]> gcc.gnu.org Git - gcc.git/blame - gcc/config/pyr/pyr.h
entered into RCS
[gcc.git] / gcc / config / pyr / pyr.h
CommitLineData
014cfee8
RS
1/* Definitions of target machine parameters for GNU compiler,
2 for Pyramid 90x, 9000, and MIServer Series.
3 Copyright (C) 1989 Free Software Foundation, Inc.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20\f
21/*
22 * If you're going to change this, and you haven't already,
23 * you should get and read
24 * ``OSx Operating System Porting Guide'',
25 * publication number 4100-0066-A
26 * Revision A
27 * Pyramid Technology Corporation.
28 *
29 * or whatever the most recent version is. In any case, page and
30 * section number references given herein refer to this document.
31 *
32 * The instruction table for gdb lists the available insns and
33 * the valid addressing modes.
34 *
35 * Any other information on the Pyramid architecture is proprietary
36 * and hard to get. (Pyramid cc -S and adb are also useful.)
37 *
38 */
39
40/*** Run-time compilation parameters selecting different hardware subsets. ***/
41
42/* Names to predefine in the preprocessor for this target machine. */
43
44#define CPP_PREDEFINES "-Dpyr -Dunix"
45
46/* Print subsidiary information on the compiler version in use. */
47
48#define TARGET_VERSION fprintf (stderr, " (pyr)");
49
50extern int target_flags;
51
52/* Nonzero if compiling code that Unix assembler can assemble. */
53#define TARGET_UNIX_ASM (target_flags & 1)
54
014cfee8 55/* Implement stdarg in the same fashion used on all other machines. */
13a07c71 56#define TARGET_GNU_STDARG (target_flags & 2)
014cfee8
RS
57
58/* Compile using RETD to pop off the args.
59 This will not work unless you use prototypes at least
60 for all functions that can take varying numbers of args.
61 This contravenes the Pyramid calling convention, so we don't
62 do it yet. */
63
13a07c71 64#define TARGET_RETD (target_flags & 4)
014cfee8
RS
65
66/* Macros used in the machine description to test the flags. */
67
68/* Macro to define tables used to set the flags.
69 This is a list in braces of pairs in braces,
70 each pair being { "NAME", VALUE }
71 where VALUE is the bits to set or minus the bits to clear.
72 An empty string NAME is used to identify the default VALUE.
73
13a07c71 74 -mgnu will be useful if we ever have GAS on a pyramid. */
014cfee8
RS
75
76#define TARGET_SWITCHES \
77 { {"unix", 1}, \
78 {"gnu", -1}, \
13a07c71
TG
79 {"gnu-stdarg", 2}, \
80 {"nognu-stdarg", -2}, \
81 {"retd", 4}, \
82 {"no-retd", -4}, \
014cfee8
RS
83 { "", TARGET_DEFAULT}}
84
85/* Default target_flags if no switches specified.
86
87 (equivalent to "-munix -mindex -mgnu-stdarg") */
88
89#ifndef TARGET_DEFAULT
13a07c71 90#define TARGET_DEFAULT (1 + 2)
014cfee8
RS
91#endif
92
93/* Never allow $ in identifiers */
94
95#define DOLLARS_IN_IDENTIFIERS 0
96\f
97/*** Target machine storage layout ***/
98
13a07c71
TG
99/* Define this to non-zero if most significant bit is lowest
100 numbered in instructions that operate on numbered bit-fields.
014cfee8
RS
101 This is not true on the pyramid. */
102#define BITS_BIG_ENDIAN 0
103
13a07c71
TG
104/* Define this to non-zero if most significant byte of a word is
105 the lowest numbered. */
014cfee8
RS
106#define BYTES_BIG_ENDIAN 1
107
13a07c71
TG
108/* Define this to non-zero if most significant word of a multiword
109 number is the lowest numbered. */
014cfee8
RS
110#define WORDS_BIG_ENDIAN 1
111
112/* Number of bits in an addressable storage unit */
113#define BITS_PER_UNIT 8
114
115/* Width in bits of a "word", which is the contents of a machine register.
116 Note that this is not necessarily the width of data type `int';
117 if using 16-bit ints on a 68000, this would still be 32.
118 But on a machine with 16-bit registers, this would be 16. */
119#define BITS_PER_WORD 32
120
121/* Width of a word, in units (bytes). */
122#define UNITS_PER_WORD 4
123
124/* Width in bits of a pointer.
125 See also the macro `Pmode' defined below. */
126#define POINTER_SIZE 32
127
128/* Allocation boundary (in *bits*) for storing arguments in argument list. */
129#define PARM_BOUNDARY 32
130
131/* Boundary (in *bits*) on which stack pointer should be aligned. */
132#define STACK_BOUNDARY 32
133
134/* Allocation boundary (in *bits*) for the code of a function. */
135#define FUNCTION_BOUNDARY 32
136
137/* Alignment of field after `int : 0' in a structure. */
138#define EMPTY_FIELD_BOUNDARY 32
139
e97f2dc6 140/* Every structure's size must be a multiple of this. */
e97f2dc6
RS
141#define STRUCTURE_SIZE_BOUNDARY 32
142
014cfee8
RS
143/* No data type wants to be aligned rounder than this. */
144#define BIGGEST_ALIGNMENT 32
145
146/* Specified types of bitfields affect alignment of those fields
147 and of the structure as a whole. */
e97f2dc6 148#define PCC_BITFIELD_TYPE_MATTERS 1
014cfee8
RS
149
150/* Make strings word-aligned so strcpy from constants will be faster.
151 Pyramid documentation says the best alignment is to align
152 on the size of a cache line, which is 32 bytes.
153 Newer pyrs have single insns that do strcmp() and strcpy(), so this
154 may not actually win anything. */
014cfee8
RS
155#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
156 (TREE_CODE (EXP) == STRING_CST \
157 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
158
159/* Make arrays of chars word-aligned for the same reasons. */
160#define DATA_ALIGNMENT(TYPE, ALIGN) \
161 (TREE_CODE (TYPE) == ARRAY_TYPE \
162 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
163 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
164
e97f2dc6 165/* Set this nonzero if move instructions will actually fail to work
014cfee8 166 when given unaligned data. */
e97f2dc6 167#define STRICT_ALIGNMENT 1
014cfee8
RS
168\f
169/*** Standard register usage. ***/
170
171/* Number of actual hardware registers.
172 The hardware registers are assigned numbers for the compiler
173 from 0 to just below FIRST_PSEUDO_REGISTER.
174 All registers that the compiler knows about must be given numbers,
175 even those that are not normally considered general registers. */
176
177/* Nota Bene:
178 Pyramids have 64 addressable 32-bit registers, arranged as four
179 groups of sixteen registers each. Pyramid names the groups
180 global, parameter, local, and temporary.
181
182 The sixteen global registers are fairly conventional; the last
183 four are overloaded with a PSW, frame pointer, stack pointer, and pc.
184 The non-dedicated global registers used to be reserved for Pyramid
185 operating systems, and still have cryptic and undocumented uses for
186 certain library calls. We do not use global registers gr0 through
187 gr11.
188
189 The parameter, local, and temporary registers provide register
190 windowing. Each procedure call has its own set of these 48
191 registers, which constitute its call frame. (These frames are
192 not allocated on the conventional stack, but contiguously
193 on a separate stack called the control stack.)
194 Register windowing is a facility whereby the temporary registers
195 of frame n become the parameter registers of frame n+1, viz.:
196
197 0 15 0 15 0 15
198 +------------+------------+------------+
199frame n+1 | | | |
200 +------------+------------+------------+
201 Parameter Local Temporary
202
203 ^
204 | These 16 regs are the same.
205 v
206
207 0 15 0 15 0 15
208 +------------+------------+------------+
209frame n | | | |
210 +------------+------------+------------+
211 Parameter Local Temporary
212
213 New frames are automatically allocated on the control stack by the
214 call instruction and de-allocated by the return insns "ret" and
215 "retd". The control-stack grows contiguously upward from a
216 well-known address in memory; programs are free to allocate
217 a variable sized, conventional frame on the data stack, which
218 grows downwards in memory from just below the control stack.
219
220 Temporary registers are used for parameter passing, and are not
221 preserved across calls. TR0 through TR11 correspond to
222 gcc's ``input'' registers; PR0 through TR11 the ``output''
223 registers. The call insn stores the PC and PSW in PR14 and PR15 of
224 the frame it creates; the return insns restore these into the PC
225 and PSW. The same is true for interrupts; TR14 and TR15 of the
226 current frame are reserved and should never be used, since an
227 interrupt may occur at any time and clobber them.
228
229 An interesting quirk is the ability to take the address of a
230 variable in a windowed register. This done by adding the memory
231 address of the base of the current window frame, to the offset
232 within the frame of the desired register. The resulting address
233 can be treated just like any other pointer; if a quantity is stored
234 into that address, the appropriate register also changes.
235 GCC does not, and according to RMS will not, support this feature,
236 even though some programs rely on this (mis)feature.
237 */
238
239#define PYR_GREG(n) (n)
240#define PYR_PREG(n) (16+(n))
241#define PYR_LREG(n) (32+(n))
242#define PYR_TREG(n) (48+(n))
243
244#define FIRST_PSEUDO_REGISTER 64
245
246/* 1 for registers that have pervasive standard uses
247 and are not available for the register allocator.
248
13a07c71 249 On the pyramid, these are LOGPSW, SP, and PC. */
014cfee8
RS
250
251#define FIXED_REGISTERS \
252 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
253 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
254 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
255 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
256
257/* 1 for registers not available across function calls.
258 These must include the FIXED_REGISTERS and also any
259 registers that can be used without being saved.
260 The latter must include the registers where values are returned
261 and the register where structure-value addresses are passed.
262 Aside from that, you can include as many other registers as you like. */
263#define CALL_USED_REGISTERS \
264 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
265 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
267 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
268
269/* #define DEFAULT_CALLER_SAVES */
270
271/* Return number of consecutive hard regs needed starting at reg REGNO
272 to hold something of mode MODE.
273 This is ordinarily the length in words of a value of mode MODE
274 but can be less for certain modes in special long registers.
275 On the pyramid, all registers are one word long. */
276#define HARD_REGNO_NREGS(REGNO, MODE) \
277 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
278
279/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
280 On the pyramid, all registers can hold all modes. */
281
282/* -->FIXME: this is not the case for 64-bit quantities in tr11/12 through
283 --> TR14/15. This should be fixed, but to do it correctly, we also
284 --> need to fix MODES_TIEABLE_P. Yuk. We ignore this, since GCC should
285 --> do the "right" thing due to FIXED_REGISTERS. */
286#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
287
288/* Value is 1 if it is a good idea to tie two pseudo registers
289 when one has mode MODE1 and one has mode MODE2.
290 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
291 for any hard reg, then this must be 0 for correct output. */
292#define MODES_TIEABLE_P(MODE1, MODE2) 1
293
294/* Specify the registers used for certain standard purposes.
295 The values of these macros are register numbers. */
296
297/* Pyramid pc is overloaded on global register 15. */
298#define PC_REGNUM PYR_GREG(15)
299
300/* Register to use for pushing function arguments.
301 --> on Pyramids, the data stack pointer. */
302#define STACK_POINTER_REGNUM PYR_GREG(14)
303
304/* Base register for access to local variables of the function.
305 Pyramid uses CFP (GR13) as both frame pointer and argument pointer. */
d218c758 306#define FRAME_POINTER_REGNUM 13 /* pyr cpp fails on PYR_GREG(13) */
014cfee8
RS
307
308/* Value should be nonzero if functions must have frame pointers.
309 Zero means the frame pointer need not be set up (and parms
310 may be accessed via the stack pointer) in functions that seem suitable.
311 This is computed in `reload', in reload1.c.
312
313 Setting this to 1 can't break anything. Since the Pyramid has
314 register windows, I don't know if defining this to be zero can
315 win anything. It could changed later, if it wins. */
316#define FRAME_POINTER_REQUIRED 1
317
318/* Base register for access to arguments of the function. */
319#define ARG_POINTER_REGNUM 13 /* PYR_GREG(13) */
320
321/* Register in which static-chain is passed to a function. */
322/* If needed, Pyramid says to use temporary register 12. */
323#define STATIC_CHAIN_REGNUM PYR_TREG(12)
324
e97f2dc6
RS
325/* If register windows are used, STATIC_CHAIN_INCOMING_REGNUM
326 is the register number as seen by the called function, while
327 STATIC_CHAIN_REGNUM is the register number as seen by the calling
328 function. */
329#define STATIC_CHAIN_INCOMING_REGNUM PYR_PREG(12)
330
014cfee8
RS
331/* Register in which address to store a structure value
332 is passed to a function.
333 On a Pyramid, this is temporary register 0 (TR0). */
334
335#define STRUCT_VALUE_REGNUM PYR_TREG(0)
336#define STRUCT_VALUE_INCOMING_REGNUM PYR_PREG(0)
337\f
338/* Define the classes of registers for register constraints in the
339 machine description. Also define ranges of constants.
340
341 One of the classes must always be named ALL_REGS and include all hard regs.
342 If there is more than one class, another class must be named NO_REGS
343 and contain no registers.
344
345 The name GENERAL_REGS must be the name of a class (or an alias for
346 another name such as ALL_REGS). This is the class of registers
347 that is allowed by "g" or "r" in a register constraint.
348 Also, registers outside this class are allocated only when
349 instructions express preferences for them.
350
351 The classes must be numbered in nondecreasing order; that is,
352 a larger-numbered class must never be contained completely
353 in a smaller-numbered class.
354
355 For any two classes, it is very desirable that there be another
356 class that represents their union. */
357
358/* The pyramid has only one kind of registers, so NO_REGS and ALL_REGS
359 are the only classes. */
360
361enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
362
363#define N_REG_CLASSES (int) LIM_REG_CLASSES
364
365/* Since GENERAL_REGS is the same class as ALL_REGS,
366 don't give it a different class number; just make it an alias. */
367
368#define GENERAL_REGS ALL_REGS
369
370/* Give names of register classes as strings for dump file. */
371
372#define REG_CLASS_NAMES \
373 {"NO_REGS", "ALL_REGS" }
374
375/* Define which registers fit in which classes.
376 This is an initializer for a vector of HARD_REG_SET
377 of length N_REG_CLASSES. */
378
379#define REG_CLASS_CONTENTS {{0,0}, {0xffffffff,0xffffffff}}
380
381/* The same information, inverted:
382 Return the class number of the smallest class containing
383 reg number REGNO. This could be a conditional expression
384 or could index an array. */
385
386#define REGNO_REG_CLASS(REGNO) ALL_REGS
387
388/* The class value for index registers, and the one for base regs. */
389
390#define BASE_REG_CLASS ALL_REGS
391#define INDEX_REG_CLASS ALL_REGS
392
393/* Get reg_class from a letter such as appears in the machine description. */
394
395#define REG_CLASS_FROM_LETTER(C) NO_REGS
396
397/* Given an rtx X being reloaded into a reg required to be
398 in class CLASS, return the class of reg to actually use.
399 In general this is just CLASS; but on some machines
400 in some cases it is preferable to use a more restrictive class. */
401
402#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
403
404/* Return the maximum number of consecutive registers
405 needed to represent mode MODE in a register of class CLASS. */
406/* On the pyramid, this is always the size of MODE in words,
407 since all registers are the same size. */
408#define CLASS_MAX_NREGS(CLASS, MODE) \
409 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
410
411/* The letters I, J, K, L and M in a register constraint string
412 can be used to stand for particular ranges of immediate operands.
413 This macro defines what the ranges are.
414 C is the letter, and VALUE is a constant value.
415 Return 1 if VALUE is in the range specified by C.
416
417 --> For the Pyramid, 'I' can be used for the 6-bit signed integers
418 --> (-32 to 31) allowed as immediate short operands in many
419 --> instructions. 'J' cane be used for any value that doesn't fit
420 --> in 6 bits. */
421
422#define CONST_OK_FOR_LETTER_P(VALUE, C) \
423 ((C) == 'I' ? (VALUE) >= -32 && (VALUE) < 32 : \
424 (C) == 'J' ? (VALUE) < -32 || (VALUE) >= 32 : \
425 (C) == 'K' ? (VALUE) == 0xff || (VALUE) == 0xffff : 0)
426
427/* Similar, but for floating constants, and defining letters G and H.
428 Here VALUE is the CONST_DOUBLE rtx itself. */
429
430#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
431
432\f
433/*** Stack layout; function entry, exit and calling. ***/
434
435/* Define this if pushing a word on the stack
436 makes the stack pointer a smaller address. */
437#define STACK_GROWS_DOWNWARD
438
439/* Define this if the nominal address of the stack frame
440 is at the high-address end of the local variables;
441 that is, each additional local variable allocated
442 goes at a more negative offset in the frame. */
443#define FRAME_GROWS_DOWNWARD
444
445/* Offset within stack frame to start allocating local variables at.
446 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
447 first local allocated. Otherwise, it is the offset to the BEGINNING
448 of the first local allocated. */
449/* FIXME: this used to work when defined as 0. But that makes gnu
450 stdargs clobber the first arg. What gives?? */
451#define STARTING_FRAME_OFFSET 0
452
453/* Offset of first parameter from the argument pointer register value. */
454#define FIRST_PARM_OFFSET(FNDECL) 0
455
456/* Value is the number of bytes of arguments automatically
457 popped when returning from a subroutine call.
458 FUNTYPE is the data type of the function (as a tree),
459 or for a library call it is an identifier node for the subroutine name.
460 SIZE is the number of bytes of arguments passed on the stack.
461
462 The Pyramid OSx Porting Guide says we are never to do this;
463 using RETD in this way violates the Pyramid calling convention.
464 We may nevertheless provide this as an option. */
465
466#define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
467 ((TARGET_RETD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
468 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
469 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
470 == void_type_node))) \
471 ? (SIZE) : 0)
472
473/* Define how to find the value returned by a function.
474 VALTYPE is the data type of the value (as a tree).
475 If the precise function being called is known, FUNC is its FUNCTION_DECL;
476 otherwise, FUNC is 0. */
477
478/* --> Pyramid has register windows.
479 --> The caller sees the return value is in TR0(/TR1) regardless of
480 --> its type. */
481
482#define FUNCTION_VALUE(VALTYPE, FUNC) \
483 gen_rtx (REG, TYPE_MODE (VALTYPE), PYR_TREG(0))
484
485/* --> but the callee has to leave it in PR0(/PR1) */
486
487#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
488 gen_rtx (REG, TYPE_MODE (VALTYPE), PYR_PREG(0))
489
490/* Define how to find the value returned by a library function
491 assuming the value has mode MODE. */
492
493/* --> On Pyramid the return value is in TR0/TR1 regardless. */
494
495#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, PYR_TREG(0))
496
497/* Define this if PCC uses the nonreentrant convention for returning
498 structure and union values. */
499
500#define PCC_STATIC_STRUCT_RETURN
501
502/* 1 if N is a possible register number for a function value
503 as seen by the caller.
504
505 On the Pyramid, TR0 is the only register thus used. */
506
507#define FUNCTION_VALUE_REGNO_P(N) ((N) == PYR_TREG(0))
508
509/* 1 if N is a possible register number for function argument passing.
510 On the Pyramid, the first twelve temporary registers are available. */
511
512/* FIXME FIXME FIXME
513 it's not clear whether this macro should be defined from the point
514 of view of the caller or the callee. Since it's never actually used
515 in GNU CC, the point is somewhat moot :-).
516
517 This definition is consistent with register usage in the md's for
518 other register-window architectures (sparc and spur).
519 */
520#define FUNCTION_ARG_REGNO_P(N) ((PYR_TREG(0) <= (N)) && ((N) <= PYR_TREG(11)))
521\f
522/*** Parameter passing: FUNCTION_ARG and FUNCTION_INCOMING_ARG ***/
523
524/* Define a data type for recording info about an argument list
525 during the scan of that argument list. This data type should
526 hold all necessary information about the function itself
527 and about the args processed so far, enough to enable macros
528 such as FUNCTION_ARG to determine where the next arg should go.
529
530 On Pyramids, each parameter is passed either completely on the stack
531 or completely in registers. No parameter larger than a double may
532 be passed in a register. Also, no struct or union may be passed in
533 a register, even if it would fit.
534
535 So parameters are not necessarily passed "consecutively".
536 Thus we need a vector data type: one element to record how many
537 parameters have been passed in registers and on the stack,
538 respectively.
539
540 ((These constraints seem like a gross waste of registers. But if we
541 ignore the constraint about structs & unions, we won`t be able to
542 freely mix gcc-compiled code and pyr cc-compiled code. It looks
543 like better argument passing conventions, and a machine-dependent
544 flag to enable them, might be a win.)) */
545
546
547#define CUMULATIVE_ARGS int
548
e97f2dc6 549/* Define the number of registers that can hold parameters.
014cfee8
RS
550 This macro is used only in other macro definitions below. */
551#define NPARM_REGS 12
552
553/* Decide whether or not a parameter can be put in a register.
554 (We may still have problems with libcalls. GCC doesn't seem
555 to know about anything more than the machine mode. I trust
556 structures are never passed to a libcall...
557
558 If compiling with -mgnu-stdarg, this definition should make
559 functions using the gcc-supplied stdarg, and calls to such
560 functions (declared with an arglist ending in"..."), work.
561 But such fns won't be able to call pyr cc-compiled
562 varargs fns (eg, printf(), _doprnt.)
563
564 If compiling with -mnognu-stdarg, this definition should make
565 calls to pyr cc-compiled functions work. Functions using
566 the gcc-supplied stdarg will be utterly broken.
567 There will be no better solution until RMS can be persuaded that
568 one is needed.
569
570 This macro is used only in other macro definitions below.
571 (well, it may be used in pyr.c, because the damn pyramid cc
572 can't handle the macro definition of PARAM_SAFE_FOR_REG_P ! */
573
574
575#define INNER_PARAM_SAFE_HELPER(TYPE) \
576 ((TARGET_GNU_STDARG ? (! TREE_ADDRESSABLE ((tree)TYPE)): 1) \
577 && (TREE_CODE ((tree)TYPE) != RECORD_TYPE) \
578 && (TREE_CODE ((tree)TYPE) != UNION_TYPE))
579
580#ifdef __GNUC__
581#define PARAM_SAFE_HELPER(TYPE) \
582 INNER_PARAM_SAFE_HELPER((TYPE))
583#else
584extern int inner_param_safe_helper();
585#define PARAM_SAFE_HELPER(TYPE) \
586 inner_param_safe_helper((tree)(TYPE))
587#endif
588
589/* Be careful with the expression (long) (TYPE) == 0.
590 Writing it in more obvious/correct forms makes the Pyr cc
591 dump core! */
592#define PARAM_SAFE_FOR_REG_P(MODE, TYPE, NAMED) \
593 (((MODE) != BLKmode) \
594 && ((TARGET_GNU_STDARG) ? (NAMED) : 1) \
595 && ((((long)(TYPE))==0) || PARAM_SAFE_HELPER((TYPE))))
596
597/* Initialize a variable CUM of type CUMULATIVE_ARGS
598 for a call to a function whose data type is FNTYPE.
599 For a library call, FNTYPE is 0. */
600
601#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
602 ((CUM) = (FNTYPE && !flag_pcc_struct_return && aggregate_value_p (FNTYPE)))
603
604/* Determine where to put an argument to a function.
605 Value is zero to push the argument on the stack,
606 or a hard register in which to store the argument.
607
608 MODE is the argument's machine mode.
609 TYPE is the data type of the argument (as a tree).
610 This is null for libcalls where that information may
611 not be available.
612 CUM is a variable of type CUMULATIVE_ARGS which gives info about
613 the preceding args and about the function being called.
614 NAMED is nonzero if this argument is a named parameter
615 (otherwise it is an extra parameter matching an ellipsis). */
616
617#define FUNCTION_ARG_HELPER(CUM, MODE, TYPE, NAMED) \
618(PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
619 ? (NPARM_REGS >= ((CUM) \
620 + ((MODE) == BLKmode \
621 ? (int_size_in_bytes (TYPE) + 3) / 4 \
622 : (GET_MODE_SIZE (MODE) + 3) / 4)) \
623 ? gen_rtx (REG, (MODE), PYR_TREG(CUM)) \
624 : 0) \
625 : 0)
626#ifdef __GNUC__
627#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
628 FUNCTION_ARG_HELPER(CUM, MODE, TYPE, NAMED)
629#else
630/***************** Avoid bug in Pyramid OSx compiler... ******************/
631#define FUNCTION_ARG (rtx) pyr_function_arg
632extern void* pyr_function_arg ();
633#endif
634
635/* Define where a function finds its arguments.
636 This is different from FUNCTION_ARG because of register windows. */
637
638#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
639(PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
640 ? (NPARM_REGS >= ((CUM) \
641 + ((MODE) == BLKmode \
642 ? (int_size_in_bytes (TYPE) + 3) / 4 \
643 : (GET_MODE_SIZE (MODE) + 3) / 4)) \
644 ? gen_rtx (REG, (MODE), PYR_PREG(CUM)) \
645 : 0) \
646 : 0)
647
648/* Update the data in CUM to advance over an argument
649 of mode MODE and data type TYPE.
650 (TYPE is null for libcalls where that information may not be available.) */
651
652#define FUNCTION_ARG_ADVANCE(CUM,MODE,TYPE,NAMED) \
653((CUM) += (PARAM_SAFE_FOR_REG_P(MODE,TYPE,NAMED) \
654 ? ((MODE) != BLKmode \
655 ? (GET_MODE_SIZE (MODE) + 3) / 4 \
656 : (int_size_in_bytes (TYPE) + 3) / 4) \
657 : 0))
658
659/* This macro generates the assembly code for function entry.
660 FILE is a stdio stream to output the code to.
661 SIZE is an int: how many units of temporary storage to allocate.
662 Refer to the array `regs_ever_live' to determine which registers
663 to save; `regs_ever_live[I]' is nonzero if register number I
664 is ever used in the function. This macro is responsible for
665 knowing which registers should not be saved even if used. */
666
667#if FRAME_POINTER_REQUIRED
668
669/* We always have frame pointers */
670
671/* Don't set up a frame pointer if it's not referenced. */
672
673#define FUNCTION_PROLOGUE(FILE, SIZE) \
674{ \
675 int _size = (SIZE) + current_function_pretend_args_size; \
676 if (_size + current_function_args_size != 0 \
677 || current_function_calls_alloca) \
678 { \
679 fprintf (FILE, "\tadsf $%d\n", _size); \
680 if (current_function_pretend_args_size > 0) \
681 fprintf (FILE, "\tsubw $%d,cfp\n", \
682 current_function_pretend_args_size); \
683 } \
684}
685
686#else /* !FRAME_POINTER_REQUIRED */
687
688/* Don't set up a frame pointer if `frame_pointer_needed' tells us
689 there is no need. Also, don't set up a frame pointer if it's not
690 referenced. */
691
692/* The definition used to be broken. Write a new one. */
693
694#endif /* !FRAME_POINTER_REQUIRED */
695
e97f2dc6
RS
696/* the trampoline stuff was taken from convex.h - S.P. */
697
698/* A C statement to output, on the stream FILE, assembler code for a
699 block of data that contains the constant parts of a trampoline. This
700 code should not include a label - the label is taken care of
701 automatically.
702 We use TR12/PR12 for the static chain.
703 movew $<STATIC>,pr12 # I2R
704 jump $<func> # S2R
705 */
706#define TRAMPOLINE_TEMPLATE(FILE) \
707{ ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x2100001C)); \
708 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
709 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x40000000)); \
710 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); }
711
712#define TRAMPOLINE_SIZE 16
713#define TRAMPOLINE_ALIGNMENT 32
714
715/* Emit RTL insns to initialize the variable parts of a trampoline.
716 FNADDR is an RTX for the address of the function's pure code.
717 CXT is an RTX for the static chain value for the function. */
718
719#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
720{ emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 4)), CXT); \
721 emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 12)), FNADDR); \
722 emit_call_insn (gen_call (gen_rtx (MEM, QImode, \
723 gen_rtx (SYMBOL_REF, Pmode, \
724 "__enable_execute_stack")), \
725 const0_rtx)); \
726}
727
014cfee8
RS
728/* Output assembler code to FILE to increment profiler label # LABELNO
729 for profiling a function entry. */
730#define FUNCTION_PROFILER(FILE, LABELNO) \
731 fprintf (FILE, "\tmova LP%d,tr0\n\tcall mcount\n", (LABELNO));
732
733/* Output assembler code to FILE to initialize this source file's
734 basic block profiling info, if that has not already been done.
735 Don't know if this works on Pyrs. */
736
737#if 0 /* don't do basic_block profiling yet */
738#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
739 fprintf (FILE, \
740 "\tmtstw LPBX0,tr0\n\tbne LPI%d\n\tmova LP%d,TR0\n\tcall __bb_init_func\nLPI%d:\n", \
741 LABELNO, LABELNO);
742
743/* Output assembler code to increment the count associated with
744 the basic block number BLOCKNO. Not sure how to do this on pyrs. */
745#define BLOCK_PROFILER(FILE, BLOCKNO) \
746 fprintf (FILE, "\taddw", 4 * BLOCKNO)
747#endif /* don't do basic_block profiling yet */
748
749/* When returning from a function, the stack pointer does not matter
750 (as long as there is a frame pointer). */
751
752/* This should return non-zero when we really set up a frame pointer.
753 Otherwise, GCC is directed to preserve sp by returning zero. */
754extern int current_function_pretend_args_size;
755extern int current_function_args_size;
756extern int current_function_calls_alloca;
757#define EXIT_IGNORE_STACK \
758 (get_frame_size () + current_function_pretend_args_size \
759 + current_function_args_size != 0 \
760 || current_function_calls_alloca) \
761
e97f2dc6
RS
762/* Store in the variable DEPTH the initial difference between the
763 frame pointer reg contents and the stack pointer reg contents,
764 as of the start of the function body. This depends on the layout
765 of the fixed parts of the stack frame and on how registers are saved.
766
767 On the Pyramid, FRAME_POINTER_REQUIRED is always 1, so the definition
768 of this macro doesn't matter. But it must be defined. */
769
770#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
014cfee8
RS
771\f
772/*** Addressing modes, and classification of registers for them. ***/
773
774/* #define HAVE_POST_INCREMENT */ /* pyramid has none of these */
775/* #define HAVE_POST_DECREMENT */
776
777/* #define HAVE_PRE_DECREMENT */
778/* #define HAVE_PRE_INCREMENT */
779
780/* Macros to check register numbers against specific register classes. */
781
782/* These assume that REGNO is a hard or pseudo reg number.
783 They give nonzero only if REGNO is a hard reg of the suitable class
784 or a pseudo reg currently allocated to a suitable hard reg.
785 Since they use reg_renumber, they are safe only once reg_renumber
786 has been allocated, which happens in local-alloc.c. */
787
788/* All registers except gr0 OK as index or base registers. */
789
790#define REGNO_OK_FOR_BASE_P(regno) \
8129e7a4 791((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
014cfee8
RS
792
793#define REGNO_OK_FOR_INDEX_P(regno) \
13a07c71 794((unsigned) (regno) - 1 < FIRST_PSEUDO_REGISTER - 1 \
8129e7a4 795 || reg_renumber[regno] > 0)
014cfee8
RS
796
797/* Maximum number of registers that can appear in a valid memory address. */
798
799#define MAX_REGS_PER_ADDRESS 2 /* check MAX_REGS_PER_ADDRESS */
800
801/* 1 if X is an rtx for a constant that is a valid address. */
802
803#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
804
805/* Nonzero if the constant value X is a legitimate general operand.
806 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
807
808#define LEGITIMATE_CONSTANT_P(X) 1
809
810/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
811 and check its validity for a certain class.
812 We have two alternate definitions for each of them.
813 The usual definition accepts all pseudo regs; the other rejects
814 them unless they have been allocated suitable hard regs.
815 The symbol REG_OK_STRICT causes the latter definition to be used.
816
817 Most source files want to accept pseudo regs in the hope that
818 they will get allocated to the class that the insn wants them to be in.
819 Source files for reload pass need to be strict.
820 After reload, it makes no difference, since pseudo regs have
821 been eliminated by then. */
822
823#ifndef REG_OK_STRICT
824
825/* Nonzero if X is a hard reg that can be used as an index
826 or if it is a pseudo reg. */
13a07c71 827#define REG_OK_FOR_INDEX_P(X) (REGNO (X) > 0)
014cfee8
RS
828/* Nonzero if X is a hard reg that can be used as a base reg
829 or if it is a pseudo reg. */
830#define REG_OK_FOR_BASE_P(X) 1
831
832#else
833
834/* Nonzero if X is a hard reg that can be used as an index. */
835#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
836/* Nonzero if X is a hard reg that can be used as a base reg. */
837#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
838
839#endif
840\f
841/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
842 that is a valid memory address for an instruction.
843 The MODE argument is the machine mode for the MEM expression
844 that wants to use this address.
845
846 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
847 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
848
849
13a07c71 850/* Go to ADDR if X is indexable -- i.e., neither indexed nor offset. */
014cfee8
RS
851#define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
852{ register rtx xfoob = (X); \
853 if ((CONSTANT_ADDRESS_P (xfoob)) \
854 || (GET_CODE (xfoob) == REG && (REG_OK_FOR_BASE_P (xfoob)))) \
855 goto ADDR; \
856 }
857
858
859/* Go to label ADDR if X is a valid address that doesn't use indexing.
860 This is so if X is either a simple address, or the contents of a register
861 plus an offset.
862 This macro also gets used in output-pyramid.h in the function that
863 recognizes non-indexed operands. */
864
865#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
866{ \
867 if (GET_CODE (X) == REG) \
868 goto ADDR; \
869 GO_IF_INDEXABLE_ADDRESS (X, ADDR); \
870 if (GET_CODE (X) == PLUS) \
871 { /* Handle offset(reg) represented with offset on left */ \
872 if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
873 { if (GET_CODE (XEXP (X, 1)) == REG \
874 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
875 goto ADDR; \
876 } \
877 /* Handle offset(reg) represented with offset on right */ \
878 if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
879 { if (GET_CODE (XEXP (X, 0)) == REG \
880 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
881 goto ADDR; \
882 } \
883 } \
884}
885
886/* 1 if PROD is either a reg or a reg times a valid offset multiplier
887 (ie, 2, 4, or 8).
888 This macro's expansion uses the temporary variables xfoo0 and xfoo1
889 that must be declared in the surrounding context. */
890#define INDEX_TERM_P(PROD, MODE) \
891((GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
892 || (GET_CODE (PROD) == MULT \
893 && \
894 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
895 ((GET_CODE (xfoo0) == CONST_INT \
896 && (INTVAL (xfoo0) == 1 \
897 || INTVAL (xfoo0) == 2 \
898 || INTVAL (xfoo0) == 4 \
899 || INTVAL (xfoo0) == 8) \
900 && GET_CODE (xfoo1) == REG \
901 && REG_OK_FOR_INDEX_P (xfoo1)) \
902 || \
903 (GET_CODE (xfoo1) == CONST_INT \
904 && (INTVAL (xfoo1) == 1 \
905 || INTVAL (xfoo1) == 2 \
906 || INTVAL (xfoo1) == 4 \
907 || INTVAL (xfoo1) == 8) \
908 && GET_CODE (xfoo0) == REG \
909 && REG_OK_FOR_INDEX_P (xfoo0))))))
910
911
912#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
913{ register rtx xone, xtwo, xfoo0, xfoo1; \
914 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
13a07c71 915 if (GET_CODE (X) == PLUS) \
014cfee8
RS
916 { \
917 /* Handle <address>[index] represented with index-sum outermost */\
918 xone = XEXP (X, 0); \
919 xtwo = XEXP (X, 1); \
920 if (INDEX_TERM_P (xone, MODE)) \
921 { GO_IF_INDEXABLE_ADDRESS (xtwo, ADDR); } \
922 /* Handle <address>[index] represented with index-sum innermost */\
923 if (INDEX_TERM_P (xtwo, MODE)) \
924 { GO_IF_INDEXABLE_ADDRESS (xone, ADDR); } \
925 } \
926}
927
928/* Try machine-dependent ways of modifying an illegitimate address
929 to be legitimate. If we find one, return the new, valid address.
930 This macro is used in only one place: `memory_address' in explow.c.
931
932 OLDX is the address as it was before break_out_memory_refs was called.
933 In some cases it is useful to look at this to decide what needs to be done.
934
935 MODE and WIN are passed so that this macro can use
936 GO_IF_LEGITIMATE_ADDRESS.
937
938 It is always safe for this macro to do nothing. It exists to recognize
939 opportunities to optimize the output.
940
941 --> FIXME: We haven't yet figured out what optimizations are useful
942 --> on Pyramids. */
943
944#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
945
946/* Go to LABEL if ADDR (a legitimate address expression)
947 has an effect that depends on the machine mode it is used for.
948 There don't seem to be any such modes on pyramids. */
949#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
950\f
951/*** Miscellaneous Parameters ***/
952
953/* Specify the machine mode that this machine uses
954 for the index in the tablejump instruction. */
955#define CASE_VECTOR_MODE SImode
956
957/* Define this if the tablejump instruction expects the table
958 to contain offsets from the address of the table.
959 Do not define this if the table should contain absolute addresses. */
960/*#define CASE_VECTOR_PC_RELATIVE*/
961
962/* Specify the tree operation to be used to convert reals to integers. */
963#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
964
965/* This is the kind of divide that is easiest to do in the general case.
966 It's just a guess. I have no idea of insn cost on pyrs. */
967#define EASY_DIV_EXPR TRUNC_DIV_EXPR
968
969/* Define this as 1 if `char' should by default be signed; else as 0. */
970#define DEFAULT_SIGNED_CHAR 1
971
972/* This flag, if defined, says the same insns that convert to a signed fixnum
973 also convert validly to an unsigned one. */
974/* This is untrue for pyramid. The cvtdw instruction generates a trap
975 for input operands that are out-of-range for a signed int. */
976/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
977
978/* Define this macro if the preprocessor should silently ignore
979 '#sccs' directives. */
980/* #define SCCS_DIRECTIVE */
981
982/* Define this macro if the preprocessor should silently ignore
983 '#ident' directives. */
984/* #define IDENT_DIRECTIVE */
985
986/* Max number of bytes we can move from memory to memory
987 in one reasonably fast instruction. */
988#define MOVE_MAX 8
989
990/* Define this if zero-extension is slow (more than one real instruction). */
991/* #define SLOW_ZERO_EXTEND */
992
993/* number of bits in an 'int' on target machine */
994#define INT_TYPE_SIZE 32
995
996/* 1 if byte access requires more than one instruction */
997#define SLOW_BYTE_ACCESS 0
998
999/* Define if shifts truncate the shift count
1000 which implies one can omit a sign-extension or zero-extension
1001 of a shift count. */
1002#define SHIFT_COUNT_TRUNCATED
1003
1004/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1005 is done just by pretending it is already truncated. */
1006#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1007
1008/* Define this macro if it is as good or better to call a constant
1009 function address than to call an address kept in a register. */
1010/* #define NO_FUNCTION_CSE */
1011
1012/* When a prototype says `char' or `short', really pass an `int'. */
1013#define PROMOTE_PROTOTYPES
1014
1015/* There are no flag store insns on a pyr. */
1016/* #define STORE_FLAG_VALUE */
1017
1018/* Specify the machine mode that pointers have.
1019 After generation of rtl, the compiler makes no further distinction
1020 between pointers and any other objects of this machine mode. */
1021#define Pmode SImode
1022
1023/* A function address in a call instruction
1024 is a byte address (for indexing purposes)
1025 so give the MEM rtx a byte's mode. */
1026#define FUNCTION_MODE QImode
1027
1028/* Compute the cost of computing a constant rtl expression RTX
1029 whose rtx-code is CODE. The body of this macro is a portion
1030 of a switch statement. If the code is computed here,
1031 return it with a return statement. Otherwise, break from the switch. */
1032
3bb22aee 1033#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
014cfee8
RS
1034 case CONST_INT: \
1035 if (CONST_OK_FOR_LETTER_P (INTVAL (RTX),'I')) return 0; \
1036 case CONST: \
1037 case LABEL_REF: \
1038 case SYMBOL_REF: \
1039 return 4; \
1040 case CONST_DOUBLE: \
1041 return 6;
e97f2dc6
RS
1042
1043/* A flag which says to swap the operands of certain insns
1044 when they are output. */
1045extern int swap_operands;
014cfee8
RS
1046\f
1047/*** Condition Code Information ***/
1048
1049/* Tell final.c how to eliminate redundant test instructions. */
1050
1051/* Here we define machine-dependent flags and fields in cc_status
1052 (see `conditions.h'). No extra ones are needed for the pyr. */
1053
1054/* Store in cc_status the expressions
1055 that the condition codes will describe
1056 after execution of an instruction whose pattern is EXP.
1057 Do not alter them if the instruction would not alter the cc's. */
1058
1059/* This is a very simple definition of NOTICE_UPDATE_CC.
1060 Many cases can be optimized, to improve condition code usage.
1061 Maybe we should handle this entirely in the md, since it complicated
1062 to describe the way pyr sets cc. */
1063
1064#define TRULY_UNSIGNED_COMPARE_P(X) \
1065 (X == GEU || X == GTU || X == LEU || X == LTU)
1066#define CC_VALID_FOR_UNSIGNED 2
1067
1068#define CC_STATUS_MDEP_INIT cc_status.mdep = 0
1069
1070#define NOTICE_UPDATE_CC(EXP, INSN) \
1071 notice_update_cc(EXP, INSN)
1072\f
1073/*** Output of Assembler Code ***/
1074
1075/* Output at beginning of assembler file. */
1076
1077#define ASM_FILE_START(FILE) \
1078 fprintf (FILE, ((TARGET_UNIX_ASM)? "" : "#NO_APP\n"));
1079
1080/* Output to assembler file text saying following lines
1081 may contain character constants, extra white space, comments, etc. */
1082
1083#define ASM_APP_ON ((TARGET_UNIX_ASM) ? "" : "#APP\n")
1084
1085/* Output to assembler file text saying following lines
1086 no longer contain unusual constructs. */
1087
1088#define ASM_APP_OFF ((TARGET_UNIX_ASM) ? "" : "#NO_APP\n")
1089
1090/* Output before read-only data. */
1091
1092#define TEXT_SECTION_ASM_OP ".text"
1093
1094/* Output before writable data. */
1095
1096#define DATA_SECTION_ASM_OP ".data"
1097
1098/* How to refer to registers in assembler output.
1099 This sequence is indexed by compiler's hard-register-number (see above). */
1100
1101#define REGISTER_NAMES \
1102{"gr0", "gr1", "gr2", "gr3", "gr4", "gr5", "gr6", "gr7", "gr8", \
1103 "gr9", "gr10", "gr11", "logpsw", "cfp", "sp", "pc", \
1104 "pr0", "pr1", "pr2", "pr3", "pr4", "pr5", "pr6", "pr7", \
1105 "pr8", "pr9", "pr10", "pr11", "pr12", "pr13", "pr14", "pr15", \
1106 "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", \
1107 "lr8", "lr9", "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", \
1108 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
1109 "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"}
1110
1111/* How to renumber registers for dbx and gdb. */
1112
1113#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1114
1115/* Our preference is for dbx rather than sdb.
1116 Yours may be different. */
1117#define DBX_DEBUGGING_INFO
1118/* #define SDB_DEBUGGING_INFO */
1119
1120/* Don't use the `xsfoo;' construct in DBX output; this system
1121 doesn't support it. */
1122
1123#define DBX_NO_XREFS 1
1124
1125/* Do not break .stabs pseudos into continuations. */
1126
1127#define DBX_CONTIN_LENGTH 0
1128
1129/* This is the char to use for continuation (in case we need to turn
1130 continuation back on). */
1131
1132#define DBX_CONTIN_CHAR '?'
1133
1134/* This is how to output the definition of a user-level label named NAME,
1135 such as the label on a static function or variable NAME. */
1136
1137#define ASM_OUTPUT_LABEL(FILE,NAME) \
1138 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1139
1140/* This is how to output a command to make the user-level label named NAME
1141 defined for reference from other files. */
1142
1143#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1144 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1145
1146/* This is how to output a reference to a user-level label named NAME. */
1147
1148#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1149 fprintf (FILE, "_%s", NAME);
1150
1151/* This is how to output an internal numbered label where
1152 PREFIX is the class of label and NUM is the number within the class. */
1153
1154#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1155 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1156
1157/* This is how to store into the string LABEL
1158 the symbol_ref name of an internal numbered label where
1159 PREFIX is the class of label and NUM is the number within the class.
1160 This is suitable for output with `assemble_name'. */
1161
1162#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1163 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1164
1165/* This is how to output an assembler line defining a `double' constant. */
1166
1167#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1168 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1169
1170/* This is how to output an assembler line defining a `float' constant. */
1171
1172#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1173 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
1174
1175/* This is how to output an assembler line defining an `int' constant. */
1176
1177#define ASM_OUTPUT_INT(FILE,VALUE) \
1178( fprintf (FILE, "\t.word "), \
1179 output_addr_const (FILE, (VALUE)), \
1180 fprintf (FILE, "\n"))
1181
1182/* Likewise for `char' and `short' constants. */
1183
1184#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1185( fprintf (FILE, "\t.half "), \
1186 output_addr_const (FILE, (VALUE)), \
1187 fprintf (FILE, "\n"))
1188
1189#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1190( fprintf (FILE, "\t.byte "), \
1191 output_addr_const (FILE, (VALUE)), \
1192 fprintf (FILE, "\n"))
1193
1194/* This is how to output an assembler line for a numeric constant byte. */
1195
1196#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1197 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1198
1199/* This is how to output an insn to push a register on the stack.
1200 It need not be very fast code. */
1201
1202#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1203 fprintf (FILE, "\tsubw $4,sp\n\tmovw %s,(sp)\n", reg_names[REGNO])
1204
1205/* This is how to output an insn to pop a register from the stack.
1206 It need not be very fast code. */
1207
1208#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1209 fprintf (FILE, "\tmovw (sp),%s\n\taddw $4,sp\n", reg_names[REGNO])
1210
1211/* Store in OUTPUT a string (made with alloca) containing
1212 an assembler-name for a local static variable named NAME.
1213 LABELNO is an integer which is different for each call. */
1214
1215#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1216( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1217 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1218
1219/* This is how to output an element of a case-vector that is absolute. */
1220
1221#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1222 fprintf (FILE, "\t.word L%d\n", VALUE)
1223
1224/* This is how to output an element of a case-vector that is relative. */
1225
1226
1227#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1228 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1229
1230/* This is how to output an assembler line
1231 that says to advance the location counter
1232 to a multiple of 2**LOG bytes.
1233
1234 On Pyramids, the text segment must always be word aligned.
1235 On Pyramids, .align takes only args between 2 and 5.
1236 */
1237
1238#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1239 fprintf (FILE, "\t.align %d\n", (LOG) < 2 ? 2 : (LOG))
1240
1241#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1242 fprintf (FILE, "\t.space %u\n", (SIZE))
1243
1244/* This says how to output an assembler line
1245 to define a global common symbol. */
1246
1247#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1248( fputs (".comm ", (FILE)), \
1249 assemble_name ((FILE), (NAME)), \
1250 fprintf ((FILE), ",%u\n", (ROUNDED)))
1251
1252/* This says how to output an assembler line
1253 to define a local common symbol. */
1254
1255#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1256( fputs (".lcomm ", (FILE)), \
1257 assemble_name ((FILE), (NAME)), \
1258 fprintf ((FILE), ",%u\n", (ROUNDED)))
1259
1260/* Define the parentheses used to group arithmetic operations
1261 in assembler code. */
1262
1263#define ASM_OPEN_PAREN "("
1264#define ASM_CLOSE_PAREN ")"
1265
1266/* Define results of standard character escape sequences. */
1267#define TARGET_BELL 007
1268#define TARGET_BS 010
1269#define TARGET_TAB 011
1270#define TARGET_NEWLINE 012
1271#define TARGET_VT 013
1272#define TARGET_FF 014
1273#define TARGET_CR 015
1274
1275/* Print operand X (an rtx) in assembler syntax to file FILE.
1276 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1277 For `%' followed by punctuation, CODE is the punctuation and X is null.
1278 On the Pyr, we support the conventional CODE characters:
1279
1280 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1281 which are never used. */
1282
1283/* FIXME : should be more robust with CONST_DOUBLE. */
1284
1285#define PRINT_OPERAND(FILE, X, CODE) \
1286{ if (GET_CODE (X) == REG) \
1287 fprintf (FILE, "%s", reg_names [REGNO (X)]); \
1288 \
1289 else if (GET_CODE (X) == MEM) \
1290 output_address (XEXP (X, 0)); \
1291 \
1292 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1293 { union { double d; int i[2]; } u; \
1294 union { float f; int i; } u1; \
1295 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1296 u1.f = u.d; \
1297 if (CODE == 'f') \
1298 fprintf (FILE, "$0f%.0e", u1.f); \
1299 else \
1300 fprintf (FILE, "$0x%x", u1.i); } \
1301 \
1302 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != DImode) \
1303 { union { double d; int i[2]; } u; \
1304 u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
1305 fprintf (FILE, "$0d%.20e", u.d); } \
1306 \
1307 else if (CODE == 'N') \
1308 switch (GET_CODE (X)) \
1309 { \
1310 case EQ: fputs ("eq", FILE); break; \
1311 case NE: fputs ("ne", FILE); break; \
1312 case GT: \
1313 case GTU: fputs ("gt", FILE); break; \
1314 case LT: \
1315 case LTU: fputs ("lt", FILE); break; \
1316 case GE: \
1317 case GEU: fputs ("ge", FILE); break; \
1318 case LE: \
1319 case LEU: fputs ("le", FILE); break; \
1320 } \
1321 \
1322 else if (CODE == 'C') \
1323 switch (GET_CODE (X)) \
1324 { \
1325 case EQ: fputs ("ne", FILE); break; \
1326 case NE: fputs ("eq", FILE); break; \
1327 case GT: \
1328 case GTU: fputs ("le", FILE); break; \
1329 case LT: \
1330 case LTU: fputs ("ge", FILE); break; \
1331 case GE: \
1332 case GEU: fputs ("lt", FILE); break; \
1333 case LE: \
1334 case LEU: fputs ("gt", FILE); break; \
1335 } \
1336 \
1337 else if (CODE == 'R') \
1338 switch (GET_CODE (X)) \
1339 { \
1340 case EQ: fputs ("eq", FILE); break; \
1341 case NE: fputs ("ne", FILE); break; \
1342 case GT: \
1343 case GTU: fputs ("lt", FILE); break; \
1344 case LT: \
1345 case LTU: fputs ("gt", FILE); break; \
1346 case GE: \
1347 case GEU: fputs ("le", FILE); break; \
1348 case LE: \
1349 case LEU: fputs ("ge", FILE); break; \
1350 } \
1351 \
1352 else { putc ('$', FILE); output_addr_const (FILE, X); } \
1353}
1354
1355/* Print a memory operand whose address is ADDR, on file FILE. */
1356/* This is horrendously complicated. */
1357#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1358{ \
1359 register rtx reg1, reg2, breg, ireg; \
1360 register rtx addr = ADDR; \
1361 rtx offset, scale; \
1362 retry: \
1363 switch (GET_CODE (addr)) \
1364 { \
1365 case MEM: \
1366 fprintf (stderr, "bad Mem "); debug_rtx (addr); \
1367 addr = XEXP (addr, 0); \
1368 abort (); \
1369 case REG: \
1370 fprintf (FILE, "(%s)", reg_names [REGNO (addr)]); \
1371 break; \
1372 case PLUS: \
1373 reg1 = 0; reg2 = 0; \
1374 ireg = 0; breg = 0; \
1375 offset = 0; \
1376 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)) \
1377 || GET_CODE (XEXP (addr, 0)) == MEM) \
1378 { \
1379 offset = XEXP (addr, 0); \
1380 addr = XEXP (addr, 1); \
1381 } \
1382 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)) \
1383 || GET_CODE (XEXP (addr, 1)) == MEM) \
1384 { \
1385 offset = XEXP (addr, 1); \
1386 addr = XEXP (addr, 0); \
1387 } \
1388 if (GET_CODE (addr) != PLUS) ; \
1389 else if (GET_CODE (XEXP (addr, 0)) == MULT) \
1390 { \
1391 reg1 = XEXP (addr, 0); \
1392 addr = XEXP (addr, 1); \
1393 } \
1394 else if (GET_CODE (XEXP (addr, 1)) == MULT) \
1395 { \
1396 reg1 = XEXP (addr, 1); \
1397 addr = XEXP (addr, 0); \
1398 } \
1399 else if (GET_CODE (XEXP (addr, 0)) == REG) \
1400 { \
1401 reg1 = XEXP (addr, 0); \
1402 addr = XEXP (addr, 1); \
1403 } \
1404 else if (GET_CODE (XEXP (addr, 1)) == REG) \
1405 { \
1406 reg1 = XEXP (addr, 1); \
1407 addr = XEXP (addr, 0); \
1408 } \
1409 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT) \
1410 { \
1411 if (reg1 == 0) \
1412 reg1 = addr; \
1413 else \
1414 reg2 = addr; \
1415 addr = 0; \
1416 } \
1417 if (offset != 0) \
1418 { \
1419 if (addr != 0) { \
1420 fprintf (stderr, "\nBad addr "); debug_rtx (addr); \
1421 abort ();} \
1422 addr = offset; \
1423 } \
1424 if (reg1 != 0 && GET_CODE (reg1) == MULT) \
1425 { breg = reg2; ireg = reg1; } \
1426 else if (reg2 != 0 && GET_CODE (reg2) == MULT) \
1427 { breg = reg1; ireg = reg2; } \
1428 else if (reg2 != 0 || GET_CODE (addr) == MEM) \
1429 { breg = reg2; ireg = reg1; } \
1430 else \
1431 { breg = reg1; ireg = reg2; } \
1432 if (addr != 0) \
1433 output_address (offset); \
1434 if (breg != 0) \
1435 { if (GET_CODE (breg) != REG) \
1436 { \
1437 fprintf (stderr, "bad Breg"); debug_rtx (addr); \
1438 abort (); \
1439 } \
1440 fprintf (FILE, "(%s)", reg_names[REGNO (breg)]); } \
1441 if (ireg != 0) \
1442 { \
1443 if (GET_CODE (ireg) == MULT) \
1444 { \
1445 scale = XEXP (ireg, 1); \
1446 ireg = XEXP (ireg, 0); \
1447 if (GET_CODE (ireg) != REG) \
1448 { register rtx tem; \
1449 tem = ireg; ireg = scale; scale = tem; \
1450 } \
1451 if (GET_CODE (ireg) != REG) { \
1452 fprintf (stderr, "bad idx "); debug_rtx (addr); \
1453 abort (); } \
1454 if ((GET_CODE (scale) == CONST_INT) && (INTVAL(scale) >= 1))\
1455 fprintf (FILE, "[%s*0x%x]", reg_names[REGNO (ireg)], \
1456 INTVAL(scale)); \
1457 else \
1458 fprintf (FILE, "[%s*1]", reg_names[REGNO (ireg)]); \
1459 } \
1460 else if (GET_CODE (ireg) == REG) \
1461 fprintf (FILE, "[%s*1]", reg_names[REGNO (ireg)]); \
1462 else \
1463 { \
1464 fprintf (stderr, "Not indexed at all!"); debug_rtx (addr);\
1465 abort (); \
1466 } \
1467 } \
1468 break; \
1469 default: \
1470 output_addr_const (FILE, addr); \
1471 } \
1472}
This page took 0.190328 seconds and 5 git commands to generate.