]> gcc.gnu.org Git - gcc.git/blame - gcc/config/romp/romp.h
Added arg to RETURN_POPS_ARGS.
[gcc.git] / gcc / config / romp / romp.h
CommitLineData
b124ac04 1/* Definitions of target machine for GNU compiler, for ROMP chip.
8b109b37 2 Copyright (C) 1989, 1991, 1993, 1995 Free Software Foundation, Inc.
b124ac04
RK
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22/* Names to predefine in the preprocessor for this target machine. */
23
65c42379 24#define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(ibm032) -Amachine(ibm032)"
b124ac04
RK
25
26/* Print subsidiary information on the compiler version in use. */
27#define TARGET_VERSION ;
28
29/* Add -lfp_p when running with -p or -pg. */
30#define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
31
32/* Run-time compilation parameters selecting different hardware subsets. */
33
34/* Flag to generate all multiplies as an in-line sequence of multiply-step
35 insns instead of calling a library routine. */
36#define TARGET_IN_LINE_MUL (target_flags & 1)
37
38/* Flag to generate padded floating-point data blocks. Otherwise, we generate
39 them the minimum size. This trades off execution speed against size. */
40#define TARGET_FULL_FP_BLOCKS (target_flags & 2)
41
42/* Flag to pass and return floating point values in floating point registers.
43 Since this violates the linkage convention, we feel free to destroy fr2
44 and fr3 on function calls.
45 fr1-fr3 are used to pass the arguments. */
46#define TARGET_FP_REGS (target_flags & 4)
47
48/* Flag to return structures of more than one word in memory. This is for
49 compatibility with the MetaWare HighC (hc) compiler. */
50#define TARGET_HC_STRUCT_RETURN (target_flags & 010)
51
52extern int target_flags;
53
54/* Macro to define tables used to set the flags.
55 This is a list in braces of pairs in braces,
56 each pair being { "NAME", VALUE }
57 where VALUE is the bits to set or minus the bits to clear.
58 An empty string NAME is used to identify the default VALUE. */
59
60#define TARGET_SWITCHES \
61 { {"in-line-mul", 1}, \
62 {"call-lib-mul", -1}, \
63 {"full-fp-blocks", 2}, \
64 {"minimum-fp-blocks", -2}, \
65 {"fp-arg-in-fpregs", 4}, \
66 {"fp-arg-in-gregs", -4}, \
67 {"hc-struct-return", 010}, \
68 {"nohc-struct-return", - 010}, \
69 { "", TARGET_DEFAULT}}
70
71#define TARGET_DEFAULT 3
b124ac04
RK
72\f
73/* target machine storage layout */
74
75/* Define this if most significant bit is lowest numbered
76 in instructions that operate on numbered bit-fields. */
77/* That is true on ROMP. */
78#define BITS_BIG_ENDIAN 1
79
80/* Define this if most significant byte of a word is the lowest numbered. */
81/* That is true on ROMP. */
82#define BYTES_BIG_ENDIAN 1
83
84/* Define this if most significant word of a multiword number is lowest
85 numbered.
86
87 For ROMP we can decide arbitrarily since there are no machine instructions
88 for them. Might as well be consistent with bits and bytes. */
89#define WORDS_BIG_ENDIAN 1
90
b4ac57ab 91/* number of bits in an addressable storage unit */
b124ac04
RK
92#define BITS_PER_UNIT 8
93
94/* Width in bits of a "word", which is the contents of a machine register.
95 Note that this is not necessarily the width of data type `int';
96 if using 16-bit ints on a 68000, this would still be 32.
97 But on a machine with 16-bit registers, this would be 16. */
98#define BITS_PER_WORD 32
99
100/* Width of a word, in units (bytes). */
101#define UNITS_PER_WORD 4
102
103/* Width in bits of a pointer.
104 See also the macro `Pmode' defined below. */
105#define POINTER_SIZE 32
106
107/* Allocation boundary (in *bits*) for storing arguments in argument list. */
108#define PARM_BOUNDARY 32
109
110/* Boundary (in *bits*) on which stack pointer should be aligned. */
111#define STACK_BOUNDARY 32
112
113/* Allocation boundary (in *bits*) for the code of a function. */
114#define FUNCTION_BOUNDARY 16
115
116/* No data type wants to be aligned rounder than this. */
117#define BIGGEST_ALIGNMENT 32
118
119/* Alignment of field after `int : 0' in a structure. */
120#define EMPTY_FIELD_BOUNDARY 32
121
122/* Every structure's size must be a multiple of this. */
123#define STRUCTURE_SIZE_BOUNDARY 8
124
125/* A bitfield declared as `int' forces `int' alignment for the struct. */
126#define PCC_BITFIELD_TYPE_MATTERS 1
127
128/* Make strings word-aligned so strcpy from constants will be faster. */
129#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
130 (TREE_CODE (EXP) == STRING_CST \
131 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
132
133/* Make arrays of chars word-aligned for the same reasons. */
134#define DATA_ALIGNMENT(TYPE, ALIGN) \
135 (TREE_CODE (TYPE) == ARRAY_TYPE \
136 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
137 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
138
b4ac57ab 139/* Set this nonzero if move instructions will actually fail to work
b124ac04 140 when given unaligned data. */
b4ac57ab 141#define STRICT_ALIGNMENT 1
b124ac04
RK
142\f
143/* Standard register usage. */
144
145/* Number of actual hardware registers.
146 The hardware registers are assigned numbers for the compiler
147 from 0 to just below FIRST_PSEUDO_REGISTER.
148 All registers that the compiler knows about must be given numbers,
149 even those that are not normally considered general registers.
150
151 ROMP has 16 fullword registers and 8 floating point registers.
152
153 In addition, the difference between the frame and argument pointers is
154 a function of the number of registers saved, so we need to have a register
155 to use for AP that will later be eliminated in favor of sp or fp. This is
156 a normal register, but it is fixed. */
157
158#define FIRST_PSEUDO_REGISTER 25
159
160/* 1 for registers that have pervasive standard uses
161 and are not available for the register allocator.
162
163 On ROMP, r1 is used for the stack and r14 is used for a
164 data area pointer.
165
166 HACK WARNING: On the RT, there is a bug in code generation for
167 the MC68881 when the first and third operands are the same floating-point
168 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
169 Here we need to reserve fr0 for this purpose. */
170#define FIXED_REGISTERS \
171 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
172 1, \
173 1, 0, 0, 0, 0, 0, 0, 0}
174
175/* 1 for registers not available across function calls.
176 These must include the FIXED_REGISTERS and also any
177 registers that can be used without being saved.
178 The latter must include the registers where values are returned
179 and the register where structure-value addresses are passed.
180 Aside from that, you can include as many other registers as you like. */
181#define CALL_USED_REGISTERS \
182 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
183 1, \
184 1, 1, 0, 0, 0, 0, 0, 0}
185
186/* List the order in which to allocate registers. Each register must be
187 listed once, even those in FIXED_REGISTERS.
188
189 We allocate in the following order:
190 fr0, fr1 (not saved)
191 fr2 ... fr6
192 fr7 (more expensive for some FPA's)
193 r0 (not saved and won't conflict with parameter register)
194 r4, r3, r2 (not saved, highest used first to make less conflict)
195 r5 (not saved, but forces r6 to be saved if DI/DFmode)
196 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
197 r1, ap */
198
199#define REG_ALLOC_ORDER \
200 {17, 18, \
201 19, 20, 21, 22, 23, \
202 24, \
203 0, \
204 4, 3, 2, \
205 5, \
206 15, 14, 13, 12, 11, 10, \
207 9, 8, 7, 6, \
208 1, 16}
209
210/* True if register is floating-point. */
211#define FP_REGNO_P(N) ((N) >= 17)
212
213/* Return number of consecutive hard regs needed starting at reg REGNO
214 to hold something of mode MODE.
215 This is ordinarily the length in words of a value of mode MODE
216 but can be less for certain modes in special long registers.
217
218 On ROMP, ordinary registers hold 32 bits worth;
219 a single floating point register is always enough for
220 anything that can be stored in them at all. */
221#define HARD_REGNO_NREGS(REGNO, MODE) \
222 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
223 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
224
225/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
226 On ROMP, the cpu registers can hold any mode but the float registers
227 can hold only floating point. */
228#define HARD_REGNO_MODE_OK(REGNO, MODE) \
229 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
230 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
231
232/* Value is 1 if it is a good idea to tie two pseudo registers
233 when one has mode MODE1 and one has mode MODE2.
234 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
235 for any hard reg, then this must be 0 for correct output. */
236#define MODES_TIEABLE_P(MODE1, MODE2) \
237 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
238 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
239 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
240 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
241
242/* A C expression returning the cost of moving data from a register of class
243 CLASS1 to one of CLASS2.
244
245 On the ROMP, access to floating-point registers is expensive (even between
246 two FP regs.) */
247#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
248 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
249
250/* Specify the registers used for certain standard purposes.
251 The values of these macros are register numbers. */
252
253/* ROMP pc isn't overloaded on a register that the compiler knows about. */
254/* #define PC_REGNUM */
255
256/* Register to use for pushing function arguments. */
257#define STACK_POINTER_REGNUM 1
258
259/* Base register for access to local variables of the function. */
260#define FRAME_POINTER_REGNUM 13
261
262/* Value should be nonzero if functions must have frame pointers.
263 Zero means the frame pointer need not be set up (and parms
264 may be accessed via the stack pointer) in functions that seem suitable.
265 This is computed in `reload', in reload1.c. */
266#define FRAME_POINTER_REQUIRED 0
267
268/* Base register for access to arguments of the function. */
269#define ARG_POINTER_REGNUM 16
270
271/* Place to put static chain when calling a function that requires it. */
272#define STATIC_CHAIN \
273 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
274 gen_rtx (CONST_INT, VOIDmode, -36)))
275
276/* Place where static chain is found upon entry to routine. */
277#define STATIC_CHAIN_INCOMING \
278 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \
279 gen_rtx (CONST_INT, VOIDmode, -20)))
280
281/* Place that structure value return address is placed.
282
283 On the ROMP, it is passed as an extra parameter. */
284#define STRUCT_VALUE 0
285\f
286/* Define the classes of registers for register constraints in the
287 machine description. Also define ranges of constants.
288
289 One of the classes must always be named ALL_REGS and include all hard regs.
290 If there is more than one class, another class must be named NO_REGS
291 and contain no registers.
292
293 The name GENERAL_REGS must be the name of a class (or an alias for
294 another name such as ALL_REGS). This is the class of registers
295 that is allowed by "g" or "r" in a register constraint.
296 Also, registers outside this class are allocated only when
297 instructions express preferences for them.
298
299 The classes must be numbered in nondecreasing order; that is,
300 a larger-numbered class must never be contained completely
301 in a smaller-numbered class.
302
303 For any two classes, it is very desirable that there be another
304 class that represents their union. */
305
306/* The ROMP has two types of registers, general and floating-point.
307
308 However, r0 is special in that it cannot be used as a base register.
309 So make a class for registers valid as base registers.
310
311 For floating-point support, add classes that just consist of r0 and
312 r15, respectively. */
313
314enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
315 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
316
317#define N_REG_CLASSES (int) LIM_REG_CLASSES
318
319/* Give names of register classes as strings for dump file. */
320
321#define REG_CLASS_NAMES \
322 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
323 "FP_REGS", "ALL_REGS" }
324
325/* Define which registers fit in which classes.
326 This is an initializer for a vector of HARD_REG_SET
327 of length N_REG_CLASSES. */
328
329#define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
330 0x1fe0000, 0x1ffffff }
331
332/* The same information, inverted:
333 Return the class number of the smallest class containing
334 reg number REGNO. This could be a conditional expression
335 or could index an array. */
336
337#define REGNO_REG_CLASS(REGNO) \
338 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
339
340/* The class value for index registers, and the one for base regs. */
341#define INDEX_REG_CLASS BASE_REGS
342#define BASE_REG_CLASS BASE_REGS
343
344/* Get reg_class from a letter such as appears in the machine description. */
345
346#define REG_CLASS_FROM_LETTER(C) \
347 ((C) == 'f' ? FP_REGS \
348 : (C) == 'b' ? BASE_REGS \
349 : (C) == 'z' ? R0_REGS \
350 : (C) == 't' ? R15_REGS \
351 : NO_REGS)
352
353/* The letters I, J, K, L, M, N, and P in a register constraint string
354 can be used to stand for particular ranges of immediate operands.
355 This macro defines what the ranges are.
356 C is the letter, and VALUE is a constant value.
357 Return 1 if VALUE is in the range specified by C.
358
359 `I' is constants less than 16
360 `J' is negative constants greater than -16
361 `K' is the range for a normal D insn.
362 `L' is a constant with only the low-order 16 bits set
363 `M' is a constant with only the high-order 16 bits set
364 `N' is a single-bit constant
365 `O' is a constant with either the high-order or low-order 16 bits all ones
366 `P' is the complement of a single-bit constant
367 */
368
369#define CONST_OK_FOR_LETTER_P(VALUE, C) \
370 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
371 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
372 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
373 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
374 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
375 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
376 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
377 || ((VALUE) & 0xffff0000) == 0xffff0000 \
378 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
379 : 0)
380
381/* Similar, but for floating constants, and defining letters G and H.
382 Here VALUE is the CONST_DOUBLE rtx itself.
383 No floating-point constants on ROMP. */
384
385#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
386
387/* Optional extra constraints for this machine.
388
389 For the ROMP, `Q' means that this is a memory operand but not a symbolic
390 memory operand. Note that an unassigned pseudo register is such a
391 memory operand. If register allocation has not been done, we reject
392 pseudos, since we assume (hope) that they will get hard registers.
393
394 `R' means that this is a constant pool reference to the current function.
395 This is just r14 and so can be treated as a register. We bother with this
396 just in move insns as that is the only place it is likely to occur.
397
398 `S' means that this is the address of a constant pool location. This is
399 equal to r14 plus a constant. We also only check for this in move insns. */
400
401#define EXTRA_CONSTRAINT(OP, C) \
402 ((C) == 'Q' ? \
403 ((GET_CODE (OP) == REG \
404 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
405 && reg_renumber != 0 \
406 && reg_renumber[REGNO (OP)] < 0) \
36d51583 407 || (GET_CODE (OP) == MEM \
b124ac04
RK
408 && ! symbolic_memory_operand (OP, VOIDmode))) \
409 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
410 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
411 : 0)
412
413/* Given an rtx X being reloaded into a reg required to be
414 in class CLASS, return the class of reg to actually use.
415 In general this is just CLASS; but on some machines
416 in some cases it is preferable to use a more restrictive class.
417
418 For the ROMP, if X is a memory reference that involves a symbol,
419 we must use a BASE_REGS register instead of GENERAL_REGS
420 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
421 to be valid, so we assume that this is the case.
422
423 Also, if X is an integer class, ensure that floating-point registers
424 aren't used. */
425
426#define PREFERRED_RELOAD_CLASS(X,CLASS) \
427 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
428 ? GENERAL_REGS : \
429 (CLASS) != GENERAL_REGS ? (CLASS) : \
430 GET_CODE (X) != MEM ? GENERAL_REGS : \
431 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
432 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
433 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
434 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
435 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
436 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
437 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
438 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
439
440/* Return the register class of a scratch register needed to store into
441 OUT from a register of class CLASS in MODE.
442
443 On the ROMP, we cannot store into a symbolic memory address from an
444 integer register; we need a BASE_REGS register as a scratch to do it. */
445
446#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
447 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
448 ? BASE_REGS : NO_REGS)
449
450/* Return the maximum number of consecutive registers
451 needed to represent mode MODE in a register of class CLASS.
452
453 On ROMP, this is the size of MODE in words,
454 except in the FP regs, where a single reg is always enough. */
455#define CLASS_MAX_NREGS(CLASS, MODE) \
456 ((CLASS) == FP_REGS ? 1 \
457 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
458\f
459/* Stack layout; function entry, exit and calling. */
460
461/* Define this if pushing a word on the stack
462 makes the stack pointer a smaller address. */
463#define STACK_GROWS_DOWNWARD
464
465/* Define this if the nominal address of the stack frame
466 is at the high-address end of the local variables;
467 that is, each additional local variable allocated
468 goes at a more negative offset in the frame. */
469#define FRAME_GROWS_DOWNWARD
470
471/* Offset within stack frame to start allocating local variables at.
472 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
473 first local allocated. Otherwise, it is the offset to the BEGINNING
474 of the first local allocated.
475 On the ROMP, if we set the frame pointer to 15 words below the highest
476 address of the highest local variable, the first 16 words will be
477 addressable via D-short insns. */
478#define STARTING_FRAME_OFFSET 64
479
480/* If we generate an insn to push BYTES bytes,
481 this says how many the stack pointer really advances by.
482 On ROMP, don't define this because there are no push insns. */
483/* #define PUSH_ROUNDING(BYTES) */
484
485/* Offset of first parameter from the argument pointer register value.
486 On the ROMP, we define the argument pointer to the start of the argument
487 area. */
488#define FIRST_PARM_OFFSET(FNDECL) 0
489
490/* Define this if stack space is still allocated for a parameter passed
491 in a register. The value is the number of bytes. */
492#define REG_PARM_STACK_SPACE(FNDECL) 16
493
494/* This is the difference between the logical top of stack and the actual sp.
495
496 For the ROMP, sp points past the words allocated for the first four outgoing
497 arguments (they are part of the callee's frame). */
498#define STACK_POINTER_OFFSET -16
499
500/* Define this if the maximum size of all the outgoing args is to be
501 accumulated and pushed during the prologue. The amount can be
502 found in the variable current_function_outgoing_args_size. */
503#define ACCUMULATE_OUTGOING_ARGS
504
505/* Value is the number of bytes of arguments automatically
506 popped when returning from a subroutine call.
8b109b37 507 FUNDECL is the declaration node of the function (as a tree),
b124ac04
RK
508 FUNTYPE is the data type of the function (as a tree),
509 or for a library call it is an identifier node for the subroutine name.
510 SIZE is the number of bytes of arguments passed on the stack. */
511
8b109b37 512#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
b124ac04
RK
513
514/* Define how to find the value returned by a function.
515 VALTYPE is the data type of the value (as a tree).
516 If the precise function being called is known, FUNC is its FUNCTION_DECL;
517 otherwise, FUNC is 0.
518
519 On ROMP the value is found in r2, unless the machine specific option
520 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
521
522#define FUNCTION_VALUE(VALTYPE, FUNC) \
523 gen_rtx (REG, TYPE_MODE (VALTYPE), \
524 (TARGET_FP_REGS && \
525 GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2)
526
527/* Define how to find the value returned by a library function
528 assuming the value has mode MODE. */
529
530#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
531
532/* The definition of this macro implies that there are cases where
533 a scalar value cannot be returned in registers.
534
535 For the ROMP, if compatibility with HC is required, anything of
536 type DImode is returned in memory. */
537
538#define RETURN_IN_MEMORY(type) \
e14fa9c4
DE
539 (TYPE_MODE (type) == BLKmode \
540 || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode))
b124ac04
RK
541
542/* 1 if N is a possible register number for a function value
543 as seen by the caller.
544
545 On ROMP, r2 is the only register thus used unless fp values are to be
546 returned in fp regs, in which case fr1 is also used. */
547
548#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
549
550/* 1 if N is a possible register number for function argument passing.
551 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
552
553#define FUNCTION_ARG_REGNO_P(N) \
554 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
555\f
556/* Define a data type for recording info about an argument list
557 during the scan of that argument list. This data type should
558 hold all necessary information about the function itself
559 and about the args processed so far, enough to enable macros
560 such as FUNCTION_ARG to determine where the next arg should go.
561
562 On the ROMP, this is a structure. The first word is the number of
563 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
564 scanned so far (including the invisible argument, if any, which holds
565 the structure-value-address). The second word hold the corresponding
566 value for floating-point arguments, except that both single and double
567 count as one register. */
568
569struct rt_cargs {int gregs, fregs; };
570#define CUMULATIVE_ARGS struct rt_cargs
571
572#define USE_FP_REG(MODE,CUM) \
573 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
574 && (CUM).fregs < 3)
575
576/* Define intermediate macro to compute the size (in registers) of an argument
577 for the ROMP. */
578
579#define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
580(! (NAMED) ? 0 \
581 : (MODE) != BLKmode \
582 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
583 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584
585/* Initialize a variable CUM of type CUMULATIVE_ARGS
586 for a call to a function whose data type is FNTYPE.
587 For a library call, FNTYPE is 0.
588
589 On ROMP, the offset normally starts at 0, but starts at 4 bytes
590 when the function gets a structure-value-address as an
591 invisible first argument. */
592
593#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
594 (CUM).gregs = 0, \
595 (CUM).fregs = 0
596
597/* Update the data in CUM to advance over an argument
598 of mode MODE and data type TYPE.
599 (TYPE is null for libcalls where that information may not be available.) */
600
601#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
602{ if (NAMED) \
603 { \
604 if (USE_FP_REG(MODE, CUM)) \
605 (CUM).fregs++; \
606 else \
607 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
608 } \
609}
610
611/* Determine where to put an argument to a function.
612 Value is zero to push the argument on the stack,
613 or a hard register in which to store the argument.
614
615 MODE is the argument's machine mode.
616 TYPE is the data type of the argument (as a tree).
617 This is null for libcalls where that information may
618 not be available.
619 CUM is a variable of type CUMULATIVE_ARGS which gives info about
620 the preceding args and about the function being called.
621 NAMED is nonzero if this argument is a named parameter
622 (otherwise it is an extra parameter matching an ellipsis).
623
624 On ROMP the first four words of args are normally in registers
625 and the rest are pushed. */
626
627#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
628 (! (NAMED) ? 0 \
38bd31fc 629 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
d072107f
RK
630 : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \
631 : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0)
b124ac04
RK
632
633/* For an arg passed partly in registers and partly in memory,
634 this is the number of registers used.
635 For args passed entirely in registers or entirely in memory, zero. */
636
637#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
638 (! (NAMED) ? 0 \
639 : USE_FP_REG(MODE,CUM) ? 0 \
640 : (((CUM).gregs < 4 \
641 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
642 ? 4 - (CUM).gregs : 0))
643
644/* Perform any needed actions needed for a function that is receiving a
645 variable number of arguments.
646
647 CUM is as above.
648
649 MODE and TYPE are the mode and type of the current parameter.
650
651 PRETEND_SIZE is a variable that should be set to the amount of stack
652 that must be pushed by the prolog to pretend that our caller pushed
653 it.
654
655 Normally, this macro will push all remaining incoming registers on the
656 stack and set PRETEND_SIZE to the length of the registers pushed. */
657
658#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
659{ if (TARGET_FP_REGS) \
660 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
661 else if ((CUM).gregs < 4) \
662 { \
663 int first_reg_offset = (CUM).gregs; \
664 \
665 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
666 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
667 \
668 if (first_reg_offset > 4) \
669 first_reg_offset = 4; \
670 \
671 if (! NO_RTL && first_reg_offset != 4) \
672 move_block_from_reg \
673 (2 + first_reg_offset, \
674 gen_rtx (MEM, BLKmode, \
675 plus_constant (virtual_incoming_args_rtx, \
676 first_reg_offset * 4)), \
02892e06 677 4 - first_reg_offset, (4 - first_reg_offset) * UNITS_PER_WORD); \
b124ac04
RK
678 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
679 } \
680}
681
682/* This macro produces the initial definition of a function name.
683 On the ROMP, we need to place an extra '.' in the function name. */
684
685#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
686{ if (TREE_PUBLIC(DECL)) \
687 fprintf (FILE, "\t.globl _.%s\n", NAME); \
688 fprintf (FILE, "_.%s:\n", NAME); \
689}
690
691/* This macro is used to output the start of the data area.
692
693 On the ROMP, the _name is a pointer to the data area. At that
694 location is the address of _.name, which is really the name of
695 the function. We need to set all this up here.
696
697 The global declaration of the data area, if needed, is done in
698 `assemble_function', where it thinks it is globalizing the function
699 itself. */
700
701#define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
702{ extern int data_offset; \
703 data_section (); \
704 fprintf (FILE, "\t.align 2\n"); \
705 ASM_OUTPUT_LABEL (FILE, NAME); \
706 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
707 if (current_function_calls_alloca) \
708 fprintf (FILE, "0x%x\n", \
709 0xf6900000 + current_function_outgoing_args_size); \
710 else \
711 fprintf (FILE, "0\n"); \
712 data_offset = ((SIZE) + 12 + 3) / 4; \
713}
714
715/* Select section for constant in constant pool.
716
717 On ROMP, all constants are in the data area. */
718
719#define SELECT_RTX_SECTION(MODE, X) data_section ()
720
721/* This macro generates the assembly code for function entry.
722 FILE is a stdio stream to output the code to.
723 SIZE is an int: how many units of temporary storage to allocate.
724 Refer to the array `regs_ever_live' to determine which registers
725 to save; `regs_ever_live[I]' is nonzero if register number I
726 is ever used in the function. This macro is responsible for
727 knowing which registers should not be saved even if used. */
728
729#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
730
731/* Output assembler code to FILE to increment profiler label # LABELNO
732 for profiling a function entry. */
733
734#define FUNCTION_PROFILER(FILE, LABELNO) \
735 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
736
737/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
738 the stack pointer does not matter. The value is tested only in
739 functions that have frame pointers.
740 No definition is equivalent to always zero. */
741/* #define EXIT_IGNORE_STACK 1 */
742
743/* This macro generates the assembly code for function exit,
744 on machines that need it. If FUNCTION_EPILOGUE is not defined
745 then individual return instructions are generated for each
746 return statement. Args are same as for FUNCTION_PROLOGUE.
747
748 The function epilogue should not depend on the current stack pointer!
749 It should use the frame pointer only. This is mandatory because
750 of alloca; we also take advantage of it to omit stack adjustments
751 before returning. */
752
753#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
754\f
755/* Output assembler code for a block containing the constant parts
756 of a trampoline, leaving space for the variable parts.
757
758 The trampoline should set the static chain pointer to value placed
759 into the trampoline and should branch to the specified routine.
760
761 On the ROMP, we have a problem. There are no free registers to use
762 to construct the static chain and function addresses. Hence we use
763 the following kludge: r15 (the return address) is first saved in mq.
764 Then we use r15 to form the function address. We then branch to the
765 function and restore r15 in the delay slot. This makes it appear that
766 the function was called directly from the caller.
767
768 (Note that the function address built is actually that of the data block.
769 This is passed in r0 and the actual routine address is loaded into r15.)
770
771 In addition, note that the address of the "called function", in this case
772 the trampoline, is actually the address of the data area. So we need to
773 make a fake data area that will contain the address of the trampoline.
774 Note that this must be defined as two half-words, since the trampoline
775 template (as opposed to the trampoline on the stack) is only half-word
776 aligned. */
777
778#define TRAMPOLINE_TEMPLATE(FILE) \
779{ \
780 fprintf (FILE, "\t.short 0,0\n"); \
781 fprintf (FILE, "\tcau r0,0(r0)\n"); \
782 fprintf (FILE, "\toil r0,r0,0\n"); \
783 fprintf (FILE, "\tmts r10,r15\n"); \
784 fprintf (FILE, "\tst r0,-36(r1)\n"); \
785 fprintf (FILE, "\tcau r15,0(r0)\n"); \
786 fprintf (FILE, "\toil r15,r15,0\n"); \
787 fprintf (FILE, "\tcas r0,r15,r0\n"); \
788 fprintf (FILE, "\tls r15,0(r15)\n"); \
789 fprintf (FILE, "\tbrx r15\n"); \
790 fprintf (FILE, "\tmfs r10,r15\n"); \
791}
792
793/* Length in units of the trampoline for entering a nested function. */
794
795#define TRAMPOLINE_SIZE 36
796
797/* Emit RTL insns to initialize the variable parts of a trampoline.
798 FNADDR is an RTX for the address of the function's pure code.
799 CXT is an RTX for the static chain value for the function.
800
801 On the RT, the static chain and function addresses are written in
802 two 16-bit sections.
803
804 We also need to write the address of the first instruction in
805 the trampoline into the first word of the trampoline to simulate a
806 data area. */
807
808#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
809{ \
810 rtx _addr, _temp; \
811 rtx _val; \
812 \
813 _temp = expand_binop (SImode, add_optab, ADDR, \
814 gen_rtx (CONST_INT, VOIDmode, 4), \
815 0, 1, OPTAB_LIB_WIDEN); \
816 emit_move_insn (gen_rtx (MEM, SImode, \
817 memory_address (SImode, ADDR)), _temp); \
818 \
819 _val = force_reg (SImode, CXT); \
820 _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
821 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
822 gen_lowpart (HImode, _val)); \
823 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
824 build_int_2 (16, 0), 0, 1); \
825 _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
826 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
827 gen_lowpart (HImode, _temp)); \
828 \
829 _val = force_reg (SImode, FNADDR); \
830 _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
831 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
832 gen_lowpart (HImode, _val)); \
833 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
834 build_int_2 (16, 0), 0, 1); \
835 _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
836 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
837 gen_lowpart (HImode, _temp)); \
838 \
839}
840\f
841/* Definitions for register eliminations.
842
843 We have two registers that can be eliminated on the ROMP. First, the
844 frame pointer register can often be eliminated in favor of the stack
845 pointer register. Secondly, the argument pointer register can always be
846 eliminated; it is replaced with either the stack or frame pointer.
847
848 In addition, we use the elimination mechanism to see if r14 is needed.
849 Initially we assume that it isn't. If it is, we spill it. This is done
850 by making it an eliminable register. It doesn't matter what we replace
851 it with, since it will never occur in the rtl at this point. */
852
853/* This is an array of structures. Each structure initializes one pair
854 of eliminable registers. The "from" register number is given first,
855 followed by "to". Eliminations of the same "from" register are listed
856 in order of preference. */
857#define ELIMINABLE_REGS \
858{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
859 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
860 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
861 { 14, 0}}
862
863/* Given FROM and TO register numbers, say whether this elimination is allowed.
864 Frame pointer elimination is automatically handled.
865
866 For the ROMP, if frame pointer elimination is being done, we would like to
867 convert ap into fp, not sp.
868
869 We need r14 if various conditions (tested in romp_using_r14) are true.
870
871 All other eliminations are valid. */
872#define CAN_ELIMINATE(FROM, TO) \
873 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
874 ? ! frame_pointer_needed \
875 : (FROM) == 14 ? ! romp_using_r14 () \
876 : 1)
877
878/* Define the offset between two registers, one to be eliminated, and the other
879 its replacement, at the start of a routine. */
880#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
881{ if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
882 { \
883 if (romp_pushes_stack ()) \
884 (OFFSET) = ((get_frame_size () - 64) \
885 + current_function_outgoing_args_size); \
886 else \
887 (OFFSET) = - (romp_sa_size () + 64); \
888 } \
889 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
890 (OFFSET) = romp_sa_size () - 16 + 64; \
891 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
892 { \
893 if (romp_pushes_stack ()) \
894 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
895 + current_function_outgoing_args_size); \
896 else \
897 (OFFSET) = -16; \
898 } \
899 else if ((FROM) == 14) \
900 (OFFSET) = 0; \
901 else \
902 abort (); \
903}
904\f
905/* Addressing modes, and classification of registers for them. */
906
907/* #define HAVE_POST_INCREMENT */
908/* #define HAVE_POST_DECREMENT */
909
910/* #define HAVE_PRE_DECREMENT */
911/* #define HAVE_PRE_INCREMENT */
912
913/* Macros to check register numbers against specific register classes. */
914
915/* These assume that REGNO is a hard or pseudo reg number.
916 They give nonzero only if REGNO is a hard reg of the suitable class
917 or a pseudo reg currently allocated to a suitable hard reg.
918 Since they use reg_renumber, they are safe only once reg_renumber
919 has been allocated, which happens in local-alloc.c. */
920
921#define REGNO_OK_FOR_INDEX_P(REGNO) 0
922#define REGNO_OK_FOR_BASE_P(REGNO) \
923((REGNO) < FIRST_PSEUDO_REGISTER \
924 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
925 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
926 && reg_renumber[REGNO] != 16))
927\f
928/* Maximum number of registers that can appear in a valid memory address. */
929
930#define MAX_REGS_PER_ADDRESS 1
931
932/* Recognize any constant value that is a valid address. */
933
6eff269e
BK
934#define CONSTANT_ADDRESS_P(X) \
935 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
936 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
937 || GET_CODE (X) == HIGH)
b124ac04
RK
938
939/* Nonzero if the constant value X is a legitimate general operand.
940 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
941
942 On the ROMP, there is a bit of a hack here. Basically, we wish to
943 only issue instructions that are not `as' macros. However, in the
944 case of `get', `load', and `store', if the operand is a relocatable
945 symbol (possibly +/- an integer), there is no way to express the
946 resulting split-relocation except with the macro. Therefore, allow
947 either a constant valid in a normal (sign-extended) D-format insn or
948 a relocatable expression.
949
950 Also, for DFmode and DImode, we must ensure that both words are
951 addressable.
952
953 We define two macros: The first is given an offset (0 or 4) and indicates
954 that the operand is a CONST_INT that is valid for that offset. The second
955 indicates a valid non-CONST_INT constant. */
956
957#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
958 (GET_CODE (X) == CONST_INT \
959 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
960
961#define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
962 (GET_CODE (X) == SYMBOL_REF \
963 || GET_CODE (X) == LABEL_REF \
964 || (GET_CODE (X) == CONST \
965 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
966 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
967 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
968
969/* Include all constant integers and constant double, but exclude
970 SYMBOL_REFs that are to be obtained from the data area (see below). */
971#define LEGITIMATE_CONSTANT_P(X) \
972 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
973 || GET_CODE (X) == CONST_INT \
974 || GET_CODE (X) == CONST_DOUBLE) \
59a5c11b 975 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
b124ac04
RK
976
977/* For no good reason, we do the same as the other RT compilers and load
978 the addresses of data areas for a function from our data area. That means
979 that we need to mark such SYMBOL_REFs. We do so here. */
59a5c11b 980#define ENCODE_SECTION_INFO(DECL) \
b124ac04 981 if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
59a5c11b 982 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
b124ac04
RK
983
984/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
985 and check its validity for a certain class.
986 We have two alternate definitions for each of them.
987 The usual definition accepts all pseudo regs; the other rejects
988 them unless they have been allocated suitable hard regs.
989 The symbol REG_OK_STRICT causes the latter definition to be used.
990
991 Most source files want to accept pseudo regs in the hope that
992 they will get allocated to the class that the insn wants them to be in.
993 Source files for reload pass need to be strict.
994 After reload, it makes no difference, since pseudo regs have
995 been eliminated by then. */
996
997#ifndef REG_OK_STRICT
998
999/* Nonzero if X is a hard reg that can be used as an index
1000 or if it is a pseudo reg. */
1001#define REG_OK_FOR_INDEX_P(X) 0
1002/* Nonzero if X is a hard reg that can be used as a base reg
1003 or if it is a pseudo reg. */
1004#define REG_OK_FOR_BASE_P(X) \
1005 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1006
1007#else
1008
1009/* Nonzero if X is a hard reg that can be used as an index. */
1010#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1011/* Nonzero if X is a hard reg that can be used as a base reg. */
1012#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1013
1014#endif
1015\f
1016/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1017 that is a valid memory address for an instruction.
1018 The MODE argument is the machine mode for the MEM expression
1019 that wants to use this address.
1020
1021 On the ROMP, a legitimate address is either a legitimate constant,
1022 a register plus a legitimate constant, or a register. See the
1023 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
1024#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1025{ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1026 goto ADDR; \
1027 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
1028 goto ADDR; \
1029 if (GET_CODE (X) == PLUS \
1030 && GET_CODE (XEXP (X, 0)) == REG \
1031 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1032 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
1033 goto ADDR; \
1034 if (GET_CODE (X) == PLUS \
1035 && GET_CODE (XEXP (X, 0)) == REG \
1036 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1037 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1038 && (((MODE) != DFmode && (MODE) != DImode) \
1039 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
1040 goto ADDR; \
1041}
1042\f
1043/* Try machine-dependent ways of modifying an illegitimate address
1044 to be legitimate. If we find one, return the new, valid address.
1045 This macro is used in only one place: `memory_address' in explow.c.
1046
1047 OLDX is the address as it was before break_out_memory_refs was called.
1048 In some cases it is useful to look at this to decide what needs to be done.
1049
1050 MODE and WIN are passed so that this macro can use
1051 GO_IF_LEGITIMATE_ADDRESS.
1052
1053 It is always safe for this macro to do nothing. It exists to recognize
1054 opportunities to optimize the output.
1055
1056 On ROMP, check for the sum of a register with a constant
1057 integer that is out of range. If so, generate code to add the
1058 constant with the low-order 16 bits masked to the register and force
1059 this result into another register (this can be done with `cau').
1060 Then generate an address of REG+(CONST&0xffff), allowing for the
1061 possibility of bit 16 being a one.
1062
1063 If the register is not OK for a base register, abort. */
1064
1065#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1066{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1067 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1068 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1069 { int high_int, low_int; \
1070 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1071 abort (); \
1072 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1073 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1074 if (low_int & 0x8000) \
1075 high_int += 1, low_int |= 0xffff0000; \
1076 (X) = gen_rtx (PLUS, SImode, \
1077 force_operand \
1078 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1079 gen_rtx (CONST_INT, VOIDmode, \
1080 high_int << 16)), 0),\
1081 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1082 } \
1083}
1084
1085/* Go to LABEL if ADDR (a legitimate address expression)
1086 has an effect that depends on the machine mode it is used for.
1087
1088 On the ROMP this is true only if the address is valid with a zero offset
1089 but not with an offset of four (this means it cannot be used as an
1090 address for DImode or DFmode). Since we know it is valid, we just check
1091 for an address that is not valid with an offset of four. */
1092
1093#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1094{ if (GET_CODE (ADDR) == PLUS \
1095 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1096 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1097 goto LABEL; \
1098}
1099\f
1100/* Define this if some processing needs to be done immediately before
1101 emitting code for an insn.
1102
1103 This is used on the ROMP, to compensate for a bug in the floating-point
1104 code. When a floating-point operation is done with the first and third
1105 operands both the same floating-point register, it will generate bad code
1106 for the MC68881. So we must detect this. If it occurs, we patch the
1107 first operand to be fr0 and insert a move insn to move it to the desired
1108 destination. */
1109#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1110 { rtx op0, op1, op2, operation, tem; \
1111 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1112 { \
1113 op0 = OPERANDS[0]; \
1114 operation = OPERANDS[1]; \
1115 if (float_conversion (operation, VOIDmode)) \
1116 operation = XEXP (operation, 0); \
1117 if (float_binary (operation, VOIDmode)) \
1118 { \
1119 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1120 if (float_conversion (op1, VOIDmode)) \
1121 op1 = XEXP (op1, 0); \
1122 if (float_conversion (op2, VOIDmode)) \
1123 op2 = XEXP (op2, 0); \
1124 if (rtx_equal_p (op0, op2) \
1125 && (GET_CODE (operation) == PLUS \
1126 || GET_CODE (operation) == MULT)) \
1127 tem = op1, op1 = op2, op2 = tem; \
1128 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1129 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1130 && REGNO (op0) == REGNO (op2)) \
1131 { \
1132 tem = gen_rtx (REG, GET_MODE (op0), 17); \
1133 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1134 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1135 OPERANDS[0] = tem; \
1136 } \
1137 } \
1138 } \
1139 }
1140\f
1141/* Specify the machine mode that this machine uses
1142 for the index in the tablejump instruction. */
1143#define CASE_VECTOR_MODE SImode
1144
1145/* Define this if the tablejump instruction expects the table
1146 to contain offsets from the address of the table.
1147 Do not define this if the table should contain absolute addresses. */
1148/* #define CASE_VECTOR_PC_RELATIVE */
1149
1150/* Specify the tree operation to be used to convert reals to integers. */
1151#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1152
1153/* This is the kind of divide that is easiest to do in the general case. */
1154#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1155
1156/* Define this as 1 if `char' should by default be signed; else as 0. */
1157#define DEFAULT_SIGNED_CHAR 0
1158
1159/* This flag, if defined, says the same insns that convert to a signed fixnum
1160 also convert validly to an unsigned one.
1161
1162 We actually lie a bit here as overflow conditions are different. But
1163 they aren't being checked anyway. */
1164
1165#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1166
1167/* Max number of bytes we can move from memory to memory
1168 in one reasonably fast instruction. */
1169#define MOVE_MAX 4
1170
1171/* Nonzero if access to memory by bytes is no faster than for words.
1172 Also non-zero if doing byte operations (specifically shifts) in registers
1173 is undesirable. */
1174#define SLOW_BYTE_ACCESS 1
1175
9a63901f
RK
1176/* Define if operations between registers always perform the operation
1177 on the full register even if a narrower mode is specified. */
1178#define WORD_REGISTER_OPERATIONS
1179
1180/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1181 will either zero-extend or sign-extend. The value of this macro should
1182 be the code that says which one of the two operations is implicitly
1183 done, NIL if none. */
1184#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
b124ac04
RK
1185
1186/* This is BSD, so it wants DBX format. */
1187#define DBX_DEBUGGING_INFO
1188
0f21219f
RK
1189/* Define the letter code used in a stabs entry for parameters passed
1190 with the register attribute.
1191
1192 GCC's default value, 'P', is used by dbx to refers to an external
1193 procedure. The section 5 manual page for dbx implies that 'R' would be the
1194 right letter, but dbx 1.5 has a bug in it that precludes its use.
1195 Probably that is why neither hc or pcc use this. pcc puts in two
1196 stabs entries: one for the parameter location and one for the register
1197 location. The letter `r' (register)
1198 would be okay, but it loses parameter attribute of the stabs entry. */
1199#define DBX_REGPARM_STABS_LETTER 'R'
1200
1201/* A C expression for the integer offset value of an automatic variable
1202 (N_LSYM) having address X (an RTX). This gets used in .stabs entries
1203 for the local variables. Compare with the default definition. */
1204extern int romp_debugger_auto_correction();
1205#define DEBUGGER_AUTO_OFFSET(X) \
1206 (GET_CODE (X) == PLUS \
1207 ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \
1208 : 0 )
1209
1210/* A C expression for the integer offset value of an argument (N_PSYM)
1211 having address X (an RTX). The nominal offset is OFFSET. */
1212extern int romp_debugger_arg_correction();
1213#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1214 romp_debugger_arg_correction (OFFSET);
1215
b124ac04
RK
1216/* We don't have GAS for the RT yet, so don't write out special
1217 .stabs in cc1plus. */
1218
1219#define FASCIST_ASSEMBLER
1220
1221/* Do not break .stabs pseudos into continuations. */
1222#define DBX_CONTIN_LENGTH 0
1223
1224/* Don't try to use the `x' type-cross-reference character in DBX data.
1225 Also has the consequence of putting each struct, union or enum
1226 into a separate .stabs, containing only cross-refs to the others. */
1227#define DBX_NO_XREFS
1228
1229/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1230 is done just by pretending it is already truncated. */
1231#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1232
1233/* Specify the machine mode that pointers have.
1234 After generation of rtl, the compiler makes no further distinction
1235 between pointers and any other objects of this machine mode. */
1236#define Pmode SImode
1237
1238/* Mode of a function address in a call instruction (for indexing purposes).
1239
1240 Doesn't matter on ROMP. */
1241#define FUNCTION_MODE SImode
1242
1243/* Define this if addresses of constant functions
1244 shouldn't be put through pseudo regs where they can be cse'd.
1245 Desirable on machines where ordinary constants are expensive
1246 but a CALL with constant address is cheap. */
1247#define NO_FUNCTION_CSE
1248
1249/* Define this if shift instructions ignore all but the low-order
36d51583
RK
1250 few bits.
1251
1252 This is not true on the RT since it uses the low-order 6, not 5, bits.
1253 At some point, this should be extended to see how to express that. */
1254
1255/* #define SHIFT_COUNT_TRUNCATED */
b124ac04 1256
3bb22aee
RS
1257/* Compute the cost of computing a constant rtl expression RTX whose
1258 rtx-code is CODE, contained within an expression of code OUTER_CODE.
1259 The body of this macro is a portion of a switch statement. If the
1260 code is computed here, return it with a return statement. Otherwise,
1261 break from the switch. */
b124ac04 1262
3bb22aee 1263#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
b124ac04 1264 case CONST_INT: \
6c94ce67 1265 if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \
a7a975e1
RK
1266 || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \
1267 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \
3bb22aee 1268 && (unsigned int) (INTVAL (RTX) + 15) < 31) \
6c94ce67 1269 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
3bb22aee 1270 return 0; \
a7a975e1
RK
1271 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \
1272 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
b124ac04
RK
1273 case CONST: \
1274 case LABEL_REF: \
1275 case SYMBOL_REF: \
3bb22aee 1276 if (current_function_operand (RTX, Pmode)) return 0; \
a7a975e1 1277 return COSTS_N_INSNS (2); \
3bb22aee
RS
1278 case CONST_DOUBLE: \
1279 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \
a7a975e1
RK
1280 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
1281 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
b124ac04
RK
1282
1283/* Provide the costs of a rtl expression. This is in the body of a
1284 switch on CODE.
1285
1286 References to our own data area are really references to r14, so they
1287 are very cheap. Multiples and divides are very expensive. */
1288
3bb22aee 1289#define RTX_COSTS(X,CODE,OUTER_CODE) \
b124ac04
RK
1290 case MEM: \
1291 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
1292 case MULT: \
3bb22aee
RS
1293 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1294 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
b124ac04
RK
1295 case DIV: \
1296 case UDIV: \
1297 case MOD: \
1298 case UMOD: \
1299 return COSTS_N_INSNS (45);
1300
1301/* Compute the cost of an address. This is meant to approximate the size
1302 and/or execution delay of an insn using that address. If the cost is
1303 approximated by the RTL complexity, including CONST_COSTS above, as
1304 is usually the case for CISC machines, this macro should not be defined.
1305 For aggressively RISCy machines, only one insn format is allowed, so
1306 this macro should be a constant. The value of this macro only matters
1307 for valid addresses.
1308
1309 For the ROMP, everything is cost 0 except for addresses involving
1310 symbolic constants, which are cost 1. */
1311
1312#define ADDRESS_COST(RTX) \
1313 ((GET_CODE (RTX) == SYMBOL_REF \
1314 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
1315 || GET_CODE (RTX) == LABEL_REF \
1316 || (GET_CODE (RTX) == CONST \
1317 && ! constant_pool_address_operand (RTX, Pmode)) \
1318 || (GET_CODE (RTX) == PLUS \
1319 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
1320 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1321 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
1322 || GET_CODE (XEXP (RTX, 1)) == CONST)))
1323
1324/* Adjust the length of an INSN. LENGTH is the currently-computed length and
1325 should be adjusted to reflect any required changes. This macro is used when
1326 there is some systematic length adjustment required that would be difficult
1327 to express in the length attribute.
1328
1329 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1330 slot of a CALL (including floating-point operations) actually takes four
1331 bytes. Second, we have to make the worst-case alignment assumption for
1332 address vectors. */
1333
1334#define ADJUST_INSN_LENGTH(X,LENGTH) \
1335 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1336 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1337 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1338 (LENGTH) += 2; \
1339 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1340 (LENGTH) += 2;
1341\f
1342/* Tell final.c how to eliminate redundant test instructions. */
1343
1344/* Here we define machine-dependent flags and fields in cc_status
1345 (see `conditions.h'). */
1346
1347/* Set if condition code (really not-Z) is stored in `test bit'. */
1348#define CC_IN_TB 01000
1349
1350/* Set if condition code is set by an unsigned compare. */
1351#define CC_UNSIGNED 02000
1352
1353/* Store in cc_status the expressions
1354 that the condition codes will describe
1355 after execution of an instruction whose pattern is EXP.
1356 Do not alter them if the instruction would not alter the cc's. */
1357
1358#define NOTICE_UPDATE_CC(BODY,INSN) \
1359 update_cc (BODY, INSN)
1360\f
1361/* Control the assembler format that we output. */
1362
1363/* Output at beginning of assembler file. */
1364
1365#define ASM_FILE_START(FILE) \
1366{ extern char *version_string; \
8c1d7353
RK
1367 char *p; \
1368 \
b124ac04 1369 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
8c1d7353
RK
1370 fprintf (FILE, "\t.globl .oVgcc"); \
1371 for (p = version_string; *p != ' ' && *p != 0; p++) \
1372 fprintf (FILE, "%c", *p); \
1373 fprintf (FILE, "\n\t.set .oVgcc"); \
1374 for (p = version_string; *p != ' ' && *p != 0; p++) \
1375 fprintf (FILE, "%c", *p); \
1376 fprintf (FILE, ",0\n"); \
b124ac04
RK
1377}
1378
1379/* Output to assembler file text saying following lines
1380 may contain character constants, extra white space, comments, etc. */
1381
1382#define ASM_APP_ON ""
1383
1384/* Output to assembler file text saying following lines
1385 no longer contain unusual constructs. */
1386
1387#define ASM_APP_OFF ""
1388
1389/* Output before instructions and read-only data. */
1390
fdaff8ba 1391#define TEXT_SECTION_ASM_OP ".text"
b124ac04
RK
1392
1393/* Output before writable data. */
1394
fdaff8ba 1395#define DATA_SECTION_ASM_OP ".data"
b124ac04
RK
1396
1397/* How to refer to registers in assembler output.
1398 This sequence is indexed by compiler's hard-register-number (see above). */
1399
1400#define REGISTER_NAMES \
1401{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1402 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1403 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1404
1405/* How to renumber registers for dbx and gdb. */
1406
1407#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1408
1409/* This is how to output the definition of a user-level label named NAME,
1410 such as the label on a static function or variable NAME. */
1411
1412#define ASM_OUTPUT_LABEL(FILE,NAME) \
1413 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1414
1415/* This is how to output a command to make the user-level label named NAME
1416 defined for reference from other files. */
1417
1418#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1419 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1420
1421/* This is how to output a reference to a user-level label named NAME.
1422 `assemble_name' uses this. */
1423
1424#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1425 fprintf (FILE, "_%s", NAME)
1426
1427/* This is how to output an internal numbered label where
1428 PREFIX is the class of label and NUM is the number within the class. */
1429
1430#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1431 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1432
1433/* This is how to output a label for a jump table. Arguments are the same as
1434 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1435 passed. */
1436
1437#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1438{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1439
1440/* This is how to store into the string LABEL
1441 the symbol_ref name of an internal numbered label where
1442 PREFIX is the class of label and NUM is the number within the class.
1443 This is suitable for output with `assemble_name'. */
1444
1445#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1446 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1447
1448/* This is how to output an assembler line defining a `double' constant. */
1449
1450#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1451 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1452
1453/* This is how to output an assembler line defining a `float' constant.
1454
1455 WARNING: Believe it or not, the ROMP assembler has a bug in its
1456 handling of single-precision floating-point values making it impossible
1457 to output such values in the expected way. Therefore, it must be output
1458 in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
1459 NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
1460 about it short of fixing the assembler. */
1461
1462#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1463 do { union { int i; float f; } u_i_f; \
1464 u_i_f.f = (VALUE); \
1465 fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
1466 } while (0)
1467
1468/* This is how to output an assembler line defining an `int' constant. */
1469
1470#define ASM_OUTPUT_INT(FILE,VALUE) \
1471( fprintf (FILE, "\t.long "), \
1472 output_addr_const (FILE, (VALUE)), \
1473 fprintf (FILE, "\n"))
1474
1475/* Likewise for `char' and `short' constants. */
1476
1477#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1478( fprintf (FILE, "\t.short "), \
1479 output_addr_const (FILE, (VALUE)), \
1480 fprintf (FILE, "\n"))
1481
1482#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1483( fprintf (FILE, "\t.byte "), \
1484 output_addr_const (FILE, (VALUE)), \
1485 fprintf (FILE, "\n"))
1486
1487/* This is how to output an assembler line for a numeric constant byte. */
1488
1489#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1490 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1491
1492/* This is how to output code to push a register on the stack.
1493 It need not be very fast code. */
1494
1495#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1496 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1497
1498/* This is how to output an insn to pop a register from the stack.
1499 It need not be very fast code. */
1500
1501#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1502 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1503
1504/* This is how to output an element of a case-vector that is absolute. */
1505
1506#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1507 fprintf (FILE, "\t.long L%d\n", VALUE)
1508
1509/* This is how to output an element of a case-vector that is relative.
1510 (ROMP does not use such vectors,
1511 but we must define this macro anyway.) */
1512
1513#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1514
1515/* This is how to output an assembler line
1516 that says to advance the location counter
1517 to a multiple of 2**LOG bytes. */
1518
1519#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1520 if ((LOG) != 0) \
1521 fprintf (FILE, "\t.align %d\n", (LOG))
1522
1523#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1524 fprintf (FILE, "\t.space %d\n", (SIZE))
1525
1526/* This says how to output an assembler line
1527 to define a global common symbol. */
1528
1529#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1530( fputs (".comm ", (FILE)), \
1531 assemble_name ((FILE), (NAME)), \
1532 fprintf ((FILE), ",%d\n", (SIZE)))
1533
1534/* This says how to output an assembler line
1535 to define a local common symbol. */
1536
1537#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1538( fputs (".lcomm ", (FILE)), \
1539 assemble_name ((FILE), (NAME)), \
1540 fprintf ((FILE), ",%d\n", (SIZE)))
1541
1542/* Store in OUTPUT a string (made with alloca) containing
1543 an assembler-name for a local static variable named NAME.
1544 LABELNO is an integer which is different for each call. */
1545
1546#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1547( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1548 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1549
1550/* Define the parentheses used to group arithmetic operations
1551 in assembler code. */
1552
1553#define ASM_OPEN_PAREN "("
1554#define ASM_CLOSE_PAREN ")"
1555
1556/* Define results of standard character escape sequences. */
1557#define TARGET_BELL 007
1558#define TARGET_BS 010
1559#define TARGET_TAB 011
1560#define TARGET_NEWLINE 012
1561#define TARGET_VT 013
1562#define TARGET_FF 014
1563#define TARGET_CR 015
1564
1565/* Print operand X (an rtx) in assembler syntax to file FILE.
1566 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1567 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1568
1569#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1570
1571/* Define which CODE values are valid. */
1572
1573#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1574 ((CODE) == '.' || (CODE) == '#')
1575\f
1576/* Print a memory address as an operand to reference that memory location. */
1577
1578#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1579{ register rtx addr = ADDR; \
1580 register rtx base = 0, offset = addr; \
1581 if (GET_CODE (addr) == REG) \
1582 base = addr, offset = const0_rtx; \
1583 else if (GET_CODE (addr) == PLUS \
1584 && GET_CODE (XEXP (addr, 0)) == REG) \
1585 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1586 else if (GET_CODE (addr) == SYMBOL_REF \
1587 && CONSTANT_POOL_ADDRESS_P (addr)) \
1588 { \
1589 offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \
1590 base = gen_rtx (REG, SImode, 14); \
1591 } \
1592 else if (GET_CODE (addr) == CONST \
1593 && GET_CODE (XEXP (addr, 0)) == PLUS \
1594 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1595 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1596 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1597 { \
1598 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1599 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1600 + 12)); \
1601 base = gen_rtx (REG, SImode, 14); \
1602 } \
1603 output_addr_const (FILE, offset); \
1604 if (base) \
1605 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1606}
1607
1608/* Define the codes that are matched by predicates in aux-output.c. */
1609
1610#define PREDICATE_CODES \
1611 {"zero_memory_operand", {SUBREG, MEM}}, \
1612 {"short_memory_operand", {SUBREG, MEM}}, \
1613 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1614 {"current_function_operand", {MEM}}, \
1615 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1616 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1617 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1618 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1619 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1620 {"short_cint_operand", {CONST_INT}}, \
1621 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1622 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1623 PLUS, CONST, CONST_INT}}, \
1624 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1625 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1626 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1627 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1628 SYMBOL_REF, CONST_DOUBLE}}, \
1629 {"reg_0_operand", {REG}}, \
1630 {"reg_15_operand", {REG}}, \
1631 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1632 {"float_unary", {NEG, ABS}}, \
1633 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1634
1635/* Define functions defined in aux-output.c and used in templates. */
1636
1637extern char *output_in_line_mul ();
1638extern char *output_fpop ();
This page took 0.347707 seconds and 5 git commands to generate.