]> gcc.gnu.org Git - gcc.git/blame - gcc/config/mips/mips.h
*** empty log message ***
[gcc.git] / gcc / config / mips / mips.h
CommitLineData
e75b25e7
MM
1/* Definitions of target machine for GNU compiler. MIPS version.
2 Contributed by A. Lichnewsky, lich@inria.inria.fr
3 Changed by Michael Meissner, meissner@osf.org
4 Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
5
6This file is part of GNU CC.
7
8GNU CC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU CC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU CC; see the file COPYING. If not, write to
20the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22
23/* Make Saber happier on obstack.[ch]. */
24#if defined(__mips__) || defined(mips)
25#define __PTR_TO_INT(P) ((int)(P))
26#define __INT_TO_PTR(P) ((char *)(P))
27#endif
28
29/* Standard GCC variables that we reference. */
30
31extern int target_flags;
32extern int optimize;
33extern int may_call_alloca;
34extern int current_function_calls_alloca;
35extern int frame_pointer_needed;
36extern int flag_omit_frame_pointer;
37
38/* MIPS external variables defined in mips.c. */
39
40/* comparison type */
41enum cmp_type {
42 CMP_SI, /* compare integers */
43 CMP_SF, /* compare single precision floats */
44 CMP_DF, /* compare double precision floats */
45 CMP_MAX /* max comparison type */
46};
47
48/* types of delay slot */
49enum delay_type {
50 DELAY_NONE, /* no delay slot */
51 DELAY_LOAD, /* load from memory delay */
52 DELAY_HILO /* move from/to hi/lo registers */
53};
54
55/* Which processor to schedule for. Since there is no difference between
56 a R2000 and R3000 in terms of the scheduler, we collapse them into
57 just an R3000. */
58
59enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
62 PROCESSOR_R6000,
63 PROCESSOR_R4000
64};
65
66extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
67extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
68extern char *current_function_name; /* current function being compiled */
69extern char *current_function_file; /* filename current function is in */
70extern int num_source_filenames; /* current .file # */
71extern int inside_function; /* != 0 if inside of a function */
72extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
73extern int file_in_function_warning; /* warning given about .file in func */
74extern int sdb_label_count; /* block start/end next label # */
75extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
76extern int g_switch_value; /* value of the -G xx switch */
77extern int g_switch_set; /* whether -G xx was passed. */
78extern int sym_lineno; /* sgi next label # for each stmt */
79extern int set_noreorder; /* # of nested .set noreorder's */
80extern int set_nomacro; /* # of nested .set nomacro's */
81extern int set_noat; /* # of nested .set noat's */
82extern int set_volatile; /* # of nested .set volatile's */
83extern int flag_half_pic; /* whether or not we use half-pic */
84extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
85extern int mips_dbx_regno[]; /* Map register # to debug register # */
86extern char mips_rtx_classify[]; /* classify an RTX code */
87extern struct rtx_def *branch_cmp[2]; /* operands for compare */
88extern enum cmp_type branch_type; /* what type of branch to use */
89extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
90extern int mips_isa; /* architectural level */
91extern char *mips_cpu_string; /* for -mcpu=<xxx> */
92extern char *mips_isa_string; /* for -mips{1,2,3} */
93extern int dslots_load_total; /* total # load related delay slots */
94extern int dslots_load_filled; /* # filled load delay slots */
95extern int dslots_jump_total; /* total # jump related delay slots */
96extern int dslots_jump_filled; /* # filled jump delay slots */
97extern int dslots_number_nops; /* # of nops needed by previous insn */
98extern int num_refs[3]; /* # 1/2/3 word references */
99extern struct rtx_def *mips_load_reg; /* register to check for load delay */
100extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
101extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
102extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
103
104/* Functions within mips.c that we reference. */
105
106extern void abort_with_insn ();
107extern int arith32_operand ();
108extern int arith_operand ();
109extern int call_memory_operand ();
110extern int cmp_op ();
111extern int cmp2_op ();
112extern unsigned long compute_frame_size ();
113extern void expand_block_move ();
114extern int equality_op ();
115extern int fcmp_op ();
116extern struct rtx_def * function_arg ();
117extern void function_arg_advance ();
118extern int function_arg_partial_nregs ();
119extern void function_epilogue ();
120extern void function_prologue ();
121extern void gen_conditional_branch ();
122extern void half_pic_encode_section_info ();
123extern void init_cumulative_args ();
124extern int large_int ();
125extern int md_register_operand ();
126extern int mips_address_cost ();
127extern void mips_asm_file_end ();
128extern void mips_asm_file_start ();
129extern int mips_const_double_ok ();
130extern int mips_constant_address_p ();
131extern void mips_count_memory_refs ();
132extern int mips_debugger_offset ();
133extern int mips_epilogue_delay_slots ();
134extern char *mips_fill_delay_slot ();
135extern char *mips_move_1word ();
136extern char *mips_move_2words ();
137extern int mips_output_external ();
138extern void mips_output_filename ();
139extern void mips_output_lineno ();
140extern void override_options ();
141extern void print_operand_address ();
142extern void print_operand ();
143extern void print_options ();
144extern int reg_or_0_operand ();
145extern int simple_memory_operand ();
146extern int small_int ();
147extern void trace();
148extern int uns_arith_operand ();
149extern int uns_cmp_op ();
150
151/* Functions in varasm.c that we reference. */
152extern void data_section ();
153extern void rdata_section ();
154extern void readonly_data_section ();
155extern void sdata_section ();
156extern void text_section ();
157
158\f
159/* Switch Recognition by gcc.c. Add -G xx support */
160
161#ifdef SWITCH_TAKES_ARG
162#undef SWITCH_TAKES_ARG
163#endif
164
165#define SWITCH_TAKES_ARG(CHAR) \
166 ((CHAR) == 'D' || (CHAR) == 'U' || (CHAR) == 'o' \
167 || (CHAR) == 'e' || (CHAR) == 'T' || (CHAR) == 'u' \
168 || (CHAR) == 'I' || (CHAR) == 'm' \
169 || (CHAR) == 'L' || (CHAR) == 'A' || (CHAR) == 'G')
170
171/* Sometimes certain combinations of command options do not make sense
172 on a particular target machine. You can define a macro
173 `OVERRIDE_OPTIONS' to take account of this. This macro, if
174 defined, is executed once just after all the command options have
175 been parsed.
176
177 On the MIPS, it is used to handle -G. We also use it to set up all
178 of the tables referenced in the other macros. */
179
180#define OVERRIDE_OPTIONS override_options ()
181
182/* Zero or more C statements that may conditionally modify two
183 variables `fixed_regs' and `call_used_regs' (both of type `char
184 []') after they have been initialized from the two preceding
185 macros.
186
187 This is necessary in case the fixed or call-clobbered registers
188 depend on target flags.
189
190 You need not define this macro if it has no work to do.
191
192 If the usage of an entire class of registers depends on the target
193 flags, you may indicate this to GCC by using this macro to modify
194 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
195 the classes which should not be used by GCC. Also define the macro
196 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
197 letter for a class that shouldn't be used.
198
199 (However, if this class is not included in `GENERAL_REGS' and all
200 of the insn patterns whose constraints permit this class are
201 controlled by target switches, then GCC will automatically avoid
202 using these registers when the target switches are opposed to
203 them.) */
204
205#define CONDITIONAL_REGISTER_USAGE \
206do \
207 { \
208 if (!TARGET_HARD_FLOAT) \
209 { \
210 int regno; \
211 \
212 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
213 fixed_regs[regno] = call_used_regs[regno] = 1; \
214 } \
215 } \
216while (0)
217
218
219/* Some machines may desire to change what optimizations are
220 performed for various optimization levels. This macro, if
221 defined, is executed once just after the optimization level is
222 determined and before the remainder of the command options have
223 been parsed. Values set in this macro are used as the default
224 values for the other command line options.
225
226 LEVEL is the optimization level specified; 2 if -O2 is
227 specified, 1 if -O is specified, and 0 if neither is specified. */
228
229#define OPTIMIZATION_OPTIONS(LEVEL) \
230{ \
231 if (LEVEL) \
232 { \
233 flag_omit_frame_pointer = TRUE; \
234 flag_delayed_branch = TRUE; \
235 flag_thread_jumps = TRUE; \
236 flag_schedule_insns_after_reload = TRUE; \
237 flag_caller_saves = TRUE; \
238 } \
239 \
240 if (LEVEL >= 2) \
241 { \
242 flag_strength_reduce = TRUE; \
243 flag_cse_follow_jumps = TRUE; \
244 flag_expensive_optimizations = TRUE; \
245 flag_rerun_cse_after_loop = TRUE; \
246 flag_schedule_insns = TRUE; \
247 } \
248 \
249 if (LEVEL >= 3) \
250 { \
251 flag_inline_functions = TRUE; \
252 } \
253}
254
255\f
256
257/* Complain about missing specs and predefines that should be defined in each
258 of the target tm files to override the defaults. This is mostly a place-
259 holder until I can get each of the files updated [mm]. */
260
261#if defined(OSF_OS) \
262 || defined(DECSTATION) \
263 || defined(SGI_TARGET) \
264 || defined(MIPS_NEWS) \
265 || defined(MIPS_SYSV) \
266 || defined(MIPS_BSD43)
267
268#ifndef CPP_PREDEFINES
269 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
270#endif
271
272#ifndef CPP_SPEC
273 #error "Define CPP_SPEC in the appropriate tm.h file"
274#endif
275
276#ifndef LINK_SPEC
277 #error "Define LINK_SPEC in the appropriate tm.h file"
278#endif
279
280#ifndef LIB_SPEC
281 #error "Define LIB_SPEC in the appropriate tm.h file"
282#endif
283
284#ifndef STARTFILE_SPEC
285 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
286#endif
287
288#ifndef MACHINE_TYPE
289 #error "Define MACHINE_TYPE in the appropriate tm.h file"
290#endif
291#endif
292
293\f
294/* Names to predefine in the preprocessor for this target machine. */
295
296#ifndef CPP_PREDEFINES
297#define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000"
298#endif
299
300/* Extra switches sometimes passed to the assembler. */
301
302#ifndef ASM_SPEC
303#define ASM_SPEC "%{!mgas: \
304 %{!mrnames: -nocpp} \
305 %{pipe: %e-pipe is not supported.} \
306 %{EB} %{!EB:-EB} \
307 %{EL: %e-EL not supported} \
308 %{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3} \
309 %{g} %{g0} %{g1} %{g2} %{g3} %{v} %{K}} \
310 %{G*}"
311
312#endif /* ASM_SPEC */
313
314/* Specify to run a post-processor, mips-tfile after the assembler
315 has run to stuff the mips debug information into the object file.
316 This is needed because the $#!%^ MIPS assembler provides no way
317 of specifing such information in the assembly file. */
318
319#ifndef ASM_FINAL_SPEC
320#define ASM_FINAL_SPEC "%{!mgas: %{!mno-mips-tfile: \
321 \n mips-tfile %{v*: -v} \
322 %{K: -I %b.o~} \
323 %{!K: %{save-temps: -I %b.o~}} \
324 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %b.o} \
325 %{.s:%i} %{!.s:%g.s}}}"
326#endif
327
328/* Redefinition of libraries used. Mips doesn't support normal
329 UNIX style profiling via calling _mcount. It does offer
330 profiling that samples the PC, so do what we can... */
331
332#ifndef LIB_SPEC
333#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
334#endif
335
336/* Suppress libg.a from being linked in when debugging, since MIPS doesn't
337 supply one. */
338
339#ifndef LIBG_SPEC
340#define LIBG_SPEC ""
341#endif
342
343/* Extra switches sometimes passed to the loader. */
344
345
346#ifndef LINK_SPEC
347#define LINK_SPEC "%{G*} \
348 %{!mgas: \
349 %{pipe: %e-pipe is not supported.} \
350 %{EB} %{!EB:-EB} \
351 %{EL: %e-EL not supported} \
352 %{bestGnum}}"
353#endif /* LINK_SPEC defined */
354
355/* Specs for the compiler proper */
356
357#ifndef CC1_SPEC
358#define CC1_SPEC "%{O*: %{!mno-gpOPT:%{!mno-gpopt: -mgpopt}}} \
359 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
360 %{G*} \
361 %{pic-none: -mno-half-pic} \
362 %{pic-lib: -mhalf-pic} \
363 %{pic-extern: -mhalf-pic} \
364 %{pic-calls: -mhalf-pic} \
365 %{save-temps: }"
366#endif
367
368#ifndef CC1PLUS_SPEC
369#define CC1PLUS_SPEC "%{!fgnu-binutils: -fno-gnu-binutils}"
370#endif
371
372/* Preprocessor specs */
373
374#ifndef CPP_SPEC
375#define CPP_SPEC "%{!ansi:-DSYSTYPE_BSD} -D__SYSTYPE_BSD__ \
376 %{.S: -D__LANGUAGE_ASSEMBLY__ \
377 -D_LANGUAGE_ASSEMBLY \
378 %{!ansi:-DLANGUAGE_ASSEMBLY}} \
379 %{.cc: -D__LANGUAGE_C_PLUS_PLUS__ \
380 -D_LANGUAGE_C_PLUS_PLUS \
381 %{!ansi:-DLANGUAGE_C_PLUS_PLUS}} \
382 %{.cxx:-D__LANGUAGE_C_PLUS_PLUS__ \
383 -D_LANGUAGE_C_PLUS_PLUS \
384 %{!ansi:-DLANGUAGE_C_PLUS_PLUS}} \
385 %{.C: -D__LANGUAGE_C_PLUS_PLUS__ \
386 -D_LANGUAGE_C_PLUS_PLUS \
387 %{!ansi:-DLANGUAGE_C_PLUS_PLUS}} \
388 %{.m: -D__LANGUAGE_OBJECTIVE_C__ \
389 -D_LANGUAGE_OBJECTIVE_C \
390 %{!ansi:-DLANGUAGE_OBJECTIVE_C}} \
391 %{!.S: -D__LANGUAGE_C__ \
392 -D_LANGUAGE_C \
393 %{!ansi:-DLANGUAGE_C}}"
394#endif
395
396/* If defined, this macro is an additional prefix to try after
397 `STANDARD_EXEC_PREFIX'. */
398
399#ifndef MD_EXEC_PREFIX
400#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc"
401#endif
402
403\f
404/* Print subsidiary information on the compiler version in use. */
405
406#define MIPS_VERSION "[AL 1.1, MM 11]"
407
408#ifndef MACHINE_TYPE
409#define MACHINE_TYPE "BSD Mips"
410#endif
411
412#ifndef TARGET_VERSION_INTERNAL
413#define TARGET_VERSION_INTERNAL(STREAM) \
414 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
415#endif
416
417#ifndef TARGET_VERSION
418#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
419#endif
420
421\f
422#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
423#define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
424#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
425
426#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
427#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
428#endif
429
430/* If we are passing smuggling stabs through the MIPS ECOFF object
431 format, put a comment in front of the .stab<x> operation so
432 that the MIPS assembler does not choke. The mips-tfile program
433 will correctly put the stab into the object file. */
434
435#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
436#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
437#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
438
439/* Forward references to tags are allowed. */
440#define SDB_ALLOW_FORWARD_REFERENCES
441
442/* Unknown tags are also allowed. */
443#define SDB_ALLOW_UNKNOWN_REFERENCES
444
445/* On Sun 4, this limit is 2048. We use 1500 to be safe,
446 since the length can run past this up to a continuation point. */
447#define DBX_CONTIN_LENGTH 1500
448
449
450/* How to renumber registers for dbx and gdb. */
451#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
452
453
454/* Overrides for the COFF debug format. */
455#define PUT_SDB_SCL(a) \
456do { \
457 extern FILE *asm_out_text_file; \
458 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
459} while (0)
460
461#define PUT_SDB_INT_VAL(a) \
462do { \
463 extern FILE *asm_out_text_file; \
464 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
465} while (0)
466
467#define PUT_SDB_VAL(a) \
468do { \
469 extern FILE *asm_out_text_file; \
470 fputs ("\t.val\t", asm_out_text_file); \
471 output_addr_const (asm_out_text_file, (a)); \
472 fputc (';', asm_out_text_file); \
473} while (0)
474
475#define PUT_SDB_DEF(a) \
476do { \
477 extern FILE *asm_out_text_file; \
478 fprintf (asm_out_text_file, "\t#.def\t"); \
479 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
480 fputc (';', asm_out_text_file); \
481} while (0)
482
483#define PUT_SDB_PLAIN_DEF(a) \
484do { \
485 extern FILE *asm_out_text_file; \
486 fprintf (asm_out_text_file, "\t#.def\t.%s;", (a)); \
487} while (0)
488
489#define PUT_SDB_ENDEF \
490do { \
491 extern FILE *asm_out_text_file; \
492 fprintf (asm_out_text_file, "\t.endef\n"); \
493} while (0)
494
495#define PUT_SDB_TYPE(a) \
496do { \
497 extern FILE *asm_out_text_file; \
498 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
499} while (0)
500
501#define PUT_SDB_SIZE(a) \
502do { \
503 extern FILE *asm_out_text_file; \
504 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
505} while (0)
506
507#define PUT_SDB_DIM(a) \
508do { \
509 extern FILE *asm_out_text_file; \
510 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
511} while (0)
512
513#ifndef PUT_SDB_START_DIM
514#define PUT_SDB_START_DIM \
515do { \
516 extern FILE *asm_out_text_file; \
517 fprintf (asm_out_text_file, "\t.dim\t"); \
518} while (0)
519#endif
520
521#ifndef PUT_SDB_NEXT_DIM
522#define PUT_SDB_NEXT_DIM(a) \
523do { \
524 extern FILE *asm_out_text_file; \
525 fprintf (asm_out_text_file, "%d,", a); \
526} while (0)
527#endif
528
529#ifndef PUT_SDB_LAST_DIM
530#define PUT_SDB_LAST_DIM(a) \
531do { \
532 extern FILE *asm_out_text_file; \
533 fprintf (asm_out_text_file, "%d;", a); \
534} while (0)
535#endif
536
537#define PUT_SDB_TAG(a) \
538do { \
539 extern FILE *asm_out_text_file; \
540 fprintf (asm_out_text_file, "\t.tag\t"); \
541 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
542 fputc (';', asm_out_text_file); \
543} while (0)
544
545/* For block start and end, we create labels, so that
546 later we can figure out where the correct offset is.
547 The normal .ent/.end serve well enough for functions,
548 so those are just commented out. */
549
550#define PUT_SDB_BLOCK_START(LINE) \
551do { \
552 extern FILE *asm_out_text_file; \
553 fprintf (asm_out_text_file, \
554 "$Lb%d:\n\t#.begin\t$Lb%d\t%d\n", \
555 sdb_label_count, \
556 sdb_label_count, \
557 (LINE)); \
558 sdb_label_count++; \
559} while (0)
560
561#define PUT_SDB_BLOCK_END(LINE) \
562do { \
563 extern FILE *asm_out_text_file; \
564 fprintf (asm_out_text_file, \
565 "$Le%d:\n\t#.bend\t$Le%d\t%d\n", \
566 sdb_label_count, \
567 sdb_label_count, \
568 (LINE)); \
569 sdb_label_count++; \
570} while (0)
571
572#define PUT_SDB_FUNCTION_START(LINE)
573
574#define PUT_SDB_FUNCTION_END(LINE)
575
576#define PUT_SDB_EPILOGUE_END(NAME)
577
578#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
579 sprintf ((BUFFER), ".%dfake", (NUMBER));
580
581/* Correct the offset of automatic variables and arguments
582 if the frame pointer has been eliminated. */
583
584#define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
585#define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
586
587\f
588/* Run-time compilation parameters selecting different hardware subsets. */
589
590/* Macros used in the machine description to test the flags. */
591
592 /* Bits for real switches */
593#define MASK_INT64 0x00000001 /* ints are 64 bits */
594#define MASK_LONG64 0x00000002 /* longs are 64 bits */
595#define MASK_LLONG128 0x00000004 /* long longs are 128 bits */
596#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
597#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
598#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
599#define MASK_STATS 0x00000040 /* print statistics to stderr */
600#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
601#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
602#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
603#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
604#define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
605#define MASK_UNUSED1 0x00001000
606#define MASK_UNUSED2 0x00002000
607#define MASK_UNUSED3 0x00004000
608#define MASK_UNUSED4 0x00008000
609#define MASK_UNUSED5 0x00010000
610#define MASK_UNUSED6 0x00020000
611#define MASK_UNUSED7 0x00040000
612#define MASK_UNUSED8 0x00080000
613
614 /* Dummy switches used only in spec's*/
615#define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
616
617 /* switches not used yet */
618#define MASK_WC8 0x00000000 /* wchar's are 8 bits, not 32 */
619#define MASK_WC16 0x00000000 /* wchar's are 16 bits, not 32 */
620#define MASK_WC32 0x00000000 /* dummy for consistancy */
621
622 /* Debug switches, not documented */
623#define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
624#define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
625#define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
626#define MASK_DEBUG_C 0x08000000 /* suppress normal divmod patterns */
627#define MASK_DEBUG_D 0x04000000 /* make multiply cost 2 */
628#define MASK_DEBUG_E 0x02000000 /* function_arg debug */
629#define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
630#define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
631#define MASK_DEBUG_H 0x00400000 /* allow ints in FP registers */
632#define MASK_DEBUG_I 0x00200000 /* unused */
633#define MASK_DEBUG_J 0x00100000 /* unused */
634
635 /* r4000 64 bit sizes */
636#define TARGET_INT64 (target_flags & MASK_INT64)
637#define TARGET_LONG64 (target_flags & MASK_LONG64)
638#define TARGET_LLONG128 (target_flags & MASK_LLONG128)
639#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
640
641 /* Mips vs. GNU assembler */
642#define TARGET_GAS (target_flags & MASK_GAS)
643#define TARGET_UNIX_ASM (!TARGET_GAS)
644#define TARGET_MIPS_AS TARGET_UNIX_ASM
645
646 /* Debug Mode */
647#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
648#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
649#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
650#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
651#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
652#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
653#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
654#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
655#define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
656#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
657#define TARGET_DEBUG_J_MODE (target_flags & MASK_DEBUG_J)
658
659 /* Reg. Naming in .s ($21 vs. $a0) */
660#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
661
662 /* Optimize for Sdata/Sbss */
663#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
664
665 /* print program statistics */
666#define TARGET_STATS (target_flags & MASK_STATS)
667
668 /* call memcpy instead of inline code */
669#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
670
671 /* .abicalls, etc from Pyramid V.4 */
672#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
673
674 /* OSF pic references to externs */
675#define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
676
677 /* wchar size */
678#define TARGET_WC8 (target_flags & MASK_WC8)
679#define TARGET_WC16 (target_flags & MASK_WC16)
680#define TARGET_WC32 ((target_flags & (MASK_WC8 | MASK_WC16)) == 0)
681
682 /* software floating point */
683#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
684#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
685
686/* Macro to define tables used to set the flags.
687 This is a list in braces of pairs in braces,
688 each pair being { "NAME", VALUE }
689 where VALUE is the bits to set or minus the bits to clear.
690 An empty string NAME is used to identify the default VALUE. */
691
692#define TARGET_SWITCHES \
693{ \
694 {"int64", MASK_INT64 | MASK_LONG64}, \
695 {"long64", MASK_LONG64}, \
696 {"longlong128", MASK_INT64 | MASK_LONG64 | MASK_LLONG128}, \
697 {"mips-as", -MASK_GAS}, \
698 {"gas", MASK_GAS}, \
699 {"rnames", MASK_NAME_REGS}, \
700 {"no-rnames", -MASK_NAME_REGS}, \
701 {"gpOPT", MASK_GPOPT}, \
702 {"gpopt", MASK_GPOPT}, \
703 {"no-gpOPT", -MASK_GPOPT}, \
704 {"no-gpopt", -MASK_GPOPT}, \
705 {"stats", MASK_STATS}, \
706 {"no-stats", -MASK_STATS}, \
707 {"memcpy", MASK_MEMCPY}, \
708 {"no-memcpy", -MASK_MEMCPY}, \
709 {"wc8", MASK_WC8}, \
710 {"wc16", MASK_WC16}, \
711 {"wc32", MASK_WC32}, \
712 {"mips-tfile", MASK_MIPS_TFILE}, \
713 {"no-mips-tfile", -MASK_MIPS_TFILE}, \
714 {"soft-float", MASK_SOFT_FLOAT}, \
715 {"hard-float", -MASK_SOFT_FLOAT}, \
716 {"fp64", MASK_FLOAT64}, \
717 {"fp32", -MASK_FLOAT64}, \
718 {"abicalls", MASK_ABICALLS}, \
719 {"no-abicalls", -MASK_ABICALLS}, \
720 {"half-pic", MASK_HALF_PIC}, \
721 {"no-half-pic", -MASK_HALF_PIC}, \
722 {"debug", MASK_DEBUG}, \
723 {"debuga", MASK_DEBUG_A}, \
724 {"debugb", MASK_DEBUG_B}, \
725 {"debugc", MASK_DEBUG_C}, \
726 {"debugd", MASK_DEBUG_D}, \
727 {"debuge", MASK_DEBUG_E}, \
728 {"debugf", MASK_DEBUG_F}, \
729 {"debugg", MASK_DEBUG_G}, \
730 {"debugh", MASK_DEBUG_H}, \
731 {"debugi", MASK_DEBUG_I}, \
732 {"debugj", MASK_DEBUG_J}, \
733 {"", TARGET_DEFAULT} \
734}
735
736/* Default target_flags if no switches are specified */
737
738#ifndef TARGET_DEFAULT
739#define TARGET_DEFAULT 0
740#endif
741
742/* This macro is similar to `TARGET_SWITCHES' but defines names of
743 command options that have values. Its definition is an
744 initializer with a subgrouping for each command option.
745
746 Each subgrouping contains a string constant, that defines the
747 fixed part of the option name, and the address of a variable.
748 The variable, type `char *', is set to the variable part of the
749 given option if the fixed part matches. The actual option name
750 is made by appending `-m' to the specified name.
751
752 Here is an example which defines `-mshort-data-NUMBER'. If the
753 given option is `-mshort-data-512', the variable `m88k_short_data'
754 will be set to the string `"512"'.
755
756 extern char *m88k_short_data;
757 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
758
759#define TARGET_OPTIONS \
760{ \
761 { "cpu=", &mips_cpu_string }, \
762 { "ips", &mips_isa_string } \
763}
764
765/* Macros to decide whether certain features are available or not,
766 depending on the instruction set architecture level. */
767
768#define BRANCH_LIKELY_P() (mips_isa >= 2)
769#define HAVE_64BIT_P() (mips_isa >= 3)
770#define HAVE_SQRT_P() (mips_isa >= 2)
771
772\f
773/* Target machine storage layout */
774
775/* Define this if most significant bit is lowest numbered
776 in instructions that operate on numbered bit-fields.
777*/
778/* #define BITS_BIG_ENDIAN */
779
780/* Define this if most significant byte of a word is the lowest numbered. */
781#ifndef BYTES_BIG_ENDIAN
782#ifndef DECSTATION
783#define BYTES_BIG_ENDIAN 1
784#else
785#define BYTES_BIG_ENDIAN 0
786#endif
787#endif
788
789/* Define this if most significant word of a multiword number is the lowest. */
790#ifndef WORDS_BIG_ENDIAN
791#ifndef DECSTATION
792#define WORDS_BIG_ENDIAN 1
793#else
794#define WORDS_BIG_ENDIAN 0
795#endif
796#endif
797
798/* Define macros to easily access the most and least significant words
799 without a lot of #ifdef's. */
800
801#if WORDS_BIG_ENDIAN
802#define MOST_SIGNIFICANT_WORD 0
803#define LEAST_SIGNIFICANT_WORD 1
804
805#else
806#define MOST_SIGNIFICANT_WORD 1
807#define LEAST_SIGNIFICANT_WORD 0
808#endif
809
810/* Number of bits in an addressible storage unit */
811#define BITS_PER_UNIT 8
812
813/* Width in bits of a "word", which is the contents of a machine register.
814 Note that this is not necessarily the width of data type `int';
815 if using 16-bit ints on a 68000, this would still be 32.
816 But on a machine with 16-bit registers, this would be 16. */
817#define BITS_PER_WORD 32
818
819/* Width of a word, in units (bytes). */
820#define UNITS_PER_WORD 4
821
822/* A C expression for the size in bits of the type `int' on the
823 target machine. If you don't define this, the default is one
824 word. */
825#define INT_TYPE_SIZE 32
826
827/* A C expression for the size in bits of the type `short' on the
828 target machine. If you don't define this, the default is half a
829 word. (If this would be less than one storage unit, it is
830 rounded up to one unit.) */
831#define SHORT_TYPE_SIZE 16
832
833/* A C expression for the size in bits of the type `long' on the
834 target machine. If you don't define this, the default is one
835 word. */
836#define LONG_TYPE_SIZE 32
837
838/* A C expression for the size in bits of the type `long long' on the
839 target machine. If you don't define this, the default is two
840 words. */
841#define LONG_LONG_TYPE_SIZE 64
842
843/* A C expression for the size in bits of the type `char' on the
844 target machine. If you don't define this, the default is one
845 quarter of a word. (If this would be less than one storage unit,
846 it is rounded up to one unit.) */
847#define CHAR_TYPE_SIZE BITS_PER_UNIT
848
849/* A C expression for the size in bits of the type `float' on the
850 target machine. If you don't define this, the default is one
851 word. */
852#define FLOAT_TYPE_SIZE 32
853
854/* A C expression for the size in bits of the type `double' on the
855 target machine. If you don't define this, the default is two
856 words. */
857#define DOUBLE_TYPE_SIZE 64
858
859/* A C expression for the size in bits of the type `long double' on
860 the target machine. If you don't define this, the default is two
861 words. */
862#define LONG_DOUBLE_TYPE_SIZE 64
863
864/* Width in bits of a pointer.
865 See also the macro `Pmode' defined below. */
866#define POINTER_SIZE 32
867
868/* Allocation boundary (in *bits*) for storing pointers in memory. */
869#define POINTER_BOUNDARY 32
870
871/* Allocation boundary (in *bits*) for storing arguments in argument list. */
872#define PARM_BOUNDARY 32
873
874/* Allocation boundary (in *bits*) for the code of a function. */
875#define FUNCTION_BOUNDARY 32
876
877/* Alignment of field after `int : 0' in a structure. */
878#define EMPTY_FIELD_BOUNDARY 32
879
880/* Every structure's size must be a multiple of this. */
881/* 8 is observed right on a DECstation and on riscos 4.02. */
882#define STRUCTURE_SIZE_BOUNDARY 8
883
884/* There is no point aligning anything to a rounder boundary than this. */
885#define BIGGEST_ALIGNMENT 64
886
887/* Biggest alignment any structure field can require in bits. */
888#define BIGGEST_FIELD_ALIGNMENT 64
889
890/* Define this if move instructions will actually fail to work
891 when given unaligned data. */
892#define STRICT_ALIGNMENT
893
894/* Define this if you wish to imitate the way many other C compilers
895 handle alignment of bitfields and the structures that contain
896 them.
897
898 The behavior is that the type written for a bitfield (`int',
899 `short', or other integer type) imposes an alignment for the
900 entire structure, as if the structure really did contain an
901 ordinary field of that type. In addition, the bitfield is placed
902 within the structure so that it would fit within such a field,
903 not crossing a boundary for it.
904
905 Thus, on most machines, a bitfield whose type is written as `int'
906 would not cross a four-byte boundary, and would force four-byte
907 alignment for the whole structure. (The alignment used may not
908 be four bytes; it is controlled by the other alignment
909 parameters.)
910
911 If the macro is defined, its definition should be a C expression;
912 a nonzero value for the expression enables this behavior. */
913
914#define PCC_BITFIELD_TYPE_MATTERS 1
915
916/* If defined, a C expression to compute the alignment given to a
917 constant that is being placed in memory. CONSTANT is the constant
918 and ALIGN is the alignment that the object would ordinarily have.
919 The value of this macro is used instead of that alignment to align
920 the object.
921
922 If this macro is not defined, then ALIGN is used.
923
924 The typical use of this macro is to increase alignment for string
925 constants to be word aligned so that `strcpy' calls that copy
926 constants can be done inline. */
927
928#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
929 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
930 && (ALIGN) < BITS_PER_WORD \
931 ? BITS_PER_WORD \
932 : (ALIGN))
933
934/* If defined, a C expression to compute the alignment for a static
935 variable. TYPE is the data type, and ALIGN is the alignment that
936 the object would ordinarily have. The value of this macro is used
937 instead of that alignment to align the object.
938
939 If this macro is not defined, then ALIGN is used.
940
941 One use of this macro is to increase alignment of medium-size
942 data to make it all fit in fewer cache lines. Another is to
943 cause character arrays to be word-aligned so that `strcpy' calls
944 that copy constants to character arrays can be done inline. */
945
946#undef DATA_ALIGNMENT
947#define DATA_ALIGNMENT(TYPE, ALIGN) \
948 ((((ALIGN) < BITS_PER_WORD) \
949 && (TREE_CODE (TYPE) == ARRAY_TYPE \
950 || TREE_CODE (TYPE) == UNION_TYPE \
951 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
952
953/* Define this macro if an argument declared as `char' or `short' in a
954 prototype should actually be passed as an `int'. In addition to
955 avoiding errors in certain cases of mismatch, it also makes for
956 better code on certain machines. */
957
958#define PROMOTE_PROTOTYPES
959
960/* Define this macro if an instruction to load a value narrower
961 than a word from memory into a register also zero-extends the
962 value to the whole register. */
963
964#define BYTE_LOADS_ZERO_EXTEND
965
966\f
967/* Standard register usage. */
968
969/* Number of actual hardware registers.
970 The hardware registers are assigned numbers for the compiler
971 from 0 to just below FIRST_PSEUDO_REGISTER.
972 All registers that the compiler knows about must be given numbers,
973 even those that are not normally considered general registers.
974
975 On the Mips, we have 32 integer registers, 32 floating point registers
976 and the special registers hi, lo, and fp status. */
977
978#define FIRST_PSEUDO_REGISTER 67
979
980/* 1 for registers that have pervasive standard uses
981 and are not available for the register allocator.
982
983 On the MIPS, see conventions, page D-2 */
984
985#define FIXED_REGISTERS \
986{ \
987 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
988 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
989 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
990 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
991 1, 1, 1 \
992}
993
994
995/* 1 for registers not available across function calls.
996 These must include the FIXED_REGISTERS and also any
997 registers that can be used without being saved.
998 The latter must include the registers where values are returned
999 and the register where structure-value addresses are passed.
1000 Aside from that, you can include as many other registers as you like. */
1001
1002#define CALL_USED_REGISTERS \
1003{ \
1004 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1005 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1006 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1007 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1008 1, 1, 1 \
1009}
1010
1011
1012/* Internal macros to classify a register number as to whether it's a
1013 general purpose register, a floating point register, a
1014 multiply/divide register, or a status register.
1015
1016 The macro FP_CALL_REG_P also allows registers $4 and $6 as floating
1017 point registers to pass floating point as per MIPS spec. */
1018
1019#define GP_REG_FIRST 0
1020#define GP_REG_LAST 31
1021#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1022#define GP_DBX_FIRST 0
1023
1024#define FP_REG_FIRST 32
1025#define FP_REG_LAST 63
1026#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1027#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1028
1029#define MD_REG_FIRST 64
1030#define MD_REG_LAST 65
1031#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1032
1033#define ST_REG_FIRST 66
1034#define ST_REG_LAST 66
1035#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1036
1037#define AT_REGNUM (GP_REG_FIRST + 1)
1038#define HI_REGNUM (MD_REG_FIRST + 0)
1039#define LO_REGNUM (MD_REG_FIRST + 1)
1040#define FPSW_REGNUM ST_REG_FIRST
1041
1042#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1043#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1044#define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1045#define ST_REG_P(REGNO) ((REGNO) == ST_REG_FIRST)
1046
1047#define FP_CALL_REG_P(REGNO) \
1048 (FP_REG_P (REGNO) \
1049 || (REGNO) == (4 + GP_REG_FIRST) \
1050 || (REGNO) == (6 + GP_REG_FIRST))
1051
1052/* Return number of consecutive hard regs needed starting at reg REGNO
1053 to hold something of mode MODE.
1054 This is ordinarily the length in words of a value of mode MODE
1055 but can be less for certain modes in special long registers.
1056
1057 On the MIPS, all general registers are one word long. Except on
1058 the R4000 with the FR bit set, the floating point uses register
1059 pairs, with the second register not being allocatable. */
1060
1061#define HARD_REGNO_NREGS(REGNO, MODE) \
1062 (! FP_REG_P (REGNO) \
1063 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
1064 : (((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD) - 1) / (2*UNITS_PER_WORD)) \
1065 << (TARGET_FLOAT64 == 0)))
1066
1067/* Value is 1 if hard register REGNO can hold a value of machine-mode
1068 MODE. Require that DImode and DFmode be in even registers. For
1069 DImode, this makes some of the insns easier to write, since you
1070 don't have to worry about a DImode value in registers 3 & 4,
1071 producing a result in 4 & 5.
1072
1073 To make the code simpler HARD_REGNO_MODE_OK now just references an
1074 array built in override_options. Because machmodes.h is not yet
1075 included before this file is processed, the MODE bound can't be
1076 expressed here. */
1077
1078extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1079
1080#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1081 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1082
1083/* Value is 1 if it is a good idea to tie two pseudo registers
1084 when one has mode MODE1 and one has mode MODE2.
1085 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1086 for any hard reg, then this must be 0 for correct output. */
1087#define MODES_TIEABLE_P(MODE1, MODE2) \
1088 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1089 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1090 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1091 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1092
1093/* MIPS pc is not overloaded on a register. */
1094/* #define PC_REGNUM xx */
1095
1096/* Register to use for pushing function arguments. */
1097#define STACK_POINTER_REGNUM 29
1098
1099/* Offset from the stack pointer to the first available location. */
1100#define STACK_POINTER_OFFSET 0
1101
1102/* Base register for access to local variables of the function. */
1103#define FRAME_POINTER_REGNUM 30
1104
1105/* Value should be nonzero if functions must have frame pointers.
1106 Zero means the frame pointer need not be set up (and parms
1107 may be accessed via the stack pointer) in functions that seem suitable.
1108 This is computed in `reload', in reload1.c. */
1109#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1110
1111/* Base register for access to arguments of the function. */
1112#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1113
1114/* Register in which static-chain is passed to a function. */
1115#define STATIC_CHAIN_REGNUM 2
1116
1117/* Register in which address to store a structure value
1118 is passed to a function. */
1119#define STRUCT_VALUE_REGNUM 4
1120
1121/* Mips registers used in prologue/epilogue code when the stack frame
1122 is larger than 32K bytes. These registers must come from the
1123 scratch register set, and not used for passing and returning
1124 arguments and any other information used in the calling sequence
1125 (such as pic). */
1126#define MIPS_TEMP1_REGNUM 8
1127#define MIPS_TEMP2_REGNUM 9
1128
1129/* Define this macro if it is as good or better to call a constant
1130 function address than to call an address kept in a register. */
1131#define NO_FUNCTION_CSE 1
1132
1133/* Define this macro if it is as good or better for a function to
1134 call itself with an explicit address than to call an address
1135 kept in a register. */
1136#define NO_RECURSIVE_FUNCTION_CSE 1
1137
1138/* The register number of the register used to address a table of
1139 static data addresses in memory. In some cases this register is
1140 defined by a processor's "application binary interface" (ABI).
1141 When this macro is defined, RTL is generated for this register
1142 once, as with the stack pointer and frame pointer registers. If
1143 this macro is not defined, it is up to the machine-dependent
1144 files to allocate such a register (if necessary). */
1145#define PIC_OFFSET_TABLE_REGNUM 28
1146
1147\f
1148/* Define the classes of registers for register constraints in the
1149 machine description. Also define ranges of constants.
1150
1151 One of the classes must always be named ALL_REGS and include all hard regs.
1152 If there is more than one class, another class must be named NO_REGS
1153 and contain no registers.
1154
1155 The name GENERAL_REGS must be the name of a class (or an alias for
1156 another name such as ALL_REGS). This is the class of registers
1157 that is allowed by "g" or "r" in a register constraint.
1158 Also, registers outside this class are allocated only when
1159 instructions express preferences for them.
1160
1161 The classes must be numbered in nondecreasing order; that is,
1162 a larger-numbered class must never be contained completely
1163 in a smaller-numbered class.
1164
1165 For any two classes, it is very desirable that there be another
1166 class that represents their union. */
1167
1168enum reg_class
1169{
1170 NO_REGS, /* no registers in set */
1171 GR_REGS, /* integer registers */
1172 FP_REGS, /* floating point registers */
1173 HI_REG, /* hi register */
1174 LO_REG, /* lo register */
1175 MD_REGS, /* multiply/divide registers (hi/lo) */
1176 ST_REGS, /* status registers (fp status) */
1177 ALL_REGS, /* all registers */
1178 LIM_REG_CLASSES /* max value + 1 */
1179};
1180
1181#define N_REG_CLASSES (int) LIM_REG_CLASSES
1182
1183#define GENERAL_REGS GR_REGS
1184
1185/* An initializer containing the names of the register classes as C
1186 string constants. These names are used in writing some of the
1187 debugging dumps. */
1188
1189#define REG_CLASS_NAMES \
1190{ \
1191 "NO_REGS", \
1192 "GR_REGS", \
1193 "FP_REGS", \
1194 "HI_REG", \
1195 "LO_REG", \
1196 "MD_REGS", \
1197 "ST_REGS", \
1198 "ALL_REGS" \
1199}
1200
1201/* An initializer containing the contents of the register classes,
1202 as integers which are bit masks. The Nth integer specifies the
1203 contents of class N. The way the integer MASK is interpreted is
1204 that register R is in the class if `MASK & (1 << R)' is 1.
1205
1206 When the machine has more than 32 registers, an integer does not
1207 suffice. Then the integers are replaced by sub-initializers,
1208 braced groupings containing several integers. Each
1209 sub-initializer must be suitable as an initializer for the type
1210 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1211
1212#define REG_CLASS_CONTENTS \
1213{ \
1214 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1215 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1216 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1217 { 0x00000000, 0x00000000, 0x00000001 }, /* lo register */ \
1218 { 0x00000000, 0x00000000, 0x00000002 }, /* hi register */ \
1219 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1220 { 0x00000000, 0x00000000, 0x00000004 }, /* status registers */ \
1221 { 0xffffffff, 0xffffffff, 0x00000007 } /* all registers */ \
1222}
1223
1224
1225/* A C expression whose value is a register class containing hard
1226 register REGNO. In general there is more that one such class;
1227 choose a class which is "minimal", meaning that no smaller class
1228 also contains the register. */
1229
1230extern enum reg_class mips_regno_to_class[];
1231
1232#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1233
1234/* A macro whose definition is the name of the class to which a
1235 valid base register must belong. A base register is one used in
1236 an address which is the register value plus a displacement. */
1237
1238#define BASE_REG_CLASS GR_REGS
1239
1240/* A macro whose definition is the name of the class to which a
1241 valid index register must belong. An index register is one used
1242 in an address where its value is either multiplied by a scale
1243 factor or added to another register (as well as added to a
1244 displacement). */
1245
1246#define INDEX_REG_CLASS GR_REGS
1247
1248
1249/* REGISTER AND CONSTANT CLASSES */
1250
1251/* Get reg_class from a letter such as appears in the machine
1252 description.
1253
1254 DEFINED REGISTER CLASSES:
1255
1256 'd' General (aka integer) registers
1257 'f' Floating point registers
1258 'h' Hi register
1259 'l' Lo register
1260 's' Status registers
1261 'x' Multiply/divide registers */
1262
1263extern enum reg_class mips_char_to_class[];
1264
1265#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
1266
1267/* The letters I, J, K, L, M, N, O, and P in a register constraint
1268 string can be used to stand for particular ranges of immediate
1269 operands. This macro defines what the ranges are. C is the
1270 letter, and VALUE is a constant value. Return 1 if VALUE is
1271 in the range specified by C. */
1272
1273/* For MIPS:
1274
1275 `I' is used for the range of constants an arithmetic insn can
1276 actually contain (16 bits signed integers).
1277
1278 `J' is used for the range which is just zero (ie, $r0).
1279
1280 `K' is used for the range of constants a logical insn can actually
1281 contain (16 bit zero-extended integers).
1282
1283 `L' is used for the range of constants that be loaded with lui
1284 (ie, the bottom 16 bits are zero).
1285
1286 `M' is used for the range of constants that take two words to load
1287 (ie, not matched by `I', `K', and `L').
1288
1289 `N' is used for negative 16 bit constants.
1290
1291 `O' is an exact power of 2 (not yet used in the md file).
1292
1293 `P' is used for positive 16 bit constants. */
1294
1295#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x8000) < 0x10000)
1296#define SMALL_INT_UNSIGNED(X) ((unsigned) (INTVAL (X)) < 0x10000)
1297
1298#define CONST_OK_FOR_LETTER_P(VALUE, C) \
1299 ((C) == 'I' ? ((unsigned) ((VALUE) + 0x8000) < 0x10000) \
1300 : (C) == 'J' ? ((VALUE) == 0) \
1301 : (C) == 'K' ? ((unsigned) (VALUE) < 0x10000) \
1302 : (C) == 'L' ? (((VALUE) & 0xffff0000) == (VALUE)) \
1303 : (C) == 'M' ? ((((VALUE) & 0xffff0000) != 0) \
1304 && (((VALUE) & 0xffff0000) != 0xffff0000) \
1305 && ((VALUE) & 0x0000ffff) != 0) \
1306 : (C) == 'N' ? (((VALUE) & 0xffff0000) == 0xffff0000) \
1307 : (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
1308 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & 0xffff0000) == 0)) \
1309 : 0)
1310
1311/* Similar, but for floating constants, and defining letters G and H.
1312 Here VALUE is the CONST_DOUBLE rtx itself. */
1313
1314/* For Mips
1315
1316 'G' : Floating point 0 */
1317
1318#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1319 ((C) == 'G' \
1320 && CONST_DOUBLE_HIGH (VALUE) == 0 \
1321 && CONST_DOUBLE_LOW (VALUE) == 0)
1322
1323/* Letters in the range `Q' through `U' may be defined in a
1324 machine-dependent fashion to stand for arbitrary operand types.
1325 The machine description macro `EXTRA_CONSTRAINT' is passed the
1326 operand as its first argument and the constraint letter as its
1327 second operand.
1328
1329 `Q' is for memory refereces using take more than 1 instruction.
1330 `R' is for memory refereces which take 1 word for the instruction.
1331 `S' is for references to extern items which are PIC for OSF/rose. */
1332
1333#define EXTRA_CONSTRAINT(OP,CODE) \
1334 ((GET_CODE (OP) != MEM) ? FALSE \
1335 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
1336 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
1337 : ((CODE) == 'S') ? (flag_half_pic && CONSTANT_P (OP) \
1338 && !mips_constant_address_p (OP)) \
1339 : FALSE)
1340
1341/* Given an rtx X being reloaded into a reg required to be
1342 in class CLASS, return the class of reg to actually use.
1343 In general this is just CLASS; but on some machines
1344 in some cases it is preferable to use a more restrictive class. */
1345
1346#define PREFERRED_RELOAD_CLASS(X,CLASS) \
1347 ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1348 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
1349 ? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
1350 : ((GET_MODE (X) == VOIDmode) \
1351 ? GR_REGS \
1352 : CLASS))
1353
1354/* Return the maximum number of consecutive registers
1355 needed to represent mode MODE in a register of class CLASS. */
1356
1357#define CLASS_MAX_NREGS(CLASS, MODE) \
1358 ((((MODE) == DFmode) || ((MODE) == SFmode)) ? 2 \
1359 : ((MODE) == VOIDmode)? ((CLASS) == FP_REGS ? 2 : 1) \
1360 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1361
1362/* If defined, this is a C expression whose value should be
1363 nonzero if the insn INSN has the effect of mysteriously
1364 clobbering the contents of hard register number REGNO. By
1365 "mysterious" we mean that the insn's RTL expression doesn't
1366 describe such an effect.
1367
1368 If this macro is not defined, it means that no insn clobbers
1369 registers mysteriously. This is the usual situation; all else
1370 being equal, it is best for the RTL expression to show all the
1371 activity. */
1372
1373/* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
1374
1375\f
1376/* Stack layout; function entry, exit and calling. */
1377
1378/* Define this if pushing a word on the stack
1379 makes the stack pointer a smaller address. */
1380#define STACK_GROWS_DOWNWARD
1381
1382/* Define this if the nominal address of the stack frame
1383 is at the high-address end of the local variables;
1384 that is, each additional local variable allocated
1385 goes at a more negative offset in the frame. */
1386#define FRAME_GROWS_DOWNWARD
1387
1388/* Offset within stack frame to start allocating local variables at.
1389 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1390 first local allocated. Otherwise, it is the offset to the BEGINNING
1391 of the first local allocated. */
1392#define STARTING_FRAME_OFFSET (-8)
1393
1394/* Structure to be filled in by compute_frame_size with register
1395 save masks, and offsets for the current function. */
1396
1397struct mips_frame_info
1398{
1399 unsigned long total_size; /* # bytes that the entire frame takes up */
1400 unsigned long var_size; /* # bytes that variables take up */
1401 unsigned long args_size; /* # bytes that outgoing arguments take up */
1402 unsigned long extra_size; /* # bytes of extra gunk */
1403 unsigned int gp_reg_size; /* # bytes needed to store gp regs */
1404 unsigned int fp_reg_size; /* # bytes needed to store fp regs */
1405 unsigned long mask; /* mask of saved gp registers */
1406 unsigned long fmask; /* mask of saved fp registers */
1407 long gp_save_offset; /* offset from vfp to store gp registers */
1408 long fp_save_offset; /* offset from vfp to store fp registers */
1409 unsigned long gp_sp_offset; /* offset from new sp to store gp registers */
1410 unsigned long fp_sp_offset; /* offset from new sp to store fp registers */
1411 int initialized; /* != 0 if frame size already calculated */
1412};
1413
1414extern struct mips_frame_info current_frame_info;
1415
1416/* Store in the variable DEPTH the initial difference between the
1417 frame pointer reg contents and the stack pointer reg contents,
1418 as of the start of the function body. This depends on the layout
1419 of the fixed parts of the stack frame and on how registers are saved. */
1420
1421#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1422 ((VAR) = (current_frame_info.initialized) \
1423 ? current_frame_info.total_size \
1424 : compute_frame_size (get_frame_size ()))
1425
1426/* If we generate an insn to push BYTES bytes,
1427 this says how many the stack pointer really advances by.
1428 On the vax, sp@- in a byte insn really pushes a word. */
1429
1430/* #define PUSH_ROUNDING(BYTES) 0 */
1431
1432/* If defined, the maximum amount of space required for outgoing
1433 arguments will be computed and placed into the variable
1434 `current_function_outgoing_args_size'. No space will be pushed
1435 onto the stack for each call; instead, the function prologue
1436 should increase the stack frame size by this amount.
1437
1438 It is not proper to define both `PUSH_ROUNDING' and
1439 `ACCUMULATE_OUTGOING_ARGS'. */
1440#define ACCUMULATE_OUTGOING_ARGS
1441
1442/* Offset of first parameter from the argument pointer register value. */
1443#define FIRST_PARM_OFFSET(FNDECL) 0
1444
1445/* Offset from top-of-stack address to location to store the
1446 function parameter if it can't go in a register.
1447 Addresses for following parameters are computed relative to this one.
1448
1449 It also has the effect of counting register arguments in the total
1450 argument size. */
1451#define FIRST_PARM_CALLER_OFFSET(FNDECL) 0
1452
1453/* When a parameter is passed in a register, stack space is still
1454 allocated for it. For the MIPS, stack space must be allocated, cf
1455 Asm Lang Prog Guide page 7-8.
1456
1457 BEWARE that some space is also allocated for non existing arguments
1458 in register. In case an argument list is of form GF used registers
1459 are a0 (a2,a3), but we should push over a1... */
1460
1461#define REG_PARM_STACK_SPACE(FNDECL) (4*4)
1462
1463/* Define this if it is the responsibility of the caller to
1464 allocate the area reserved for arguments passed in registers.
1465 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1466 of this macro is to determine whether the space is included in
1467 `current_function_outgoing_args_size'. */
1468#define OUTGOING_REG_PARM_STACK_SPACE
1469
1470/* Align stack frames on 64 bits (Double Word ). */
1471#define STACK_BOUNDARY 64
1472
1473/* Make sure 16 bytes are always allocated on the stack. */
1474
1475#ifndef STACK_ARGS_ADJUST
1476#define STACK_ARGS_ADJUST(SIZE) \
1477{ \
1478 if (SIZE.constant < 16) \
1479 SIZE.constant = 16; \
1480}
1481#endif
1482
1483\f
1484/* A C expression that should indicate the number of bytes of its
1485 own arguments that a function function pops on returning, or 0
1486 if the function pops no arguments and the caller must therefore
1487 pop them all after the function returns.
1488
1489 FUNTYPE is a C variable whose value is a tree node that
1490 describes the function in question. Normally it is a node of
1491 type `FUNCTION_TYPE' that describes the data type of the function.
1492 From this it is possible to obtain the data types of the value
1493 and arguments (if known).
1494
1495 When a call to a library function is being considered, FUNTYPE
1496 will contain an identifier node for the library function. Thus,
1497 if you need to distinguish among various library functions, you
1498 can do so by their names. Note that "library function" in this
1499 context means a function used to perform arithmetic, whose name
1500 is known specially in the compiler and was not mentioned in the
1501 C code being compiled.
1502
1503 STACK-SIZE is the number of bytes of arguments passed on the
1504 stack. If a variable number of bytes is passed, it is zero, and
1505 argument popping will always be the responsibility of the
1506 calling function. */
1507
1508#define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
1509
1510
1511/* Symbolic macros for the registers used to return integer and floating
1512 point values. */
1513
1514#define GP_RETURN (GP_REG_FIRST + 2)
1515#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1516
1517/* Symbolic macros for the first/last argument registers. */
1518
1519#define GP_ARG_FIRST (GP_REG_FIRST + 4)
1520#define GP_ARG_LAST (GP_REG_FIRST + 7)
1521#define FP_ARG_FIRST (FP_REG_FIRST + 12)
1522#define FP_ARG_LAST (FP_REG_FIRST + 15)
1523
1524#define MAX_ARGS_IN_REGISTERS 4
1525
1526/* Define how to find the value returned by a library function
1527 assuming the value has mode MODE. */
1528
1529#define LIBCALL_VALUE(MODE) \
1530 gen_rtx (REG, MODE, \
1531 (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1532 ? FP_RETURN \
1533 : GP_RETURN)
1534
1535/* Define how to find the value returned by a function.
1536 VALTYPE is the data type of the value (as a tree).
1537 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1538 otherwise, FUNC is 0. */
1539
1540#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
1541
1542
1543/* 1 if N is a possible register number for a function value.
1544 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1545 Currently, R2 and F0 are only implemented here (C has no complex type) */
1546
1547#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
1548
1549/* 1 if N is a possible register number for function argument passing. */
1550
1551#define FUNCTION_ARG_REGNO_P(N) (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
1552 || ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST \
1553 && (0 == (N) % 2)))
1554
1555/* A C expression which can inhibit the returning of certain function
1556 values in registers, based on the type of value. A nonzero value says
1557 to return the function value in memory, just as large structures are
1558 always returned. Here TYPE will be a C expression of type
1559 `tree', representing the data type of the value.
1560
1561 Note that values of mode `BLKmode' are returned in memory
1562 regardless of this macro. Also, the option `-fpcc-struct-return'
1563 takes effect regardless of this macro. On most systems, it is
1564 possible to leave the macro undefined; this causes a default
1565 definition to be used, whose value is the constant 0.
1566
1567 GCC normally converts 1 byte structures into chars, 2 byte
1568 structs into shorts, and 4 byte structs into ints, and returns
1569 them this way. Defining the following macro overrides this,
1570 to give us MIPS cc compatibility. */
1571
1572#define RETURN_IN_MEMORY(TYPE) \
1573 ((TREE_CODE (TYPE) == RECORD_TYPE) || (TREE_CODE (TYPE) == UNION_TYPE))
1574
1575\f
1576/* A code distinguishing the floating point format of the target
1577 machine. There are three defined values: IEEE_FLOAT_FORMAT,
1578 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
1579
1580#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
1581
1582\f
1583/* Define a data type for recording info about an argument list
1584 during the scan of that argument list. This data type should
1585 hold all necessary information about the function itself
1586 and about the args processed so far, enough to enable macros
1587 such as FUNCTION_ARG to determine where the next arg should go.
1588*/
1589
1590typedef struct mips_args {
1591 int gp_reg_found;
1592 int arg_number;
1593 int arg_words;
1594} CUMULATIVE_ARGS;
1595
1596/* Initialize a variable CUM of type CUMULATIVE_ARGS
1597 for a call to a function whose data type is FNTYPE.
1598 For a library call, FNTYPE is 0.
1599
1600*/
1601
1602#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
1603 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
1604
1605/* Update the data in CUM to advance over an argument
1606 of mode MODE and data type TYPE.
1607 (TYPE is null for libcalls where that information may not be available.) */
1608
1609#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1610 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1611
1612/* Determine where to put an argument to a function.
1613 Value is zero to push the argument on the stack,
1614 or a hard register in which to store the argument.
1615
1616 MODE is the argument's machine mode.
1617 TYPE is the data type of the argument (as a tree).
1618 This is null for libcalls where that information may
1619 not be available.
1620 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1621 the preceding args and about the function being called.
1622 NAMED is nonzero if this argument is a named parameter
1623 (otherwise it is an extra parameter matching an ellipsis). */
1624
1625#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1626 function_arg( &CUM, MODE, TYPE, NAMED)
1627
1628/* For an arg passed partly in registers and partly in memory,
1629 this is the number of registers used.
1630 For args passed entirely in registers or entirely in memory, zero. */
1631
1632#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1633 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1634
1635/* If defined, a C expression that gives the alignment boundary, in
1636 bits, of an argument with the specified mode and type. If it is
1637 not defined, `PARM_BOUNDARY' is used for all arguments. */
1638
1639#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1640 (((TYPE) != 0) \
1641 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
1642 ? PARM_BOUNDARY \
1643 : TYPE_ALIGN(TYPE)) \
1644 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
1645 ? PARM_BOUNDARY \
1646 : GET_MODE_ALIGNMENT(MODE)))
1647
1648\f
1649/* This macro generates the assembly code for function entry.
1650 FILE is a stdio stream to output the code to.
1651 SIZE is an int: how many units of temporary storage to allocate.
1652 Refer to the array `regs_ever_live' to determine which registers
1653 to save; `regs_ever_live[I]' is nonzero if register number I
1654 is ever used in the function. This macro is responsible for
1655 knowing which registers should not be saved even if used. */
1656
1657#define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
1658
1659/* This macro generates the assembly code for function exit,
1660 on machines that need it. If FUNCTION_EPILOGUE is not defined
1661 then individual return instructions are generated for each
1662 return statement. Args are same as for FUNCTION_PROLOGUE. */
1663
1664#define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
1665
1666/* Define the number of delay slots needed for the function epilogue.
1667
1668 On the mips, we need a slot if either no stack has been allocated,
1669 or the only register saved is the return register. */
1670
1671#define DELAY_SLOTS_FOR_EPILOGUE mips_epilogue_delay_slots ()
1672
1673/* Define whether INSN can be placed in delay slot N for the epilogue.
1674 No references to the stack must be made, since on the MIPS, the
1675 delay slot is done after the stack has been cleaned up. */
1676
1677#define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
1678 (get_attr_dslot (INSN) == DSLOT_NO \
1679 && get_attr_length (INSN) == 1 \
1680 && ! reg_mentioned_p (stack_pointer_rtx, PATTERN (INSN)) \
1681 && ! reg_mentioned_p (frame_pointer_rtx, PATTERN (INSN)))
1682
1683/* Tell prologue and epilogue if register REGNO should be saved / restored. */
1684
1685#define MUST_SAVE_REGISTER(regno) \
1686 ((regs_ever_live[regno] && !call_used_regs[regno]) \
1687 || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
1688 || (regno == 31 && regs_ever_live[31]))
1689
1690/* ALIGN FRAMES on double word boundaries */
1691
1692#define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
1693
1694\f
1695/* Output assembler code to FILE to increment profiler label # LABELNO
1696 for profiling a function entry. */
1697
1698#define FUNCTION_PROFILER(FILE, LABELNO) \
1699{ \
1700 fprintf (FILE, "\t.set\tnoreorder\n"); \
1701 fprintf (FILE, "\t.set\tnoat\n"); \
1702 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
1703 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
1704 fprintf (FILE, "\tjal\t_mcount\n"); \
1705 fprintf (FILE, "\tsubu\t%s,%s,8\t\t# _mcount pops 2 words from stack\n", \
1706 reg_names[STACK_POINTER_REGNUM], \
1707 reg_names[STACK_POINTER_REGNUM]); \
1708 fprintf (FILE, "\t.set\treorder\n"); \
1709 fprintf (FILE, "\t.set\tat\n"); \
1710}
1711
1712/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1713 the stack pointer does not matter. The value is tested only in
1714 functions that have frame pointers.
1715 No definition is equivalent to always zero. */
1716
1717#define EXIT_IGNORE_STACK 1
1718
1719\f
1720/* A C statement to output, on the stream FILE, assembler code for a
1721 block of data that contains the constant parts of a trampoline.
1722 This code should not include a label--the label is taken care of
1723 automatically. */
1724
1725#define TRAMPOLINE_TEMPLATE(STREAM) \
1726{ \
1727 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
1728 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
1729 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
1730 fprintf (STREAM, "\t.word\t0x8fe30010\t\t# lw $3,16($31)\n"); \
1731 fprintf (STREAM, "\t.word\t0x8fe20014\t\t# lw $2,20($31)\n"); \
1732 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
1733 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
1734 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
1735 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
1736}
1737
1738/* A C expression for the size in bytes of the trampoline, as an
1739 integer. */
1740
1741#define TRAMPOLINE_SIZE (9*4)
1742
1743/* Alignment required for trampolines, in bits.
1744
1745 If you don't define this macro, the value of `BIGGEST_ALIGNMENT'
1746 is used for aligning trampolines. */
1747
1748/* #define TRAMPOLINE_ALIGNMENT 32 */
1749
1750/* A C statement to initialize the variable parts of a trampoline.
1751 ADDR is an RTX for the address of the trampoline; FNADDR is an
1752 RTX for the address of the nested function; STATIC_CHAIN is an
1753 RTX for the static chain value that should be passed to the
1754 function when it is called. */
1755
1756#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
1757{ \
1758 rtx addr = ADDR; \
1759 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 28)), FUNC); \
1760 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), CHAIN); \
1761 \
1762 /* Attempt to make stack executable */ \
1763 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"), \
1764 0, VOIDmode, 1, addr, Pmode); \
1765}
1766
1767
1768/* Attempt to turn on access permissions for the stack. */
1769
1770#define TRANSFER_FROM_TRAMPOLINE \
1771 \
1772void \
1773__enable_execute_stack (addr) \
1774 char *addr; \
1775{ \
1776 int size = getpagesize (); \
1777 int mask = ~(size-1); \
1778 char *page = (char *) (((int) addr) & mask); \
1779 char *end = (char *) ((((int) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
1780 \
1781 /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
1782 if (mprotect (page, end - page, 7) < 0) \
1783 perror ("mprotect of trampoline code"); \
1784 \
1785/* \
1786 if (cacheflush (addr, TRAMPOLINE_SIZE, 1) < 0) \
1787 perror ("cacheflush of trampoline code"); \
1788 */ \
1789}
1790
1791\f
1792/* Addressing modes, and classification of registers for them. */
1793
1794/* #define HAVE_POST_INCREMENT */
1795/* #define HAVE_POST_DECREMENT */
1796
1797/* #define HAVE_PRE_DECREMENT */
1798/* #define HAVE_PRE_INCREMENT */
1799
1800/* These assume that REGNO is a hard or pseudo reg number.
1801 They give nonzero only if REGNO is a hard reg of the suitable class
1802 or a pseudo reg currently allocated to a suitable hard reg.
1803 These definitions are NOT overridden anywhere. */
1804
1805#define GP_REG_OR_PSEUDO_STRICT_P(regno) \
1806 GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
1807
1808#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
1809 (((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
1810
1811#define REGNO_OK_FOR_INDEX_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
1812#define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
1813
1814/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1815 and check its validity for a certain class.
1816 We have two alternate definitions for each of them.
1817 The usual definition accepts all pseudo regs; the other rejects them all.
1818 The symbol REG_OK_STRICT causes the latter definition to be used.
1819
1820 Most source files want to accept pseudo regs in the hope that
1821 they will get allocated to the class that the insn wants them to be in.
1822 Some source files that are used after register allocation
1823 need to be strict. */
1824
1825#ifndef REG_OK_STRICT
1826
1827#define REG_OK_STRICT_P 0
1828#define REG_OK_FOR_INDEX_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
1829#define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
1830
1831#else
1832
1833#define REG_OK_STRICT_P 1
1834#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1835#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1836
1837#endif
1838
1839\f
1840/* Maximum number of registers that can appear in a valid memory address. */
1841
1842#define MAX_REGS_PER_ADDRESS 1
1843
1844/* A C compound statement with a conditional `goto LABEL;' executed
1845 if X (an RTX) is a legitimate memory address on the target
1846 machine for a memory operand of mode MODE.
1847
1848 It usually pays to define several simpler macros to serve as
1849 subroutines for this one. Otherwise it may be too complicated
1850 to understand.
1851
1852 This macro must exist in two variants: a strict variant and a
1853 non-strict one. The strict variant is used in the reload pass.
1854 It must be defined so that any pseudo-register that has not been
1855 allocated a hard register is considered a memory reference. In
1856 contexts where some kind of register is required, a
1857 pseudo-register with no hard register must be rejected.
1858
1859 The non-strict variant is used in other passes. It must be
1860 defined to accept all pseudo-registers in every context where
1861 some kind of register is required.
1862
1863 Compiler source files that want to use the strict variant of
1864 this macro define the macro `REG_OK_STRICT'. You should use an
1865 `#ifdef REG_OK_STRICT' conditional to define the strict variant
1866 in that case and the non-strict variant otherwise.
1867
1868 Typically among the subroutines used to define
1869 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
1870 acceptable registers for various purposes (one for base
1871 registers, one for index registers, and so on). Then only these
1872 subroutine macros need have two variants; the higher levels of
1873 macros may be the same whether strict or not.
1874
1875 Normally, constant addresses which are the sum of a `symbol_ref'
1876 and an integer are stored inside a `const' RTX to mark them as
1877 constant. Therefore, there is no need to recognize such sums
1878 specifically as legitimate addresses. Normally you would simply
1879 recognize any `const' as legitimate.
1880
1881 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
1882 constant sums that are not marked with `const'. It assumes
1883 that a naked `plus' indicates indexing. If so, then you *must*
1884 reject such naked constant sums as illegitimate addresses, so
1885 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
1886
1887 On some machines, whether a symbolic address is legitimate
1888 depends on the section that the address refers to. On these
1889 machines, define the macro `ENCODE_SECTION_INFO' to store the
1890 information into the `symbol_ref', and then check for it here.
1891 When you see a `const', you will have to look inside it to find
1892 the `symbol_ref' in order to determine the section. */
1893
1894#if 1
1895#define GO_PRINTF(x) trace(x)
1896#define GO_PRINTF2(x,y) trace(x,y)
1897#define GO_DEBUG_RTX(x) debug_rtx(x)
1898
1899#else
1900#define GO_PRINTF(x)
1901#define GO_PRINTF2(x,y)
1902#define GO_DEBUG_RTX(x)
1903#endif
1904
1905#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1906{ \
1907 register rtx xinsn = (X); \
1908 \
1909 if (TARGET_DEBUG_B_MODE) \
1910 { \
1911 GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
1912 (REG_OK_STRICT_P) ? "" : "not "); \
1913 GO_DEBUG_RTX (xinsn); \
1914 } \
1915 \
1916 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
1917 goto ADDR; \
1918 \
1919 if (CONSTANT_ADDRESS_P (xinsn)) \
1920 goto ADDR; \
1921 \
1922 if (GET_CODE (xinsn) == PLUS) \
1923 { \
1924 register rtx xplus0 = XEXP (xinsn, 0); \
1925 register rtx xplus1 = XEXP (xinsn, 1); \
1926 register enum rtx_code code0 = GET_CODE (xplus0); \
1927 register enum rtx_code code1 = GET_CODE (xplus1); \
1928 \
1929 if (code0 != REG && code1 == REG) \
1930 { \
1931 xplus0 = XEXP (xinsn, 1); \
1932 xplus1 = XEXP (xinsn, 0); \
1933 code0 = GET_CODE (xplus0); \
1934 code1 = GET_CODE (xplus1); \
1935 } \
1936 \
1937 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
1938 { \
1939 if (code1 == CONST_INT) \
1940 { \
1941 register unsigned adj_offset = INTVAL (xplus1) + 0x8000; \
1942 \
1943 if ((adj_offset <= 0xffff) \
1944 && (adj_offset + GET_MODE_SIZE (MODE) - 1 <= 0xffff)) \
1945 goto ADDR; \
1946 } \
1947 \
1948 /* For some code sequences, you actually get better code by \
1949 pretending that the MIPS supports an address mode of a \
1950 constant address + a register, even though the real \
1951 machine doesn't support it. This is because the \
1952 assembler can use $r1 to load just the high 16 bits, add \
1953 in the register, and fold the low 16 bits into the memory \
1954 reference, wheras the compiler generates a 4 instruction \
1955 sequence. On the other hand, CSE is not as effective. \
1956 It would be a win to generate the lui directly, but the \
1957 MIPS assembler does not have syntax to generate the \
1958 appropriate relocation. */ \
1959 \
1960 else if (!TARGET_DEBUG_A_MODE \
1961 && code0 == REG \
1962 && CONSTANT_ADDRESS_P (xplus1)) \
1963 goto ADDR; \
1964 } \
1965 } \
1966 \
1967 if (TARGET_DEBUG_B_MODE) \
1968 GO_PRINTF ("Not a legitimate address\n"); \
1969}
1970
1971
1972/* A C expression that is 1 if the RTX X is a constant which is a
1973 valid address. On most machines, this can be defined as
1974 `CONSTANT_P (X)', but a few machines are more restrictive in
1975 which constant addresses are supported.
1976
1977 `CONSTANT_P' accepts integer-values expressions whose values are
1978 not explicitly known, such as `symbol_ref', `label_ref', and
1979 `high' expressions and `const' arithmetic expressions, in
1980 addition to `const_int' and `const_double' expressions. */
1981
1982#define CONSTANT_ADDRESS_P(X) mips_constant_address_p (X)
1983
1984
1985/* Nonzero if the constant value X is a legitimate general operand.
1986 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1987
1988 At present, GAS doesn't understand li.[sd], so don't allow it
1989 to be generated at present. Also, the MIPS assembler does not
1990 grok li.d Infinity. */
1991
1992#define LEGITIMATE_CONSTANT_P(X) \
1993 (GET_CODE (X) != CONST_DOUBLE || mips_const_double_ok (X, GET_MODE (X)))
1994
1995
1996/* A C compound statement that attempts to replace X with a valid
1997 memory address for an operand of mode MODE. WIN will be a C
1998 statement label elsewhere in the code; the macro definition may
1999 use
2000
2001 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2002
2003 to avoid further processing if the address has become legitimate.
2004
2005 X will always be the result of a call to `break_out_memory_refs',
2006 and OLDX will be the operand that was given to that function to
2007 produce X.
2008
2009 The code generated by this macro should not alter the
2010 substructure of X. If it transforms X into a more legitimate
2011 form, it should assign X (which will always be a C variable) a
2012 new value.
2013
2014 It is not necessary for this macro to come up with a legitimate
2015 address. The compiler has standard ways of doing so in all
2016 cases. In fact, it is safe for this macro to do nothing. But
2017 often a machine-dependent strategy can generate better code. */
2018
2019#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
2020
2021
2022/* A C statement or compound statement with a conditional `goto
2023 LABEL;' executed if memory address X (an RTX) can have different
2024 meanings depending on the machine mode of the memory reference it
2025 is used for.
2026
2027 Autoincrement and autodecrement addresses typically have
2028 mode-dependent effects because the amount of the increment or
2029 decrement is the size of the operand being addressed. Some
2030 machines have other mode-dependent addresses. Many RISC machines
2031 have no mode-dependent addresses.
2032
2033 You may assume that ADDR is a valid address for the machine. */
2034
2035#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2036
2037
2038/* Define this macro if references to a symbol must be treated
2039 differently depending on something about the variable or
2040 function named by the symbol (such as what section it is in).
2041
2042 The macro definition, if any, is executed immediately after the
2043 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
2044 The value of the rtl will be a `mem' whose address is a
2045 `symbol_ref'.
2046
2047 The usual thing for this macro to do is to a flag in the
2048 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
2049 name string in the `symbol_ref' (if one bit is not enough
2050 information).
2051
2052 The best way to modify the name string is by adding text to the
2053 beginning, with suitable punctuation to prevent any ambiguity.
2054 Allocate the new name in `saveable_obstack'. You will have to
2055 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
2056 and output the name accordingly.
2057
2058 You can also check the information stored in the `symbol_ref' in
2059 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2060 `PRINT_OPERAND_ADDRESS'. */
2061
2062#define ENCODE_SECTION_INFO(DECL) \
2063do \
2064 { \
2065 if (optimize && mips_section_threshold > 0 && TARGET_GP_OPT \
2066 && TREE_CODE (DECL) == VAR_DECL) \
2067 { \
2068 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
2069 \
2070 if (size > 0 && size <= mips_section_threshold) \
2071 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2072 } \
2073 \
2074 else if (flag_half_pic) \
2075 half_pic_encode_section_info (DECL); \
2076 } \
2077while (0)
2078
2079\f
2080/* Specify the machine mode that this machine uses
2081 for the index in the tablejump instruction. */
2082#define CASE_VECTOR_MODE SImode
2083
2084/* Define this if the tablejump instruction expects the table
2085 to contain offsets from the address of the table.
2086 Do not define this if the table should contain absolute addresses. */
2087/* #define CASE_VECTOR_PC_RELATIVE */
2088
2089/* Specify the tree operation to be used to convert reals to integers. */
2090#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2091
2092/* This is the kind of divide that is easiest to do in the general case. */
2093#define EASY_DIV_EXPR TRUNC_DIV_EXPR
2094
2095/* Define this as 1 if `char' should by default be signed; else as 0. */
2096#define DEFAULT_SIGNED_CHAR 1
2097
2098/* Max number of bytes we can move from memory to memory
2099 in one reasonably fast instruction. */
2100#define MOVE_MAX 4
2101
2102/* Define this macro as a C expression which is nonzero if
2103 accessing less than a word of memory (i.e. a `char' or a
2104 `short') is no faster than accessing a word of memory, i.e., if
2105 such access require more than one instruction or if there is no
2106 difference in cost between byte and (aligned) word loads.
2107
2108 On RISC machines, it tends to generate better code to define
2109 this as 1, since it avoids making a QI or HI mode register. */
2110#define SLOW_BYTE_ACCESS 1
2111
2112/* We assume that the store-condition-codes instructions store 0 for false
2113 and some other value for true. This is the value stored for true. */
2114
2115#define STORE_FLAG_VALUE 1
2116
2117/* Define this if zero-extension is slow (more than one real instruction). */
2118#define SLOW_ZERO_EXTEND
2119
2120/* Define if shifts truncate the shift count
2121 which implies one can omit a sign-extension or zero-extension
2122 of a shift count.
2123
2124 Only 5 bits are used in SLLV and SRLV */
2125
2126#define SHIFT_COUNT_TRUNCATED
2127
2128/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2129 is done just by pretending it is already truncated. */
2130#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2131
2132/* By default, allow $ to be part of an identifier. */
2133#define DOLLARS_IN_IDENTIFIERS 1
2134
2135/* Specify the machine mode that pointers have.
2136 After generation of rtl, the compiler makes no further distinction
2137 between pointers and any other objects of this machine mode. */
2138#define Pmode SImode
2139
2140/* A function address in a call instruction
2141 is a word address (for indexing purposes)
2142 so give the MEM rtx a words's mode. */
2143
2144#define FUNCTION_MODE SImode
2145
2146/* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
2147 memset, instead of the BSD functions bcopy and bzero. */
2148
2149#if defined(MIPS_SYSV) || defined(OSF_OS)
2150#define TARGET_MEM_FUNCTIONS
2151#endif
2152
2153\f
2154/* A part of a C `switch' statement that describes the relative
2155 costs of constant RTL expressions. It must contain `case'
2156 labels for expression codes `const_int', `const', `symbol_ref',
2157 `label_ref' and `const_double'. Each case must ultimately reach
2158 a `return' statement to return the relative cost of the use of
2159 that kind of constant value in an expression. The cost may
2160 depend on the precise value of the constant, which is available
2161 for examination in X.
2162
2163 CODE is the expression code--redundant, since it can be obtained
2164 with `GET_CODE (X)'. */
2165
2166#define CONST_COSTS(X,CODE) \
2167 case CONST_INT: \
2168 /* Always return 0, since we don't have different sized \
2169 instructions, hence different costs according to Richard \
2170 Kenner */ \
2171 return COSTS_N_INSNS (0); \
2172 \
2173 case LABEL_REF: \
2174 return COSTS_N_INSNS (2); \
2175 \
2176 case CONST: \
2177 { \
2178 extern rtx eliminate_constant_term (); \
2179 int offset = 0; \
2180 rtx symref = eliminate_constant_term (X, &offset); \
2181 \
2182 if (GET_CODE (symref) == LABEL_REF) \
2183 return COSTS_N_INSNS (2); \
2184 \
2185 if (GET_CODE (symref) != SYMBOL_REF) \
2186 return COSTS_N_INSNS (4); \
2187 \
2188 /* let's be paranoid.... */ \
2189 if (offset < -32768 || offset > 32767) \
2190 return COSTS_N_INSNS (2); \
2191 \
2192 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
2193 } \
2194 \
2195 case SYMBOL_REF: \
2196 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
2197 \
2198 case CONST_DOUBLE: \
2199 return COSTS_N_INSNS ((CONST_DOUBLE_HIGH (X) == 0 \
2200 && CONST_DOUBLE_LOW (X)) ? 2 : 4);
2201
2202
2203/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2204 This can be used, for example, to indicate how costly a multiply
2205 instruction is. In writing this macro, you can use the construct
2206 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
2207
2208 This macro is optional; do not define it if the default cost
2209 assumptions are adequate for the target machine.
2210
2211 If -mdebugd is used, change the multiply cost to 2, so multiply by
2212 a constant isn't converted to a series of shifts. This helps
2213 strength reduction, and also makes it easier to identify what the
2214 compiler is doing. */
2215
2216#define RTX_COSTS(X,CODE) \
2217 case MEM: \
2218 { \
2219 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
2220 if (simple_memory_operand (X, GET_MODE (X))) \
2221 return COSTS_N_INSNS (num_words); \
2222 \
2223 return COSTS_N_INSNS (2*num_words); \
2224 } \
2225 \
2226 case FFS: \
2227 return COSTS_N_INSNS (6); \
2228 \
2229 case NOT: \
2230 return COSTS_N_INSNS ((GET_MODE (X) == DImode) ? 2 : 1); \
2231 \
2232 case AND: \
2233 case IOR: \
2234 case XOR: \
2235 if (GET_MODE (X) == DImode) \
2236 return COSTS_N_INSNS (2); \
2237 \
2238 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2239 { \
2240 rtx number = XEXP (X, 1); \
2241 if (SMALL_INT_UNSIGNED (number)) \
2242 return COSTS_N_INSNS (1); \
2243 \
2244 else if (SMALL_INT (number)) \
2245 return COSTS_N_INSNS (2); \
2246 \
2247 return COSTS_N_INSNS (3); \
2248 } \
2249 \
2250 return COSTS_N_INSNS (1); \
2251 \
2252 case ASHIFT: \
2253 case ASHIFTRT: \
2254 case LSHIFT: \
2255 case LSHIFTRT: \
2256 if (GET_MODE (X) == DImode) \
2257 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 12 : 4); \
2258 \
2259 return COSTS_N_INSNS (1); \
2260 \
2261 case ABS: \
2262 { \
2263 enum machine_mode xmode = GET_MODE (X); \
2264 if (xmode == SFmode || xmode == DFmode) \
2265 return COSTS_N_INSNS (1); \
2266 \
2267 return COSTS_N_INSNS (4); \
2268 } \
2269 \
2270 case PLUS: \
2271 case MINUS: \
2272 { \
2273 enum machine_mode xmode = GET_MODE (X); \
2274 if (xmode == SFmode || xmode == DFmode) \
2275 return COSTS_N_INSNS (2); \
2276 \
2277 if (xmode == DImode) \
2278 return COSTS_N_INSNS (4); \
2279 \
2280 return COSTS_N_INSNS (1); \
2281 } \
2282 \
2283 case NEG: \
2284 return COSTS_N_INSNS ((GET_MODE (X) == DImode) ? 4 : 1); \
2285 \
2286 case MULT: \
2287 { \
2288 enum machine_mode xmode = GET_MODE (X); \
2289 if (xmode == SFmode) \
2290 return COSTS_N_INSNS (4); \
2291 \
2292 if (xmode == DFmode) \
2293 return COSTS_N_INSNS (5); \
2294 \
2295 return COSTS_N_INSNS ((TARGET_DEBUG_D_MODE) ? 2 : 12); \
2296 } \
2297 \
2298 case DIV: \
2299 case MOD: \
2300 { \
2301 enum machine_mode xmode = GET_MODE (X); \
2302 if (xmode == SFmode) \
2303 return COSTS_N_INSNS (12); \
2304 \
2305 if (xmode == DFmode) \
2306 return COSTS_N_INSNS (19); \
2307 } \
2308 /* fall through */ \
2309 \
2310 case UDIV: \
2311 case UMOD: \
2312 return COSTS_N_INSNS (35);
2313
2314/* An expression giving the cost of an addressing mode that
2315 contains ADDRESS. If not defined, the cost is computed from the
2316 form of the ADDRESS expression and the `CONST_COSTS' values.
2317
2318 For most CISC machines, the default cost is a good approximation
2319 of the true cost of the addressing mode. However, on RISC
2320 machines, all instructions normally have the same length and
2321 execution time. Hence all addresses will have equal costs.
2322
2323 In cases where more than one form of an address is known, the
2324 form with the lowest cost will be used. If multiple forms have
2325 the same, lowest, cost, the one that is the most complex will be
2326 used.
2327
2328 For example, suppose an address that is equal to the sum of a
2329 register and a constant is used twice in the same basic block.
2330 When this macro is not defined, the address will be computed in
2331 a register and memory references will be indirect through that
2332 register. On machines where the cost of the addressing mode
2333 containing the sum is no higher than that of a simple indirect
2334 reference, this will produce an additional instruction and
2335 possibly require an additional register. Proper specification
2336 of this macro eliminates this overhead for such machines.
2337
2338 Similar use of this macro is made in strength reduction of loops.
2339
2340 ADDRESS need not be valid as an address. In such a case, the
2341 cost is not relevant and can be any value; invalid addresses
2342 need not be assigned a different cost.
2343
2344 On machines where an address involving more than one register is
2345 as cheap as an address computation involving only one register,
2346 defining `ADDRESS_COST' to reflect this can cause two registers
2347 to be live over a region of code where only one would have been
2348 if `ADDRESS_COST' were not defined in that manner. This effect
2349 should be considered in the definition of this macro.
2350 Equivalent costs should probably only be given to addresses with
2351 different numbers of registers on machines with lots of registers.
2352
2353 This macro will normally either not be defined or be defined as
2354 a constant. */
2355
2356#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
2357
2358/* A C expression for the cost of moving data from a register in
2359 class FROM to one in class TO. The classes are expressed using
2360 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2361 the default; other values are interpreted relative to that.
2362
2363 It is not required that the cost always equal 2 when FROM is the
2364 same as TO; on some machines it is expensive to move between
2365 registers if they are not general registers.
2366
2367 If reload sees an insn consisting of a single `set' between two
2368 hard registers, and if `REGISTER_MOVE_COST' applied to their
2369 classes returns a value of 2, reload does not check to ensure
2370 that the constraints of the insn are met. Setting a cost of
2371 other than 2 will allow reload to verify that the constraints are
2372 met. You should do this if the `movM' pattern's constraints do
2373 not allow such copying. */
2374
2375#define REGISTER_MOVE_COST(FROM, TO) 4 /* force reload to use constraints */
2376
2377/* A C expression for the cost of a branch instruction. A value of
2378 1 is the default; other values are interpreted relative to that. */
2379
2380#define BRANCH_COST \
2381 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
2382
2383\f
2384/* Used in by the peephole code. */
2385#define classify_op(op,mode) (mips_rtx_classify[ (int)GET_CODE (op) ])
2386#define additive_op(op,mode) ((classify_op (op,mode) & CLASS_ADD_OP) != 0)
2387#define divmod_op(op,mode) ((classify_op (op,mode) & CLASS_DIVMOD_OP) != 0)
2388#define unsigned_op(op,mode) ((classify_op (op,mode) & CLASS_UNSIGNED_OP) != 0)
2389
2390#define CLASS_ADD_OP 0x01 /* operator is PLUS/MINUS */
2391#define CLASS_DIVMOD_OP 0x02 /* operator is {,U}{DIV,MOD} */
2392#define CLASS_UNSIGNED_OP 0x04 /* operator is U{DIV,MOD} */
2393#define CLASS_CMP_OP 0x08 /* operator is comparison */
2394#define CLASS_EQUALITY_OP 0x10 /* operator is == or != */
2395#define CLASS_FCMP_OP 0x08 /* operator is fp. compare */
2396
2397#define CLASS_UNS_CMP_OP (CLASS_UNSIGNED_OP | CLASS_CMP_OP)
2398
2399\f
2400/* Optionally define this if you have added predicates to
2401 `MACHINE.c'. This macro is called within an initializer of an
2402 array of structures. The first field in the structure is the
2403 name of a predicate and the second field is an arrary of rtl
2404 codes. For each predicate, list all rtl codes that can be in
2405 expressions matched by the predicate. The list should have a
2406 trailing comma. Here is an example of two entries in the list
2407 for a typical RISC machine:
2408
2409 #define PREDICATE_CODES \
2410 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
2411 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
2412
2413 Defining this macro does not affect the generated code (however,
2414 incorrect definitions that omit an rtl code that may be matched
2415 by the predicate can cause the compiler to malfunction).
2416 Instead, it allows the table built by `genrecog' to be more
2417 compact and efficient, thus speeding up the compiler. The most
2418 important predicates to include in the list specified by this
2419 macro are thoses used in the most insn patterns. */
2420
2421#define PREDICATE_CODES \
2422 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
2423 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
2424 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
2425 {"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
2426 {"small_int", { CONST_INT }}, \
2427 {"large_int", { CONST_INT }}, \
2428 {"md_register_operand", { REG }}, \
2429 {"mips_const_double_ok", { CONST_DOUBLE }}, \
2430 {"simple_memory_operand", { MEM, SUBREG }}, \
2431 {"call_memory_operand", { MEM, SUBREG }}, \
2432 {"equality_op", { EQ, NE }}, \
2433 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
2434 LTU, LEU }}, \
2435 {"cmp2_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
2436 LTU, LEU }}, \
2437 {"fcmp_op", { EQ, NE, GT, GE, LT, LE }}, \
2438 {"uns_cmp_op", { GTU, GEU, LTU, LEU }},
2439
2440\f
2441/* If defined, a C statement to be executed just prior to the
2442 output of assembler code for INSN, to modify the extracted
2443 operands so they will be output differently.
2444
2445 Here the argument OPVEC is the vector containing the operands
2446 extracted from INSN, and NOPERANDS is the number of elements of
2447 the vector which contain meaningful data for this insn. The
2448 contents of this vector are what will be used to convert the
2449 insn template into assembler code, so you can change the
2450 assembler output by changing the contents of the vector.
2451
2452 We use it to check if the current insn needs a nop in front of it
2453 because of load delays, and also to update the delay slot
2454 statistics. */
2455
2456#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2457do \
2458 { \
2459 if (dslots_number_nops > 0 && mips_load_reg != (rtx)0) \
2460 { \
2461 enum machine_mode mode = GET_MODE (mips_load_reg); \
2462 rtx pattern = PATTERN (INSN); \
2463 \
2464 if (reg_mentioned_p (mips_load_reg, pattern) \
2465 || (mips_load_reg2 != (rtx)0 \
2466 && reg_mentioned_p (mips_load_reg2, pattern)) \
2467 || (mips_load_reg3 != (rtx)0 \
2468 && reg_mentioned_p (mips_load_reg3, pattern)) \
2469 || (mips_load_reg4 != (rtx)0 \
2470 && reg_mentioned_p (mips_load_reg4, pattern)) \
2471 || get_attr_length (INSN) == 0) \
2472 { \
2473 fputs ((set_noreorder) ? "\tnop\n" : "\t#nop\n", asm_out_file); \
2474 } \
2475 else \
2476 dslots_load_filled++; \
2477 \
2478 while (--dslots_number_nops > 0) \
2479 fputs ((set_noreorder) ? "\tnop\n" : "\t#nop\n", asm_out_file); \
2480 \
2481 mips_load_reg = (rtx)0; \
2482 mips_load_reg2 = (rtx)0; \
2483 mips_load_reg3 = (rtx)0; \
2484 mips_load_reg4 = (rtx)0; \
2485 \
2486 if (set_noreorder && --set_noreorder == 0) \
2487 fputs ("\t.set\treorder\n", asm_out_file); \
2488 } \
2489 \
2490 if (TARGET_STATS) \
2491 { \
2492 enum rtx_code code = GET_CODE (INSN); \
2493 if (code == JUMP_INSN || code == CALL_INSN) \
2494 dslots_jump_total++; \
2495 } \
2496 } \
2497while (0)
2498
2499\f
2500/* Tell final.c how to eliminate redundant test instructions.
2501 Here we define machine-dependent flags and fields in cc_status
2502 (see `conditions.h'). */
2503
2504/* A C compound statement to set the components of `cc_status'
2505 appropriately for an insn INSN whose body is EXP. It is this
2506 macro's responsibility to recognize insns that set the condition
2507 code as a byproduct of other activity as well as those that
2508 explicitly set `(cc0)'.
2509
2510 This macro is not used on machines that do not use `cc0'. */
2511
2512#define NOTICE_UPDATE_CC(EXP, INSN) \
2513do \
2514 { \
2515 enum attr_type type = get_attr_type (INSN); \
2516 if (type == TYPE_ICMP || type == TYPE_FCMP) \
2517 CC_STATUS_INIT; \
2518 } \
2519while (0)
2520
2521/* A list of names to be used for additional modes for condition
2522 code values in registers (*note Jump Patterns::.). These names
2523 are added to `enum machine_mode' and all have class `MODE_CC'.
2524 By convention, they should start with `CC' and end with `mode'.
2525
2526 You should only define this macro if your machine does not use
2527 `cc0' and only if additional modes are required.
2528
2529 On the MIPS, we use CC_FPmode for all floating point, CC_EQmode for
2530 integer equality/inequality comparisons, CC_0mode for comparisons
2531 against 0, and CCmode for other integer comparisons. */
2532
2533#define EXTRA_CC_MODES CC_EQmode, CC_FPmode, CC_0mode
2534
2535/* A list of C strings giving the names for the modes listed in
2536 `EXTRA_CC_MODES'. For example, the Sparc defines this macro and
2537 `EXTRA_CC_MODES' as
2538
2539 #define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
2540 #define EXTRA_CC_NAMES "CC_NOOV", "CCFP"
2541
2542 This macro is not required if `EXTRA_CC_MODES' is not defined. */
2543
2544#define EXTRA_CC_NAMES "CC_EQ", "CC_FP", "CC_0"
2545
2546/* Returns a mode from class `MODE_CC' to be used when comparison
2547 operation code OP is applied to rtx X. For example, on the
2548 Sparc, `SELECT_CC_MODE' is defined as (see *note Jump
2549 Patterns::. for a description of the reason for this definition)
2550
2551 #define SELECT_CC_MODE(OP,X) \
2552 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2553 : (GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2554 || GET_CODE (X) == NEG) \
2555 ? CC_NOOVmode : CCmode)
2556
2557 This macro is not required if `EXTRA_CC_MODES' is not defined. */
2558
2559#define SELECT_CC_MODE (OP, X) \
2560 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CC_FPmode : \
2561 (OP == EQ || OP == NE) ? CC_EQmode : CCmode)
2562
2563\f
2564/* Control the assembler format that we output. */
2565
2566/* Output at beginning of assembler file.
2567 If we are optimizing to use the global pointer, create a temporary
2568 file to hold all of the text stuff, and write it out to the end.
2569 This is needed because the MIPS assembler is evidently one pass,
2570 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
2571 declaration when the code is processed, it generates a two
2572 instruction sequence. */
2573
2574#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
2575
2576/* Output to assembler file text saying following lines
2577 may contain character constants, extra white space, comments, etc. */
2578
2579#define ASM_APP_ON " #APP\n"
2580
2581/* Output to assembler file text saying following lines
2582 no longer contain unusual constructs. */
2583
2584#define ASM_APP_OFF " #NO_APP\n"
2585
2586/* How to refer to registers in assembler output.
2587 This sequence is indexed by compiler's hard-register-number (see above).
2588
2589 In order to support the two different conventions for register names,
2590 we use the name of a table set up in mips.c, which is overwritten
2591 if -mrnames is used. */
2592
2593#define REGISTER_NAMES \
2594{ \
2595 &mips_reg_names[ 0][0], \
2596 &mips_reg_names[ 1][0], \
2597 &mips_reg_names[ 2][0], \
2598 &mips_reg_names[ 3][0], \
2599 &mips_reg_names[ 4][0], \
2600 &mips_reg_names[ 5][0], \
2601 &mips_reg_names[ 6][0], \
2602 &mips_reg_names[ 7][0], \
2603 &mips_reg_names[ 8][0], \
2604 &mips_reg_names[ 9][0], \
2605 &mips_reg_names[10][0], \
2606 &mips_reg_names[11][0], \
2607 &mips_reg_names[12][0], \
2608 &mips_reg_names[13][0], \
2609 &mips_reg_names[14][0], \
2610 &mips_reg_names[15][0], \
2611 &mips_reg_names[16][0], \
2612 &mips_reg_names[17][0], \
2613 &mips_reg_names[18][0], \
2614 &mips_reg_names[19][0], \
2615 &mips_reg_names[20][0], \
2616 &mips_reg_names[21][0], \
2617 &mips_reg_names[22][0], \
2618 &mips_reg_names[23][0], \
2619 &mips_reg_names[24][0], \
2620 &mips_reg_names[25][0], \
2621 &mips_reg_names[26][0], \
2622 &mips_reg_names[27][0], \
2623 &mips_reg_names[28][0], \
2624 &mips_reg_names[29][0], \
2625 &mips_reg_names[30][0], \
2626 &mips_reg_names[31][0], \
2627 &mips_reg_names[32][0], \
2628 &mips_reg_names[33][0], \
2629 &mips_reg_names[34][0], \
2630 &mips_reg_names[35][0], \
2631 &mips_reg_names[36][0], \
2632 &mips_reg_names[37][0], \
2633 &mips_reg_names[38][0], \
2634 &mips_reg_names[39][0], \
2635 &mips_reg_names[40][0], \
2636 &mips_reg_names[41][0], \
2637 &mips_reg_names[42][0], \
2638 &mips_reg_names[43][0], \
2639 &mips_reg_names[44][0], \
2640 &mips_reg_names[45][0], \
2641 &mips_reg_names[46][0], \
2642 &mips_reg_names[47][0], \
2643 &mips_reg_names[48][0], \
2644 &mips_reg_names[49][0], \
2645 &mips_reg_names[50][0], \
2646 &mips_reg_names[51][0], \
2647 &mips_reg_names[52][0], \
2648 &mips_reg_names[53][0], \
2649 &mips_reg_names[54][0], \
2650 &mips_reg_names[55][0], \
2651 &mips_reg_names[56][0], \
2652 &mips_reg_names[57][0], \
2653 &mips_reg_names[58][0], \
2654 &mips_reg_names[59][0], \
2655 &mips_reg_names[60][0], \
2656 &mips_reg_names[61][0], \
2657 &mips_reg_names[62][0], \
2658 &mips_reg_names[63][0], \
2659 &mips_reg_names[64][0], \
2660 &mips_reg_names[65][0], \
2661 &mips_reg_names[66][0], \
2662}
2663
2664/* If defined, a C initializer for an array of structures
2665 containing a name and a register number. This macro defines
2666 additional names for hard registers, thus allowing the `asm'
2667 option in declarations to refer to registers using alternate
2668 names.
2669
2670 We define both names for the integer registers here. */
2671
2672#define ADDITIONAL_REGISTER_NAMES \
2673{ \
2674 { "$0", 0 + GP_REG_FIRST }, \
2675 { "$1", 1 + GP_REG_FIRST }, \
2676 { "$2", 2 + GP_REG_FIRST }, \
2677 { "$3", 3 + GP_REG_FIRST }, \
2678 { "$4", 4 + GP_REG_FIRST }, \
2679 { "$5", 5 + GP_REG_FIRST }, \
2680 { "$6", 6 + GP_REG_FIRST }, \
2681 { "$7", 7 + GP_REG_FIRST }, \
2682 { "$8", 8 + GP_REG_FIRST }, \
2683 { "$9", 9 + GP_REG_FIRST }, \
2684 { "$10", 10 + GP_REG_FIRST }, \
2685 { "$11", 11 + GP_REG_FIRST }, \
2686 { "$12", 12 + GP_REG_FIRST }, \
2687 { "$13", 13 + GP_REG_FIRST }, \
2688 { "$14", 14 + GP_REG_FIRST }, \
2689 { "$15", 15 + GP_REG_FIRST }, \
2690 { "$16", 16 + GP_REG_FIRST }, \
2691 { "$17", 17 + GP_REG_FIRST }, \
2692 { "$18", 18 + GP_REG_FIRST }, \
2693 { "$19", 19 + GP_REG_FIRST }, \
2694 { "$20", 20 + GP_REG_FIRST }, \
2695 { "$21", 21 + GP_REG_FIRST }, \
2696 { "$22", 22 + GP_REG_FIRST }, \
2697 { "$23", 23 + GP_REG_FIRST }, \
2698 { "$24", 24 + GP_REG_FIRST }, \
2699 { "$25", 25 + GP_REG_FIRST }, \
2700 { "$26", 26 + GP_REG_FIRST }, \
2701 { "$27", 27 + GP_REG_FIRST }, \
2702 { "$28", 28 + GP_REG_FIRST }, \
2703 { "$29", 29 + GP_REG_FIRST }, \
2704 { "$30", 30 + GP_REG_FIRST }, \
2705 { "$31", 31 + GP_REG_FIRST }, \
2706 { "$sp", 29 + GP_REG_FIRST }, \
2707 { "$fp", 30 + GP_REG_FIRST }, \
2708 { "at", 1 + GP_REG_FIRST }, \
2709 { "v0", 2 + GP_REG_FIRST }, \
2710 { "v1", 3 + GP_REG_FIRST }, \
2711 { "a0", 4 + GP_REG_FIRST }, \
2712 { "a1", 5 + GP_REG_FIRST }, \
2713 { "a2", 6 + GP_REG_FIRST }, \
2714 { "a3", 7 + GP_REG_FIRST }, \
2715 { "t0", 8 + GP_REG_FIRST }, \
2716 { "t1", 9 + GP_REG_FIRST }, \
2717 { "t2", 10 + GP_REG_FIRST }, \
2718 { "t3", 11 + GP_REG_FIRST }, \
2719 { "t4", 12 + GP_REG_FIRST }, \
2720 { "t5", 13 + GP_REG_FIRST }, \
2721 { "t6", 14 + GP_REG_FIRST }, \
2722 { "t7", 15 + GP_REG_FIRST }, \
2723 { "s0", 16 + GP_REG_FIRST }, \
2724 { "s1", 17 + GP_REG_FIRST }, \
2725 { "s2", 18 + GP_REG_FIRST }, \
2726 { "s3", 19 + GP_REG_FIRST }, \
2727 { "s4", 20 + GP_REG_FIRST }, \
2728 { "s5", 21 + GP_REG_FIRST }, \
2729 { "s6", 22 + GP_REG_FIRST }, \
2730 { "s7", 23 + GP_REG_FIRST }, \
2731 { "t8", 24 + GP_REG_FIRST }, \
2732 { "t9", 25 + GP_REG_FIRST }, \
2733 { "k0", 26 + GP_REG_FIRST }, \
2734 { "k1", 27 + GP_REG_FIRST }, \
2735 { "gp", 28 + GP_REG_FIRST }, \
2736 { "sp", 29 + GP_REG_FIRST }, \
2737 { "fp", 30 + GP_REG_FIRST }, \
2738 { "ra", 31 + GP_REG_FIRST }, \
2739}
2740
2741/* Define results of standard character escape sequences. */
2742#define TARGET_BELL 007
2743#define TARGET_BS 010
2744#define TARGET_TAB 011
2745#define TARGET_NEWLINE 012
2746#define TARGET_VT 013
2747#define TARGET_FF 014
2748#define TARGET_CR 015
2749
2750/* A C compound statement to output to stdio stream STREAM the
2751 assembler syntax for an instruction operand X. X is an RTL
2752 expression.
2753
2754 CODE is a value that can be used to specify one of several ways
2755 of printing the operand. It is used when identical operands
2756 must be printed differently depending on the context. CODE
2757 comes from the `%' specification that was used to request
2758 printing of the operand. If the specification was just `%DIGIT'
2759 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2760 is the ASCII code for LTR.
2761
2762 If X is a register, this macro should print the register's name.
2763 The names can be found in an array `reg_names' whose type is
2764 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2765
2766 When the machine description has a specification `%PUNCT' (a `%'
2767 followed by a punctuation character), this macro is called with
2768 a null pointer for X and the punctuation character for CODE.
2769
2770 See mips.c for the MIPS specific codes. */
2771
2772#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2773
2774/* A C expression which evaluates to true if CODE is a valid
2775 punctuation character for use in the `PRINT_OPERAND' macro. If
2776 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2777 punctuation characters (except for the standard one, `%') are
2778 used in this way. */
2779
2780#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2781
2782/* A C compound statement to output to stdio stream STREAM the
2783 assembler syntax for an instruction operand that is a memory
2784 reference whose address is ADDR. ADDR is an RTL expression.
2785
2786 On some machines, the syntax for a symbolic address depends on
2787 the section that the address refers to. On these machines,
2788 define the macro `ENCODE_SECTION_INFO' to store the information
2789 into the `symbol_ref', and then check for it here. */
2790
2791#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2792
2793
2794/* A C statement, to be executed after all slot-filler instructions
2795 have been output. If necessary, call `dbr_sequence_length' to
2796 determine the number of slots filled in a sequence (zero if not
2797 currently outputting a sequence), to decide how many no-ops to
2798 output, or whatever.
2799
2800 Don't define this macro if it has nothing to do, but it is
2801 helpful in reading assembly output if the extent of the delay
2802 sequence is made explicit (e.g. with white space).
2803
2804 Note that output routines for instructions with delay slots must
2805 be prepared to deal with not being output as part of a sequence
2806 (i.e. when the scheduling pass is not run, or when no slot
2807 fillers could be found.) The variable `final_sequence' is null
2808 when not processing a sequence, otherwise it contains the
2809 `sequence' rtx being output. */
2810
2811#define DBR_OUTPUT_SEQEND(STREAM) \
2812do \
2813 { \
2814 if (set_nomacro > 0 && --set_nomacro == 0) \
2815 fputs ("\t.set\tmacro\n", STREAM); \
2816 \
2817 if (set_noreorder > 0 && --set_noreorder == 0) \
2818 fputs ("\t.set\treorder\n", STREAM); \
2819 \
2820 dslots_jump_filled++; \
2821 fputs ("\n", STREAM); \
2822 } \
2823while (0)
2824
2825
2826/* How to tell the debugger about changes of source files. Note, the
2827 mips ECOFF format cannot deal with changes of files inside of
2828 functions, which means the output of parser generators like bison
2829 is generally not debuggable without using the -l switch. Lose,
2830 lose, lose. Silicon graphics seems to want all .file's hardwired
2831 to 1. */
2832
2833#ifndef SET_FILE_NUMBER
2834#define SET_FILE_NUMBER() ++num_source_filenames
2835#endif
2836
2837#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2838 mips_output_filename (STREAM, NAME)
2839
2840/* This is how to output a note the debugger telling it the line number
2841 to which the following sequence of instructions corresponds.
2842 Silicon graphics puts a label after each .loc. */
2843
2844#ifndef LABEL_AFTER_LOC
2845#define LABEL_AFTER_LOC(STREAM)
2846#endif
2847
2848#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2849 mips_output_lineno (STREAM, LINE)
2850
2851/* The MIPS implementation uses some labels for it's own purposed. The
2852 following lists what labels are created, and are all formed by the
2853 pattern $L[a-z].*. The machine independent portion of GCC creates
2854 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2855
2856 LM[0-9]+ Sillicon graphics/ECOFF stabs label before each stmt.
2857 $Lb[0-9]+ Begin blocks for MIPS debug support
2858 $Lc[0-9]+ Label for use in s<xx> operation.
2859 $Le[0-9]+ End blocks for MIPS debug support
2860 $Lp\..+ Half-pic labels.
2861 $Ls[0-9]+ FP-SP difference if -fomit-frame-pointer */
2862
2863/* This is how to output the definition of a user-level label named NAME,
2864 such as the label on a static function or variable NAME.
2865
2866 If we are optimizing the gp, remember that this label has been put
2867 out, so we know not to emit an .extern for it in mips_asm_file_end.
2868 We use one of the common bits in the IDENTIFIER tree node for this,
2869 since those bits seem to be unused, and we don't have any method
2870 of getting the decl nodes from the name. */
2871
2872#ifndef COLLECT
2873#define ASM_OUTPUT_LABEL(STREAM,NAME) \
2874do { \
2875 assemble_name (STREAM, NAME); \
2876 fputs (":\n", STREAM); \
2877 \
2878 if (TARGET_GP_OPT && mips_section_threshold != 0) \
2879 { \
2880 tree name_tree = get_identifier (NAME); \
2881 TREE_ADDRESSABLE (name_tree) = 1; \
2882 } \
2883} while (0)
2884
2885#else
2886#define ASM_OUTPUT_LABEL(STREAM,NAME) \
2887do { \
2888 fprintf (STREAM, "%s:\n", NAME); \
2889} while (0)
2890#endif
2891
2892/* This is how to output a command to make the user-level label named NAME
2893 defined for reference from other files. */
2894
2895#ifndef COLLECT
2896#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2897 do { \
2898 fputs ("\t.globl\t", STREAM); \
2899 assemble_name (STREAM, NAME); \
2900 fputs ("\n", STREAM); \
2901 } while (0)
2902
2903#else
2904#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2905do { \
2906 fprintf (STREAM, "\t.globl\t%s\n", NAME); \
2907} while (0)
2908#endif
2909
2910/* This says how to output an assembler line
2911 to define a global common symbol. */
2912
2913#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
2914do { \
2915 fputs ("\n\t.comm\t", (STREAM)); \
2916 assemble_name ((STREAM), (NAME)); \
2917 fprintf ((STREAM), ",%u\n", (ROUNDED)); \
2918 \
2919 if (TARGET_GP_OPT && mips_section_threshold != 0) \
2920 { \
2921 tree name_tree = get_identifier (NAME); \
2922 TREE_ADDRESSABLE (name_tree) = 1; \
2923 } \
2924} while (0)
2925
2926/* This says how to output an assembler line
2927 to define a local common symbol. */
2928
2929#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
2930do { \
2931 fputs ("\n\t.lcomm\t", (STREAM)); \
2932 assemble_name ((STREAM), (NAME)); \
2933 fprintf ((STREAM), ",%u\n", (ROUNDED)); \
2934 \
2935 if (TARGET_GP_OPT && mips_section_threshold != 0) \
2936 { \
2937 tree name_tree = get_identifier (NAME); \
2938 TREE_ADDRESSABLE (name_tree) = 1; \
2939 } \
2940} while (0)
2941
2942
2943/* This says how to output an external. It would be possible not to
2944 output anything and let undefined symbol become external. However
2945 the assembler uses length information on externals to allocate in
2946 data/sdata bss/sbss, thereby saving exec time. */
2947
2948#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2949 mips_output_external(STREAM,DECL,NAME)
2950
2951/* This says what to print at the end of the assembly file */
2952#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
2953
2954
2955/* This is how to declare a function name. The actual work of
2956 emitting the label is moved to function_prologue, so that we can
2957 get the line number correctly emitted before the .ent directive,
2958 and after any .file directives.
2959
2960 Also, switch files if we are optimizing the global pointer. */
2961
2962#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
2963{ \
2964 extern FILE *asm_out_text_file; \
2965 if (TARGET_GP_OPT) \
2966 STREAM = asm_out_text_file; \
2967 \
2968 current_function_name = NAME; \
2969}
2970
2971/* This is how to output a reference to a user-level label named NAME.
2972 `assemble_name' uses this. */
2973
2974#define ASM_OUTPUT_LABELREF(STREAM,NAME) fprintf (STREAM, "%s", NAME)
2975
2976/* This is how to output an internal numbered label where
2977 PREFIX is the class of label and NUM is the number within the class. */
2978
2979#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
2980 fprintf (STREAM, "$%s%d:\n", PREFIX, NUM)
2981
2982/* This is how to store into the string LABEL
2983 the symbol_ref name of an internal numbered label where
2984 PREFIX is the class of label and NUM is the number within the class.
2985 This is suitable for output with `assemble_name'. */
2986
2987#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2988 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
2989
2990/* This is how to output an assembler line defining a `double' constant. */
2991
2992#define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
2993{ \
2994 union { double d; long l[2]; } u2; \
2995 u2.d = VALUE; \
2996 fprintf (STREAM, "\t.word\t0x%08lx\t\t# %.20g\n\t.word\t0x%08lx\n", \
2997 u2.l[0], u2.d, u2.l[1]); \
2998}
2999
3000/* This is how to output an assembler line defining a `float' constant. */
3001
3002#define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
3003{ \
3004 union { float f; long l; } u2; \
3005 u2.f = VALUE; \
3006 fprintf (STREAM, "\t.word\t0x%08lx\t\t# %.12g\n", u2.l, u2.f); \
3007}
3008
3009/* This is how to output an assembler line defining an `int' constant. */
3010
3011#ifndef COLLECT
3012#define ASM_OUTPUT_INT(STREAM,VALUE) \
3013do { \
3014 fprintf (STREAM, "\t.word\t"); \
3015 output_addr_const (STREAM, (VALUE)); \
3016 fprintf (STREAM, "\n"); \
3017} while (0)
3018
3019#else
3020#define ASM_OUTPUT_INT(STREAM,VALUE) \
3021 fprintf (STREAM, "\t.word\t%d\n", VALUE)
3022#endif
3023
3024/* Likewise for `char' and `short' constants. */
3025
3026#define ASM_OUTPUT_SHORT(STREAM,VALUE) \
3027{ \
3028 fprintf (STREAM, "\t.half\t"); \
3029 output_addr_const (STREAM, (VALUE)); \
3030 fprintf (STREAM, "\n"); \
3031}
3032
3033#define ASM_OUTPUT_CHAR(STREAM,VALUE) \
3034{ \
3035 fprintf (STREAM, "\t.byte\t"); \
3036 output_addr_const (STREAM, (VALUE)); \
3037 fprintf (STREAM, "\n"); \
3038}
3039
3040/* This is how to output an assembler line defining an `int' constant,
3041 which is not in tree format (for collect.c). */
3042
3043#define ASM_OUTPUT_INT_CONST(STREAM,VALUE) \
3044 fprintf(STREAM, "\t.word\t%d\n", VALUE)
3045
3046/* This is how to output an assembler line defining an external/static
3047 address which is not in tree format (for collect.c). */
3048
3049#define ASM_OUTPUT_PTR_INT_SUM(STREAM, NAME, VALUE) \
3050do { \
3051 fprintf (STREAM, "\t.word\t"); \
3052 ASM_OUTPUT_LABELREF (STREAM, NAME); \
3053 fprintf (STREAM, "+%d\n", VALUE); \
3054} while (0)
3055
3056#define ASM_OUTPUT_LABELREF_AS_INT(STREAM, NAME) \
3057do { \
3058 fprintf (STREAM, "\t.word\t"); \
3059 ASM_OUTPUT_LABELREF (STREAM, NAME); \
3060 fprintf (STREAM, "\n"); \
3061} while (0)
3062
3063/* This is how to output an assembler line for a numeric constant byte. */
3064
3065#define ASM_OUTPUT_BYTE(STREAM,VALUE) \
3066 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
3067
3068/* This is how to output an element of a case-vector that is absolute. */
3069
3070#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
3071 fprintf (STREAM, "\t.word\t$L%d\n", VALUE)
3072
3073/* This is how to output an element of a case-vector that is relative.
3074 (We do not use such vectors,
3075 but we must define this macro anyway.) */
3076
3077#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
3078 fprintf (STREAM, "\t.word\t$L%d-$L%d\n", VALUE, REL)
3079
3080/* This is how to emit the initial label for switch statements. We
3081 need to put the switch labels somewhere else from the text section,
3082 because the MIPS assembler gets real confused about line numbers if
3083 .word's appear in the text section. */
3084
3085#define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, JUMPTABLE) \
3086{ \
3087 rdata_section (); \
3088 ASM_OUTPUT_ALIGN (STREAM, 2); \
3089 ASM_OUTPUT_INTERNAL_LABEL (STREAM, PREFIX, NUM); \
3090}
3091
3092/* This is how to output an assembler line
3093 that says to advance the location counter
3094 to a multiple of 2**LOG bytes. */
3095
3096#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
3097{ \
3098 int mask = (1 << (LOG)) - 1; \
3099 fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
3100}
3101
3102/* This is how to output an assembler line to to advance the location
3103 counter by SIZE bytes. */
3104
3105#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
3106 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
3107
3108
3109/* This is how to output a string. */
3110#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
3111do { \
3112 register int i, c, len = (LEN), cur_pos = 17; \
3113 register unsigned char *string = (unsigned char *)(STRING); \
3114 fprintf ((STREAM), "\t.ascii\t\""); \
3115 for (i = 0; i < len; i++) \
3116 { \
3117 register int c = string[i]; \
3118 \
3119 switch (c) \
3120 { \
3121 case '\"': \
3122 case '\\': \
3123 putc ('\\', (STREAM)); \
3124 putc (c, (STREAM)); \
3125 cur_pos += 2; \
3126 break; \
3127 \
3128 case TARGET_NEWLINE: \
3129 fputs ("\\n", (STREAM)); \
3130 if (i+1 < len \
3131 && (((c = string[i+1]) >= '\040' && c <= '~') \
3132 || c == TARGET_TAB)) \
3133 cur_pos = 32767; /* break right here */ \
3134 else \
3135 cur_pos += 2; \
3136 break; \
3137 \
3138 case TARGET_TAB: \
3139 fputs ("\\t", (STREAM)); \
3140 cur_pos += 2; \
3141 break; \
3142 \
3143 case TARGET_FF: \
3144 fputs ("\\f", (STREAM)); \
3145 cur_pos += 2; \
3146 break; \
3147 \
3148 case TARGET_BS: \
3149 fputs ("\\b", (STREAM)); \
3150 cur_pos += 2; \
3151 break; \
3152 \
3153 case TARGET_CR: \
3154 fputs ("\\r", (STREAM)); \
3155 cur_pos += 2; \
3156 break; \
3157 \
3158 default: \
3159 if (c >= ' ' && c < 0177) \
3160 { \
3161 putc (c, (STREAM)); \
3162 cur_pos++; \
3163 } \
3164 else \
3165 { \
3166 fprintf ((STREAM), "\\%03o", c); \
3167 cur_pos += 4; \
3168 } \
3169 } \
3170 \
3171 if (cur_pos > 72 && i+1 < len) \
3172 { \
3173 cur_pos = 17; \
3174 fprintf ((STREAM), "\"\n\t.ascii\t\""); \
3175 } \
3176 } \
3177 fprintf ((STREAM), "\"\n"); \
3178} while (0)
3179
3180/* Handle certain cpp directives used in header files on sysV. */
3181#define SCCS_DIRECTIVE
3182
3183/* Output #ident as a in the read-only data section. */
3184#define ASM_OUTPUT_IDENT(FILE, STRING) \
3185{ \
3186 char *p = STRING; \
3187 int size = strlen (p) + 1; \
3188 rdata_section (); \
3189 assemble_string (p, size); \
3190}
3191\f
3192
3193/* Output before read-only data. */
3194
3195#define TEXT_SECTION_ASM_OP "\t.text"
3196
3197/* Output before writable data. */
3198
3199#define DATA_SECTION_ASM_OP "\t.data"
3200
3201/* Output before writable short data. */
3202
3203#define SDATA_SECTION_ASM_OP "\t.sdata"
3204
3205/* Output before read-only data. */
3206
3207#define RDATA_SECTION_ASM_OP "\t.rdata"
3208#define READONLY_DATA_SECTION rdata_section
3209
3210/* What other sections we support other than the normal .data/.text. */
3211
3212#define EXTRA_SECTIONS in_sdata, in_rdata, in_last_p1
3213
3214/* Define the additional functions to select our additional sections. */
3215
3216/* on the MIPS it is not a good idea to put constants in the text
3217 section, since this defeats the sdata/data mechanism. This is
3218 especially true when -O is used. In this case an effort is made to
3219 address with faster (gp) register relative addressing, which can
3220 only get at sdata and sbss items (there is no stext !!) However,
3221 if the constant is too large for sdata, and it's readonly, it
3222 will go into the .rdata section. */
3223
3224#define EXTRA_SECTION_FUNCTIONS \
3225void \
3226sdata_section () \
3227{ \
3228 if (in_section != in_sdata) \
3229 { \
3230 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
3231 in_section = in_sdata; \
3232 } \
3233} \
3234 \
3235void \
3236rdata_section () \
3237{ \
3238 if (in_section != in_rdata) \
3239 { \
3240 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
3241 in_section = in_rdata; \
3242 } \
3243}
3244
3245/* Given a decl node or constant node, choose the section to output it in
3246 and select that section. */
3247
3248#define SELECT_SECTION_MODE(MODE,RTX) \
3249{ \
3250 extern int mips_section_threshold; \
3251 if ((GET_MODE_SIZE(MODE) / BITS_PER_UNIT) <= mips_section_threshold \
3252 && mips_section_threshold > 0) \
3253 sdata_section (); \
3254 else \
3255 rdata_section (); \
3256} \
3257
3258#define SELECT_SECTION(DECL,RELOC) \
3259{ \
3260 extern int mips_section_threshold; \
3261 if (int_size_in_bytes (TREE_TYPE (DECL)) <= mips_section_threshold \
3262 && mips_section_threshold > 0) \
3263 sdata_section (); \
3264 else if (TREE_CODE (DECL) == STRING_CST) \
3265 { \
3266 if (flag_writable_strings) \
3267 data_section (); \
3268 else \
3269 rdata_section (); \
3270 } \
3271 else if (TREE_CODE (DECL) != VAR_DECL) \
3272 rdata_section (); \
3273 else if (!TREE_READONLY (DECL)) \
3274 data_section (); \
3275 else \
3276 rdata_section (); \
3277}
3278
3279\f
3280/* Store in OUTPUT a string (made with alloca) containing
3281 an assembler-name for a local static variable named NAME.
3282 LABELNO is an integer which is different for each call. */
3283
3284#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3285( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3286 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3287
3288#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3289do \
3290 { \
3291 fprintf (STREAM, "\tsubu\t%s,%s,8\n\tsw\t%s,0(%s)\n", \
3292 reg_names[STACK_POINTER_REGNUM], \
3293 reg_names[STACK_POINTER_REGNUM], \
3294 reg_names[REGNO], \
3295 reg_names[STACK_POINTER_REGNUM]); \
3296 } \
3297while (0)
3298
3299#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3300do \
3301 { \
3302 if (! set_noreorder) \
3303 fprintf (STREAM, "\t.set\tnoreorder\n"); \
3304 \
3305 dslots_load_total++; \
3306 dslots_load_filled++; \
3307 fprintf (STREAM, "\tlw\t%s,0(%s)\n\taddu\t%s,%s,8\n", \
3308 reg_names[REGNO], \
3309 reg_names[STACK_POINTER_REGNUM], \
3310 reg_names[STACK_POINTER_REGNUM], \
3311 reg_names[STACK_POINTER_REGNUM]); \
3312 \
3313 if (! set_noreorder) \
3314 fprintf (STREAM, "\t.set\treorder\n"); \
3315 } \
3316while (0)
3317
3318/* Define the parentheses used to group arithmetic operations
3319 in assembler code. */
3320
3321#define ASM_OPEN_PAREN "("
3322#define ASM_CLOSE_PAREN ")"
3323
3324/* How to start an assembler comment. */
3325#ifndef ASM_COMMENT_START
3326#define ASM_COMMENT_START "\t\t# "
3327#endif
3328
3329\f
3330
3331/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
3332 and mips-tdump.c to print them out.
3333
3334 These must match the corresponding definitions in gdb/mipsread.c.
3335 Unfortunately, gcc and gdb do not currently share any directories. */
3336
3337#define CODE_MASK 0x8F300
3338#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
3339#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
3340#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
This page took 0.330444 seconds and 5 git commands to generate.