]> gcc.gnu.org Git - gcc.git/blame - gcc/config/pyr/pyr.h
Added arg to RETURN_POPS_ARGS.
[gcc.git] / gcc / config / pyr / pyr.h
CommitLineData
014cfee8
RS
1/* Definitions of target machine parameters for GNU compiler,
2 for Pyramid 90x, 9000, and MIServer Series.
8b109b37 3 Copyright (C) 1989, 1995 Free Software Foundation, Inc.
014cfee8
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
8b109b37 20
014cfee8
RS
21/*
22 * If you're going to change this, and you haven't already,
23 * you should get and read
24 * ``OSx Operating System Porting Guide'',
25 * publication number 4100-0066-A
26 * Revision A
27 * Pyramid Technology Corporation.
28 *
29 * or whatever the most recent version is. In any case, page and
30 * section number references given herein refer to this document.
31 *
32 * The instruction table for gdb lists the available insns and
33 * the valid addressing modes.
34 *
35 * Any other information on the Pyramid architecture is proprietary
36 * and hard to get. (Pyramid cc -S and adb are also useful.)
37 *
38 */
39
40/*** Run-time compilation parameters selecting different hardware subsets. ***/
41
42/* Names to predefine in the preprocessor for this target machine. */
43
65c42379 44#define CPP_PREDEFINES "-Dpyr -Dunix -Asystem(unix) -Acpu(pyr) -Amachine(pyr)"
014cfee8
RS
45
46/* Print subsidiary information on the compiler version in use. */
47
48#define TARGET_VERSION fprintf (stderr, " (pyr)");
49
50extern int target_flags;
51
52/* Nonzero if compiling code that Unix assembler can assemble. */
53#define TARGET_UNIX_ASM (target_flags & 1)
54
014cfee8 55/* Implement stdarg in the same fashion used on all other machines. */
13a07c71 56#define TARGET_GNU_STDARG (target_flags & 2)
014cfee8
RS
57
58/* Compile using RETD to pop off the args.
59 This will not work unless you use prototypes at least
60 for all functions that can take varying numbers of args.
61 This contravenes the Pyramid calling convention, so we don't
62 do it yet. */
63
13a07c71 64#define TARGET_RETD (target_flags & 4)
014cfee8
RS
65
66/* Macros used in the machine description to test the flags. */
67
68/* Macro to define tables used to set the flags.
69 This is a list in braces of pairs in braces,
70 each pair being { "NAME", VALUE }
71 where VALUE is the bits to set or minus the bits to clear.
72 An empty string NAME is used to identify the default VALUE.
73
13a07c71 74 -mgnu will be useful if we ever have GAS on a pyramid. */
014cfee8
RS
75
76#define TARGET_SWITCHES \
77 { {"unix", 1}, \
78 {"gnu", -1}, \
13a07c71
TG
79 {"gnu-stdarg", 2}, \
80 {"nognu-stdarg", -2}, \
81 {"retd", 4}, \
82 {"no-retd", -4}, \
014cfee8
RS
83 { "", TARGET_DEFAULT}}
84
85/* Default target_flags if no switches specified.
86
87 (equivalent to "-munix -mindex -mgnu-stdarg") */
88
89#ifndef TARGET_DEFAULT
13a07c71 90#define TARGET_DEFAULT (1 + 2)
014cfee8
RS
91#endif
92
936b69b3
TG
93/* Make GCC agree with types.h. */
94#ifdef SIZE_TYPE
95#undef SIZE_TYPE
96#endif
97#define SIZE_TYPE "unsigned int"
98
99/* Assembler does not permit $ in labels */
100
101#define NO_DOLLAR_IN_LABEL
102
2e2863d4
RS
103/* Maybe it doesn't permit dot either. */
104#define NO_DOT_IN_LABEL
105
014cfee8
RS
106/* Never allow $ in identifiers */
107
108#define DOLLARS_IN_IDENTIFIERS 0
109\f
110/*** Target machine storage layout ***/
111
13a07c71
TG
112/* Define this to non-zero if most significant bit is lowest
113 numbered in instructions that operate on numbered bit-fields.
014cfee8
RS
114 This is not true on the pyramid. */
115#define BITS_BIG_ENDIAN 0
116
13a07c71
TG
117/* Define this to non-zero if most significant byte of a word is
118 the lowest numbered. */
014cfee8
RS
119#define BYTES_BIG_ENDIAN 1
120
13a07c71
TG
121/* Define this to non-zero if most significant word of a multiword
122 number is the lowest numbered. */
014cfee8
RS
123#define WORDS_BIG_ENDIAN 1
124
125/* Number of bits in an addressable storage unit */
126#define BITS_PER_UNIT 8
127
128/* Width in bits of a "word", which is the contents of a machine register.
129 Note that this is not necessarily the width of data type `int';
130 if using 16-bit ints on a 68000, this would still be 32.
131 But on a machine with 16-bit registers, this would be 16. */
132#define BITS_PER_WORD 32
133
134/* Width of a word, in units (bytes). */
135#define UNITS_PER_WORD 4
136
137/* Width in bits of a pointer.
138 See also the macro `Pmode' defined below. */
139#define POINTER_SIZE 32
140
141/* Allocation boundary (in *bits*) for storing arguments in argument list. */
142#define PARM_BOUNDARY 32
143
144/* Boundary (in *bits*) on which stack pointer should be aligned. */
145#define STACK_BOUNDARY 32
146
147/* Allocation boundary (in *bits*) for the code of a function. */
148#define FUNCTION_BOUNDARY 32
149
150/* Alignment of field after `int : 0' in a structure. */
151#define EMPTY_FIELD_BOUNDARY 32
152
e97f2dc6 153/* Every structure's size must be a multiple of this. */
e97f2dc6
RS
154#define STRUCTURE_SIZE_BOUNDARY 32
155
014cfee8
RS
156/* No data type wants to be aligned rounder than this. */
157#define BIGGEST_ALIGNMENT 32
158
159/* Specified types of bitfields affect alignment of those fields
160 and of the structure as a whole. */
e97f2dc6 161#define PCC_BITFIELD_TYPE_MATTERS 1
014cfee8
RS
162
163/* Make strings word-aligned so strcpy from constants will be faster.
164 Pyramid documentation says the best alignment is to align
165 on the size of a cache line, which is 32 bytes.
166 Newer pyrs have single insns that do strcmp() and strcpy(), so this
167 may not actually win anything. */
014cfee8
RS
168#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
169 (TREE_CODE (EXP) == STRING_CST \
170 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
171
172/* Make arrays of chars word-aligned for the same reasons. */
173#define DATA_ALIGNMENT(TYPE, ALIGN) \
174 (TREE_CODE (TYPE) == ARRAY_TYPE \
175 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
176 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
177
e97f2dc6 178/* Set this nonzero if move instructions will actually fail to work
014cfee8 179 when given unaligned data. */
e97f2dc6 180#define STRICT_ALIGNMENT 1
014cfee8
RS
181\f
182/*** Standard register usage. ***/
183
184/* Number of actual hardware registers.
185 The hardware registers are assigned numbers for the compiler
186 from 0 to just below FIRST_PSEUDO_REGISTER.
187 All registers that the compiler knows about must be given numbers,
188 even those that are not normally considered general registers. */
189
190/* Nota Bene:
191 Pyramids have 64 addressable 32-bit registers, arranged as four
192 groups of sixteen registers each. Pyramid names the groups
193 global, parameter, local, and temporary.
194
195 The sixteen global registers are fairly conventional; the last
196 four are overloaded with a PSW, frame pointer, stack pointer, and pc.
197 The non-dedicated global registers used to be reserved for Pyramid
198 operating systems, and still have cryptic and undocumented uses for
199 certain library calls. We do not use global registers gr0 through
200 gr11.
201
202 The parameter, local, and temporary registers provide register
203 windowing. Each procedure call has its own set of these 48
204 registers, which constitute its call frame. (These frames are
205 not allocated on the conventional stack, but contiguously
206 on a separate stack called the control stack.)
207 Register windowing is a facility whereby the temporary registers
208 of frame n become the parameter registers of frame n+1, viz.:
209
210 0 15 0 15 0 15
211 +------------+------------+------------+
212frame n+1 | | | |
213 +------------+------------+------------+
214 Parameter Local Temporary
215
216 ^
217 | These 16 regs are the same.
218 v
219
220 0 15 0 15 0 15
221 +------------+------------+------------+
222frame n | | | |
223 +------------+------------+------------+
224 Parameter Local Temporary
225
226 New frames are automatically allocated on the control stack by the
227 call instruction and de-allocated by the return insns "ret" and
228 "retd". The control-stack grows contiguously upward from a
229 well-known address in memory; programs are free to allocate
230 a variable sized, conventional frame on the data stack, which
231 grows downwards in memory from just below the control stack.
232
233 Temporary registers are used for parameter passing, and are not
234 preserved across calls. TR0 through TR11 correspond to
235 gcc's ``input'' registers; PR0 through TR11 the ``output''
236 registers. The call insn stores the PC and PSW in PR14 and PR15 of
237 the frame it creates; the return insns restore these into the PC
238 and PSW. The same is true for interrupts; TR14 and TR15 of the
239 current frame are reserved and should never be used, since an
240 interrupt may occur at any time and clobber them.
241
242 An interesting quirk is the ability to take the address of a
243 variable in a windowed register. This done by adding the memory
244 address of the base of the current window frame, to the offset
245 within the frame of the desired register. The resulting address
246 can be treated just like any other pointer; if a quantity is stored
247 into that address, the appropriate register also changes.
248 GCC does not, and according to RMS will not, support this feature,
249 even though some programs rely on this (mis)feature.
250 */
251
252#define PYR_GREG(n) (n)
253#define PYR_PREG(n) (16+(n))
254#define PYR_LREG(n) (32+(n))
255#define PYR_TREG(n) (48+(n))
256
8abded10
TW
257/* Define this macro if the target machine has "register windows". This
258 C expression returns the register number as seen by the called function
259 corresponding to register number OUT as seen by the calling function.
260 Return OUT if register number OUT is not an outbound register. */
261
262#define INCOMING_REGNO(OUT) \
263 (((OUT) < 48 || (OUT) > 63) ? (OUT) : (OUT) - 32)
264
265/* Define this macro if the target machine has "register windows". This
266 C expression returns the register number as seen by the calling function
267 corresponding to register number IN as seen by the called function.
268 Return IN if register number IN is not an inbound register. */
269
270#define OUTGOING_REGNO(IN) \
271 (((IN) < 15 || (IN) > 31) ? (IN) : (IN) + 32)
272
014cfee8
RS
273#define FIRST_PSEUDO_REGISTER 64
274
275/* 1 for registers that have pervasive standard uses
276 and are not available for the register allocator.
277
13a07c71 278 On the pyramid, these are LOGPSW, SP, and PC. */
014cfee8
RS
279
280#define FIXED_REGISTERS \
281 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
282 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
283 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
284 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
285
286/* 1 for registers not available across function calls.
287 These must include the FIXED_REGISTERS and also any
288 registers that can be used without being saved.
289 The latter must include the registers where values are returned
290 and the register where structure-value addresses are passed.
291 Aside from that, you can include as many other registers as you like. */
292#define CALL_USED_REGISTERS \
293 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
294 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
295 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
296 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
297
298/* #define DEFAULT_CALLER_SAVES */
299
300/* Return number of consecutive hard regs needed starting at reg REGNO
301 to hold something of mode MODE.
302 This is ordinarily the length in words of a value of mode MODE
303 but can be less for certain modes in special long registers.
304 On the pyramid, all registers are one word long. */
305#define HARD_REGNO_NREGS(REGNO, MODE) \
306 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
307
308/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
309 On the pyramid, all registers can hold all modes. */
310
311/* -->FIXME: this is not the case for 64-bit quantities in tr11/12 through
312 --> TR14/15. This should be fixed, but to do it correctly, we also
313 --> need to fix MODES_TIEABLE_P. Yuk. We ignore this, since GCC should
314 --> do the "right" thing due to FIXED_REGISTERS. */
315#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
316
317/* Value is 1 if it is a good idea to tie two pseudo registers
318 when one has mode MODE1 and one has mode MODE2.
319 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
320 for any hard reg, then this must be 0 for correct output. */
321#define MODES_TIEABLE_P(MODE1, MODE2) 1
322
323/* Specify the registers used for certain standard purposes.
324 The values of these macros are register numbers. */
325
326/* Pyramid pc is overloaded on global register 15. */
327#define PC_REGNUM PYR_GREG(15)
328
329/* Register to use for pushing function arguments.
330 --> on Pyramids, the data stack pointer. */
331#define STACK_POINTER_REGNUM PYR_GREG(14)
332
333/* Base register for access to local variables of the function.
334 Pyramid uses CFP (GR13) as both frame pointer and argument pointer. */
d218c758 335#define FRAME_POINTER_REGNUM 13 /* pyr cpp fails on PYR_GREG(13) */
014cfee8
RS
336
337/* Value should be nonzero if functions must have frame pointers.
338 Zero means the frame pointer need not be set up (and parms
339 may be accessed via the stack pointer) in functions that seem suitable.
340 This is computed in `reload', in reload1.c.
341
342 Setting this to 1 can't break anything. Since the Pyramid has
343 register windows, I don't know if defining this to be zero can
344 win anything. It could changed later, if it wins. */
345#define FRAME_POINTER_REQUIRED 1
346
347/* Base register for access to arguments of the function. */
348#define ARG_POINTER_REGNUM 13 /* PYR_GREG(13) */
349
350/* Register in which static-chain is passed to a function. */
351/* If needed, Pyramid says to use temporary register 12. */
352#define STATIC_CHAIN_REGNUM PYR_TREG(12)
353
e97f2dc6
RS
354/* If register windows are used, STATIC_CHAIN_INCOMING_REGNUM
355 is the register number as seen by the called function, while
356 STATIC_CHAIN_REGNUM is the register number as seen by the calling
357 function. */
358#define STATIC_CHAIN_INCOMING_REGNUM PYR_PREG(12)
359
014cfee8
RS
360/* Register in which address to store a structure value
361 is passed to a function.
362 On a Pyramid, this is temporary register 0 (TR0). */
363
364#define STRUCT_VALUE_REGNUM PYR_TREG(0)
365#define STRUCT_VALUE_INCOMING_REGNUM PYR_PREG(0)
366\f
367/* Define the classes of registers for register constraints in the
368 machine description. Also define ranges of constants.
369
370 One of the classes must always be named ALL_REGS and include all hard regs.
371 If there is more than one class, another class must be named NO_REGS
372 and contain no registers.
373
374 The name GENERAL_REGS must be the name of a class (or an alias for
375 another name such as ALL_REGS). This is the class of registers
376 that is allowed by "g" or "r" in a register constraint.
377 Also, registers outside this class are allocated only when
378 instructions express preferences for them.
379
380 The classes must be numbered in nondecreasing order; that is,
381 a larger-numbered class must never be contained completely
382 in a smaller-numbered class.
383
384 For any two classes, it is very desirable that there be another
385 class that represents their union. */
386
387/* The pyramid has only one kind of registers, so NO_REGS and ALL_REGS
388 are the only classes. */
389
390enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
391
392#define N_REG_CLASSES (int) LIM_REG_CLASSES
393
394/* Since GENERAL_REGS is the same class as ALL_REGS,
395 don't give it a different class number; just make it an alias. */
396
397#define GENERAL_REGS ALL_REGS
398
399/* Give names of register classes as strings for dump file. */
400
401#define REG_CLASS_NAMES \
402 {"NO_REGS", "ALL_REGS" }
403
404/* Define which registers fit in which classes.
405 This is an initializer for a vector of HARD_REG_SET
406 of length N_REG_CLASSES. */
407
408#define REG_CLASS_CONTENTS {{0,0}, {0xffffffff,0xffffffff}}
409
410/* The same information, inverted:
411 Return the class number of the smallest class containing
412 reg number REGNO. This could be a conditional expression
413 or could index an array. */
414
415#define REGNO_REG_CLASS(REGNO) ALL_REGS
416
417/* The class value for index registers, and the one for base regs. */
418
419#define BASE_REG_CLASS ALL_REGS
420#define INDEX_REG_CLASS ALL_REGS
421
422/* Get reg_class from a letter such as appears in the machine description. */
423
424#define REG_CLASS_FROM_LETTER(C) NO_REGS
425
426/* Given an rtx X being reloaded into a reg required to be
427 in class CLASS, return the class of reg to actually use.
428 In general this is just CLASS; but on some machines
429 in some cases it is preferable to use a more restrictive class. */
430
431#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
432
433/* Return the maximum number of consecutive registers
434 needed to represent mode MODE in a register of class CLASS. */
435/* On the pyramid, this is always the size of MODE in words,
436 since all registers are the same size. */
437#define CLASS_MAX_NREGS(CLASS, MODE) \
438 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
439
440/* The letters I, J, K, L and M in a register constraint string
441 can be used to stand for particular ranges of immediate operands.
442 This macro defines what the ranges are.
443 C is the letter, and VALUE is a constant value.
444 Return 1 if VALUE is in the range specified by C.
445
446 --> For the Pyramid, 'I' can be used for the 6-bit signed integers
447 --> (-32 to 31) allowed as immediate short operands in many
448 --> instructions. 'J' cane be used for any value that doesn't fit
449 --> in 6 bits. */
450
451#define CONST_OK_FOR_LETTER_P(VALUE, C) \
452 ((C) == 'I' ? (VALUE) >= -32 && (VALUE) < 32 : \
453 (C) == 'J' ? (VALUE) < -32 || (VALUE) >= 32 : \
454 (C) == 'K' ? (VALUE) == 0xff || (VALUE) == 0xffff : 0)
455
456/* Similar, but for floating constants, and defining letters G and H.
457 Here VALUE is the CONST_DOUBLE rtx itself. */
458
459#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
460
461\f
462/*** Stack layout; function entry, exit and calling. ***/
463
464/* Define this if pushing a word on the stack
465 makes the stack pointer a smaller address. */
466#define STACK_GROWS_DOWNWARD
467
468/* Define this if the nominal address of the stack frame
469 is at the high-address end of the local variables;
470 that is, each additional local variable allocated
471 goes at a more negative offset in the frame. */
472#define FRAME_GROWS_DOWNWARD
473
474/* Offset within stack frame to start allocating local variables at.
475 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
476 first local allocated. Otherwise, it is the offset to the BEGINNING
477 of the first local allocated. */
478/* FIXME: this used to work when defined as 0. But that makes gnu
479 stdargs clobber the first arg. What gives?? */
480#define STARTING_FRAME_OFFSET 0
481
482/* Offset of first parameter from the argument pointer register value. */
483#define FIRST_PARM_OFFSET(FNDECL) 0
484
485/* Value is the number of bytes of arguments automatically
486 popped when returning from a subroutine call.
8b109b37 487 FUNDECL is the declaration node of the function (as a tree),
014cfee8
RS
488 FUNTYPE is the data type of the function (as a tree),
489 or for a library call it is an identifier node for the subroutine name.
490 SIZE is the number of bytes of arguments passed on the stack.
491
492 The Pyramid OSx Porting Guide says we are never to do this;
493 using RETD in this way violates the Pyramid calling convention.
494 We may nevertheless provide this as an option. */
495
8b109b37 496#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
014cfee8
RS
497 ((TARGET_RETD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
498 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
499 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
500 == void_type_node))) \
501 ? (SIZE) : 0)
502
503/* Define how to find the value returned by a function.
504 VALTYPE is the data type of the value (as a tree).
505 If the precise function being called is known, FUNC is its FUNCTION_DECL;
506 otherwise, FUNC is 0. */
507
508/* --> Pyramid has register windows.
509 --> The caller sees the return value is in TR0(/TR1) regardless of
510 --> its type. */
511
512#define FUNCTION_VALUE(VALTYPE, FUNC) \
513 gen_rtx (REG, TYPE_MODE (VALTYPE), PYR_TREG(0))
514
515/* --> but the callee has to leave it in PR0(/PR1) */
516
517#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
518 gen_rtx (REG, TYPE_MODE (VALTYPE), PYR_PREG(0))
519
520/* Define how to find the value returned by a library function
521 assuming the value has mode MODE. */
522
523/* --> On Pyramid the return value is in TR0/TR1 regardless. */
524
525#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, PYR_TREG(0))
526
527/* Define this if PCC uses the nonreentrant convention for returning
528 structure and union values. */
529
530#define PCC_STATIC_STRUCT_RETURN
531
532/* 1 if N is a possible register number for a function value
533 as seen by the caller.
534
535 On the Pyramid, TR0 is the only register thus used. */
536
537#define FUNCTION_VALUE_REGNO_P(N) ((N) == PYR_TREG(0))
538
539/* 1 if N is a possible register number for function argument passing.
540 On the Pyramid, the first twelve temporary registers are available. */
541
542/* FIXME FIXME FIXME
543 it's not clear whether this macro should be defined from the point
544 of view of the caller or the callee. Since it's never actually used
545 in GNU CC, the point is somewhat moot :-).
546
547 This definition is consistent with register usage in the md's for
548 other register-window architectures (sparc and spur).
549 */
550#define FUNCTION_ARG_REGNO_P(N) ((PYR_TREG(0) <= (N)) && ((N) <= PYR_TREG(11)))
551\f
552/*** Parameter passing: FUNCTION_ARG and FUNCTION_INCOMING_ARG ***/
553
554/* Define a data type for recording info about an argument list
555 during the scan of that argument list. This data type should
556 hold all necessary information about the function itself
557 and about the args processed so far, enough to enable macros
558 such as FUNCTION_ARG to determine where the next arg should go.
559
560 On Pyramids, each parameter is passed either completely on the stack
561 or completely in registers. No parameter larger than a double may
562 be passed in a register. Also, no struct or union may be passed in
563 a register, even if it would fit.
564
565 So parameters are not necessarily passed "consecutively".
566 Thus we need a vector data type: one element to record how many
567 parameters have been passed in registers and on the stack,
568 respectively.
569
570 ((These constraints seem like a gross waste of registers. But if we
571 ignore the constraint about structs & unions, we won`t be able to
572 freely mix gcc-compiled code and pyr cc-compiled code. It looks
573 like better argument passing conventions, and a machine-dependent
574 flag to enable them, might be a win.)) */
575
576
577#define CUMULATIVE_ARGS int
578
e97f2dc6 579/* Define the number of registers that can hold parameters.
014cfee8
RS
580 This macro is used only in other macro definitions below. */
581#define NPARM_REGS 12
582
583/* Decide whether or not a parameter can be put in a register.
584 (We may still have problems with libcalls. GCC doesn't seem
585 to know about anything more than the machine mode. I trust
586 structures are never passed to a libcall...
587
588 If compiling with -mgnu-stdarg, this definition should make
589 functions using the gcc-supplied stdarg, and calls to such
590 functions (declared with an arglist ending in"..."), work.
591 But such fns won't be able to call pyr cc-compiled
592 varargs fns (eg, printf(), _doprnt.)
593
594 If compiling with -mnognu-stdarg, this definition should make
595 calls to pyr cc-compiled functions work. Functions using
596 the gcc-supplied stdarg will be utterly broken.
597 There will be no better solution until RMS can be persuaded that
598 one is needed.
599
600 This macro is used only in other macro definitions below.
601 (well, it may be used in pyr.c, because the damn pyramid cc
602 can't handle the macro definition of PARAM_SAFE_FOR_REG_P ! */
603
604
605#define INNER_PARAM_SAFE_HELPER(TYPE) \
606 ((TARGET_GNU_STDARG ? (! TREE_ADDRESSABLE ((tree)TYPE)): 1) \
607 && (TREE_CODE ((tree)TYPE) != RECORD_TYPE) \
608 && (TREE_CODE ((tree)TYPE) != UNION_TYPE))
609
610#ifdef __GNUC__
611#define PARAM_SAFE_HELPER(TYPE) \
612 INNER_PARAM_SAFE_HELPER((TYPE))
613#else
614extern int inner_param_safe_helper();
615#define PARAM_SAFE_HELPER(TYPE) \
616 inner_param_safe_helper((tree)(TYPE))
617#endif
618
619/* Be careful with the expression (long) (TYPE) == 0.
620 Writing it in more obvious/correct forms makes the Pyr cc
621 dump core! */
622#define PARAM_SAFE_FOR_REG_P(MODE, TYPE, NAMED) \
623 (((MODE) != BLKmode) \
624 && ((TARGET_GNU_STDARG) ? (NAMED) : 1) \
625 && ((((long)(TYPE))==0) || PARAM_SAFE_HELPER((TYPE))))
626
627/* Initialize a variable CUM of type CUMULATIVE_ARGS
628 for a call to a function whose data type is FNTYPE.
629 For a library call, FNTYPE is 0. */
630
76c30596
RS
631#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
632 ((CUM) = (FNTYPE && !flag_pcc_struct_return \
633 && aggregate_value_p (TREE_TYPE (FNTYPE))))
014cfee8
RS
634
635/* Determine where to put an argument to a function.
636 Value is zero to push the argument on the stack,
637 or a hard register in which to store the argument.
638
639 MODE is the argument's machine mode.
640 TYPE is the data type of the argument (as a tree).
641 This is null for libcalls where that information may
642 not be available.
643 CUM is a variable of type CUMULATIVE_ARGS which gives info about
644 the preceding args and about the function being called.
645 NAMED is nonzero if this argument is a named parameter
646 (otherwise it is an extra parameter matching an ellipsis). */
647
648#define FUNCTION_ARG_HELPER(CUM, MODE, TYPE, NAMED) \
649(PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
650 ? (NPARM_REGS >= ((CUM) \
651 + ((MODE) == BLKmode \
652 ? (int_size_in_bytes (TYPE) + 3) / 4 \
653 : (GET_MODE_SIZE (MODE) + 3) / 4)) \
654 ? gen_rtx (REG, (MODE), PYR_TREG(CUM)) \
655 : 0) \
656 : 0)
657#ifdef __GNUC__
658#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
659 FUNCTION_ARG_HELPER(CUM, MODE, TYPE, NAMED)
660#else
661/***************** Avoid bug in Pyramid OSx compiler... ******************/
662#define FUNCTION_ARG (rtx) pyr_function_arg
663extern void* pyr_function_arg ();
664#endif
665
666/* Define where a function finds its arguments.
667 This is different from FUNCTION_ARG because of register windows. */
668
669#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
670(PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
671 ? (NPARM_REGS >= ((CUM) \
672 + ((MODE) == BLKmode \
673 ? (int_size_in_bytes (TYPE) + 3) / 4 \
674 : (GET_MODE_SIZE (MODE) + 3) / 4)) \
675 ? gen_rtx (REG, (MODE), PYR_PREG(CUM)) \
676 : 0) \
677 : 0)
678
679/* Update the data in CUM to advance over an argument
680 of mode MODE and data type TYPE.
681 (TYPE is null for libcalls where that information may not be available.) */
682
683#define FUNCTION_ARG_ADVANCE(CUM,MODE,TYPE,NAMED) \
684((CUM) += (PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
685 ? ((MODE) != BLKmode \
686 ? (GET_MODE_SIZE (MODE) + 3) / 4 \
687 : (int_size_in_bytes (TYPE) + 3) / 4) \
688 : 0))
689
690/* This macro generates the assembly code for function entry.
691 FILE is a stdio stream to output the code to.
692 SIZE is an int: how many units of temporary storage to allocate.
693 Refer to the array `regs_ever_live' to determine which registers
694 to save; `regs_ever_live[I]' is nonzero if register number I
695 is ever used in the function. This macro is responsible for
696 knowing which registers should not be saved even if used. */
697
698#if FRAME_POINTER_REQUIRED
699
700/* We always have frame pointers */
701
702/* Don't set up a frame pointer if it's not referenced. */
703
704#define FUNCTION_PROLOGUE(FILE, SIZE) \
705{ \
706 int _size = (SIZE) + current_function_pretend_args_size; \
707 if (_size + current_function_args_size != 0 \
708 || current_function_calls_alloca) \
709 { \
710 fprintf (FILE, "\tadsf $%d\n", _size); \
711 if (current_function_pretend_args_size > 0) \
712 fprintf (FILE, "\tsubw $%d,cfp\n", \
713 current_function_pretend_args_size); \
714 } \
715}
716
717#else /* !FRAME_POINTER_REQUIRED */
718
719/* Don't set up a frame pointer if `frame_pointer_needed' tells us
720 there is no need. Also, don't set up a frame pointer if it's not
721 referenced. */
722
723/* The definition used to be broken. Write a new one. */
724
725#endif /* !FRAME_POINTER_REQUIRED */
726
e97f2dc6
RS
727/* the trampoline stuff was taken from convex.h - S.P. */
728
729/* A C statement to output, on the stream FILE, assembler code for a
730 block of data that contains the constant parts of a trampoline. This
731 code should not include a label - the label is taken care of
732 automatically.
733 We use TR12/PR12 for the static chain.
734 movew $<STATIC>,pr12 # I2R
735 jump $<func> # S2R
736 */
737#define TRAMPOLINE_TEMPLATE(FILE) \
738{ ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x2100001C)); \
739 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
740 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x40000000)); \
741 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); }
742
743#define TRAMPOLINE_SIZE 16
744#define TRAMPOLINE_ALIGNMENT 32
745
746/* Emit RTL insns to initialize the variable parts of a trampoline.
747 FNADDR is an RTX for the address of the function's pure code.
748 CXT is an RTX for the static chain value for the function. */
749
750#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
751{ emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 4)), CXT); \
752 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 12)), FNADDR); \
753 emit_call_insn (gen_call (gen_rtx (MEM, QImode, \
754 gen_rtx (SYMBOL_REF, Pmode, \
755 "__enable_execute_stack")), \
756 const0_rtx)); \
757}
758
014cfee8
RS
759/* Output assembler code to FILE to increment profiler label # LABELNO
760 for profiling a function entry. */
761#define FUNCTION_PROFILER(FILE, LABELNO) \
762 fprintf (FILE, "\tmova LP%d,tr0\n\tcall mcount\n", (LABELNO));
763
764/* Output assembler code to FILE to initialize this source file's
765 basic block profiling info, if that has not already been done.
766 Don't know if this works on Pyrs. */
767
768#if 0 /* don't do basic_block profiling yet */
769#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
770 fprintf (FILE, \
771 "\tmtstw LPBX0,tr0\n\tbne LPI%d\n\tmova LP%d,TR0\n\tcall __bb_init_func\nLPI%d:\n", \
772 LABELNO, LABELNO);
773
774/* Output assembler code to increment the count associated with
775 the basic block number BLOCKNO. Not sure how to do this on pyrs. */
776#define BLOCK_PROFILER(FILE, BLOCKNO) \
777 fprintf (FILE, "\taddw", 4 * BLOCKNO)
778#endif /* don't do basic_block profiling yet */
779
780/* When returning from a function, the stack pointer does not matter
781 (as long as there is a frame pointer). */
782
783/* This should return non-zero when we really set up a frame pointer.
784 Otherwise, GCC is directed to preserve sp by returning zero. */
785extern int current_function_pretend_args_size;
786extern int current_function_args_size;
787extern int current_function_calls_alloca;
788#define EXIT_IGNORE_STACK \
789 (get_frame_size () + current_function_pretend_args_size \
790 + current_function_args_size != 0 \
791 || current_function_calls_alloca) \
792
e97f2dc6
RS
793/* Store in the variable DEPTH the initial difference between the
794 frame pointer reg contents and the stack pointer reg contents,
795 as of the start of the function body. This depends on the layout
796 of the fixed parts of the stack frame and on how registers are saved.
797
798 On the Pyramid, FRAME_POINTER_REQUIRED is always 1, so the definition
799 of this macro doesn't matter. But it must be defined. */
800
801#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
014cfee8
RS
802\f
803/*** Addressing modes, and classification of registers for them. ***/
804
805/* #define HAVE_POST_INCREMENT */ /* pyramid has none of these */
806/* #define HAVE_POST_DECREMENT */
807
808/* #define HAVE_PRE_DECREMENT */
809/* #define HAVE_PRE_INCREMENT */
810
811/* Macros to check register numbers against specific register classes. */
812
813/* These assume that REGNO is a hard or pseudo reg number.
814 They give nonzero only if REGNO is a hard reg of the suitable class
815 or a pseudo reg currently allocated to a suitable hard reg.
816 Since they use reg_renumber, they are safe only once reg_renumber
817 has been allocated, which happens in local-alloc.c. */
818
819/* All registers except gr0 OK as index or base registers. */
820
821#define REGNO_OK_FOR_BASE_P(regno) \
8129e7a4 822((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
014cfee8
RS
823
824#define REGNO_OK_FOR_INDEX_P(regno) \
13a07c71 825((unsigned) (regno) - 1 < FIRST_PSEUDO_REGISTER - 1 \
8129e7a4 826 || reg_renumber[regno] > 0)
014cfee8
RS
827
828/* Maximum number of registers that can appear in a valid memory address. */
829
830#define MAX_REGS_PER_ADDRESS 2 /* check MAX_REGS_PER_ADDRESS */
831
832/* 1 if X is an rtx for a constant that is a valid address. */
833
6eff269e
BK
834#define CONSTANT_ADDRESS_P(X) \
835 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
836 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
837 || GET_CODE (X) == HIGH)
014cfee8
RS
838
839/* Nonzero if the constant value X is a legitimate general operand.
840 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
841
842#define LEGITIMATE_CONSTANT_P(X) 1
843
844/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
845 and check its validity for a certain class.
846 We have two alternate definitions for each of them.
847 The usual definition accepts all pseudo regs; the other rejects
848 them unless they have been allocated suitable hard regs.
849 The symbol REG_OK_STRICT causes the latter definition to be used.
850
851 Most source files want to accept pseudo regs in the hope that
852 they will get allocated to the class that the insn wants them to be in.
853 Source files for reload pass need to be strict.
854 After reload, it makes no difference, since pseudo regs have
855 been eliminated by then. */
856
857#ifndef REG_OK_STRICT
858
859/* Nonzero if X is a hard reg that can be used as an index
860 or if it is a pseudo reg. */
13a07c71 861#define REG_OK_FOR_INDEX_P(X) (REGNO (X) > 0)
014cfee8
RS
862/* Nonzero if X is a hard reg that can be used as a base reg
863 or if it is a pseudo reg. */
864#define REG_OK_FOR_BASE_P(X) 1
865
866#else
867
868/* Nonzero if X is a hard reg that can be used as an index. */
869#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
870/* Nonzero if X is a hard reg that can be used as a base reg. */
871#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
872
873#endif
874\f
875/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
876 that is a valid memory address for an instruction.
877 The MODE argument is the machine mode for the MEM expression
878 that wants to use this address.
879
880 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
881 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
882
883
13a07c71 884/* Go to ADDR if X is indexable -- i.e., neither indexed nor offset. */
014cfee8
RS
885#define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
886{ register rtx xfoob = (X); \
887 if ((CONSTANT_ADDRESS_P (xfoob)) \
888 || (GET_CODE (xfoob) == REG && (REG_OK_FOR_BASE_P (xfoob)))) \
889 goto ADDR; \
890 }
891
892
893/* Go to label ADDR if X is a valid address that doesn't use indexing.
894 This is so if X is either a simple address, or the contents of a register
895 plus an offset.
896 This macro also gets used in output-pyramid.h in the function that
897 recognizes non-indexed operands. */
898
899#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
900{ \
901 if (GET_CODE (X) == REG) \
902 goto ADDR; \
903 GO_IF_INDEXABLE_ADDRESS (X, ADDR); \
904 if (GET_CODE (X) == PLUS) \
905 { /* Handle offset(reg) represented with offset on left */ \
906 if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
907 { if (GET_CODE (XEXP (X, 1)) == REG \
908 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
909 goto ADDR; \
910 } \
911 /* Handle offset(reg) represented with offset on right */ \
912 if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
913 { if (GET_CODE (XEXP (X, 0)) == REG \
914 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
915 goto ADDR; \
916 } \
917 } \
918}
919
920/* 1 if PROD is either a reg or a reg times a valid offset multiplier
921 (ie, 2, 4, or 8).
922 This macro's expansion uses the temporary variables xfoo0 and xfoo1
923 that must be declared in the surrounding context. */
924#define INDEX_TERM_P(PROD, MODE) \
925((GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
926 || (GET_CODE (PROD) == MULT \
927 && \
928 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
929 ((GET_CODE (xfoo0) == CONST_INT \
930 && (INTVAL (xfoo0) == 1 \
931 || INTVAL (xfoo0) == 2 \
932 || INTVAL (xfoo0) == 4 \
933 || INTVAL (xfoo0) == 8) \
934 && GET_CODE (xfoo1) == REG \
935 && REG_OK_FOR_INDEX_P (xfoo1)) \
936 || \
937 (GET_CODE (xfoo1) == CONST_INT \
938 && (INTVAL (xfoo1) == 1 \
939 || INTVAL (xfoo1) == 2 \
940 || INTVAL (xfoo1) == 4 \
941 || INTVAL (xfoo1) == 8) \
942 && GET_CODE (xfoo0) == REG \
943 && REG_OK_FOR_INDEX_P (xfoo0))))))
944
945
946#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
947{ register rtx xone, xtwo, xfoo0, xfoo1; \
948 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
13a07c71 949 if (GET_CODE (X) == PLUS) \
014cfee8
RS
950 { \
951 /* Handle <address>[index] represented with index-sum outermost */\
952 xone = XEXP (X, 0); \
953 xtwo = XEXP (X, 1); \
954 if (INDEX_TERM_P (xone, MODE)) \
955 { GO_IF_INDEXABLE_ADDRESS (xtwo, ADDR); } \
956 /* Handle <address>[index] represented with index-sum innermost */\
957 if (INDEX_TERM_P (xtwo, MODE)) \
958 { GO_IF_INDEXABLE_ADDRESS (xone, ADDR); } \
959 } \
960}
961
962/* Try machine-dependent ways of modifying an illegitimate address
963 to be legitimate. If we find one, return the new, valid address.
964 This macro is used in only one place: `memory_address' in explow.c.
965
966 OLDX is the address as it was before break_out_memory_refs was called.
967 In some cases it is useful to look at this to decide what needs to be done.
968
969 MODE and WIN are passed so that this macro can use
970 GO_IF_LEGITIMATE_ADDRESS.
971
972 It is always safe for this macro to do nothing. It exists to recognize
973 opportunities to optimize the output.
974
975 --> FIXME: We haven't yet figured out what optimizations are useful
976 --> on Pyramids. */
977
978#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
979
980/* Go to LABEL if ADDR (a legitimate address expression)
981 has an effect that depends on the machine mode it is used for.
982 There don't seem to be any such modes on pyramids. */
983#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
984\f
985/*** Miscellaneous Parameters ***/
986
987/* Specify the machine mode that this machine uses
988 for the index in the tablejump instruction. */
989#define CASE_VECTOR_MODE SImode
990
991/* Define this if the tablejump instruction expects the table
992 to contain offsets from the address of the table.
993 Do not define this if the table should contain absolute addresses. */
994/*#define CASE_VECTOR_PC_RELATIVE*/
995
996/* Specify the tree operation to be used to convert reals to integers. */
997#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
998
999/* This is the kind of divide that is easiest to do in the general case.
1000 It's just a guess. I have no idea of insn cost on pyrs. */
1001#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1002
1003/* Define this as 1 if `char' should by default be signed; else as 0. */
1004#define DEFAULT_SIGNED_CHAR 1
1005
1006/* This flag, if defined, says the same insns that convert to a signed fixnum
1007 also convert validly to an unsigned one. */
1008/* This is untrue for pyramid. The cvtdw instruction generates a trap
1009 for input operands that are out-of-range for a signed int. */
1010/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1011
1012/* Define this macro if the preprocessor should silently ignore
1013 '#sccs' directives. */
1014/* #define SCCS_DIRECTIVE */
1015
1016/* Define this macro if the preprocessor should silently ignore
1017 '#ident' directives. */
1018/* #define IDENT_DIRECTIVE */
1019
1020/* Max number of bytes we can move from memory to memory
1021 in one reasonably fast instruction. */
1022#define MOVE_MAX 8
1023
1024/* Define this if zero-extension is slow (more than one real instruction). */
1025/* #define SLOW_ZERO_EXTEND */
1026
1027/* number of bits in an 'int' on target machine */
1028#define INT_TYPE_SIZE 32
1029
1030/* 1 if byte access requires more than one instruction */
1031#define SLOW_BYTE_ACCESS 0
1032
d969caf8
RK
1033/* Define this to be nonzero if shift instructions ignore all but the low-order
1034 few bits. */
1035#define SHIFT_COUNT_TRUNCATED 1
014cfee8
RS
1036
1037/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1038 is done just by pretending it is already truncated. */
1039#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1040
1041/* Define this macro if it is as good or better to call a constant
1042 function address than to call an address kept in a register. */
1043/* #define NO_FUNCTION_CSE */
1044
1045/* When a prototype says `char' or `short', really pass an `int'. */
1046#define PROMOTE_PROTOTYPES
1047
1048/* There are no flag store insns on a pyr. */
1049/* #define STORE_FLAG_VALUE */
1050
1051/* Specify the machine mode that pointers have.
1052 After generation of rtl, the compiler makes no further distinction
1053 between pointers and any other objects of this machine mode. */
1054#define Pmode SImode
1055
1056/* A function address in a call instruction
1057 is a byte address (for indexing purposes)
1058 so give the MEM rtx a byte's mode. */
1059#define FUNCTION_MODE QImode
1060
1061/* Compute the cost of computing a constant rtl expression RTX
1062 whose rtx-code is CODE. The body of this macro is a portion
1063 of a switch statement. If the code is computed here,
1064 return it with a return statement. Otherwise, break from the switch. */
1065
3bb22aee 1066#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
014cfee8
RS
1067 case CONST_INT: \
1068 if (CONST_OK_FOR_LETTER_P (INTVAL (RTX),'I')) return 0; \
1069 case CONST: \
1070 case LABEL_REF: \
1071 case SYMBOL_REF: \
1072 return 4; \
1073 case CONST_DOUBLE: \
1074 return 6;
e97f2dc6
RS
1075
1076/* A flag which says to swap the operands of certain insns
1077 when they are output. */
1078extern int swap_operands;
014cfee8
RS
1079\f
1080/*** Condition Code Information ***/
1081
1082/* Tell final.c how to eliminate redundant test instructions. */
1083
1084/* Here we define machine-dependent flags and fields in cc_status
1085 (see `conditions.h'). No extra ones are needed for the pyr. */
1086
1087/* Store in cc_status the expressions
1088 that the condition codes will describe
1089 after execution of an instruction whose pattern is EXP.
1090 Do not alter them if the instruction would not alter the cc's. */
1091
1092/* This is a very simple definition of NOTICE_UPDATE_CC.
1093 Many cases can be optimized, to improve condition code usage.
1094 Maybe we should handle this entirely in the md, since it complicated
1095 to describe the way pyr sets cc. */
1096
1097#define TRULY_UNSIGNED_COMPARE_P(X) \
1098 (X == GEU || X == GTU || X == LEU || X == LTU)
1099#define CC_VALID_FOR_UNSIGNED 2
1100
1101#define CC_STATUS_MDEP_INIT cc_status.mdep = 0
1102
1103#define NOTICE_UPDATE_CC(EXP, INSN) \
1104 notice_update_cc(EXP, INSN)
1105\f
1106/*** Output of Assembler Code ***/
1107
1108/* Output at beginning of assembler file. */
1109
1110#define ASM_FILE_START(FILE) \
1111 fprintf (FILE, ((TARGET_UNIX_ASM)? "" : "#NO_APP\n"));
1112
1113/* Output to assembler file text saying following lines
1114 may contain character constants, extra white space, comments, etc. */
1115
1116#define ASM_APP_ON ((TARGET_UNIX_ASM) ? "" : "#APP\n")
1117
1118/* Output to assembler file text saying following lines
1119 no longer contain unusual constructs. */
1120
1121#define ASM_APP_OFF ((TARGET_UNIX_ASM) ? "" : "#NO_APP\n")
1122
1123/* Output before read-only data. */
1124
1125#define TEXT_SECTION_ASM_OP ".text"
1126
1127/* Output before writable data. */
1128
1129#define DATA_SECTION_ASM_OP ".data"
1130
1131/* How to refer to registers in assembler output.
1132 This sequence is indexed by compiler's hard-register-number (see above). */
1133
1134#define REGISTER_NAMES \
1135{"gr0", "gr1", "gr2", "gr3", "gr4", "gr5", "gr6", "gr7", "gr8", \
1136 "gr9", "gr10", "gr11", "logpsw", "cfp", "sp", "pc", \
1137 "pr0", "pr1", "pr2", "pr3", "pr4", "pr5", "pr6", "pr7", \
1138 "pr8", "pr9", "pr10", "pr11", "pr12", "pr13", "pr14", "pr15", \
1139 "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", \
1140 "lr8", "lr9", "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", \
1141 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
1142 "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"}
1143
1144/* How to renumber registers for dbx and gdb. */
1145
1146#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1147
1148/* Our preference is for dbx rather than sdb.
1149 Yours may be different. */
1150#define DBX_DEBUGGING_INFO
1151/* #define SDB_DEBUGGING_INFO */
1152
1153/* Don't use the `xsfoo;' construct in DBX output; this system
1154 doesn't support it. */
1155
1156#define DBX_NO_XREFS 1
1157
1158/* Do not break .stabs pseudos into continuations. */
1159
1160#define DBX_CONTIN_LENGTH 0
1161
1162/* This is the char to use for continuation (in case we need to turn
1163 continuation back on). */
1164
1165#define DBX_CONTIN_CHAR '?'
1166
1167/* This is how to output the definition of a user-level label named NAME,
1168 such as the label on a static function or variable NAME. */
1169
1170#define ASM_OUTPUT_LABEL(FILE,NAME) \
1171 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1172
1173/* This is how to output a command to make the user-level label named NAME
1174 defined for reference from other files. */
1175
1176#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1177 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1178
1179/* This is how to output a reference to a user-level label named NAME. */
1180
1181#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1182 fprintf (FILE, "_%s", NAME);
1183
1184/* This is how to output an internal numbered label where
1185 PREFIX is the class of label and NUM is the number within the class. */
1186
1187#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1188 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1189
1190/* This is how to store into the string LABEL
1191 the symbol_ref name of an internal numbered label where
1192 PREFIX is the class of label and NUM is the number within the class.
1193 This is suitable for output with `assemble_name'. */
1194
1195#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1196 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1197
1198/* This is how to output an assembler line defining a `double' constant. */
1199
1200#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1201 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1202
1203/* This is how to output an assembler line defining a `float' constant. */
1204
1205#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1206 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
1207
1208/* This is how to output an assembler line defining an `int' constant. */
1209
1210#define ASM_OUTPUT_INT(FILE,VALUE) \
1211( fprintf (FILE, "\t.word "), \
1212 output_addr_const (FILE, (VALUE)), \
1213 fprintf (FILE, "\n"))
1214
1215/* Likewise for `char' and `short' constants. */
1216
1217#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1218( fprintf (FILE, "\t.half "), \
1219 output_addr_const (FILE, (VALUE)), \
1220 fprintf (FILE, "\n"))
1221
1222#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1223( fprintf (FILE, "\t.byte "), \
1224 output_addr_const (FILE, (VALUE)), \
1225 fprintf (FILE, "\n"))
1226
1227/* This is how to output an assembler line for a numeric constant byte. */
1228
1229#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1230 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1231
1232/* This is how to output an insn to push a register on the stack.
1233 It need not be very fast code. */
1234
1235#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1236 fprintf (FILE, "\tsubw $4,sp\n\tmovw %s,(sp)\n", reg_names[REGNO])
1237
1238/* This is how to output an insn to pop a register from the stack.
1239 It need not be very fast code. */
1240
1241#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1242 fprintf (FILE, "\tmovw (sp),%s\n\taddw $4,sp\n", reg_names[REGNO])
1243
1244/* Store in OUTPUT a string (made with alloca) containing
1245 an assembler-name for a local static variable named NAME.
1246 LABELNO is an integer which is different for each call. */
1247
1248#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1249( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1250 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1251
1252/* This is how to output an element of a case-vector that is absolute. */
1253
1254#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1255 fprintf (FILE, "\t.word L%d\n", VALUE)
1256
1257/* This is how to output an element of a case-vector that is relative. */
1258
1259
1260#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1261 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1262
1263/* This is how to output an assembler line
1264 that says to advance the location counter
1265 to a multiple of 2**LOG bytes.
1266
1267 On Pyramids, the text segment must always be word aligned.
1268 On Pyramids, .align takes only args between 2 and 5.
1269 */
1270
1271#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1272 fprintf (FILE, "\t.align %d\n", (LOG) < 2 ? 2 : (LOG))
1273
1274#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1275 fprintf (FILE, "\t.space %u\n", (SIZE))
1276
1277/* This says how to output an assembler line
1278 to define a global common symbol. */
1279
1280#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1281( fputs (".comm ", (FILE)), \
1282 assemble_name ((FILE), (NAME)), \
1283 fprintf ((FILE), ",%u\n", (ROUNDED)))
1284
1285/* This says how to output an assembler line
1286 to define a local common symbol. */
1287
1288#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1289( fputs (".lcomm ", (FILE)), \
1290 assemble_name ((FILE), (NAME)), \
1291 fprintf ((FILE), ",%u\n", (ROUNDED)))
1292
1293/* Define the parentheses used to group arithmetic operations
1294 in assembler code. */
1295
1296#define ASM_OPEN_PAREN "("
1297#define ASM_CLOSE_PAREN ")"
1298
1299/* Define results of standard character escape sequences. */
1300#define TARGET_BELL 007
1301#define TARGET_BS 010
1302#define TARGET_TAB 011
1303#define TARGET_NEWLINE 012
1304#define TARGET_VT 013
1305#define TARGET_FF 014
1306#define TARGET_CR 015
1307
1308/* Print operand X (an rtx) in assembler syntax to file FILE.
1309 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1310 For `%' followed by punctuation, CODE is the punctuation and X is null.
1311 On the Pyr, we support the conventional CODE characters:
1312
1313 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1314 which are never used. */
1315
1316/* FIXME : should be more robust with CONST_DOUBLE. */
1317
1318#define PRINT_OPERAND(FILE, X, CODE) \
1319{ if (GET_CODE (X) == REG) \
1320 fprintf (FILE, "%s", reg_names [REGNO (X)]); \
1321 \
1322 else if (GET_CODE (X) == MEM) \
1323 output_address (XEXP (X, 0)); \
1324 \
1325 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1326 { union { double d; int i[2]; } u; \
1327 union { float f; int i; } u1; \
1328 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1329 u1.f = u.d; \
1330 if (CODE == 'f') \
1331 fprintf (FILE, "$0f%.0e", u1.f); \
1332 else \
1333 fprintf (FILE, "$0x%x", u1.i); } \
1334 \
b030b8c2 1335 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \
014cfee8
RS
1336 { union { double d; int i[2]; } u; \
1337 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1338 fprintf (FILE, "$0d%.20e", u.d); } \
1339 \
1340 else if (CODE == 'N') \
1341 switch (GET_CODE (X)) \
1342 { \
1343 case EQ: fputs ("eq", FILE); break; \
1344 case NE: fputs ("ne", FILE); break; \
1345 case GT: \
1346 case GTU: fputs ("gt", FILE); break; \
1347 case LT: \
1348 case LTU: fputs ("lt", FILE); break; \
1349 case GE: \
1350 case GEU: fputs ("ge", FILE); break; \
1351 case LE: \
1352 case LEU: fputs ("le", FILE); break; \
1353 } \
1354 \
1355 else if (CODE == 'C') \
1356 switch (GET_CODE (X)) \
1357 { \
1358 case EQ: fputs ("ne", FILE); break; \
1359 case NE: fputs ("eq", FILE); break; \
1360 case GT: \
1361 case GTU: fputs ("le", FILE); break; \
1362 case LT: \
1363 case LTU: fputs ("ge", FILE); break; \
1364 case GE: \
1365 case GEU: fputs ("lt", FILE); break; \
1366 case LE: \
1367 case LEU: fputs ("gt", FILE); break; \
1368 } \
1369 \
1370 else if (CODE == 'R') \
1371 switch (GET_CODE (X)) \
1372 { \
1373 case EQ: fputs ("eq", FILE); break; \
1374 case NE: fputs ("ne", FILE); break; \
1375 case GT: \
1376 case GTU: fputs ("lt", FILE); break; \
1377 case LT: \
1378 case LTU: fputs ("gt", FILE); break; \
1379 case GE: \
1380 case GEU: fputs ("le", FILE); break; \
1381 case LE: \
1382 case LEU: fputs ("ge", FILE); break; \
1383 } \
1384 \
1385 else { putc ('$', FILE); output_addr_const (FILE, X); } \
1386}
1387
1388/* Print a memory operand whose address is ADDR, on file FILE. */
1389/* This is horrendously complicated. */
1390#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1391{ \
1392 register rtx reg1, reg2, breg, ireg; \
1393 register rtx addr = ADDR; \
1394 rtx offset, scale; \
1395 retry: \
1396 switch (GET_CODE (addr)) \
1397 { \
1398 case MEM: \
1399 fprintf (stderr, "bad Mem "); debug_rtx (addr); \
1400 addr = XEXP (addr, 0); \
1401 abort (); \
1402 case REG: \
1403 fprintf (FILE, "(%s)", reg_names [REGNO (addr)]); \
1404 break; \
1405 case PLUS: \
1406 reg1 = 0; reg2 = 0; \
1407 ireg = 0; breg = 0; \
1408 offset = 0; \
1409 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) \
1410 || GET_CODE (XEXP (addr, 0)) == MEM) \
1411 { \
1412 offset = XEXP (addr, 0); \
1413 addr = XEXP (addr, 1); \
1414 } \
1415 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) \
1416 || GET_CODE (XEXP (addr, 1)) == MEM) \
1417 { \
1418 offset = XEXP (addr, 1); \
1419 addr = XEXP (addr, 0); \
1420 } \
1421 if (GET_CODE (addr) != PLUS) ; \
1422 else if (GET_CODE (XEXP (addr, 0)) == MULT) \
1423 { \
1424 reg1 = XEXP (addr, 0); \
1425 addr = XEXP (addr, 1); \
1426 } \
1427 else if (GET_CODE (XEXP (addr, 1)) == MULT) \
1428 { \
1429 reg1 = XEXP (addr, 1); \
1430 addr = XEXP (addr, 0); \
1431 } \
1432 else if (GET_CODE (XEXP (addr, 0)) == REG) \
1433 { \
1434 reg1 = XEXP (addr, 0); \
1435 addr = XEXP (addr, 1); \
1436 } \
1437 else if (GET_CODE (XEXP (addr, 1)) == REG) \
1438 { \
1439 reg1 = XEXP (addr, 1); \
1440 addr = XEXP (addr, 0); \
1441 } \
1442 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT) \
1443 { \
1444 if (reg1 == 0) \
1445 reg1 = addr; \
1446 else \
1447 reg2 = addr; \
1448 addr = 0; \
1449 } \
1450 if (offset != 0) \
1451 { \
1452 if (addr != 0) { \
1453 fprintf (stderr, "\nBad addr "); debug_rtx (addr); \
1454 abort ();} \
1455 addr = offset; \
1456 } \
1457 if (reg1 != 0 && GET_CODE (reg1) == MULT) \
1458 { breg = reg2; ireg = reg1; } \
1459 else if (reg2 != 0 && GET_CODE (reg2) == MULT) \
1460 { breg = reg1; ireg = reg2; } \
1461 else if (reg2 != 0 || GET_CODE (addr) == MEM) \
1462 { breg = reg2; ireg = reg1; } \
1463 else \
1464 { breg = reg1; ireg = reg2; } \
1465 if (addr != 0) \
1466 output_address (offset); \
1467 if (breg != 0) \
1468 { if (GET_CODE (breg) != REG) \
1469 { \
1470 fprintf (stderr, "bad Breg"); debug_rtx (addr); \
1471 abort (); \
1472 } \
1473 fprintf (FILE, "(%s)", reg_names[REGNO (breg)]); } \
1474 if (ireg != 0) \
1475 { \
1476 if (GET_CODE (ireg) == MULT) \
1477 { \
1478 scale = XEXP (ireg, 1); \
1479 ireg = XEXP (ireg, 0); \
1480 if (GET_CODE (ireg) != REG) \
1481 { register rtx tem; \
1482 tem = ireg; ireg = scale; scale = tem; \
1483 } \
1484 if (GET_CODE (ireg) != REG) { \
1485 fprintf (stderr, "bad idx "); debug_rtx (addr); \
1486 abort (); } \
1487 if ((GET_CODE (scale) == CONST_INT) && (INTVAL(scale) >= 1))\
1488 fprintf (FILE, "[%s*0x%x]", reg_names[REGNO (ireg)], \
1489 INTVAL(scale)); \
1490 else \
1491 fprintf (FILE, "[%s*1]", reg_names[REGNO (ireg)]); \
1492 } \
1493 else if (GET_CODE (ireg) == REG) \
1494 fprintf (FILE, "[%s*1]", reg_names[REGNO (ireg)]); \
1495 else \
1496 { \
1497 fprintf (stderr, "Not indexed at all!"); debug_rtx (addr);\
1498 abort (); \
1499 } \
1500 } \
1501 break; \
1502 default: \
1503 output_addr_const (FILE, addr); \
1504 } \
1505}
This page took 0.362934 seconds and 5 git commands to generate.