]> gcc.gnu.org Git - gcc.git/blame - gcc/config/rs6000/rs6000.h
(do_include): Initialize searchptr to 0.
[gcc.git] / gcc / config / rs6000 / rs6000.h
CommitLineData
f045b2c9
RS
1/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25
26/* Names to predefine in the preprocessor for this target machine. */
27
28#define CPP_PREDEFINES "-D_IBMR2 -D_AIX"
29
30/* Print subsidiary information on the compiler version in use. */
31#define TARGET_VERSION ;
32
fdaff8ba
RS
33/* Tell the assembler to assume that all undefined names are external.
34
35 Don't do this until the fixed IBM assembler is more generally available.
36 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
37 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
38 longer be needed. */
f045b2c9
RS
39
40/* #define ASM_SPEC "-u" */
41
42/* Define the options for the binder: Start text at 512, align all segments
43 to 512 bytes, and warn if there is text relocation.
44
45 The -bhalt:4 option supposedly changes the level at which ld will abort,
46 but it also suppresses warnings about multiply defined symbols and is
47 used by the AIX cc command. So we use it here.
48
49 -bnodelcsect undoes a poor choice of default relating to multiply-defined
50 csects. See AIX documentation for more information about this. */
51
0281e6a9 52#define LINK_SPEC "-T512 -H512 -btextro -bhalt:4 -bnodelcsect\
07daae5f 53 %{static:-bnso -bI:/lib/syscalls.exp}"
f045b2c9 54
58a39e45
RS
55/* Profiled library versions are used by linking with special directories. */
56#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
57 %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc"
f045b2c9
RS
58
59/* gcc must do the search itself to find libgcc.a, not use -l. */
8adfad0f 60/* #define LINK_LIBGCC_SPECIAL */
f045b2c9
RS
61
62/* Don't turn -B into -L if the argument specifies a relative file name. */
63#define RELATIVE_PREFIX_NOT_LINKDIR
64
65/* Run-time compilation parameters selecting different hardware subsets. */
66
67/* Flag to allow putting fp constants in the TOC; can be turned off when
68 the TOC overflows. */
69
70#define TARGET_FP_IN_TOC (target_flags & 1)
71
72extern int target_flags;
73
74/* Macro to define tables used to set the flags.
75 This is a list in braces of pairs in braces,
76 each pair being { "NAME", VALUE }
77 where VALUE is the bits to set or minus the bits to clear.
78 An empty string NAME is used to identify the default VALUE. */
79
80#define TARGET_SWITCHES \
81 {{"fp-in-toc", 1}, \
82 {"no-fp-in-toc", -1}, \
83 { "", TARGET_DEFAULT}}
84
85#define TARGET_DEFAULT 1
86
87/* On the RS/6000, we turn on various flags if optimization is selected. */
88
89#define OPTIMIZATION_OPTIONS(LEVEL) \
90{ \
91 if ((LEVEL) > 0) \
92 { \
93 flag_force_mem = 1; \
94 flag_omit_frame_pointer = 1; \
95 } \
96}
97
58a39e45 98/* Define this to modify the options specified by the user. */
f045b2c9
RS
99
100#define OVERRIDE_OPTIONS \
101{ \
58a39e45 102 profile_block_flag = 0; \
f045b2c9
RS
103}
104\f
105/* target machine storage layout */
106
ef457bda
RK
107/* Define this macro if it is advisible to hold scalars in registers
108 in a wider mode than that declared by the program. In such cases,
109 the value is constrained to be within the bounds of the declared
110 type, but kept valid in the wider mode. The signedness of the
111 extension may differ from that of the type. */
112
113#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
114 if (GET_MODE_CLASS (MODE) == MODE_INT \
115 && GET_MODE_SIZE (MODE) < 4) \
116 (MODE) == SImode;
117
f045b2c9
RS
118/* Define this if most significant bit is lowest numbered
119 in instructions that operate on numbered bit-fields. */
120/* That is true on RS/6000. */
121#define BITS_BIG_ENDIAN 1
122
123/* Define this if most significant byte of a word is the lowest numbered. */
124/* That is true on RS/6000. */
125#define BYTES_BIG_ENDIAN 1
126
127/* Define this if most significant word of a multiword number is lowest
128 numbered.
129
130 For RS/6000 we can decide arbitrarily since there are no machine
131 instructions for them. Might as well be consistent with bits and bytes. */
132#define WORDS_BIG_ENDIAN 1
133
fdaff8ba 134/* number of bits in an addressable storage unit */
f045b2c9
RS
135#define BITS_PER_UNIT 8
136
137/* Width in bits of a "word", which is the contents of a machine register.
138 Note that this is not necessarily the width of data type `int';
139 if using 16-bit ints on a 68000, this would still be 32.
140 But on a machine with 16-bit registers, this would be 16. */
141#define BITS_PER_WORD 32
142
143/* Width of a word, in units (bytes). */
144#define UNITS_PER_WORD 4
145
915f619f
JW
146/* Type used for ptrdiff_t, as a string used in a declaration. */
147#define PTRDIFF_TYPE "int"
148
f045b2c9
RS
149/* Type used for wchar_t, as a string used in a declaration. */
150#define WCHAR_TYPE "short unsigned int"
151
152/* Width of wchar_t in bits. */
153#define WCHAR_TYPE_SIZE 16
154
155/* Width in bits of a pointer.
156 See also the macro `Pmode' defined below. */
157#define POINTER_SIZE 32
158
159/* Allocation boundary (in *bits*) for storing arguments in argument list. */
160#define PARM_BOUNDARY 32
161
162/* Boundary (in *bits*) on which stack pointer should be aligned. */
163#define STACK_BOUNDARY 64
164
165/* Allocation boundary (in *bits*) for the code of a function. */
166#define FUNCTION_BOUNDARY 32
167
168/* No data type wants to be aligned rounder than this. */
169#define BIGGEST_ALIGNMENT 32
170
171/* Alignment of field after `int : 0' in a structure. */
172#define EMPTY_FIELD_BOUNDARY 32
173
174/* Every structure's size must be a multiple of this. */
175#define STRUCTURE_SIZE_BOUNDARY 8
176
177/* A bitfield declared as `int' forces `int' alignment for the struct. */
178#define PCC_BITFIELD_TYPE_MATTERS 1
179
180/* Make strings word-aligned so strcpy from constants will be faster. */
181#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
182 (TREE_CODE (EXP) == STRING_CST \
183 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
184
185/* Make arrays of chars word-aligned for the same reasons. */
186#define DATA_ALIGNMENT(TYPE, ALIGN) \
187 (TREE_CODE (TYPE) == ARRAY_TYPE \
188 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
189 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
190
fdaff8ba 191/* Non-zero if move instructions will actually fail to work
f045b2c9 192 when given unaligned data. */
fdaff8ba 193#define STRICT_ALIGNMENT 0
f045b2c9
RS
194\f
195/* Standard register usage. */
196
197/* Number of actual hardware registers.
198 The hardware registers are assigned numbers for the compiler
199 from 0 to just below FIRST_PSEUDO_REGISTER.
200 All registers that the compiler knows about must be given numbers,
201 even those that are not normally considered general registers.
202
203 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
204 an MQ register, a count register, a link register, and 8 condition
205 register fields, which we view here as separate registers.
206
207 In addition, the difference between the frame and argument pointers is
208 a function of the number of registers saved, so we need to have a
209 register for AP that will later be eliminated in favor of SP or FP.
210 This is a normal register, but it is fixed. */
211
212#define FIRST_PSEUDO_REGISTER 76
213
214/* 1 for registers that have pervasive standard uses
215 and are not available for the register allocator.
216
217 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
218
219 cr5 is not supposed to be used. */
220
221#define FIXED_REGISTERS \
222 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
224 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
226 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}
227
228/* 1 for registers not available across function calls.
229 These must include the FIXED_REGISTERS and also any
230 registers that can be used without being saved.
231 The latter must include the registers where values are returned
232 and the register where structure-value addresses are passed.
233 Aside from that, you can include as many other registers as you like. */
234
235#define CALL_USED_REGISTERS \
236 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \
237 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
238 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
239 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
240 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1}
241
242/* List the order in which to allocate registers. Each register must be
243 listed once, even those in FIXED_REGISTERS.
244
245 We allocate in the following order:
246 fp0 (not saved or used for anything)
247 fp13 - fp2 (not saved; incoming fp arg registers)
248 fp1 (not saved; return value)
249 fp31 - fp14 (saved; order given to save least number)
250 cr1, cr6, cr7 (not saved or special)
251 cr0 (not saved, but used for arithmetic operations)
252 cr2, cr3, cr4 (saved)
253 r0 (not saved; cannot be base reg)
254 r9 (not saved; best for TImode)
255 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
256 r3 (not saved; return value register)
257 r31 - r13 (saved; order given to save least number)
258 r12 (not saved; if used for DImode or DFmode would use r13)
259 mq (not saved; best to use it if we can)
260 ctr (not saved; when we have the choice ctr is better)
261 lr (saved)
262 cr5, r1, r2, ap (fixed) */
263
264#define REG_ALLOC_ORDER \
265 {32, \
266 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
267 33, \
268 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
269 50, 49, 48, 47, 46, \
270 69, 74, 75, 68, 70, 71, 72, \
271 0, \
272 9, 11, 10, 8, 7, 6, 5, 4, \
273 3, \
274 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
275 18, 17, 16, 15, 14, 13, 12, \
276 64, 66, 65, \
277 73, 1, 2, 67}
278
279/* True if register is floating-point. */
280#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
281
282/* True if register is a condition register. */
283#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
284
285/* True if register is an integer register. */
286#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
287
288/* Return number of consecutive hard regs needed starting at reg REGNO
289 to hold something of mode MODE.
290 This is ordinarily the length in words of a value of mode MODE
291 but can be less for certain modes in special long registers.
292
293 On RS/6000, ordinary registers hold 32 bits worth;
294 a single floating point register holds 64 bits worth. */
295
296#define HARD_REGNO_NREGS(REGNO, MODE) \
297 (FP_REGNO_P (REGNO) \
298 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
299 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
300
301/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
302 On RS/6000, the cpu registers can hold any mode but the float registers
303 can hold only floating modes and CR register can only hold CC modes. We
304 cannot put DImode or TImode anywhere except general register and they
305 must be able to fit within the register set. */
306
307#define HARD_REGNO_MODE_OK(REGNO, MODE) \
308 (FP_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_FLOAT \
309 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
310 : ! INT_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_INT \
311 : 1)
312
313/* Value is 1 if it is a good idea to tie two pseudo registers
314 when one has mode MODE1 and one has mode MODE2.
315 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
316 for any hard reg, then this must be 0 for correct output. */
317#define MODES_TIEABLE_P(MODE1, MODE2) \
318 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
319 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
320 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
321 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
322 : GET_MODE_CLASS (MODE1) == MODE_CC \
323 ? GET_MODE_CLASS (MODE2) == MODE_CC \
324 : GET_MODE_CLASS (MODE2) == MODE_CC \
325 ? GET_MODE_CLASS (MODE1) == MODE_CC \
326 : 1)
327
328/* A C expression returning the cost of moving data from a register of class
329 CLASS1 to one of CLASS2.
330
331 On the RS/6000, copying between floating-point and fixed-point
332 registers is expensive. */
333
334#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
335 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
336 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
337 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
338 : 2)
339
340/* A C expressions returning the cost of moving data of MODE from a register to
341 or from memory.
342
343 On the RS/6000, bump this up a bit. */
344
e8a8bc24 345#define MEMORY_MOVE_COST(MODE) 6
f045b2c9
RS
346
347/* Specify the cost of a branch insn; roughly the number of extra insns that
348 should be added to avoid a branch.
349
ef457bda 350 Set this to 3 on the RS/6000 since that is roughly the average cost of an
f045b2c9
RS
351 unscheduled conditional branch. */
352
ef457bda 353#define BRANCH_COST 3
f045b2c9
RS
354
355/* Specify the registers used for certain standard purposes.
356 The values of these macros are register numbers. */
357
358/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
359/* #define PC_REGNUM */
360
361/* Register to use for pushing function arguments. */
362#define STACK_POINTER_REGNUM 1
363
364/* Base register for access to local variables of the function. */
365#define FRAME_POINTER_REGNUM 31
366
367/* Value should be nonzero if functions must have frame pointers.
368 Zero means the frame pointer need not be set up (and parms
369 may be accessed via the stack pointer) in functions that seem suitable.
370 This is computed in `reload', in reload1.c. */
371#define FRAME_POINTER_REQUIRED 0
372
373/* Base register for access to arguments of the function. */
374#define ARG_POINTER_REGNUM 67
375
376/* Place to put static chain when calling a function that requires it. */
377#define STATIC_CHAIN_REGNUM 11
378
379/* Place that structure value return address is placed.
380
381 On the RS/6000, it is passed as an extra parameter. */
382#define STRUCT_VALUE 0
383\f
384/* Define the classes of registers for register constraints in the
385 machine description. Also define ranges of constants.
386
387 One of the classes must always be named ALL_REGS and include all hard regs.
388 If there is more than one class, another class must be named NO_REGS
389 and contain no registers.
390
391 The name GENERAL_REGS must be the name of a class (or an alias for
392 another name such as ALL_REGS). This is the class of registers
393 that is allowed by "g" or "r" in a register constraint.
394 Also, registers outside this class are allocated only when
395 instructions express preferences for them.
396
397 The classes must be numbered in nondecreasing order; that is,
398 a larger-numbered class must never be contained completely
399 in a smaller-numbered class.
400
401 For any two classes, it is very desirable that there be another
402 class that represents their union. */
403
404/* The RS/6000 has three types of registers, fixed-point, floating-point,
405 and condition registers, plus three special registers, MQ, CTR, and the
406 link register.
407
408 However, r0 is special in that it cannot be used as a base register.
409 So make a class for registers valid as base registers.
410
411 Also, cr0 is the only condition code register that can be used in
412 arithmetic insns, so make a separate class for it. */
413
414enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS,
415 NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS,
e8a8bc24
RK
416 SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS,
417 ALL_REGS, LIM_REG_CLASSES };
f045b2c9
RS
418
419#define N_REG_CLASSES (int) LIM_REG_CLASSES
420
421/* Give names of register classes as strings for dump file. */
422
423#define REG_CLASS_NAMES \
424 { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \
425 "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \
e8a8bc24
RK
426 "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \
427 "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" }
f045b2c9
RS
428
429/* Define which registers fit in which classes.
430 This is an initializer for a vector of HARD_REG_SET
431 of length N_REG_CLASSES. */
432
433#define REG_CLASS_CONTENTS \
434 { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \
e8a8bc24
RK
435 {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \
436 {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \
437 {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \
438 {~0, ~0, 0xffff} }
f045b2c9
RS
439
440/* The same information, inverted:
441 Return the class number of the smallest class containing
442 reg number REGNO. This could be a conditional expression
443 or could index an array. */
444
445#define REGNO_REG_CLASS(REGNO) \
446 ((REGNO) == 0 ? GENERAL_REGS \
447 : (REGNO) < 32 ? BASE_REGS \
448 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
449 : (REGNO) == 68 ? CR0_REGS \
450 : CR_REGNO_P (REGNO) ? CR_REGS \
451 : (REGNO) == 64 ? MQ_REGS \
452 : (REGNO) == 65 ? LINK_REGS \
453 : (REGNO) == 66 ? CTR_REGS \
454 : (REGNO) == 67 ? BASE_REGS \
455 : NO_REGS)
456
457/* The class value for index registers, and the one for base regs. */
458#define INDEX_REG_CLASS GENERAL_REGS
459#define BASE_REG_CLASS BASE_REGS
460
461/* Get reg_class from a letter such as appears in the machine description. */
462
463#define REG_CLASS_FROM_LETTER(C) \
464 ((C) == 'f' ? FLOAT_REGS \
465 : (C) == 'b' ? BASE_REGS \
466 : (C) == 'h' ? SPECIAL_REGS \
467 : (C) == 'q' ? MQ_REGS \
468 : (C) == 'c' ? CTR_REGS \
469 : (C) == 'l' ? LINK_REGS \
470 : (C) == 'x' ? CR0_REGS \
471 : (C) == 'y' ? CR_REGS \
472 : NO_REGS)
473
474/* The letters I, J, K, L, M, N, and P in a register constraint string
475 can be used to stand for particular ranges of immediate operands.
476 This macro defines what the ranges are.
477 C is the letter, and VALUE is a constant value.
478 Return 1 if VALUE is in the range specified by C.
479
480 `I' is signed 16-bit constants
481 `J' is a constant with only the high-order 16 bits non-zero
482 `K' is a constant with only the low-order 16 bits non-zero
483 `L' is a constant that can be placed into a mask operand
484 `M' is a constant that is greater than 31
485 `N' is a constant that is an exact power of two
486 `O' is the constant zero
487 `P' is a constant whose negation is a signed 16-bit constant */
488
489#define CONST_OK_FOR_LETTER_P(VALUE, C) \
490 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
491 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
492 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
493 : (C) == 'L' ? mask_constant (VALUE) \
494 : (C) == 'M' ? (VALUE) > 31 \
495 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
496 : (C) == 'O' ? (VALUE) == 0 \
497 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
498 : 0)
499
500/* Similar, but for floating constants, and defining letters G and H.
501 Here VALUE is the CONST_DOUBLE rtx itself.
502
503 We flag for special constants when we can copy the constant into
504 a general register in two insns for DF and one insn for SF. */
505
506#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
507 ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0)
508
509/* Optional extra constraints for this machine.
510
511 For the RS/6000, `Q' means that this is a memory operand that is just
512 an offset from a register. */
513
e8a8bc24
RK
514#define EXTRA_CONSTRAINT(OP, C) \
515 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
516 : 0)
f045b2c9
RS
517
518/* Given an rtx X being reloaded into a reg required to be
519 in class CLASS, return the class of reg to actually use.
520 In general this is just CLASS; but on some machines
521 in some cases it is preferable to use a more restrictive class.
522
523 On the RS/6000, we have to return NO_REGS when we want to reload a
524 floating-point CONST_DOUBLE to force it to be copied to memory. */
525
526#define PREFERRED_RELOAD_CLASS(X,CLASS) \
527 ((GET_CODE (X) == CONST_DOUBLE \
528 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
529 ? NO_REGS : (CLASS))
530
531/* Return the register class of a scratch register needed to copy IN into
532 or out of a register in CLASS in MODE. If it can be done directly,
533 NO_REGS is returned. */
534
535#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
536 secondary_reload_class (CLASS, MODE, IN)
537
538/* Return the maximum number of consecutive registers
539 needed to represent mode MODE in a register of class CLASS.
540
541 On RS/6000, this is the size of MODE in words,
542 except in the FP regs, where a single reg is enough for two words. */
543#define CLASS_MAX_NREGS(CLASS, MODE) \
544 ((CLASS) == FLOAT_REGS \
545 ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
546 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
547\f
548/* Stack layout; function entry, exit and calling. */
549
550/* Define this if pushing a word on the stack
551 makes the stack pointer a smaller address. */
552#define STACK_GROWS_DOWNWARD
553
554/* Define this if the nominal address of the stack frame
555 is at the high-address end of the local variables;
556 that is, each additional local variable allocated
557 goes at a more negative offset in the frame.
558
559 On the RS/6000, we grow upwards, from the area after the outgoing
560 arguments. */
561/* #define FRAME_GROWS_DOWNWARD */
562
563/* Offset within stack frame to start allocating local variables at.
564 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
565 first local allocated. Otherwise, it is the offset to the BEGINNING
566 of the first local allocated.
567
568 On the RS/6000, the frame pointer is the same as the stack pointer,
569 except for dynamic allocations. So we start after the fixed area and
570 outgoing parameter area. */
571
572#define STARTING_FRAME_OFFSET (current_function_outgoing_args_size + 24)
573
574/* If we generate an insn to push BYTES bytes,
575 this says how many the stack pointer really advances by.
576 On RS/6000, don't define this because there are no push insns. */
577/* #define PUSH_ROUNDING(BYTES) */
578
579/* Offset of first parameter from the argument pointer register value.
580 On the RS/6000, we define the argument pointer to the start of the fixed
581 area. */
582#define FIRST_PARM_OFFSET(FNDECL) 24
583
584/* Define this if stack space is still allocated for a parameter passed
585 in a register. The value is the number of bytes allocated to this
586 area. */
587#define REG_PARM_STACK_SPACE(FNDECL) 32
588
589/* Define this if the above stack space is to be considered part of the
590 space allocated by the caller. */
591#define OUTGOING_REG_PARM_STACK_SPACE
592
593/* This is the difference between the logical top of stack and the actual sp.
594
595 For the RS/6000, sp points past the fixed area. */
596#define STACK_POINTER_OFFSET 24
597
598/* Define this if the maximum size of all the outgoing args is to be
599 accumulated and pushed during the prologue. The amount can be
600 found in the variable current_function_outgoing_args_size. */
601#define ACCUMULATE_OUTGOING_ARGS
602
603/* Value is the number of bytes of arguments automatically
604 popped when returning from a subroutine call.
605 FUNTYPE is the data type of the function (as a tree),
606 or for a library call it is an identifier node for the subroutine name.
607 SIZE is the number of bytes of arguments passed on the stack. */
608
609#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
610
611/* Define how to find the value returned by a function.
612 VALTYPE is the data type of the value (as a tree).
613 If the precise function being called is known, FUNC is its FUNCTION_DECL;
614 otherwise, FUNC is 0.
615
616 On RS/6000 an integer value is in r3 and a floating-point value is in
617 fp1. */
618
619#define FUNCTION_VALUE(VALTYPE, FUNC) \
620 gen_rtx (REG, TYPE_MODE (VALTYPE), \
621 TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3)
622
623/* Define how to find the value returned by a library function
624 assuming the value has mode MODE. */
625
626#define LIBCALL_VALUE(MODE) \
627 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3)
628
629/* The definition of this macro implies that there are cases where
630 a scalar value cannot be returned in registers.
631
632 For the RS/6000, any structure or union type is returned in memory. */
633
634#define RETURN_IN_MEMORY(TYPE) \
635 (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE)
636
637/* 1 if N is a possible register number for a function value
638 as seen by the caller.
639
640 On RS/6000, this is r3 and fp1. */
641
642#define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33))
643
644/* 1 if N is a possible register number for function argument passing.
645 On RS/6000, these are r3-r10 and fp1-fp13. */
646
647#define FUNCTION_ARG_REGNO_P(N) \
648 (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45))
649\f
650/* Define a data type for recording info about an argument list
651 during the scan of that argument list. This data type should
652 hold all necessary information about the function itself
653 and about the args processed so far, enough to enable macros
654 such as FUNCTION_ARG to determine where the next arg should go.
655
656 On the RS/6000, this is a structure. The first element is the number of
657 total argument words, the second is used to store the next
658 floating-point register number, and the third says how many more args we
659 have prototype types for. */
660
661struct rs6000_args {int words, fregno, nargs_prototype; };
662#define CUMULATIVE_ARGS struct rs6000_args
663
664/* Define intermediate macro to compute the size (in registers) of an argument
665 for the RS/6000. */
666
667#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
668(! (NAMED) ? 0 \
669 : (MODE) != BLKmode \
670 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
671 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
672
673/* Initialize a variable CUM of type CUMULATIVE_ARGS
674 for a call to a function whose data type is FNTYPE.
675 For a library call, FNTYPE is 0. */
676
677#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
678 (CUM).words = 0, \
679 (CUM).fregno = 33, \
680 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
681 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
682 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
683 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
684 : 0)
685
686/* Similar, but when scanning the definition of a procedure. We always
687 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
688
689#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
690 (CUM).words = 0, \
691 (CUM).fregno = 33, \
692 (CUM).nargs_prototype = 1000
693
694/* Update the data in CUM to advance over an argument
695 of mode MODE and data type TYPE.
696 (TYPE is null for libcalls where that information may not be available.) */
697
698#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
699{ (CUM).nargs_prototype--; \
700 if (NAMED) \
701 { \
702 (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \
703 if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
704 (CUM).fregno++; \
705 } \
706}
707
708/* Non-zero if we can use a floating-point register to pass this arg. */
709#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
710 (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46)
711
712/* Determine where to put an argument to a function.
713 Value is zero to push the argument on the stack,
714 or a hard register in which to store the argument.
715
716 MODE is the argument's machine mode.
717 TYPE is the data type of the argument (as a tree).
718 This is null for libcalls where that information may
719 not be available.
720 CUM is a variable of type CUMULATIVE_ARGS which gives info about
721 the preceding args and about the function being called.
722 NAMED is nonzero if this argument is a named parameter
723 (otherwise it is an extra parameter matching an ellipsis).
724
725 On RS/6000 the first eight words of non-FP are normally in registers
726 and the rest are pushed. The first 13 FP args are in registers.
727
728 If this is floating-point and no prototype is specified, we use
4d6697ca
RK
729 both an FP and integer register (or possibly FP reg and stack). Library
730 functions (when TYPE is zero) always have the proper types for args,
731 so we can pass the FP value just in one register. emit_library_function
732 doesn't support EXPR_LIST anyway. */
f045b2c9
RS
733
734#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
735 (! (NAMED) ? 0 \
38bd31fc 736 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
d072107f 737 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \
4d6697ca 738 ? ((CUM).nargs_prototype > 0 || (TYPE) == 0 \
f045b2c9
RS
739 ? gen_rtx (REG, MODE, (CUM).fregno) \
740 : ((CUM).words < 8 \
741 ? gen_rtx (EXPR_LIST, VOIDmode, \
742 gen_rtx (REG, (MODE), 3 + (CUM).words), \
743 gen_rtx (REG, (MODE), (CUM).fregno)) \
744 : gen_rtx (EXPR_LIST, VOIDmode, 0, \
745 gen_rtx (REG, (MODE), (CUM).fregno)))) \
746 : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0)
747
748/* For an arg passed partly in registers and partly in memory,
749 this is the number of registers used.
750 For args passed entirely in registers or entirely in memory, zero. */
751
752#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
753 (! (NAMED) ? 0 \
754 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \
755 : (((CUM).words < 8 \
756 && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \
757 ? 8 - (CUM).words : 0))
758
759/* Perform any needed actions needed for a function that is receiving a
760 variable number of arguments.
761
762 CUM is as above.
763
764 MODE and TYPE are the mode and type of the current parameter.
765
766 PRETEND_SIZE is a variable that should be set to the amount of stack
767 that must be pushed by the prolog to pretend that our caller pushed
768 it.
769
770 Normally, this macro will push all remaining incoming registers on the
771 stack and set PRETEND_SIZE to the length of the registers pushed. */
772
773#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
774{ if ((CUM).words < 8) \
775 { \
776 int first_reg_offset = (CUM).words; \
777 \
778 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
779 first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
780 \
781 if (first_reg_offset > 8) \
782 first_reg_offset = 8; \
783 \
784 if (! (NO_RTL) && first_reg_offset != 8) \
785 move_block_from_reg \
786 (3 + first_reg_offset, \
787 gen_rtx (MEM, BLKmode, \
788 plus_constant (virtual_incoming_args_rtx, \
789 first_reg_offset * 4)), \
790 8 - first_reg_offset); \
791 PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \
792 } \
793}
794
795/* This macro generates the assembly code for function entry.
796 FILE is a stdio stream to output the code to.
797 SIZE is an int: how many units of temporary storage to allocate.
798 Refer to the array `regs_ever_live' to determine which registers
799 to save; `regs_ever_live[I]' is nonzero if register number I
800 is ever used in the function. This macro is responsible for
801 knowing which registers should not be saved even if used. */
802
803#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
804
805/* Output assembler code to FILE to increment profiler label # LABELNO
58a39e45 806 for profiling a function entry. */
f045b2c9
RS
807
808#define FUNCTION_PROFILER(FILE, LABELNO) \
58a39e45 809 output_function_profiler ((FILE), (LABELNO));
f045b2c9
RS
810
811/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
812 the stack pointer does not matter. No definition is equivalent to
813 always zero.
814
815 On the RS/6000, this is non-zero because we can restore the stack from
816 its backpointer, which we maintain. */
817#define EXIT_IGNORE_STACK 1
818
819/* This macro generates the assembly code for function exit,
820 on machines that need it. If FUNCTION_EPILOGUE is not defined
821 then individual return instructions are generated for each
822 return statement. Args are same as for FUNCTION_PROLOGUE.
823
824 The function epilogue should not depend on the current stack pointer!
825 It should use the frame pointer only. This is mandatory because
826 of alloca; we also take advantage of it to omit stack adjustments
827 before returning. */
828
829#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
830\f
831/* Output assembler code for a block containing the constant parts
832 of a trampoline, leaving space for the variable parts.
833
834 The trampoline should set the static chain pointer to value placed
835 into the trampoline and should branch to the specified routine.
836
837 On the RS/6000, this is not code at all, but merely a data area,
838 since that is the way all functions are called. The first word is
839 the address of the function, the second word is the TOC pointer (r2),
840 and the third word is the static chain value. */
841
842#define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); }
843
844/* Length in units of the trampoline for entering a nested function. */
845
846#define TRAMPOLINE_SIZE 12
847
848/* Emit RTL insns to initialize the variable parts of a trampoline.
849 FNADDR is an RTX for the address of the function's pure code.
850 CXT is an RTX for the static chain value for the function. */
851
852#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
853{ \
854 emit_move_insn (gen_rtx (MEM, SImode, memory_address (SImode, ADDR)), \
855 force_reg (SImode, FNADDR)); \
856 emit_move_insn (gen_rtx (MEM, SImode, \
857 memory_address (SImode, plus_constant (ADDR, 4))), \
858 gen_rtx (REG, SImode, 2)); \
859 emit_move_insn (gen_rtx (MEM, SImode, \
860 memory_address (SImode, plus_constant (ADDR, 8))), \
861 force_reg (SImode, CXT)); \
862}
863\f
864/* Definitions for register eliminations.
865
866 We have two registers that can be eliminated on the RS/6000. First, the
867 frame pointer register can often be eliminated in favor of the stack
868 pointer register. Secondly, the argument pointer register can always be
869 eliminated; it is replaced with either the stack or frame pointer. */
870
871/* This is an array of structures. Each structure initializes one pair
872 of eliminable registers. The "from" register number is given first,
873 followed by "to". Eliminations of the same "from" register are listed
874 in order of preference. */
875#define ELIMINABLE_REGS \
876{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
877 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
878 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM} }
879
880/* Given FROM and TO register numbers, say whether this elimination is allowed.
881 Frame pointer elimination is automatically handled.
882
883 For the RS/6000, if frame pointer elimination is being done, we would like
884 to convert ap into fp, not sp. */
885
886#define CAN_ELIMINATE(FROM, TO) \
887 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
888 ? ! frame_pointer_needed \
889 : 1)
890
891/* Define the offset between two registers, one to be eliminated, and the other
892 its replacement, at the start of a routine. */
893#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
894{ \
895 int total_stack_size = (rs6000_sa_size () + get_frame_size () \
896 + current_function_outgoing_args_size); \
897 \
898 total_stack_size = (total_stack_size + 7) & ~7; \
899 \
900 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
901 { \
902 if (rs6000_pushes_stack ()) \
903 (OFFSET) = 0; \
904 else \
905 (OFFSET) = - total_stack_size; \
906 } \
907 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
908 (OFFSET) = total_stack_size; \
909 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
910 { \
911 if (rs6000_pushes_stack ()) \
912 (OFFSET) = total_stack_size; \
913 else \
914 (OFFSET) = 0; \
915 } \
916 else \
917 abort (); \
918}
919\f
920/* Addressing modes, and classification of registers for them. */
921
922/* #define HAVE_POST_INCREMENT */
923/* #define HAVE_POST_DECREMENT */
924
925#define HAVE_PRE_DECREMENT
926#define HAVE_PRE_INCREMENT
927
928/* Macros to check register numbers against specific register classes. */
929
930/* These assume that REGNO is a hard or pseudo reg number.
931 They give nonzero only if REGNO is a hard reg of the suitable class
932 or a pseudo reg currently allocated to a suitable hard reg.
933 Since they use reg_renumber, they are safe only once reg_renumber
934 has been allocated, which happens in local-alloc.c. */
935
936#define REGNO_OK_FOR_INDEX_P(REGNO) \
937((REGNO) < FIRST_PSEUDO_REGISTER \
938 ? (REGNO) <= 31 || (REGNO) == 67 \
939 : (reg_renumber[REGNO] >= 0 \
940 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
941
942#define REGNO_OK_FOR_BASE_P(REGNO) \
943((REGNO) < FIRST_PSEUDO_REGISTER \
944 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
945 : (reg_renumber[REGNO] > 0 \
946 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
947\f
948/* Maximum number of registers that can appear in a valid memory address. */
949
950#define MAX_REGS_PER_ADDRESS 2
951
952/* Recognize any constant value that is a valid address. */
953
954#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
955
956/* Nonzero if the constant value X is a legitimate general operand.
957 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
958
959 On the RS/6000, all integer constants are acceptable, most won't be valid
960 for particular insns, though. Only easy FP constants are
961 acceptable. */
962
963#define LEGITIMATE_CONSTANT_P(X) \
964 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
965 || easy_fp_constant (X, GET_MODE (X)))
966
967/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
968 and check its validity for a certain class.
969 We have two alternate definitions for each of them.
970 The usual definition accepts all pseudo regs; the other rejects
971 them unless they have been allocated suitable hard regs.
972 The symbol REG_OK_STRICT causes the latter definition to be used.
973
974 Most source files want to accept pseudo regs in the hope that
975 they will get allocated to the class that the insn wants them to be in.
976 Source files for reload pass need to be strict.
977 After reload, it makes no difference, since pseudo regs have
978 been eliminated by then. */
979
980#ifndef REG_OK_STRICT
981
982/* Nonzero if X is a hard reg that can be used as an index
983 or if it is a pseudo reg. */
984#define REG_OK_FOR_INDEX_P(X) \
985 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
986
987/* Nonzero if X is a hard reg that can be used as a base reg
988 or if it is a pseudo reg. */
989#define REG_OK_FOR_BASE_P(X) \
990 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
991
992#else
993
994/* Nonzero if X is a hard reg that can be used as an index. */
995#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
996/* Nonzero if X is a hard reg that can be used as a base reg. */
997#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
998
999#endif
1000\f
1001/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1002 that is a valid memory address for an instruction.
1003 The MODE argument is the machine mode for the MEM expression
1004 that wants to use this address.
1005
1006 On the RS/6000, there are four valid address: a SYMBOL_REF that
1007 refers to a constant pool entry of an address (or the sum of it
1008 plus a constant), a short (16-bit signed) constant plus a register,
1009 the sum of two registers, or a register indirect, possibly with an
1010 auto-increment. For DFmode and DImode with an constant plus register,
1011 we must ensure that both words are addressable. */
1012
1013#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1014 (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \
1015 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1016
1017#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1018 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1019 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1020 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1021 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1022
1023#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1024 (GET_CODE (X) == CONST_INT \
1025 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1026
1027#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1028 (GET_CODE (X) == PLUS \
1029 && GET_CODE (XEXP (X, 0)) == REG \
1030 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1031 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1032 && (((MODE) != DFmode && (MODE) != DImode) \
1033 || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))
1034
1035#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1036 (GET_CODE (X) == PLUS \
1037 && GET_CODE (XEXP (X, 0)) == REG \
1038 && GET_CODE (XEXP (X, 1)) == REG \
1039 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1040 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1041 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1042 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1043
1044#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1045 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1046
1047#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1048{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1049 goto ADDR; \
1050 if (GET_CODE (X) == PRE_INC \
1051 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1052 goto ADDR; \
1053 if (GET_CODE (X) == PRE_DEC \
1054 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1055 goto ADDR; \
1056 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1057 goto ADDR; \
1058 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1059 goto ADDR; \
1060 if ((MODE) != DImode && (MODE) != TImode \
1061 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1062 goto ADDR; \
1063}
1064\f
1065/* Try machine-dependent ways of modifying an illegitimate address
1066 to be legitimate. If we find one, return the new, valid address.
1067 This macro is used in only one place: `memory_address' in explow.c.
1068
1069 OLDX is the address as it was before break_out_memory_refs was called.
1070 In some cases it is useful to look at this to decide what needs to be done.
1071
1072 MODE and WIN are passed so that this macro can use
1073 GO_IF_LEGITIMATE_ADDRESS.
1074
1075 It is always safe for this macro to do nothing. It exists to recognize
1076 opportunities to optimize the output.
1077
1078 On RS/6000, first check for the sum of a register with a constant
1079 integer that is out of range. If so, generate code to add the
1080 constant with the low-order 16 bits masked to the register and force
1081 this result into another register (this can be done with `cau').
1082 Then generate an address of REG+(CONST&0xffff), allowing for the
1083 possibility of bit 16 being a one.
1084
1085 Then check for the sum of a register and something not constant, try to
1086 load the other things into a register and return the sum. */
1087
1088#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1089{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1090 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1091 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1092 { int high_int, low_int; \
1093 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1094 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1095 if (low_int & 0x8000) \
1096 high_int += 1, low_int |= 0xffff0000; \
1097 (X) = gen_rtx (PLUS, SImode, \
1098 force_operand \
1099 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1100 gen_rtx (CONST_INT, VOIDmode, \
1101 high_int << 16)), 0),\
1102 gen_rtx (CONST_INT, VOIDmode, low_int)); \
f357808b 1103 goto WIN; \
f045b2c9
RS
1104 } \
1105 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
27a2a2f1
RK
1106 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1107 && (MODE) != DImode && (MODE) != TImode) \
f357808b
RK
1108 { \
1109 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
1110 force_reg (SImode, force_operand (XEXP (X, 1), 0))); \
1111 goto WIN; \
1112 } \
f045b2c9
RS
1113}
1114
1115/* Go to LABEL if ADDR (a legitimate address expression)
1116 has an effect that depends on the machine mode it is used for.
1117
1118 On the RS/6000 this is true if the address is valid with a zero offset
1119 but not with an offset of four (this means it cannot be used as an
1120 address for DImode or DFmode) or is a pre-increment or decrement. Since
1121 we know it is valid, we just check for an address that is not valid with
1122 an offset of four. */
1123
1124#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1125{ if (GET_CODE (ADDR) == PLUS \
1126 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1127 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1128 goto LABEL; \
1129 if (GET_CODE (ADDR) == PRE_INC) \
1130 goto LABEL; \
1131 if (GET_CODE (ADDR) == PRE_DEC) \
1132 goto LABEL; \
1133}
1134\f
1135/* Define this if some processing needs to be done immediately before
1136 emitting code for an insn. */
1137
1138/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1139
1140/* Specify the machine mode that this machine uses
1141 for the index in the tablejump instruction. */
1142#define CASE_VECTOR_MODE SImode
1143
1144/* Define this if the tablejump instruction expects the table
1145 to contain offsets from the address of the table.
1146 Do not define this if the table should contain absolute addresses. */
1147#define CASE_VECTOR_PC_RELATIVE
1148
1149/* Specify the tree operation to be used to convert reals to integers. */
1150#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1151
1152/* This is the kind of divide that is easiest to do in the general case. */
1153#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1154
1155/* Define this as 1 if `char' should by default be signed; else as 0. */
1156#define DEFAULT_SIGNED_CHAR 0
1157
1158/* This flag, if defined, says the same insns that convert to a signed fixnum
1159 also convert validly to an unsigned one. */
1160
1161/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1162
1163/* Max number of bytes we can move from memory to memory
1164 in one reasonably fast instruction. */
1165#define MOVE_MAX 16
1166
1167/* Nonzero if access to memory by bytes is no faster than for words.
1168 Also non-zero if doing byte operations (specifically shifts) in registers
1169 is undesirable. */
1170#define SLOW_BYTE_ACCESS 1
1171
1172/* Define if normal loads of shorter-than-word items from memory clears
1173 the rest of the bigs in the register. */
1174#define BYTE_LOADS_ZERO_EXTEND
fdaff8ba
RS
1175\f
1176/* The RS/6000 uses the XCOFF format. */
f045b2c9 1177
fdaff8ba 1178#define XCOFF_DEBUGGING_INFO
f045b2c9 1179
c5abcf1d
CH
1180/* Define if the object format being used is COFF or a superset. */
1181#define OBJECT_FORMAT_COFF
1182
f045b2c9
RS
1183/* We don't have GAS for the RS/6000 yet, so don't write out special
1184 .stabs in cc1plus. */
1185
1186#define FASCIST_ASSEMBLER
1187
f045b2c9
RS
1188/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1189 is done just by pretending it is already truncated. */
1190#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1191
1192/* Specify the machine mode that pointers have.
1193 After generation of rtl, the compiler makes no further distinction
1194 between pointers and any other objects of this machine mode. */
1195#define Pmode SImode
1196
1197/* Mode of a function address in a call instruction (for indexing purposes).
1198
1199 Doesn't matter on RS/6000. */
1200#define FUNCTION_MODE SImode
1201
1202/* Define this if addresses of constant functions
1203 shouldn't be put through pseudo regs where they can be cse'd.
1204 Desirable on machines where ordinary constants are expensive
1205 but a CALL with constant address is cheap. */
1206#define NO_FUNCTION_CSE
1207
1208/* Define this if shift instructions ignore all but the low-order
1209 few bits. */
1210#define SHIFT_COUNT_TRUNCATED
1211
1212/* Use atexit for static constructors/destructors, instead of defining
1213 our own exit function. */
1214#define HAVE_ATEXIT
1215
1216/* Compute the cost of computing a constant rtl expression RTX
1217 whose rtx-code is CODE. The body of this macro is a portion
1218 of a switch statement. If the code is computed here,
1219 return it with a return statement. Otherwise, break from the switch.
1220
1221 On the RS/6000, if it is legal in the insn, it is free. So this
1222 always returns 0. */
1223
3bb22aee 1224#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
f045b2c9
RS
1225 case CONST_INT: \
1226 case CONST: \
1227 case LABEL_REF: \
1228 case SYMBOL_REF: \
1229 case CONST_DOUBLE: \
1230 return 0;
1231
1232/* Provide the costs of a rtl expression. This is in the body of a
1233 switch on CODE. */
1234
3bb22aee 1235#define RTX_COSTS(X,CODE,OUTER_CODE) \
f045b2c9
RS
1236 case MULT: \
1237 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
1238 ? COSTS_N_INSNS (5) \
1239 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
1240 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
1241 case DIV: \
1242 case MOD: \
1243 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1244 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
1245 return COSTS_N_INSNS (2); \
1246 /* otherwise fall through to normal divide. */ \
1247 case UDIV: \
1248 case UMOD: \
1249 return COSTS_N_INSNS (19); \
1250 case MEM: \
1251 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
1252 return 5;
1253
1254/* Compute the cost of an address. This is meant to approximate the size
1255 and/or execution delay of an insn using that address. If the cost is
1256 approximated by the RTL complexity, including CONST_COSTS above, as
1257 is usually the case for CISC machines, this macro should not be defined.
1258 For aggressively RISCy machines, only one insn format is allowed, so
1259 this macro should be a constant. The value of this macro only matters
1260 for valid addresses.
1261
1262 For the RS/6000, everything is cost 0. */
1263
1264#define ADDRESS_COST(RTX) 0
1265
1266/* Adjust the length of an INSN. LENGTH is the currently-computed length and
1267 should be adjusted to reflect any required changes. This macro is used when
1268 there is some systematic length adjustment required that would be difficult
1269 to express in the length attribute. */
1270
1271/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1272
1273/* Add any extra modes needed to represent the condition code.
1274
1275 For the RS/6000, we need separate modes when unsigned (logical) comparisons
c5defebb
RK
1276 are being done and we need a separate mode for floating-point. We also
1277 use a mode for the case when we are comparing the results of two
1278 comparisons. */
f045b2c9 1279
c5defebb 1280#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
f045b2c9
RS
1281
1282/* Define the names for the modes specified above. */
c5defebb 1283#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
f045b2c9
RS
1284
1285/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1286 return the mode to be used for the comparison. For floating-point, CCFPmode
c5defebb
RK
1287 should be used. CCUNSmode should be used for unsigned comparisons.
1288 CCEQmode should be used when we are doing an inequality comparison on
1289 the result of a comparison. CCmode should be used in all other cases. */
1290
b565a316 1291#define SELECT_CC_MODE(OP,X,Y) \
f045b2c9 1292 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
c5defebb
RK
1293 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1294 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
1295 ? CCEQmode : CCmode))
f045b2c9
RS
1296
1297/* Define the information needed to generate branch and scc insns. This is
1298 stored from the compare operation. Note that we can't use "rtx" here
1299 since it hasn't been defined! */
1300
1301extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
1302extern int rs6000_compare_fp_p;
1303
1304/* Set to non-zero by "fix" operation to indicate that itrunc and
1305 uitrunc must be defined. */
1306
1307extern int rs6000_trunc_used;
1308\f
1309/* Control the assembler format that we output. */
1310
1311/* Output at beginning of assembler file.
1312
1313 On the RS/6000, we want to go into the TOC section so at least one
1314 .toc will be emitted.
1315
fdaff8ba
RS
1316 Also initialize the section names for the RS/6000 at this point.
1317
1318 Also, in order to output proper .bs/.es pairs, we need at least one static
1319 [RW] section emitted. */
f045b2c9
RS
1320
1321#define ASM_FILE_START(FILE) \
1322{ \
fdaff8ba 1323 rs6000_gen_section_name (&xcoff_bss_section_name, \
f045b2c9 1324 main_input_filename, ".bss_"); \
fdaff8ba 1325 rs6000_gen_section_name (&xcoff_private_data_section_name, \
f045b2c9 1326 main_input_filename, ".rw_"); \
fdaff8ba 1327 rs6000_gen_section_name (&xcoff_read_only_section_name, \
f045b2c9
RS
1328 main_input_filename, ".ro_"); \
1329 \
1330 toc_section (); \
fdaff8ba
RS
1331 if (write_symbols != NO_DEBUG) \
1332 private_data_section (); \
f045b2c9
RS
1333}
1334
1335/* Output at end of assembler file.
1336
1337 On the RS/6000, referencing data should automatically pull in text. */
1338
1339#define ASM_FILE_END(FILE) \
1340{ \
1341 text_section (); \
1342 fprintf (FILE, "_section_.text:\n"); \
1343 data_section (); \
1344 fprintf (FILE, "\t.long _section_.text\n"); \
1345}
1346
f045b2c9
RS
1347/* We define this to prevent the name mangler from putting dollar signs into
1348 function names. */
1349
1350#define NO_DOLLAR_IN_LABEL
1351
1352/* We define this to 0 so that gcc will never accept a dollar sign in a
1353 variable name. This is needed because the AIX assembler will not accept
1354 dollar signs. */
1355
1356#define DOLLARS_IN_IDENTIFIERS 0
1357
fdaff8ba
RS
1358/* Implicit library calls should use memcpy, not bcopy, etc. */
1359
1360#define TARGET_MEM_FUNCTIONS
1361
f045b2c9
RS
1362/* Define the extra sections we need. We define three: one is the read-only
1363 data section which is used for constants. This is a csect whose name is
1364 derived from the name of the input file. The second is for initialized
1365 global variables. This is a csect whose name is that of the variable.
1366 The third is the TOC. */
1367
1368#define EXTRA_SECTIONS \
1369 read_only_data, private_data, read_only_private_data, toc, bss
1370
1371/* Define the name of our readonly data section. */
1372
1373#define READONLY_DATA_SECTION read_only_data_section
1374
1375/* Indicate that jump tables go in the text section. */
1376
1377#define JUMP_TABLES_IN_TEXT_SECTION
1378
1379/* Define the routines to implement these extra sections. */
1380
1381#define EXTRA_SECTION_FUNCTIONS \
1382 \
1383void \
1384read_only_data_section () \
1385{ \
1386 if (in_section != read_only_data) \
1387 { \
fdaff8ba
RS
1388 fprintf (asm_out_file, "\t.csect %s[RO]\n", \
1389 xcoff_read_only_section_name); \
f045b2c9
RS
1390 in_section = read_only_data; \
1391 } \
1392} \
1393 \
1394void \
1395private_data_section () \
1396{ \
1397 if (in_section != private_data) \
1398 { \
1399 fprintf (asm_out_file, "\t.csect %s[RW]\n", \
fdaff8ba 1400 xcoff_private_data_section_name); \
f045b2c9
RS
1401 \
1402 in_section = private_data; \
1403 } \
1404} \
1405 \
1406void \
1407read_only_private_data_section () \
1408{ \
1409 if (in_section != read_only_private_data) \
1410 { \
fdaff8ba
RS
1411 fprintf (asm_out_file, "\t.csect %s[RO]\n", \
1412 xcoff_private_data_section_name); \
f045b2c9
RS
1413 in_section = read_only_private_data; \
1414 } \
1415} \
1416 \
1417void \
1418toc_section () \
1419{ \
1420 if (in_section != toc) \
1421 fprintf (asm_out_file, "\t.toc\n"); \
1422 \
1423 in_section = toc; \
fc3ffe83 1424}
f045b2c9
RS
1425
1426/* This macro produces the initial definition of a function name.
1427 On the RS/6000, we need to place an extra '.' in the function name and
1428 output the function descriptor.
1429
1430 The csect for the function will have already been created by the
1431 `text_section' call previously done. We do have to go back to that
1432 csect, however. */
1433
fdaff8ba
RS
1434/* ??? What do the 16 and 044 in the .function line really mean? */
1435
f045b2c9
RS
1436#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1437{ if (TREE_PUBLIC (DECL)) \
1438 { \
1439 fprintf (FILE, "\t.globl ."); \
1440 RS6000_OUTPUT_BASENAME (FILE, NAME); \
fdaff8ba
RS
1441 fprintf (FILE, "\n"); \
1442 } \
1443 else if (write_symbols == XCOFF_DEBUG) \
1444 { \
1445 fprintf (FILE, "\t.lglobl ."); \
1446 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1447 fprintf (FILE, "\n"); \
f045b2c9
RS
1448 } \
1449 fprintf (FILE, "\t.csect "); \
1450 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1451 fprintf (FILE, "[DS]\n"); \
1452 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1453 fprintf (FILE, ":\n"); \
1454 fprintf (FILE, "\t.long ."); \
1455 RS6000_OUTPUT_BASENAME (FILE, NAME); \
fdaff8ba 1456 fprintf (FILE, ", TOC[tc0], 0\n"); \
f045b2c9
RS
1457 fprintf (FILE, "\t.csect [PR]\n."); \
1458 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1459 fprintf (FILE, ":\n"); \
fdaff8ba 1460 if (write_symbols == XCOFF_DEBUG) \
c2a47e48 1461 xcoffout_declare_function (FILE, DECL, NAME); \
f045b2c9
RS
1462}
1463
1464/* Return non-zero if this entry is to be written into the constant pool
1465 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
1466 containing one of them. If -mfp-in-toc (the default), we also do
1467 this for floating-point constants. We actually can only do this
1468 if the FP formats of the target and host machines are the same, but
1469 we can't check that since not every file that uses
1470 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
1471
1472#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
1473 (GET_CODE (X) == SYMBOL_REF \
1474 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1475 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
1476 || GET_CODE (X) == LABEL_REF \
1477 || (TARGET_FP_IN_TOC && GET_CODE (X) == CONST_DOUBLE \
1478 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1479 && BITS_PER_WORD == HOST_BITS_PER_INT))
1480
1481/* Select section for constant in constant pool.
1482
1483 On RS/6000, all constants are in the private read-only data area.
1484 However, if this is being placed in the TOC it must be output as a
1485 toc entry. */
1486
1487#define SELECT_RTX_SECTION(MODE, X) \
1488{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1489 toc_section (); \
1490 else \
1491 read_only_private_data_section (); \
1492}
1493
1494/* Macro to output a special constant pool entry. Go to WIN if we output
1495 it. Otherwise, it is written the usual way.
1496
1497 On the RS/6000, toc entries are handled this way. */
1498
1499#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1500{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1501 { \
1502 output_toc (FILE, X, LABELNO); \
1503 goto WIN; \
1504 } \
1505}
1506
1507/* Select the section for an initialized data object.
1508
1509 On the RS/6000, we have a special section for all variables except those
1510 that are static. */
1511
1512#define SELECT_SECTION(EXP,RELOC) \
1513{ \
1514 if ((TREE_READONLY (EXP) \
1515 || (TREE_CODE (EXP) == STRING_CST \
1516 && !flag_writable_strings)) \
1517 && ! TREE_THIS_VOLATILE (EXP) \
1518 && ! (RELOC)) \
1519 { \
1520 if (TREE_PUBLIC (EXP)) \
1521 read_only_data_section (); \
1522 else \
1523 read_only_private_data_section (); \
1524 } \
1525 else \
1526 { \
1527 if (TREE_PUBLIC (EXP)) \
1528 data_section (); \
1529 else \
1530 private_data_section (); \
1531 } \
1532}
1533
1534/* This outputs NAME to FILE up to the first null or '['. */
1535
1536#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
1537 if ((NAME)[0] == '*') \
1538 assemble_name (FILE, NAME); \
1539 else \
1540 { \
1541 char *_p; \
1542 for (_p = (NAME); *_p && *_p != '['; _p++) \
1543 fputc (*_p, FILE); \
1544 }
1545
1546/* Output something to declare an external symbol to the assembler. Most
1547 assemblers don't need this.
1548
1549 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
1550 name. Normally we write this out along with the name. In the few cases
1551 where we can't, it gets stripped off. */
1552
1553#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1554{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
1555 if ((TREE_CODE (DECL) == VAR_DECL \
1556 || TREE_CODE (DECL) == FUNCTION_DECL) \
1557 && (NAME)[0] != '*' \
1558 && (NAME)[strlen (NAME) - 1] != ']') \
1559 { \
1560 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
1561 strcpy (_name, XSTR (_symref, 0)); \
1562 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
1563 XSTR (_symref, 0) = _name; \
1564 } \
1565 fprintf (FILE, "\t.extern "); \
1566 assemble_name (FILE, XSTR (_symref, 0)); \
1567 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1568 { \
1569 fprintf (FILE, "\n\t.extern ."); \
1570 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
1571 } \
1572 fprintf (FILE, "\n"); \
1573}
1574
1575/* Similar, but for libcall. We only have to worry about the function name,
1576 not that of the descriptor. */
1577
1578#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1579{ fprintf (FILE, "\t.extern ."); \
1580 assemble_name (FILE, XSTR (FUN, 0)); \
1581 fprintf (FILE, "\n"); \
1582}
1583
1584/* Output to assembler file text saying following lines
1585 may contain character constants, extra white space, comments, etc. */
1586
1587#define ASM_APP_ON ""
1588
1589/* Output to assembler file text saying following lines
1590 no longer contain unusual constructs. */
1591
1592#define ASM_APP_OFF ""
1593
1594/* Output before instructions. */
1595
fdaff8ba 1596#define TEXT_SECTION_ASM_OP ".csect [PR]"
f045b2c9
RS
1597
1598/* Output before writable data. */
1599
fdaff8ba 1600#define DATA_SECTION_ASM_OP ".csect .data[RW]"
f045b2c9
RS
1601
1602/* How to refer to registers in assembler output.
1603 This sequence is indexed by compiler's hard-register-number (see above). */
1604
1605#define REGISTER_NAMES \
1606 {"0", "1", "2", "3", "4", "5", "6", "7", \
1607 "8", "9", "10", "11", "12", "13", "14", "15", \
1608 "16", "17", "18", "19", "20", "21", "22", "23", \
1609 "24", "25", "26", "27", "28", "29", "30", "31", \
1610 "0", "1", "2", "3", "4", "5", "6", "7", \
1611 "8", "9", "10", "11", "12", "13", "14", "15", \
1612 "16", "17", "18", "19", "20", "21", "22", "23", \
1613 "24", "25", "26", "27", "28", "29", "30", "31", \
1614 "mq", "lr", "ctr", "ap", \
1615 "0", "1", "2", "3", "4", "5", "6", "7" }
1616
1617/* Table of additional register names to use in user input. */
1618
1619#define ADDITIONAL_REGISTER_NAMES \
1620 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
1621 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
1622 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
1623 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
1624 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
1625 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
1626 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
1627 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
1628 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
1629 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
1630 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
1631 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
1632 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
1633 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
1634 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
1635 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
1636 /* no additional names for: mq, lr, ctr, ap */ \
1637 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
fc3ffe83
RK
1638 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
1639 "cc", 68 }
f045b2c9
RS
1640
1641/* How to renumber registers for dbx and gdb. */
1642
1643#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1644
1645/* This is how to output the definition of a user-level label named NAME,
1646 such as the label on a static function or variable NAME. */
1647
1648#define ASM_OUTPUT_LABEL(FILE,NAME) \
1649 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
1650
1651/* This is how to output a command to make the user-level label named NAME
1652 defined for reference from other files. */
1653
1654#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1655 do { fputs ("\t.globl ", FILE); \
1656 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
1657
1658/* This is how to output a reference to a user-level label named NAME.
1659 `assemble_name' uses this. */
1660
1661#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1662 fprintf (FILE, NAME)
1663
1664/* This is how to output an internal numbered label where
1665 PREFIX is the class of label and NUM is the number within the class. */
1666
1667#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1668 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
1669
1670/* This is how to output a label for a jump table. Arguments are the same as
1671 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1672 passed. */
1673
1674#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1675{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1676
1677/* This is how to store into the string LABEL
1678 the symbol_ref name of an internal numbered label where
1679 PREFIX is the class of label and NUM is the number within the class.
1680 This is suitable for output with `assemble_name'. */
1681
1682#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1683 sprintf (LABEL, "%s..%d", PREFIX, NUM)
1684
1685/* This is how to output an assembler line defining a `double' constant. */
1686
1687#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1688 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1689
1690/* This is how to output an assembler line defining a `float' constant. */
1691
1692#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1693 fprintf (FILE, "\t.float 0d%.20e\n", (VALUE))
1694
1695/* This is how to output an assembler line defining an `int' constant. */
1696
1697#define ASM_OUTPUT_INT(FILE,VALUE) \
1698( fprintf (FILE, "\t.long "), \
1699 output_addr_const (FILE, (VALUE)), \
1700 fprintf (FILE, "\n"))
1701
1702/* Likewise for `char' and `short' constants. */
1703
1704#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1705( fprintf (FILE, "\t.short "), \
1706 output_addr_const (FILE, (VALUE)), \
1707 fprintf (FILE, "\n"))
1708
1709#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1710( fprintf (FILE, "\t.byte "), \
1711 output_addr_const (FILE, (VALUE)), \
1712 fprintf (FILE, "\n"))
1713
1714/* This is how to output an assembler line for a numeric constant byte. */
1715
1716#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1717 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1718
1719/* This is how to output an assembler line to define N characters starting
1720 at P to FILE. */
1721
1722#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
1723
1724/* This is how to output code to push a register on the stack.
1725 It need not be very fast code. */
1726
1727#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1728 fprintf (FILE, "\tstu %s,-4(r1)\n", reg_names[REGNO]);
1729
1730/* This is how to output an insn to pop a register from the stack.
1731 It need not be very fast code. */
1732
1733#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1734 fprintf (FILE, "\tl %s,0(r1)\n\tai r1,r1,4\n", reg_names[REGNO])
1735
1736/* This is how to output an element of a case-vector that is absolute.
1737 (RS/6000 does not use such vectors, but we must define this macro
1738 anyway.) */
1739
1740#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1741 fprintf (FILE, "\t.long L..%d\n", VALUE)
1742
1743/* This is how to output an element of a case-vector that is relative. */
1744
1745#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1746 fprintf (FILE, "\t.long L..%d-L..%d\n", VALUE, REL)
1747
1748/* This is how to output an assembler line
1749 that says to advance the location counter
1750 to a multiple of 2**LOG bytes. */
1751
1752#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1753 if ((LOG) != 0) \
1754 fprintf (FILE, "\t.align %d\n", (LOG))
1755
1756#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1757 fprintf (FILE, "\t.space %d\n", (SIZE))
1758
1759/* This says how to output an assembler line
1760 to define a global common symbol. */
1761
1762#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
fc3ffe83 1763 do { fputs (".comm ", (FILE)); \
f045b2c9
RS
1764 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1765 fprintf ((FILE), ",%d\n", (SIZE)); } while (0)
1766
1767/* This says how to output an assembler line
1768 to define a local common symbol. */
1769
1770#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
fc3ffe83 1771 do { fputs (".lcomm ", (FILE)); \
f045b2c9 1772 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fdaff8ba 1773 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
f045b2c9
RS
1774 } while (0)
1775
1776/* Store in OUTPUT a string (made with alloca) containing
1777 an assembler-name for a local static variable named NAME.
1778 LABELNO is an integer which is different for each call. */
1779
1780#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1781( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1782 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1783
1784/* Define the parentheses used to group arithmetic operations
1785 in assembler code. */
1786
1787#define ASM_OPEN_PAREN "("
1788#define ASM_CLOSE_PAREN ")"
1789
1790/* Define results of standard character escape sequences. */
1791#define TARGET_BELL 007
1792#define TARGET_BS 010
1793#define TARGET_TAB 011
1794#define TARGET_NEWLINE 012
1795#define TARGET_VT 013
1796#define TARGET_FF 014
1797#define TARGET_CR 015
1798
1799/* Print operand X (an rtx) in assembler syntax to file FILE.
1800 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1801 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1802
1803#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1804
1805/* Define which CODE values are valid. */
1806
1807#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1808
1809/* Print a memory address as an operand to reference that memory location. */
1810
1811#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1812
1813/* Define the codes that are matched by predicates in rs6000.c. */
1814
1815#define PREDICATE_CODES \
1816 {"short_cint_operand", {CONST_INT}}, \
1817 {"u_short_cint_operand", {CONST_INT}}, \
f357808b 1818 {"non_short_cint_operand", {CONST_INT}}, \
cd2b37d9 1819 {"gpc_reg_operand", {SUBREG, REG}}, \
f045b2c9
RS
1820 {"cc_reg_operand", {SUBREG, REG}}, \
1821 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
1822 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
1823 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
1824 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1825 {"easy_fp_constant", {CONST_DOUBLE}}, \
1826 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
1827 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
1828 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
1829 {"add_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 1830 {"non_add_cint_operand", {CONST_INT}}, \
f045b2c9 1831 {"and_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 1832 {"non_and_cint_operand", {CONST_INT}}, \
f045b2c9 1833 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
f357808b 1834 {"non_logical_cint_operand", {CONST_INT}}, \
f045b2c9
RS
1835 {"mask_operand", {CONST_INT}}, \
1836 {"call_operand", {SYMBOL_REF, REG}}, \
1837 {"input_operand", {SUBREG, MEM, REG, CONST_INT}}, \
1838 {"branch_comparison_operation", {EQ, NE, LE, LT, GE, \
1839 LT, LEU, LTU, GEU, GTU}}, \
1840 {"scc_comparison_operation", {EQ, NE, LE, LT, GE, \
1841 LT, LEU, LTU, GEU, GTU}},
This page took 0.25463 seconds and 5 git commands to generate.