.
1323
1324 On RS/6000, this is r3 and fp1. */
4697a36c 1325#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
f045b2c9
RS
1326
1327/* 1 if N is a possible register number for function argument passing.
1328 On RS/6000, these are r3-r10 and fp1-fp13. */
4697a36c
MM
1329#define FUNCTION_ARG_REGNO_P(N) \
1330 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1331 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
f045b2c9 1332
f045b2c9
RS
1333\f
1334/* Define a data type for recording info about an argument list
1335 during the scan of that argument list. This data type should
1336 hold all necessary information about the function itself
1337 and about the args processed so far, enough to enable macros
1338 such as FUNCTION_ARG to determine where the next arg should go.
1339
1340 On the RS/6000, this is a structure. The first element is the number of
1341 total argument words, the second is used to store the next
1342 floating-point register number, and the third says how many more args we
4697a36c
MM
1343 have prototype types for.
1344
1345 The System V.4 varargs/stdarg support requires that this structure's size
1346 be a multiple of sizeof(int), and that WORDS, FREGNO, NARGS_PROTOTYPE,
1347 ORIG_NARGS, and VARARGS_OFFSET be the first five ints. */
1348
1349typedef struct rs6000_args
1350{
6a4cee5f
MM
1351 int words; /* # words uses for passing GP registers */
1352 int fregno; /* next available FP register */
1353 int nargs_prototype; /* # args left in the current prototype */
1354 int orig_nargs; /* Original value of nargs_prototype */
1355 int varargs_offset; /* offset of the varargs save area */
1356 int prototype; /* Whether a prototype was defined */
1357 int call_cookie; /* Do special things for this call */
4697a36c 1358} CUMULATIVE_ARGS;
f045b2c9
RS
1359
1360/* Define intermediate macro to compute the size (in registers) of an argument
1361 for the RS/6000. */
1362
1363#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1364(! (NAMED) ? 0 \
1365 : (MODE) != BLKmode \
1366 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1367 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1368
1369/* Initialize a variable CUM of type CUMULATIVE_ARGS
1370 for a call to a function whose data type is FNTYPE.
1371 For a library call, FNTYPE is 0. */
1372
2c7ee1a6 1373#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
4697a36c 1374 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
f045b2c9
RS
1375
1376/* Similar, but when scanning the definition of a procedure. We always
1377 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1378
4697a36c
MM
1379#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1380 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
f045b2c9
RS
1381
1382/* Update the data in CUM to advance over an argument
1383 of mode MODE and data type TYPE.
1384 (TYPE is null for libcalls where that information may not be available.) */
1385
1386#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
4697a36c 1387 function_arg_advance (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1388
1389/* Non-zero if we can use a floating-point register to pass this arg. */
4697a36c
MM
1390#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1391 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1392 && (CUM).fregno <= FP_ARG_MAX_REG \
1393 && TARGET_HARD_FLOAT)
f045b2c9
RS
1394
1395/* Determine where to put an argument to a function.
1396 Value is zero to push the argument on the stack,
1397 or a hard register in which to store the argument.
1398
1399 MODE is the argument's machine mode.
1400 TYPE is the data type of the argument (as a tree).
1401 This is null for libcalls where that information may
1402 not be available.
1403 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1404 the preceding args and about the function being called.
1405 NAMED is nonzero if this argument is a named parameter
1406 (otherwise it is an extra parameter matching an ellipsis).
1407
1408 On RS/6000 the first eight words of non-FP are normally in registers
1409 and the rest are pushed. The first 13 FP args are in registers.
1410
1411 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
1412 both an FP and integer register (or possibly FP reg and stack). Library
1413 functions (when TYPE is zero) always have the proper types for args,
1414 so we can pass the FP value just in one register. emit_library_function
1415 doesn't support EXPR_LIST anyway. */
f045b2c9 1416
4697a36c
MM
1417#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1418 function_arg (&CUM, MODE, TYPE, NAMED)
f045b2c9
RS
1419
1420/* For an arg passed partly in registers and partly in memory,
1421 this is the number of registers used.
1422 For args passed entirely in registers or entirely in memory, zero. */
1423
4697a36c
MM
1424#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1425 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1426
1427/* A C expression that indicates when an argument must be passed by
1428 reference. If nonzero for an argument, a copy of that argument is
1429 made in memory and a pointer to the argument is passed instead of
1430 the argument itself. The pointer is passed in whatever way is
1431 appropriate for passing a pointer to that type. */
1432
1433#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1434 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
f045b2c9 1435
b6c9286a 1436/* If defined, a C expression that gives the alignment boundary, in bits,
c81bebd7 1437 of an argument with the specified mode and type. If it is not defined,
b6c9286a
MM
1438 PARM_BOUNDARY is used for all arguments. */
1439
1440#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1441 function_arg_boundary (MODE, TYPE)
1442
f045b2c9 1443/* Perform any needed actions needed for a function that is receiving a
c81bebd7 1444 variable number of arguments.
f045b2c9
RS
1445
1446 CUM is as above.
1447
1448 MODE and TYPE are the mode and type of the current parameter.
1449
1450 PRETEND_SIZE is a variable that should be set to the amount of stack
1451 that must be pushed by the prolog to pretend that our caller pushed
1452 it.
1453
1454 Normally, this macro will push all remaining incoming registers on the
1455 stack and set PRETEND_SIZE to the length of the registers pushed. */
1456
4697a36c
MM
1457#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1458 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1459
1460/* If defined, is a C expression that produces the machine-specific
1461 code for a call to `__builtin_saveregs'. This code will be moved
1462 to the very beginning of the function, before any parameter access
1463 are made. The return value of this function should be an RTX that
1464 contains the value to use as the return of `__builtin_saveregs'.
1465
1466 The argument ARGS is a `tree_list' containing the arguments that
1467 were passed to `__builtin_saveregs'.
1468
1469 If this macro is not defined, the compiler will output an ordinary
1470 call to the library function `__builtin_saveregs'. */
1471
1472#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
1473 expand_builtin_saveregs (ARGS)
f045b2c9
RS
1474
1475/* This macro generates the assembly code for function entry.
1476 FILE is a stdio stream to output the code to.
1477 SIZE is an int: how many units of temporary storage to allocate.
1478 Refer to the array `regs_ever_live' to determine which registers
1479 to save; `regs_ever_live[I]' is nonzero if register number I
1480 is ever used in the function. This macro is responsible for
1481 knowing which registers should not be saved even if used. */
1482
1483#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1484
1485/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 1486 for profiling a function entry. */
f045b2c9
RS
1487
1488#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 1489 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
1490
1491/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1492 the stack pointer does not matter. No definition is equivalent to
1493 always zero.
1494
1495 On the RS/6000, this is non-zero because we can restore the stack from
1496 its backpointer, which we maintain. */
1497#define EXIT_IGNORE_STACK 1
1498
1499/* This macro generates the assembly code for function exit,
1500 on machines that need it. If FUNCTION_EPILOGUE is not defined
1501 then individual return instructions are generated for each
1502 return statement. Args are same as for FUNCTION_PROLOGUE.
1503
1504 The function epilogue should not depend on the current stack pointer!
1505 It should use the frame pointer only. This is mandatory because
1506 of alloca; we also take advantage of it to omit stack adjustments
1507 before returning. */
1508
1509#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1510\f
1511/* Output assembler code for a block containing the constant parts
1512 of a trampoline, leaving space for the variable parts.
1513
1514 The trampoline should set the static chain pointer to value placed
b6c9286a
MM
1515 into the trampoline and should branch to the specified routine. */
1516#define TRAMPOLINE_TEMPLATE(FILE) rs6000_trampoline_template (FILE)
f045b2c9
RS
1517
1518/* Length in units of the trampoline for entering a nested function. */
1519
b6c9286a 1520#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
f045b2c9
RS
1521
1522/* Emit RTL insns to initialize the variable parts of a trampoline.
1523 FNADDR is an RTX for the address of the function's pure code.
1524 CXT is an RTX for the static chain value for the function. */
1525
1526#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
b6c9286a 1527 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
f045b2c9 1528\f
7509c759
MM
1529/* If defined, a C expression whose value is nonzero if IDENTIFIER
1530 with arguments ARGS is a valid machine specific attribute for DECL.
1531 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1532
1533#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1534 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1535
1536/* If defined, a C expression whose value is nonzero if IDENTIFIER
1537 with arguments ARGS is a valid machine specific attribute for TYPE.
1538 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1539
1540#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1541 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1542
1543/* If defined, a C expression whose value is zero if the attributes on
1544 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1545 two if they are nearly compatible (which causes a warning to be
1546 generated). */
1547
1548#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1549 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1550
1551/* If defined, a C statement that assigns default attributes to newly
1552 defined TYPE. */
1553
1554#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1555 (rs6000_set_default_type_attributes (TYPE))
1556
1557\f
f33985c6
MS
1558/* Definitions for __builtin_return_address and __builtin_frame_address.
1559 __builtin_return_address (0) should give link register (65), enable
1560 this. */
1561/* This should be uncommented, so that the link register is used, but
1562 currently this would result in unmatched insns and spilling fixed
1563 registers so we'll leave it for another day. When these problems are
1564 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1565 (mrs) */
1566/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
f09d4c33 1567
b6c9286a
MM
1568/* Number of bytes into the frame return addresses can be found. See
1569 rs6000_stack_info in rs6000.c for more information on how the different
1570 abi's store the return address. */
1571#define RETURN_ADDRESS_OFFSET \
1572 ((DEFAULT_ABI == ABI_AIX \
1573 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
c81bebd7
MM
1574 (DEFAULT_ABI == ABI_V4 \
1575 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
b6c9286a
MM
1576 (DEFAULT_ABI == ABI_NT) ? -4 : \
1577 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
f09d4c33 1578
f33985c6
MS
1579/* The current return address is in link register (65). The return address
1580 of anything farther back is accessed normally at an offset of 8 from the
1581 frame pointer. */
1582#define RETURN_ADDR_RTX(count, frame) \
1583 ((count == -1) \
1584 ? gen_rtx (REG, Pmode, 65) \
f09d4c33
RK
1585 : gen_rtx (MEM, Pmode, \
1586 memory_address (Pmode, \
1587 plus_constant (copy_to_reg (gen_rtx (MEM, Pmode, \
1588 memory_address (Pmode, frame))), \
1589 RETURN_ADDRESS_OFFSET))))
f33985c6 1590\f
f045b2c9
RS
1591/* Definitions for register eliminations.
1592
1593 We have two registers that can be eliminated on the RS/6000. First, the
1594 frame pointer register can often be eliminated in favor of the stack
1595 pointer register. Secondly, the argument pointer register can always be
642a35f1
JW
1596 eliminated; it is replaced with either the stack or frame pointer.
1597
1598 In addition, we use the elimination mechanism to see if r30 is needed
1599 Initially we assume that it isn't. If it is, we spill it. This is done
1600 by making it an eliminable register. We replace it with itself so that
1601 if it isn't needed, then existing uses won't be modified. */
f045b2c9
RS
1602
1603/* This is an array of structures. Each structure initializes one pair
1604 of eliminable registers. The "from" register number is given first,
1605 followed by "to". Eliminations of the same "from" register are listed
1606 in order of preference. */
1607#define ELIMINABLE_REGS \
1608{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1609 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
642a35f1
JW
1610 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1611 { 30, 30} }
f045b2c9
RS
1612
1613/* Given FROM and TO register numbers, say whether this elimination is allowed.
1614 Frame pointer elimination is automatically handled.
1615
1616 For the RS/6000, if frame pointer elimination is being done, we would like
642a35f1
JW
1617 to convert ap into fp, not sp.
1618
abc95ed3 1619 We need r30 if -mminimal-toc was specified, and there are constant pool
642a35f1 1620 references. */
f045b2c9
RS
1621
1622#define CAN_ELIMINATE(FROM, TO) \
1623 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1624 ? ! frame_pointer_needed \
4697a36c 1625 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
f045b2c9
RS
1626 : 1)
1627
1628/* Define the offset between two registers, one to be eliminated, and the other
1629 its replacement, at the start of a routine. */
1630#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1631{ \
4697a36c 1632 rs6000_stack_t *info = rs6000_stack_info (); \
f045b2c9
RS
1633 \
1634 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
4697a36c
MM
1635 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1636 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1637 (OFFSET) = info->total_size; \
1638 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1639 (OFFSET) = (info->push_p) ? info->total_size : 0; \
642a35f1
JW
1640 else if ((FROM) == 30) \
1641 (OFFSET) = 0; \
f045b2c9
RS
1642 else \
1643 abort (); \
1644}
1645\f
1646/* Addressing modes, and classification of registers for them. */
1647
1648/* #define HAVE_POST_INCREMENT */
1649/* #define HAVE_POST_DECREMENT */
1650
1651#define HAVE_PRE_DECREMENT
1652#define HAVE_PRE_INCREMENT
1653
1654/* Macros to check register numbers against specific register classes. */
1655
1656/* These assume that REGNO is a hard or pseudo reg number.
1657 They give nonzero only if REGNO is a hard reg of the suitable class
1658 or a pseudo reg currently allocated to a suitable hard reg.
1659 Since they use reg_renumber, they are safe only once reg_renumber
1660 has been allocated, which happens in local-alloc.c. */
1661
1662#define REGNO_OK_FOR_INDEX_P(REGNO) \
1663((REGNO) < FIRST_PSEUDO_REGISTER \
1664 ? (REGNO) <= 31 || (REGNO) == 67 \
1665 : (reg_renumber[REGNO] >= 0 \
1666 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1667
1668#define REGNO_OK_FOR_BASE_P(REGNO) \
1669((REGNO) < FIRST_PSEUDO_REGISTER \
1670 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1671 : (reg_renumber[REGNO] > 0 \
1672 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1673\f
1674/* Maximum number of registers that can appear in a valid memory address. */
1675
1676#define MAX_REGS_PER_ADDRESS 2
1677
1678/* Recognize any constant value that is a valid address. */
1679
6eff269e
BK
1680#define CONSTANT_ADDRESS_P(X) \
1681 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1682 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1683 || GET_CODE (X) == HIGH)
f045b2c9
RS
1684
1685/* Nonzero if the constant value X is a legitimate general operand.
1686 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1687
1688 On the RS/6000, all integer constants are acceptable, most won't be valid
1689 for particular insns, though. Only easy FP constants are
1690 acceptable. */
1691
1692#define LEGITIMATE_CONSTANT_P(X) \
1693 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1694 || easy_fp_constant (X, GET_MODE (X)))
1695
1696/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1697 and check its validity for a certain class.
1698 We have two alternate definitions for each of them.
1699 The usual definition accepts all pseudo regs; the other rejects
1700 them unless they have been allocated suitable hard regs.
1701 The symbol REG_OK_STRICT causes the latter definition to be used.
1702
1703 Most source files want to accept pseudo regs in the hope that
1704 they will get allocated to the class that the insn wants them to be in.
1705 Source files for reload pass need to be strict.
1706 After reload, it makes no difference, since pseudo regs have
1707 been eliminated by then. */
1708
1709#ifndef REG_OK_STRICT
1710
1711/* Nonzero if X is a hard reg that can be used as an index
1712 or if it is a pseudo reg. */
1713#define REG_OK_FOR_INDEX_P(X) \
1714 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1715
1716/* Nonzero if X is a hard reg that can be used as a base reg
1717 or if it is a pseudo reg. */
1718#define REG_OK_FOR_BASE_P(X) \
1719 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1720
1721#else
1722
1723/* Nonzero if X is a hard reg that can be used as an index. */
1724#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1725/* Nonzero if X is a hard reg that can be used as a base reg. */
1726#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1727
1728#endif
1729\f
1730/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1731 that is a valid memory address for an instruction.
1732 The MODE argument is the machine mode for the MEM expression
1733 that wants to use this address.
1734
1735 On the RS/6000, there are four valid address: a SYMBOL_REF that
1736 refers to a constant pool entry of an address (or the sum of it
1737 plus a constant), a short (16-bit signed) constant plus a register,
1738 the sum of two registers, or a register indirect, possibly with an
1739 auto-increment. For DFmode and DImode with an constant plus register,
2f3e5814
DE
1740 we must ensure that both words are addressable or PowerPC64 with offset
1741 word aligned. */
f045b2c9
RS
1742
1743#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
4697a36c
MM
1744 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1745 && CONSTANT_POOL_ADDRESS_P (X) \
f045b2c9
RS
1746 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1747
2f3e5814 1748/* TARGET_64BIT TOC64 guaranteed to have 64 bit alignment. */
f045b2c9
RS
1749#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1750 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
4697a36c
MM
1751 || (TARGET_TOC \
1752 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
f045b2c9
RS
1753 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1754 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1755
7509c759 1756#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
c81bebd7 1757 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
88228c4b
MM
1758 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1759 && small_data_operand (X, MODE))
7509c759 1760
f045b2c9
RS
1761#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1762 (GET_CODE (X) == CONST_INT \
1763 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1764
1765#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1766 (GET_CODE (X) == PLUS \
1767 && GET_CODE (XEXP (X, 0)) == REG \
1768 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1769 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1770 && (((MODE) != DFmode && (MODE) != DImode) \
2f3e5814 1771 || (TARGET_32BIT \
1465faec
DE
1772 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1773 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2f3e5814 1774 && ((MODE) != TImode \
644d82dd 1775 || (TARGET_32BIT \
1465faec
DE
1776 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1777 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1778 && ! (INTVAL (XEXP (X, 1)) & 3)))))
f045b2c9
RS
1779
1780#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1781 (GET_CODE (X) == PLUS \
1782 && GET_CODE (XEXP (X, 0)) == REG \
1783 && GET_CODE (XEXP (X, 1)) == REG \
1784 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1785 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1786 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1787 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1788
1789#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1790 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1791
4697a36c
MM
1792#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1793 (TARGET_ELF \
1794 && (MODE) != DImode \
1795 && (MODE) != TImode \
1796 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1797 && GET_CODE (X) == LO_SUM \
1798 && GET_CODE (XEXP (X, 0)) == REG \
1799 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1800 && CONSTANT_P (XEXP (X, 1)))
1801
f045b2c9
RS
1802#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1803{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1804 goto ADDR; \
0a90c336 1805 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
f045b2c9
RS
1806 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1807 goto ADDR; \
7509c759
MM
1808 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1809 goto ADDR; \
f045b2c9
RS
1810 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1811 goto ADDR; \
1812 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1813 goto ADDR; \
2f3e5814
DE
1814 if ((MODE) != TImode \
1815 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1816 && (TARGET_64BIT || (MODE) != DImode) \
f045b2c9
RS
1817 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1818 goto ADDR; \
4697a36c
MM
1819 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1820 goto ADDR; \
f045b2c9
RS
1821}
1822\f
1823/* Try machine-dependent ways of modifying an illegitimate address
1824 to be legitimate. If we find one, return the new, valid address.
1825 This macro is used in only one place: `memory_address' in explow.c.
1826
1827 OLDX is the address as it was before break_out_memory_refs was called.
1828 In some cases it is useful to look at this to decide what needs to be done.
1829
1830 MODE and WIN are passed so that this macro can use
1831 GO_IF_LEGITIMATE_ADDRESS.
1832
1833 It is always safe for this macro to do nothing. It exists to recognize
1834 opportunities to optimize the output.
1835
1836 On RS/6000, first check for the sum of a register with a constant
1837 integer that is out of range. If so, generate code to add the
1838 constant with the low-order 16 bits masked to the register and force
1839 this result into another register (this can be done with `cau').
c81bebd7 1840 Then generate an address of REG+(CONST&0xffff), allowing for the
f045b2c9
RS
1841 possibility of bit 16 being a one.
1842
1843 Then check for the sum of a register and something not constant, try to
1844 load the other things into a register and return the sum. */
1845
4697a36c
MM
1846#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1847{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1848 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1849 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
354b734b
MM
1850 { HOST_WIDE_INT high_int, low_int; \
1851 rtx sum; \
1852 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
4697a36c
MM
1853 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1854 if (low_int & 0x8000) \
354b734b
MM
1855 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1856 sum = force_operand (gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1857 GEN_INT (high_int)), 0); \
1858 (X) = gen_rtx (PLUS, Pmode, sum, GEN_INT (low_int)); \
4697a36c
MM
1859 goto WIN; \
1860 } \
1861 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1862 && GET_CODE (XEXP (X, 1)) != CONST_INT \
2f3e5814
DE
1863 && (TARGET_HARD_FLOAT || TARGET_64BIT || (MODE) != DFmode) \
1864 && (TARGET_64BIT || (MODE) != DImode) \
1865 && (MODE) != TImode) \
4697a36c 1866 { \
0a90c336
DE
1867 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1868 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
4697a36c
MM
1869 goto WIN; \
1870 } \
2f3e5814 1871 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
4697a36c
MM
1872 && GET_CODE (X) != CONST_INT \
1873 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
1874 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1875 && (MODE) != DImode && (MODE) != TImode) \
1876 { \
1877 rtx reg = gen_reg_rtx (Pmode); \
1878 emit_insn (gen_elf_high (reg, (X))); \
1879 (X) = gen_rtx (LO_SUM, Pmode, reg, (X)); \
1880 } \
f045b2c9
RS
1881}
1882
1883/* Go to LABEL if ADDR (a legitimate address expression)
1884 has an effect that depends on the machine mode it is used for.
1885
1886 On the RS/6000 this is true if the address is valid with a zero offset
1887 but not with an offset of four (this means it cannot be used as an
1888 address for DImode or DFmode) or is a pre-increment or decrement. Since
1889 we know it is valid, we just check for an address that is not valid with
1890 an offset of four. */
1891
1892#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1893{ if (GET_CODE (ADDR) == PLUS \
1894 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2f3e5814
DE
1895 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
1896 (TARGET_32BIT ? 4 : 8))) \
f045b2c9
RS
1897 goto LABEL; \
1898 if (GET_CODE (ADDR) == PRE_INC) \
1899 goto LABEL; \
1900 if (GET_CODE (ADDR) == PRE_DEC) \
1901 goto LABEL; \
4697a36c
MM
1902 if (GET_CODE (ADDR) == LO_SUM) \
1903 goto LABEL; \
f045b2c9 1904}
766a866c
MM
1905\f
1906/* The register number of the register used to address a table of
1907 static data addresses in memory. In some cases this register is
1908 defined by a processor's "application binary interface" (ABI).
1909 When this macro is defined, RTL is generated for this register
1910 once, as with the stack pointer and frame pointer registers. If
1911 this macro is not defined, it is up to the machine-dependent files
1912 to allocate such a register (if necessary). */
1913
1914/* #define PIC_OFFSET_TABLE_REGNUM */
1915
1916/* Define this macro if the register defined by
1917 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1918 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
1919
1920/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1921
1922/* By generating position-independent code, when two different
1923 programs (A and B) share a common library (libC.a), the text of
1924 the library can be shared whether or not the library is linked at
1925 the same address for both programs. In some of these
1926 environments, position-independent code requires not only the use
1927 of different addressing modes, but also special code to enable the
1928 use of these addressing modes.
1929
1930 The `FINALIZE_PIC' macro serves as a hook to emit these special
1931 codes once the function is being compiled into assembly code, but
1932 not before. (It is not done before, because in the case of
1933 compiling an inline function, it would lead to multiple PIC
1934 prologues being included in functions which used inline functions
1935 and were compiled to assembly language.) */
1936
1937/* #define FINALIZE_PIC */
1938
766a866c
MM
1939/* A C expression that is nonzero if X is a legitimate immediate
1940 operand on the target machine when generating position independent
1941 code. You can assume that X satisfies `CONSTANT_P', so you need
1942 not check this. You can also assume FLAG_PIC is true, so you need
1943 not check it either. You need not define this macro if all
1944 constants (including `SYMBOL_REF') can be immediate operands when
1945 generating position independent code. */
1946
1947/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1948
f045b2c9
RS
1949\f
1950/* Define this if some processing needs to be done immediately before
4255474b 1951 emitting code for an insn. */
f045b2c9 1952
4255474b 1953/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
f045b2c9
RS
1954
1955/* Specify the machine mode that this machine uses
1956 for the index in the tablejump instruction. */
2f3e5814 1957#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
1958
1959/* Define this if the tablejump instruction expects the table
1960 to contain offsets from the address of the table.
1961 Do not define this if the table should contain absolute addresses. */
1962#define CASE_VECTOR_PC_RELATIVE
1963
1964/* Specify the tree operation to be used to convert reals to integers. */
1965#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1966
1967/* This is the kind of divide that is easiest to do in the general case. */
1968#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1969
1970/* Define this as 1 if `char' should by default be signed; else as 0. */
1971#define DEFAULT_SIGNED_CHAR 0
1972
1973/* This flag, if defined, says the same insns that convert to a signed fixnum
1974 also convert validly to an unsigned one. */
1975
1976/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1977
1978/* Max number of bytes we can move from memory to memory
1979 in one reasonably fast instruction. */
2f3e5814 1980#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
7e69e155 1981#define MAX_MOVE_MAX 8
f045b2c9
RS
1982
1983/* Nonzero if access to memory by bytes is no faster than for words.
1984 Also non-zero if doing byte operations (specifically shifts) in registers
1985 is undesirable. */
1986#define SLOW_BYTE_ACCESS 1
1987
9a63901f
RK
1988/* Define if operations between registers always perform the operation
1989 on the full register even if a narrower mode is specified. */
1990#define WORD_REGISTER_OPERATIONS
1991
1992/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1993 will either zero-extend or sign-extend. The value of this macro should
1994 be the code that says which one of the two operations is implicitly
1995 done, NIL if none. */
1996#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
225211e2
RK
1997
1998/* Define if loading short immediate values into registers sign extends. */
1999#define SHORT_IMMEDIATES_SIGN_EXTEND
fdaff8ba
RS
2000\f
2001/* The RS/6000 uses the XCOFF format. */
f045b2c9 2002
fdaff8ba 2003#define XCOFF_DEBUGGING_INFO
f045b2c9 2004
c5abcf1d
CH
2005/* Define if the object format being used is COFF or a superset. */
2006#define OBJECT_FORMAT_COFF
2007
2c440f06
RK
2008/* Define the magic numbers that we recognize as COFF. */
2009
2010#define MY_ISCOFF(magic) \
2011 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
2012
115e69a9
RK
2013/* This is the only version of nm that collect2 can work with. */
2014#define REAL_NM_FILE_NAME "/usr/ucb/nm"
2015
f045b2c9
RS
2016/* We don't have GAS for the RS/6000 yet, so don't write out special
2017 .stabs in cc1plus. */
c81bebd7 2018
f045b2c9 2019#define FASCIST_ASSEMBLER
b6c9286a
MM
2020
2021#ifndef ASM_OUTPUT_CONSTRUCTOR
a6cf191b 2022#define ASM_OUTPUT_CONSTRUCTOR(file, name)
b6c9286a
MM
2023#endif
2024#ifndef ASM_OUTPUT_DESTRUCTOR
a6cf191b 2025#define ASM_OUTPUT_DESTRUCTOR(file, name)
b6c9286a 2026#endif
f045b2c9 2027
f045b2c9
RS
2028/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2029 is done just by pretending it is already truncated. */
2030#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2031
2032/* Specify the machine mode that pointers have.
2033 After generation of rtl, the compiler makes no further distinction
2034 between pointers and any other objects of this machine mode. */
2f3e5814 2035#define Pmode (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2036
2037/* Mode of a function address in a call instruction (for indexing purposes).
2038
2039 Doesn't matter on RS/6000. */
2f3e5814 2040#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
f045b2c9
RS
2041
2042/* Define this if addresses of constant functions
2043 shouldn't be put through pseudo regs where they can be cse'd.
2044 Desirable on machines where ordinary constants are expensive
2045 but a CALL with constant address is cheap. */
2046#define NO_FUNCTION_CSE
2047
d969caf8 2048/* Define this to be nonzero if shift instructions ignore all but the low-order
6febd581
RK
2049 few bits.
2050
2051 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2052 have been dropped from the PowerPC architecture. */
2053
4697a36c 2054#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
f045b2c9
RS
2055
2056/* Use atexit for static constructors/destructors, instead of defining
2057 our own exit function. */
2058#define HAVE_ATEXIT
2059
2060/* Compute the cost of computing a constant rtl expression RTX
2061 whose rtx-code is CODE. The body of this macro is a portion
2062 of a switch statement. If the code is computed here,
2063 return it with a return statement. Otherwise, break from the switch.
2064
01554f00 2065 On the RS/6000, if it is valid in the insn, it is free. So this
f045b2c9
RS
2066 always returns 0. */
2067
4697a36c 2068#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
2069 case CONST_INT: \
2070 case CONST: \
2071 case LABEL_REF: \
2072 case SYMBOL_REF: \
2073 case CONST_DOUBLE: \
4697a36c 2074 case HIGH: \
f045b2c9
RS
2075 return 0;
2076
2077/* Provide the costs of a rtl expression. This is in the body of a
2078 switch on CODE. */
2079
3bb22aee 2080#define RTX_COSTS(X,CODE,OUTER_CODE) \
f045b2c9 2081 case MULT: \
bdfd4e31
RK
2082 switch (rs6000_cpu) \
2083 { \
2084 case PROCESSOR_RIOS1: \
2085 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2086 ? COSTS_N_INSNS (5) \
2087 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2088 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2089 case PROCESSOR_RIOS2: \
cf27b467 2090 case PROCESSOR_MPCCORE: \
bdfd4e31
RK
2091 return COSTS_N_INSNS (2); \
2092 case PROCESSOR_PPC601: \
869c489d 2093 return COSTS_N_INSNS (5); \
1ec26da6
DE
2094 case PROCESSOR_PPC603: \
2095 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2096 ? COSTS_N_INSNS (5) \
2097 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2098 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
49a0b204 2099 case PROCESSOR_PPC403: \
bdfd4e31
RK
2100 case PROCESSOR_PPC604: \
2101 case PROCESSOR_PPC620: \
869c489d 2102 return COSTS_N_INSNS (4); \
bdfd4e31 2103 } \
f045b2c9
RS
2104 case DIV: \
2105 case MOD: \
2106 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2107 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2108 return COSTS_N_INSNS (2); \
2109 /* otherwise fall through to normal divide. */ \
2110 case UDIV: \
2111 case UMOD: \
bdfd4e31
RK
2112 switch (rs6000_cpu) \
2113 { \
2114 case PROCESSOR_RIOS1: \
2115 return COSTS_N_INSNS (19); \
2116 case PROCESSOR_RIOS2: \
2117 return COSTS_N_INSNS (13); \
cf27b467
MM
2118 case PROCESSOR_MPCCORE: \
2119 return COSTS_N_INSNS (6); \
49a0b204
MM
2120 case PROCESSOR_PPC403: \
2121 return COSTS_N_INSNS (33); \
bdfd4e31 2122 case PROCESSOR_PPC601: \
869c489d 2123 return COSTS_N_INSNS (36); \
bdfd4e31 2124 case PROCESSOR_PPC603: \
869c489d 2125 return COSTS_N_INSNS (37); \
bdfd4e31
RK
2126 case PROCESSOR_PPC604: \
2127 case PROCESSOR_PPC620: \
869c489d 2128 return COSTS_N_INSNS (20); \
bdfd4e31 2129 } \
3a942930
RK
2130 case FFS: \
2131 return COSTS_N_INSNS (4); \
f045b2c9
RS
2132 case MEM: \
2133 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2134 return 5;
2135
2136/* Compute the cost of an address. This is meant to approximate the size
2137 and/or execution delay of an insn using that address. If the cost is
2138 approximated by the RTL complexity, including CONST_COSTS above, as
2139 is usually the case for CISC machines, this macro should not be defined.
2140 For aggressively RISCy machines, only one insn format is allowed, so
2141 this macro should be a constant. The value of this macro only matters
2142 for valid addresses.
2143
2144 For the RS/6000, everything is cost 0. */
2145
2146#define ADDRESS_COST(RTX) 0
2147
2148/* Adjust the length of an INSN. LENGTH is the currently-computed length and
2149 should be adjusted to reflect any required changes. This macro is used when
2150 there is some systematic length adjustment required that would be difficult
2151 to express in the length attribute. */
2152
2153/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2154
2155/* Add any extra modes needed to represent the condition code.
2156
2157 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
2158 are being done and we need a separate mode for floating-point. We also
2159 use a mode for the case when we are comparing the results of two
2160 comparisons. */
f045b2c9 2161
c5defebb 2162#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
2163
2164/* Define the names for the modes specified above. */
c5defebb 2165#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
2166
2167/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2168 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
2169 should be used. CCUNSmode should be used for unsigned comparisons.
2170 CCEQmode should be used when we are doing an inequality comparison on
2171 the result of a comparison. CCmode should be used in all other cases. */
2172
b565a316 2173#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 2174 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
2175 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2176 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2177 ? CCEQmode : CCmode))
f045b2c9
RS
2178
2179/* Define the information needed to generate branch and scc insns. This is
2180 stored from the compare operation. Note that we can't use "rtx" here
2181 since it hasn't been defined! */
2182
2183extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2184extern int rs6000_compare_fp_p;
2185
2186/* Set to non-zero by "fix" operation to indicate that itrunc and
2187 uitrunc must be defined. */
2188
2189extern int rs6000_trunc_used;
9929b575
ILT
2190
2191/* Function names to call to do floating point truncation. */
2192
2193#define RS6000_ITRUNC "itrunc"
2194#define RS6000_UITRUNC "uitrunc"
4d30c363
MM
2195
2196/* Prefix and suffix to use to saving floating point */
2197#ifndef SAVE_FP_PREFIX
2198#define SAVE_FP_PREFIX "._savef"
2199#define SAVE_FP_SUFFIX ""
2200#endif
2201
2202/* Prefix and suffix to use to restoring floating point */
2203#ifndef RESTORE_FP_PREFIX
2204#define RESTORE_FP_PREFIX "._restf"
2205#define RESTORE_FP_SUFFIX ""
2206#endif
2207
f045b2c9
RS
2208\f
2209/* Control the assembler format that we output. */
2210
1b279f39
DE
2211/* A C string constant describing how to begin a comment in the target
2212 assembler language. The compiler assumes that the comment will end at
2213 the end of the line. */
2214#define ASM_COMMENT_START " #"
6b67933e 2215
f045b2c9
RS
2216/* Output at beginning of assembler file.
2217
b4d6689b 2218 Initialize the section names for the RS/6000 at this point.
fdaff8ba 2219
6355b140 2220 Specify filename to assembler.
3fc2151d 2221
b4d6689b 2222 We want to go into the TOC section so at least one .toc will be emitted.
fdaff8ba 2223 Also, in order to output proper .bs/.es pairs, we need at least one static
b4d6689b
RK
2224 [RW] section emitted.
2225
2226 We then switch back to text to force the gcc2_compiled. label and the space
c81bebd7 2227 allocated after it (when profiling) into the text section.
b4d6689b
RK
2228
2229 Finally, declare mcount when profiling to make the assembler happy. */
f045b2c9
RS
2230
2231#define ASM_FILE_START(FILE) \
2232{ \
fdaff8ba 2233 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 2234 main_input_filename, ".bss_"); \
fdaff8ba 2235 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 2236 main_input_filename, ".rw_"); \
fdaff8ba 2237 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
2238 main_input_filename, ".ro_"); \
2239 \
6355b140 2240 output_file_directive (FILE, main_input_filename); \
f045b2c9 2241 toc_section (); \
fdaff8ba
RS
2242 if (write_symbols != NO_DEBUG) \
2243 private_data_section (); \
b4d6689b
RK
2244 text_section (); \
2245 if (profile_flag) \
19d2d16f 2246 fputs ("\t.extern .mcount\n", FILE); \
3cfa4909 2247 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
f045b2c9
RS
2248}
2249
2250/* Output at end of assembler file.
2251
2252 On the RS/6000, referencing data should automatically pull in text. */
2253
2254#define ASM_FILE_END(FILE) \
2255{ \
2256 text_section (); \
19d2d16f 2257 fputs ("_section_.text:\n", FILE); \
f045b2c9 2258 data_section (); \
19d2d16f 2259 fputs ("\t.long _section_.text\n", FILE); \
f045b2c9
RS
2260}
2261
f045b2c9
RS
2262/* We define this to prevent the name mangler from putting dollar signs into
2263 function names. */
2264
2265#define NO_DOLLAR_IN_LABEL
2266
2267/* We define this to 0 so that gcc will never accept a dollar sign in a
2268 variable name. This is needed because the AIX assembler will not accept
2269 dollar signs. */
2270
2271#define DOLLARS_IN_IDENTIFIERS 0
2272
fdaff8ba
RS
2273/* Implicit library calls should use memcpy, not bcopy, etc. */
2274
2275#define TARGET_MEM_FUNCTIONS
2276
f045b2c9
RS
2277/* Define the extra sections we need. We define three: one is the read-only
2278 data section which is used for constants. This is a csect whose name is
2279 derived from the name of the input file. The second is for initialized
2280 global variables. This is a csect whose name is that of the variable.
2281 The third is the TOC. */
2282
2283#define EXTRA_SECTIONS \
2284 read_only_data, private_data, read_only_private_data, toc, bss
2285
2286/* Define the name of our readonly data section. */
2287
2288#define READONLY_DATA_SECTION read_only_data_section
2289
b4f892eb
RK
2290/* If we are referencing a function that is static or is known to be
2291 in this file, make the SYMBOL_REF special. We can use this to indicate
2292 that we can branch to this function without emitting a no-op after the
2293 call. */
2294
2295#define ENCODE_SECTION_INFO(DECL) \
2296 if (TREE_CODE (DECL) == FUNCTION_DECL \
2297 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2298 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2299
f045b2c9
RS
2300/* Indicate that jump tables go in the text section. */
2301
2302#define JUMP_TABLES_IN_TEXT_SECTION
2303
2304/* Define the routines to implement these extra sections. */
2305
2306#define EXTRA_SECTION_FUNCTIONS \
2307 \
2308void \
2309read_only_data_section () \
2310{ \
2311 if (in_section != read_only_data) \
2312 { \
469adec3 2313 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2314 xcoff_read_only_section_name); \
f045b2c9
RS
2315 in_section = read_only_data; \
2316 } \
2317} \
2318 \
2319void \
2320private_data_section () \
2321{ \
2322 if (in_section != private_data) \
2323 { \
469adec3 2324 fprintf (asm_out_file, ".csect %s[RW]\n", \
fdaff8ba 2325 xcoff_private_data_section_name); \
f045b2c9
RS
2326 \
2327 in_section = private_data; \
2328 } \
2329} \
2330 \
2331void \
2332read_only_private_data_section () \
2333{ \
2334 if (in_section != read_only_private_data) \
2335 { \
f25359b5 2336 fprintf (asm_out_file, ".csect %s[RO]\n", \
fdaff8ba 2337 xcoff_private_data_section_name); \
f045b2c9
RS
2338 in_section = read_only_private_data; \
2339 } \
2340} \
2341 \
2342void \
2343toc_section () \
2344{ \
642a35f1
JW
2345 if (TARGET_MINIMAL_TOC) \
2346 { \
2347 static int toc_initialized = 0; \
2348 \
2349 /* toc_section is always called at least once from ASM_FILE_START, \
2350 so this is guaranteed to always be defined once and only once \
2351 in each file. */ \
2352 if (! toc_initialized) \
2353 { \
19d2d16f
MM
2354 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2355 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2356 toc_initialized = 1; \
2357 } \
f045b2c9 2358 \
642a35f1 2359 if (in_section != toc) \
19d2d16f 2360 fputs (".csect toc_table[RW]\n", asm_out_file); \
642a35f1
JW
2361 } \
2362 else \
2363 { \
2364 if (in_section != toc) \
19d2d16f 2365 fputs (".toc\n", asm_out_file); \
642a35f1 2366 } \
f045b2c9 2367 in_section = toc; \
fc3ffe83 2368}
f045b2c9
RS
2369
2370/* This macro produces the initial definition of a function name.
2371 On the RS/6000, we need to place an extra '.' in the function name and
c81bebd7 2372 output the function descriptor.
f045b2c9
RS
2373
2374 The csect for the function will have already been created by the
2375 `text_section' call previously done. We do have to go back to that
2376 csect, however. */
2377
fdaff8ba
RS
2378/* ??? What do the 16 and 044 in the .function line really mean? */
2379
f045b2c9
RS
2380#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2381{ if (TREE_PUBLIC (DECL)) \
2382 { \
19d2d16f 2383 fputs ("\t.globl .", FILE); \
f045b2c9 2384 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2385 putc ('\n', FILE); \
fdaff8ba 2386 } \
3ce428da 2387 else \
fdaff8ba 2388 { \
19d2d16f 2389 fputs ("\t.lglobl .", FILE); \
fdaff8ba 2390 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2391 putc ('\n', FILE); \
f045b2c9 2392 } \
19d2d16f 2393 fputs (".csect ", FILE); \
f045b2c9 2394 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2395 fputs ("[DS]\n", FILE); \
f045b2c9 2396 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2397 fputs (":\n", FILE); \
5854b0d0 2398 fputs ((TARGET_32BIT) ? "\t.long ." : "\t.llong .", FILE); \
f045b2c9 2399 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f
MM
2400 fputs (", TOC[tc0], 0\n", FILE); \
2401 fputs (".csect .text[PR]\n.", FILE); \
f045b2c9 2402 RS6000_OUTPUT_BASENAME (FILE, NAME); \
19d2d16f 2403 fputs (":\n", FILE); \
fdaff8ba 2404 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 2405 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
2406}
2407
2408/* Return non-zero if this entry is to be written into the constant pool
2409 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2410 containing one of them. If -mfp-in-toc (the default), we also do
2411 this for floating-point constants. We actually can only do this
2412 if the FP formats of the target and host machines are the same, but
2413 we can't check that since not every file that uses
2414 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2415
4697a36c
MM
2416#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2417 (TARGET_TOC \
2418 && (GET_CODE (X) == SYMBOL_REF \
2419 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2420 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2421 || GET_CODE (X) == LABEL_REF \
2422 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2423 && GET_CODE (X) == CONST_DOUBLE \
2424 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2425 && BITS_PER_WORD == HOST_BITS_PER_INT)))
f045b2c9
RS
2426
2427/* Select section for constant in constant pool.
2428
2429 On RS/6000, all constants are in the private read-only data area.
2430 However, if this is being placed in the TOC it must be output as a
2431 toc entry. */
2432
2433#define SELECT_RTX_SECTION(MODE, X) \
2434{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2435 toc_section (); \
2436 else \
2437 read_only_private_data_section (); \
2438}
2439
2440/* Macro to output a special constant pool entry. Go to WIN if we output
2441 it. Otherwise, it is written the usual way.
2442
2443 On the RS/6000, toc entries are handled this way. */
2444
2445#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2446{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2447 { \
2448 output_toc (FILE, X, LABELNO); \
2449 goto WIN; \
2450 } \
2451}
2452
2453/* Select the section for an initialized data object.
2454
2455 On the RS/6000, we have a special section for all variables except those
2456 that are static. */
2457
2458#define SELECT_SECTION(EXP,RELOC) \
2459{ \
ed8969fa
JW
2460 if ((TREE_CODE (EXP) == STRING_CST \
2461 && !flag_writable_strings) \
128e5769 2462 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
1ff5cbcd 2463 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
ed8969fa
JW
2464 && DECL_INITIAL (EXP) \
2465 && (DECL_INITIAL (EXP) == error_mark_node \
2466 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2467 && ! (RELOC))) \
f045b2c9
RS
2468 { \
2469 if (TREE_PUBLIC (EXP)) \
2470 read_only_data_section (); \
2471 else \
2472 read_only_private_data_section (); \
2473 } \
2474 else \
2475 { \
2476 if (TREE_PUBLIC (EXP)) \
2477 data_section (); \
2478 else \
2479 private_data_section (); \
2480 } \
2481}
2482
2483/* This outputs NAME to FILE up to the first null or '['. */
2484
2485#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
c23a9d0e
JM
2486 { \
2487 char *_p; \
99d3d26e 2488 \
c23a9d0e
JM
2489 STRIP_NAME_ENCODING (_p, (NAME)); \
2490 assemble_name ((FILE), _p); \
2491 }
2492
2493/* Remove any trailing [DS] or the like from the symbol name. */
2494
28c57785
MM
2495#define STRIP_NAME_ENCODING(VAR,NAME) \
2496 do \
2497 { \
2498 char *_name = (NAME); \
b6c9286a 2499 int _len; \
28c57785 2500 if (_name[0] == '*') \
b6c9286a
MM
2501 _name++; \
2502 _len = strlen (_name); \
2503 if (_name[_len - 1] != ']') \
2504 (VAR) = _name; \
28c57785
MM
2505 else \
2506 { \
b6c9286a
MM
2507 (VAR) = (char *) alloca (_len + 1); \
2508 strcpy ((VAR), _name); \
2509 (VAR)[_len - 4] = '\0'; \
28c57785
MM
2510 } \
2511 } \
c23a9d0e 2512 while (0)
f045b2c9
RS
2513
2514/* Output something to declare an external symbol to the assembler. Most
c81bebd7 2515 assemblers don't need this.
f045b2c9
RS
2516
2517 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2518 name. Normally we write this out along with the name. In the few cases
2519 where we can't, it gets stripped off. */
2520
2521#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2522{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2523 if ((TREE_CODE (DECL) == VAR_DECL \
2524 || TREE_CODE (DECL) == FUNCTION_DECL) \
f045b2c9
RS
2525 && (NAME)[strlen (NAME) - 1] != ']') \
2526 { \
2527 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2528 strcpy (_name, XSTR (_symref, 0)); \
2529 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2530 XSTR (_symref, 0) = _name; \
2531 } \
19d2d16f 2532 fputs ("\t.extern ", FILE); \
f045b2c9
RS
2533 assemble_name (FILE, XSTR (_symref, 0)); \
2534 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2535 { \
19d2d16f 2536 fputs ("\n\t.extern .", FILE); \
f045b2c9
RS
2537 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2538 } \
19d2d16f 2539 putc ('\n', FILE); \
f045b2c9
RS
2540}
2541
2542/* Similar, but for libcall. We only have to worry about the function name,
2543 not that of the descriptor. */
2544
2545#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
19d2d16f 2546{ fputs ("\t.extern .", FILE); \
f045b2c9 2547 assemble_name (FILE, XSTR (FUN, 0)); \
19d2d16f 2548 putc ('\n', FILE); \
f045b2c9
RS
2549}
2550
2551/* Output to assembler file text saying following lines
2552 may contain character constants, extra white space, comments, etc. */
2553
2554#define ASM_APP_ON ""
2555
2556/* Output to assembler file text saying following lines
2557 no longer contain unusual constructs. */
2558
2559#define ASM_APP_OFF ""
2560
2561/* Output before instructions. */
2562
11117bb9 2563#define TEXT_SECTION_ASM_OP ".csect .text[PR]"
f045b2c9
RS
2564
2565/* Output before writable data. */
2566
fdaff8ba 2567#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
2568
2569/* How to refer to registers in assembler output.
2570 This sequence is indexed by compiler's hard-register-number (see above). */
2571
802a0058 2572extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
c81bebd7
MM
2573
2574#define REGISTER_NAMES \
2575{ \
2576 &rs6000_reg_names[ 0][0], /* r0 */ \
2577 &rs6000_reg_names[ 1][0], /* r1 */ \
2578 &rs6000_reg_names[ 2][0], /* r2 */ \
2579 &rs6000_reg_names[ 3][0], /* r3 */ \
2580 &rs6000_reg_names[ 4][0], /* r4 */ \
2581 &rs6000_reg_names[ 5][0], /* r5 */ \
2582 &rs6000_reg_names[ 6][0], /* r6 */ \
2583 &rs6000_reg_names[ 7][0], /* r7 */ \
2584 &rs6000_reg_names[ 8][0], /* r8 */ \
2585 &rs6000_reg_names[ 9][0], /* r9 */ \
2586 &rs6000_reg_names[10][0], /* r10 */ \
2587 &rs6000_reg_names[11][0], /* r11 */ \
2588 &rs6000_reg_names[12][0], /* r12 */ \
2589 &rs6000_reg_names[13][0], /* r13 */ \
2590 &rs6000_reg_names[14][0], /* r14 */ \
2591 &rs6000_reg_names[15][0], /* r15 */ \
2592 &rs6000_reg_names[16][0], /* r16 */ \
2593 &rs6000_reg_names[17][0], /* r17 */ \
2594 &rs6000_reg_names[18][0], /* r18 */ \
2595 &rs6000_reg_names[19][0], /* r19 */ \
2596 &rs6000_reg_names[20][0], /* r20 */ \
2597 &rs6000_reg_names[21][0], /* r21 */ \
2598 &rs6000_reg_names[22][0], /* r22 */ \
2599 &rs6000_reg_names[23][0], /* r23 */ \
2600 &rs6000_reg_names[24][0], /* r24 */ \
2601 &rs6000_reg_names[25][0], /* r25 */ \
2602 &rs6000_reg_names[26][0], /* r26 */ \
2603 &rs6000_reg_names[27][0], /* r27 */ \
2604 &rs6000_reg_names[28][0], /* r28 */ \
2605 &rs6000_reg_names[29][0], /* r29 */ \
2606 &rs6000_reg_names[30][0], /* r30 */ \
2607 &rs6000_reg_names[31][0], /* r31 */ \
2608 \
2609 &rs6000_reg_names[32][0], /* fr0 */ \
2610 &rs6000_reg_names[33][0], /* fr1 */ \
2611 &rs6000_reg_names[34][0], /* fr2 */ \
2612 &rs6000_reg_names[35][0], /* fr3 */ \
2613 &rs6000_reg_names[36][0], /* fr4 */ \
2614 &rs6000_reg_names[37][0], /* fr5 */ \
2615 &rs6000_reg_names[38][0], /* fr6 */ \
2616 &rs6000_reg_names[39][0], /* fr7 */ \
2617 &rs6000_reg_names[40][0], /* fr8 */ \
2618 &rs6000_reg_names[41][0], /* fr9 */ \
2619 &rs6000_reg_names[42][0], /* fr10 */ \
2620 &rs6000_reg_names[43][0], /* fr11 */ \
2621 &rs6000_reg_names[44][0], /* fr12 */ \
2622 &rs6000_reg_names[45][0], /* fr13 */ \
2623 &rs6000_reg_names[46][0], /* fr14 */ \
2624 &rs6000_reg_names[47][0], /* fr15 */ \
2625 &rs6000_reg_names[48][0], /* fr16 */ \
2626 &rs6000_reg_names[49][0], /* fr17 */ \
2627 &rs6000_reg_names[50][0], /* fr18 */ \
2628 &rs6000_reg_names[51][0], /* fr19 */ \
2629 &rs6000_reg_names[52][0], /* fr20 */ \
2630 &rs6000_reg_names[53][0], /* fr21 */ \
2631 &rs6000_reg_names[54][0], /* fr22 */ \
2632 &rs6000_reg_names[55][0], /* fr23 */ \
2633 &rs6000_reg_names[56][0], /* fr24 */ \
2634 &rs6000_reg_names[57][0], /* fr25 */ \
2635 &rs6000_reg_names[58][0], /* fr26 */ \
2636 &rs6000_reg_names[59][0], /* fr27 */ \
2637 &rs6000_reg_names[60][0], /* fr28 */ \
2638 &rs6000_reg_names[61][0], /* fr29 */ \
2639 &rs6000_reg_names[62][0], /* fr30 */ \
2640 &rs6000_reg_names[63][0], /* fr31 */ \
2641 \
2642 &rs6000_reg_names[64][0], /* mq */ \
2643 &rs6000_reg_names[65][0], /* lr */ \
2644 &rs6000_reg_names[66][0], /* ctr */ \
2645 &rs6000_reg_names[67][0], /* ap */ \
2646 \
2647 &rs6000_reg_names[68][0], /* cr0 */ \
2648 &rs6000_reg_names[69][0], /* cr1 */ \
2649 &rs6000_reg_names[70][0], /* cr2 */ \
2650 &rs6000_reg_names[71][0], /* cr3 */ \
2651 &rs6000_reg_names[72][0], /* cr4 */ \
2652 &rs6000_reg_names[73][0], /* cr5 */ \
2653 &rs6000_reg_names[74][0], /* cr6 */ \
2654 &rs6000_reg_names[75][0], /* cr7 */ \
802a0058
MM
2655 \
2656 &rs6000_reg_names[76][0], /* fpmem */ \
c81bebd7
MM
2657}
2658
2659/* print-rtl can't handle the above REGISTER_NAMES, so define the
2660 following for it. Switch to use the alternate names since
2661 they are more mnemonic. */
2662
2663#define DEBUG_REGISTER_NAMES \
2664{ \
802a0058
MM
2665 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2666 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2667 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2668 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2669 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2670 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2671 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2672 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2673 "mq", "lr", "ctr", "ap", \
2674 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2675 "fpmem" \
c81bebd7 2676}
f045b2c9
RS
2677
2678/* Table of additional register names to use in user input. */
2679
2680#define ADDITIONAL_REGISTER_NAMES \
2681 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2682 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2683 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2684 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2685 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2686 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2687 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2688 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2689 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2690 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2691 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2692 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2693 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2694 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2695 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2696 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2697 /* no additional names for: mq, lr, ctr, ap */ \
2698 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
fc3ffe83 2699 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
c81bebd7 2700 "cc", 68, "sp", 1, "toc", 2 }
f045b2c9
RS
2701
2702/* How to renumber registers for dbx and gdb. */
2703
2704#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2705
0da40b09
RK
2706/* Text to write out after a CALL that may be replaced by glue code by
2707 the loader. This depends on the AIX version. */
2708#define RS6000_CALL_GLUE "cror 31,31,31"
11117bb9 2709
f045b2c9
RS
2710/* This is how to output the definition of a user-level label named NAME,
2711 such as the label on a static function or variable NAME. */
2712
2713#define ASM_OUTPUT_LABEL(FILE,NAME) \
2714 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2715
2716/* This is how to output a command to make the user-level label named NAME
2717 defined for reference from other files. */
2718
2719#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2720 do { fputs ("\t.globl ", FILE); \
2721 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2722
2723/* This is how to output a reference to a user-level label named NAME.
2724 `assemble_name' uses this. */
2725
2726#define ASM_OUTPUT_LABELREF(FILE,NAME) \
7509c759 2727 fputs (NAME, FILE)
f045b2c9
RS
2728
2729/* This is how to output an internal numbered label where
2730 PREFIX is the class of label and NUM is the number within the class. */
2731
2732#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2733 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2734
3daf36a4
ILT
2735/* This is how to output an internal label prefix. rs6000.c uses this
2736 when generating traceback tables. */
2737
2738#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2739 fprintf (FILE, "%s..", PREFIX)
2740
f045b2c9
RS
2741/* This is how to output a label for a jump table. Arguments are the same as
2742 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2743 passed. */
2744
2745#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2746{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2747
2748/* This is how to store into the string LABEL
2749 the symbol_ref name of an internal numbered label where
2750 PREFIX is the class of label and NUM is the number within the class.
2751 This is suitable for output with `assemble_name'. */
2752
2753#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3d199f7a 2754 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
f045b2c9
RS
2755
2756/* This is how to output an assembler line defining a `double' constant. */
2757
a5b1eb34
RS
2758#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2759 { \
2760 if (REAL_VALUE_ISINF (VALUE) \
2761 || REAL_VALUE_ISNAN (VALUE) \
2762 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2763 { \
2764 long t[2]; \
2765 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2766 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2767 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2768 } \
2769 else \
2770 { \
2771 char str[30]; \
2772 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2773 fprintf (FILE, "\t.double 0d%s\n", str); \
2774 } \
2775 }
f045b2c9
RS
2776
2777/* This is how to output an assembler line defining a `float' constant. */
2778
a5b1eb34
RS
2779#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2780 { \
2781 if (REAL_VALUE_ISINF (VALUE) \
2782 || REAL_VALUE_ISNAN (VALUE) \
2783 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2784 { \
2785 long t; \
2786 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2787 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2788 } \
2789 else \
2790 { \
2791 char str[30]; \
2792 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2793 fprintf (FILE, "\t.float 0d%s\n", str); \
2794 } \
2795 }
f045b2c9
RS
2796
2797/* This is how to output an assembler line defining an `int' constant. */
2798
5854b0d0
DE
2799#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2800do { \
2801 if (TARGET_32BIT) \
2802 { \
2803 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
2804 UNITS_PER_WORD, 1); \
2805 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
2806 UNITS_PER_WORD, 1); \
2807 } \
2808 else \
2809 { \
2810 fputs ("\t.llong ", FILE); \
2811 output_addr_const (FILE, (VALUE)); \
2812 putc ('\n', FILE); \
2813 } \
2814} while (0)
2815
f045b2c9 2816#define ASM_OUTPUT_INT(FILE,VALUE) \
19d2d16f 2817( fputs ("\t.long ", FILE), \
f045b2c9 2818 output_addr_const (FILE, (VALUE)), \
19d2d16f 2819 putc ('\n', FILE))
f045b2c9
RS
2820
2821/* Likewise for `char' and `short' constants. */
2822
2823#define ASM_OUTPUT_SHORT(FILE,VALUE) \
19d2d16f 2824( fputs ("\t.short ", FILE), \
f045b2c9 2825 output_addr_const (FILE, (VALUE)), \
19d2d16f 2826 putc ('\n', FILE))
f045b2c9
RS
2827
2828#define ASM_OUTPUT_CHAR(FILE,VALUE) \
19d2d16f 2829( fputs ("\t.byte ", FILE), \
f045b2c9 2830 output_addr_const (FILE, (VALUE)), \
19d2d16f 2831 putc ('\n', FILE))
f045b2c9
RS
2832
2833/* This is how to output an assembler line for a numeric constant byte. */
2834
2835#define ASM_OUTPUT_BYTE(FILE,VALUE) \
2836 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2837
2838/* This is how to output an assembler line to define N characters starting
2839 at P to FILE. */
2840
2841#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2842
2843/* This is how to output code to push a register on the stack.
2844 It need not be very fast code. */
2845
4697a36c
MM
2846#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2847do { \
2848 extern char *reg_names[]; \
2849 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(%s)\n", reg_names[REGNO], \
2850 reg_names[1]); \
2851} while (0)
f045b2c9
RS
2852
2853/* This is how to output an insn to pop a register from the stack.
2854 It need not be very fast code. */
2855
4697a36c
MM
2856#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2857do { \
2858 extern char *reg_names[]; \
2859 asm_fprintf (FILE, "\t{l|lwz} %s,0(%s)\n\t{ai|addic} %s,%s,4\n", \
2860 reg_names[REGNO], reg_names[1], reg_names[1], \
2861 reg_names[1]); \
2862} while (0)
f045b2c9 2863
c81bebd7 2864/* This is how to output an element of a case-vector that is absolute.
f045b2c9
RS
2865 (RS/6000 does not use such vectors, but we must define this macro
2866 anyway.) */
2867
3daf36a4
ILT
2868#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2869 do { char buf[100]; \
5854b0d0 2870 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2871 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2872 assemble_name (FILE, buf); \
19d2d16f 2873 putc ('\n', FILE); \
3daf36a4 2874 } while (0)
f045b2c9
RS
2875
2876/* This is how to output an element of a case-vector that is relative. */
2877
2878#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
3daf36a4 2879 do { char buf[100]; \
5854b0d0 2880 fputs ((TARGET_32BIT) ? "\t.long " : "\t.llong ", FILE); \
3daf36a4
ILT
2881 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2882 assemble_name (FILE, buf); \
19d2d16f 2883 putc ('-', FILE); \
3daf36a4
ILT
2884 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2885 assemble_name (FILE, buf); \
19d2d16f 2886 putc ('\n', FILE); \
3daf36a4 2887 } while (0)
f045b2c9
RS
2888
2889/* This is how to output an assembler line
2890 that says to advance the location counter
2891 to a multiple of 2**LOG bytes. */
2892
2893#define ASM_OUTPUT_ALIGN(FILE,LOG) \
2894 if ((LOG) != 0) \
2895 fprintf (FILE, "\t.align %d\n", (LOG))
2896
2897#define ASM_OUTPUT_SKIP(FILE,SIZE) \
2898 fprintf (FILE, "\t.space %d\n", (SIZE))
2899
2900/* This says how to output an assembler line
2901 to define a global common symbol. */
2902
b73fd26c 2903#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
fc3ffe83 2904 do { fputs (".comm ", (FILE)); \
f045b2c9 2905 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
b73fd26c
DE
2906 if ( (SIZE) > 4) \
2907 fprintf ((FILE), ",%d,3\n", (SIZE)); \
2908 else \
2909 fprintf( (FILE), ",%d\n", (SIZE)); \
2910 } while (0)
f045b2c9
RS
2911
2912/* This says how to output an assembler line
2913 to define a local common symbol. */
2914
2915#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 2916 do { fputs (".lcomm ", (FILE)); \
f045b2c9 2917 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 2918 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
2919 } while (0)
2920
2921/* Store in OUTPUT a string (made with alloca) containing
2922 an assembler-name for a local static variable named NAME.
2923 LABELNO is an integer which is different for each call. */
2924
2925#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2926( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2927 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2928
2929/* Define the parentheses used to group arithmetic operations
2930 in assembler code. */
2931
2932#define ASM_OPEN_PAREN "("
2933#define ASM_CLOSE_PAREN ")"
2934
2935/* Define results of standard character escape sequences. */
2936#define TARGET_BELL 007
2937#define TARGET_BS 010
2938#define TARGET_TAB 011
2939#define TARGET_NEWLINE 012
2940#define TARGET_VT 013
2941#define TARGET_FF 014
2942#define TARGET_CR 015
2943
2944/* Print operand X (an rtx) in assembler syntax to file FILE.
2945 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2946 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2947
2948#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2949
2950/* Define which CODE values are valid. */
2951
c81bebd7
MM
2952#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2953 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
f045b2c9
RS
2954
2955/* Print a memory address as an operand to reference that memory location. */
2956
2957#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2958
2959/* Define the codes that are matched by predicates in rs6000.c. */
2960
802a0058 2961#define PREDICATE_CODES \
f045b2c9
RS
2962 {"short_cint_operand", {CONST_INT}}, \
2963 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 2964 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 2965 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9
RS
2966 {"cc_reg_operand", {SUBREG, REG}}, \
2967 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2968 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2969 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2970 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
766a866c 2971 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
f045b2c9
RS
2972 {"easy_fp_constant", {CONST_DOUBLE}}, \
2973 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
414d3ee4 2974 {"lwa_operand", {SUBREG, MEM, REG}}, \
b6c9286a 2975 {"volatile_mem_operand", {MEM}}, \
b7676b46 2976 {"offsettable_addr_operand", {REG, SUBREG, PLUS}}, \
f045b2c9
RS
2977 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2978 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2979 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 2980 {"non_add_cint_operand", {CONST_INT}}, \
f045b2c9 2981 {"and_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 2982 {"non_and_cint_operand", {CONST_INT}}, \
f045b2c9 2983 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 2984 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9 2985 {"mask_operand", {CONST_INT}}, \
b6c9286a 2986 {"count_register_operand", {REG}}, \
802a0058 2987 {"fpmem_operand", {REG}}, \
f045b2c9 2988 {"call_operand", {SYMBOL_REF, REG}}, \
f8634644 2989 {"current_file_function_operand", {SYMBOL_REF}}, \
38250554 2990 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
f8634644
RK
2991 {"load_multiple_operation", {PARALLEL}}, \
2992 {"store_multiple_operation", {PARALLEL}}, \
2993 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 2994 GT, LEU, LTU, GEU, GTU}}, \
f8634644 2995 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
e477bbc7 2996 GT, LEU, LTU, GEU, GTU}},
75814ad4 2997
b6c9286a
MM
2998
2999/* uncomment for disabling the corresponding default options */
3000/* #define MACHINE_no_sched_interblock */
3001/* #define MACHINE_no_sched_speculative */
3002/* #define MACHINE_no_sched_speculative_load */
3003
3004/* indicate that issue rate is defined for this machine
3005 (no need to use the default) */
3006#define MACHINE_issue_rate
3007
766a866c
MM
3008/* General flags. */
3009extern int flag_pic;
354b734b
MM
3010extern int optimize;
3011extern int flag_expensive_optimizations;
3012
75814ad4 3013/* Declare functions in rs6000.c */
6b67933e 3014extern void output_options ();
75814ad4 3015extern void rs6000_override_options ();
3cfa4909 3016extern void rs6000_file_start ();
6b67933e 3017extern struct rtx_def *rs6000_float_const ();
75814ad4
MM
3018extern struct rtx_def *rs6000_immed_double_const ();
3019extern int direct_return ();
3020extern int any_operand ();
3021extern int short_cint_operand ();
3022extern int u_short_cint_operand ();
3023extern int non_short_cint_operand ();
3024extern int gpc_reg_operand ();
3025extern int cc_reg_operand ();
3026extern int reg_or_short_operand ();
3027extern int reg_or_neg_short_operand ();
3028extern int reg_or_u_short_operand ();
3029extern int reg_or_cint_operand ();
766a866c 3030extern int got_operand ();
4e74d8ec 3031extern int num_insns_constant ();
75814ad4 3032extern int easy_fp_constant ();
b7676b46
RK
3033extern int volatile_mem_operand ();
3034extern int offsettable_addr_operand ();
75814ad4
MM
3035extern int fp_reg_or_mem_operand ();
3036extern int mem_or_easy_const_operand ();
3037extern int add_operand ();
3038extern int non_add_cint_operand ();
3039extern int logical_operand ();
3040extern int non_logical_operand ();
3041extern int mask_constant ();
3042extern int mask_operand ();
3043extern int and_operand ();
802a0058
MM
3044extern int count_register_operand ();
3045extern int fpmem_operand ();
75814ad4
MM
3046extern int non_and_cint_operand ();
3047extern int reg_or_mem_operand ();
3048extern int lwa_operand ();
3049extern int call_operand ();
3050extern int current_file_function_operand ();
3051extern int input_operand ();
7509c759 3052extern int small_data_operand ();
4697a36c
MM
3053extern void init_cumulative_args ();
3054extern void function_arg_advance ();
b6c9286a 3055extern int function_arg_boundary ();
4697a36c
MM
3056extern struct rtx_def *function_arg ();
3057extern int function_arg_partial_nregs ();
3058extern int function_arg_pass_by_reference ();
3059extern void setup_incoming_varargs ();
3060extern struct rtx_def *expand_builtin_saveregs ();
b7676b46 3061extern struct rtx_def *rs6000_stack_temp ();
7e69e155 3062extern int expand_block_move ();
75814ad4
MM
3063extern int load_multiple_operation ();
3064extern int store_multiple_operation ();
3065extern int branch_comparison_operator ();
3066extern int scc_comparison_operator ();
3067extern int includes_lshift_p ();
3068extern int includes_rshift_p ();
3069extern int registers_ok_for_quad_peep ();
3070extern int addrs_ok_for_quad_peep ();
3071extern enum reg_class secondary_reload_class ();
3072extern int ccr_bit ();
3073extern void print_operand ();
3074extern void print_operand_address ();
3075extern int first_reg_to_save ();
3076extern int first_fp_reg_to_save ();
75814ad4 3077extern int rs6000_makes_calls ();
4697a36c 3078extern rs6000_stack_t *rs6000_stack_info ();
75814ad4
MM
3079extern void svr4_traceback ();
3080extern void output_prolog ();
3081extern void output_epilog ();
3082extern void output_toc ();
3083extern void output_ascii ();
3084extern void rs6000_gen_section_name ();
3085extern void output_function_profiler ();
3086extern int rs6000_adjust_cost ();
b6c9286a
MM
3087extern void rs6000_trampoline_template ();
3088extern int rs6000_trampoline_size ();
3089extern void rs6000_initialize_trampoline ();
7509c759
MM
3090extern int rs6000_comp_type_attributes ();
3091extern int rs6000_valid_decl_attribute_p ();
3092extern int rs6000_valid_type_attribute_p ();
3093extern void rs6000_set_default_type_attributes ();
3094extern struct rtx_def *rs6000_dll_import_ref ();
6a4cee5f 3095extern struct rtx_def *rs6000_longcall_ref ();
This page took 0.787702 seconds and 5 git commands to generate.