]> gcc.gnu.org Git - gcc.git/blame - gcc/config/mips/mips.h
altivec-2.c: Remove test for invalid vector type V2DF.
[gcc.git] / gcc / config / mips / mips.h
CommitLineData
e75b25e7 1/* Definitions of target machine for GNU compiler. MIPS version.
214be03f 2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
16c484c7 3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
ae3e1bb4
RK
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
e75b25e7
MM
8
9This file is part of GNU CC.
10
11GNU CC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GNU CC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GNU CC; see the file COPYING. If not, write to
75fe0c5e
RK
23the Free Software Foundation, 59 Temple Place - Suite 330,
24Boston, MA 02111-1307, USA. */
e75b25e7
MM
25
26
e75b25e7
MM
27/* Standard GCC variables that we reference. */
28
0fb5ac6f
MM
29extern char *asm_file_name;
30extern char call_used_regs[];
0fb5ac6f 31extern int may_call_alloca;
0fb5ac6f
MM
32extern char **save_argv;
33extern int target_flags;
e75b25e7
MM
34
35/* MIPS external variables defined in mips.c. */
36
37/* comparison type */
38enum cmp_type {
876c09d3
JW
39 CMP_SI, /* compare four byte integers */
40 CMP_DI, /* compare eight byte integers */
e75b25e7
MM
41 CMP_SF, /* compare single precision floats */
42 CMP_DF, /* compare double precision floats */
43 CMP_MAX /* max comparison type */
44};
45
46/* types of delay slot */
47enum delay_type {
48 DELAY_NONE, /* no delay slot */
49 DELAY_LOAD, /* load from memory delay */
34b650b3
MM
50 DELAY_HILO, /* move from/to hi/lo registers */
51 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
e75b25e7
MM
52};
53
54/* Which processor to schedule for. Since there is no difference between
55 a R2000 and R3000 in terms of the scheduler, we collapse them into
4a392643
RS
56 just an R3000. The elements of the enumeration must match exactly
57 the cpu attribute in the mips.md machine description. */
e75b25e7
MM
58
59enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
e9a25f70 62 PROCESSOR_R3900,
e75b25e7 63 PROCESSOR_R6000,
876c09d3 64 PROCESSOR_R4000,
00b3e052
JW
65 PROCESSOR_R4100,
66 PROCESSOR_R4300,
516a2dfd 67 PROCESSOR_R4600,
053665d7 68 PROCESSOR_R4650,
b8eb88d0 69 PROCESSOR_R5000,
0e5a4ad8
EC
70 PROCESSOR_R8000,
71 PROCESSOR_R4KC,
72 PROCESSOR_R5KC,
73 PROCESSOR_R20KC
e75b25e7
MM
74};
75
4a392643 76/* Recast the cpu class to be the cpu attribute. */
919b1aec 77#define mips_cpu_attr ((enum attr_cpu)mips_tune)
4a392643 78
04bd620d 79/* Which ABI to use. These are constants because abi64.h must check their
a53f72db
GRK
80 value at preprocessing time.
81
82 ABI_32 (original 32, or o32), ABI_N32 (n32), ABI_64 (n64) are all
987ba558 83 defined by SGI. ABI_O64 is o32 extended to work on a 64 bit machine. */
b2d8cf33 84
04bd620d
JW
85#define ABI_32 0
86#define ABI_N32 1
87#define ABI_64 2
88#define ABI_EABI 3
a53f72db 89#define ABI_O64 4
0e5a4ad8
EC
90/* MEABI is gcc's internal name for MIPS' new EABI (defined by MIPS)
91 which is not the same as the above EABI (defined by Cygnus,
92 Greenhills, and Toshiba?). MEABI is not yet complete or published,
93 but at this point it looks like N32 as far as calling conventions go,
94 but allows for either 32 or 64 bit registers.
95
96 Currently MIPS is calling their EABI "the" MIPS EABI, and Cygnus'
97 EABI the legacy EABI. In the end we may end up calling both ABI's
98 EABI but give them different version numbers, but for now I'm going
987ba558 99 with different names. */
0e5a4ad8
EC
100#define ABI_MEABI 5
101
45ceb85d
RS
102/* Whether to emit abicalls code sequences or not. */
103
104enum mips_abicalls_type {
105 MIPS_ABICALLS_NO,
106 MIPS_ABICALLS_YES
107};
108
109/* Recast the abicalls class to be the abicalls attribute. */
110#define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
111
b7d3fabe
RS
112/* Which type of block move to do (whether or not the last store is
113 split out so it can fill a branch delay slot). */
114
115enum block_move_type {
116 BLOCK_MOVE_NORMAL, /* generate complete block move */
117 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
118 BLOCK_MOVE_LAST /* generate just the last store */
119};
120
987ba558 121extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
f540a7d3 122extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
e2fe6aba 123extern const char *current_function_file; /* filename current function is in */
e75b25e7
MM
124extern int num_source_filenames; /* current .file # */
125extern int inside_function; /* != 0 if inside of a function */
126extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
127extern int file_in_function_warning; /* warning given about .file in func */
128extern int sdb_label_count; /* block start/end next label # */
a642a781 129extern int sdb_begin_function_line; /* Starting Line of current function */
e75b25e7
MM
130extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
131extern int g_switch_value; /* value of the -G xx switch */
132extern int g_switch_set; /* whether -G xx was passed. */
133extern int sym_lineno; /* sgi next label # for each stmt */
134extern int set_noreorder; /* # of nested .set noreorder's */
135extern int set_nomacro; /* # of nested .set nomacro's */
136extern int set_noat; /* # of nested .set noat's */
137extern int set_volatile; /* # of nested .set volatile's */
e75b25e7
MM
138extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
139extern int mips_dbx_regno[]; /* Map register # to debug register # */
e75b25e7
MM
140extern struct rtx_def *branch_cmp[2]; /* operands for compare */
141extern enum cmp_type branch_type; /* what type of branch to use */
7dac2f89
EC
142extern enum processor_type mips_arch; /* which cpu to codegen for */
143extern enum processor_type mips_tune; /* which cpu to schedule for */
45ceb85d 144extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
e75b25e7 145extern int mips_isa; /* architectural level */
2bcb2ab3
GK
146extern int mips16; /* whether generating mips16 code */
147extern int mips16_hard_float; /* mips16 without -msoft-float */
148extern int mips_entry; /* generate entry/exit for mips16 */
e2fe6aba 149extern const char *mips_cpu_string; /* for -mcpu=<xxx> */
7dac2f89
EC
150extern const char *mips_arch_string; /* for -march=<xxx> */
151extern const char *mips_tune_string; /* for -mtune=<xxx> */
e2fe6aba
KG
152extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
153extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
154extern const char *mips_entry_string; /* for -mentry */
155extern const char *mips_no_mips16_string;/* for -mno-mips16 */
3ce1ba83 156extern const char *mips_explicit_type_size_string;/* for -mexplicit-type-size */
d490e8ad 157extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
ce57d6f4 158extern int mips_split_addresses; /* perform high/lo_sum support */
e75b25e7
MM
159extern int dslots_load_total; /* total # load related delay slots */
160extern int dslots_load_filled; /* # filled load delay slots */
161extern int dslots_jump_total; /* total # jump related delay slots */
162extern int dslots_jump_filled; /* # filled jump delay slots */
163extern int dslots_number_nops; /* # of nops needed by previous insn */
164extern int num_refs[3]; /* # 1/2/3 word references */
165extern struct rtx_def *mips_load_reg; /* register to check for load delay */
166extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
167extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
168extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
2bcb2ab3 169extern int mips_string_length; /* length of strings for mips16 */
e75b25e7 170
0fb5ac6f 171/* Functions to change what output section we are using. */
bd9f1972 172extern void sdata_section PARAMS ((void));
cc8f5ec0 173extern void sbss_section PARAMS ((void));
e75b25e7 174
31c714e3
MM
175/* Stubs for half-pic support if not OSF/1 reference platform. */
176
177#ifndef HALF_PIC_P
178#define HALF_PIC_P() 0
4a392643
RS
179#define HALF_PIC_NUMBER_PTRS 0
180#define HALF_PIC_NUMBER_REFS 0
31c714e3 181#define HALF_PIC_ENCODE(DECL)
f3b39eba 182#define HALF_PIC_DECLARE(NAME)
c725bd79 183#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
31c714e3 184#define HALF_PIC_ADDRESS_P(X) 0
d26e29e1
MM
185#define HALF_PIC_PTR(X) X
186#define HALF_PIC_FINISH(STREAM)
31c714e3
MM
187#endif
188
3a6ee9f4
MM
189/* Macros to silence warnings about numbers being signed in traditional
190 C and unsigned in ISO C when compiled on 32-bit hosts. */
191
192#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
193#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
194#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
195
149e4e00
MM
196\f
197/* Run-time compilation parameters selecting different hardware subsets. */
198
199/* Macros used in the machine description to test the flags. */
200
201 /* Bits for real switches */
6d81ba45
CD
202#define MASK_INT64 0x00000001 /* ints are 64 bits */
203#define MASK_LONG64 0x00000002 /* longs are 64 bits */
204#define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
205#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
206#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
207#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
208#define MASK_STATS 0x00000040 /* print statistics to stderr */
209#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
210#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
211#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
212#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
213#define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
214#define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
215#define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
216#define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
365c6a0b 217#define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
6d81ba45
CD
218#define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
219#define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
220#define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
221#define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
7dac2f89 222#define MASK_MIPS16 0x00100000 /* Generate mips16 code */
6d81ba45 223#define MASK_NO_CHECK_ZERO_DIV \
7dac2f89 224 0x00200000 /* divide by zero checking */
6d81ba45 225#define MASK_CHECK_RANGE_DIV \
7dac2f89 226 0x00400000 /* divide result range checking */
6d81ba45 227#define MASK_UNINIT_CONST_IN_RODATA \
7dac2f89 228 0x00800000 /* Store uninitialized
6d81ba45 229 consts in rodata */
13fac94a
GK
230#define MASK_NO_FUSED_MADD 0x01000000 /* Don't generate floating point
231 multiply-add operations. */
149e4e00
MM
232
233 /* Debug switches, not documented */
6d81ba45
CD
234#define MASK_DEBUG 0 /* unused */
235#define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
236#define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
987ba558 237#define MASK_DEBUG_C 0 /* don't expand seq, etc. */
08c2951c 238#define MASK_DEBUG_D 0 /* don't do define_split's */
e4f5c5d6 239#define MASK_DEBUG_E 0 /* function_arg debug */
6d81ba45 240#define MASK_DEBUG_F 0 /* ??? */
2bcb2ab3 241#define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
6d1350cd 242#define MASK_DEBUG_H 0 /* allow ints in FP registers */
e4f5c5d6 243#define MASK_DEBUG_I 0 /* unused */
149e4e00 244
6d81ba45
CD
245 /* Dummy switches used only in specs */
246#define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
247
149e4e00
MM
248 /* r4000 64 bit sizes */
249#define TARGET_INT64 (target_flags & MASK_INT64)
250#define TARGET_LONG64 (target_flags & MASK_LONG64)
149e4e00 251#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
876c09d3 252#define TARGET_64BIT (target_flags & MASK_64BIT)
149e4e00 253
5ef37cd3
JW
254 /* Mips vs. GNU linker */
255#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
256
149e4e00
MM
257 /* Mips vs. GNU assembler */
258#define TARGET_GAS (target_flags & MASK_GAS)
6d81ba45 259#define TARGET_MIPS_AS (!TARGET_GAS)
149e4e00 260
6d81ba45 261 /* Debug Modes */
149e4e00
MM
262#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
263#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
264#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
265#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
266#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
267#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
268#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
269#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
270#define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
271#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
149e4e00
MM
272
273 /* Reg. Naming in .s ($21 vs. $a0) */
274#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
275
276 /* Optimize for Sdata/Sbss */
277#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
278
279 /* print program statistics */
280#define TARGET_STATS (target_flags & MASK_STATS)
281
282 /* call memcpy instead of inline code */
283#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
284
285 /* .abicalls, etc from Pyramid V.4 */
286#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
287
288 /* OSF pic references to externs */
289#define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
290
291 /* software floating point */
292#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
293#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
294
295 /* always call through a register */
296#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
297
e0bfcea5
ILT
298 /* generate embedded PIC code;
299 requires gas. */
300#define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
301
365c6a0b
JW
302 /* for embedded systems, optimize for
303 reduced RAM space instead of for
304 fastest code. */
305#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
306
919509ce
DN
307 /* always store uninitialized const
308 variables in rodata, requires
987ba558 309 TARGET_EMBEDDED_DATA. */
919509ce
DN
310#define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
311
96abdcb1
ILT
312 /* generate big endian code. */
313#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
314
46299de9
ILT
315#define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
316#define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
317
318#define TARGET_MAD (target_flags & MASK_MAD)
319
13fac94a
GK
320#define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
321
00b3e052
JW
322#define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
323
08c2951c
SC
324#define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
325#define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
326
33b5e50b
JW
327/* This is true if we must enable the assembly language file switching
328 code. */
329
f99ffb60
RH
330#define TARGET_FILE_SWITCHING \
331 (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
33b5e50b
JW
332
333/* We must disable the function end stabs when doing the file switching trick,
334 because the Lscope stabs end up in the wrong place, making it impossible
335 to debug the resulting code. */
336#define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
337
2bcb2ab3
GK
338 /* Generate mips16 code */
339#define TARGET_MIPS16 (target_flags & MASK_MIPS16)
340
7dac2f89
EC
341/* Architecture target defines. */
342#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
343#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
344#define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100)
345#define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
0e5a4ad8
EC
346#define TARGET_MIPS4KC (mips_arch == PROCESSOR_R4KC)
347#define TARGET_MIPS5KC (mips_arch == PROCESSOR_R5KC)
7dac2f89
EC
348
349/* Scheduling target defines. */
7a38df19
EC
350#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
351#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
352#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
353#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
354#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
7dac2f89 355
149e4e00
MM
356/* Macro to define tables used to set the flags.
357 This is a list in braces of pairs in braces,
358 each pair being { "NAME", VALUE }
359 where VALUE is the bits to set or minus the bits to clear.
360 An empty string NAME is used to identify the default VALUE. */
361
362#define TARGET_SWITCHES \
363{ \
c45fd7f9 364 {"no-crt0", 0, \
047142d3 365 N_("No default crt0.o") }, \
a127db75 366 {"int64", MASK_INT64 | MASK_LONG64, \
047142d3 367 N_("Use 64-bit int type")}, \
a127db75 368 {"long64", MASK_LONG64, \
047142d3 369 N_("Use 64-bit long type")}, \
a127db75 370 {"long32", -(MASK_LONG64 | MASK_INT64), \
047142d3 371 N_("Use 32-bit long type")}, \
a127db75 372 {"split-addresses", MASK_SPLIT_ADDR, \
047142d3 373 N_("Optimize lui/addiu address loads")}, \
a127db75 374 {"no-split-addresses", -MASK_SPLIT_ADDR, \
047142d3 375 N_("Don't optimize lui/addiu address loads")}, \
a127db75 376 {"mips-as", -MASK_GAS, \
047142d3 377 N_("Use MIPS as")}, \
a127db75 378 {"gas", MASK_GAS, \
047142d3 379 N_("Use GNU as")}, \
a127db75 380 {"rnames", MASK_NAME_REGS, \
047142d3 381 N_("Use symbolic register names")}, \
a127db75 382 {"no-rnames", -MASK_NAME_REGS, \
047142d3 383 N_("Don't use symbolic register names")}, \
a127db75 384 {"gpOPT", MASK_GPOPT, \
047142d3 385 N_("Use GP relative sdata/sbss sections")}, \
a127db75 386 {"gpopt", MASK_GPOPT, \
047142d3 387 N_("Use GP relative sdata/sbss sections")}, \
a127db75 388 {"no-gpOPT", -MASK_GPOPT, \
047142d3 389 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 390 {"no-gpopt", -MASK_GPOPT, \
047142d3 391 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 392 {"stats", MASK_STATS, \
047142d3 393 N_("Output compiler statistics")}, \
a127db75 394 {"no-stats", -MASK_STATS, \
047142d3 395 N_("Don't output compiler statistics")}, \
a127db75 396 {"memcpy", MASK_MEMCPY, \
047142d3 397 N_("Don't optimize block moves")}, \
a127db75 398 {"no-memcpy", -MASK_MEMCPY, \
047142d3 399 N_("Optimize block moves")}, \
a127db75 400 {"mips-tfile", MASK_MIPS_TFILE, \
047142d3 401 N_("Use mips-tfile asm postpass")}, \
a127db75 402 {"no-mips-tfile", -MASK_MIPS_TFILE, \
047142d3 403 N_("Don't use mips-tfile asm postpass")}, \
a127db75 404 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 405 N_("Use software floating point")}, \
a127db75 406 {"hard-float", -MASK_SOFT_FLOAT, \
047142d3 407 N_("Use hardware floating point")}, \
a127db75 408 {"fp64", MASK_FLOAT64, \
047142d3 409 N_("Use 64-bit FP registers")}, \
a127db75 410 {"fp32", -MASK_FLOAT64, \
047142d3 411 N_("Use 32-bit FP registers")}, \
a127db75 412 {"gp64", MASK_64BIT, \
047142d3 413 N_("Use 64-bit general registers")}, \
a127db75 414 {"gp32", -MASK_64BIT, \
047142d3 415 N_("Use 32-bit general registers")}, \
a127db75 416 {"abicalls", MASK_ABICALLS, \
047142d3 417 N_("Use Irix PIC")}, \
a127db75 418 {"no-abicalls", -MASK_ABICALLS, \
047142d3 419 N_("Don't use Irix PIC")}, \
a127db75 420 {"half-pic", MASK_HALF_PIC, \
047142d3 421 N_("Use OSF PIC")}, \
a127db75 422 {"no-half-pic", -MASK_HALF_PIC, \
047142d3 423 N_("Don't use OSF PIC")}, \
a127db75 424 {"long-calls", MASK_LONG_CALLS, \
047142d3 425 N_("Use indirect calls")}, \
a127db75 426 {"no-long-calls", -MASK_LONG_CALLS, \
047142d3 427 N_("Don't use indirect calls")}, \
a127db75 428 {"embedded-pic", MASK_EMBEDDED_PIC, \
047142d3 429 N_("Use embedded PIC")}, \
a127db75 430 {"no-embedded-pic", -MASK_EMBEDDED_PIC, \
047142d3 431 N_("Don't use embedded PIC")}, \
a127db75 432 {"embedded-data", MASK_EMBEDDED_DATA, \
047142d3 433 N_("Use ROM instead of RAM")}, \
a127db75 434 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
047142d3 435 N_("Don't use ROM instead of RAM")}, \
919509ce 436 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
047142d3 437 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
919509ce 438 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
047142d3 439 N_("Don't put uninitialized constants in ROM")}, \
a127db75 440 {"eb", MASK_BIG_ENDIAN, \
047142d3 441 N_("Use big-endian byte order")}, \
a127db75 442 {"el", -MASK_BIG_ENDIAN, \
047142d3 443 N_("Use little-endian byte order")}, \
a127db75 444 {"single-float", MASK_SINGLE_FLOAT, \
047142d3 445 N_("Use single (32-bit) FP only")}, \
a127db75 446 {"double-float", -MASK_SINGLE_FLOAT, \
047142d3 447 N_("Don't use single (32-bit) FP only")}, \
a127db75 448 {"mad", MASK_MAD, \
047142d3 449 N_("Use multiply accumulate")}, \
a127db75 450 {"no-mad", -MASK_MAD, \
047142d3 451 N_("Don't use multiply accumulate")}, \
13fac94a
GK
452 {"no-fused-madd", MASK_NO_FUSED_MADD, \
453 N_("Don't generate fused multiply/add instructions")}, \
454 {"fused-madd", -MASK_NO_FUSED_MADD, \
455 N_("Generate fused multiply/add instructions")}, \
a127db75 456 {"fix4300", MASK_4300_MUL_FIX, \
047142d3 457 N_("Work around early 4300 hardware bug")}, \
a127db75 458 {"no-fix4300", -MASK_4300_MUL_FIX, \
047142d3 459 N_("Don't work around early 4300 hardware bug")}, \
7dac2f89 460 {"3900", 0, \
047142d3 461 N_("Optimize for 3900")}, \
7dac2f89
EC
462 {"4650", 0, \
463 N_("Optimize for 4650")}, \
a127db75 464 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
047142d3 465 N_("Trap on integer divide by zero")}, \
a127db75 466 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
047142d3 467 N_("Don't trap on integer divide by zero")}, \
a127db75 468 {"check-range-division",MASK_CHECK_RANGE_DIV, \
047142d3 469 N_("Trap on integer divide overflow")}, \
a127db75 470 {"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
047142d3 471 N_("Don't trap on integer divide overflow")}, \
a127db75
JW
472 {"debug", MASK_DEBUG, \
473 NULL}, \
474 {"debuga", MASK_DEBUG_A, \
475 NULL}, \
476 {"debugb", MASK_DEBUG_B, \
477 NULL}, \
478 {"debugc", MASK_DEBUG_C, \
479 NULL}, \
480 {"debugd", MASK_DEBUG_D, \
481 NULL}, \
482 {"debuge", MASK_DEBUG_E, \
483 NULL}, \
484 {"debugf", MASK_DEBUG_F, \
485 NULL}, \
486 {"debugg", MASK_DEBUG_G, \
487 NULL}, \
488 {"debugh", MASK_DEBUG_H, \
489 NULL}, \
490 {"debugi", MASK_DEBUG_I, \
491 NULL}, \
96abdcb1
ILT
492 {"", (TARGET_DEFAULT \
493 | TARGET_CPU_DEFAULT \
a127db75
JW
494 | TARGET_ENDIAN_DEFAULT), \
495 NULL}, \
7dac2f89 496}
149e4e00
MM
497
498/* Default target_flags if no switches are specified */
499
500#ifndef TARGET_DEFAULT
501#define TARGET_DEFAULT 0
502#endif
503
404f986e
MM
504#ifndef TARGET_CPU_DEFAULT
505#define TARGET_CPU_DEFAULT 0
506#endif
507
96abdcb1
ILT
508#ifndef TARGET_ENDIAN_DEFAULT
509#ifndef DECSTATION
510#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
511#else
512#define TARGET_ENDIAN_DEFAULT 0
513#endif
514#endif
515
ea09f032
GRK
516#ifndef MIPS_ISA_DEFAULT
517#define MIPS_ISA_DEFAULT 1
518#endif
519
996ed075
JJ
520#ifdef IN_LIBGCC2
521#undef TARGET_64BIT
522/* Make this compile time constant for libgcc2 */
523#ifdef __mips64
524#define TARGET_64BIT 1
525#else
526#define TARGET_64BIT 0
527#endif
440927ec 528#endif /* IN_LIBGCC2 */
996ed075 529
cbab8d02 530#ifndef MULTILIB_ENDIAN_DEFAULT
7f2e00db 531#if TARGET_ENDIAN_DEFAULT == 0
cbab8d02 532#define MULTILIB_ENDIAN_DEFAULT "EL"
7f2e00db 533#else
cbab8d02
GRK
534#define MULTILIB_ENDIAN_DEFAULT "EB"
535#endif
7f2e00db 536#endif
cbab8d02 537
ea09f032 538#ifndef MULTILIB_ISA_DEFAULT
7ce2fcb9
KG
539# if MIPS_ISA_DEFAULT == 1
540# define MULTILIB_ISA_DEFAULT "mips1"
541# else
542# if MIPS_ISA_DEFAULT == 2
543# define MULTILIB_ISA_DEFAULT "mips2"
544# else
545# if MIPS_ISA_DEFAULT == 3
546# define MULTILIB_ISA_DEFAULT "mips3"
547# else
548# if MIPS_ISA_DEFAULT == 4
549# define MULTILIB_ISA_DEFAULT "mips4"
550# else
0e5a4ad8
EC
551# if MIPS_ISA_DEFAULT == 32
552# define MULTILIB_ISA_DEFAULT "mips32"
553# else
554# if MIPS_ISA_DEFAULT == 64
555# define MULTILIB_ISA_DEFAULT "mips64"
556# else
7ce2fcb9 557# define MULTILIB_ISA_DEFAULT "mips1"
0e5a4ad8 558# endif
7ce2fcb9 559# endif
0e5a4ad8 560# endif
7ce2fcb9
KG
561# endif
562# endif
563# endif
ea09f032
GRK
564#endif
565
cbab8d02 566#ifndef MULTILIB_DEFAULTS
ea09f032 567#define MULTILIB_DEFAULTS { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT }
7f2e00db
RK
568#endif
569
34bcd7fd
JW
570/* We must pass -EL to the linker by default for little endian embedded
571 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
572 linker will default to using big-endian output files. The OUTPUT_FORMAT
573 line must be in the linker script, otherwise -EB/-EL will not work. */
574
120dc6cd 575#ifndef ENDIAN_SPEC
34bcd7fd 576#if TARGET_ENDIAN_DEFAULT == 0
ac282977 577#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
34bcd7fd 578#else
ac282977 579#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
34bcd7fd
JW
580#endif
581#endif
582
149e4e00
MM
583#define TARGET_OPTIONS \
584{ \
b2d8cf33 585 SUBTARGET_TARGET_OPTIONS \
a127db75 586 { "cpu=", &mips_cpu_string, \
047142d3 587 N_("Specify CPU for scheduling purposes")}, \
7dac2f89
EC
588 { "tune=", &mips_tune_string, \
589 N_("Specify CPU for scheduling purposes")}, \
590 { "arch=", &mips_arch_string, \
591 N_("Specify CPU for code generation purposes")}, \
a127db75 592 { "ips", &mips_isa_string, \
7dac2f89 593 N_("Specify a Standard MIPS ISA")}, \
a127db75 594 { "entry", &mips_entry_string, \
047142d3 595 N_("Use mips16 entry/exit psuedo ops")}, \
a127db75 596 { "no-mips16", &mips_no_mips16_string, \
047142d3 597 N_("Don't use MIPS16 instructions")}, \
a127db75
JW
598 { "explicit-type-size", &mips_explicit_type_size_string, \
599 NULL}, \
d490e8ad
DD
600 { "no-flush-func", &mips_cache_flush_func, \
601 N_("Don't call any cache flush functions")}, \
602 { "flush-func=", &mips_cache_flush_func, \
603 N_("Specify cache flush function")}, \
149e4e00
MM
604}
605
b2d8cf33
JW
606/* This is meant to be redefined in the host dependent files. */
607#define SUBTARGET_TARGET_OPTIONS
608
7dac2f89 609#define GENERATE_BRANCHLIKELY (!TARGET_MIPS16 && ISA_HAS_BRANCHLIKELY)
e4f5c5d6 610
0e5a4ad8
EC
611/* Generate three-operand multiply instructions for SImode. */
612#define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
613 || mips_isa == 32 \
614 || mips_isa == 64) \
615 && !TARGET_MIPS16)
616
617/* Generate three-operand multiply instructions for DImode. */
618#define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
619 && !TARGET_MIPS16)
e9a25f70 620
149e4e00
MM
621/* Macros to decide whether certain features are available or not,
622 depending on the instruction set architecture level. */
623
e9a25f70 624#define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
1d5d552e
GRK
625#define HAVE_SQRT_P() (mips_isa != 1)
626
987ba558 627/* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
0e5a4ad8
EC
628#define ISA_HAS_64BIT_REGS (mips_isa == 3 \
629 || mips_isa == 4 \
630 || mips_isa == 64)
1d5d552e 631
987ba558 632/* ISA has branch likely instructions (eg. mips2). */
7dac2f89
EC
633/* Disable branchlikely for tx39 until compare rewrite. They haven't
634 been generated up to this point. */
635#define ISA_HAS_BRANCHLIKELY (mips_isa != 1 \
974a3101 636 && ! TARGET_MIPS16)
1d5d552e 637
987ba558 638/* ISA has the conditional move instructions introduced in mips4. */
974a3101
AO
639#define ISA_HAS_CONDMOVE ((mips_isa == 4 \
640 || mips_isa == 32 \
641 || mips_isa == 64) \
642 && ! TARGET_MIPS16)
76ee8042 643
0025b7fa
GRK
644/* ISA has just the integer condition move instructions (movn,movz) */
645#define ISA_HAS_INT_CONDMOVE 0
646
76ee8042 647/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
987ba558 648 branch on CC, and move (both FP and non-FP) on CC. */
76ee8042 649#define ISA_HAS_8CC (mips_isa == 4 \
0e5a4ad8
EC
650 || mips_isa == 32 \
651 || mips_isa == 64)
76ee8042 652
76ee8042 653/* This is a catch all for the other new mips4 instructions: indexed load and
7dac2f89 654 indexed prefetch instructions, the FP madd,msub,nmadd, and nmsub instructions,
76ee8042
GRK
655 and the FP recip and recip sqrt instructions */
656#define ISA_HAS_FP4 (mips_isa == 4 \
974a3101 657 && ! TARGET_MIPS16)
76ee8042 658
a0b6cdee 659/* ISA has conditional trap instructions. */
974a3101
AO
660#define ISA_HAS_COND_TRAP (mips_isa >= 2 \
661 && ! TARGET_MIPS16)
1d5d552e 662
0e5a4ad8 663/* ISA has multiply-accumulate instructions, madd and msub. */
974a3101
AO
664#define ISA_HAS_MADD_MSUB ((mips_isa == 32 \
665 || mips_isa == 64 \
666 ) && ! TARGET_MIPS16)
0e5a4ad8 667
1f28c666
AH
668/* ISA has nmadd and nmsub instructions. */
669#define ISA_HAS_NMADD_NMSUB (mips_isa == 4 \
974a3101 670 && ! TARGET_MIPS16)
149e4e00 671
0e5a4ad8 672/* ISA has count leading zeroes/ones instruction (not implemented). */
974a3101
AO
673#define ISA_HAS_CLZ_CLO ((mips_isa == 32 \
674 || mips_isa == 64 \
675 ) && ! TARGET_MIPS16)
0e5a4ad8
EC
676
677/* ISA has double-word count leading zeroes/ones instruction (not
678 implemented). */
974a3101
AO
679#define ISA_HAS_DCLZ_DCLO (mips_isa == 64 \
680 && ! TARGET_MIPS16)
0e5a4ad8 681
516a2dfd
JW
682/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
683 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
2370b831
JW
684 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
685 target_flags, and -mgp64 sets MASK_64BIT.
876c09d3 686
2370b831
JW
687 Setting MASK_64BIT in target_flags will cause gcc to assume that
688 registers are 64 bits wide. int, long and void * will be 32 bit;
689 this may be changed with -mint64 or -mlong64.
876c09d3 690
2370b831
JW
691 The gen* programs link code that refers to MASK_64BIT. They don't
692 actually use the information in target_flags; they just refer to
693 it. */
e75b25e7
MM
694\f
695/* Switch Recognition by gcc.c. Add -G xx support */
696
0e5a4ad8 697#undef SWITCH_TAKES_ARG
e75b25e7 698#define SWITCH_TAKES_ARG(CHAR) \
7d4ea832 699 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
e75b25e7
MM
700
701/* Sometimes certain combinations of command options do not make sense
702 on a particular target machine. You can define a macro
703 `OVERRIDE_OPTIONS' to take account of this. This macro, if
704 defined, is executed once just after all the command options have
705 been parsed.
706
707 On the MIPS, it is used to handle -G. We also use it to set up all
708 of the tables referenced in the other macros. */
709
710#define OVERRIDE_OPTIONS override_options ()
711
712/* Zero or more C statements that may conditionally modify two
713 variables `fixed_regs' and `call_used_regs' (both of type `char
714 []') after they have been initialized from the two preceding
715 macros.
716
717 This is necessary in case the fixed or call-clobbered registers
718 depend on target flags.
719
720 You need not define this macro if it has no work to do.
721
722 If the usage of an entire class of registers depends on the target
723 flags, you may indicate this to GCC by using this macro to modify
724 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
725 the classes which should not be used by GCC. Also define the macro
726 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
727 letter for a class that shouldn't be used.
728
729 (However, if this class is not included in `GENERAL_REGS' and all
730 of the insn patterns whose constraints permit this class are
731 controlled by target switches, then GCC will automatically avoid
732 using these registers when the target switches are opposed to
733 them.) */
734
735#define CONDITIONAL_REGISTER_USAGE \
736do \
737 { \
738 if (!TARGET_HARD_FLOAT) \
739 { \
740 int regno; \
741 \
742 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
743 fixed_regs[regno] = call_used_regs[regno] = 1; \
b8eb88d0
ILT
744 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
745 fixed_regs[regno] = call_used_regs[regno] = 1; \
746 } \
76ee8042 747 else if (! ISA_HAS_8CC) \
b8eb88d0
ILT
748 { \
749 int regno; \
750 \
751 /* We only have a single condition code register. We \
752 implement this by hiding all the condition code registers, \
753 and generating RTL that refers directly to ST_REG_FIRST. */ \
754 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
755 fixed_regs[regno] = call_used_regs[regno] = 1; \
e75b25e7 756 } \
2bcb2ab3
GK
757 /* In mips16 mode, we permit the $t temporary registers to be used \
758 for reload. We prohibit the unused $s registers, since they \
759 are caller saved, and saving them via a mips16 register would \
760 probably waste more time than just reloading the value. */ \
761 if (TARGET_MIPS16) \
762 { \
763 fixed_regs[18] = call_used_regs[18] = 1; \
764 fixed_regs[19] = call_used_regs[19] = 1; \
765 fixed_regs[20] = call_used_regs[20] = 1; \
766 fixed_regs[21] = call_used_regs[21] = 1; \
767 fixed_regs[22] = call_used_regs[22] = 1; \
768 fixed_regs[23] = call_used_regs[23] = 1; \
769 fixed_regs[26] = call_used_regs[26] = 1; \
770 fixed_regs[27] = call_used_regs[27] = 1; \
771 fixed_regs[30] = call_used_regs[30] = 1; \
772 } \
516a2dfd 773 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
e75b25e7
MM
774 } \
775while (0)
776
b2d8cf33 777/* This is meant to be redefined in the host dependent files. */
516a2dfd
JW
778#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
779
7be1e523
RK
780/* Show we can debug even without a frame pointer. */
781#define CAN_DEBUG_WITHOUT_FP
782\f
e75b25e7
MM
783/* Complain about missing specs and predefines that should be defined in each
784 of the target tm files to override the defaults. This is mostly a place-
785 holder until I can get each of the files updated [mm]. */
786
787#if defined(OSF_OS) \
788 || defined(DECSTATION) \
789 || defined(SGI_TARGET) \
790 || defined(MIPS_NEWS) \
791 || defined(MIPS_SYSV) \
59c94430 792 || defined(MIPS_SVR4) \
e75b25e7
MM
793 || defined(MIPS_BSD43)
794
795#ifndef CPP_PREDEFINES
796 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
797#endif
798
e75b25e7
MM
799#ifndef LIB_SPEC
800 #error "Define LIB_SPEC in the appropriate tm.h file"
801#endif
802
803#ifndef STARTFILE_SPEC
804 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
805#endif
806
807#ifndef MACHINE_TYPE
808 #error "Define MACHINE_TYPE in the appropriate tm.h file"
809#endif
810#endif
811
59c94430
MM
812/* Tell collect what flags to pass to nm. */
813#ifndef NM_FLAGS
2ce3c6c6 814#define NM_FLAGS "-Bn"
59c94430
MM
815#endif
816
e75b25e7
MM
817\f
818/* Names to predefine in the preprocessor for this target machine. */
819
820#ifndef CPP_PREDEFINES
d4099651 821#define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
65c42379 822-D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
2b57e919 823-Asystem=unix -Asystem=bsd -Acpu=mips -Amachine=mips"
e75b25e7
MM
824#endif
825
4e88bbcd
ILT
826/* Assembler specs. */
827
828/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
829 than gas. */
830
831#define MIPS_AS_ASM_SPEC "\
832%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
c725bd79 833%{pipe: %e-pipe is not supported} \
4e88bbcd
ILT
834%{K} %(subtarget_mips_as_asm_spec)"
835
836/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
837 rather than gas. It may be overridden by subtargets. */
838
839#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
840#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
841#endif
842
843/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
844 assembler. */
845
009da785
EC
846#define GAS_ASM_SPEC "%{march=*} %{mtune=*} %{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v} %{mgp32} %{mgp64} %(abi_gas_asm_spec) %{mabi=32:%{!mips*:-mips1}}"
847
848
009da785 849extern int mips_abi;
0e5a4ad8
EC
850
851#ifndef MIPS_ABI_DEFAULT
009da785
EC
852#define MIPS_ABI_DEFAULT ABI_32
853#endif
0e5a4ad8 854
009da785 855#ifndef ABI_GAS_ASM_SPEC
f9f45c65 856#define ABI_GAS_ASM_SPEC ""
0e5a4ad8 857#endif
4e88bbcd
ILT
858
859/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
860 GAS_ASM_SPEC as the default, depending upon the value of
861 TARGET_DEFAULT. */
e75b25e7 862
bb98bc58
JW
863#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
864/* GAS */
bb98bc58 865
4e88bbcd
ILT
866#define TARGET_ASM_SPEC "\
867%{mmips-as: %(mips_as_asm_spec)} \
868%{!mmips-as: %(gas_asm_spec)}"
869
870#else /* not GAS */
871
872#define TARGET_ASM_SPEC "\
873%{!mgas: %(mips_as_asm_spec)} \
874%{mgas: %(gas_asm_spec)}"
875
876#endif /* not GAS */
877
878/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
879 to the assembler. It may be overridden by subtargets. */
880#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
881#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
bb98bc58 882%{noasmopt:-O0} \
4e88bbcd
ILT
883%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
884#endif
885
886/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
887 the assembler. It may be overridden by subtargets. */
888#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
889#define SUBTARGET_ASM_DEBUGGING_SPEC "\
bb98bc58
JW
890%{g} %{g0} %{g1} %{g2} %{g3} \
891%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
892%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
893%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
4e88bbcd
ILT
894%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
895#endif
bb98bc58 896
4e88bbcd
ILT
897/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
898 overridden by subtargets. */
899
900#ifndef SUBTARGET_ASM_SPEC
901#define SUBTARGET_ASM_SPEC ""
bb98bc58 902#endif
4e88bbcd
ILT
903
904/* ASM_SPEC is the set of arguments to pass to the assembler. */
905
b2bcb32d 906#undef ASM_SPEC
4e88bbcd 907#define ASM_SPEC "\
0e5a4ad8 908%{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64}\
2bcb2ab3 909%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
4e88bbcd
ILT
910%(subtarget_asm_optimizing_spec) \
911%(subtarget_asm_debugging_spec) \
912%{membedded-pic} \
913%{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
914%(target_asm_spec) \
915%(subtarget_asm_spec)"
e75b25e7
MM
916
917/* Specify to run a post-processor, mips-tfile after the assembler
918 has run to stuff the mips debug information into the object file.
919 This is needed because the $#!%^ MIPS assembler provides no way
a813fadf
MM
920 of specifying such information in the assembly file. If we are
921 cross compiling, disable mips-tfile unless the user specifies
922 -mmips-tfile. */
e75b25e7
MM
923
924#ifndef ASM_FINAL_SPEC
bb98bc58
JW
925#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
926/* GAS */
31c714e3 927#define ASM_FINAL_SPEC "\
149e4e00 928%{mmips-as: %{!mno-mips-tfile: \
31c714e3
MM
929 \n mips-tfile %{v*: -v} \
930 %{K: -I %b.o~} \
931 %{!K: %{save-temps: -I %b.o~}} \
ab78d4a8 932 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
31c714e3 933 %{.s:%i} %{!.s:%g.s}}}"
a813fadf 934
bb98bc58
JW
935#else
936/* not GAS */
a813fadf 937#define ASM_FINAL_SPEC "\
149e4e00 938%{!mgas: %{!mno-mips-tfile: \
a813fadf
MM
939 \n mips-tfile %{v*: -v} \
940 %{K: -I %b.o~} \
941 %{!K: %{save-temps: -I %b.o~}} \
942 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
943 %{.s:%i} %{!.s:%g.s}}}"
944
bb98bc58 945#endif
a813fadf 946#endif /* ASM_FINAL_SPEC */
e75b25e7
MM
947
948/* Redefinition of libraries used. Mips doesn't support normal
949 UNIX style profiling via calling _mcount. It does offer
987ba558 950 profiling that samples the PC, so do what we can... */
e75b25e7
MM
951
952#ifndef LIB_SPEC
953#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
954#endif
955
31c714e3 956/* Extra switches sometimes passed to the linker. */
bb98bc58
JW
957/* ??? The bestGnum will never be passed to the linker, because the gcc driver
958 will interpret it as a -b option. */
e75b25e7
MM
959
960#ifndef LINK_SPEC
31c714e3 961#define LINK_SPEC "\
120dc6cd 962%(endian_spec) \
0e5a4ad8 963%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64} \
120dc6cd 964%{bestGnum} %{shared} %{non_shared}"
0e5a4ad8
EC
965#endif /* LINK_SPEC defined */
966
e75b25e7
MM
967
968/* Specs for the compiler proper */
969
c9db96ce
JR
970/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
971 overridden by subtargets. */
972#ifndef SUBTARGET_CC1_SPEC
973#define SUBTARGET_CC1_SPEC ""
974#endif
975
7dac2f89
EC
976/* Deal with historic options. */
977#ifndef CC1_CPU_SPEC
978#define CC1_CPU_SPEC "\
979%{!mcpu*: \
980%{m3900:-march=r3900 -mips1 -mfp32 -mgp32 \
981%n`-m3900' is deprecated. Use `-march=r3900' instead.\n} \
982%{m4650:-march=r4650 -mmad -msingle-float \
983%n`-m4650' is deprecated. Use `-march=r4650' instead.\n}}"
984#endif
985
c9db96ce 986/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
75dcd8fe
MM
987/* Note, we will need to adjust the following if we ever find a MIPS variant
988 that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
989 that show up in this case. */
c9db96ce 990
e75b25e7 991#ifndef CC1_SPEC
31c714e3 992#define CC1_SPEC "\
31c714e3 993%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
7e99e494 994%{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
46299de9 995%{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
516a2dfd 996%{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
0e5a4ad8
EC
997%{mips32:-mfp32 -mgp32} \
998%{mips64:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
46299de9
ILT
999%{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
1000%{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
3ce1ba83 1001%{mint64|mlong64|mlong32:-mexplicit-type-size }\
75dcd8fe 1002%{mgp32: %{mfp64:%emay not use both -mgp32 and -mfp64} %{!mfp32: -mfp32}} \
96abdcb1 1003%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
31c714e3
MM
1004%{pic-none: -mno-half-pic} \
1005%{pic-lib: -mhalf-pic} \
1006%{pic-extern: -mhalf-pic} \
1007%{pic-calls: -mhalf-pic} \
c9db96ce 1008%{save-temps: } \
7dac2f89
EC
1009%(subtarget_cc1_spec) \
1010%(cc1_cpu_spec)"
e75b25e7
MM
1011#endif
1012
4e88bbcd
ILT
1013/* Preprocessor specs. */
1014
8a13c092
AO
1015/* Rules for SIZE_TYPE and PTRDIFF_TYPE are:
1016
1017 both gp64 and long64 (not the options, but the corresponding flags,
1018 so defaults came into play) are required in order to have `long' in
1019 SIZE_TYPE and PTRDIFF_TYPE.
1020
1021 on eabi, -mips1, -mips2 and -mips32 disable gp64, whereas mips3,
1022 -mips4, -mips5 and -mips64 enable it.
1023
1024 on other ABIs, -mips* options do not affect gp32/64, but the
1025 default ISA affects the default gp size.
1026
1027 -mgp32 disables gp64, whereas -mgp64 enables it.
1028
1029 on eabi, gp64 implies long64.
1030
1031 -mlong64, and -mabi=64 are the only other ways to enable long64.
1032
1033*/
1034
f9f45c65
EC
1035#if MIPS_ISA_DEFAULT != 3 && MIPS_ISA_DEFAULT != 4 && MIPS_ISA_DEFAULT != 5 && MIPS_ISA_DEFAULT != 64
1036
1037/* 32-bit cases first. */
1038
1039#if MIPS_ABI_DEFAULT == ABI_EABI
5faae4f7
AO
1040#define LONG_MAX_SPEC "\
1041%{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1042%{!mlong64:\
1043 %{mabi=eabi|!mabi=*:\
1044 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1045 %{mips3|mips4|mips5|mips64|mgp64: \
1046 -D__LONG_MAX__=9223372036854775807L}}}}}}}} \
1047"
1048#else /* ABI_DEFAULT != ABI_EABI */
1049#define LONG_MAX_SPEC "\
1050%{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1051%{!mlong64:\
1052 %{mabi=eabi:\
1053 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1054 %{mips3|mips4|mips5|mips64|mgp64: \
1055 -D__LONG_MAX__=9223372036854775807L}}}}}}}} \
1056"
f9f45c65
EC
1057#endif
1058
f9f45c65
EC
1059#else
1060
1061/* 64-bit default ISA. */
f9f45c65 1062#if MIPS_ABI_DEFAULT == ABI_EABI
5faae4f7
AO
1063#define LONG_MAX_SPEC "\
1064%{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1065%{!mlong64:\
1066 %{mabi=eabi|!mabi=*:\
1067 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1068 -D__LONG_MAX__=9223372036854775807L}}}}}}}\
1069"
1070#else /* ABI_DEFAULT != ABI_EABI */
1071#define LONG_MAX_SPEC "\
1072%{mlong64:-D__LONG_MAX__=9223372036854775807L}\
1073%{!mlong64:\
1074 %{mabi=eabi:\
1075 %{!mips1:%{!mips2:%{!mips32:%{!mgp32:%{!mlong32: \
1076 -D__LONG_MAX__=9223372036854775807L}}}}}}}\
1077"
f9f45c65
EC
1078#endif
1079
4e88bbcd
ILT
1080#endif
1081
1082/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1083 overridden by subtargets. */
1084#ifndef SUBTARGET_CPP_SPEC
1085#define SUBTARGET_CPP_SPEC ""
1086#endif
1087
75dcd8fe
MM
1088/* Define appropriate macros for fpr register size. */
1089#ifndef CPP_FPR_SPEC
1090#if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_FLOAT64)
1091#define CPP_FPR_SPEC "-D__mips_fpr=64"
1092#else
1093#define CPP_FPR_SPEC "-D__mips_fpr=32"
1094#endif
1095#endif
1096
64b172fe
RO
1097/* For C++ we need to ensure that _LANGUAGE_C_PLUS_PLUS is defined independent
1098 of the source file extension. */
b2bcb32d 1099#undef CPLUSPLUS_CPP_SPEC
64b172fe
RO
1100#define CPLUSPLUS_CPP_SPEC "\
1101-D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS \
1102%(cpp) \
1103"
4e88bbcd 1104/* CPP_SPEC is the set of arguments to pass to the preprocessor. */
e75b25e7
MM
1105
1106#ifndef CPP_SPEC
31c714e3 1107#define CPP_SPEC "\
0002d808 1108%{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
64b172fe
RO
1109%{.S|.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
1110%{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.cpp: %{!.cp: %{!.c++: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}}}}} \
4e88bbcd 1111%(subtarget_cpp_size_spec) \
192616a4
RK
1112%{mips3:-U__mips -D__mips=3 -D__mips64} \
1113%{mips4:-U__mips -D__mips=4 -D__mips64} \
0e5a4ad8
EC
1114%{mips32:-U__mips -D__mips=32} \
1115%{mips64:-U__mips -D__mips=64 -D__mips64} \
192616a4 1116%{mgp32:-U__mips64} %{mgp64:-D__mips64} \
75dcd8fe 1117%{mfp32:-D__mips_fpr=32} %{mfp64:-D__mips_fpr=64} %{!mfp32: %{!mfp64: %{mgp32:-D__mips_fpr=32} %{!mgp32: %(cpp_fpr_spec)}}} \
54efdaa4
JW
1118%{msingle-float:%{!msoft-float:-D__mips_single_float}} \
1119%{m4650:%{!msoft-float:-D__mips_single_float}} \
293a36eb
ILT
1120%{msoft-float:-D__mips_soft_float} \
1121%{mabi=eabi:-D__mips_eabi} \
2bcb2ab3 1122%{mips16:%{!mno-mips16:-D__mips16}} \
96abdcb1 1123%{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
4e88bbcd 1124%{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
4eb66248 1125%(long_max_spec) \
4e88bbcd
ILT
1126%(subtarget_cpp_spec) "
1127#endif
1128
1129/* This macro defines names of additional specifications to put in the specs
1130 that can be used in various specifications like CC1_SPEC. Its definition
1131 is an initializer with a subgrouping for each command option.
1132
1133 Each subgrouping contains a string constant, that defines the
1134 specification name, and a string constant that used by the GNU CC driver
1135 program.
1136
1137 Do not define this macro if it does not need to do anything. */
1138
1139#define EXTRA_SPECS \
829245be 1140 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
7a38df19 1141 { "cc1_cpu_spec", CC1_CPU_SPEC}, \
829245be 1142 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
829245be 1143 { "long_max_spec", LONG_MAX_SPEC }, \
75dcd8fe 1144 { "cpp_fpr_spec", CPP_FPR_SPEC }, \
829245be
KG
1145 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1146 { "gas_asm_spec", GAS_ASM_SPEC }, \
0e5a4ad8 1147 { "abi_gas_asm_spec", ABI_GAS_ASM_SPEC }, \
829245be
KG
1148 { "target_asm_spec", TARGET_ASM_SPEC }, \
1149 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1150 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1151 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1152 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
120dc6cd 1153 { "endian_spec", ENDIAN_SPEC }, \
4e88bbcd
ILT
1154 SUBTARGET_EXTRA_SPECS
1155
1156#ifndef SUBTARGET_EXTRA_SPECS
1157#define SUBTARGET_EXTRA_SPECS
e75b25e7
MM
1158#endif
1159
1160/* If defined, this macro is an additional prefix to try after
1161 `STANDARD_EXEC_PREFIX'. */
1162
1163#ifndef MD_EXEC_PREFIX
31c714e3 1164#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
e75b25e7
MM
1165#endif
1166
59c94430
MM
1167#ifndef MD_STARTFILE_PREFIX
1168#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1169#endif
1170
e75b25e7
MM
1171\f
1172/* Print subsidiary information on the compiler version in use. */
1173
42dee4c7 1174#define MIPS_VERSION "[AL 1.1, MM 40]"
e75b25e7
MM
1175
1176#ifndef MACHINE_TYPE
1177#define MACHINE_TYPE "BSD Mips"
1178#endif
1179
1180#ifndef TARGET_VERSION_INTERNAL
1181#define TARGET_VERSION_INTERNAL(STREAM) \
1182 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
1183#endif
1184
1185#ifndef TARGET_VERSION
1186#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
1187#endif
1188
1189\f
1190#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
1191#define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
1192#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
1193
1194#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 1195#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
e75b25e7
MM
1196#endif
1197
59c94430
MM
1198/* By default, turn on GDB extensions. */
1199#define DEFAULT_GDB_EXTENSIONS 1
1200
e75b25e7
MM
1201/* If we are passing smuggling stabs through the MIPS ECOFF object
1202 format, put a comment in front of the .stab<x> operation so
1203 that the MIPS assembler does not choke. The mips-tfile program
1204 will correctly put the stab into the object file. */
1205
78d057d8
HPN
1206#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1207#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1208#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
e75b25e7 1209
6ae1498b
JW
1210/* Local compiler-generated symbols must have a prefix that the assembler
1211 understands. By default, this is $, although some targets (e.g.,
987ba558 1212 NetBSD-ELF) need to override this. */
6ae1498b
JW
1213
1214#ifndef LOCAL_LABEL_PREFIX
1215#define LOCAL_LABEL_PREFIX "$"
1216#endif
1217
1218/* By default on the mips, external symbols do not have an underscore
987ba558 1219 prepended, but some targets (e.g., NetBSD) require this. */
6ae1498b
JW
1220
1221#ifndef USER_LABEL_PREFIX
1222#define USER_LABEL_PREFIX ""
1223#endif
1224
e75b25e7
MM
1225/* Forward references to tags are allowed. */
1226#define SDB_ALLOW_FORWARD_REFERENCES
1227
1228/* Unknown tags are also allowed. */
1229#define SDB_ALLOW_UNKNOWN_REFERENCES
1230
1231/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1232 since the length can run past this up to a continuation point. */
44404b8b 1233#undef DBX_CONTIN_LENGTH
e75b25e7
MM
1234#define DBX_CONTIN_LENGTH 1500
1235
987ba558 1236/* How to renumber registers for dbx and gdb. */
e75b25e7
MM
1237#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1238
c8cc5c4a 1239/* The mapping from gcc register number to DWARF 2 CFA column number.
0021b564
JM
1240 This mapping does not allow for tracking register 0, since SGI's broken
1241 dwarf reader thinks column 0 is used for the frame address, but since
1242 register 0 is fixed this is not a problem. */
469ac993 1243#define DWARF_FRAME_REGNUM(REG) \
0021b564 1244 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
c8cc5c4a
JM
1245
1246/* The DWARF 2 CFA column which tracks the return address. */
1247#define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
e75b25e7 1248
469ac993 1249/* Before the prologue, RA lives in r31. */
c5c76735 1250#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
469ac993 1251
9e800206 1252/* Describe how we implement __builtin_eh_return. */
282cb01b 1253#define EH_RETURN_DATA_REGNO(N) ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
9e800206
RH
1254#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1255
7dac2f89 1256/* Offsets recorded in opcodes are a multiple of this alignment factor.
b3276c7a
GK
1257 The default for this in 64-bit mode is 8, which causes problems with
1258 SFmode register saves. */
1259#define DWARF_CIE_DATA_ALIGNMENT 4
1260
e75b25e7
MM
1261/* Overrides for the COFF debug format. */
1262#define PUT_SDB_SCL(a) \
1263do { \
1264 extern FILE *asm_out_text_file; \
1265 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1266} while (0)
1267
1268#define PUT_SDB_INT_VAL(a) \
1269do { \
1270 extern FILE *asm_out_text_file; \
e59f7d3d
KG
1271 fprintf (asm_out_text_file, "\t.val\t"); \
1272 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1273 fprintf (asm_out_text_file, ";"); \
e75b25e7
MM
1274} while (0)
1275
1276#define PUT_SDB_VAL(a) \
1277do { \
1278 extern FILE *asm_out_text_file; \
1279 fputs ("\t.val\t", asm_out_text_file); \
1280 output_addr_const (asm_out_text_file, (a)); \
1281 fputc (';', asm_out_text_file); \
1282} while (0)
1283
1284#define PUT_SDB_DEF(a) \
1285do { \
1286 extern FILE *asm_out_text_file; \
b82b0773
MM
1287 fprintf (asm_out_text_file, "\t%s.def\t", \
1288 (TARGET_GAS) ? "" : "#"); \
e75b25e7
MM
1289 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1290 fputc (';', asm_out_text_file); \
1291} while (0)
1292
1293#define PUT_SDB_PLAIN_DEF(a) \
1294do { \
1295 extern FILE *asm_out_text_file; \
b82b0773
MM
1296 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1297 (TARGET_GAS) ? "" : "#", (a)); \
e75b25e7
MM
1298} while (0)
1299
1300#define PUT_SDB_ENDEF \
1301do { \
1302 extern FILE *asm_out_text_file; \
1303 fprintf (asm_out_text_file, "\t.endef\n"); \
1304} while (0)
1305
1306#define PUT_SDB_TYPE(a) \
1307do { \
1308 extern FILE *asm_out_text_file; \
1309 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1310} while (0)
1311
1312#define PUT_SDB_SIZE(a) \
1313do { \
1314 extern FILE *asm_out_text_file; \
e59f7d3d
KG
1315 fprintf (asm_out_text_file, "\t.size\t"); \
1316 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1317 fprintf (asm_out_text_file, ";"); \
e75b25e7
MM
1318} while (0)
1319
1320#define PUT_SDB_DIM(a) \
1321do { \
1322 extern FILE *asm_out_text_file; \
1323 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1324} while (0)
1325
1326#ifndef PUT_SDB_START_DIM
1327#define PUT_SDB_START_DIM \
1328do { \
1329 extern FILE *asm_out_text_file; \
1330 fprintf (asm_out_text_file, "\t.dim\t"); \
1331} while (0)
1332#endif
1333
1334#ifndef PUT_SDB_NEXT_DIM
1335#define PUT_SDB_NEXT_DIM(a) \
1336do { \
1337 extern FILE *asm_out_text_file; \
1338 fprintf (asm_out_text_file, "%d,", a); \
1339} while (0)
1340#endif
1341
1342#ifndef PUT_SDB_LAST_DIM
1343#define PUT_SDB_LAST_DIM(a) \
1344do { \
1345 extern FILE *asm_out_text_file; \
1346 fprintf (asm_out_text_file, "%d;", a); \
1347} while (0)
1348#endif
1349
1350#define PUT_SDB_TAG(a) \
1351do { \
1352 extern FILE *asm_out_text_file; \
1353 fprintf (asm_out_text_file, "\t.tag\t"); \
1354 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1355 fputc (';', asm_out_text_file); \
1356} while (0)
1357
1358/* For block start and end, we create labels, so that
1359 later we can figure out where the correct offset is.
1360 The normal .ent/.end serve well enough for functions,
1361 so those are just commented out. */
1362
1363#define PUT_SDB_BLOCK_START(LINE) \
1364do { \
1365 extern FILE *asm_out_text_file; \
1366 fprintf (asm_out_text_file, \
6ae1498b
JW
1367 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1368 LOCAL_LABEL_PREFIX, \
e75b25e7 1369 sdb_label_count, \
b82b0773 1370 (TARGET_GAS) ? "" : "#", \
6ae1498b 1371 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1372 sdb_label_count, \
1373 (LINE)); \
1374 sdb_label_count++; \
1375} while (0)
1376
1377#define PUT_SDB_BLOCK_END(LINE) \
1378do { \
1379 extern FILE *asm_out_text_file; \
1380 fprintf (asm_out_text_file, \
6ae1498b
JW
1381 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1382 LOCAL_LABEL_PREFIX, \
e75b25e7 1383 sdb_label_count, \
b82b0773 1384 (TARGET_GAS) ? "" : "#", \
6ae1498b 1385 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1386 sdb_label_count, \
1387 (LINE)); \
1388 sdb_label_count++; \
1389} while (0)
1390
1391#define PUT_SDB_FUNCTION_START(LINE)
1392
a642a781
RK
1393#define PUT_SDB_FUNCTION_END(LINE) \
1394do { \
1395 extern FILE *asm_out_text_file; \
1396 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1397} while (0)
e75b25e7
MM
1398
1399#define PUT_SDB_EPILOGUE_END(NAME)
1400
cc694a81
DE
1401#define PUT_SDB_SRC_FILE(FILENAME) \
1402do { \
1403 extern FILE *asm_out_text_file; \
1404 output_file_directive (asm_out_text_file, (FILENAME)); \
1405} while (0)
1406
e75b25e7
MM
1407#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1408 sprintf ((BUFFER), ".%dfake", (NUMBER));
1409
ab78d4a8
MM
1410/* Correct the offset of automatic variables and arguments. Note that
1411 the MIPS debug format wants all automatic variables and arguments
1412 to be in terms of the virtual frame pointer (stack pointer before
1413 any adjustment in the function), while the MIPS 3.0 linker wants
1414 the frame pointer to be the stack pointer after the initial
1415 adjustment. */
e75b25e7 1416
f5963e61
JL
1417#define DEBUGGER_AUTO_OFFSET(X) \
1418 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1419#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1420 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
31c714e3
MM
1421
1422/* Tell collect that the object format is ECOFF */
1423#ifndef OBJECT_FORMAT_ROSE
1424#define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1425#define EXTENDED_COFF /* ECOFF, not normal coff */
1426#endif
e75b25e7
MM
1427\f
1428/* Target machine storage layout */
1429
1430/* Define this if most significant bit is lowest numbered
1431 in instructions that operate on numbered bit-fields.
1432*/
4851a75c 1433#define BITS_BIG_ENDIAN 0
e75b25e7 1434
987ba558 1435/* Define this if most significant byte of a word is the lowest numbered. */
96abdcb1 1436#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1437
987ba558 1438/* Define this if most significant word of a multiword number is the lowest. */
96abdcb1 1439#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1440
96abdcb1
ILT
1441/* Define this to set the endianness to use in libgcc2.c, which can
1442 not depend on target_flags. */
1443#if !defined(MIPSEL) && !defined(__MIPSEL__)
1444#define LIBGCC2_WORDS_BIG_ENDIAN 1
e75b25e7 1445#else
96abdcb1 1446#define LIBGCC2_WORDS_BIG_ENDIAN 0
e75b25e7
MM
1447#endif
1448
876c09d3 1449#define MAX_BITS_PER_WORD 64
e75b25e7
MM
1450
1451/* Width of a word, in units (bytes). */
456f6501 1452#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
ef0e53ce 1453#define MIN_UNITS_PER_WORD 4
876c09d3
JW
1454
1455/* For MIPS, width of a floating point register. */
456f6501 1456#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
e75b25e7 1457
3f26edaa
RS
1458/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1459 the next available register. */
1460#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1461
1462/* The largest size of value that can be held in floating-point registers. */
4d72536e
RS
1463#define UNITS_PER_FPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1464
1465/* The number of bytes in a double. */
1466#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
3f26edaa 1467
e75b25e7
MM
1468/* A C expression for the size in bits of the type `int' on the
1469 target machine. If you don't define this, the default is one
1470 word. */
456f6501 1471#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
876c09d3
JW
1472
1473/* Tell the preprocessor the maximum size of wchar_t. */
1474#ifndef MAX_WCHAR_TYPE_SIZE
1475#ifndef WCHAR_TYPE_SIZE
16c484c7 1476#define MAX_WCHAR_TYPE_SIZE 64
876c09d3
JW
1477#endif
1478#endif
e75b25e7
MM
1479
1480/* A C expression for the size in bits of the type `short' on the
1481 target machine. If you don't define this, the default is half a
1482 word. (If this would be less than one storage unit, it is
1483 rounded up to one unit.) */
1484#define SHORT_TYPE_SIZE 16
1485
1486/* A C expression for the size in bits of the type `long' on the
1487 target machine. If you don't define this, the default is one
1488 word. */
456f6501 1489#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
876c09d3 1490#define MAX_LONG_TYPE_SIZE 64
e75b25e7
MM
1491
1492/* A C expression for the size in bits of the type `long long' on the
1493 target machine. If you don't define this, the default is two
1494 words. */
923d630e 1495#define LONG_LONG_TYPE_SIZE 64
e75b25e7 1496
e75b25e7
MM
1497/* A C expression for the size in bits of the type `float' on the
1498 target machine. If you don't define this, the default is one
1499 word. */
1500#define FLOAT_TYPE_SIZE 32
1501
1502/* A C expression for the size in bits of the type `double' on the
1503 target machine. If you don't define this, the default is two
1504 words. */
1505#define DOUBLE_TYPE_SIZE 64
1506
1507/* A C expression for the size in bits of the type `long double' on
1508 the target machine. If you don't define this, the default is two
1509 words. */
1510#define LONG_DOUBLE_TYPE_SIZE 64
1511
1512/* Width in bits of a pointer.
1513 See also the macro `Pmode' defined below. */
1eeed24e 1514#ifndef POINTER_SIZE
456f6501 1515#define POINTER_SIZE (Pmode == DImode ? 64 : 32)
1eeed24e 1516#endif
e75b25e7
MM
1517
1518/* Allocation boundary (in *bits*) for storing pointers in memory. */
456f6501 1519#define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
e75b25e7
MM
1520
1521/* Allocation boundary (in *bits*) for storing arguments in argument list. */
0b51254d
AO
1522#define PARM_BOUNDARY ((mips_abi == ABI_O64 || mips_abi == ABI_N32 \
1523 || mips_abi == ABI_64 \
1524 || (mips_abi == ABI_EABI && TARGET_64BIT)) ? 64 : 32)
e75b25e7
MM
1525
1526/* Allocation boundary (in *bits*) for the code of a function. */
1527#define FUNCTION_BOUNDARY 32
1528
1529/* Alignment of field after `int : 0' in a structure. */
9e95597a 1530#define EMPTY_FIELD_BOUNDARY 32
e75b25e7
MM
1531
1532/* Every structure's size must be a multiple of this. */
1533/* 8 is observed right on a DECstation and on riscos 4.02. */
1534#define STRUCTURE_SIZE_BOUNDARY 8
1535
1536/* There is no point aligning anything to a rounder boundary than this. */
1537#define BIGGEST_ALIGNMENT 64
1538
31c714e3 1539/* Set this nonzero if move instructions will actually fail to work
e75b25e7 1540 when given unaligned data. */
31c714e3 1541#define STRICT_ALIGNMENT 1
e75b25e7
MM
1542
1543/* Define this if you wish to imitate the way many other C compilers
1544 handle alignment of bitfields and the structures that contain
1545 them.
1546
1547 The behavior is that the type written for a bitfield (`int',
1548 `short', or other integer type) imposes an alignment for the
1549 entire structure, as if the structure really did contain an
1550 ordinary field of that type. In addition, the bitfield is placed
1551 within the structure so that it would fit within such a field,
1552 not crossing a boundary for it.
1553
1554 Thus, on most machines, a bitfield whose type is written as `int'
1555 would not cross a four-byte boundary, and would force four-byte
1556 alignment for the whole structure. (The alignment used may not
1557 be four bytes; it is controlled by the other alignment
1558 parameters.)
1559
1560 If the macro is defined, its definition should be a C expression;
1561 a nonzero value for the expression enables this behavior. */
1562
1563#define PCC_BITFIELD_TYPE_MATTERS 1
1564
1565/* If defined, a C expression to compute the alignment given to a
1566 constant that is being placed in memory. CONSTANT is the constant
1567 and ALIGN is the alignment that the object would ordinarily have.
1568 The value of this macro is used instead of that alignment to align
1569 the object.
1570
1571 If this macro is not defined, then ALIGN is used.
1572
1573 The typical use of this macro is to increase alignment for string
1574 constants to be word aligned so that `strcpy' calls that copy
1575 constants can be done inline. */
1576
1577#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1578 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
75131237 1579 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
e75b25e7
MM
1580
1581/* If defined, a C expression to compute the alignment for a static
1582 variable. TYPE is the data type, and ALIGN is the alignment that
1583 the object would ordinarily have. The value of this macro is used
1584 instead of that alignment to align the object.
1585
1586 If this macro is not defined, then ALIGN is used.
1587
1588 One use of this macro is to increase alignment of medium-size
1589 data to make it all fit in fewer cache lines. Another is to
1590 cause character arrays to be word-aligned so that `strcpy' calls
1591 that copy constants to character arrays can be done inline. */
1592
1593#undef DATA_ALIGNMENT
1594#define DATA_ALIGNMENT(TYPE, ALIGN) \
1595 ((((ALIGN) < BITS_PER_WORD) \
1596 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1597 || TREE_CODE (TYPE) == UNION_TYPE \
1598 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1599
f5c8ac96
CP
1600
1601/* Force right-alignment for small varargs in 32 bit little_endian mode */
1602
0e5a4ad8
EC
1603#define PAD_VARARGS_DOWN (TARGET_64BIT \
1604 || mips_abi == ABI_MEABI \
1605 ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
f5c8ac96 1606
e75b25e7
MM
1607/* Define this macro if an argument declared as `char' or `short' in a
1608 prototype should actually be passed as an `int'. In addition to
1609 avoiding errors in certain cases of mismatch, it also makes for
987ba558 1610 better code on certain machines. */
e75b25e7 1611
cb560352 1612#define PROMOTE_PROTOTYPES 1
e75b25e7 1613
9a63901f
RK
1614/* Define if operations between registers always perform the operation
1615 on the full register even if a narrower mode is specified. */
1616#define WORD_REGISTER_OPERATIONS
1617
1618/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1619 will either zero-extend or sign-extend. The value of this macro should
1620 be the code that says which one of the two operations is implicitly
7dac2f89 1621 done, NIL if none.
a872728c
JL
1622
1623 When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
1624 moves. All other referces are zero extended. */
1625#define LOAD_EXTEND_OP(MODE) \
1626 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1627 ? SIGN_EXTEND : ZERO_EXTEND)
2bcb2ab3
GK
1628
1629/* Define this macro if it is advisable to hold scalars in registers
7dac2f89 1630 in a wider mode than that declared by the program. In such cases,
2bcb2ab3
GK
1631 the value is constrained to be within the bounds of the declared
1632 type, but kept valid in the wider mode. The signedness of the
1633 extension may differ from that of the type.
1634
1635 We promote any value smaller than SImode up to SImode. We don't
1636 want to promote to DImode when in 64 bit mode, because that would
1637 prevent us from using the faster SImode multiply and divide
1638 instructions. */
1639
1640#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1641 if (GET_MODE_CLASS (MODE) == MODE_INT \
1642 && GET_MODE_SIZE (MODE) < 4) \
1643 (MODE) = SImode;
1644
1645/* Define this if function arguments should also be promoted using the above
1646 procedure. */
1647
1648#define PROMOTE_FUNCTION_ARGS
1649
1650/* Likewise, if the function return value is promoted. */
1651
1652#define PROMOTE_FUNCTION_RETURN
e75b25e7
MM
1653\f
1654/* Standard register usage. */
1655
1656/* Number of actual hardware registers.
1657 The hardware registers are assigned numbers for the compiler
1658 from 0 to just below FIRST_PSEUDO_REGISTER.
1659 All registers that the compiler knows about must be given numbers,
1660 even those that are not normally considered general registers.
1661
225b8835 1662 On the Mips, we have 32 integer registers, 32 floating point
b8eb88d0 1663 registers, 8 condition code registers, and the special registers
d604bca3
MH
1664 hi, lo, hilo, and rap. Afetr that we have 32 COP0 registers, 32
1665 COP2 registers, and 32 COp3 registers. (COP1 is the floating-point
1666 processor.) The 8 condition code registers are only used if
1667 mips_isa >= 4. The hilo register is only used in 64 bit mode. It
1668 represents a 64 bit value stored as two 32 bit values in the hi and
1669 lo registers; this is the result of the mult instruction. rap is a
1670 pointer to the stack where the return address reg ($31) was stored.
1671 This is needed for C++ exception handling. */
e75b25e7 1672
d604bca3 1673#define FIRST_PSEUDO_REGISTER 176
e75b25e7
MM
1674
1675/* 1 for registers that have pervasive standard uses
1676 and are not available for the register allocator.
1677
1678 On the MIPS, see conventions, page D-2 */
1679
d604bca3
MH
1680/* Regarding coprocessor registers: without evidence to the contrary,
1681 it's best to assume that each coprocessor register has a unique
1682 use. This can be overridden, in, e.g., override_options() or
1683 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1684 for a particular target. */
1685
e75b25e7
MM
1686#define FIXED_REGISTERS \
1687{ \
1688 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1689 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1690 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1691 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
d604bca3
MH
1692 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, \
1693 /* COP0 registers */ \
1694 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1695 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1696 /* COP2 registers */ \
1697 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1698 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1699 /* COP3 registers */ \
1700 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1701 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1702}
1703
1704
1705/* 1 for registers not available across function calls.
1706 These must include the FIXED_REGISTERS and also any
1707 registers that can be used without being saved.
1708 The latter must include the registers where values are returned
1709 and the register where structure-value addresses are passed.
1710 Aside from that, you can include as many other registers as you like. */
1711
1712#define CALL_USED_REGISTERS \
1713{ \
1714 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1715 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1716 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1717 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
d604bca3
MH
1718 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1719 /* COP0 registers */ \
1720 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1721 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1722 /* COP2 registers */ \
1723 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1724 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1725 /* COP3 registers */ \
1726 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1727 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1728}
1729
2ca2d9ee
EC
1730/* Like `CALL_USED_REGISTERS' but used to overcome a historical
1731 problem which makes CALL_USED_REGISTERS *always* include
1732 all the FIXED_REGISTERS. Until this problem has been
1733 resolved this macro can be used to overcome this situation.
1734 In particular, block_propagate() requires this list
1735 be acurate, or we can remove registers which should be live.
1736 This macro is used in regs_invalidated_by_call. */
1737
1738
1739#define CALL_REALLY_USED_REGISTERS \
1740{ /* General registers. */ \
1741 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1742 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, \
1743 /* Floating-point registers. */ \
1744 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1745 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1746 /* Others. */ \
d604bca3
MH
1747 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1748 /* COP0 registers */ \
1749 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1751 /* COP2 registers */ \
1752 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1753 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1754 /* COP3 registers */ \
1755 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1756 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
2ca2d9ee 1757}
e75b25e7
MM
1758
1759/* Internal macros to classify a register number as to whether it's a
1760 general purpose register, a floating point register, a
516a2dfd 1761 multiply/divide register, or a status register. */
e75b25e7
MM
1762
1763#define GP_REG_FIRST 0
1764#define GP_REG_LAST 31
1765#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1766#define GP_DBX_FIRST 0
1767
1768#define FP_REG_FIRST 32
1769#define FP_REG_LAST 63
1770#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1771#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1772
1773#define MD_REG_FIRST 64
225b8835 1774#define MD_REG_LAST 66
e75b25e7
MM
1775#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1776
225b8835 1777#define ST_REG_FIRST 67
b8eb88d0 1778#define ST_REG_LAST 74
e75b25e7
MM
1779#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1780
b8eb88d0 1781#define RAP_REG_NUM 75
39dffea3 1782
d604bca3
MH
1783#define COP0_REG_FIRST 80
1784#define COP0_REG_LAST 111
1785#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1786
1787#define COP2_REG_FIRST 112
1788#define COP2_REG_LAST 143
1789#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1790
1791#define COP3_REG_FIRST 144
1792#define COP3_REG_LAST 175
1793#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1794/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1795#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1796
e75b25e7
MM
1797#define AT_REGNUM (GP_REG_FIRST + 1)
1798#define HI_REGNUM (MD_REG_FIRST + 0)
1799#define LO_REGNUM (MD_REG_FIRST + 1)
225b8835 1800#define HILO_REGNUM (MD_REG_FIRST + 2)
b8eb88d0
ILT
1801
1802/* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1803 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1804 should be used instead. */
e75b25e7
MM
1805#define FPSW_REGNUM ST_REG_FIRST
1806
75131237
RK
1807#define GP_REG_P(REGNO) \
1808 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
2bcb2ab3
GK
1809#define M16_REG_P(REGNO) \
1810 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
75131237
RK
1811#define FP_REG_P(REGNO) \
1812 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1813#define MD_REG_P(REGNO) \
1814 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1815#define ST_REG_P(REGNO) \
1816 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
d604bca3
MH
1817#define COP0_REG_P(REGNO) \
1818 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1819#define COP2_REG_P(REGNO) \
1820 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1821#define COP3_REG_P(REGNO) \
1822 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1823#define ALL_COP_REG_P(REGNO) \
1824 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1825
1826/* Return coprocessor number from register number. */
1827
1828#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1829 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1830 : COP3_REG_P (REGNO) ? '3' : '?')
e75b25e7 1831
e75b25e7
MM
1832/* Return number of consecutive hard regs needed starting at reg REGNO
1833 to hold something of mode MODE.
1834 This is ordinarily the length in words of a value of mode MODE
1835 but can be less for certain modes in special long registers.
1836
1837 On the MIPS, all general registers are one word long. Except on
1838 the R4000 with the FR bit set, the floating point uses register
956d6950 1839 pairs, with the second register not being allocable. */
e75b25e7 1840
0e5a4ad8 1841#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
e75b25e7
MM
1842
1843/* Value is 1 if hard register REGNO can hold a value of machine-mode
876c09d3
JW
1844 MODE. In 32 bit mode, require that DImode and DFmode be in even
1845 registers. For DImode, this makes some of the insns easier to
1846 write, since you don't have to worry about a DImode value in
1847 registers 3 & 4, producing a result in 4 & 5.
e75b25e7
MM
1848
1849 To make the code simpler HARD_REGNO_MODE_OK now just references an
1850 array built in override_options. Because machmodes.h is not yet
1851 included before this file is processed, the MODE bound can't be
1852 expressed here. */
1853
1854extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1855
1856#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1857 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1858
1859/* Value is 1 if it is a good idea to tie two pseudo registers
1860 when one has mode MODE1 and one has mode MODE2.
1861 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1862 for any hard reg, then this must be 0 for correct output. */
1863#define MODES_TIEABLE_P(MODE1, MODE2) \
1864 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1865 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1866 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1867 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1868
1869/* MIPS pc is not overloaded on a register. */
1870/* #define PC_REGNUM xx */
1871
1872/* Register to use for pushing function arguments. */
0fb5ac6f 1873#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
e75b25e7 1874
97116296
ILT
1875/* Offset from the stack pointer to the first available location. Use
1876 the default value zero. */
1877/* #define STACK_POINTER_OFFSET 0 */
e75b25e7 1878
2bcb2ab3
GK
1879/* Base register for access to local variables of the function. We
1880 pretend that the frame pointer is $1, and then eliminate it to
1881 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1882 a fixed register, and will not be used for anything else. */
1883#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1884
0ff83799
MM
1885/* Temporary scratch register for use by the assembler. */
1886#define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
1887
2bcb2ab3
GK
1888/* $30 is not available on the mips16, so we use $17 as the frame
1889 pointer. */
1890#define HARD_FRAME_POINTER_REGNUM \
1891 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
e75b25e7
MM
1892
1893/* Value should be nonzero if functions must have frame pointers.
1894 Zero means the frame pointer need not be set up (and parms
1895 may be accessed via the stack pointer) in functions that seem suitable.
1896 This is computed in `reload', in reload1.c. */
1897#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1898
1899/* Base register for access to arguments of the function. */
ab78d4a8 1900#define ARG_POINTER_REGNUM GP_REG_FIRST
e75b25e7 1901
39dffea3
JW
1902/* Fake register that holds the address on the stack of the
1903 current function's return address. */
1904#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1905
e75b25e7 1906/* Register in which static-chain is passed to a function. */
0fb5ac6f 1907#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
e75b25e7 1908
1154b096
MM
1909/* If the structure value address is passed in a register, then
1910 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1911/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1912
1913/* If the structure value address is not passed in a register, define
1914 `STRUCT_VALUE' as an expression returning an RTX for the place
1915 where the address is passed. If it returns 0, the address is
1916 passed as an "invisible" first argument. */
f58cfbfb 1917#define STRUCT_VALUE 0
e75b25e7
MM
1918
1919/* Mips registers used in prologue/epilogue code when the stack frame
1920 is larger than 32K bytes. These registers must come from the
1921 scratch register set, and not used for passing and returning
1922 arguments and any other information used in the calling sequence
516a2dfd
JW
1923 (such as pic). Must start at 12, since t0/t3 are parameter passing
1924 registers in the 64 bit ABI. */
7bea35e7 1925
516a2dfd
JW
1926#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1927#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
e75b25e7
MM
1928
1929/* Define this macro if it is as good or better to call a constant
1930 function address than to call an address kept in a register. */
1931#define NO_FUNCTION_CSE 1
1932
1933/* Define this macro if it is as good or better for a function to
1934 call itself with an explicit address than to call an address
1935 kept in a register. */
1936#define NO_RECURSIVE_FUNCTION_CSE 1
1937
1938/* The register number of the register used to address a table of
1939 static data addresses in memory. In some cases this register is
7dac2f89 1940 defined by a processor's "application binary interface" (ABI).
e75b25e7
MM
1941 When this macro is defined, RTL is generated for this register
1942 once, as with the stack pointer and frame pointer registers. If
1943 this macro is not defined, it is up to the machine-dependent
1944 files to allocate such a register (if necessary). */
0fb5ac6f 1945#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
e75b25e7 1946
24e214e3 1947#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
e75b25e7
MM
1948\f
1949/* Define the classes of registers for register constraints in the
1950 machine description. Also define ranges of constants.
1951
1952 One of the classes must always be named ALL_REGS and include all hard regs.
1953 If there is more than one class, another class must be named NO_REGS
1954 and contain no registers.
1955
1956 The name GENERAL_REGS must be the name of a class (or an alias for
1957 another name such as ALL_REGS). This is the class of registers
1958 that is allowed by "g" or "r" in a register constraint.
1959 Also, registers outside this class are allocated only when
1960 instructions express preferences for them.
1961
1962 The classes must be numbered in nondecreasing order; that is,
1963 a larger-numbered class must never be contained completely
1964 in a smaller-numbered class.
1965
1966 For any two classes, it is very desirable that there be another
1967 class that represents their union. */
1968
1969enum reg_class
1970{
1971 NO_REGS, /* no registers in set */
2bcb2ab3
GK
1972 M16_NA_REGS, /* mips16 regs not used to pass args */
1973 M16_REGS, /* mips16 directly accessible registers */
1974 T_REG, /* mips16 T register ($24) */
1975 M16_T_REGS, /* mips16 registers plus T register */
e75b25e7
MM
1976 GR_REGS, /* integer registers */
1977 FP_REGS, /* floating point registers */
1978 HI_REG, /* hi register */
1979 LO_REG, /* lo register */
225b8835 1980 HILO_REG, /* hilo register pair for 64 bit mode mult */
e75b25e7 1981 MD_REGS, /* multiply/divide registers (hi/lo) */
d604bca3
MH
1982 COP0_REGS, /* generic coprocessor classes */
1983 COP2_REGS,
1984 COP3_REGS,
e4f5c5d6
KR
1985 HI_AND_GR_REGS, /* union classes */
1986 LO_AND_GR_REGS,
1987 HILO_AND_GR_REGS,
ab093b81 1988 HI_AND_FP_REGS,
d604bca3
MH
1989 COP0_AND_GR_REGS,
1990 COP2_AND_GR_REGS,
1991 COP3_AND_GR_REGS,
1992 ALL_COP_REGS,
1993 ALL_COP_AND_GR_REGS,
e75b25e7
MM
1994 ST_REGS, /* status registers (fp status) */
1995 ALL_REGS, /* all registers */
1996 LIM_REG_CLASSES /* max value + 1 */
1997};
1998
1999#define N_REG_CLASSES (int) LIM_REG_CLASSES
2000
2001#define GENERAL_REGS GR_REGS
2002
2003/* An initializer containing the names of the register classes as C
2004 string constants. These names are used in writing some of the
2005 debugging dumps. */
2006
2007#define REG_CLASS_NAMES \
2008{ \
2009 "NO_REGS", \
2bcb2ab3
GK
2010 "M16_NA_REGS", \
2011 "M16_REGS", \
2012 "T_REG", \
2013 "M16_T_REGS", \
e75b25e7
MM
2014 "GR_REGS", \
2015 "FP_REGS", \
2016 "HI_REG", \
2017 "LO_REG", \
225b8835 2018 "HILO_REG", \
e75b25e7 2019 "MD_REGS", \
d604bca3
MH
2020 /* coprocessor registers */ \
2021 "COP0_REGS", \
2022 "COP2_REGS", \
2023 "COP3_REGS", \
e4f5c5d6
KR
2024 "HI_AND_GR_REGS", \
2025 "LO_AND_GR_REGS", \
2026 "HILO_AND_GR_REGS", \
ab093b81 2027 "HI_AND_FP_REGS", \
d604bca3
MH
2028 "COP0_AND_GR_REGS", \
2029 "COP2_AND_GR_REGS", \
2030 "COP3_AND_GR_REGS", \
2031 "ALL_COP_REGS", \
2032 "ALL_COP_AND_GR_REGS", \
e75b25e7
MM
2033 "ST_REGS", \
2034 "ALL_REGS" \
2035}
2036
2037/* An initializer containing the contents of the register classes,
2038 as integers which are bit masks. The Nth integer specifies the
2039 contents of class N. The way the integer MASK is interpreted is
2040 that register R is in the class if `MASK & (1 << R)' is 1.
2041
2042 When the machine has more than 32 registers, an integer does not
2043 suffice. Then the integers are replaced by sub-initializers,
2044 braced groupings containing several integers. Each
2045 sub-initializer must be suitable as an initializer for the type
2046 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2047
2048#define REG_CLASS_CONTENTS \
2049{ \
d604bca3
MH
2050 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
2051 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
2052 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
2053 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
2054 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
2055 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
2056 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
2057 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
2058 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
2059 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, /* hilo register */ \
2060 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
2061 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
2062 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
2063 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
2064 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
2065 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
2066 { 0xffffffff, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, \
2067 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
2068 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
2069 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
2070 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
2071 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2072 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2073 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
2074 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0000ffff } /* all registers */ \
e75b25e7
MM
2075}
2076
2077
2078/* A C expression whose value is a register class containing hard
2079 register REGNO. In general there is more that one such class;
2080 choose a class which is "minimal", meaning that no smaller class
2081 also contains the register. */
2082
8b60264b 2083extern const enum reg_class mips_regno_to_class[];
e75b25e7
MM
2084
2085#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2086
2087/* A macro whose definition is the name of the class to which a
2088 valid base register must belong. A base register is one used in
2089 an address which is the register value plus a displacement. */
2090
2bcb2ab3 2091#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
e75b25e7
MM
2092
2093/* A macro whose definition is the name of the class to which a
2094 valid index register must belong. An index register is one used
2095 in an address where its value is either multiplied by a scale
2096 factor or added to another register (as well as added to a
2097 displacement). */
2098
876c09d3 2099#define INDEX_REG_CLASS NO_REGS
e75b25e7 2100
2bcb2ab3
GK
2101/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
2102 registers explicitly used in the rtl to be used as spill registers
2103 but prevents the compiler from extending the lifetime of these
987ba558 2104 registers. */
2bcb2ab3
GK
2105
2106#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
2107
2108/* This macro is used later on in the file. */
2109#define GR_REG_CLASS_P(CLASS) \
2110 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
2111 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
2112
d604bca3
MH
2113/* This macro is also used later on in the file. */
2114#define COP_REG_CLASS_P(CLASS) \
2115 ((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
2116
2bcb2ab3
GK
2117/* REG_ALLOC_ORDER is to order in which to allocate registers. This
2118 is the default value (allocate the registers in numeric order). We
2119 define it just so that we can override it for the mips16 target in
2120 ORDER_REGS_FOR_LOCAL_ALLOC. */
2121
2122#define REG_ALLOC_ORDER \
2123{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2124 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
2125 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2126 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
d604bca3
MH
2127 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2128 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2129 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2130 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2131 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2132 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2133 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 \
2bcb2ab3
GK
2134}
2135
2136/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
2137 to be rearranged based on a particular function. On the mips16, we
2138 want to allocate $24 (T_REG) before other registers for
2139 instructions for which it is possible. */
2140
2141#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
e75b25e7
MM
2142
2143/* REGISTER AND CONSTANT CLASSES */
2144
2145/* Get reg_class from a letter such as appears in the machine
2146 description.
2147
2148 DEFINED REGISTER CLASSES:
2149
2150 'd' General (aka integer) registers
2bcb2ab3
GK
2151 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
2152 'y' General registers (in both mips16 and non mips16 mode)
2153 'e' mips16 non argument registers (M16_NA_REGS)
2154 't' mips16 temporary register ($24)
e75b25e7
MM
2155 'f' Floating point registers
2156 'h' Hi register
2157 'l' Lo register
34b650b3 2158 'x' Multiply/divide registers
225b8835
ILT
2159 'a' HILO_REG
2160 'z' FP Status register
d604bca3
MH
2161 'B' Cop0 register
2162 'C' Cop2 register
2163 'D' Cop3 register
225b8835 2164 'b' All registers */
e75b25e7 2165
f540a7d3 2166extern enum reg_class mips_char_to_class[256];
e75b25e7 2167
8f54374e 2168#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
e75b25e7
MM
2169
2170/* The letters I, J, K, L, M, N, O, and P in a register constraint
2171 string can be used to stand for particular ranges of immediate
2172 operands. This macro defines what the ranges are. C is the
2173 letter, and VALUE is a constant value. Return 1 if VALUE is
2174 in the range specified by C. */
2175
2176/* For MIPS:
2177
2178 `I' is used for the range of constants an arithmetic insn can
2179 actually contain (16 bits signed integers).
2180
2181 `J' is used for the range which is just zero (ie, $r0).
2182
2183 `K' is used for the range of constants a logical insn can actually
2184 contain (16 bit zero-extended integers).
2185
2186 `L' is used for the range of constants that be loaded with lui
2187 (ie, the bottom 16 bits are zero).
2188
2189 `M' is used for the range of constants that take two words to load
2190 (ie, not matched by `I', `K', and `L').
2191
2bcb2ab3 2192 `N' is used for negative 16 bit constants other than -65536.
e75b25e7 2193
2bcb2ab3 2194 `O' is a 15 bit signed integer.
e75b25e7
MM
2195
2196 `P' is used for positive 16 bit constants. */
2197
516a2dfd
JW
2198#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
2199#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
e75b25e7
MM
2200
2201#define CONST_OK_FOR_LETTER_P(VALUE, C) \
516a2dfd 2202 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
e75b25e7 2203 : (C) == 'J' ? ((VALUE) == 0) \
516a2dfd 2204 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
876c09d3
JW
2205 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
2206 && (((VALUE) & ~2147483647) == 0 \
2207 || ((VALUE) & ~2147483647) == ~2147483647)) \
99cbc4b0
MM
2208 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
2209 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
876c09d3
JW
2210 && (((VALUE) & 0x0000ffff) != 0 \
2211 || (((VALUE) & ~2147483647) != 0 \
2212 && ((VALUE) & ~2147483647) != ~2147483647))) \
2bcb2ab3
GK
2213 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
2214 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
99cbc4b0 2215 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
e75b25e7
MM
2216 : 0)
2217
2218/* Similar, but for floating constants, and defining letters G and H.
2219 Here VALUE is the CONST_DOUBLE rtx itself. */
2220
2221/* For Mips
2222
2223 'G' : Floating point 0 */
2224
2225#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2226 ((C) == 'G' \
876c09d3 2227 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
e75b25e7
MM
2228
2229/* Letters in the range `Q' through `U' may be defined in a
7dac2f89 2230 machine-dependent fashion to stand for arbitrary operand types.
e75b25e7
MM
2231 The machine description macro `EXTRA_CONSTRAINT' is passed the
2232 operand as its first argument and the constraint letter as its
2233 second operand.
2234
2bcb2ab3 2235 `Q' is for mips16 GP relative constants
31c714e3 2236 `R' is for memory references which take 1 word for the instruction.
2bcb2ab3
GK
2237 `S' is for references to extern items which are PIC for OSF/rose.
2238 `T' is for memory addresses that can be used to load two words. */
e75b25e7
MM
2239
2240#define EXTRA_CONSTRAINT(OP,CODE) \
2bcb2ab3
GK
2241 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
2242 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
2243 && mips16_gp_offset_p (OP)) \
2244 : (GET_CODE (OP) != MEM) ? FALSE \
e75b25e7 2245 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
31c714e3
MM
2246 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
2247 && HALF_PIC_ADDRESS_P (OP)) \
e75b25e7
MM
2248 : FALSE)
2249
2250/* Given an rtx X being reloaded into a reg required to be
2251 in class CLASS, return the class of reg to actually use.
2252 In general this is just CLASS; but on some machines
2253 in some cases it is preferable to use a more restrictive class. */
2254
2255#define PREFERRED_RELOAD_CLASS(X,CLASS) \
876c09d3 2256 ((CLASS) != ALL_REGS \
2bcb2ab3
GK
2257 ? (! TARGET_MIPS16 \
2258 ? (CLASS) \
2259 : ((CLASS) != GR_REGS \
2260 ? (CLASS) \
2261 : M16_REGS)) \
876c09d3
JW
2262 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2263 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
2bcb2ab3
GK
2264 ? (TARGET_SOFT_FLOAT \
2265 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2266 : FP_REGS) \
876c09d3
JW
2267 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
2268 || GET_MODE (X) == VOIDmode) \
2bcb2ab3 2269 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
876c09d3 2270 : (CLASS))))
e75b25e7 2271
0fb5ac6f
MM
2272/* Certain machines have the property that some registers cannot be
2273 copied to some other registers without using memory. Define this
2274 macro on those machines to be a C expression that is non-zero if
2275 objects of mode MODE in registers of CLASS1 can only be copied to
2276 registers of class CLASS2 by storing a register of CLASS1 into
2277 memory and loading that memory location into a register of CLASS2.
2278
2279 Do not define this macro if its value would always be zero. */
7b2e1077 2280#if 0
0fb5ac6f 2281#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2370b831
JW
2282 ((!TARGET_DEBUG_H_MODE \
2283 && GET_MODE_CLASS (MODE) == MODE_INT \
2bcb2ab3
GK
2284 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2285 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2370b831 2286 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2bcb2ab3
GK
2287 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2288 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
7b2e1077 2289#endif
46299de9 2290/* The HI and LO registers can only be reloaded via the general
b8eb88d0
ILT
2291 registers. Condition code registers can only be loaded to the
2292 general registers, and from the floating point registers. */
46299de9 2293
225b8835
ILT
2294#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2295 mips_secondary_reload_class (CLASS, MODE, X, 1)
2296#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2297 mips_secondary_reload_class (CLASS, MODE, X, 0)
46299de9 2298
e75b25e7
MM
2299/* Return the maximum number of consecutive registers
2300 needed to represent mode MODE in a register of class CLASS. */
2301
d604bca3 2302#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
e75b25e7 2303
87d9d860 2304/* If defined, gives a class of registers that cannot be used as the
ab093b81 2305 operand of a SUBREG that changes the mode of the object illegally.
ab093b81
RH
2306 When FP regs are larger than integer regs... Er, anyone remember what
2307 goes wrong?
2308
2309 In little-endian mode, the hi-lo registers are numbered backwards,
2310 so (subreg:SI (reg:DI hi) 0) gets the high word instead of the low
2311 word as intended. */
2312
2313#define CLASS_CANNOT_CHANGE_MODE \
2314 (TARGET_BIG_ENDIAN \
2315 ? (TARGET_FLOAT64 && ! TARGET_64BIT ? FP_REGS : NO_REGS) \
2316 : (TARGET_FLOAT64 && ! TARGET_64BIT ? HI_AND_FP_REGS : HI_REG))
02188693
RH
2317
2318/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
2319
2320#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
2321 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
e75b25e7
MM
2322\f
2323/* Stack layout; function entry, exit and calling. */
2324
2325/* Define this if pushing a word on the stack
2326 makes the stack pointer a smaller address. */
2327#define STACK_GROWS_DOWNWARD
2328
2329/* Define this if the nominal address of the stack frame
2330 is at the high-address end of the local variables;
2331 that is, each additional local variable allocated
2332 goes at a more negative offset in the frame. */
ab78d4a8 2333/* #define FRAME_GROWS_DOWNWARD */
e75b25e7
MM
2334
2335/* Offset within stack frame to start allocating local variables at.
2336 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
2337 first local allocated. Otherwise, it is the offset to the BEGINNING
2338 of the first local allocated. */
24e214e3
JW
2339#define STARTING_FRAME_OFFSET \
2340 (current_function_outgoing_args_size \
2341 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
ab78d4a8
MM
2342
2343/* Offset from the stack pointer register to an item dynamically
2344 allocated on the stack, e.g., by `alloca'.
2345
2346 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2347 length of the outgoing arguments. The default is correct for most
2348 machines. See `function.c' for details.
2349
51bdc4d3
MM
2350 The MIPS ABI states that functions which dynamically allocate the
2351 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2352 we are trying to create a second frame pointer to the function, so
2353 allocate some stack space to make it happy.
ab78d4a8 2354
51bdc4d3
MM
2355 However, the linker currently complains about linking any code that
2356 dynamically allocates stack space, and there seems to be a bug in
2357 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2358
2359#if 0
ab78d4a8
MM
2360#define STACK_DYNAMIC_OFFSET(FUNDECL) \
2361 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2362 ? 4*UNITS_PER_WORD \
2363 : current_function_outgoing_args_size)
51bdc4d3 2364#endif
e75b25e7 2365
39dffea3
JW
2366/* The return address for the current frame is in r31 is this is a leaf
2367 function. Otherwise, it is on the stack. It is at a variable offset
2368 from sp/fp/ap, so we define a fake hard register rap which is a
2369 poiner to the return address on the stack. This always gets eliminated
2370 during reload to be either the frame pointer or the stack pointer plus
2371 an offset. */
2372
2373/* ??? This definition fails for leaf functions. There is currently no
2374 general solution for this problem. */
2375
2376/* ??? There appears to be no way to get the return address of any previous
2377 frame except by disassembling instructions in the prologue/epilogue.
2378 So currently we support only the current frame. */
2379
07e2e444
AO
2380#define RETURN_ADDR_RTX(count, frame) \
2381 (((count) == 0) \
2382 ? (leaf_function_p () \
2383 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
2384 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
2385 RETURN_ADDRESS_POINTER_REGNUM))) \
24ba333f 2386 : (rtx) 0)
39dffea3 2387
7f48c9e1
AO
2388/* Since the mips16 ISA mode is encoded in the least-significant bit
2389 of the address, mask it off return addresses for purposes of
2390 finding exception handling regions. */
2391
2392#define MASK_RETURN_ADDR GEN_INT (-2)
2393
2394/* Similarly, don't use the least-significant bit to tell pointers to
2395 code from vtable index. */
2396
2397#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2398
e75b25e7
MM
2399/* Structure to be filled in by compute_frame_size with register
2400 save masks, and offsets for the current function. */
2401
2402struct mips_frame_info
2403{
7bea35e7
MM
2404 long total_size; /* # bytes that the entire frame takes up */
2405 long var_size; /* # bytes that variables take up */
2406 long args_size; /* # bytes that outgoing arguments take up */
2407 long extra_size; /* # bytes of extra gunk */
2408 int gp_reg_size; /* # bytes needed to store gp regs */
2409 int fp_reg_size; /* # bytes needed to store fp regs */
2410 long mask; /* mask of saved gp registers */
2411 long fmask; /* mask of saved fp registers */
2412 long gp_save_offset; /* offset from vfp to store gp registers */
2413 long fp_save_offset; /* offset from vfp to store fp registers */
2414 long gp_sp_offset; /* offset from new sp to store gp registers */
2415 long fp_sp_offset; /* offset from new sp to store fp registers */
2416 int initialized; /* != 0 if frame size already calculated */
2417 int num_gp; /* number of gp registers saved */
2418 int num_fp; /* number of fp registers saved */
2bcb2ab3 2419 long insns_len; /* length of insns; mips16 only */
e75b25e7
MM
2420};
2421
2422extern struct mips_frame_info current_frame_info;
2423
ab78d4a8
MM
2424/* If defined, this macro specifies a table of register pairs used to
2425 eliminate unneeded registers that point into the stack frame. If
2426 it is not defined, the only elimination attempted by the compiler
2427 is to replace references to the frame pointer with references to
2428 the stack pointer.
2429
2430 The definition of this macro is a list of structure
2431 initializations, each of which specifies an original and
2432 replacement register.
2433
2434 On some machines, the position of the argument pointer is not
2435 known until the compilation is completed. In such a case, a
7dac2f89 2436 separate hard register must be used for the argument pointer.
ab78d4a8
MM
2437 This register can be eliminated by replacing it with either the
2438 frame pointer or the argument pointer, depending on whether or not
2439 the frame pointer has been eliminated.
2440
2441 In this case, you might specify:
2442 #define ELIMINABLE_REGS \
2443 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2444 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2445 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2446
2447 Note that the elimination of the argument pointer with the stack
2bcb2ab3
GK
2448 pointer is specified first since that is the preferred elimination.
2449
2450 The eliminations to $17 are only used on the mips16. See the
2451 definition of HARD_FRAME_POINTER_REGNUM. */
ab78d4a8
MM
2452
2453#define ELIMINABLE_REGS \
2454{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2455 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2456 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
39dffea3 2457 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2458 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2459 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2460 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2461 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2462 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
ab78d4a8 2463
ab78d4a8
MM
2464/* A C expression that returns non-zero if the compiler is allowed to
2465 try to replace register number FROM-REG with register number
2466 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2467 defined, and will usually be the constant 1, since most of the
2468 cases preventing register elimination are things that the compiler
2bcb2ab3
GK
2469 already knows about.
2470
365ca18b
GK
2471 When not in mips16 and mips64, we can always eliminate to the
2472 frame pointer. We can eliminate to the stack pointer unless
2473 a frame pointer is needed. In mips16 mode, we need a frame
2474 pointer for a large frame; otherwise, reload may be unable
2475 to compute the address of a local variable, since there is
2476 no way to add a large constant to the stack pointer
2477 without using a temporary register.
2478
2479 In mips16, for some instructions (eg lwu), we can't eliminate the
2480 frame pointer for the stack pointer. These instructions are
2481 only generated in TARGET_64BIT mode.
2482 */
ab78d4a8
MM
2483
2484#define CAN_ELIMINATE(FROM, TO) \
cfb773f9 2485 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
07e2e444
AO
2486 && (((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed) \
2487 || (TO) == HARD_FRAME_POINTER_REGNUM)) \
cfb773f9
AO
2488 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
2489 && ((TO) == HARD_FRAME_POINTER_REGNUM \
2490 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
2491 && ! (TARGET_MIPS16 && TARGET_64BIT) \
2492 && (! TARGET_MIPS16 \
2493 || compute_frame_size (get_frame_size ()) < 32768)))))
ab78d4a8
MM
2494
2495/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
2496 specifies the initial difference between the specified pair of
2497 registers. This macro must be defined if `ELIMINABLE_REGS' is
2498 defined. */
2499
2500#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2501{ compute_frame_size (get_frame_size ()); \
2bcb2ab3
GK
2502 if (TARGET_MIPS16 && (FROM) == FRAME_POINTER_REGNUM \
2503 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2504 (OFFSET) = - current_function_outgoing_args_size; \
2505 else if ((FROM) == FRAME_POINTER_REGNUM) \
ab78d4a8 2506 (OFFSET) = 0; \
2bcb2ab3
GK
2507 else if (TARGET_MIPS16 && (FROM) == ARG_POINTER_REGNUM \
2508 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2509 (OFFSET) = (current_frame_info.total_size \
2510 - current_function_outgoing_args_size \
a53f72db
GRK
2511 - ((mips_abi != ABI_32 \
2512 && mips_abi != ABI_O64 \
2513 && mips_abi != ABI_EABI) \
2bcb2ab3
GK
2514 ? current_function_pretend_args_size \
2515 : 0)); \
2516 else if ((FROM) == ARG_POINTER_REGNUM) \
a2ef6e41 2517 (OFFSET) = (current_frame_info.total_size \
a53f72db
GRK
2518 - ((mips_abi != ABI_32 \
2519 && mips_abi != ABI_O64 \
2520 && mips_abi != ABI_EABI) \
a2ef6e41
RK
2521 ? current_function_pretend_args_size \
2522 : 0)); \
c9b4de06
JW
2523 /* Some ABIs store 64 bits to the stack, but Pmode is 32 bits, \
2524 so we must add 4 bytes to the offset to get the right value. */ \
2bcb2ab3 2525 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM) \
973838fd 2526 { \
07e2e444
AO
2527 (OFFSET) = current_frame_info.gp_sp_offset \
2528 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
2529 * (BYTES_BIG_ENDIAN != 0)); \
2530 if (TARGET_MIPS16 && (TO) != STACK_POINTER_REGNUM) \
2531 (OFFSET) -= current_function_outgoing_args_size; \
973838fd 2532 } \
a6ffcb2a
KG
2533 else \
2534 abort(); \
ab78d4a8
MM
2535}
2536
e75b25e7
MM
2537/* If we generate an insn to push BYTES bytes,
2538 this says how many the stack pointer really advances by.
8aeea6e6 2539 On the VAX, sp@- in a byte insn really pushes a word. */
e75b25e7
MM
2540
2541/* #define PUSH_ROUNDING(BYTES) 0 */
2542
2543/* If defined, the maximum amount of space required for outgoing
2544 arguments will be computed and placed into the variable
2545 `current_function_outgoing_args_size'. No space will be pushed
2546 onto the stack for each call; instead, the function prologue
2547 should increase the stack frame size by this amount.
2548
2549 It is not proper to define both `PUSH_ROUNDING' and
2550 `ACCUMULATE_OUTGOING_ARGS'. */
f73ad30e 2551#define ACCUMULATE_OUTGOING_ARGS 1
e75b25e7 2552
6cb6c3b3
MM
2553/* Offset from the argument pointer register to the first argument's
2554 address. On some machines it may depend on the data type of the
2555 function.
e75b25e7 2556
6cb6c3b3 2557 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
39282292
MM
2558 the first argument's address.
2559
2560 On the MIPS, we must skip the first argument position if we are
876c09d3 2561 returning a structure or a union, to account for its address being
305aa9e2
MM
2562 passed in $4. However, at the current time, this produces a compiler
2563 that can't bootstrap, so comment it out for now. */
e75b25e7 2564
305aa9e2 2565#if 0
6cb6c3b3
MM
2566#define FIRST_PARM_OFFSET(FNDECL) \
2567 (FNDECL != 0 \
2568 && TREE_TYPE (FNDECL) != 0 \
2569 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2570 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
39282292
MM
2571 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2572 ? UNITS_PER_WORD \
2573 : 0)
305aa9e2
MM
2574#else
2575#define FIRST_PARM_OFFSET(FNDECL) 0
2576#endif
e75b25e7
MM
2577
2578/* When a parameter is passed in a register, stack space is still
2579 allocated for it. For the MIPS, stack space must be allocated, cf
2580 Asm Lang Prog Guide page 7-8.
2581
2582 BEWARE that some space is also allocated for non existing arguments
2583 in register. In case an argument list is of form GF used registers
2584 are a0 (a2,a3), but we should push over a1... */
2585
516a2dfd
JW
2586#define REG_PARM_STACK_SPACE(FNDECL) \
2587 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
e75b25e7
MM
2588
2589/* Define this if it is the responsibility of the caller to
7dac2f89 2590 allocate the area reserved for arguments passed in registers.
e75b25e7 2591 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
7dac2f89 2592 of this macro is to determine whether the space is included in
e75b25e7
MM
2593 `current_function_outgoing_args_size'. */
2594#define OUTGOING_REG_PARM_STACK_SPACE
2595
2596/* Align stack frames on 64 bits (Double Word ). */
d1c17572 2597#ifndef STACK_BOUNDARY
e75b25e7 2598#define STACK_BOUNDARY 64
d1c17572 2599#endif
e75b25e7 2600
876c09d3 2601/* Make sure 4 words are always allocated on the stack. */
e75b25e7
MM
2602
2603#ifndef STACK_ARGS_ADJUST
2604#define STACK_ARGS_ADJUST(SIZE) \
2605{ \
876c09d3
JW
2606 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2607 SIZE.constant = 4 * UNITS_PER_WORD; \
e75b25e7
MM
2608}
2609#endif
2610
2611\f
2612/* A C expression that should indicate the number of bytes of its
38e01259 2613 own arguments that a function pops on returning, or 0
e75b25e7
MM
2614 if the function pops no arguments and the caller must therefore
2615 pop them all after the function returns.
2616
8b109b37
RK
2617 FUNDECL is the declaration node of the function (as a tree).
2618
e75b25e7
MM
2619 FUNTYPE is a C variable whose value is a tree node that
2620 describes the function in question. Normally it is a node of
2621 type `FUNCTION_TYPE' that describes the data type of the function.
2622 From this it is possible to obtain the data types of the value
2623 and arguments (if known).
2624
2625 When a call to a library function is being considered, FUNTYPE
2626 will contain an identifier node for the library function. Thus,
2627 if you need to distinguish among various library functions, you
2628 can do so by their names. Note that "library function" in this
2629 context means a function used to perform arithmetic, whose name
2630 is known specially in the compiler and was not mentioned in the
2631 C code being compiled.
2632
2633 STACK-SIZE is the number of bytes of arguments passed on the
2634 stack. If a variable number of bytes is passed, it is zero, and
2635 argument popping will always be the responsibility of the
2636 calling function. */
2637
8b109b37 2638#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
e75b25e7
MM
2639
2640
2641/* Symbolic macros for the registers used to return integer and floating
2642 point values. */
2643
2644#define GP_RETURN (GP_REG_FIRST + 2)
2645#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2646
2647/* Symbolic macros for the first/last argument registers. */
2648
2649#define GP_ARG_FIRST (GP_REG_FIRST + 4)
2650#define GP_ARG_LAST (GP_REG_FIRST + 7)
2651#define FP_ARG_FIRST (FP_REG_FIRST + 12)
2652#define FP_ARG_LAST (FP_REG_FIRST + 15)
2653
2654#define MAX_ARGS_IN_REGISTERS 4
2655
2656/* Define how to find the value returned by a library function
2bcb2ab3
GK
2657 assuming the value has mode MODE. Because we define
2658 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2659 PROMOTE_MODE does. */
e75b25e7 2660
c6e6f5c1
RH
2661#define LIBCALL_VALUE(MODE) \
2662 mips_function_value (NULL_TREE, NULL, (MODE))
e75b25e7
MM
2663
2664/* Define how to find the value returned by a function.
2665 VALTYPE is the data type of the value (as a tree).
2666 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2667 otherwise, FUNC is 0. */
2668
c6e6f5c1
RH
2669#define FUNCTION_VALUE(VALTYPE, FUNC) \
2670 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
e75b25e7
MM
2671
2672/* 1 if N is a possible register number for a function value.
2673 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2674 Currently, R2 and F0 are only implemented here (C has no complex type) */
2675
2676#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2677
46af8e31
JW
2678/* 1 if N is a possible register number for function argument passing.
2679 We have no FP argument registers when soft-float. When FP registers
2680 are 32 bits, we can't directly reference the odd numbered ones. */
d239cdc0 2681/* For o64 we should be checking the mode for SFmode as well. */
46af8e31
JW
2682
2683#define FUNCTION_ARG_REGNO_P(N) \
e6f884cd 2684 ((((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
d239cdc0
EC
2685 || ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST \
2686 && (((N) % FP_INC) == 0 \
2687 && (! mips_abi == ABI_O64))) \
2688 && !fixed_regs[N]))
e75b25e7
MM
2689
2690/* A C expression which can inhibit the returning of certain function
2691 values in registers, based on the type of value. A nonzero value says
2692 to return the function value in memory, just as large structures are
2693 always returned. Here TYPE will be a C expression of type
2694 `tree', representing the data type of the value.
2695
e14fa9c4
DE
2696 Note that values of mode `BLKmode' must be explicitly
2697 handled by this macro. Also, the option `-fpcc-struct-return'
e75b25e7
MM
2698 takes effect regardless of this macro. On most systems, it is
2699 possible to leave the macro undefined; this causes a default
e14fa9c4
DE
2700 definition to be used, whose value is the constant 1 for BLKmode
2701 values, and 0 otherwise.
e75b25e7
MM
2702
2703 GCC normally converts 1 byte structures into chars, 2 byte
2704 structs into shorts, and 4 byte structs into ints, and returns
2705 them this way. Defining the following macro overrides this,
2706 to give us MIPS cc compatibility. */
2707
2708#define RETURN_IN_MEMORY(TYPE) \
54401342 2709 mips_return_in_memory (TYPE)
4d72536e
RS
2710
2711#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
2712 (PRETEND_SIZE) = mips_setup_incoming_varargs (&(CUM), (MODE), \
2713 (TYPE), (NO_RTL))
e75b25e7 2714\f
e75b25e7
MM
2715
2716#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2717
2718\f
2719/* Define a data type for recording info about an argument list
2720 during the scan of that argument list. This data type should
2721 hold all necessary information about the function itself
2722 and about the args processed so far, enough to enable macros
2723 such as FUNCTION_ARG to determine where the next arg should go.
2bcb2ab3 2724
4d72536e
RS
2725 This structure has to cope with two different argument allocation
2726 schemes. Most MIPS ABIs view the arguments as a struct, of which the
2727 first N words go in registers and the rest go on the stack. If I < N,
2728 the Ith word might go in Ith integer argument register or the
2729 Ith floating-point one. In some cases, it has to go in both (see
2730 function_arg). For these ABIs, we only need to remember the number
2731 of words passed so far.
2732
2733 The EABI instead allocates the integer and floating-point arguments
2734 separately. The first N words of FP arguments go in FP registers,
2735 the rest go on the stack. Likewise, the first N words of the other
2736 arguments go in integer registers, and the rest go on the stack. We
2737 need to maintain three counts: the number of integer registers used,
2738 the number of floating-point registers used, and the number of words
2739 passed on the stack.
2740
2741 We could keep separate information for the two ABIs (a word count for
2742 the standard ABIs, and three separate counts for the EABI). But it
2743 seems simpler to view the standard ABIs as forms of EABI that do not
2744 allocate floating-point registers.
2745
2746 So for the standard ABIs, the first N words are allocated to integer
2747 registers, and function_arg decides on an argument-by-argument basis
2748 whether that argument should really go in an integer register, or in
2749 a floating-point one. */
e75b25e7
MM
2750
2751typedef struct mips_args {
4d72536e
RS
2752 /* Always true for varargs functions. Otherwise true if at least
2753 one argument has been passed in an integer register. */
2754 int gp_reg_found;
2755
2756 /* The number of arguments seen so far. */
2757 unsigned int arg_number;
2758
2759 /* For EABI, the number of integer registers used so far. For other
2760 ABIs, the number of words passed in registers (whether integer
2761 or floating-point). */
bb63e5a0 2762 unsigned int num_gprs;
4d72536e
RS
2763
2764 /* For EABI, the number of floating-point registers used so far. */
bb63e5a0 2765 unsigned int num_fprs;
4d72536e
RS
2766
2767 /* The number of words passed on the stack. */
2768 unsigned int stack_words;
2769
2770 /* On the mips16, we need to keep track of which floating point
2771 arguments were passed in general registers, but would have been
2772 passed in the FP regs if this were a 32 bit function, so that we
2773 can move them to the FP regs if we wind up calling a 32 bit
2774 function. We record this information in fp_code, encoded in base
2775 four. A zero digit means no floating point argument, a one digit
2776 means an SFmode argument, and a two digit means a DFmode argument,
2777 and a three digit is not used. The low order digit is the first
2778 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2779 an SFmode argument. ??? A more sophisticated approach will be
2780 needed if MIPS_ABI != ABI_32. */
2781 int fp_code;
2782
2783 /* True if the function has a prototype. */
2784 int prototype;
2785
2786 /* When a structure does not take up a full register, the argument
2787 should sometimes be shifted left so that it occupies the high part
2788 of the register. These two fields describe an array of ashl
2789 patterns for doing this. See function_arg_advance, which creates
2790 the shift patterns, and function_arg, which returns them when given
2791 a VOIDmode argument. */
2792 unsigned int num_adjusts;
2793 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS];
e75b25e7
MM
2794} CUMULATIVE_ARGS;
2795
2796/* Initialize a variable CUM of type CUMULATIVE_ARGS
2797 for a call to a function whose data type is FNTYPE.
2798 For a library call, FNTYPE is 0.
2799
2800*/
2801
2c7ee1a6 2802#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
e75b25e7
MM
2803 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2804
2805/* Update the data in CUM to advance over an argument
2806 of mode MODE and data type TYPE.
2807 (TYPE is null for libcalls where that information may not be available.) */
2808
2809#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2810 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2811
2812/* Determine where to put an argument to a function.
2813 Value is zero to push the argument on the stack,
2814 or a hard register in which to store the argument.
2815
2816 MODE is the argument's machine mode.
2817 TYPE is the data type of the argument (as a tree).
2818 This is null for libcalls where that information may
2819 not be available.
2820 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2821 the preceding args and about the function being called.
2822 NAMED is nonzero if this argument is a named parameter
2823 (otherwise it is an extra parameter matching an ellipsis). */
2824
2825#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2826 function_arg( &CUM, MODE, TYPE, NAMED)
2827
2828/* For an arg passed partly in registers and partly in memory,
2829 this is the number of registers used.
987ba558 2830 For args passed entirely in registers or entirely in memory, zero. */
e75b25e7
MM
2831
2832#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2833 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2834
2835/* If defined, a C expression that gives the alignment boundary, in
2836 bits, of an argument with the specified mode and type. If it is
2837 not defined, `PARM_BOUNDARY' is used for all arguments. */
2838
2839#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2840 (((TYPE) != 0) \
75131237 2841 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
e75b25e7
MM
2842 ? PARM_BOUNDARY \
2843 : TYPE_ALIGN(TYPE)) \
2844 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2845 ? PARM_BOUNDARY \
2846 : GET_MODE_ALIGNMENT(MODE)))
2847
4d72536e
RS
2848/* True if using EABI and varargs can be passed in floating-point
2849 registers. Under these conditions, we need a more complex form
2850 of va_list, which tracks GPR, FPR and stack arguments separately. */
2851#define EABI_FLOAT_VARARGS_P \
2852 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2853
e75b25e7 2854\f
e75b25e7
MM
2855/* Tell prologue and epilogue if register REGNO should be saved / restored. */
2856
2857#define MUST_SAVE_REGISTER(regno) \
2bcb2ab3
GK
2858 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2859 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
ab78d4a8 2860 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
e75b25e7
MM
2861
2862/* ALIGN FRAMES on double word boundaries */
d1c17572
JL
2863#ifndef MIPS_STACK_ALIGN
2864#define MIPS_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
2865#endif
e75b25e7 2866
5d3f2bd5
RH
2867\f
2868/* Define the `__builtin_va_list' type for the ABI. */
2869#define BUILD_VA_LIST_TYPE(VALIST) \
2870 (VALIST) = mips_build_va_list ()
2871
2872/* Implement `va_start' for varargs and stdarg. */
2873#define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2874 mips_va_start (stdarg, valist, nextarg)
2875
2876/* Implement `va_arg'. */
2877#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2878 mips_va_arg (valist, type)
e75b25e7
MM
2879\f
2880/* Output assembler code to FILE to increment profiler label # LABELNO
2881 for profiling a function entry. */
2882
2883#define FUNCTION_PROFILER(FILE, LABELNO) \
2884{ \
2bcb2ab3
GK
2885 if (TARGET_MIPS16) \
2886 sorry ("mips16 function profiling"); \
e75b25e7
MM
2887 fprintf (FILE, "\t.set\tnoat\n"); \
2888 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2889 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
876c09d3
JW
2890 fprintf (FILE, \
2891 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2892 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7 2893 reg_names[STACK_POINTER_REGNUM], \
876c09d3 2894 reg_names[STACK_POINTER_REGNUM], \
1eeed24e 2895 Pmode == DImode ? 16 : 8); \
0617ed52 2896 fprintf (FILE, "\tjal\t_mcount\n"); \
e75b25e7
MM
2897 fprintf (FILE, "\t.set\tat\n"); \
2898}
2899
d8d5b1e1
MM
2900/* Define this macro if the code for function profiling should come
2901 before the function prologue. Normally, the profiling code comes
2902 after. */
2903
2904/* #define PROFILE_BEFORE_PROLOGUE */
2905
e75b25e7
MM
2906/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2907 the stack pointer does not matter. The value is tested only in
2908 functions that have frame pointers.
2909 No definition is equivalent to always zero. */
2910
2911#define EXIT_IGNORE_STACK 1
2912
2913\f
2914/* A C statement to output, on the stream FILE, assembler code for a
7dac2f89 2915 block of data that contains the constant parts of a trampoline.
e75b25e7
MM
2916 This code should not include a label--the label is taken care of
2917 automatically. */
2918
2919#define TRAMPOLINE_TEMPLATE(STREAM) \
2920{ \
2921 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2922 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2923 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
1eeed24e 2924 if (Pmode == DImode) \
876c09d3
JW
2925 { \
2926 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2927 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2928 } \
2929 else \
2930 { \
0acefe54
JW
2931 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2932 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
876c09d3 2933 } \
0acefe54 2934 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
e75b25e7
MM
2935 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2936 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
1eeed24e 2937 if (Pmode == DImode) \
876c09d3 2938 { \
876c09d3
JW
2939 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2940 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2941 } \
2942 else \
2943 { \
2944 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2945 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2946 } \
e75b25e7
MM
2947}
2948
2949/* A C expression for the size in bytes of the trampoline, as an
2950 integer. */
2951
1eeed24e 2952#define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
e75b25e7 2953
876c09d3 2954/* Alignment required for trampolines, in bits. */
e75b25e7 2955
1eeed24e 2956#define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
e75b25e7 2957
c85f7c16
JL
2958/* INITIALIZE_TRAMPOLINE calls this library function to flush
2959 program and data caches. */
2960
2961#ifndef CACHE_FLUSH_FUNC
2962#define CACHE_FLUSH_FUNC "_flush_cache"
2963#endif
2964
7dac2f89 2965/* A C statement to initialize the variable parts of a trampoline.
e75b25e7
MM
2966 ADDR is an RTX for the address of the trampoline; FNADDR is an
2967 RTX for the address of the nested function; STATIC_CHAIN is an
2968 RTX for the static chain value that should be passed to the
2969 function when it is called. */
2970
2971#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2972{ \
2973 rtx addr = ADDR; \
1eeed24e 2974 if (Pmode == DImode) \
876c09d3 2975 { \
c5c76735
JL
2976 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2977 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
876c09d3
JW
2978 } \
2979 else \
2980 { \
c5c76735
JL
2981 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2982 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
876c09d3 2983 } \
e75b25e7 2984 \
22b54c57
RK
2985 /* Flush both caches. We need to flush the data cache in case \
2986 the system has a write-back cache. */ \
876c09d3 2987 /* ??? Should check the return value for errors. */ \
d490e8ad
DD
2988 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2989 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2990 0, VOIDmode, 3, addr, Pmode, \
2991 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2992 GEN_INT (3), TYPE_MODE (integer_type_node)); \
e75b25e7 2993}
e75b25e7
MM
2994\f
2995/* Addressing modes, and classification of registers for them. */
2996
940da324
JL
2997/* #define HAVE_POST_INCREMENT 0 */
2998/* #define HAVE_POST_DECREMENT 0 */
e75b25e7 2999
940da324
JL
3000/* #define HAVE_PRE_DECREMENT 0 */
3001/* #define HAVE_PRE_INCREMENT 0 */
e75b25e7
MM
3002
3003/* These assume that REGNO is a hard or pseudo reg number.
3004 They give nonzero only if REGNO is a hard reg of the suitable class
3005 or a pseudo reg currently allocated to a suitable hard reg.
3006 These definitions are NOT overridden anywhere. */
3007
2bcb2ab3
GK
3008#define BASE_REG_P(regno, mode) \
3009 (TARGET_MIPS16 \
3010 ? (M16_REG_P (regno) \
3011 || (regno) == FRAME_POINTER_REGNUM \
3012 || (regno) == ARG_POINTER_REGNUM \
3013 || ((regno) == STACK_POINTER_REGNUM \
3014 && (GET_MODE_SIZE (mode) == 4 \
3015 || GET_MODE_SIZE (mode) == 8))) \
3016 : GP_REG_P (regno))
e75b25e7 3017
2bcb2ab3 3018#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
c3d03e3a 3019 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
2bcb2ab3
GK
3020 (mode))
3021
3022#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
3023 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
e75b25e7 3024
876c09d3 3025#define REGNO_OK_FOR_INDEX_P(regno) 0
2bcb2ab3
GK
3026#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
3027 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
e75b25e7
MM
3028
3029/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
3030 and check its validity for a certain class.
3031 We have two alternate definitions for each of them.
3032 The usual definition accepts all pseudo regs; the other rejects them all.
3033 The symbol REG_OK_STRICT causes the latter definition to be used.
3034
3035 Most source files want to accept pseudo regs in the hope that
3036 they will get allocated to the class that the insn wants them to be in.
3037 Some source files that are used after register allocation
3038 need to be strict. */
3039
3040#ifndef REG_OK_STRICT
2bcb2ab3 3041#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 3042 mips_reg_mode_ok_for_base_p (X, MODE, 0)
e75b25e7 3043#else
2bcb2ab3 3044#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 3045 mips_reg_mode_ok_for_base_p (X, MODE, 1)
e75b25e7
MM
3046#endif
3047
c94c9817
MM
3048#define REG_OK_FOR_INDEX_P(X) 0
3049
e75b25e7
MM
3050\f
3051/* Maximum number of registers that can appear in a valid memory address. */
3052
3053#define MAX_REGS_PER_ADDRESS 1
3054
3055/* A C compound statement with a conditional `goto LABEL;' executed
3056 if X (an RTX) is a legitimate memory address on the target
fb49053f 3057 machine for a memory operand of mode MODE. */
e75b25e7
MM
3058
3059#if 1
bd9f1972
KG
3060#define GO_PRINTF(x) fprintf(stderr, (x))
3061#define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
e75b25e7
MM
3062#define GO_DEBUG_RTX(x) debug_rtx(x)
3063
3064#else
3065#define GO_PRINTF(x)
3066#define GO_PRINTF2(x,y)
3067#define GO_DEBUG_RTX(x)
3068#endif
3069
c94c9817
MM
3070#ifdef REG_OK_STRICT
3071#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
3072{ \
3073 if (mips_legitimate_address_p (MODE, X, 1)) \
3074 goto ADDR; \
e75b25e7 3075}
c94c9817
MM
3076#else
3077#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
3078{ \
3079 if (mips_legitimate_address_p (MODE, X, 0)) \
3080 goto ADDR; \
3081}
3082#endif
e75b25e7
MM
3083
3084/* A C expression that is 1 if the RTX X is a constant which is a
6eff269e
BK
3085 valid address. This is defined to be the same as `CONSTANT_P (X)',
3086 but rejecting CONST_DOUBLE. */
5de1e2ce
JW
3087/* When pic, we must reject addresses of the form symbol+large int.
3088 This is because an instruction `sw $4,s+70000' needs to be converted
3089 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
3090 assembler would use $at as a temp to load in the large offset. In this
3091 case $at is already in use. We convert such problem addresses to
3092 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
516a2dfd 3093/* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
31c714e3 3094#define CONSTANT_ADDRESS_P(X) \
6eff269e 3095 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
5de1e2ce
JW
3096 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
3097 || (GET_CODE (X) == CONST \
516a2dfd 3098 && ! (flag_pic && pic_address_needs_scratch (X)) \
a53f72db
GRK
3099 && (mips_abi == ABI_32 \
3100 || mips_abi == ABI_O64 \
3101 || mips_abi == ABI_EABI))) \
5de1e2ce 3102 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
e75b25e7 3103
5de1e2ce
JW
3104/* Define this, so that when PIC, reload won't try to reload invalid
3105 addresses which require two reload registers. */
3106
3107#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
e75b25e7
MM
3108
3109/* Nonzero if the constant value X is a legitimate general operand.
3110 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
3111
3112 At present, GAS doesn't understand li.[sd], so don't allow it
3113 to be generated at present. Also, the MIPS assembler does not
3114 grok li.d Infinity. */
3115
7dac2f89 3116/* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
8e466531
GRK
3117 Note that the Irix 6 assembler problem may already be fixed.
3118 Note also that the GET_CODE (X) == CONST test catches the mips16
3119 gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
3120 a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
3121 ABI_64 to work together, we'll need to fix this. */
e75b25e7 3122#define LEGITIMATE_CONSTANT_P(X) \
516a2dfd
JW
3123 ((GET_CODE (X) != CONST_DOUBLE \
3124 || mips_const_double_ok (X, GET_MODE (X))) \
8e466531
GRK
3125 && ! (GET_CODE (X) == CONST \
3126 && ! TARGET_GAS \
3127 && (mips_abi == ABI_N32 \
3128 || mips_abi == ABI_64)) \
2bcb2ab3 3129 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
e75b25e7
MM
3130
3131/* A C compound statement that attempts to replace X with a valid
3132 memory address for an operand of mode MODE. WIN will be a C
3133 statement label elsewhere in the code; the macro definition may
3134 use
3135
3136 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
3137
3138 to avoid further processing if the address has become legitimate.
3139
3140 X will always be the result of a call to `break_out_memory_refs',
3141 and OLDX will be the operand that was given to that function to
3142 produce X.
3143
3144 The code generated by this macro should not alter the
3145 substructure of X. If it transforms X into a more legitimate
3146 form, it should assign X (which will always be a C variable) a
3147 new value.
3148
3149 It is not necessary for this macro to come up with a legitimate
3150 address. The compiler has standard ways of doing so in all
3151 cases. In fact, it is safe for this macro to do nothing. But
2649b2ee 3152 often a machine-dependent strategy can generate better code.
e75b25e7 3153
2649b2ee
MM
3154 For the MIPS, transform:
3155
3156 memory(X + <large int>)
3157
3158 into:
3159
3160 Y = <large int> & ~0x7fff;
3161 Z = X + Y
3162 memory (Z + (<large int> & 0x7fff));
3163
5de1e2ce
JW
3164 This is for CSE to find several similar references, and only use one Z.
3165
3166 When PIC, convert addresses of the form memory (symbol+large int) to
3167 memory (reg+large int). */
7dac2f89 3168
2649b2ee
MM
3169
3170#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
3171{ \
3172 register rtx xinsn = (X); \
3173 \
3174 if (TARGET_DEBUG_B_MODE) \
3175 { \
3176 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
3177 GO_DEBUG_RTX (xinsn); \
3178 } \
3179 \
ce57d6f4
JW
3180 if (mips_split_addresses && mips_check_split (X, MODE)) \
3181 { \
3182 /* ??? Is this ever executed? */ \
c5c76735
JL
3183 X = gen_rtx_LO_SUM (Pmode, \
3184 copy_to_mode_reg (Pmode, \
3185 gen_rtx (HIGH, Pmode, X)), \
3186 X); \
ce57d6f4
JW
3187 goto WIN; \
3188 } \
3189 \
516a2dfd
JW
3190 if (GET_CODE (xinsn) == CONST \
3191 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
3192 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
a53f72db
GRK
3193 || (mips_abi != ABI_32 \
3194 && mips_abi != ABI_O64 \
3195 && mips_abi != ABI_EABI))) \
516a2dfd
JW
3196 { \
3197 rtx ptr_reg = gen_reg_rtx (Pmode); \
3198 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
3199 \
3200 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
3201 \
c5c76735 3202 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
516a2dfd
JW
3203 if (SMALL_INT (constant)) \
3204 goto WIN; \
3205 /* Otherwise we fall through so the code below will fix the \
3206 constant. */ \
3207 xinsn = X; \
3208 } \
3209 \
b3de0f1f 3210 if (GET_CODE (xinsn) == PLUS) \
2649b2ee
MM
3211 { \
3212 register rtx xplus0 = XEXP (xinsn, 0); \
3213 register rtx xplus1 = XEXP (xinsn, 1); \
3214 register enum rtx_code code0 = GET_CODE (xplus0); \
3215 register enum rtx_code code1 = GET_CODE (xplus1); \
3216 \
3217 if (code0 != REG && code1 == REG) \
3218 { \
3219 xplus0 = XEXP (xinsn, 1); \
3220 xplus1 = XEXP (xinsn, 0); \
3221 code0 = GET_CODE (xplus0); \
3222 code1 = GET_CODE (xplus1); \
3223 } \
3224 \
2bcb2ab3 3225 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
2649b2ee
MM
3226 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
3227 { \
3228 rtx int_reg = gen_reg_rtx (Pmode); \
3229 rtx ptr_reg = gen_reg_rtx (Pmode); \
3230 \
3231 emit_move_insn (int_reg, \
3232 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
3233 \
c5c76735
JL
3234 emit_insn (gen_rtx_SET (VOIDmode, \
3235 ptr_reg, \
3236 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
2649b2ee 3237 \
8da665d5 3238 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
2649b2ee
MM
3239 goto WIN; \
3240 } \
3241 } \
3242 \
3243 if (TARGET_DEBUG_B_MODE) \
3244 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
3245}
e75b25e7
MM
3246
3247
3248/* A C statement or compound statement with a conditional `goto
3249 LABEL;' executed if memory address X (an RTX) can have different
3250 meanings depending on the machine mode of the memory reference it
3251 is used for.
3252
3253 Autoincrement and autodecrement addresses typically have
3254 mode-dependent effects because the amount of the increment or
3255 decrement is the size of the operand being addressed. Some
3256 machines have other mode-dependent addresses. Many RISC machines
3257 have no mode-dependent addresses.
3258
3259 You may assume that ADDR is a valid address for the machine. */
3260
3261#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
3262
9c9e7632
GK
3263/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
3264 'the start of the function that this code is output in'. */
3265
3266#define ASM_OUTPUT_LABELREF(FILE,NAME) \
3267 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
3268 asm_fprintf ((FILE), "%U%s", \
3269 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
3270 else \
3271 asm_fprintf ((FILE), "%U%s", (NAME))
3272
2bcb2ab3
GK
3273/* The mips16 wants the constant pool to be after the function,
3274 because the PC relative load instructions use unsigned offsets. */
3275
3276#define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3277
3278#define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3279 mips_string_length = 0;
3280
3281#if 0
3282/* In mips16 mode, put most string constants after the function. */
3283#define CONSTANT_AFTER_FUNCTION_P(tree) \
3284 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3285#endif
e75b25e7
MM
3286\f
3287/* Specify the machine mode that this machine uses
2bcb2ab3
GK
3288 for the index in the tablejump instruction.
3289 ??? Using HImode in mips16 mode can cause overflow. However, the
3290 overflow is no more likely than the overflow in a branch
3291 instruction. Large functions can currently break in both ways. */
3292#define CASE_VECTOR_MODE \
1eeed24e 3293 (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
2bcb2ab3
GK
3294
3295/* Define as C expression which evaluates to nonzero if the tablejump
3296 instruction expects the table to contain offsets from the address of the
3297 table.
987ba558 3298 Do not define this if the table should contain absolute addresses. */
2bcb2ab3 3299#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
e75b25e7 3300
e75b25e7 3301/* Define this as 1 if `char' should by default be signed; else as 0. */
6639753e 3302#ifndef DEFAULT_SIGNED_CHAR
e75b25e7 3303#define DEFAULT_SIGNED_CHAR 1
6639753e 3304#endif
e75b25e7
MM
3305
3306/* Max number of bytes we can move from memory to memory
3307 in one reasonably fast instruction. */
876c09d3
JW
3308#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3309#define MAX_MOVE_MAX 8
e75b25e7
MM
3310
3311/* Define this macro as a C expression which is nonzero if
3312 accessing less than a word of memory (i.e. a `char' or a
3313 `short') is no faster than accessing a word of memory, i.e., if
3314 such access require more than one instruction or if there is no
3315 difference in cost between byte and (aligned) word loads.
3316
3317 On RISC machines, it tends to generate better code to define
3318 this as 1, since it avoids making a QI or HI mode register. */
3319#define SLOW_BYTE_ACCESS 1
3320
3321/* We assume that the store-condition-codes instructions store 0 for false
3322 and some other value for true. This is the value stored for true. */
3323
3324#define STORE_FLAG_VALUE 1
3325
d969caf8 3326/* Define this to be nonzero if shift instructions ignore all but the low-order
987ba558 3327 few bits. */
d969caf8 3328#define SHIFT_COUNT_TRUNCATED 1
e75b25e7
MM
3329
3330/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3331 is done just by pretending it is already truncated. */
876c09d3
JW
3332/* In 64 bit mode, 32 bit instructions require that register values be properly
3333 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3334 converts a value >32 bits to a value <32 bits. */
3335/* ??? This results in inefficient code for 64 bit to 32 conversions.
3336 Something needs to be done about this. Perhaps not use any 32 bit
3337 instructions? Perhaps use PROMOTE_MODE? */
3338#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3339 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
e75b25e7 3340
e75b25e7
MM
3341/* Specify the machine mode that pointers have.
3342 After generation of rtl, the compiler makes no further distinction
fb1bf66d
GRK
3343 between pointers and any other objects of this machine mode.
3344
987ba558 3345 For MIPS we make pointers are the smaller of longs and gp-registers. */
876c09d3 3346
1eeed24e 3347#ifndef Pmode
8ca47902 3348#define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
1eeed24e 3349#endif
e75b25e7
MM
3350
3351/* A function address in a call instruction
3352 is a word address (for indexing purposes)
3353 so give the MEM rtx a words's mode. */
3354
1eeed24e 3355#define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
e75b25e7
MM
3356
3357/* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
3358 memset, instead of the BSD functions bcopy and bzero. */
3359
3360#if defined(MIPS_SYSV) || defined(OSF_OS)
3361#define TARGET_MEM_FUNCTIONS
3362#endif
3363
3364\f
3365/* A part of a C `switch' statement that describes the relative
3366 costs of constant RTL expressions. It must contain `case'
3367 labels for expression codes `const_int', `const', `symbol_ref',
3368 `label_ref' and `const_double'. Each case must ultimately reach
3369 a `return' statement to return the relative cost of the use of
3370 that kind of constant value in an expression. The cost may
3371 depend on the precise value of the constant, which is available
3372 for examination in X.
3373
3374 CODE is the expression code--redundant, since it can be obtained
3375 with `GET_CODE (X)'. */
3376
def9623c 3377#define CONST_COSTS(X,CODE,OUTER_CODE) \
e75b25e7 3378 case CONST_INT: \
2bcb2ab3
GK
3379 if (! TARGET_MIPS16) \
3380 { \
3381 /* Always return 0, since we don't have different sized \
3382 instructions, hence different costs according to Richard \
3383 Kenner */ \
3384 return 0; \
3385 } \
3386 if ((OUTER_CODE) == SET) \
3387 { \
3388 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3389 return 0; \
3390 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3391 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3392 return COSTS_N_INSNS (1); \
3393 else \
3394 return COSTS_N_INSNS (2); \
3395 } \
3396 /* A PLUS could be an address. We don't want to force an address \
3397 to use a register, so accept any signed 16 bit value without \
3398 complaint. */ \
3399 if ((OUTER_CODE) == PLUS \
3400 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3401 return 0; \
3402 /* A number between 1 and 8 inclusive is efficient for a shift. \
3403 Otherwise, we will need an extended instruction. */ \
3404 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3405 || (OUTER_CODE) == LSHIFTRT) \
3406 { \
3407 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3408 return 0; \
3409 return COSTS_N_INSNS (1); \
3410 } \
3411 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3412 if ((OUTER_CODE) == XOR \
3413 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3414 return 0; \
3415 /* We may be able to use slt or sltu for a comparison with a \
3416 signed 16 bit value. (The boundary conditions aren't quite \
3417 right, but this is just a heuristic anyhow.) */ \
3418 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3419 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3420 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3421 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3422 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3423 return 0; \
3424 /* Equality comparisons with 0 are cheap. */ \
3425 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3426 && INTVAL (X) == 0) \
3427 return 0; \
3428 \
3429 /* Otherwise, work out the cost to load the value into a \
3430 register. */ \
3431 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3432 return COSTS_N_INSNS (1); \
3433 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3434 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3435 return COSTS_N_INSNS (2); \
3436 else \
3437 return COSTS_N_INSNS (3); \
e75b25e7
MM
3438 \
3439 case LABEL_REF: \
3440 return COSTS_N_INSNS (2); \
3441 \
3442 case CONST: \
3443 { \
31c714e3 3444 rtx offset = const0_rtx; \
876c09d3 3445 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
e75b25e7 3446 \
2bcb2ab3
GK
3447 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3448 { \
3449 /* Treat this like a signed 16 bit CONST_INT. */ \
3450 if ((OUTER_CODE) == PLUS) \
3451 return 0; \
3452 else if ((OUTER_CODE) == SET) \
3453 return COSTS_N_INSNS (1); \
3454 else \
3455 return COSTS_N_INSNS (2); \
3456 } \
3457 \
e75b25e7
MM
3458 if (GET_CODE (symref) == LABEL_REF) \
3459 return COSTS_N_INSNS (2); \
3460 \
3461 if (GET_CODE (symref) != SYMBOL_REF) \
3462 return COSTS_N_INSNS (4); \
3463 \
987ba558 3464 /* let's be paranoid.... */ \
31c714e3 3465 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
e75b25e7
MM
3466 return COSTS_N_INSNS (2); \
3467 \
3468 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3469 } \
3470 \
3471 case SYMBOL_REF: \
3472 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3473 \
3474 case CONST_DOUBLE: \
96abdcb1
ILT
3475 { \
3476 rtx high, low; \
2bcb2ab3
GK
3477 if (TARGET_MIPS16) \
3478 return COSTS_N_INSNS (4); \
96abdcb1
ILT
3479 split_double (X, &high, &low); \
3480 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3481 || low == CONST0_RTX (GET_MODE (low))) \
3482 ? 2 : 4); \
3483 }
e75b25e7
MM
3484
3485/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3486 This can be used, for example, to indicate how costly a multiply
3487 instruction is. In writing this macro, you can use the construct
3488 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3489
3490 This macro is optional; do not define it if the default cost
3491 assumptions are adequate for the target machine.
3492
3493 If -mdebugd is used, change the multiply cost to 2, so multiply by
3494 a constant isn't converted to a series of shifts. This helps
3495 strength reduction, and also makes it easier to identify what the
3496 compiler is doing. */
3497
516a2dfd 3498/* ??? Fix this to be right for the R8000. */
def9623c 3499#define RTX_COSTS(X,CODE,OUTER_CODE) \
e75b25e7
MM
3500 case MEM: \
3501 { \
3502 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3503 if (simple_memory_operand (X, GET_MODE (X))) \
3504 return COSTS_N_INSNS (num_words); \
3505 \
3506 return COSTS_N_INSNS (2*num_words); \
3507 } \
3508 \
3509 case FFS: \
3510 return COSTS_N_INSNS (6); \
3511 \
3512 case NOT: \
876c09d3 3513 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
e75b25e7
MM
3514 \
3515 case AND: \
3516 case IOR: \
3517 case XOR: \
876c09d3 3518 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
e75b25e7
MM
3519 return COSTS_N_INSNS (2); \
3520 \
2bcb2ab3 3521 break; \
e75b25e7
MM
3522 \
3523 case ASHIFT: \
3524 case ASHIFTRT: \
e75b25e7 3525 case LSHIFTRT: \
876c09d3
JW
3526 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3527 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
e75b25e7 3528 \
2bcb2ab3 3529 break; \
e75b25e7
MM
3530 \
3531 case ABS: \
3532 { \
3533 enum machine_mode xmode = GET_MODE (X); \
3534 if (xmode == SFmode || xmode == DFmode) \
3535 return COSTS_N_INSNS (1); \
3536 \
3537 return COSTS_N_INSNS (4); \
3538 } \
3539 \
3540 case PLUS: \
3541 case MINUS: \
3542 { \
3543 enum machine_mode xmode = GET_MODE (X); \
3544 if (xmode == SFmode || xmode == DFmode) \
9a863c83 3545 { \
7dac2f89
EC
3546 if (TUNE_MIPS3000 \
3547 || TUNE_MIPS3900) \
9a863c83 3548 return COSTS_N_INSNS (2); \
7dac2f89 3549 else if (TUNE_MIPS6000) \
9a863c83
JW
3550 return COSTS_N_INSNS (3); \
3551 else \
3552 return COSTS_N_INSNS (6); \
3553 } \
e75b25e7 3554 \
876c09d3 3555 if (xmode == DImode && !TARGET_64BIT) \
e75b25e7
MM
3556 return COSTS_N_INSNS (4); \
3557 \
2bcb2ab3 3558 break; \
e75b25e7
MM
3559 } \
3560 \
3561 case NEG: \
2bcb2ab3
GK
3562 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3563 return 4; \
3564 \
3565 break; \
e75b25e7
MM
3566 \
3567 case MULT: \
3568 { \
3569 enum machine_mode xmode = GET_MODE (X); \
3570 if (xmode == SFmode) \
9a863c83 3571 { \
7dac2f89
EC
3572 if (TUNE_MIPS3000 \
3573 || TUNE_MIPS3900 \
3574 || TUNE_MIPS5000) \
9a863c83 3575 return COSTS_N_INSNS (4); \
7dac2f89 3576 else if (TUNE_MIPS6000) \
9a863c83
JW
3577 return COSTS_N_INSNS (5); \
3578 else \
3579 return COSTS_N_INSNS (7); \
3580 } \
e75b25e7
MM
3581 \
3582 if (xmode == DFmode) \
9a863c83 3583 { \
7dac2f89
EC
3584 if (TUNE_MIPS3000 \
3585 || TUNE_MIPS3900 \
3586 || TUNE_MIPS5000) \
9a863c83 3587 return COSTS_N_INSNS (5); \
7dac2f89 3588 else if (TUNE_MIPS6000) \
9a863c83
JW
3589 return COSTS_N_INSNS (6); \
3590 else \
3591 return COSTS_N_INSNS (8); \
3592 } \
e75b25e7 3593 \
7dac2f89 3594 if (TUNE_MIPS3000) \
9a863c83 3595 return COSTS_N_INSNS (12); \
7dac2f89 3596 else if (TUNE_MIPS3900) \
e9a25f70 3597 return COSTS_N_INSNS (2); \
7dac2f89 3598 else if (TUNE_MIPS6000) \
9a863c83 3599 return COSTS_N_INSNS (17); \
7dac2f89 3600 else if (TUNE_MIPS5000) \
b8eb88d0 3601 return COSTS_N_INSNS (5); \
9a863c83
JW
3602 else \
3603 return COSTS_N_INSNS (10); \
e75b25e7
MM
3604 } \
3605 \
3606 case DIV: \
3607 case MOD: \
3608 { \
3609 enum machine_mode xmode = GET_MODE (X); \
3610 if (xmode == SFmode) \
9a863c83 3611 { \
7dac2f89
EC
3612 if (TUNE_MIPS3000 \
3613 || TUNE_MIPS3900) \
9a863c83 3614 return COSTS_N_INSNS (12); \
7dac2f89 3615 else if (TUNE_MIPS6000) \
9a863c83
JW
3616 return COSTS_N_INSNS (15); \
3617 else \
3618 return COSTS_N_INSNS (23); \
3619 } \
e75b25e7
MM
3620 \
3621 if (xmode == DFmode) \
9a863c83 3622 { \
7dac2f89
EC
3623 if (TUNE_MIPS3000 \
3624 || TUNE_MIPS3900) \
9a863c83 3625 return COSTS_N_INSNS (19); \
7dac2f89 3626 else if (TUNE_MIPS6000) \
9a863c83
JW
3627 return COSTS_N_INSNS (16); \
3628 else \
3629 return COSTS_N_INSNS (36); \
3630 } \
e75b25e7
MM
3631 } \
3632 /* fall through */ \
3633 \
3634 case UDIV: \
3635 case UMOD: \
7dac2f89
EC
3636 if (TUNE_MIPS3000 \
3637 || TUNE_MIPS3900) \
9a863c83 3638 return COSTS_N_INSNS (35); \
7dac2f89 3639 else if (TUNE_MIPS6000) \
9a863c83 3640 return COSTS_N_INSNS (38); \
7dac2f89 3641 else if (TUNE_MIPS5000) \
b8eb88d0 3642 return COSTS_N_INSNS (36); \
9a863c83 3643 else \
1a4fa807
ILT
3644 return COSTS_N_INSNS (69); \
3645 \
3646 case SIGN_EXTEND: \
3647 /* A sign extend from SImode to DImode in 64 bit mode is often \
3648 zero instructions, because the result can often be used \
3649 directly by another instruction; we'll call it one. */ \
3650 if (TARGET_64BIT && GET_MODE (X) == DImode \
3651 && GET_MODE (XEXP (X, 0)) == SImode) \
3652 return COSTS_N_INSNS (1); \
3653 else \
3654 return COSTS_N_INSNS (2); \
3655 \
3656 case ZERO_EXTEND: \
3657 if (TARGET_64BIT && GET_MODE (X) == DImode \
3658 && GET_MODE (XEXP (X, 0)) == SImode) \
3659 return COSTS_N_INSNS (2); \
3660 else \
3661 return COSTS_N_INSNS (1);
e75b25e7
MM
3662
3663/* An expression giving the cost of an addressing mode that
3664 contains ADDRESS. If not defined, the cost is computed from the
3665 form of the ADDRESS expression and the `CONST_COSTS' values.
3666
3667 For most CISC machines, the default cost is a good approximation
3668 of the true cost of the addressing mode. However, on RISC
3669 machines, all instructions normally have the same length and
3670 execution time. Hence all addresses will have equal costs.
3671
3672 In cases where more than one form of an address is known, the
3673 form with the lowest cost will be used. If multiple forms have
3674 the same, lowest, cost, the one that is the most complex will be
3675 used.
3676
3677 For example, suppose an address that is equal to the sum of a
7dac2f89 3678 register and a constant is used twice in the same basic block.
e75b25e7
MM
3679 When this macro is not defined, the address will be computed in
3680 a register and memory references will be indirect through that
3681 register. On machines where the cost of the addressing mode
3682 containing the sum is no higher than that of a simple indirect
3683 reference, this will produce an additional instruction and
3684 possibly require an additional register. Proper specification
3685 of this macro eliminates this overhead for such machines.
3686
3687 Similar use of this macro is made in strength reduction of loops.
3688
3689 ADDRESS need not be valid as an address. In such a case, the
3690 cost is not relevant and can be any value; invalid addresses
3691 need not be assigned a different cost.
3692
3693 On machines where an address involving more than one register is
3694 as cheap as an address computation involving only one register,
3695 defining `ADDRESS_COST' to reflect this can cause two registers
3696 to be live over a region of code where only one would have been
3697 if `ADDRESS_COST' were not defined in that manner. This effect
7dac2f89 3698 should be considered in the definition of this macro.
e75b25e7
MM
3699 Equivalent costs should probably only be given to addresses with
3700 different numbers of registers on machines with lots of registers.
3701
3702 This macro will normally either not be defined or be defined as
987ba558 3703 a constant. */
e75b25e7
MM
3704
3705#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3706
3707/* A C expression for the cost of moving data from a register in
3708 class FROM to one in class TO. The classes are expressed using
3709 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3710 the default; other values are interpreted relative to that.
3711
3712 It is not required that the cost always equal 2 when FROM is the
3713 same as TO; on some machines it is expensive to move between
3714 registers if they are not general registers.
3715
3716 If reload sees an insn consisting of a single `set' between two
3717 hard registers, and if `REGISTER_MOVE_COST' applied to their
3718 classes returns a value of 2, reload does not check to ensure
3719 that the constraints of the insn are met. Setting a cost of
3720 other than 2 will allow reload to verify that the constraints are
3721 met. You should do this if the `movM' pattern's constraints do
d604bca3
MH
3722 not allow such copying. */
3723
3724#define REGISTER_MOVE_COST(MODE, FROM, TO) \
3725 mips_register_move_cost (MODE, FROM, TO)
e75b25e7 3726
516a2dfd 3727/* ??? Fix this to be right for the R8000. */
cbd5b9a2 3728#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
7dac2f89 3729 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
cbd5b9a2 3730 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
876c09d3 3731
7506f491
DE
3732/* Define if copies to/from condition code registers should be avoided.
3733
3734 This is needed for the MIPS because reload_outcc is not complete;
3735 it needs to handle cases where the source is a general or another
3736 condition code register. */
3737#define AVOID_CCMODE_COPIES
3738
e75b25e7
MM
3739/* A C expression for the cost of a branch instruction. A value of
3740 1 is the default; other values are interpreted relative to that. */
3741
516a2dfd 3742/* ??? Fix this to be right for the R8000. */
2bcb2ab3
GK
3743#define BRANCH_COST \
3744 ((! TARGET_MIPS16 \
7dac2f89 3745 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
2bcb2ab3 3746 ? 2 : 1)
e75b25e7 3747
0ff83799
MM
3748/* If defined, modifies the length assigned to instruction INSN as a
3749 function of the context in which it is used. LENGTH is an lvalue
3750 that contains the initially computed length of the insn and should
3751 be updated with the correct length of the insn. */
3752#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
3753 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
3754
e75b25e7
MM
3755\f
3756/* Optionally define this if you have added predicates to
3757 `MACHINE.c'. This macro is called within an initializer of an
3758 array of structures. The first field in the structure is the
31c714e3 3759 name of a predicate and the second field is an array of rtl
e75b25e7
MM
3760 codes. For each predicate, list all rtl codes that can be in
3761 expressions matched by the predicate. The list should have a
3762 trailing comma. Here is an example of two entries in the list
3763 for a typical RISC machine:
3764
3765 #define PREDICATE_CODES \
3766 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3767 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3768
3769 Defining this macro does not affect the generated code (however,
3770 incorrect definitions that omit an rtl code that may be matched
7dac2f89 3771 by the predicate can cause the compiler to malfunction).
e75b25e7
MM
3772 Instead, it allows the table built by `genrecog' to be more
3773 compact and efficient, thus speeding up the compiler. The most
3774 important predicates to include in the list specified by this
3775 macro are thoses used in the most insn patterns. */
3776
3777#define PREDICATE_CODES \
3778 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3779 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3780 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
def72bd2
GRK
3781 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3782 {"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
e75b25e7
MM
3783 {"small_int", { CONST_INT }}, \
3784 {"large_int", { CONST_INT }}, \
e75b25e7 3785 {"mips_const_double_ok", { CONST_DOUBLE }}, \
b8eb88d0 3786 {"const_float_1_operand", { CONST_DOUBLE }}, \
e75b25e7 3787 {"simple_memory_operand", { MEM, SUBREG }}, \
e75b25e7
MM
3788 {"equality_op", { EQ, NE }}, \
3789 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3790 LTU, LEU }}, \
a0b6cdee 3791 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
f8634644 3792 {"pc_or_label_operand", { PC, LABEL_REF }}, \
ce57d6f4
JW
3793 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3794 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3795 SYMBOL_REF, LABEL_REF, SUBREG, \
3796 REG, MEM}}, \
1908a152
ILT
3797 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3798 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3799 MEM, SIGN_EXTEND }}, \
3800 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
def72bd2 3801 {"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
1908a152
ILT
3802 SIGN_EXTEND }}, \
3803 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3804 SIGN_EXTEND }}, \
3805 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3806 SIGN_EXTEND }}, \
3807 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3808 SYMBOL_REF, LABEL_REF, SUBREG, \
3809 REG, SIGN_EXTEND }}, \
2bcb2ab3
GK
3810 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }}, \
3811 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
cb923660
KR
3812 CONST_DOUBLE, CONST }}, \
3813 {"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
3814 {"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
3815
0e7e9155
RH
3816/* A list of predicates that do special things with modes, and so
3817 should not elicit warnings for VOIDmode match_operand. */
3818
3819#define SPECIAL_MODE_PREDICATES \
3820 "pc_or_label_operand",
e75b25e7
MM
3821
3822\f
3823/* If defined, a C statement to be executed just prior to the
3824 output of assembler code for INSN, to modify the extracted
3825 operands so they will be output differently.
3826
3827 Here the argument OPVEC is the vector containing the operands
3828 extracted from INSN, and NOPERANDS is the number of elements of
3829 the vector which contain meaningful data for this insn. The
3830 contents of this vector are what will be used to convert the
3831 insn template into assembler code, so you can change the
3832 assembler output by changing the contents of the vector.
3833
3834 We use it to check if the current insn needs a nop in front of it
3835 because of load delays, and also to update the delay slot
3836 statistics. */
3837
3838#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
65437fe8 3839 final_prescan_insn (INSN, OPVEC, NOPERANDS)
e75b25e7 3840
e75b25e7
MM
3841\f
3842/* Control the assembler format that we output. */
3843
3844/* Output at beginning of assembler file.
3845 If we are optimizing to use the global pointer, create a temporary
3846 file to hold all of the text stuff, and write it out to the end.
3847 This is needed because the MIPS assembler is evidently one pass,
3848 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3849 declaration when the code is processed, it generates a two
3850 instruction sequence. */
3851
44404b8b 3852#undef ASM_FILE_START
e75b25e7
MM
3853#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3854
3855/* Output to assembler file text saying following lines
3856 may contain character constants, extra white space, comments, etc. */
3857
b2bcb32d 3858#ifndef ASM_APP_ON
e75b25e7 3859#define ASM_APP_ON " #APP\n"
b2bcb32d 3860#endif
e75b25e7
MM
3861
3862/* Output to assembler file text saying following lines
3863 no longer contain unusual constructs. */
3864
b2bcb32d 3865#ifndef ASM_APP_OFF
e75b25e7 3866#define ASM_APP_OFF " #NO_APP\n"
b2bcb32d 3867#endif
e75b25e7
MM
3868
3869/* How to refer to registers in assembler output.
3870 This sequence is indexed by compiler's hard-register-number (see above).
3871
3872 In order to support the two different conventions for register names,
3873 we use the name of a table set up in mips.c, which is overwritten
3874 if -mrnames is used. */
3875
3876#define REGISTER_NAMES \
3877{ \
3878 &mips_reg_names[ 0][0], \
3879 &mips_reg_names[ 1][0], \
3880 &mips_reg_names[ 2][0], \
3881 &mips_reg_names[ 3][0], \
3882 &mips_reg_names[ 4][0], \
3883 &mips_reg_names[ 5][0], \
3884 &mips_reg_names[ 6][0], \
3885 &mips_reg_names[ 7][0], \
3886 &mips_reg_names[ 8][0], \
3887 &mips_reg_names[ 9][0], \
3888 &mips_reg_names[10][0], \
3889 &mips_reg_names[11][0], \
3890 &mips_reg_names[12][0], \
3891 &mips_reg_names[13][0], \
3892 &mips_reg_names[14][0], \
3893 &mips_reg_names[15][0], \
3894 &mips_reg_names[16][0], \
3895 &mips_reg_names[17][0], \
3896 &mips_reg_names[18][0], \
3897 &mips_reg_names[19][0], \
3898 &mips_reg_names[20][0], \
3899 &mips_reg_names[21][0], \
3900 &mips_reg_names[22][0], \
3901 &mips_reg_names[23][0], \
3902 &mips_reg_names[24][0], \
3903 &mips_reg_names[25][0], \
3904 &mips_reg_names[26][0], \
3905 &mips_reg_names[27][0], \
3906 &mips_reg_names[28][0], \
3907 &mips_reg_names[29][0], \
3908 &mips_reg_names[30][0], \
3909 &mips_reg_names[31][0], \
3910 &mips_reg_names[32][0], \
3911 &mips_reg_names[33][0], \
3912 &mips_reg_names[34][0], \
3913 &mips_reg_names[35][0], \
3914 &mips_reg_names[36][0], \
3915 &mips_reg_names[37][0], \
3916 &mips_reg_names[38][0], \
3917 &mips_reg_names[39][0], \
3918 &mips_reg_names[40][0], \
3919 &mips_reg_names[41][0], \
3920 &mips_reg_names[42][0], \
3921 &mips_reg_names[43][0], \
3922 &mips_reg_names[44][0], \
3923 &mips_reg_names[45][0], \
3924 &mips_reg_names[46][0], \
3925 &mips_reg_names[47][0], \
3926 &mips_reg_names[48][0], \
3927 &mips_reg_names[49][0], \
3928 &mips_reg_names[50][0], \
3929 &mips_reg_names[51][0], \
3930 &mips_reg_names[52][0], \
3931 &mips_reg_names[53][0], \
3932 &mips_reg_names[54][0], \
3933 &mips_reg_names[55][0], \
3934 &mips_reg_names[56][0], \
3935 &mips_reg_names[57][0], \
3936 &mips_reg_names[58][0], \
3937 &mips_reg_names[59][0], \
3938 &mips_reg_names[60][0], \
3939 &mips_reg_names[61][0], \
3940 &mips_reg_names[62][0], \
3941 &mips_reg_names[63][0], \
3942 &mips_reg_names[64][0], \
3943 &mips_reg_names[65][0], \
3944 &mips_reg_names[66][0], \
225b8835 3945 &mips_reg_names[67][0], \
39dffea3 3946 &mips_reg_names[68][0], \
b8eb88d0
ILT
3947 &mips_reg_names[69][0], \
3948 &mips_reg_names[70][0], \
3949 &mips_reg_names[71][0], \
3950 &mips_reg_names[72][0], \
3951 &mips_reg_names[73][0], \
3952 &mips_reg_names[74][0], \
3953 &mips_reg_names[75][0], \
d604bca3
MH
3954 &mips_reg_names[76][0], \
3955 &mips_reg_names[77][0], \
3956 &mips_reg_names[78][0], \
3957 &mips_reg_names[79][0], \
3958 &mips_reg_names[80][0], \
3959 &mips_reg_names[81][0], \
3960 &mips_reg_names[82][0], \
3961 &mips_reg_names[83][0], \
3962 &mips_reg_names[84][0], \
3963 &mips_reg_names[85][0], \
3964 &mips_reg_names[86][0], \
3965 &mips_reg_names[87][0], \
3966 &mips_reg_names[88][0], \
3967 &mips_reg_names[89][0], \
3968 &mips_reg_names[90][0], \
3969 &mips_reg_names[91][0], \
3970 &mips_reg_names[92][0], \
3971 &mips_reg_names[93][0], \
3972 &mips_reg_names[94][0], \
3973 &mips_reg_names[95][0], \
3974 &mips_reg_names[96][0], \
3975 &mips_reg_names[97][0], \
3976 &mips_reg_names[98][0], \
3977 &mips_reg_names[99][0], \
3978 &mips_reg_names[100][0], \
3979 &mips_reg_names[101][0], \
3980 &mips_reg_names[102][0], \
3981 &mips_reg_names[103][0], \
3982 &mips_reg_names[104][0], \
3983 &mips_reg_names[105][0], \
3984 &mips_reg_names[106][0], \
3985 &mips_reg_names[107][0], \
3986 &mips_reg_names[108][0], \
3987 &mips_reg_names[109][0], \
3988 &mips_reg_names[110][0], \
3989 &mips_reg_names[111][0], \
3990 &mips_reg_names[112][0], \
3991 &mips_reg_names[113][0], \
3992 &mips_reg_names[114][0], \
3993 &mips_reg_names[115][0], \
3994 &mips_reg_names[116][0], \
3995 &mips_reg_names[117][0], \
3996 &mips_reg_names[118][0], \
3997 &mips_reg_names[119][0], \
3998 &mips_reg_names[120][0], \
3999 &mips_reg_names[121][0], \
4000 &mips_reg_names[122][0], \
4001 &mips_reg_names[123][0], \
4002 &mips_reg_names[124][0], \
4003 &mips_reg_names[125][0], \
4004 &mips_reg_names[126][0], \
4005 &mips_reg_names[127][0], \
4006 &mips_reg_names[128][0], \
4007 &mips_reg_names[129][0], \
4008 &mips_reg_names[130][0], \
4009 &mips_reg_names[131][0], \
4010 &mips_reg_names[132][0], \
4011 &mips_reg_names[133][0], \
4012 &mips_reg_names[134][0], \
4013 &mips_reg_names[135][0], \
4014 &mips_reg_names[136][0], \
4015 &mips_reg_names[137][0], \
4016 &mips_reg_names[138][0], \
4017 &mips_reg_names[139][0], \
4018 &mips_reg_names[140][0], \
4019 &mips_reg_names[141][0], \
4020 &mips_reg_names[142][0], \
4021 &mips_reg_names[143][0], \
4022 &mips_reg_names[144][0], \
4023 &mips_reg_names[145][0], \
4024 &mips_reg_names[146][0], \
4025 &mips_reg_names[147][0], \
4026 &mips_reg_names[148][0], \
4027 &mips_reg_names[149][0], \
4028 &mips_reg_names[150][0], \
4029 &mips_reg_names[151][0], \
4030 &mips_reg_names[152][0], \
4031 &mips_reg_names[153][0], \
4032 &mips_reg_names[154][0], \
4033 &mips_reg_names[155][0], \
4034 &mips_reg_names[156][0], \
4035 &mips_reg_names[157][0], \
4036 &mips_reg_names[158][0], \
4037 &mips_reg_names[159][0], \
4038 &mips_reg_names[160][0], \
4039 &mips_reg_names[161][0], \
4040 &mips_reg_names[162][0], \
4041 &mips_reg_names[163][0], \
4042 &mips_reg_names[164][0], \
4043 &mips_reg_names[165][0], \
4044 &mips_reg_names[166][0], \
4045 &mips_reg_names[167][0], \
4046 &mips_reg_names[168][0], \
4047 &mips_reg_names[169][0], \
4048 &mips_reg_names[170][0], \
4049 &mips_reg_names[171][0], \
4050 &mips_reg_names[172][0], \
4051 &mips_reg_names[173][0], \
4052 &mips_reg_names[174][0], \
4053 &mips_reg_names[175][0] \
e75b25e7
MM
4054}
4055
46cca58c
RS
4056/* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
4057 So define this for it. */
4058#define DEBUG_REGISTER_NAMES \
4059{ \
4060 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
4061 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
4062 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
07e2e444 4063 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
46cca58c
RS
4064 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
4065 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
4066 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
4067 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
b8eb88d0 4068 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
d604bca3
MH
4069 "$fcc5","$fcc6","$fcc7","$rap", "", "", "", "", \
4070 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",\
4071 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",\
4072 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",\
4073 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",\
4074 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",\
4075 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",\
4076 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",\
4077 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",\
4078 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",\
4079 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",\
4080 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",\
4081 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"\
46cca58c
RS
4082}
4083
e75b25e7
MM
4084/* If defined, a C initializer for an array of structures
4085 containing a name and a register number. This macro defines
4086 additional names for hard registers, thus allowing the `asm'
4087 option in declarations to refer to registers using alternate
4088 names.
4089
4090 We define both names for the integer registers here. */
4091
4092#define ADDITIONAL_REGISTER_NAMES \
4093{ \
4094 { "$0", 0 + GP_REG_FIRST }, \
4095 { "$1", 1 + GP_REG_FIRST }, \
4096 { "$2", 2 + GP_REG_FIRST }, \
4097 { "$3", 3 + GP_REG_FIRST }, \
4098 { "$4", 4 + GP_REG_FIRST }, \
4099 { "$5", 5 + GP_REG_FIRST }, \
4100 { "$6", 6 + GP_REG_FIRST }, \
4101 { "$7", 7 + GP_REG_FIRST }, \
4102 { "$8", 8 + GP_REG_FIRST }, \
4103 { "$9", 9 + GP_REG_FIRST }, \
4104 { "$10", 10 + GP_REG_FIRST }, \
4105 { "$11", 11 + GP_REG_FIRST }, \
4106 { "$12", 12 + GP_REG_FIRST }, \
4107 { "$13", 13 + GP_REG_FIRST }, \
4108 { "$14", 14 + GP_REG_FIRST }, \
4109 { "$15", 15 + GP_REG_FIRST }, \
4110 { "$16", 16 + GP_REG_FIRST }, \
4111 { "$17", 17 + GP_REG_FIRST }, \
4112 { "$18", 18 + GP_REG_FIRST }, \
4113 { "$19", 19 + GP_REG_FIRST }, \
4114 { "$20", 20 + GP_REG_FIRST }, \
4115 { "$21", 21 + GP_REG_FIRST }, \
4116 { "$22", 22 + GP_REG_FIRST }, \
4117 { "$23", 23 + GP_REG_FIRST }, \
4118 { "$24", 24 + GP_REG_FIRST }, \
4119 { "$25", 25 + GP_REG_FIRST }, \
4120 { "$26", 26 + GP_REG_FIRST }, \
4121 { "$27", 27 + GP_REG_FIRST }, \
4122 { "$28", 28 + GP_REG_FIRST }, \
4123 { "$29", 29 + GP_REG_FIRST }, \
4124 { "$30", 30 + GP_REG_FIRST }, \
4125 { "$31", 31 + GP_REG_FIRST }, \
4126 { "$sp", 29 + GP_REG_FIRST }, \
4127 { "$fp", 30 + GP_REG_FIRST }, \
4128 { "at", 1 + GP_REG_FIRST }, \
4129 { "v0", 2 + GP_REG_FIRST }, \
4130 { "v1", 3 + GP_REG_FIRST }, \
4131 { "a0", 4 + GP_REG_FIRST }, \
4132 { "a1", 5 + GP_REG_FIRST }, \
4133 { "a2", 6 + GP_REG_FIRST }, \
4134 { "a3", 7 + GP_REG_FIRST }, \
4135 { "t0", 8 + GP_REG_FIRST }, \
4136 { "t1", 9 + GP_REG_FIRST }, \
4137 { "t2", 10 + GP_REG_FIRST }, \
4138 { "t3", 11 + GP_REG_FIRST }, \
4139 { "t4", 12 + GP_REG_FIRST }, \
4140 { "t5", 13 + GP_REG_FIRST }, \
4141 { "t6", 14 + GP_REG_FIRST }, \
4142 { "t7", 15 + GP_REG_FIRST }, \
4143 { "s0", 16 + GP_REG_FIRST }, \
4144 { "s1", 17 + GP_REG_FIRST }, \
4145 { "s2", 18 + GP_REG_FIRST }, \
4146 { "s3", 19 + GP_REG_FIRST }, \
4147 { "s4", 20 + GP_REG_FIRST }, \
4148 { "s5", 21 + GP_REG_FIRST }, \
4149 { "s6", 22 + GP_REG_FIRST }, \
4150 { "s7", 23 + GP_REG_FIRST }, \
4151 { "t8", 24 + GP_REG_FIRST }, \
4152 { "t9", 25 + GP_REG_FIRST }, \
4153 { "k0", 26 + GP_REG_FIRST }, \
4154 { "k1", 27 + GP_REG_FIRST }, \
4155 { "gp", 28 + GP_REG_FIRST }, \
4156 { "sp", 29 + GP_REG_FIRST }, \
4157 { "fp", 30 + GP_REG_FIRST }, \
4158 { "ra", 31 + GP_REG_FIRST }, \
924706a0 4159 { "$sp", 29 + GP_REG_FIRST }, \
b8eb88d0 4160 { "$fp", 30 + GP_REG_FIRST } \
d604bca3 4161 ALL_COP_ADDITIONAL_REGISTER_NAMES \
e75b25e7
MM
4162}
4163
d604bca3
MH
4164/* This is meant to be redefined in the host dependent files. It is a
4165 set of alternative names and regnums for mips coprocessors. */
4166
4167#define ALL_COP_ADDITIONAL_REGISTER_NAMES
4168
e75b25e7
MM
4169/* A C compound statement to output to stdio stream STREAM the
4170 assembler syntax for an instruction operand X. X is an RTL
4171 expression.
4172
4173 CODE is a value that can be used to specify one of several ways
4174 of printing the operand. It is used when identical operands
4175 must be printed differently depending on the context. CODE
4176 comes from the `%' specification that was used to request
4177 printing of the operand. If the specification was just `%DIGIT'
4178 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4179 is the ASCII code for LTR.
4180
4181 If X is a register, this macro should print the register's name.
4182 The names can be found in an array `reg_names' whose type is
4183 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4184
4185 When the machine description has a specification `%PUNCT' (a `%'
4186 followed by a punctuation character), this macro is called with
4187 a null pointer for X and the punctuation character for CODE.
4188
4189 See mips.c for the MIPS specific codes. */
4190
4191#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
4192
4193/* A C expression which evaluates to true if CODE is a valid
4194 punctuation character for use in the `PRINT_OPERAND' macro. If
4195 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
4196 punctuation characters (except for the standard one, `%') are
4197 used in this way. */
4198
4199#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
4200
4201/* A C compound statement to output to stdio stream STREAM the
4202 assembler syntax for an instruction operand that is a memory
fb49053f 4203 reference whose address is ADDR. ADDR is an RTL expression. */
e75b25e7
MM
4204
4205#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
4206
4207
4208/* A C statement, to be executed after all slot-filler instructions
4209 have been output. If necessary, call `dbr_sequence_length' to
4210 determine the number of slots filled in a sequence (zero if not
4211 currently outputting a sequence), to decide how many no-ops to
4212 output, or whatever.
4213
4214 Don't define this macro if it has nothing to do, but it is
4215 helpful in reading assembly output if the extent of the delay
4216 sequence is made explicit (e.g. with white space).
4217
4218 Note that output routines for instructions with delay slots must
4219 be prepared to deal with not being output as part of a sequence
4220 (i.e. when the scheduling pass is not run, or when no slot
4221 fillers could be found.) The variable `final_sequence' is null
4222 when not processing a sequence, otherwise it contains the
4223 `sequence' rtx being output. */
4224
4225#define DBR_OUTPUT_SEQEND(STREAM) \
4226do \
4227 { \
4228 if (set_nomacro > 0 && --set_nomacro == 0) \
4229 fputs ("\t.set\tmacro\n", STREAM); \
4230 \
4231 if (set_noreorder > 0 && --set_noreorder == 0) \
4232 fputs ("\t.set\treorder\n", STREAM); \
4233 \
4234 dslots_jump_filled++; \
4235 fputs ("\n", STREAM); \
4236 } \
4237while (0)
4238
4239
4240/* How to tell the debugger about changes of source files. Note, the
4241 mips ECOFF format cannot deal with changes of files inside of
4242 functions, which means the output of parser generators like bison
4243 is generally not debuggable without using the -l switch. Lose,
4244 lose, lose. Silicon graphics seems to want all .file's hardwired
4245 to 1. */
4246
4247#ifndef SET_FILE_NUMBER
4248#define SET_FILE_NUMBER() ++num_source_filenames
4249#endif
4250
4251#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
4252 mips_output_filename (STREAM, NAME)
4253
ddd5a7c1 4254/* This is defined so that it can be overridden in iris6.h. */
516a2dfd
JW
4255#define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
4256do \
4257 { \
4258 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
4259 output_quoted_string (STREAM, NAME); \
4260 fputs ("\n", STREAM); \
4261 } \
4262while (0)
4263
e75b25e7
MM
4264/* This is how to output a note the debugger telling it the line number
4265 to which the following sequence of instructions corresponds.
4266 Silicon graphics puts a label after each .loc. */
4267
4268#ifndef LABEL_AFTER_LOC
4269#define LABEL_AFTER_LOC(STREAM)
4270#endif
4271
b2bcb32d 4272#ifndef ASM_OUTPUT_SOURCE_LINE
e75b25e7
MM
4273#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
4274 mips_output_lineno (STREAM, LINE)
b2bcb32d 4275#endif
e75b25e7 4276
9ec36da5 4277/* The MIPS implementation uses some labels for its own purpose. The
e75b25e7
MM
4278 following lists what labels are created, and are all formed by the
4279 pattern $L[a-z].*. The machine independent portion of GCC creates
4280 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
4281
c5b7917e 4282 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
e75b25e7
MM
4283 $Lb[0-9]+ Begin blocks for MIPS debug support
4284 $Lc[0-9]+ Label for use in s<xx> operation.
4285 $Le[0-9]+ End blocks for MIPS debug support
987ba558 4286 $Lp\..+ Half-pic labels. */
e75b25e7
MM
4287
4288/* This is how to output the definition of a user-level label named NAME,
4289 such as the label on a static function or variable NAME.
4290
4291 If we are optimizing the gp, remember that this label has been put
4292 out, so we know not to emit an .extern for it in mips_asm_file_end.
4293 We use one of the common bits in the IDENTIFIER tree node for this,
4294 since those bits seem to be unused, and we don't have any method
4295 of getting the decl nodes from the name. */
4296
e75b25e7
MM
4297#define ASM_OUTPUT_LABEL(STREAM,NAME) \
4298do { \
4299 assemble_name (STREAM, NAME); \
4300 fputs (":\n", STREAM); \
e75b25e7
MM
4301} while (0)
4302
31c714e3
MM
4303
4304/* A C statement (sans semicolon) to output to the stdio stream
4305 STREAM any text necessary for declaring the name NAME of an
4306 initialized variable which is being defined. This macro must
7dac2f89 4307 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
31c714e3
MM
4308 The argument DECL is the `VAR_DECL' tree node representing the
4309 variable.
4310
4311 If this macro is not defined, then the variable name is defined
4312 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
4313
44404b8b 4314#undef ASM_DECLARE_OBJECT_NAME
31c714e3 4315#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
f3b39eba
MM
4316do \
4317 { \
4318 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
4319 HALF_PIC_DECLARE (NAME); \
4320 } \
4321while (0)
31c714e3 4322
e75b25e7
MM
4323
4324/* This is how to output a command to make the user-level label named NAME
4325 defined for reference from other files. */
4326
e75b25e7
MM
4327#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
4328 do { \
4329 fputs ("\t.globl\t", STREAM); \
4330 assemble_name (STREAM, NAME); \
4331 fputs ("\n", STREAM); \
4332 } while (0)
4333
31c714e3 4334/* This says how to define a global common symbol. */
e75b25e7 4335
919509ce
DN
4336#define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
4337 do { \
4338 /* If the target wants uninitialized const declarations in \
4339 .rdata then don't put them in .comm */ \
4340 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
4341 && TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
4342 && (DECL_INITIAL (DECL) == 0 \
4343 || DECL_INITIAL (DECL) == error_mark_node)) \
4344 { \
4345 if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
4346 ASM_GLOBALIZE_LABEL (STREAM, NAME); \
4347 \
d48bc59a 4348 readonly_data_section (); \
919509ce
DN
4349 ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
4350 mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
4351 (SIZE)); \
4352 } \
4353 else \
d239cdc0 4354 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
919509ce
DN
4355 (SIZE)); \
4356 } while (0)
4357
e75b25e7 4358
c5b7917e 4359/* This says how to define a local common symbol (ie, not visible to
31c714e3 4360 linker). */
e75b25e7
MM
4361
4362#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
69520b54 4363 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
e75b25e7
MM
4364
4365
4366/* This says how to output an external. It would be possible not to
4367 output anything and let undefined symbol become external. However
4368 the assembler uses length information on externals to allocate in
4369 data/sdata bss/sbss, thereby saving exec time. */
4370
4371#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4372 mips_output_external(STREAM,DECL,NAME)
4373
4374/* This says what to print at the end of the assembly file */
44404b8b 4375#undef ASM_FILE_END
e75b25e7
MM
4376#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4377
4378
f99ffb60
RH
4379/* Play switch file games if we're optimizing the global pointer. */
4380
4381#undef TEXT_SECTION
4382#define TEXT_SECTION() \
4383do { \
4384 extern FILE *asm_out_text_file; \
4385 if (TARGET_FILE_SWITCHING) \
4386 asm_out_file = asm_out_text_file; \
4387 fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
4388 fputc ('\n', asm_out_file); \
4389} while (0)
4390
4391
e75b25e7
MM
4392/* This is how to declare a function name. The actual work of
4393 emitting the label is moved to function_prologue, so that we can
4394 get the line number correctly emitted before the .ent directive,
f99ffb60 4395 and after any .file directives. */
e75b25e7 4396
44404b8b 4397#undef ASM_DECLARE_FUNCTION_NAME
f99ffb60
RH
4398#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
4399 HALF_PIC_DECLARE (NAME)
e75b25e7 4400
e75b25e7
MM
4401/* This is how to output an internal numbered label where
4402 PREFIX is the class of label and NUM is the number within the class. */
4403
44404b8b 4404#undef ASM_OUTPUT_INTERNAL_LABEL
e75b25e7 4405#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
6ae1498b 4406 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
e75b25e7
MM
4407
4408/* This is how to store into the string LABEL
4409 the symbol_ref name of an internal numbered label where
4410 PREFIX is the class of label and NUM is the number within the class.
4411 This is suitable for output with `assemble_name'. */
4412
44404b8b 4413#undef ASM_GENERATE_INTERNAL_LABEL
e75b25e7 4414#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4f70758f 4415 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
e75b25e7 4416
e75b25e7
MM
4417/* This is how to output an element of a case-vector that is absolute. */
4418
4419#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
6ae1498b 4420 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4421 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4422 LOCAL_LABEL_PREFIX, \
876c09d3 4423 VALUE)
e75b25e7
MM
4424
4425/* This is how to output an element of a case-vector that is relative.
e0bfcea5
ILT
4426 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4427 TARGET_EMBEDDED_PIC). */
e75b25e7 4428
33f7f353 4429#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
e0bfcea5 4430do { \
2bcb2ab3
GK
4431 if (TARGET_MIPS16) \
4432 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4433 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4434 else if (TARGET_EMBEDDED_PIC) \
6ae1498b 4435 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
1eeed24e 4436 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4437 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
a53f72db 4438 else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
6ae1498b 4439 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4440 Pmode == DImode ? ".gpdword" : ".gpword", \
6ae1498b 4441 LOCAL_LABEL_PREFIX, VALUE); \
516a2dfd 4442 else \
b2d8cf33 4443 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4444 Pmode == DImode ? ".dword" : ".word", \
b2d8cf33 4445 LOCAL_LABEL_PREFIX, VALUE); \
e0bfcea5
ILT
4446} while (0)
4447
2bcb2ab3
GK
4448/* When generating embedded PIC or mips16 code we want to put the jump
4449 table in the .text section. In all other cases, we want to put the
4450 jump table in the .rdata section. Unfortunately, we can't use
e0bfcea5
ILT
4451 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4452 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4453 section if appropriate. */
44404b8b 4454#undef ASM_OUTPUT_CASE_LABEL
e0bfcea5
ILT
4455#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4456do { \
2bcb2ab3
GK
4457 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4458 function_section (current_function_decl); \
e0bfcea5
ILT
4459 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4460} while (0)
e75b25e7
MM
4461
4462/* This is how to output an assembler line
4463 that says to advance the location counter
4464 to a multiple of 2**LOG bytes. */
4465
4466#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
a688e0b7 4467 fprintf (STREAM, "\t.align\t%d\n", (LOG))
e75b25e7 4468
38e01259 4469/* This is how to output an assembler line to advance the location
e75b25e7
MM
4470 counter by SIZE bytes. */
4471
44404b8b 4472#undef ASM_OUTPUT_SKIP
e75b25e7
MM
4473#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4474 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4475
e75b25e7 4476/* This is how to output a string. */
44404b8b 4477#undef ASM_OUTPUT_ASCII
e75b25e7 4478#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
b3276c7a 4479 mips_output_ascii (STREAM, STRING, LEN)
e75b25e7
MM
4480
4481/* Handle certain cpp directives used in header files on sysV. */
4482#define SCCS_DIRECTIVE
4483
4484/* Output #ident as a in the read-only data section. */
0e5a4ad8 4485#undef ASM_OUTPUT_IDENT
e75b25e7
MM
4486#define ASM_OUTPUT_IDENT(FILE, STRING) \
4487{ \
3cce094d 4488 const char *p = STRING; \
e75b25e7 4489 int size = strlen (p) + 1; \
d48bc59a 4490 readonly_data_section (); \
e75b25e7
MM
4491 assemble_string (p, size); \
4492}
4493\f
b82b0773
MM
4494/* Default to -G 8 */
4495#ifndef MIPS_DEFAULT_GVALUE
4496#define MIPS_DEFAULT_GVALUE 8
4497#endif
e75b25e7 4498
f3b39eba
MM
4499/* Define the strings to put out for each section in the object file. */
4500#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4501#define DATA_SECTION_ASM_OP "\t.data" /* large data */
4502#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
50efa737 4503#ifndef READONLY_DATA_SECTION_ASM_OP
d48bc59a 4504#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
50efa737 4505#endif
3cf6400d 4506#define SMALL_DATA_SECTION sdata_section
e75b25e7
MM
4507
4508/* What other sections we support other than the normal .data/.text. */
4509
44404b8b 4510#undef EXTRA_SECTIONS
d48bc59a 4511#define EXTRA_SECTIONS in_sdata
e75b25e7
MM
4512
4513/* Define the additional functions to select our additional sections. */
4514
4515/* on the MIPS it is not a good idea to put constants in the text
4516 section, since this defeats the sdata/data mechanism. This is
4517 especially true when -O is used. In this case an effort is made to
4518 address with faster (gp) register relative addressing, which can
4519 only get at sdata and sbss items (there is no stext !!) However,
4520 if the constant is too large for sdata, and it's readonly, it
987ba558 4521 will go into the .rdata section. */
e75b25e7 4522
44404b8b 4523#undef EXTRA_SECTION_FUNCTIONS
e75b25e7
MM
4524#define EXTRA_SECTION_FUNCTIONS \
4525void \
4526sdata_section () \
4527{ \
4528 if (in_section != in_sdata) \
4529 { \
4530 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4531 in_section = in_sdata; \
4532 } \
e75b25e7
MM
4533}
4534
4535/* Given a decl node or constant node, choose the section to output it in
4536 and select that section. */
4537
ae46c4e0
RH
4538#undef TARGET_ASM_SELECT_SECTION
4539#define TARGET_ASM_SELECT_SECTION mips_select_section
e75b25e7
MM
4540\f
4541/* Store in OUTPUT a string (made with alloca) containing
4542 an assembler-name for a local static variable named NAME.
4543 LABELNO is an integer which is different for each call. */
4544
4545#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4546( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4547 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4548
4549#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4550do \
4551 { \
876c09d3
JW
4552 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4553 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7
MM
4554 reg_names[STACK_POINTER_REGNUM], \
4555 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4556 TARGET_64BIT ? "sd" : "sw", \
e75b25e7
MM
4557 reg_names[REGNO], \
4558 reg_names[STACK_POINTER_REGNUM]); \
4559 } \
4560while (0)
4561
4562#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4563do \
4564 { \
4565 if (! set_noreorder) \
4566 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4567 \
4568 dslots_load_total++; \
4569 dslots_load_filled++; \
876c09d3
JW
4570 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4571 TARGET_64BIT ? "ld" : "lw", \
e75b25e7
MM
4572 reg_names[REGNO], \
4573 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4574 TARGET_64BIT ? "daddu" : "addu", \
e75b25e7
MM
4575 reg_names[STACK_POINTER_REGNUM], \
4576 reg_names[STACK_POINTER_REGNUM]); \
4577 \
4578 if (! set_noreorder) \
4579 fprintf (STREAM, "\t.set\treorder\n"); \
4580 } \
4581while (0)
4582
4baed42f
DE
4583/* How to start an assembler comment.
4584 The leading space is important (the mips native assembler requires it). */
e75b25e7 4585#ifndef ASM_COMMENT_START
4baed42f 4586#define ASM_COMMENT_START " #"
e75b25e7 4587#endif
e75b25e7
MM
4588\f
4589
4590/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4591 and mips-tdump.c to print them out.
4592
4593 These must match the corresponding definitions in gdb/mipsread.c.
987ba558 4594 Unfortunately, gcc and gdb do not currently share any directories. */
e75b25e7
MM
4595
4596#define CODE_MASK 0x8F300
4597#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4598#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4599#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
3f1f8d8c
MM
4600
4601\f
4602/* Default definitions for size_t and ptrdiff_t. */
4603
4604#ifndef SIZE_TYPE
79e69af0 4605#define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
3f1f8d8c
MM
4606#endif
4607
4608#ifndef PTRDIFF_TYPE
79e69af0 4609#define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
3f1f8d8c 4610#endif
28174a14
MS
4611
4612/* See mips_expand_prologue's use of loadgp for when this should be
4613 true. */
4614
a53f72db
GRK
4615#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
4616 && mips_abi != ABI_32 \
4617 && mips_abi != ABI_O64)
2bcb2ab3
GK
4618\f
4619/* In mips16 mode, we need to look through the function to check for
4620 PC relative loads that are out of range. */
4621#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4622
4623/* We need to use a special set of functions to handle hard floating
4624 point code in mips16 mode. */
337e2b69
ILT
4625
4626#ifndef INIT_SUBTARGET_OPTABS
4627#define INIT_SUBTARGET_OPTABS
4628#endif
4629
4630#define INIT_TARGET_OPTABS \
4631do \
4632 { \
2bcb2ab3
GK
4633 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4634 INIT_SUBTARGET_OPTABS; \
4635 else \
4636 { \
4637 add_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4638 init_one_libfunc ("__mips16_addsf3"); \
2bcb2ab3 4639 sub_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4640 init_one_libfunc ("__mips16_subsf3"); \
2bcb2ab3 4641 smul_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4642 init_one_libfunc ("__mips16_mulsf3"); \
ef89d648 4643 sdiv_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4644 init_one_libfunc ("__mips16_divsf3"); \
2bcb2ab3 4645 \
e85cde9a
JL
4646 eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
4647 nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
4648 gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
4649 gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
4650 ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
4651 lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
2bcb2ab3
GK
4652 \
4653 floatsisf_libfunc = \
e85cde9a 4654 init_one_libfunc ("__mips16_floatsisf"); \
2bcb2ab3 4655 fixsfsi_libfunc = \
e85cde9a 4656 init_one_libfunc ("__mips16_fixsfsi"); \
2bcb2ab3
GK
4657 \
4658 if (TARGET_DOUBLE_FLOAT) \
4659 { \
4660 add_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4661 init_one_libfunc ("__mips16_adddf3"); \
2bcb2ab3 4662 sub_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4663 init_one_libfunc ("__mips16_subdf3"); \
2bcb2ab3 4664 smul_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4665 init_one_libfunc ("__mips16_muldf3"); \
ef89d648 4666 sdiv_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4667 init_one_libfunc ("__mips16_divdf3"); \
2bcb2ab3
GK
4668 \
4669 extendsfdf2_libfunc = \
e85cde9a 4670 init_one_libfunc ("__mips16_extendsfdf2"); \
2bcb2ab3 4671 truncdfsf2_libfunc = \
e85cde9a 4672 init_one_libfunc ("__mips16_truncdfsf2"); \
2bcb2ab3
GK
4673 \
4674 eqdf2_libfunc = \
e85cde9a 4675 init_one_libfunc ("__mips16_eqdf2"); \
2bcb2ab3 4676 nedf2_libfunc = \
e85cde9a 4677 init_one_libfunc ("__mips16_nedf2"); \
2bcb2ab3 4678 gtdf2_libfunc = \
e85cde9a 4679 init_one_libfunc ("__mips16_gtdf2"); \
2bcb2ab3 4680 gedf2_libfunc = \
e85cde9a 4681 init_one_libfunc ("__mips16_gedf2"); \
2bcb2ab3 4682 ltdf2_libfunc = \
e85cde9a 4683 init_one_libfunc ("__mips16_ltdf2"); \
2bcb2ab3 4684 ledf2_libfunc = \
e85cde9a 4685 init_one_libfunc ("__mips16_ledf2"); \
2bcb2ab3
GK
4686 \
4687 floatsidf_libfunc = \
e85cde9a 4688 init_one_libfunc ("__mips16_floatsidf"); \
2bcb2ab3 4689 fixdfsi_libfunc = \
e85cde9a 4690 init_one_libfunc ("__mips16_fixdfsi"); \
2bcb2ab3
GK
4691 } \
4692 } \
337e2b69
ILT
4693 } \
4694while (0)
e0c13c70
L
4695
4696#define DFMODE_NAN \
4697 unsigned short DFbignan[4] = {0x7ff7, 0xffff, 0xffff, 0xffff}; \
4698 unsigned short DFlittlenan[4] = {0xffff, 0xffff, 0xffff, 0xfff7}
4699#define SFMODE_NAN \
4700 unsigned short SFbignan[2] = {0x7fbf, 0xffff}; \
4701 unsigned short SFlittlenan[2] = {0xffff, 0xffbf}
This page took 2.256777 seconds and 5 git commands to generate.