]> gcc.gnu.org Git - gcc.git/blame - gcc/config/mips/mips.h
Daily bump.
[gcc.git] / gcc / config / mips / mips.h
CommitLineData
e75b25e7 1/* Definitions of target machine for GNU compiler. MIPS version.
214be03f 2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
16c484c7 3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
ae3e1bb4
RK
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
e75b25e7
MM
8
9This file is part of GNU CC.
10
11GNU CC is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
16GNU CC is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with GNU CC; see the file COPYING. If not, write to
75fe0c5e
RK
23the Free Software Foundation, 59 Temple Place - Suite 330,
24Boston, MA 02111-1307, USA. */
e75b25e7
MM
25
26
e75b25e7
MM
27/* Standard GCC variables that we reference. */
28
0fb5ac6f
MM
29extern char *asm_file_name;
30extern char call_used_regs[];
0fb5ac6f 31extern int may_call_alloca;
0fb5ac6f
MM
32extern char **save_argv;
33extern int target_flags;
e75b25e7
MM
34
35/* MIPS external variables defined in mips.c. */
36
37/* comparison type */
38enum cmp_type {
876c09d3
JW
39 CMP_SI, /* compare four byte integers */
40 CMP_DI, /* compare eight byte integers */
e75b25e7
MM
41 CMP_SF, /* compare single precision floats */
42 CMP_DF, /* compare double precision floats */
43 CMP_MAX /* max comparison type */
44};
45
46/* types of delay slot */
47enum delay_type {
48 DELAY_NONE, /* no delay slot */
49 DELAY_LOAD, /* load from memory delay */
34b650b3
MM
50 DELAY_HILO, /* move from/to hi/lo registers */
51 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
e75b25e7
MM
52};
53
54/* Which processor to schedule for. Since there is no difference between
55 a R2000 and R3000 in terms of the scheduler, we collapse them into
4a392643
RS
56 just an R3000. The elements of the enumeration must match exactly
57 the cpu attribute in the mips.md machine description. */
e75b25e7
MM
58
59enum processor_type {
60 PROCESSOR_DEFAULT,
61 PROCESSOR_R3000,
e9a25f70 62 PROCESSOR_R3900,
e75b25e7 63 PROCESSOR_R6000,
876c09d3 64 PROCESSOR_R4000,
00b3e052 65 PROCESSOR_R4100,
5ce6f47b
EC
66 PROCESSOR_R4111,
67 PROCESSOR_R4121,
00b3e052 68 PROCESSOR_R4300,
5ce6f47b 69 PROCESSOR_R4320,
516a2dfd 70 PROCESSOR_R4600,
053665d7 71 PROCESSOR_R4650,
b8eb88d0 72 PROCESSOR_R5000,
5ce6f47b
EC
73 PROCESSOR_R5400,
74 PROCESSOR_R5500,
0e5a4ad8
EC
75 PROCESSOR_R8000,
76 PROCESSOR_R4KC,
77 PROCESSOR_R5KC,
5b552f76 78 PROCESSOR_R20KC,
5ce6f47b 79 PROCESSOR_SR71000,
5b552f76 80 PROCESSOR_SB1
e75b25e7
MM
81};
82
4a392643 83/* Recast the cpu class to be the cpu attribute. */
919b1aec 84#define mips_cpu_attr ((enum attr_cpu)mips_tune)
4a392643 85
ac8ab9fe
RS
86/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
87 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
88 to work on a 64 bit machine. */
b2d8cf33 89
04bd620d
JW
90#define ABI_32 0
91#define ABI_N32 1
92#define ABI_64 2
93#define ABI_EABI 3
a53f72db 94#define ABI_O64 4
0e5a4ad8
EC
95/* MEABI is gcc's internal name for MIPS' new EABI (defined by MIPS)
96 which is not the same as the above EABI (defined by Cygnus,
97 Greenhills, and Toshiba?). MEABI is not yet complete or published,
98 but at this point it looks like N32 as far as calling conventions go,
99 but allows for either 32 or 64 bit registers.
100
101 Currently MIPS is calling their EABI "the" MIPS EABI, and Cygnus'
102 EABI the legacy EABI. In the end we may end up calling both ABI's
103 EABI but give them different version numbers, but for now I'm going
987ba558 104 with different names. */
0e5a4ad8
EC
105#define ABI_MEABI 5
106
45ceb85d
RS
107/* Whether to emit abicalls code sequences or not. */
108
109enum mips_abicalls_type {
110 MIPS_ABICALLS_NO,
111 MIPS_ABICALLS_YES
112};
113
114/* Recast the abicalls class to be the abicalls attribute. */
115#define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
116
b7d3fabe
RS
117/* Which type of block move to do (whether or not the last store is
118 split out so it can fill a branch delay slot). */
119
120enum block_move_type {
121 BLOCK_MOVE_NORMAL, /* generate complete block move */
122 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
123 BLOCK_MOVE_LAST /* generate just the last store */
124};
125
05713b80 126/* Information about one recognized processor. Defined here for the
a27fb29b
RS
127 benefit of TARGET_CPU_CPP_BUILTINS. */
128struct mips_cpu_info {
129 /* The 'canonical' name of the processor as far as GCC is concerned.
130 It's typically a manufacturer's prefix followed by a numerical
131 designation. It should be lower case. */
132 const char *name;
133
134 /* The internal processor number that most closely matches this
135 entry. Several processors can have the same value, if there's no
136 difference between them from GCC's point of view. */
137 enum processor_type cpu;
138
139 /* The ISA level that the processor implements. */
140 int isa;
141};
142
987ba558 143extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
f540a7d3 144extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
e2fe6aba 145extern const char *current_function_file; /* filename current function is in */
e75b25e7
MM
146extern int num_source_filenames; /* current .file # */
147extern int inside_function; /* != 0 if inside of a function */
148extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
149extern int file_in_function_warning; /* warning given about .file in func */
150extern int sdb_label_count; /* block start/end next label # */
a642a781 151extern int sdb_begin_function_line; /* Starting Line of current function */
e75b25e7
MM
152extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
153extern int g_switch_value; /* value of the -G xx switch */
154extern int g_switch_set; /* whether -G xx was passed. */
155extern int sym_lineno; /* sgi next label # for each stmt */
156extern int set_noreorder; /* # of nested .set noreorder's */
157extern int set_nomacro; /* # of nested .set nomacro's */
158extern int set_noat; /* # of nested .set noat's */
159extern int set_volatile; /* # of nested .set volatile's */
e75b25e7
MM
160extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
161extern int mips_dbx_regno[]; /* Map register # to debug register # */
e2500fed 162extern GTY(()) rtx branch_cmp[2]; /* operands for compare */
e75b25e7 163extern enum cmp_type branch_type; /* what type of branch to use */
7dac2f89
EC
164extern enum processor_type mips_arch; /* which cpu to codegen for */
165extern enum processor_type mips_tune; /* which cpu to schedule for */
45ceb85d 166extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
e75b25e7 167extern int mips_isa; /* architectural level */
2bcb2ab3
GK
168extern int mips16; /* whether generating mips16 code */
169extern int mips16_hard_float; /* mips16 without -msoft-float */
170extern int mips_entry; /* generate entry/exit for mips16 */
7dac2f89
EC
171extern const char *mips_arch_string; /* for -march=<xxx> */
172extern const char *mips_tune_string; /* for -mtune=<xxx> */
e2fe6aba
KG
173extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
174extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
175extern const char *mips_entry_string; /* for -mentry */
176extern const char *mips_no_mips16_string;/* for -mno-mips16 */
d490e8ad 177extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
ce57d6f4 178extern int mips_split_addresses; /* perform high/lo_sum support */
e75b25e7
MM
179extern int dslots_load_total; /* total # load related delay slots */
180extern int dslots_load_filled; /* # filled load delay slots */
181extern int dslots_jump_total; /* total # jump related delay slots */
182extern int dslots_jump_filled; /* # filled jump delay slots */
183extern int dslots_number_nops; /* # of nops needed by previous insn */
184extern int num_refs[3]; /* # 1/2/3 word references */
e2500fed
GK
185extern GTY(()) rtx mips_load_reg; /* register to check for load delay */
186extern GTY(()) rtx mips_load_reg2; /* 2nd reg to check for load delay */
187extern GTY(()) rtx mips_load_reg3; /* 3rd reg to check for load delay */
188extern GTY(()) rtx mips_load_reg4; /* 4th reg to check for load delay */
2bcb2ab3 189extern int mips_string_length; /* length of strings for mips16 */
a27fb29b
RS
190extern const struct mips_cpu_info mips_cpu_info_table[];
191extern const struct mips_cpu_info *mips_arch_info;
192extern const struct mips_cpu_info *mips_tune_info;
e75b25e7 193
0fb5ac6f 194/* Functions to change what output section we are using. */
bd9f1972 195extern void sdata_section PARAMS ((void));
cc8f5ec0 196extern void sbss_section PARAMS ((void));
e75b25e7 197
3a6ee9f4
MM
198/* Macros to silence warnings about numbers being signed in traditional
199 C and unsigned in ISO C when compiled on 32-bit hosts. */
200
201#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
202#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
203#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
204
149e4e00
MM
205\f
206/* Run-time compilation parameters selecting different hardware subsets. */
207
208/* Macros used in the machine description to test the flags. */
209
210 /* Bits for real switches */
6d81ba45
CD
211#define MASK_INT64 0x00000001 /* ints are 64 bits */
212#define MASK_LONG64 0x00000002 /* longs are 64 bits */
213#define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
214#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
215#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
216#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
217#define MASK_STATS 0x00000040 /* print statistics to stderr */
218#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
219#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
220#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
221#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
33005162 222#define MASK_UNUSED1 0x00000800 /* Unused Mask. */
6d81ba45
CD
223#define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
224#define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
225#define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
365c6a0b 226#define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
6d81ba45
CD
227#define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
228#define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
229#define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
230#define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
7dac2f89 231#define MASK_MIPS16 0x00100000 /* Generate mips16 code */
6d81ba45 232#define MASK_NO_CHECK_ZERO_DIV \
7dac2f89 233 0x00200000 /* divide by zero checking */
6d81ba45 234#define MASK_CHECK_RANGE_DIV \
7dac2f89 235 0x00400000 /* divide result range checking */
6d81ba45 236#define MASK_UNINIT_CONST_IN_RODATA \
7dac2f89 237 0x00800000 /* Store uninitialized
6d81ba45 238 consts in rodata */
13fac94a
GK
239#define MASK_NO_FUSED_MADD 0x01000000 /* Don't generate floating point
240 multiply-add operations. */
af34e51e
CD
241#define MASK_BRANCHLIKELY 0x02000000 /* Generate Branch Likely
242 instructions. */
149e4e00
MM
243
244 /* Debug switches, not documented */
6d81ba45
CD
245#define MASK_DEBUG 0 /* unused */
246#define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
247#define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
987ba558 248#define MASK_DEBUG_C 0 /* don't expand seq, etc. */
08c2951c 249#define MASK_DEBUG_D 0 /* don't do define_split's */
e4f5c5d6 250#define MASK_DEBUG_E 0 /* function_arg debug */
6d81ba45 251#define MASK_DEBUG_F 0 /* ??? */
2bcb2ab3 252#define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
e4f5c5d6 253#define MASK_DEBUG_I 0 /* unused */
149e4e00 254
6d81ba45
CD
255 /* Dummy switches used only in specs */
256#define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
257
149e4e00
MM
258 /* r4000 64 bit sizes */
259#define TARGET_INT64 (target_flags & MASK_INT64)
260#define TARGET_LONG64 (target_flags & MASK_LONG64)
149e4e00 261#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
876c09d3 262#define TARGET_64BIT (target_flags & MASK_64BIT)
149e4e00 263
5ef37cd3
JW
264 /* Mips vs. GNU linker */
265#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
266
149e4e00
MM
267 /* Mips vs. GNU assembler */
268#define TARGET_GAS (target_flags & MASK_GAS)
6d81ba45 269#define TARGET_MIPS_AS (!TARGET_GAS)
149e4e00 270
6d81ba45 271 /* Debug Modes */
149e4e00
MM
272#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
273#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
274#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
275#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
276#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
277#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
278#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
279#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
149e4e00 280#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
149e4e00
MM
281
282 /* Reg. Naming in .s ($21 vs. $a0) */
283#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
284
285 /* Optimize for Sdata/Sbss */
286#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
287
288 /* print program statistics */
289#define TARGET_STATS (target_flags & MASK_STATS)
290
291 /* call memcpy instead of inline code */
292#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
293
294 /* .abicalls, etc from Pyramid V.4 */
295#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
296
149e4e00
MM
297 /* software floating point */
298#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
299#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
300
301 /* always call through a register */
302#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
303
e0bfcea5
ILT
304 /* generate embedded PIC code;
305 requires gas. */
306#define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
307
365c6a0b
JW
308 /* for embedded systems, optimize for
309 reduced RAM space instead of for
310 fastest code. */
311#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
312
919509ce
DN
313 /* always store uninitialized const
314 variables in rodata, requires
987ba558 315 TARGET_EMBEDDED_DATA. */
919509ce
DN
316#define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
317
96abdcb1
ILT
318 /* generate big endian code. */
319#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
320
46299de9
ILT
321#define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
322#define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
323
324#define TARGET_MAD (target_flags & MASK_MAD)
325
13fac94a
GK
326#define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
327
00b3e052
JW
328#define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
329
08c2951c
SC
330#define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
331#define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
332
af34e51e
CD
333#define TARGET_BRANCHLIKELY (target_flags & MASK_BRANCHLIKELY)
334
33b5e50b
JW
335/* This is true if we must enable the assembly language file switching
336 code. */
337
f99ffb60
RH
338#define TARGET_FILE_SWITCHING \
339 (TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
33b5e50b
JW
340
341/* We must disable the function end stabs when doing the file switching trick,
342 because the Lscope stabs end up in the wrong place, making it impossible
343 to debug the resulting code. */
344#define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
345
2bcb2ab3
GK
346 /* Generate mips16 code */
347#define TARGET_MIPS16 (target_flags & MASK_MIPS16)
348
ce3649d2
EC
349/* Generic ISA defines. */
350#define ISA_MIPS1 (mips_isa == 1)
351#define ISA_MIPS2 (mips_isa == 2)
352#define ISA_MIPS3 (mips_isa == 3)
353#define ISA_MIPS4 (mips_isa == 4)
354#define ISA_MIPS32 (mips_isa == 32)
355#define ISA_MIPS64 (mips_isa == 64)
356
7dac2f89
EC
357/* Architecture target defines. */
358#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
359#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
5ce6f47b
EC
360#define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100
361#define TARGET_MIPS4121 (mips_arch == PROCESSOR_R4121)
7dac2f89 362#define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
5ce6f47b 363#define TARGET_MIPS4320 (mips_arch == PROCESSOR_R4320)
0e5a4ad8
EC
364#define TARGET_MIPS4KC (mips_arch == PROCESSOR_R4KC)
365#define TARGET_MIPS5KC (mips_arch == PROCESSOR_R5KC)
5ce6f47b
EC
366#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
367#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
5b552f76 368#define TARGET_SB1 (mips_arch == PROCESSOR_SB1)
5ce6f47b 369#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
7dac2f89
EC
370
371/* Scheduling target defines. */
7a38df19
EC
372#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
373#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
374#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
375#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
5ce6f47b
EC
376#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
377#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
7a38df19 378#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
5b552f76 379#define TUNE_SB1 (mips_tune == PROCESSOR_SB1)
5ce6f47b 380#define TUNE_SR71K (mips_tune == PROCESSOR_SR71000)
7dac2f89 381
a27fb29b
RS
382/* Define preprocessor macros for the -march and -mtune options.
383 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
384 processor. If INFO's canonical name is "foo", define PREFIX to
385 be "foo", and define an additional macro PREFIX_FOO. */
386#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
387 do \
388 { \
389 char *macro, *p; \
390 \
391 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
392 for (p = macro; *p != 0; p++) \
393 *p = TOUPPER (*p); \
394 \
395 builtin_define (macro); \
396 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
397 free (macro); \
398 } \
399 while (0)
400
ce3649d2
EC
401/* Target CPU builtins. */
402#define TARGET_CPU_CPP_BUILTINS() \
403 do \
404 { \
405 builtin_assert ("cpu=mips"); \
406 builtin_define ("__mips__"); \
407 builtin_define ("_mips"); \
408 \
409 /* We do this here because __mips is defined below \
410 and so we can't use builtin_define_std. */ \
411 if (!flag_iso) \
412 builtin_define ("mips"); \
413 \
a27fb29b
RS
414 /* Treat _R3000 and _R4000 like register-size defines, \
415 which is how they've historically been used. */ \
ce3649d2
EC
416 if (TARGET_64BIT) \
417 { \
418 builtin_define ("__mips64"); \
ce3649d2
EC
419 builtin_define_std ("R4000"); \
420 builtin_define ("_R4000"); \
421 } \
422 else \
423 { \
ce3649d2
EC
424 builtin_define_std ("R3000"); \
425 builtin_define ("_R3000"); \
426 } \
427 if (TARGET_FLOAT64) \
428 builtin_define ("__mips_fpr=64"); \
429 else \
430 builtin_define ("__mips_fpr=32"); \
431 \
432 if (TARGET_MIPS16) \
433 builtin_define ("__mips16"); \
434 \
a27fb29b
RS
435 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
436 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
437 \
ce3649d2
EC
438 if (ISA_MIPS1) \
439 { \
440 builtin_define ("__mips=1"); \
441 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
442 } \
443 else if (ISA_MIPS2) \
444 { \
445 builtin_define ("__mips=2"); \
446 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
447 } \
448 else if (ISA_MIPS3) \
449 { \
450 builtin_define ("__mips=3"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
452 } \
453 else if (ISA_MIPS4) \
454 { \
455 builtin_define ("__mips=4"); \
456 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
457 } \
458 else if (ISA_MIPS32) \
459 { \
460 builtin_define ("__mips=32"); \
461 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
462 } \
463 else if (ISA_MIPS64) \
464 { \
465 builtin_define ("__mips=64"); \
466 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
467 } \
468 \
469 if (TARGET_HARD_FLOAT) \
470 builtin_define ("__mips_hard_float"); \
471 else if (TARGET_SOFT_FLOAT) \
472 builtin_define ("__mips_soft_float"); \
473 \
474 if (TARGET_SINGLE_FLOAT) \
475 builtin_define ("__mips_single_float"); \
476 \
ce3649d2
EC
477 if (TARGET_BIG_ENDIAN) \
478 { \
479 builtin_define_std ("MIPSEB"); \
480 builtin_define ("_MIPSEB"); \
481 } \
482 else \
483 { \
484 builtin_define_std ("MIPSEL"); \
485 builtin_define ("_MIPSEL"); \
486 } \
487 \
488 /* Macros dependent on the C dialect. */ \
489 if (preprocessing_asm_p ()) \
490 { \
491 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
492 builtin_define ("_LANGUAGE_ASSEMBLY"); \
493 } \
494 else if (c_language == clk_c) \
495 { \
496 builtin_define_std ("LANGUAGE_C"); \
497 builtin_define ("_LANGUAGE_C"); \
498 } \
499 else if (c_language == clk_cplusplus) \
500 { \
501 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
502 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
503 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
504 } \
2516f236 505 if (flag_objc) \
ce3649d2
EC
506 { \
507 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
508 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
509 /* Bizzare, but needed at least for Irix. */ \
510 builtin_define_std ("LANGUAGE_C"); \
511 builtin_define ("_LANGUAGE_C"); \
512 } \
513 \
514 if (mips_abi == ABI_EABI) \
515 builtin_define ("__mips_eabi"); \
516 \
517} while (0)
518
519
520
149e4e00
MM
521/* Macro to define tables used to set the flags.
522 This is a list in braces of pairs in braces,
523 each pair being { "NAME", VALUE }
524 where VALUE is the bits to set or minus the bits to clear.
525 An empty string NAME is used to identify the default VALUE. */
526
527#define TARGET_SWITCHES \
528{ \
c45fd7f9 529 {"no-crt0", 0, \
047142d3 530 N_("No default crt0.o") }, \
a127db75 531 {"int64", MASK_INT64 | MASK_LONG64, \
047142d3 532 N_("Use 64-bit int type")}, \
a127db75 533 {"long64", MASK_LONG64, \
047142d3 534 N_("Use 64-bit long type")}, \
a127db75 535 {"long32", -(MASK_LONG64 | MASK_INT64), \
047142d3 536 N_("Use 32-bit long type")}, \
a127db75 537 {"split-addresses", MASK_SPLIT_ADDR, \
047142d3 538 N_("Optimize lui/addiu address loads")}, \
a127db75 539 {"no-split-addresses", -MASK_SPLIT_ADDR, \
047142d3 540 N_("Don't optimize lui/addiu address loads")}, \
a127db75 541 {"mips-as", -MASK_GAS, \
047142d3 542 N_("Use MIPS as")}, \
a127db75 543 {"gas", MASK_GAS, \
047142d3 544 N_("Use GNU as")}, \
a127db75 545 {"rnames", MASK_NAME_REGS, \
047142d3 546 N_("Use symbolic register names")}, \
a127db75 547 {"no-rnames", -MASK_NAME_REGS, \
047142d3 548 N_("Don't use symbolic register names")}, \
a127db75 549 {"gpOPT", MASK_GPOPT, \
047142d3 550 N_("Use GP relative sdata/sbss sections")}, \
a127db75 551 {"gpopt", MASK_GPOPT, \
047142d3 552 N_("Use GP relative sdata/sbss sections")}, \
a127db75 553 {"no-gpOPT", -MASK_GPOPT, \
047142d3 554 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 555 {"no-gpopt", -MASK_GPOPT, \
047142d3 556 N_("Don't use GP relative sdata/sbss sections")}, \
a127db75 557 {"stats", MASK_STATS, \
047142d3 558 N_("Output compiler statistics")}, \
a127db75 559 {"no-stats", -MASK_STATS, \
047142d3 560 N_("Don't output compiler statistics")}, \
a127db75 561 {"memcpy", MASK_MEMCPY, \
047142d3 562 N_("Don't optimize block moves")}, \
a127db75 563 {"no-memcpy", -MASK_MEMCPY, \
047142d3 564 N_("Optimize block moves")}, \
a127db75 565 {"mips-tfile", MASK_MIPS_TFILE, \
047142d3 566 N_("Use mips-tfile asm postpass")}, \
a127db75 567 {"no-mips-tfile", -MASK_MIPS_TFILE, \
047142d3 568 N_("Don't use mips-tfile asm postpass")}, \
a127db75 569 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 570 N_("Use software floating point")}, \
a127db75 571 {"hard-float", -MASK_SOFT_FLOAT, \
047142d3 572 N_("Use hardware floating point")}, \
a127db75 573 {"fp64", MASK_FLOAT64, \
047142d3 574 N_("Use 64-bit FP registers")}, \
a127db75 575 {"fp32", -MASK_FLOAT64, \
047142d3 576 N_("Use 32-bit FP registers")}, \
a127db75 577 {"gp64", MASK_64BIT, \
047142d3 578 N_("Use 64-bit general registers")}, \
a127db75 579 {"gp32", -MASK_64BIT, \
047142d3 580 N_("Use 32-bit general registers")}, \
a127db75 581 {"abicalls", MASK_ABICALLS, \
047142d3 582 N_("Use Irix PIC")}, \
a127db75 583 {"no-abicalls", -MASK_ABICALLS, \
047142d3 584 N_("Don't use Irix PIC")}, \
a127db75 585 {"long-calls", MASK_LONG_CALLS, \
047142d3 586 N_("Use indirect calls")}, \
a127db75 587 {"no-long-calls", -MASK_LONG_CALLS, \
047142d3 588 N_("Don't use indirect calls")}, \
a127db75 589 {"embedded-pic", MASK_EMBEDDED_PIC, \
047142d3 590 N_("Use embedded PIC")}, \
a127db75 591 {"no-embedded-pic", -MASK_EMBEDDED_PIC, \
047142d3 592 N_("Don't use embedded PIC")}, \
a127db75 593 {"embedded-data", MASK_EMBEDDED_DATA, \
047142d3 594 N_("Use ROM instead of RAM")}, \
a127db75 595 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
047142d3 596 N_("Don't use ROM instead of RAM")}, \
919509ce 597 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
047142d3 598 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
919509ce 599 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
047142d3 600 N_("Don't put uninitialized constants in ROM")}, \
a127db75 601 {"eb", MASK_BIG_ENDIAN, \
047142d3 602 N_("Use big-endian byte order")}, \
a127db75 603 {"el", -MASK_BIG_ENDIAN, \
047142d3 604 N_("Use little-endian byte order")}, \
a127db75 605 {"single-float", MASK_SINGLE_FLOAT, \
047142d3 606 N_("Use single (32-bit) FP only")}, \
a127db75 607 {"double-float", -MASK_SINGLE_FLOAT, \
047142d3 608 N_("Don't use single (32-bit) FP only")}, \
a127db75 609 {"mad", MASK_MAD, \
047142d3 610 N_("Use multiply accumulate")}, \
a127db75 611 {"no-mad", -MASK_MAD, \
047142d3 612 N_("Don't use multiply accumulate")}, \
13fac94a
GK
613 {"no-fused-madd", MASK_NO_FUSED_MADD, \
614 N_("Don't generate fused multiply/add instructions")}, \
615 {"fused-madd", -MASK_NO_FUSED_MADD, \
616 N_("Generate fused multiply/add instructions")}, \
a127db75 617 {"fix4300", MASK_4300_MUL_FIX, \
047142d3 618 N_("Work around early 4300 hardware bug")}, \
a127db75 619 {"no-fix4300", -MASK_4300_MUL_FIX, \
047142d3 620 N_("Don't work around early 4300 hardware bug")}, \
a127db75 621 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
047142d3 622 N_("Trap on integer divide by zero")}, \
a127db75 623 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
047142d3 624 N_("Don't trap on integer divide by zero")}, \
a127db75 625 {"check-range-division",MASK_CHECK_RANGE_DIV, \
047142d3 626 N_("Trap on integer divide overflow")}, \
a127db75 627 {"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
047142d3 628 N_("Don't trap on integer divide overflow")}, \
af34e51e
CD
629 { "branch-likely", MASK_BRANCHLIKELY, \
630 N_("Use Branch Likely instructions, overriding default for arch")}, \
631 { "no-branch-likely", -MASK_BRANCHLIKELY, \
632 N_("Don't use Branch Likely instructions, overriding default for arch")}, \
a127db75
JW
633 {"debug", MASK_DEBUG, \
634 NULL}, \
635 {"debuga", MASK_DEBUG_A, \
636 NULL}, \
637 {"debugb", MASK_DEBUG_B, \
638 NULL}, \
639 {"debugc", MASK_DEBUG_C, \
640 NULL}, \
641 {"debugd", MASK_DEBUG_D, \
642 NULL}, \
643 {"debuge", MASK_DEBUG_E, \
644 NULL}, \
645 {"debugf", MASK_DEBUG_F, \
646 NULL}, \
647 {"debugg", MASK_DEBUG_G, \
648 NULL}, \
a127db75
JW
649 {"debugi", MASK_DEBUG_I, \
650 NULL}, \
96abdcb1
ILT
651 {"", (TARGET_DEFAULT \
652 | TARGET_CPU_DEFAULT \
a127db75
JW
653 | TARGET_ENDIAN_DEFAULT), \
654 NULL}, \
7dac2f89 655}
149e4e00
MM
656
657/* Default target_flags if no switches are specified */
658
659#ifndef TARGET_DEFAULT
660#define TARGET_DEFAULT 0
661#endif
662
404f986e
MM
663#ifndef TARGET_CPU_DEFAULT
664#define TARGET_CPU_DEFAULT 0
665#endif
666
96abdcb1 667#ifndef TARGET_ENDIAN_DEFAULT
96abdcb1 668#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
96abdcb1
ILT
669#endif
670
a27fb29b 671/* 'from-abi' makes a good default: you get whatever the ABI requires. */
ea09f032 672#ifndef MIPS_ISA_DEFAULT
a27fb29b
RS
673#ifndef MIPS_CPU_STRING_DEFAULT
674#define MIPS_CPU_STRING_DEFAULT "from-abi"
675#endif
ea09f032
GRK
676#endif
677
996ed075
JJ
678#ifdef IN_LIBGCC2
679#undef TARGET_64BIT
680/* Make this compile time constant for libgcc2 */
681#ifdef __mips64
682#define TARGET_64BIT 1
683#else
684#define TARGET_64BIT 0
685#endif
440927ec 686#endif /* IN_LIBGCC2 */
996ed075 687
cbab8d02 688#ifndef MULTILIB_ENDIAN_DEFAULT
7f2e00db 689#if TARGET_ENDIAN_DEFAULT == 0
cbab8d02 690#define MULTILIB_ENDIAN_DEFAULT "EL"
7f2e00db 691#else
cbab8d02
GRK
692#define MULTILIB_ENDIAN_DEFAULT "EB"
693#endif
7f2e00db 694#endif
cbab8d02 695
ea09f032 696#ifndef MULTILIB_ISA_DEFAULT
7ce2fcb9
KG
697# if MIPS_ISA_DEFAULT == 1
698# define MULTILIB_ISA_DEFAULT "mips1"
699# else
700# if MIPS_ISA_DEFAULT == 2
701# define MULTILIB_ISA_DEFAULT "mips2"
702# else
703# if MIPS_ISA_DEFAULT == 3
704# define MULTILIB_ISA_DEFAULT "mips3"
705# else
706# if MIPS_ISA_DEFAULT == 4
707# define MULTILIB_ISA_DEFAULT "mips4"
708# else
0e5a4ad8
EC
709# if MIPS_ISA_DEFAULT == 32
710# define MULTILIB_ISA_DEFAULT "mips32"
711# else
712# if MIPS_ISA_DEFAULT == 64
713# define MULTILIB_ISA_DEFAULT "mips64"
714# else
7ce2fcb9 715# define MULTILIB_ISA_DEFAULT "mips1"
0e5a4ad8 716# endif
7ce2fcb9 717# endif
0e5a4ad8 718# endif
7ce2fcb9
KG
719# endif
720# endif
721# endif
ea09f032
GRK
722#endif
723
cbab8d02 724#ifndef MULTILIB_DEFAULTS
a27fb29b
RS
725#define MULTILIB_DEFAULTS \
726 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
7f2e00db
RK
727#endif
728
34bcd7fd
JW
729/* We must pass -EL to the linker by default for little endian embedded
730 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
731 linker will default to using big-endian output files. The OUTPUT_FORMAT
732 line must be in the linker script, otherwise -EB/-EL will not work. */
733
120dc6cd 734#ifndef ENDIAN_SPEC
34bcd7fd 735#if TARGET_ENDIAN_DEFAULT == 0
ac282977 736#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
34bcd7fd 737#else
ac282977 738#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
34bcd7fd
JW
739#endif
740#endif
741
149e4e00
MM
742#define TARGET_OPTIONS \
743{ \
b2d8cf33 744 SUBTARGET_TARGET_OPTIONS \
8f2e3902 745 { "tune=", &mips_tune_string, \
7dac2f89
EC
746 N_("Specify CPU for scheduling purposes")}, \
747 { "arch=", &mips_arch_string, \
748 N_("Specify CPU for code generation purposes")}, \
a27fb29b
RS
749 { "abi=", &mips_abi_string, \
750 N_("Specify an ABI")}, \
a127db75 751 { "ips", &mips_isa_string, \
7dac2f89 752 N_("Specify a Standard MIPS ISA")}, \
a127db75 753 { "entry", &mips_entry_string, \
047142d3 754 N_("Use mips16 entry/exit psuedo ops")}, \
a127db75 755 { "no-mips16", &mips_no_mips16_string, \
047142d3 756 N_("Don't use MIPS16 instructions")}, \
d490e8ad
DD
757 { "no-flush-func", &mips_cache_flush_func, \
758 N_("Don't call any cache flush functions")}, \
759 { "flush-func=", &mips_cache_flush_func, \
760 N_("Specify cache flush function")}, \
149e4e00
MM
761}
762
b2d8cf33
JW
763/* This is meant to be redefined in the host dependent files. */
764#define SUBTARGET_TARGET_OPTIONS
765
5ce6f47b
EC
766#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
767 && !TARGET_SR71K \
768 && !TARGET_MIPS16)
e4f5c5d6 769
0e5a4ad8
EC
770/* Generate three-operand multiply instructions for SImode. */
771#define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
5ce6f47b
EC
772 || TARGET_MIPS4320 \
773 || TARGET_MIPS5400 \
774 || TARGET_MIPS5500 \
ce3649d2
EC
775 || ISA_MIPS32 \
776 || ISA_MIPS64) \
0e5a4ad8
EC
777 && !TARGET_MIPS16)
778
779/* Generate three-operand multiply instructions for DImode. */
780#define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
781 && !TARGET_MIPS16)
e9a25f70 782
149e4e00
MM
783/* Macros to decide whether certain features are available or not,
784 depending on the instruction set architecture level. */
785
ce3649d2 786#define HAVE_SQRT_P() (!ISA_MIPS1)
1d5d552e 787
a27fb29b
RS
788/* True if the ABI can only work with 64-bit integer registers. We
789 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
790 otherwise floating-point registers must also be 64-bit. */
791#define ABI_NEEDS_64BIT_REGS (mips_abi == ABI_64 \
792 || mips_abi == ABI_O64 \
793 || mips_abi == ABI_N32)
794
795/* Likewise for 32-bit regs. */
796#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
797
987ba558 798/* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
8f2e3902
EC
799#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
800 || ISA_MIPS4 \
ce3649d2 801 || ISA_MIPS64)
1d5d552e 802
987ba558 803/* ISA has branch likely instructions (eg. mips2). */
7dac2f89
EC
804/* Disable branchlikely for tx39 until compare rewrite. They haven't
805 been generated up to this point. */
5ce6f47b
EC
806#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 \
807 && !TARGET_MIPS5500)
1d5d552e 808
987ba558 809/* ISA has the conditional move instructions introduced in mips4. */
ce3649d2
EC
810#define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
811 || ISA_MIPS32 \
812 || ISA_MIPS64) \
5ce6f47b 813 && !TARGET_MIPS5500 \
ce3649d2 814 && !TARGET_MIPS16)
76ee8042 815
0025b7fa
GRK
816/* ISA has just the integer condition move instructions (movn,movz) */
817#define ISA_HAS_INT_CONDMOVE 0
818
76ee8042 819/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
987ba558 820 branch on CC, and move (both FP and non-FP) on CC. */
ce3649d2
EC
821#define ISA_HAS_8CC (ISA_MIPS4 \
822 || ISA_MIPS32 \
823 || ISA_MIPS64)
76ee8042 824
76ee8042 825/* This is a catch all for the other new mips4 instructions: indexed load and
8fff5435
CD
826 indexed prefetch instructions, the FP madd and msub instructions,
827 and the FP recip and recip sqrt instructions */
12bf26b6
EC
828#define ISA_HAS_FP4 ((ISA_MIPS4 \
829 || ISA_MIPS64) \
ce3649d2 830 && !TARGET_MIPS16)
76ee8042 831
a0b6cdee 832/* ISA has conditional trap instructions. */
ce3649d2
EC
833#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
834 && !TARGET_MIPS16)
1d5d552e 835
12bf26b6 836/* ISA has integer multiply-accumulate instructions, madd and msub. */
ce3649d2
EC
837#define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
838 || ISA_MIPS64 \
839 ) && !TARGET_MIPS16)
0e5a4ad8 840
12bf26b6
EC
841/* ISA has floating-point nmadd and nmsub instructions. */
842#define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
843 || ISA_MIPS64) \
5ce6f47b 844 && (!TARGET_MIPS5400 || TARGET_MAD) \
974a3101 845 && ! TARGET_MIPS16)
149e4e00 846
0e5a4ad8 847/* ISA has count leading zeroes/ones instruction (not implemented). */
ce3649d2
EC
848#define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
849 || ISA_MIPS64 \
850 ) && !TARGET_MIPS16)
0e5a4ad8
EC
851
852/* ISA has double-word count leading zeroes/ones instruction (not
853 implemented). */
ce3649d2
EC
854#define ISA_HAS_DCLZ_DCLO (ISA_MIPS64 \
855 && !TARGET_MIPS16)
0e5a4ad8 856
5ce6f47b
EC
857/* ISA has three operand multiply instructions that put
858 the high part in an accumulator: mulhi or mulhiu. */
859#define ISA_HAS_MULHI (TARGET_MIPS5400 \
860 || TARGET_MIPS5500 \
861 || TARGET_SR71K \
862 )
863
864/* ISA has three operand multiply instructions that
865 negates the result and puts the result in an accumulator. */
866#define ISA_HAS_MULS (TARGET_MIPS5400 \
867 || TARGET_MIPS5500 \
868 || TARGET_SR71K \
869 )
870
871/* ISA has three operand multiply instructions that subtracts the
872 result from a 4th operand and puts the result in an accumulator. */
873#define ISA_HAS_MSAC (TARGET_MIPS5400 \
874 || TARGET_MIPS5500 \
875 || TARGET_SR71K \
876 )
877/* ISA has three operand multiply instructions that the result
878 from a 4th operand and puts the result in an accumulator. */
879#define ISA_HAS_MACC (TARGET_MIPS5400 \
880 || TARGET_MIPS5500 \
881 || TARGET_SR71K \
882 )
883
884/* ISA has 32-bit rotate right instruction. */
885#define ISA_HAS_ROTR_SI (TARGET_MIPS5400 \
886 || TARGET_MIPS5500 \
887 || TARGET_SR71K \
888 )
889
890/* ISA has 32-bit rotate right instruction. */
891#define ISA_HAS_ROTR_DI (TARGET_64BIT \
892 && (TARGET_MIPS5400 \
893 || TARGET_MIPS5500 \
894 || TARGET_SR71K \
895 ))
896
897
8f2e3902
EC
898/* ISA has data prefetch instruction. */
899#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
900 || ISA_MIPS32 \
901 || ISA_MIPS64) \
902 && !TARGET_MIPS16)
903
8214bf98
RS
904/* True if trunc.w.s and trunc.w.d are real (not synthetic)
905 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
906 also requires TARGET_DOUBLE_FLOAT. */
907#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
908
516a2dfd
JW
909/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
910 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
2370b831
JW
911 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
912 target_flags, and -mgp64 sets MASK_64BIT.
876c09d3 913
2370b831
JW
914 Setting MASK_64BIT in target_flags will cause gcc to assume that
915 registers are 64 bits wide. int, long and void * will be 32 bit;
916 this may be changed with -mint64 or -mlong64.
876c09d3 917
2370b831
JW
918 The gen* programs link code that refers to MASK_64BIT. They don't
919 actually use the information in target_flags; they just refer to
920 it. */
e75b25e7
MM
921\f
922/* Switch Recognition by gcc.c. Add -G xx support */
923
0e5a4ad8 924#undef SWITCH_TAKES_ARG
e75b25e7 925#define SWITCH_TAKES_ARG(CHAR) \
7d4ea832 926 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
e75b25e7
MM
927
928/* Sometimes certain combinations of command options do not make sense
929 on a particular target machine. You can define a macro
930 `OVERRIDE_OPTIONS' to take account of this. This macro, if
931 defined, is executed once just after all the command options have
932 been parsed.
933
934 On the MIPS, it is used to handle -G. We also use it to set up all
935 of the tables referenced in the other macros. */
936
937#define OVERRIDE_OPTIONS override_options ()
938
ac8ab9fe 939#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
516a2dfd 940
7be1e523
RK
941/* Show we can debug even without a frame pointer. */
942#define CAN_DEBUG_WITHOUT_FP
943\f
59c94430
MM
944/* Tell collect what flags to pass to nm. */
945#ifndef NM_FLAGS
2ce3c6c6 946#define NM_FLAGS "-Bn"
59c94430
MM
947#endif
948
e75b25e7 949\f
4e88bbcd
ILT
950/* Assembler specs. */
951
952/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
953 than gas. */
954
955#define MIPS_AS_ASM_SPEC "\
956%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
c725bd79 957%{pipe: %e-pipe is not supported} \
4e88bbcd
ILT
958%{K} %(subtarget_mips_as_asm_spec)"
959
960/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
961 rather than gas. It may be overridden by subtargets. */
962
963#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
964#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
965#endif
966
967/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
968 assembler. */
969
a27fb29b 970#define GAS_ASM_SPEC "%{mtune=*} %{v}"
009da785
EC
971
972
009da785 973extern int mips_abi;
0e5a4ad8
EC
974
975#ifndef MIPS_ABI_DEFAULT
009da785
EC
976#define MIPS_ABI_DEFAULT ABI_32
977#endif
0e5a4ad8 978
a27fb29b
RS
979/* Use the most portable ABI flag for the ASM specs. */
980
981#if MIPS_ABI_DEFAULT == ABI_32
982#define MULTILIB_ABI_DEFAULT "mabi=32"
983#define ASM_ABI_DEFAULT_SPEC "-32"
984#endif
985
986#if MIPS_ABI_DEFAULT == ABI_O64
987#define MULTILIB_ABI_DEFAULT "mabi=o64"
988#define ASM_ABI_DEFAULT_SPEC "-mabi=o64"
989#endif
990
991#if MIPS_ABI_DEFAULT == ABI_N32
992#define MULTILIB_ABI_DEFAULT "mabi=n32"
993#define ASM_ABI_DEFAULT_SPEC "-n32"
994#endif
995
996#if MIPS_ABI_DEFAULT == ABI_64
997#define MULTILIB_ABI_DEFAULT "mabi=64"
998#define ASM_ABI_DEFAULT_SPEC "-64"
999#endif
1000
1001#if MIPS_ABI_DEFAULT == ABI_EABI
1002#define MULTILIB_ABI_DEFAULT "mabi=eabi"
1003#define ASM_ABI_DEFAULT_SPEC "-mabi=eabi"
1004#endif
1005
1006#if MIPS_ABI_DEFAULT == ABI_MEABI
1007/* Most GAS don't know about MEABI. */
1008#define MULTILIB_ABI_DEFAULT "mabi=meabi"
1009#define ASM_ABI_DEFAULT_SPEC ""
1010#endif
1011
1012/* Only ELF targets can switch the ABI. */
1013#ifndef OBJECT_FORMAT_ELF
1014#undef ASM_ABI_DEFAULT_SPEC
1015#define ASM_ABI_DEFAULT_SPEC ""
0e5a4ad8 1016#endif
4e88bbcd
ILT
1017
1018/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
1019 GAS_ASM_SPEC as the default, depending upon the value of
1020 TARGET_DEFAULT. */
e75b25e7 1021
bb98bc58
JW
1022#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
1023/* GAS */
bb98bc58 1024
4e88bbcd
ILT
1025#define TARGET_ASM_SPEC "\
1026%{mmips-as: %(mips_as_asm_spec)} \
1027%{!mmips-as: %(gas_asm_spec)}"
1028
1029#else /* not GAS */
1030
1031#define TARGET_ASM_SPEC "\
1032%{!mgas: %(mips_as_asm_spec)} \
1033%{mgas: %(gas_asm_spec)}"
1034
1035#endif /* not GAS */
1036
1037/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1038 to the assembler. It may be overridden by subtargets. */
1039#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1040#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
bb98bc58 1041%{noasmopt:-O0} \
4e88bbcd
ILT
1042%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1043#endif
1044
1045/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1046 the assembler. It may be overridden by subtargets. */
1047#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1048#define SUBTARGET_ASM_DEBUGGING_SPEC "\
bb98bc58
JW
1049%{g} %{g0} %{g1} %{g2} %{g3} \
1050%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1051%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1052%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
6d439235 1053%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
714fb710 1054%{!gdwarf*:-mdebug} %{gdwarf*:-no-mdebug}"
4e88bbcd 1055#endif
bb98bc58 1056
4e88bbcd
ILT
1057/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1058 overridden by subtargets. */
1059
1060#ifndef SUBTARGET_ASM_SPEC
1061#define SUBTARGET_ASM_SPEC ""
bb98bc58 1062#endif
4e88bbcd 1063
a27fb29b
RS
1064/* ASM_SPEC is the set of arguments to pass to the assembler. Note: we
1065 pass -mgp32, -mgp64, -march, -mabi=eabi and -meabi=o64 regardless of
1066 whether we're using GAS. These options can only be used properly
1067 with GAS, and it is better to get an error from a non-GAS assembler
1068 than to silently generate bad code. */
4e88bbcd 1069
b2bcb32d 1070#undef ASM_SPEC
4e88bbcd 1071#define ASM_SPEC "\
fded6d78 1072%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64}\
2bcb2ab3 1073%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
4e88bbcd
ILT
1074%(subtarget_asm_optimizing_spec) \
1075%(subtarget_asm_debugging_spec) \
1076%{membedded-pic} \
a27fb29b
RS
1077%{mabi=32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
1078%{mabi=eabi} %{mabi=o64} %{!mabi*: %(asm_abi_default_spec)} \
1079%{mgp32} %{mgp64} %{march=*} \
4e88bbcd
ILT
1080%(target_asm_spec) \
1081%(subtarget_asm_spec)"
e75b25e7
MM
1082
1083/* Specify to run a post-processor, mips-tfile after the assembler
1084 has run to stuff the mips debug information into the object file.
1085 This is needed because the $#!%^ MIPS assembler provides no way
a813fadf
MM
1086 of specifying such information in the assembly file. If we are
1087 cross compiling, disable mips-tfile unless the user specifies
1088 -mmips-tfile. */
e75b25e7
MM
1089
1090#ifndef ASM_FINAL_SPEC
bb98bc58
JW
1091#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
1092/* GAS */
31c714e3 1093#define ASM_FINAL_SPEC "\
149e4e00 1094%{mmips-as: %{!mno-mips-tfile: \
31c714e3
MM
1095 \n mips-tfile %{v*: -v} \
1096 %{K: -I %b.o~} \
1097 %{!K: %{save-temps: -I %b.o~}} \
ab78d4a8 1098 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
31c714e3 1099 %{.s:%i} %{!.s:%g.s}}}"
a813fadf 1100
bb98bc58
JW
1101#else
1102/* not GAS */
a813fadf 1103#define ASM_FINAL_SPEC "\
149e4e00 1104%{!mgas: %{!mno-mips-tfile: \
a813fadf
MM
1105 \n mips-tfile %{v*: -v} \
1106 %{K: -I %b.o~} \
1107 %{!K: %{save-temps: -I %b.o~}} \
1108 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
1109 %{.s:%i} %{!.s:%g.s}}}"
1110
bb98bc58 1111#endif
a813fadf 1112#endif /* ASM_FINAL_SPEC */
e75b25e7
MM
1113
1114/* Redefinition of libraries used. Mips doesn't support normal
1115 UNIX style profiling via calling _mcount. It does offer
987ba558 1116 profiling that samples the PC, so do what we can... */
e75b25e7
MM
1117
1118#ifndef LIB_SPEC
1119#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
1120#endif
1121
31c714e3 1122/* Extra switches sometimes passed to the linker. */
bb98bc58
JW
1123/* ??? The bestGnum will never be passed to the linker, because the gcc driver
1124 will interpret it as a -b option. */
e75b25e7
MM
1125
1126#ifndef LINK_SPEC
31c714e3 1127#define LINK_SPEC "\
120dc6cd 1128%(endian_spec) \
0e5a4ad8 1129%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64} \
120dc6cd 1130%{bestGnum} %{shared} %{non_shared}"
0e5a4ad8
EC
1131#endif /* LINK_SPEC defined */
1132
e75b25e7
MM
1133
1134/* Specs for the compiler proper */
1135
c9db96ce
JR
1136/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1137 overridden by subtargets. */
1138#ifndef SUBTARGET_CC1_SPEC
1139#define SUBTARGET_CC1_SPEC ""
1140#endif
1141
1142/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
75dcd8fe
MM
1143/* Note, we will need to adjust the following if we ever find a MIPS variant
1144 that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
1145 that show up in this case. */
c9db96ce 1146
e75b25e7 1147#ifndef CC1_SPEC
31c714e3 1148#define CC1_SPEC "\
31c714e3 1149%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
96abdcb1 1150%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
c9db96ce 1151%{save-temps: } \
4e314d1f 1152%(subtarget_cc1_spec)"
e75b25e7
MM
1153#endif
1154
4e88bbcd
ILT
1155/* Preprocessor specs. */
1156
4e88bbcd
ILT
1157/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1158 overridden by subtargets. */
1159#ifndef SUBTARGET_CPP_SPEC
1160#define SUBTARGET_CPP_SPEC ""
1161#endif
1162
ce3649d2 1163#define CPP_SPEC "%(subtarget_cpp_spec)"
4e88bbcd
ILT
1164
1165/* This macro defines names of additional specifications to put in the specs
1166 that can be used in various specifications like CC1_SPEC. Its definition
1167 is an initializer with a subgrouping for each command option.
1168
1169 Each subgrouping contains a string constant, that defines the
1170 specification name, and a string constant that used by the GNU CC driver
1171 program.
1172
1173 Do not define this macro if it does not need to do anything. */
1174
1175#define EXTRA_SPECS \
829245be
KG
1176 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1177 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
829245be
KG
1178 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1179 { "gas_asm_spec", GAS_ASM_SPEC }, \
1180 { "target_asm_spec", TARGET_ASM_SPEC }, \
1181 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1182 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1183 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1184 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
a27fb29b 1185 { "asm_abi_default_spec", ASM_ABI_DEFAULT_SPEC }, \
120dc6cd 1186 { "endian_spec", ENDIAN_SPEC }, \
4e88bbcd
ILT
1187 SUBTARGET_EXTRA_SPECS
1188
1189#ifndef SUBTARGET_EXTRA_SPECS
1190#define SUBTARGET_EXTRA_SPECS
e75b25e7
MM
1191#endif
1192
1193/* If defined, this macro is an additional prefix to try after
1194 `STANDARD_EXEC_PREFIX'. */
1195
1196#ifndef MD_EXEC_PREFIX
31c714e3 1197#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
e75b25e7
MM
1198#endif
1199
59c94430
MM
1200#ifndef MD_STARTFILE_PREFIX
1201#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1202#endif
1203
e75b25e7
MM
1204\f
1205/* Print subsidiary information on the compiler version in use. */
1206
42dee4c7 1207#define MIPS_VERSION "[AL 1.1, MM 40]"
e75b25e7
MM
1208
1209#ifndef MACHINE_TYPE
1210#define MACHINE_TYPE "BSD Mips"
1211#endif
1212
1213#ifndef TARGET_VERSION_INTERNAL
1214#define TARGET_VERSION_INTERNAL(STREAM) \
1215 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
1216#endif
1217
1218#ifndef TARGET_VERSION
1219#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
1220#endif
1221
1222\f
23532de9
JT
1223#define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
1224#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1225#define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
e75b25e7
MM
1226
1227#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
fe0986b4 1228#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
e75b25e7
MM
1229#endif
1230
59c94430
MM
1231/* By default, turn on GDB extensions. */
1232#define DEFAULT_GDB_EXTENSIONS 1
1233
e75b25e7
MM
1234/* If we are passing smuggling stabs through the MIPS ECOFF object
1235 format, put a comment in front of the .stab<x> operation so
1236 that the MIPS assembler does not choke. The mips-tfile program
1237 will correctly put the stab into the object file. */
1238
78d057d8
HPN
1239#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1240#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1241#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
e75b25e7 1242
6ae1498b
JW
1243/* Local compiler-generated symbols must have a prefix that the assembler
1244 understands. By default, this is $, although some targets (e.g.,
987ba558 1245 NetBSD-ELF) need to override this. */
6ae1498b
JW
1246
1247#ifndef LOCAL_LABEL_PREFIX
1248#define LOCAL_LABEL_PREFIX "$"
1249#endif
1250
1251/* By default on the mips, external symbols do not have an underscore
987ba558 1252 prepended, but some targets (e.g., NetBSD) require this. */
6ae1498b
JW
1253
1254#ifndef USER_LABEL_PREFIX
1255#define USER_LABEL_PREFIX ""
1256#endif
1257
e75b25e7
MM
1258/* Forward references to tags are allowed. */
1259#define SDB_ALLOW_FORWARD_REFERENCES
1260
1261/* Unknown tags are also allowed. */
1262#define SDB_ALLOW_UNKNOWN_REFERENCES
1263
1264/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1265 since the length can run past this up to a continuation point. */
44404b8b 1266#undef DBX_CONTIN_LENGTH
e75b25e7
MM
1267#define DBX_CONTIN_LENGTH 1500
1268
987ba558 1269/* How to renumber registers for dbx and gdb. */
e75b25e7
MM
1270#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1271
c8cc5c4a 1272/* The mapping from gcc register number to DWARF 2 CFA column number.
0021b564
JM
1273 This mapping does not allow for tracking register 0, since SGI's broken
1274 dwarf reader thinks column 0 is used for the frame address, but since
1275 register 0 is fixed this is not a problem. */
469ac993 1276#define DWARF_FRAME_REGNUM(REG) \
0021b564 1277 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
c8cc5c4a
JM
1278
1279/* The DWARF 2 CFA column which tracks the return address. */
1280#define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
e75b25e7 1281
469ac993 1282/* Before the prologue, RA lives in r31. */
c5c76735 1283#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
469ac993 1284
9e800206 1285/* Describe how we implement __builtin_eh_return. */
282cb01b 1286#define EH_RETURN_DATA_REGNO(N) ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
9e800206
RH
1287#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1288
7dac2f89 1289/* Offsets recorded in opcodes are a multiple of this alignment factor.
b3276c7a
GK
1290 The default for this in 64-bit mode is 8, which causes problems with
1291 SFmode register saves. */
1292#define DWARF_CIE_DATA_ALIGNMENT 4
1293
e75b25e7
MM
1294/* Overrides for the COFF debug format. */
1295#define PUT_SDB_SCL(a) \
1296do { \
1297 extern FILE *asm_out_text_file; \
1298 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1299} while (0)
1300
1301#define PUT_SDB_INT_VAL(a) \
1302do { \
1303 extern FILE *asm_out_text_file; \
e59f7d3d
KG
1304 fprintf (asm_out_text_file, "\t.val\t"); \
1305 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1306 fprintf (asm_out_text_file, ";"); \
e75b25e7
MM
1307} while (0)
1308
1309#define PUT_SDB_VAL(a) \
1310do { \
1311 extern FILE *asm_out_text_file; \
1312 fputs ("\t.val\t", asm_out_text_file); \
1313 output_addr_const (asm_out_text_file, (a)); \
1314 fputc (';', asm_out_text_file); \
1315} while (0)
1316
1317#define PUT_SDB_DEF(a) \
1318do { \
1319 extern FILE *asm_out_text_file; \
b82b0773
MM
1320 fprintf (asm_out_text_file, "\t%s.def\t", \
1321 (TARGET_GAS) ? "" : "#"); \
e75b25e7
MM
1322 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1323 fputc (';', asm_out_text_file); \
1324} while (0)
1325
1326#define PUT_SDB_PLAIN_DEF(a) \
1327do { \
1328 extern FILE *asm_out_text_file; \
b82b0773
MM
1329 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1330 (TARGET_GAS) ? "" : "#", (a)); \
e75b25e7
MM
1331} while (0)
1332
1333#define PUT_SDB_ENDEF \
1334do { \
1335 extern FILE *asm_out_text_file; \
1336 fprintf (asm_out_text_file, "\t.endef\n"); \
1337} while (0)
1338
1339#define PUT_SDB_TYPE(a) \
1340do { \
1341 extern FILE *asm_out_text_file; \
1342 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1343} while (0)
1344
1345#define PUT_SDB_SIZE(a) \
1346do { \
1347 extern FILE *asm_out_text_file; \
e59f7d3d
KG
1348 fprintf (asm_out_text_file, "\t.size\t"); \
1349 fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
1350 fprintf (asm_out_text_file, ";"); \
e75b25e7
MM
1351} while (0)
1352
1353#define PUT_SDB_DIM(a) \
1354do { \
1355 extern FILE *asm_out_text_file; \
1356 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1357} while (0)
1358
1359#ifndef PUT_SDB_START_DIM
1360#define PUT_SDB_START_DIM \
1361do { \
1362 extern FILE *asm_out_text_file; \
1363 fprintf (asm_out_text_file, "\t.dim\t"); \
1364} while (0)
1365#endif
1366
1367#ifndef PUT_SDB_NEXT_DIM
1368#define PUT_SDB_NEXT_DIM(a) \
1369do { \
1370 extern FILE *asm_out_text_file; \
1371 fprintf (asm_out_text_file, "%d,", a); \
1372} while (0)
1373#endif
1374
1375#ifndef PUT_SDB_LAST_DIM
1376#define PUT_SDB_LAST_DIM(a) \
1377do { \
1378 extern FILE *asm_out_text_file; \
1379 fprintf (asm_out_text_file, "%d;", a); \
1380} while (0)
1381#endif
1382
1383#define PUT_SDB_TAG(a) \
1384do { \
1385 extern FILE *asm_out_text_file; \
1386 fprintf (asm_out_text_file, "\t.tag\t"); \
1387 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1388 fputc (';', asm_out_text_file); \
1389} while (0)
1390
1391/* For block start and end, we create labels, so that
1392 later we can figure out where the correct offset is.
1393 The normal .ent/.end serve well enough for functions,
1394 so those are just commented out. */
1395
1396#define PUT_SDB_BLOCK_START(LINE) \
1397do { \
1398 extern FILE *asm_out_text_file; \
1399 fprintf (asm_out_text_file, \
6ae1498b
JW
1400 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1401 LOCAL_LABEL_PREFIX, \
e75b25e7 1402 sdb_label_count, \
b82b0773 1403 (TARGET_GAS) ? "" : "#", \
6ae1498b 1404 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1405 sdb_label_count, \
1406 (LINE)); \
1407 sdb_label_count++; \
1408} while (0)
1409
1410#define PUT_SDB_BLOCK_END(LINE) \
1411do { \
1412 extern FILE *asm_out_text_file; \
1413 fprintf (asm_out_text_file, \
6ae1498b
JW
1414 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1415 LOCAL_LABEL_PREFIX, \
e75b25e7 1416 sdb_label_count, \
b82b0773 1417 (TARGET_GAS) ? "" : "#", \
6ae1498b 1418 LOCAL_LABEL_PREFIX, \
e75b25e7
MM
1419 sdb_label_count, \
1420 (LINE)); \
1421 sdb_label_count++; \
1422} while (0)
1423
1424#define PUT_SDB_FUNCTION_START(LINE)
1425
8f2e3902
EC
1426#define PUT_SDB_FUNCTION_END(LINE) \
1427do { \
1428 extern FILE *asm_out_text_file; \
a642a781
RK
1429 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1430} while (0)
e75b25e7
MM
1431
1432#define PUT_SDB_EPILOGUE_END(NAME)
1433
8f2e3902 1434#define PUT_SDB_SRC_FILE(FILENAME) \
cc694a81
DE
1435do { \
1436 extern FILE *asm_out_text_file; \
8f2e3902 1437 output_file_directive (asm_out_text_file, (FILENAME));\
cc694a81
DE
1438} while (0)
1439
8f2e3902 1440#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
e75b25e7
MM
1441 sprintf ((BUFFER), ".%dfake", (NUMBER));
1442
ab78d4a8
MM
1443/* Correct the offset of automatic variables and arguments. Note that
1444 the MIPS debug format wants all automatic variables and arguments
1445 to be in terms of the virtual frame pointer (stack pointer before
1446 any adjustment in the function), while the MIPS 3.0 linker wants
1447 the frame pointer to be the stack pointer after the initial
1448 adjustment. */
e75b25e7 1449
8f2e3902 1450#define DEBUGGER_AUTO_OFFSET(X) \
f5963e61 1451 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
8f2e3902 1452#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
f5963e61 1453 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
31c714e3
MM
1454
1455/* Tell collect that the object format is ECOFF */
31c714e3
MM
1456#define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1457#define EXTENDED_COFF /* ECOFF, not normal coff */
e75b25e7
MM
1458\f
1459/* Target machine storage layout */
1460
1461/* Define this if most significant bit is lowest numbered
1462 in instructions that operate on numbered bit-fields.
1463*/
4851a75c 1464#define BITS_BIG_ENDIAN 0
e75b25e7 1465
987ba558 1466/* Define this if most significant byte of a word is the lowest numbered. */
96abdcb1 1467#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1468
987ba558 1469/* Define this if most significant word of a multiword number is the lowest. */
96abdcb1 1470#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1471
96abdcb1
ILT
1472/* Define this to set the endianness to use in libgcc2.c, which can
1473 not depend on target_flags. */
1474#if !defined(MIPSEL) && !defined(__MIPSEL__)
1475#define LIBGCC2_WORDS_BIG_ENDIAN 1
e75b25e7 1476#else
96abdcb1 1477#define LIBGCC2_WORDS_BIG_ENDIAN 0
e75b25e7
MM
1478#endif
1479
876c09d3 1480#define MAX_BITS_PER_WORD 64
e75b25e7
MM
1481
1482/* Width of a word, in units (bytes). */
456f6501 1483#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
ef0e53ce 1484#define MIN_UNITS_PER_WORD 4
876c09d3
JW
1485
1486/* For MIPS, width of a floating point register. */
456f6501 1487#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
e75b25e7 1488
3f26edaa
RS
1489/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1490 the next available register. */
1491#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1492
1493/* The largest size of value that can be held in floating-point registers. */
4d72536e
RS
1494#define UNITS_PER_FPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1495
1496/* The number of bytes in a double. */
1497#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
3f26edaa 1498
e75b25e7
MM
1499/* A C expression for the size in bits of the type `int' on the
1500 target machine. If you don't define this, the default is one
1501 word. */
456f6501 1502#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
876c09d3
JW
1503
1504/* Tell the preprocessor the maximum size of wchar_t. */
1505#ifndef MAX_WCHAR_TYPE_SIZE
1506#ifndef WCHAR_TYPE_SIZE
16c484c7 1507#define MAX_WCHAR_TYPE_SIZE 64
876c09d3
JW
1508#endif
1509#endif
e75b25e7
MM
1510
1511/* A C expression for the size in bits of the type `short' on the
1512 target machine. If you don't define this, the default is half a
1513 word. (If this would be less than one storage unit, it is
1514 rounded up to one unit.) */
1515#define SHORT_TYPE_SIZE 16
1516
1517/* A C expression for the size in bits of the type `long' on the
1518 target machine. If you don't define this, the default is one
1519 word. */
456f6501 1520#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
876c09d3 1521#define MAX_LONG_TYPE_SIZE 64
e75b25e7
MM
1522
1523/* A C expression for the size in bits of the type `long long' on the
1524 target machine. If you don't define this, the default is two
1525 words. */
923d630e 1526#define LONG_LONG_TYPE_SIZE 64
e75b25e7 1527
e75b25e7
MM
1528/* A C expression for the size in bits of the type `float' on the
1529 target machine. If you don't define this, the default is one
1530 word. */
1531#define FLOAT_TYPE_SIZE 32
1532
1533/* A C expression for the size in bits of the type `double' on the
1534 target machine. If you don't define this, the default is two
1535 words. */
1536#define DOUBLE_TYPE_SIZE 64
1537
1538/* A C expression for the size in bits of the type `long double' on
1539 the target machine. If you don't define this, the default is two
1540 words. */
1541#define LONG_DOUBLE_TYPE_SIZE 64
1542
1543/* Width in bits of a pointer.
1544 See also the macro `Pmode' defined below. */
1eeed24e 1545#ifndef POINTER_SIZE
456f6501 1546#define POINTER_SIZE (Pmode == DImode ? 64 : 32)
1eeed24e 1547#endif
e75b25e7
MM
1548
1549/* Allocation boundary (in *bits*) for storing pointers in memory. */
456f6501 1550#define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
e75b25e7
MM
1551
1552/* Allocation boundary (in *bits*) for storing arguments in argument list. */
0b51254d
AO
1553#define PARM_BOUNDARY ((mips_abi == ABI_O64 || mips_abi == ABI_N32 \
1554 || mips_abi == ABI_64 \
1555 || (mips_abi == ABI_EABI && TARGET_64BIT)) ? 64 : 32)
e75b25e7
MM
1556
1557/* Allocation boundary (in *bits*) for the code of a function. */
1558#define FUNCTION_BOUNDARY 32
1559
1560/* Alignment of field after `int : 0' in a structure. */
9e95597a 1561#define EMPTY_FIELD_BOUNDARY 32
e75b25e7
MM
1562
1563/* Every structure's size must be a multiple of this. */
1564/* 8 is observed right on a DECstation and on riscos 4.02. */
1565#define STRUCTURE_SIZE_BOUNDARY 8
1566
1567/* There is no point aligning anything to a rounder boundary than this. */
1568#define BIGGEST_ALIGNMENT 64
1569
31c714e3 1570/* Set this nonzero if move instructions will actually fail to work
e75b25e7 1571 when given unaligned data. */
31c714e3 1572#define STRICT_ALIGNMENT 1
e75b25e7
MM
1573
1574/* Define this if you wish to imitate the way many other C compilers
1575 handle alignment of bitfields and the structures that contain
1576 them.
1577
1578 The behavior is that the type written for a bitfield (`int',
1579 `short', or other integer type) imposes an alignment for the
1580 entire structure, as if the structure really did contain an
1581 ordinary field of that type. In addition, the bitfield is placed
1582 within the structure so that it would fit within such a field,
1583 not crossing a boundary for it.
1584
1585 Thus, on most machines, a bitfield whose type is written as `int'
1586 would not cross a four-byte boundary, and would force four-byte
1587 alignment for the whole structure. (The alignment used may not
1588 be four bytes; it is controlled by the other alignment
1589 parameters.)
1590
1591 If the macro is defined, its definition should be a C expression;
1592 a nonzero value for the expression enables this behavior. */
1593
1594#define PCC_BITFIELD_TYPE_MATTERS 1
1595
1596/* If defined, a C expression to compute the alignment given to a
1597 constant that is being placed in memory. CONSTANT is the constant
1598 and ALIGN is the alignment that the object would ordinarily have.
1599 The value of this macro is used instead of that alignment to align
1600 the object.
1601
1602 If this macro is not defined, then ALIGN is used.
1603
1604 The typical use of this macro is to increase alignment for string
1605 constants to be word aligned so that `strcpy' calls that copy
1606 constants can be done inline. */
1607
1608#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1609 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
75131237 1610 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
e75b25e7
MM
1611
1612/* If defined, a C expression to compute the alignment for a static
1613 variable. TYPE is the data type, and ALIGN is the alignment that
1614 the object would ordinarily have. The value of this macro is used
1615 instead of that alignment to align the object.
1616
1617 If this macro is not defined, then ALIGN is used.
1618
1619 One use of this macro is to increase alignment of medium-size
1620 data to make it all fit in fewer cache lines. Another is to
1621 cause character arrays to be word-aligned so that `strcpy' calls
1622 that copy constants to character arrays can be done inline. */
1623
1624#undef DATA_ALIGNMENT
1625#define DATA_ALIGNMENT(TYPE, ALIGN) \
1626 ((((ALIGN) < BITS_PER_WORD) \
1627 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1628 || TREE_CODE (TYPE) == UNION_TYPE \
1629 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1630
f5c8ac96
CP
1631
1632/* Force right-alignment for small varargs in 32 bit little_endian mode */
1633
0e5a4ad8
EC
1634#define PAD_VARARGS_DOWN (TARGET_64BIT \
1635 || mips_abi == ABI_MEABI \
1636 ? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
f5c8ac96 1637
e75b25e7
MM
1638/* Define this macro if an argument declared as `char' or `short' in a
1639 prototype should actually be passed as an `int'. In addition to
1640 avoiding errors in certain cases of mismatch, it also makes for
987ba558 1641 better code on certain machines. */
e75b25e7 1642
cb560352 1643#define PROMOTE_PROTOTYPES 1
e75b25e7 1644
9a63901f
RK
1645/* Define if operations between registers always perform the operation
1646 on the full register even if a narrower mode is specified. */
1647#define WORD_REGISTER_OPERATIONS
1648
1649/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1650 will either zero-extend or sign-extend. The value of this macro should
1651 be the code that says which one of the two operations is implicitly
7dac2f89 1652 done, NIL if none.
a872728c
JL
1653
1654 When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
1655 moves. All other referces are zero extended. */
1656#define LOAD_EXTEND_OP(MODE) \
1657 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1658 ? SIGN_EXTEND : ZERO_EXTEND)
2bcb2ab3
GK
1659
1660/* Define this macro if it is advisable to hold scalars in registers
7dac2f89 1661 in a wider mode than that declared by the program. In such cases,
2bcb2ab3
GK
1662 the value is constrained to be within the bounds of the declared
1663 type, but kept valid in the wider mode. The signedness of the
1664 extension may differ from that of the type.
1665
1666 We promote any value smaller than SImode up to SImode. We don't
1667 want to promote to DImode when in 64 bit mode, because that would
1668 prevent us from using the faster SImode multiply and divide
1669 instructions. */
1670
1671#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1672 if (GET_MODE_CLASS (MODE) == MODE_INT \
1673 && GET_MODE_SIZE (MODE) < 4) \
1674 (MODE) = SImode;
1675
1676/* Define this if function arguments should also be promoted using the above
1677 procedure. */
1678
1679#define PROMOTE_FUNCTION_ARGS
1680
1681/* Likewise, if the function return value is promoted. */
1682
1683#define PROMOTE_FUNCTION_RETURN
e75b25e7
MM
1684\f
1685/* Standard register usage. */
1686
1687/* Number of actual hardware registers.
1688 The hardware registers are assigned numbers for the compiler
1689 from 0 to just below FIRST_PSEUDO_REGISTER.
1690 All registers that the compiler knows about must be given numbers,
1691 even those that are not normally considered general registers.
1692
225b8835 1693 On the Mips, we have 32 integer registers, 32 floating point
b8eb88d0 1694 registers, 8 condition code registers, and the special registers
d604bca3
MH
1695 hi, lo, hilo, and rap. Afetr that we have 32 COP0 registers, 32
1696 COP2 registers, and 32 COp3 registers. (COP1 is the floating-point
1697 processor.) The 8 condition code registers are only used if
1698 mips_isa >= 4. The hilo register is only used in 64 bit mode. It
1699 represents a 64 bit value stored as two 32 bit values in the hi and
1700 lo registers; this is the result of the mult instruction. rap is a
1701 pointer to the stack where the return address reg ($31) was stored.
1702 This is needed for C++ exception handling. */
e75b25e7 1703
d604bca3 1704#define FIRST_PSEUDO_REGISTER 176
e75b25e7
MM
1705
1706/* 1 for registers that have pervasive standard uses
1707 and are not available for the register allocator.
1708
1709 On the MIPS, see conventions, page D-2 */
1710
d604bca3
MH
1711/* Regarding coprocessor registers: without evidence to the contrary,
1712 it's best to assume that each coprocessor register has a unique
1713 use. This can be overridden, in, e.g., override_options() or
1714 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1715 for a particular target. */
1716
e75b25e7
MM
1717#define FIXED_REGISTERS \
1718{ \
1719 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1720 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1721 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1722 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
d604bca3
MH
1723 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, \
1724 /* COP0 registers */ \
1725 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1726 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1727 /* COP2 registers */ \
1728 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1729 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1730 /* COP3 registers */ \
1731 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1732 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1733}
1734
1735
1736/* 1 for registers not available across function calls.
1737 These must include the FIXED_REGISTERS and also any
1738 registers that can be used without being saved.
1739 The latter must include the registers where values are returned
1740 and the register where structure-value addresses are passed.
1741 Aside from that, you can include as many other registers as you like. */
1742
1743#define CALL_USED_REGISTERS \
1744{ \
1745 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1746 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1747 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1748 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
d604bca3
MH
1749 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1750 /* COP0 registers */ \
1751 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1752 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1753 /* COP2 registers */ \
1754 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1755 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1756 /* COP3 registers */ \
1757 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1758 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1759}
1760
2ca2d9ee
EC
1761/* Like `CALL_USED_REGISTERS' but used to overcome a historical
1762 problem which makes CALL_USED_REGISTERS *always* include
1763 all the FIXED_REGISTERS. Until this problem has been
1764 resolved this macro can be used to overcome this situation.
1765 In particular, block_propagate() requires this list
1766 be acurate, or we can remove registers which should be live.
1767 This macro is used in regs_invalidated_by_call. */
1768
1769
1770#define CALL_REALLY_USED_REGISTERS \
1771{ /* General registers. */ \
1772 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1773 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, \
1774 /* Floating-point registers. */ \
1775 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1776 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1777 /* Others. */ \
d604bca3
MH
1778 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
1779 /* COP0 registers */ \
1780 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1781 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1782 /* COP2 registers */ \
1783 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1784 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1785 /* COP3 registers */ \
1786 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1787 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
2ca2d9ee 1788}
e75b25e7
MM
1789
1790/* Internal macros to classify a register number as to whether it's a
1791 general purpose register, a floating point register, a
516a2dfd 1792 multiply/divide register, or a status register. */
e75b25e7
MM
1793
1794#define GP_REG_FIRST 0
1795#define GP_REG_LAST 31
1796#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1797#define GP_DBX_FIRST 0
1798
1799#define FP_REG_FIRST 32
1800#define FP_REG_LAST 63
1801#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1802#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1803
1804#define MD_REG_FIRST 64
225b8835 1805#define MD_REG_LAST 66
e75b25e7
MM
1806#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1807
225b8835 1808#define ST_REG_FIRST 67
b8eb88d0 1809#define ST_REG_LAST 74
e75b25e7
MM
1810#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1811
b8eb88d0 1812#define RAP_REG_NUM 75
39dffea3 1813
d604bca3
MH
1814#define COP0_REG_FIRST 80
1815#define COP0_REG_LAST 111
1816#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1817
1818#define COP2_REG_FIRST 112
1819#define COP2_REG_LAST 143
1820#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1821
1822#define COP3_REG_FIRST 144
1823#define COP3_REG_LAST 175
1824#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1825/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1826#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1827
e75b25e7
MM
1828#define AT_REGNUM (GP_REG_FIRST + 1)
1829#define HI_REGNUM (MD_REG_FIRST + 0)
1830#define LO_REGNUM (MD_REG_FIRST + 1)
225b8835 1831#define HILO_REGNUM (MD_REG_FIRST + 2)
b8eb88d0
ILT
1832
1833/* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1834 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1835 should be used instead. */
e75b25e7
MM
1836#define FPSW_REGNUM ST_REG_FIRST
1837
75131237
RK
1838#define GP_REG_P(REGNO) \
1839 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
2bcb2ab3
GK
1840#define M16_REG_P(REGNO) \
1841 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
75131237
RK
1842#define FP_REG_P(REGNO) \
1843 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1844#define MD_REG_P(REGNO) \
1845 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1846#define ST_REG_P(REGNO) \
1847 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
d604bca3
MH
1848#define COP0_REG_P(REGNO) \
1849 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1850#define COP2_REG_P(REGNO) \
1851 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1852#define COP3_REG_P(REGNO) \
1853 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1854#define ALL_COP_REG_P(REGNO) \
1855 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1856
1857/* Return coprocessor number from register number. */
1858
1859#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1860 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1861 : COP3_REG_P (REGNO) ? '3' : '?')
e75b25e7 1862
e75b25e7
MM
1863/* Return number of consecutive hard regs needed starting at reg REGNO
1864 to hold something of mode MODE.
1865 This is ordinarily the length in words of a value of mode MODE
1866 but can be less for certain modes in special long registers.
1867
1868 On the MIPS, all general registers are one word long. Except on
1869 the R4000 with the FR bit set, the floating point uses register
956d6950 1870 pairs, with the second register not being allocable. */
e75b25e7 1871
0e5a4ad8 1872#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
e75b25e7
MM
1873
1874/* Value is 1 if hard register REGNO can hold a value of machine-mode
876c09d3
JW
1875 MODE. In 32 bit mode, require that DImode and DFmode be in even
1876 registers. For DImode, this makes some of the insns easier to
1877 write, since you don't have to worry about a DImode value in
1878 registers 3 & 4, producing a result in 4 & 5.
e75b25e7
MM
1879
1880 To make the code simpler HARD_REGNO_MODE_OK now just references an
1881 array built in override_options. Because machmodes.h is not yet
1882 included before this file is processed, the MODE bound can't be
1883 expressed here. */
1884
1885extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1886
1887#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1888 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1889
1890/* Value is 1 if it is a good idea to tie two pseudo registers
1891 when one has mode MODE1 and one has mode MODE2.
1892 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1893 for any hard reg, then this must be 0 for correct output. */
1894#define MODES_TIEABLE_P(MODE1, MODE2) \
1895 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1896 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1897 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1898 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1899
1900/* MIPS pc is not overloaded on a register. */
1901/* #define PC_REGNUM xx */
1902
1903/* Register to use for pushing function arguments. */
0fb5ac6f 1904#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
e75b25e7 1905
97116296
ILT
1906/* Offset from the stack pointer to the first available location. Use
1907 the default value zero. */
1908/* #define STACK_POINTER_OFFSET 0 */
e75b25e7 1909
2bcb2ab3
GK
1910/* Base register for access to local variables of the function. We
1911 pretend that the frame pointer is $1, and then eliminate it to
1912 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1913 a fixed register, and will not be used for anything else. */
1914#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1915
0ff83799
MM
1916/* Temporary scratch register for use by the assembler. */
1917#define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
1918
2bcb2ab3
GK
1919/* $30 is not available on the mips16, so we use $17 as the frame
1920 pointer. */
1921#define HARD_FRAME_POINTER_REGNUM \
1922 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
e75b25e7
MM
1923
1924/* Value should be nonzero if functions must have frame pointers.
1925 Zero means the frame pointer need not be set up (and parms
1926 may be accessed via the stack pointer) in functions that seem suitable.
1927 This is computed in `reload', in reload1.c. */
1928#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1929
1930/* Base register for access to arguments of the function. */
ab78d4a8 1931#define ARG_POINTER_REGNUM GP_REG_FIRST
e75b25e7 1932
39dffea3
JW
1933/* Fake register that holds the address on the stack of the
1934 current function's return address. */
1935#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1936
e75b25e7 1937/* Register in which static-chain is passed to a function. */
0fb5ac6f 1938#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
e75b25e7 1939
1154b096
MM
1940/* If the structure value address is passed in a register, then
1941 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1942/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1943
1944/* If the structure value address is not passed in a register, define
1945 `STRUCT_VALUE' as an expression returning an RTX for the place
1946 where the address is passed. If it returns 0, the address is
1947 passed as an "invisible" first argument. */
f58cfbfb 1948#define STRUCT_VALUE 0
e75b25e7
MM
1949
1950/* Mips registers used in prologue/epilogue code when the stack frame
1951 is larger than 32K bytes. These registers must come from the
1952 scratch register set, and not used for passing and returning
1953 arguments and any other information used in the calling sequence
516a2dfd
JW
1954 (such as pic). Must start at 12, since t0/t3 are parameter passing
1955 registers in the 64 bit ABI. */
7bea35e7 1956
516a2dfd
JW
1957#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1958#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
e75b25e7
MM
1959
1960/* Define this macro if it is as good or better to call a constant
1961 function address than to call an address kept in a register. */
1962#define NO_FUNCTION_CSE 1
1963
1964/* Define this macro if it is as good or better for a function to
1965 call itself with an explicit address than to call an address
1966 kept in a register. */
1967#define NO_RECURSIVE_FUNCTION_CSE 1
1968
1969/* The register number of the register used to address a table of
1970 static data addresses in memory. In some cases this register is
7dac2f89 1971 defined by a processor's "application binary interface" (ABI).
e75b25e7
MM
1972 When this macro is defined, RTL is generated for this register
1973 once, as with the stack pointer and frame pointer registers. If
1974 this macro is not defined, it is up to the machine-dependent
1975 files to allocate such a register (if necessary). */
0fb5ac6f 1976#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
e75b25e7 1977
24e214e3 1978#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
e75b25e7
MM
1979\f
1980/* Define the classes of registers for register constraints in the
1981 machine description. Also define ranges of constants.
1982
1983 One of the classes must always be named ALL_REGS and include all hard regs.
1984 If there is more than one class, another class must be named NO_REGS
1985 and contain no registers.
1986
1987 The name GENERAL_REGS must be the name of a class (or an alias for
1988 another name such as ALL_REGS). This is the class of registers
1989 that is allowed by "g" or "r" in a register constraint.
1990 Also, registers outside this class are allocated only when
1991 instructions express preferences for them.
1992
1993 The classes must be numbered in nondecreasing order; that is,
1994 a larger-numbered class must never be contained completely
1995 in a smaller-numbered class.
1996
1997 For any two classes, it is very desirable that there be another
1998 class that represents their union. */
1999
2000enum reg_class
2001{
2002 NO_REGS, /* no registers in set */
2bcb2ab3
GK
2003 M16_NA_REGS, /* mips16 regs not used to pass args */
2004 M16_REGS, /* mips16 directly accessible registers */
2005 T_REG, /* mips16 T register ($24) */
2006 M16_T_REGS, /* mips16 registers plus T register */
e75b25e7
MM
2007 GR_REGS, /* integer registers */
2008 FP_REGS, /* floating point registers */
2009 HI_REG, /* hi register */
2010 LO_REG, /* lo register */
225b8835 2011 HILO_REG, /* hilo register pair for 64 bit mode mult */
e75b25e7 2012 MD_REGS, /* multiply/divide registers (hi/lo) */
d604bca3
MH
2013 COP0_REGS, /* generic coprocessor classes */
2014 COP2_REGS,
2015 COP3_REGS,
e4f5c5d6
KR
2016 HI_AND_GR_REGS, /* union classes */
2017 LO_AND_GR_REGS,
2018 HILO_AND_GR_REGS,
ab093b81 2019 HI_AND_FP_REGS,
d604bca3
MH
2020 COP0_AND_GR_REGS,
2021 COP2_AND_GR_REGS,
2022 COP3_AND_GR_REGS,
2023 ALL_COP_REGS,
2024 ALL_COP_AND_GR_REGS,
e75b25e7
MM
2025 ST_REGS, /* status registers (fp status) */
2026 ALL_REGS, /* all registers */
2027 LIM_REG_CLASSES /* max value + 1 */
2028};
2029
2030#define N_REG_CLASSES (int) LIM_REG_CLASSES
2031
2032#define GENERAL_REGS GR_REGS
2033
2034/* An initializer containing the names of the register classes as C
2035 string constants. These names are used in writing some of the
2036 debugging dumps. */
2037
2038#define REG_CLASS_NAMES \
2039{ \
2040 "NO_REGS", \
2bcb2ab3
GK
2041 "M16_NA_REGS", \
2042 "M16_REGS", \
2043 "T_REG", \
2044 "M16_T_REGS", \
e75b25e7
MM
2045 "GR_REGS", \
2046 "FP_REGS", \
2047 "HI_REG", \
2048 "LO_REG", \
225b8835 2049 "HILO_REG", \
e75b25e7 2050 "MD_REGS", \
d604bca3
MH
2051 /* coprocessor registers */ \
2052 "COP0_REGS", \
2053 "COP2_REGS", \
2054 "COP3_REGS", \
e4f5c5d6
KR
2055 "HI_AND_GR_REGS", \
2056 "LO_AND_GR_REGS", \
2057 "HILO_AND_GR_REGS", \
ab093b81 2058 "HI_AND_FP_REGS", \
d604bca3
MH
2059 "COP0_AND_GR_REGS", \
2060 "COP2_AND_GR_REGS", \
2061 "COP3_AND_GR_REGS", \
2062 "ALL_COP_REGS", \
2063 "ALL_COP_AND_GR_REGS", \
e75b25e7
MM
2064 "ST_REGS", \
2065 "ALL_REGS" \
2066}
2067
2068/* An initializer containing the contents of the register classes,
2069 as integers which are bit masks. The Nth integer specifies the
2070 contents of class N. The way the integer MASK is interpreted is
2071 that register R is in the class if `MASK & (1 << R)' is 1.
2072
2073 When the machine has more than 32 registers, an integer does not
2074 suffice. Then the integers are replaced by sub-initializers,
2075 braced groupings containing several integers. Each
2076 sub-initializer must be suitable as an initializer for the type
2077 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2078
2079#define REG_CLASS_CONTENTS \
2080{ \
d604bca3
MH
2081 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
2082 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
2083 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
2084 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
2085 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
2086 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
2087 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
2088 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
2089 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
2090 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, /* hilo register */ \
2091 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
2092 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
2093 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
2094 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
2095 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
2096 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
2097 { 0xffffffff, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, \
2098 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
2099 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
2100 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
2101 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
2102 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2103 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
2104 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
2105 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0000ffff } /* all registers */ \
e75b25e7
MM
2106}
2107
2108
2109/* A C expression whose value is a register class containing hard
2110 register REGNO. In general there is more that one such class;
2111 choose a class which is "minimal", meaning that no smaller class
2112 also contains the register. */
2113
8b60264b 2114extern const enum reg_class mips_regno_to_class[];
e75b25e7
MM
2115
2116#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2117
2118/* A macro whose definition is the name of the class to which a
2119 valid base register must belong. A base register is one used in
2120 an address which is the register value plus a displacement. */
2121
2bcb2ab3 2122#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
e75b25e7
MM
2123
2124/* A macro whose definition is the name of the class to which a
2125 valid index register must belong. An index register is one used
2126 in an address where its value is either multiplied by a scale
2127 factor or added to another register (as well as added to a
2128 displacement). */
2129
876c09d3 2130#define INDEX_REG_CLASS NO_REGS
e75b25e7 2131
2bcb2ab3
GK
2132/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
2133 registers explicitly used in the rtl to be used as spill registers
2134 but prevents the compiler from extending the lifetime of these
987ba558 2135 registers. */
2bcb2ab3
GK
2136
2137#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
2138
2139/* This macro is used later on in the file. */
2140#define GR_REG_CLASS_P(CLASS) \
2141 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
2142 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
2143
d604bca3
MH
2144/* This macro is also used later on in the file. */
2145#define COP_REG_CLASS_P(CLASS) \
2146 ((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
2147
2bcb2ab3
GK
2148/* REG_ALLOC_ORDER is to order in which to allocate registers. This
2149 is the default value (allocate the registers in numeric order). We
2150 define it just so that we can override it for the mips16 target in
2151 ORDER_REGS_FOR_LOCAL_ALLOC. */
2152
2153#define REG_ALLOC_ORDER \
2154{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2155 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
2156 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2157 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
d604bca3
MH
2158 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2159 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2160 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2161 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2162 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2163 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2164 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 \
2bcb2ab3
GK
2165}
2166
2167/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
2168 to be rearranged based on a particular function. On the mips16, we
2169 want to allocate $24 (T_REG) before other registers for
2170 instructions for which it is possible. */
2171
2172#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
e75b25e7
MM
2173
2174/* REGISTER AND CONSTANT CLASSES */
2175
2176/* Get reg_class from a letter such as appears in the machine
2177 description.
2178
2179 DEFINED REGISTER CLASSES:
2180
2181 'd' General (aka integer) registers
2bcb2ab3
GK
2182 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
2183 'y' General registers (in both mips16 and non mips16 mode)
2184 'e' mips16 non argument registers (M16_NA_REGS)
2185 't' mips16 temporary register ($24)
e75b25e7
MM
2186 'f' Floating point registers
2187 'h' Hi register
2188 'l' Lo register
34b650b3 2189 'x' Multiply/divide registers
225b8835
ILT
2190 'a' HILO_REG
2191 'z' FP Status register
d604bca3
MH
2192 'B' Cop0 register
2193 'C' Cop2 register
2194 'D' Cop3 register
225b8835 2195 'b' All registers */
e75b25e7 2196
f540a7d3 2197extern enum reg_class mips_char_to_class[256];
e75b25e7 2198
8f54374e 2199#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
e75b25e7
MM
2200
2201/* The letters I, J, K, L, M, N, O, and P in a register constraint
2202 string can be used to stand for particular ranges of immediate
2203 operands. This macro defines what the ranges are. C is the
2204 letter, and VALUE is a constant value. Return 1 if VALUE is
2205 in the range specified by C. */
2206
2207/* For MIPS:
2208
2209 `I' is used for the range of constants an arithmetic insn can
2210 actually contain (16 bits signed integers).
2211
2212 `J' is used for the range which is just zero (ie, $r0).
2213
2214 `K' is used for the range of constants a logical insn can actually
2215 contain (16 bit zero-extended integers).
2216
2217 `L' is used for the range of constants that be loaded with lui
2218 (ie, the bottom 16 bits are zero).
2219
2220 `M' is used for the range of constants that take two words to load
2221 (ie, not matched by `I', `K', and `L').
2222
2bcb2ab3 2223 `N' is used for negative 16 bit constants other than -65536.
e75b25e7 2224
2bcb2ab3 2225 `O' is a 15 bit signed integer.
e75b25e7
MM
2226
2227 `P' is used for positive 16 bit constants. */
2228
516a2dfd
JW
2229#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
2230#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
e75b25e7
MM
2231
2232#define CONST_OK_FOR_LETTER_P(VALUE, C) \
516a2dfd 2233 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
e75b25e7 2234 : (C) == 'J' ? ((VALUE) == 0) \
516a2dfd 2235 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
876c09d3
JW
2236 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
2237 && (((VALUE) & ~2147483647) == 0 \
2238 || ((VALUE) & ~2147483647) == ~2147483647)) \
99cbc4b0
MM
2239 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
2240 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
876c09d3
JW
2241 && (((VALUE) & 0x0000ffff) != 0 \
2242 || (((VALUE) & ~2147483647) != 0 \
2243 && ((VALUE) & ~2147483647) != ~2147483647))) \
2bcb2ab3
GK
2244 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
2245 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
99cbc4b0 2246 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
e75b25e7
MM
2247 : 0)
2248
2249/* Similar, but for floating constants, and defining letters G and H.
2250 Here VALUE is the CONST_DOUBLE rtx itself. */
2251
2252/* For Mips
2253
2254 'G' : Floating point 0 */
2255
2256#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2257 ((C) == 'G' \
876c09d3 2258 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
e75b25e7
MM
2259
2260/* Letters in the range `Q' through `U' may be defined in a
7dac2f89 2261 machine-dependent fashion to stand for arbitrary operand types.
e75b25e7
MM
2262 The machine description macro `EXTRA_CONSTRAINT' is passed the
2263 operand as its first argument and the constraint letter as its
2264 second operand.
2265
2bcb2ab3 2266 `Q' is for mips16 GP relative constants
31c714e3 2267 `R' is for memory references which take 1 word for the instruction.
2bcb2ab3 2268 `T' is for memory addresses that can be used to load two words. */
e75b25e7
MM
2269
2270#define EXTRA_CONSTRAINT(OP,CODE) \
2bcb2ab3
GK
2271 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
2272 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
2273 && mips16_gp_offset_p (OP)) \
2274 : (GET_CODE (OP) != MEM) ? FALSE \
e75b25e7 2275 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
e75b25e7
MM
2276 : FALSE)
2277
2278/* Given an rtx X being reloaded into a reg required to be
2279 in class CLASS, return the class of reg to actually use.
2280 In general this is just CLASS; but on some machines
2281 in some cases it is preferable to use a more restrictive class. */
2282
2283#define PREFERRED_RELOAD_CLASS(X,CLASS) \
876c09d3 2284 ((CLASS) != ALL_REGS \
2bcb2ab3
GK
2285 ? (! TARGET_MIPS16 \
2286 ? (CLASS) \
2287 : ((CLASS) != GR_REGS \
2288 ? (CLASS) \
2289 : M16_REGS)) \
876c09d3
JW
2290 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2291 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
2bcb2ab3
GK
2292 ? (TARGET_SOFT_FLOAT \
2293 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
2294 : FP_REGS) \
876c09d3
JW
2295 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
2296 || GET_MODE (X) == VOIDmode) \
2bcb2ab3 2297 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
876c09d3 2298 : (CLASS))))
e75b25e7 2299
0fb5ac6f
MM
2300/* Certain machines have the property that some registers cannot be
2301 copied to some other registers without using memory. Define this
a0ab749a 2302 macro on those machines to be a C expression that is nonzero if
0fb5ac6f
MM
2303 objects of mode MODE in registers of CLASS1 can only be copied to
2304 registers of class CLASS2 by storing a register of CLASS1 into
2305 memory and loading that memory location into a register of CLASS2.
2306
2307 Do not define this macro if its value would always be zero. */
7b2e1077 2308#if 0
0fb5ac6f 2309#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2370b831
JW
2310 ((!TARGET_DEBUG_H_MODE \
2311 && GET_MODE_CLASS (MODE) == MODE_INT \
2bcb2ab3
GK
2312 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2313 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2370b831 2314 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2bcb2ab3
GK
2315 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2316 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
7b2e1077 2317#endif
46299de9 2318/* The HI and LO registers can only be reloaded via the general
b8eb88d0
ILT
2319 registers. Condition code registers can only be loaded to the
2320 general registers, and from the floating point registers. */
46299de9 2321
225b8835
ILT
2322#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2323 mips_secondary_reload_class (CLASS, MODE, X, 1)
2324#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2325 mips_secondary_reload_class (CLASS, MODE, X, 0)
46299de9 2326
e75b25e7
MM
2327/* Return the maximum number of consecutive registers
2328 needed to represent mode MODE in a register of class CLASS. */
2329
d604bca3 2330#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
e75b25e7 2331
87d9d860 2332/* If defined, gives a class of registers that cannot be used as the
ab093b81 2333 operand of a SUBREG that changes the mode of the object illegally.
ab093b81
RH
2334
2335 In little-endian mode, the hi-lo registers are numbered backwards,
2336 so (subreg:SI (reg:DI hi) 0) gets the high word instead of the low
8214bf98
RS
2337 word as intended.
2338
f01f01a6
RS
2339 Similarly, when using paired floating-point registers, the first
2340 register holds the low word, regardless of endianness. So in big
2341 endian mode, (subreg:SI (reg:DF $f0) 0) does not get the high word
2342 as intended.
2343
8214bf98
RS
2344 Also, loading a 32-bit value into a 64-bit floating-point register
2345 will not sign-extend the value, despite what LOAD_EXTEND_OP says.
2346 We can't allow 64-bit float registers to change from a 32-bit
2347 mode to a 64-bit mode. */
ab093b81
RH
2348
2349#define CLASS_CANNOT_CHANGE_MODE \
f01f01a6 2350 (TARGET_BIG_ENDIAN ? FP_REGS \
8214bf98 2351 : (TARGET_FLOAT64 ? HI_AND_FP_REGS : HI_REG))
02188693
RH
2352
2353/* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
2354
2355#define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
2356 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
e75b25e7
MM
2357\f
2358/* Stack layout; function entry, exit and calling. */
2359
2360/* Define this if pushing a word on the stack
2361 makes the stack pointer a smaller address. */
2362#define STACK_GROWS_DOWNWARD
2363
2364/* Define this if the nominal address of the stack frame
2365 is at the high-address end of the local variables;
2366 that is, each additional local variable allocated
2367 goes at a more negative offset in the frame. */
ab78d4a8 2368/* #define FRAME_GROWS_DOWNWARD */
e75b25e7
MM
2369
2370/* Offset within stack frame to start allocating local variables at.
2371 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
2372 first local allocated. Otherwise, it is the offset to the BEGINNING
2373 of the first local allocated. */
24e214e3
JW
2374#define STARTING_FRAME_OFFSET \
2375 (current_function_outgoing_args_size \
2376 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
ab78d4a8
MM
2377
2378/* Offset from the stack pointer register to an item dynamically
2379 allocated on the stack, e.g., by `alloca'.
2380
2381 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2382 length of the outgoing arguments. The default is correct for most
2383 machines. See `function.c' for details.
2384
51bdc4d3
MM
2385 The MIPS ABI states that functions which dynamically allocate the
2386 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2387 we are trying to create a second frame pointer to the function, so
2388 allocate some stack space to make it happy.
ab78d4a8 2389
51bdc4d3
MM
2390 However, the linker currently complains about linking any code that
2391 dynamically allocates stack space, and there seems to be a bug in
2392 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2393
2394#if 0
ab78d4a8
MM
2395#define STACK_DYNAMIC_OFFSET(FUNDECL) \
2396 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2397 ? 4*UNITS_PER_WORD \
2398 : current_function_outgoing_args_size)
51bdc4d3 2399#endif
e75b25e7 2400
ce3649d2 2401/* The return address for the current frame is in r31 if this is a leaf
39dffea3
JW
2402 function. Otherwise, it is on the stack. It is at a variable offset
2403 from sp/fp/ap, so we define a fake hard register rap which is a
2404 poiner to the return address on the stack. This always gets eliminated
2405 during reload to be either the frame pointer or the stack pointer plus
2406 an offset. */
2407
2408/* ??? This definition fails for leaf functions. There is currently no
2409 general solution for this problem. */
2410
2411/* ??? There appears to be no way to get the return address of any previous
2412 frame except by disassembling instructions in the prologue/epilogue.
2413 So currently we support only the current frame. */
2414
07e2e444
AO
2415#define RETURN_ADDR_RTX(count, frame) \
2416 (((count) == 0) \
2417 ? (leaf_function_p () \
2418 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
2419 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
2420 RETURN_ADDRESS_POINTER_REGNUM))) \
24ba333f 2421 : (rtx) 0)
39dffea3 2422
7f48c9e1
AO
2423/* Since the mips16 ISA mode is encoded in the least-significant bit
2424 of the address, mask it off return addresses for purposes of
2425 finding exception handling regions. */
2426
2427#define MASK_RETURN_ADDR GEN_INT (-2)
2428
2429/* Similarly, don't use the least-significant bit to tell pointers to
2430 code from vtable index. */
2431
2432#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2433
ab78d4a8
MM
2434/* If defined, this macro specifies a table of register pairs used to
2435 eliminate unneeded registers that point into the stack frame. If
2436 it is not defined, the only elimination attempted by the compiler
2437 is to replace references to the frame pointer with references to
2438 the stack pointer.
2439
2440 The definition of this macro is a list of structure
2441 initializations, each of which specifies an original and
2442 replacement register.
2443
2444 On some machines, the position of the argument pointer is not
2445 known until the compilation is completed. In such a case, a
7dac2f89 2446 separate hard register must be used for the argument pointer.
ab78d4a8
MM
2447 This register can be eliminated by replacing it with either the
2448 frame pointer or the argument pointer, depending on whether or not
2449 the frame pointer has been eliminated.
2450
2451 In this case, you might specify:
2452 #define ELIMINABLE_REGS \
2453 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2454 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2455 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2456
2457 Note that the elimination of the argument pointer with the stack
2bcb2ab3
GK
2458 pointer is specified first since that is the preferred elimination.
2459
2460 The eliminations to $17 are only used on the mips16. See the
2461 definition of HARD_FRAME_POINTER_REGNUM. */
ab78d4a8
MM
2462
2463#define ELIMINABLE_REGS \
2464{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2465 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2466 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
39dffea3 2467 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2468 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2469 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2470 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2471 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2472 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
ab78d4a8 2473
a0ab749a 2474/* A C expression that returns nonzero if the compiler is allowed to
ab78d4a8
MM
2475 try to replace register number FROM-REG with register number
2476 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2477 defined, and will usually be the constant 1, since most of the
2478 cases preventing register elimination are things that the compiler
2bcb2ab3
GK
2479 already knows about.
2480
365ca18b
GK
2481 When not in mips16 and mips64, we can always eliminate to the
2482 frame pointer. We can eliminate to the stack pointer unless
2483 a frame pointer is needed. In mips16 mode, we need a frame
2484 pointer for a large frame; otherwise, reload may be unable
2485 to compute the address of a local variable, since there is
2486 no way to add a large constant to the stack pointer
2487 without using a temporary register.
2488
2489 In mips16, for some instructions (eg lwu), we can't eliminate the
2490 frame pointer for the stack pointer. These instructions are
2491 only generated in TARGET_64BIT mode.
2492 */
ab78d4a8
MM
2493
2494#define CAN_ELIMINATE(FROM, TO) \
cfb773f9 2495 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
07e2e444
AO
2496 && (((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed) \
2497 || (TO) == HARD_FRAME_POINTER_REGNUM)) \
cfb773f9
AO
2498 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
2499 && ((TO) == HARD_FRAME_POINTER_REGNUM \
2500 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
2501 && ! (TARGET_MIPS16 && TARGET_64BIT) \
2502 && (! TARGET_MIPS16 \
2503 || compute_frame_size (get_frame_size ()) < 32768)))))
ab78d4a8 2504
b2471838
RS
2505#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2506 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
ab78d4a8 2507
e75b25e7
MM
2508/* If we generate an insn to push BYTES bytes,
2509 this says how many the stack pointer really advances by.
8aeea6e6 2510 On the VAX, sp@- in a byte insn really pushes a word. */
e75b25e7
MM
2511
2512/* #define PUSH_ROUNDING(BYTES) 0 */
2513
2514/* If defined, the maximum amount of space required for outgoing
2515 arguments will be computed and placed into the variable
2516 `current_function_outgoing_args_size'. No space will be pushed
2517 onto the stack for each call; instead, the function prologue
2518 should increase the stack frame size by this amount.
2519
2520 It is not proper to define both `PUSH_ROUNDING' and
2521 `ACCUMULATE_OUTGOING_ARGS'. */
f73ad30e 2522#define ACCUMULATE_OUTGOING_ARGS 1
e75b25e7 2523
6cb6c3b3
MM
2524/* Offset from the argument pointer register to the first argument's
2525 address. On some machines it may depend on the data type of the
2526 function.
e75b25e7 2527
6cb6c3b3 2528 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
39282292
MM
2529 the first argument's address.
2530
2531 On the MIPS, we must skip the first argument position if we are
876c09d3 2532 returning a structure or a union, to account for its address being
305aa9e2
MM
2533 passed in $4. However, at the current time, this produces a compiler
2534 that can't bootstrap, so comment it out for now. */
e75b25e7 2535
305aa9e2 2536#if 0
6cb6c3b3
MM
2537#define FIRST_PARM_OFFSET(FNDECL) \
2538 (FNDECL != 0 \
2539 && TREE_TYPE (FNDECL) != 0 \
2540 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2541 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
39282292
MM
2542 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2543 ? UNITS_PER_WORD \
2544 : 0)
305aa9e2
MM
2545#else
2546#define FIRST_PARM_OFFSET(FNDECL) 0
2547#endif
e75b25e7
MM
2548
2549/* When a parameter is passed in a register, stack space is still
2550 allocated for it. For the MIPS, stack space must be allocated, cf
2551 Asm Lang Prog Guide page 7-8.
2552
2553 BEWARE that some space is also allocated for non existing arguments
2554 in register. In case an argument list is of form GF used registers
2555 are a0 (a2,a3), but we should push over a1... */
2556
ac8ab9fe
RS
2557#define REG_PARM_STACK_SPACE(FNDECL) \
2558 ((mips_abi == ABI_32 || mips_abi == ABI_O64) \
2559 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL) \
2560 : 0)
e75b25e7
MM
2561
2562/* Define this if it is the responsibility of the caller to
7dac2f89 2563 allocate the area reserved for arguments passed in registers.
e75b25e7 2564 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
7dac2f89 2565 of this macro is to determine whether the space is included in
e75b25e7
MM
2566 `current_function_outgoing_args_size'. */
2567#define OUTGOING_REG_PARM_STACK_SPACE
2568
ac8ab9fe
RS
2569#define STACK_BOUNDARY \
2570 ((mips_abi == ABI_32 || mips_abi == ABI_O64 || mips_abi == ABI_EABI) \
2571 ? 64 : 128)
e75b25e7 2572
876c09d3 2573/* Make sure 4 words are always allocated on the stack. */
e75b25e7
MM
2574
2575#ifndef STACK_ARGS_ADJUST
2576#define STACK_ARGS_ADJUST(SIZE) \
2577{ \
876c09d3
JW
2578 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2579 SIZE.constant = 4 * UNITS_PER_WORD; \
e75b25e7
MM
2580}
2581#endif
2582
2583\f
2584/* A C expression that should indicate the number of bytes of its
38e01259 2585 own arguments that a function pops on returning, or 0
e75b25e7
MM
2586 if the function pops no arguments and the caller must therefore
2587 pop them all after the function returns.
2588
8b109b37
RK
2589 FUNDECL is the declaration node of the function (as a tree).
2590
e75b25e7
MM
2591 FUNTYPE is a C variable whose value is a tree node that
2592 describes the function in question. Normally it is a node of
2593 type `FUNCTION_TYPE' that describes the data type of the function.
2594 From this it is possible to obtain the data types of the value
2595 and arguments (if known).
2596
2597 When a call to a library function is being considered, FUNTYPE
2598 will contain an identifier node for the library function. Thus,
2599 if you need to distinguish among various library functions, you
2600 can do so by their names. Note that "library function" in this
2601 context means a function used to perform arithmetic, whose name
2602 is known specially in the compiler and was not mentioned in the
2603 C code being compiled.
2604
2605 STACK-SIZE is the number of bytes of arguments passed on the
2606 stack. If a variable number of bytes is passed, it is zero, and
2607 argument popping will always be the responsibility of the
2608 calling function. */
2609
8b109b37 2610#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
e75b25e7
MM
2611
2612
2613/* Symbolic macros for the registers used to return integer and floating
2614 point values. */
2615
2616#define GP_RETURN (GP_REG_FIRST + 2)
2617#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2618
ac8ab9fe
RS
2619#define MAX_ARGS_IN_REGISTERS \
2620 ((mips_abi == ABI_32 || mips_abi == ABI_O64) ? 4 : 8)
2621
2622/* Largest possible value of MAX_ARGS_IN_REGISTERS. */
2623
2624#define BIGGEST_MAX_ARGS_IN_REGISTERS 8
2625
e75b25e7
MM
2626/* Symbolic macros for the first/last argument registers. */
2627
2628#define GP_ARG_FIRST (GP_REG_FIRST + 4)
ac8ab9fe 2629#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
e75b25e7 2630#define FP_ARG_FIRST (FP_REG_FIRST + 12)
ac8ab9fe 2631#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
e75b25e7
MM
2632
2633/* Define how to find the value returned by a library function
2bcb2ab3
GK
2634 assuming the value has mode MODE. Because we define
2635 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2636 PROMOTE_MODE does. */
e75b25e7 2637
c6e6f5c1
RH
2638#define LIBCALL_VALUE(MODE) \
2639 mips_function_value (NULL_TREE, NULL, (MODE))
e75b25e7
MM
2640
2641/* Define how to find the value returned by a function.
2642 VALTYPE is the data type of the value (as a tree).
2643 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2644 otherwise, FUNC is 0. */
2645
c6e6f5c1
RH
2646#define FUNCTION_VALUE(VALTYPE, FUNC) \
2647 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
e75b25e7
MM
2648
2649/* 1 if N is a possible register number for a function value.
2650 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2651 Currently, R2 and F0 are only implemented here (C has no complex type) */
2652
2653#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2654
46af8e31
JW
2655/* 1 if N is a possible register number for function argument passing.
2656 We have no FP argument registers when soft-float. When FP registers
2657 are 32 bits, we can't directly reference the odd numbered ones. */
2658
2659#define FUNCTION_ARG_REGNO_P(N) \
8bf3ccbb
KG
2660 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2661 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2662 && ((N) % FP_INC == 0) && mips_abi != ABI_O64)) \
2663 && !fixed_regs[N])
e75b25e7
MM
2664
2665/* A C expression which can inhibit the returning of certain function
2666 values in registers, based on the type of value. A nonzero value says
2667 to return the function value in memory, just as large structures are
2668 always returned. Here TYPE will be a C expression of type
2669 `tree', representing the data type of the value.
2670
e14fa9c4
DE
2671 Note that values of mode `BLKmode' must be explicitly
2672 handled by this macro. Also, the option `-fpcc-struct-return'
e75b25e7
MM
2673 takes effect regardless of this macro. On most systems, it is
2674 possible to leave the macro undefined; this causes a default
e14fa9c4
DE
2675 definition to be used, whose value is the constant 1 for BLKmode
2676 values, and 0 otherwise.
e75b25e7
MM
2677
2678 GCC normally converts 1 byte structures into chars, 2 byte
2679 structs into shorts, and 4 byte structs into ints, and returns
2680 them this way. Defining the following macro overrides this,
2681 to give us MIPS cc compatibility. */
2682
2683#define RETURN_IN_MEMORY(TYPE) \
54401342 2684 mips_return_in_memory (TYPE)
4d72536e
RS
2685
2686#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
2687 (PRETEND_SIZE) = mips_setup_incoming_varargs (&(CUM), (MODE), \
2688 (TYPE), (NO_RTL))
e75b25e7 2689\f
ac8ab9fe
RS
2690#define STRICT_ARGUMENT_NAMING (mips_abi != ABI_32 && mips_abi != ABI_O64)
2691
e75b25e7
MM
2692/* Define a data type for recording info about an argument list
2693 during the scan of that argument list. This data type should
2694 hold all necessary information about the function itself
2695 and about the args processed so far, enough to enable macros
2696 such as FUNCTION_ARG to determine where the next arg should go.
2bcb2ab3 2697
4d72536e
RS
2698 This structure has to cope with two different argument allocation
2699 schemes. Most MIPS ABIs view the arguments as a struct, of which the
2700 first N words go in registers and the rest go on the stack. If I < N,
2701 the Ith word might go in Ith integer argument register or the
2702 Ith floating-point one. In some cases, it has to go in both (see
2703 function_arg). For these ABIs, we only need to remember the number
2704 of words passed so far.
2705
2706 The EABI instead allocates the integer and floating-point arguments
2707 separately. The first N words of FP arguments go in FP registers,
2708 the rest go on the stack. Likewise, the first N words of the other
2709 arguments go in integer registers, and the rest go on the stack. We
2710 need to maintain three counts: the number of integer registers used,
2711 the number of floating-point registers used, and the number of words
2712 passed on the stack.
2713
2714 We could keep separate information for the two ABIs (a word count for
2715 the standard ABIs, and three separate counts for the EABI). But it
2716 seems simpler to view the standard ABIs as forms of EABI that do not
2717 allocate floating-point registers.
2718
2719 So for the standard ABIs, the first N words are allocated to integer
2720 registers, and function_arg decides on an argument-by-argument basis
2721 whether that argument should really go in an integer register, or in
2722 a floating-point one. */
e75b25e7
MM
2723
2724typedef struct mips_args {
4d72536e
RS
2725 /* Always true for varargs functions. Otherwise true if at least
2726 one argument has been passed in an integer register. */
2727 int gp_reg_found;
2728
2729 /* The number of arguments seen so far. */
2730 unsigned int arg_number;
2731
2732 /* For EABI, the number of integer registers used so far. For other
2733 ABIs, the number of words passed in registers (whether integer
2734 or floating-point). */
bb63e5a0 2735 unsigned int num_gprs;
4d72536e
RS
2736
2737 /* For EABI, the number of floating-point registers used so far. */
bb63e5a0 2738 unsigned int num_fprs;
4d72536e
RS
2739
2740 /* The number of words passed on the stack. */
2741 unsigned int stack_words;
2742
2743 /* On the mips16, we need to keep track of which floating point
2744 arguments were passed in general registers, but would have been
2745 passed in the FP regs if this were a 32 bit function, so that we
2746 can move them to the FP regs if we wind up calling a 32 bit
2747 function. We record this information in fp_code, encoded in base
2748 four. A zero digit means no floating point argument, a one digit
2749 means an SFmode argument, and a two digit means a DFmode argument,
2750 and a three digit is not used. The low order digit is the first
2751 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2752 an SFmode argument. ??? A more sophisticated approach will be
2753 needed if MIPS_ABI != ABI_32. */
2754 int fp_code;
2755
2756 /* True if the function has a prototype. */
2757 int prototype;
2758
2759 /* When a structure does not take up a full register, the argument
2760 should sometimes be shifted left so that it occupies the high part
2761 of the register. These two fields describe an array of ashl
2762 patterns for doing this. See function_arg_advance, which creates
2763 the shift patterns, and function_arg, which returns them when given
2764 a VOIDmode argument. */
2765 unsigned int num_adjusts;
ac8ab9fe 2766 rtx adjust[BIGGEST_MAX_ARGS_IN_REGISTERS];
e75b25e7
MM
2767} CUMULATIVE_ARGS;
2768
2769/* Initialize a variable CUM of type CUMULATIVE_ARGS
2770 for a call to a function whose data type is FNTYPE.
2771 For a library call, FNTYPE is 0.
2772
2773*/
2774
2c7ee1a6 2775#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
e75b25e7
MM
2776 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2777
2778/* Update the data in CUM to advance over an argument
2779 of mode MODE and data type TYPE.
2780 (TYPE is null for libcalls where that information may not be available.) */
2781
2782#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2783 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2784
2785/* Determine where to put an argument to a function.
2786 Value is zero to push the argument on the stack,
2787 or a hard register in which to store the argument.
2788
2789 MODE is the argument's machine mode.
2790 TYPE is the data type of the argument (as a tree).
2791 This is null for libcalls where that information may
2792 not be available.
2793 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2794 the preceding args and about the function being called.
2795 NAMED is nonzero if this argument is a named parameter
2796 (otherwise it is an extra parameter matching an ellipsis). */
2797
2798#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2799 function_arg( &CUM, MODE, TYPE, NAMED)
2800
2801/* For an arg passed partly in registers and partly in memory,
2802 this is the number of registers used.
987ba558 2803 For args passed entirely in registers or entirely in memory, zero. */
e75b25e7
MM
2804
2805#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2806 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2807
2808/* If defined, a C expression that gives the alignment boundary, in
2809 bits, of an argument with the specified mode and type. If it is
2810 not defined, `PARM_BOUNDARY' is used for all arguments. */
2811
2812#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2813 (((TYPE) != 0) \
75131237 2814 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
e75b25e7
MM
2815 ? PARM_BOUNDARY \
2816 : TYPE_ALIGN(TYPE)) \
2817 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2818 ? PARM_BOUNDARY \
2819 : GET_MODE_ALIGNMENT(MODE)))
2820
ac8ab9fe
RS
2821#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
2822 function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
2823
2824#define FUNCTION_ARG_PADDING(MODE, TYPE) \
2825 (! BYTES_BIG_ENDIAN \
2826 ? upward \
2827 : (((MODE) == BLKmode \
2828 ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
2829 && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
2830 : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
2831 && (mips_abi == ABI_32 \
2832 || mips_abi == ABI_O64 \
2833 || mips_abi == ABI_EABI \
2834 || GET_MODE_CLASS (MODE) == MODE_INT))) \
2835 ? downward : upward))
2836
2837#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
2838 (mips_abi == ABI_EABI && (NAMED) \
2839 && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
2840
2841/* Modified version of the macro in expr.h. */
2842#define MUST_PASS_IN_STACK(MODE,TYPE) \
2843 ((TYPE) != 0 \
2844 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
2845 || TREE_ADDRESSABLE (TYPE) \
2846 || ((MODE) == BLKmode \
2847 && mips_abi != ABI_32 && mips_abi != ABI_O64 \
2848 && ! ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
2849 && 0 == (int_size_in_bytes (TYPE) \
2850 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
2851 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
2852 == (BYTES_BIG_ENDIAN ? upward : downward)))))
2853
4d72536e
RS
2854/* True if using EABI and varargs can be passed in floating-point
2855 registers. Under these conditions, we need a more complex form
2856 of va_list, which tracks GPR, FPR and stack arguments separately. */
2857#define EABI_FLOAT_VARARGS_P \
2858 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2859
e75b25e7 2860\f
e75b25e7
MM
2861/* Tell prologue and epilogue if register REGNO should be saved / restored. */
2862
2863#define MUST_SAVE_REGISTER(regno) \
2bcb2ab3
GK
2864 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2865 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
ab78d4a8 2866 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
e75b25e7 2867
ac8ab9fe
RS
2868/* Treat LOC as a byte offset from the stack pointer and round it up
2869 to the next fully-aligned offset. */
2870#define MIPS_STACK_ALIGN(LOC) \
2871 ((mips_abi == ABI_32 || mips_abi == ABI_O64 || mips_abi == ABI_EABI) \
2872 ? ((LOC) + 7) & ~7 \
2873 : ((LOC) + 15) & ~15)
e75b25e7 2874
5d3f2bd5
RH
2875\f
2876/* Define the `__builtin_va_list' type for the ABI. */
2877#define BUILD_VA_LIST_TYPE(VALIST) \
2878 (VALIST) = mips_build_va_list ()
2879
2880/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
2881#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2882 mips_va_start (valist, nextarg)
5d3f2bd5
RH
2883
2884/* Implement `va_arg'. */
2885#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2886 mips_va_arg (valist, type)
e75b25e7
MM
2887\f
2888/* Output assembler code to FILE to increment profiler label # LABELNO
2889 for profiling a function entry. */
2890
2891#define FUNCTION_PROFILER(FILE, LABELNO) \
2892{ \
2bcb2ab3
GK
2893 if (TARGET_MIPS16) \
2894 sorry ("mips16 function profiling"); \
e75b25e7
MM
2895 fprintf (FILE, "\t.set\tnoat\n"); \
2896 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2897 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
876c09d3
JW
2898 fprintf (FILE, \
2899 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2900 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7 2901 reg_names[STACK_POINTER_REGNUM], \
876c09d3 2902 reg_names[STACK_POINTER_REGNUM], \
1eeed24e 2903 Pmode == DImode ? 16 : 8); \
0617ed52 2904 fprintf (FILE, "\tjal\t_mcount\n"); \
e75b25e7
MM
2905 fprintf (FILE, "\t.set\tat\n"); \
2906}
2907
d8d5b1e1
MM
2908/* Define this macro if the code for function profiling should come
2909 before the function prologue. Normally, the profiling code comes
2910 after. */
2911
2912/* #define PROFILE_BEFORE_PROLOGUE */
2913
e75b25e7
MM
2914/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2915 the stack pointer does not matter. The value is tested only in
2916 functions that have frame pointers.
2917 No definition is equivalent to always zero. */
2918
2919#define EXIT_IGNORE_STACK 1
2920
2921\f
2922/* A C statement to output, on the stream FILE, assembler code for a
7dac2f89 2923 block of data that contains the constant parts of a trampoline.
e75b25e7
MM
2924 This code should not include a label--the label is taken care of
2925 automatically. */
2926
2927#define TRAMPOLINE_TEMPLATE(STREAM) \
2928{ \
2929 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2930 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2931 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
1eeed24e 2932 if (Pmode == DImode) \
876c09d3
JW
2933 { \
2934 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2935 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2936 } \
2937 else \
2938 { \
0acefe54
JW
2939 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2940 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
876c09d3 2941 } \
0acefe54 2942 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
e75b25e7
MM
2943 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2944 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
1eeed24e 2945 if (Pmode == DImode) \
876c09d3 2946 { \
876c09d3
JW
2947 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2948 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2949 } \
2950 else \
2951 { \
2952 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2953 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2954 } \
e75b25e7
MM
2955}
2956
2957/* A C expression for the size in bytes of the trampoline, as an
2958 integer. */
2959
1eeed24e 2960#define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
e75b25e7 2961
876c09d3 2962/* Alignment required for trampolines, in bits. */
e75b25e7 2963
1eeed24e 2964#define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
e75b25e7 2965
c85f7c16
JL
2966/* INITIALIZE_TRAMPOLINE calls this library function to flush
2967 program and data caches. */
2968
2969#ifndef CACHE_FLUSH_FUNC
2970#define CACHE_FLUSH_FUNC "_flush_cache"
2971#endif
2972
7dac2f89 2973/* A C statement to initialize the variable parts of a trampoline.
e75b25e7
MM
2974 ADDR is an RTX for the address of the trampoline; FNADDR is an
2975 RTX for the address of the nested function; STATIC_CHAIN is an
2976 RTX for the static chain value that should be passed to the
2977 function when it is called. */
2978
2979#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2980{ \
2981 rtx addr = ADDR; \
1eeed24e 2982 if (Pmode == DImode) \
876c09d3 2983 { \
c5c76735
JL
2984 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
2985 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
876c09d3
JW
2986 } \
2987 else \
2988 { \
c5c76735
JL
2989 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
2990 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
876c09d3 2991 } \
e75b25e7 2992 \
22b54c57
RK
2993 /* Flush both caches. We need to flush the data cache in case \
2994 the system has a write-back cache. */ \
876c09d3 2995 /* ??? Should check the return value for errors. */ \
d490e8ad
DD
2996 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2997 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2998 0, VOIDmode, 3, addr, Pmode, \
2999 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
3000 GEN_INT (3), TYPE_MODE (integer_type_node)); \
e75b25e7 3001}
e75b25e7
MM
3002\f
3003/* Addressing modes, and classification of registers for them. */
3004
940da324
JL
3005/* #define HAVE_POST_INCREMENT 0 */
3006/* #define HAVE_POST_DECREMENT 0 */
e75b25e7 3007
940da324
JL
3008/* #define HAVE_PRE_DECREMENT 0 */
3009/* #define HAVE_PRE_INCREMENT 0 */
e75b25e7
MM
3010
3011/* These assume that REGNO is a hard or pseudo reg number.
3012 They give nonzero only if REGNO is a hard reg of the suitable class
3013 or a pseudo reg currently allocated to a suitable hard reg.
3014 These definitions are NOT overridden anywhere. */
3015
2bcb2ab3
GK
3016#define BASE_REG_P(regno, mode) \
3017 (TARGET_MIPS16 \
3018 ? (M16_REG_P (regno) \
3019 || (regno) == FRAME_POINTER_REGNUM \
3020 || (regno) == ARG_POINTER_REGNUM \
3021 || ((regno) == STACK_POINTER_REGNUM \
3022 && (GET_MODE_SIZE (mode) == 4 \
3023 || GET_MODE_SIZE (mode) == 8))) \
3024 : GP_REG_P (regno))
e75b25e7 3025
2bcb2ab3 3026#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
c3d03e3a 3027 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
2bcb2ab3
GK
3028 (mode))
3029
3030#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
3031 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
e75b25e7 3032
876c09d3 3033#define REGNO_OK_FOR_INDEX_P(regno) 0
2bcb2ab3
GK
3034#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
3035 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
e75b25e7
MM
3036
3037/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
3038 and check its validity for a certain class.
3039 We have two alternate definitions for each of them.
3040 The usual definition accepts all pseudo regs; the other rejects them all.
3041 The symbol REG_OK_STRICT causes the latter definition to be used.
3042
3043 Most source files want to accept pseudo regs in the hope that
3044 they will get allocated to the class that the insn wants them to be in.
3045 Some source files that are used after register allocation
3046 need to be strict. */
3047
3048#ifndef REG_OK_STRICT
2bcb2ab3 3049#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 3050 mips_reg_mode_ok_for_base_p (X, MODE, 0)
e75b25e7 3051#else
2bcb2ab3 3052#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
c94c9817 3053 mips_reg_mode_ok_for_base_p (X, MODE, 1)
e75b25e7
MM
3054#endif
3055
c94c9817
MM
3056#define REG_OK_FOR_INDEX_P(X) 0
3057
e75b25e7
MM
3058\f
3059/* Maximum number of registers that can appear in a valid memory address. */
3060
3061#define MAX_REGS_PER_ADDRESS 1
3062
3063/* A C compound statement with a conditional `goto LABEL;' executed
3064 if X (an RTX) is a legitimate memory address on the target
fb49053f 3065 machine for a memory operand of mode MODE. */
e75b25e7
MM
3066
3067#if 1
bd9f1972
KG
3068#define GO_PRINTF(x) fprintf(stderr, (x))
3069#define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
e75b25e7
MM
3070#define GO_DEBUG_RTX(x) debug_rtx(x)
3071
3072#else
3073#define GO_PRINTF(x)
3074#define GO_PRINTF2(x,y)
3075#define GO_DEBUG_RTX(x)
3076#endif
3077
c94c9817
MM
3078#ifdef REG_OK_STRICT
3079#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
3080{ \
3081 if (mips_legitimate_address_p (MODE, X, 1)) \
3082 goto ADDR; \
e75b25e7 3083}
c94c9817
MM
3084#else
3085#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
3086{ \
3087 if (mips_legitimate_address_p (MODE, X, 0)) \
3088 goto ADDR; \
3089}
3090#endif
e75b25e7
MM
3091
3092/* A C expression that is 1 if the RTX X is a constant which is a
6eff269e
BK
3093 valid address. This is defined to be the same as `CONSTANT_P (X)',
3094 but rejecting CONST_DOUBLE. */
5de1e2ce
JW
3095/* When pic, we must reject addresses of the form symbol+large int.
3096 This is because an instruction `sw $4,s+70000' needs to be converted
3097 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
3098 assembler would use $at as a temp to load in the large offset. In this
3099 case $at is already in use. We convert such problem addresses to
3100 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
8f2e3902
EC
3101/* ??? SGI Irix 6 assembler fails for CONST address, so reject them
3102 when !TARGET_GAS. */
3103/* We should be rejecting everything but const addresses. */
31c714e3 3104#define CONSTANT_ADDRESS_P(X) \
33005162 3105 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
5de1e2ce
JW
3106 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
3107 || (GET_CODE (X) == CONST \
516a2dfd 3108 && ! (flag_pic && pic_address_needs_scratch (X)) \
4e314d1f
EC
3109 && (TARGET_GAS) \
3110 && (mips_abi != ABI_N32 \
3111 && mips_abi != ABI_64)))
3112
e75b25e7 3113
5de1e2ce
JW
3114/* Define this, so that when PIC, reload won't try to reload invalid
3115 addresses which require two reload registers. */
3116
3117#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
e75b25e7
MM
3118
3119/* Nonzero if the constant value X is a legitimate general operand.
3120 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
3121
3122 At present, GAS doesn't understand li.[sd], so don't allow it
3123 to be generated at present. Also, the MIPS assembler does not
3124 grok li.d Infinity. */
3125
7dac2f89 3126/* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
8e466531
GRK
3127 Note that the Irix 6 assembler problem may already be fixed.
3128 Note also that the GET_CODE (X) == CONST test catches the mips16
3129 gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
3130 a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
3131 ABI_64 to work together, we'll need to fix this. */
e75b25e7 3132#define LEGITIMATE_CONSTANT_P(X) \
516a2dfd
JW
3133 ((GET_CODE (X) != CONST_DOUBLE \
3134 || mips_const_double_ok (X, GET_MODE (X))) \
8e466531
GRK
3135 && ! (GET_CODE (X) == CONST \
3136 && ! TARGET_GAS \
3137 && (mips_abi == ABI_N32 \
3138 || mips_abi == ABI_64)) \
2bcb2ab3 3139 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
e75b25e7
MM
3140
3141/* A C compound statement that attempts to replace X with a valid
3142 memory address for an operand of mode MODE. WIN will be a C
3143 statement label elsewhere in the code; the macro definition may
3144 use
3145
3146 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
3147
3148 to avoid further processing if the address has become legitimate.
3149
3150 X will always be the result of a call to `break_out_memory_refs',
3151 and OLDX will be the operand that was given to that function to
3152 produce X.
3153
3154 The code generated by this macro should not alter the
3155 substructure of X. If it transforms X into a more legitimate
3156 form, it should assign X (which will always be a C variable) a
3157 new value.
3158
3159 It is not necessary for this macro to come up with a legitimate
3160 address. The compiler has standard ways of doing so in all
3161 cases. In fact, it is safe for this macro to do nothing. But
2649b2ee 3162 often a machine-dependent strategy can generate better code.
e75b25e7 3163
2649b2ee
MM
3164 For the MIPS, transform:
3165
3166 memory(X + <large int>)
3167
3168 into:
3169
3170 Y = <large int> & ~0x7fff;
3171 Z = X + Y
3172 memory (Z + (<large int> & 0x7fff));
3173
5de1e2ce
JW
3174 This is for CSE to find several similar references, and only use one Z.
3175
3176 When PIC, convert addresses of the form memory (symbol+large int) to
3177 memory (reg+large int). */
7dac2f89 3178
2649b2ee
MM
3179
3180#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
3181{ \
3182 register rtx xinsn = (X); \
3183 \
3184 if (TARGET_DEBUG_B_MODE) \
3185 { \
3186 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
3187 GO_DEBUG_RTX (xinsn); \
3188 } \
3189 \
ce57d6f4
JW
3190 if (mips_split_addresses && mips_check_split (X, MODE)) \
3191 { \
3192 /* ??? Is this ever executed? */ \
c5c76735
JL
3193 X = gen_rtx_LO_SUM (Pmode, \
3194 copy_to_mode_reg (Pmode, \
3195 gen_rtx (HIGH, Pmode, X)), \
3196 X); \
ce57d6f4
JW
3197 goto WIN; \
3198 } \
3199 \
516a2dfd
JW
3200 if (GET_CODE (xinsn) == CONST \
3201 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
3202 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
8f2e3902
EC
3203 || (!TARGET_GAS \
3204 && (mips_abi == ABI_N32 \
3205 || mips_abi == ABI_64)))) \
516a2dfd
JW
3206 { \
3207 rtx ptr_reg = gen_reg_rtx (Pmode); \
3208 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
3209 \
3210 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
3211 \
c5c76735 3212 X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
516a2dfd
JW
3213 if (SMALL_INT (constant)) \
3214 goto WIN; \
3215 /* Otherwise we fall through so the code below will fix the \
3216 constant. */ \
3217 xinsn = X; \
3218 } \
3219 \
b3de0f1f 3220 if (GET_CODE (xinsn) == PLUS) \
2649b2ee
MM
3221 { \
3222 register rtx xplus0 = XEXP (xinsn, 0); \
3223 register rtx xplus1 = XEXP (xinsn, 1); \
3224 register enum rtx_code code0 = GET_CODE (xplus0); \
3225 register enum rtx_code code1 = GET_CODE (xplus1); \
3226 \
3227 if (code0 != REG && code1 == REG) \
3228 { \
3229 xplus0 = XEXP (xinsn, 1); \
3230 xplus1 = XEXP (xinsn, 0); \
3231 code0 = GET_CODE (xplus0); \
3232 code1 = GET_CODE (xplus1); \
3233 } \
3234 \
2bcb2ab3 3235 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
2649b2ee
MM
3236 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
3237 { \
3238 rtx int_reg = gen_reg_rtx (Pmode); \
3239 rtx ptr_reg = gen_reg_rtx (Pmode); \
3240 \
3241 emit_move_insn (int_reg, \
3242 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
3243 \
c5c76735
JL
3244 emit_insn (gen_rtx_SET (VOIDmode, \
3245 ptr_reg, \
3246 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
2649b2ee 3247 \
8da665d5 3248 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
2649b2ee
MM
3249 goto WIN; \
3250 } \
3251 } \
3252 \
3253 if (TARGET_DEBUG_B_MODE) \
3254 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
3255}
e75b25e7
MM
3256
3257
3258/* A C statement or compound statement with a conditional `goto
3259 LABEL;' executed if memory address X (an RTX) can have different
3260 meanings depending on the machine mode of the memory reference it
3261 is used for.
3262
3263 Autoincrement and autodecrement addresses typically have
3264 mode-dependent effects because the amount of the increment or
3265 decrement is the size of the operand being addressed. Some
3266 machines have other mode-dependent addresses. Many RISC machines
3267 have no mode-dependent addresses.
3268
3269 You may assume that ADDR is a valid address for the machine. */
3270
3271#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
3272
9c9e7632
GK
3273/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
3274 'the start of the function that this code is output in'. */
3275
3276#define ASM_OUTPUT_LABELREF(FILE,NAME) \
3277 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
3278 asm_fprintf ((FILE), "%U%s", \
3279 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
3280 else \
3281 asm_fprintf ((FILE), "%U%s", (NAME))
3282
2bcb2ab3
GK
3283/* The mips16 wants the constant pool to be after the function,
3284 because the PC relative load instructions use unsigned offsets. */
3285
3286#define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3287
3288#define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3289 mips_string_length = 0;
3290
3291#if 0
3292/* In mips16 mode, put most string constants after the function. */
3293#define CONSTANT_AFTER_FUNCTION_P(tree) \
3294 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3295#endif
e75b25e7
MM
3296\f
3297/* Specify the machine mode that this machine uses
2bcb2ab3
GK
3298 for the index in the tablejump instruction.
3299 ??? Using HImode in mips16 mode can cause overflow. However, the
3300 overflow is no more likely than the overflow in a branch
3301 instruction. Large functions can currently break in both ways. */
3302#define CASE_VECTOR_MODE \
1eeed24e 3303 (TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
2bcb2ab3
GK
3304
3305/* Define as C expression which evaluates to nonzero if the tablejump
3306 instruction expects the table to contain offsets from the address of the
3307 table.
987ba558 3308 Do not define this if the table should contain absolute addresses. */
2bcb2ab3 3309#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
e75b25e7 3310
e75b25e7 3311/* Define this as 1 if `char' should by default be signed; else as 0. */
6639753e 3312#ifndef DEFAULT_SIGNED_CHAR
e75b25e7 3313#define DEFAULT_SIGNED_CHAR 1
6639753e 3314#endif
e75b25e7
MM
3315
3316/* Max number of bytes we can move from memory to memory
3317 in one reasonably fast instruction. */
876c09d3
JW
3318#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3319#define MAX_MOVE_MAX 8
e75b25e7
MM
3320
3321/* Define this macro as a C expression which is nonzero if
3322 accessing less than a word of memory (i.e. a `char' or a
3323 `short') is no faster than accessing a word of memory, i.e., if
3324 such access require more than one instruction or if there is no
3325 difference in cost between byte and (aligned) word loads.
3326
3327 On RISC machines, it tends to generate better code to define
3328 this as 1, since it avoids making a QI or HI mode register. */
3329#define SLOW_BYTE_ACCESS 1
3330
3331/* We assume that the store-condition-codes instructions store 0 for false
3332 and some other value for true. This is the value stored for true. */
3333
3334#define STORE_FLAG_VALUE 1
3335
d969caf8 3336/* Define this to be nonzero if shift instructions ignore all but the low-order
987ba558 3337 few bits. */
d969caf8 3338#define SHIFT_COUNT_TRUNCATED 1
e75b25e7
MM
3339
3340/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3341 is done just by pretending it is already truncated. */
876c09d3
JW
3342/* In 64 bit mode, 32 bit instructions require that register values be properly
3343 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3344 converts a value >32 bits to a value <32 bits. */
3345/* ??? This results in inefficient code for 64 bit to 32 conversions.
3346 Something needs to be done about this. Perhaps not use any 32 bit
3347 instructions? Perhaps use PROMOTE_MODE? */
3348#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3349 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
e75b25e7 3350
e75b25e7
MM
3351/* Specify the machine mode that pointers have.
3352 After generation of rtl, the compiler makes no further distinction
fb1bf66d
GRK
3353 between pointers and any other objects of this machine mode.
3354
987ba558 3355 For MIPS we make pointers are the smaller of longs and gp-registers. */
876c09d3 3356
1eeed24e 3357#ifndef Pmode
8ca47902 3358#define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
1eeed24e 3359#endif
e75b25e7
MM
3360
3361/* A function address in a call instruction
3362 is a word address (for indexing purposes)
3363 so give the MEM rtx a words's mode. */
3364
1eeed24e 3365#define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
e75b25e7 3366
e75b25e7
MM
3367\f
3368/* A part of a C `switch' statement that describes the relative
3369 costs of constant RTL expressions. It must contain `case'
3370 labels for expression codes `const_int', `const', `symbol_ref',
3371 `label_ref' and `const_double'. Each case must ultimately reach
3372 a `return' statement to return the relative cost of the use of
3373 that kind of constant value in an expression. The cost may
3374 depend on the precise value of the constant, which is available
3375 for examination in X.
3376
3377 CODE is the expression code--redundant, since it can be obtained
3378 with `GET_CODE (X)'. */
3379
def9623c 3380#define CONST_COSTS(X,CODE,OUTER_CODE) \
e75b25e7 3381 case CONST_INT: \
2bcb2ab3
GK
3382 if (! TARGET_MIPS16) \
3383 { \
3384 /* Always return 0, since we don't have different sized \
3385 instructions, hence different costs according to Richard \
3386 Kenner */ \
3387 return 0; \
3388 } \
3389 if ((OUTER_CODE) == SET) \
3390 { \
3391 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3392 return 0; \
3393 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3394 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3395 return COSTS_N_INSNS (1); \
3396 else \
3397 return COSTS_N_INSNS (2); \
3398 } \
3399 /* A PLUS could be an address. We don't want to force an address \
3400 to use a register, so accept any signed 16 bit value without \
3401 complaint. */ \
3402 if ((OUTER_CODE) == PLUS \
3403 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3404 return 0; \
3405 /* A number between 1 and 8 inclusive is efficient for a shift. \
3406 Otherwise, we will need an extended instruction. */ \
3407 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3408 || (OUTER_CODE) == LSHIFTRT) \
3409 { \
3410 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3411 return 0; \
3412 return COSTS_N_INSNS (1); \
3413 } \
3414 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3415 if ((OUTER_CODE) == XOR \
3416 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3417 return 0; \
3418 /* We may be able to use slt or sltu for a comparison with a \
3419 signed 16 bit value. (The boundary conditions aren't quite \
3420 right, but this is just a heuristic anyhow.) */ \
3421 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3422 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3423 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3424 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3425 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3426 return 0; \
3427 /* Equality comparisons with 0 are cheap. */ \
3428 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3429 && INTVAL (X) == 0) \
3430 return 0; \
3431 \
3432 /* Otherwise, work out the cost to load the value into a \
3433 register. */ \
3434 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3435 return COSTS_N_INSNS (1); \
3436 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3437 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3438 return COSTS_N_INSNS (2); \
3439 else \
3440 return COSTS_N_INSNS (3); \
e75b25e7
MM
3441 \
3442 case LABEL_REF: \
3443 return COSTS_N_INSNS (2); \
3444 \
3445 case CONST: \
3446 { \
31c714e3 3447 rtx offset = const0_rtx; \
876c09d3 3448 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
e75b25e7 3449 \
2bcb2ab3
GK
3450 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3451 { \
3452 /* Treat this like a signed 16 bit CONST_INT. */ \
3453 if ((OUTER_CODE) == PLUS) \
3454 return 0; \
3455 else if ((OUTER_CODE) == SET) \
3456 return COSTS_N_INSNS (1); \
3457 else \
3458 return COSTS_N_INSNS (2); \
3459 } \
3460 \
e75b25e7
MM
3461 if (GET_CODE (symref) == LABEL_REF) \
3462 return COSTS_N_INSNS (2); \
3463 \
3464 if (GET_CODE (symref) != SYMBOL_REF) \
3465 return COSTS_N_INSNS (4); \
3466 \
987ba558 3467 /* let's be paranoid.... */ \
31c714e3 3468 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
e75b25e7
MM
3469 return COSTS_N_INSNS (2); \
3470 \
3471 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3472 } \
3473 \
3474 case SYMBOL_REF: \
3475 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3476 \
3477 case CONST_DOUBLE: \
96abdcb1
ILT
3478 { \
3479 rtx high, low; \
2bcb2ab3
GK
3480 if (TARGET_MIPS16) \
3481 return COSTS_N_INSNS (4); \
96abdcb1
ILT
3482 split_double (X, &high, &low); \
3483 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3484 || low == CONST0_RTX (GET_MODE (low))) \
3485 ? 2 : 4); \
3486 }
e75b25e7
MM
3487
3488/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3489 This can be used, for example, to indicate how costly a multiply
3490 instruction is. In writing this macro, you can use the construct
3491 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3492
3493 This macro is optional; do not define it if the default cost
3494 assumptions are adequate for the target machine.
3495
3496 If -mdebugd is used, change the multiply cost to 2, so multiply by
3497 a constant isn't converted to a series of shifts. This helps
3498 strength reduction, and also makes it easier to identify what the
3499 compiler is doing. */
3500
516a2dfd 3501/* ??? Fix this to be right for the R8000. */
def9623c 3502#define RTX_COSTS(X,CODE,OUTER_CODE) \
e75b25e7
MM
3503 case MEM: \
3504 { \
3505 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3506 if (simple_memory_operand (X, GET_MODE (X))) \
3507 return COSTS_N_INSNS (num_words); \
3508 \
3509 return COSTS_N_INSNS (2*num_words); \
3510 } \
3511 \
3512 case FFS: \
3513 return COSTS_N_INSNS (6); \
3514 \
3515 case NOT: \
876c09d3 3516 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
e75b25e7
MM
3517 \
3518 case AND: \
3519 case IOR: \
3520 case XOR: \
876c09d3 3521 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
e75b25e7
MM
3522 return COSTS_N_INSNS (2); \
3523 \
2bcb2ab3 3524 break; \
e75b25e7
MM
3525 \
3526 case ASHIFT: \
3527 case ASHIFTRT: \
e75b25e7 3528 case LSHIFTRT: \
876c09d3
JW
3529 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3530 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
e75b25e7 3531 \
2bcb2ab3 3532 break; \
e75b25e7
MM
3533 \
3534 case ABS: \
3535 { \
3536 enum machine_mode xmode = GET_MODE (X); \
3537 if (xmode == SFmode || xmode == DFmode) \
3538 return COSTS_N_INSNS (1); \
3539 \
3540 return COSTS_N_INSNS (4); \
3541 } \
3542 \
3543 case PLUS: \
3544 case MINUS: \
3545 { \
3546 enum machine_mode xmode = GET_MODE (X); \
3547 if (xmode == SFmode || xmode == DFmode) \
9a863c83 3548 { \
7dac2f89
EC
3549 if (TUNE_MIPS3000 \
3550 || TUNE_MIPS3900) \
9a863c83 3551 return COSTS_N_INSNS (2); \
7dac2f89 3552 else if (TUNE_MIPS6000) \
9a863c83
JW
3553 return COSTS_N_INSNS (3); \
3554 else \
3555 return COSTS_N_INSNS (6); \
3556 } \
e75b25e7 3557 \
876c09d3 3558 if (xmode == DImode && !TARGET_64BIT) \
e75b25e7
MM
3559 return COSTS_N_INSNS (4); \
3560 \
2bcb2ab3 3561 break; \
e75b25e7
MM
3562 } \
3563 \
3564 case NEG: \
2bcb2ab3
GK
3565 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3566 return 4; \
3567 \
3568 break; \
e75b25e7
MM
3569 \
3570 case MULT: \
3571 { \
3572 enum machine_mode xmode = GET_MODE (X); \
3573 if (xmode == SFmode) \
9a863c83 3574 { \
8f2e3902
EC
3575 if (TUNE_MIPS3000 \
3576 || TUNE_MIPS3900 \
3577 || TUNE_MIPS5000) \
9a863c83 3578 return COSTS_N_INSNS (4); \
5ce6f47b
EC
3579 else if (TUNE_MIPS6000 \
3580 || TUNE_MIPS5400 \
3581 || TUNE_MIPS5500) \
9a863c83
JW
3582 return COSTS_N_INSNS (5); \
3583 else \
3584 return COSTS_N_INSNS (7); \
3585 } \
e75b25e7
MM
3586 \
3587 if (xmode == DFmode) \
9a863c83 3588 { \
8f2e3902
EC
3589 if (TUNE_MIPS3000 \
3590 || TUNE_MIPS3900 \
3591 || TUNE_MIPS5000) \
9a863c83 3592 return COSTS_N_INSNS (5); \
5ce6f47b
EC
3593 else if (TUNE_MIPS6000 \
3594 || TUNE_MIPS5400 \
3595 || TUNE_MIPS5500) \
9a863c83
JW
3596 return COSTS_N_INSNS (6); \
3597 else \
3598 return COSTS_N_INSNS (8); \
3599 } \
e75b25e7 3600 \
8f2e3902 3601 if (TUNE_MIPS3000) \
9a863c83 3602 return COSTS_N_INSNS (12); \
8f2e3902 3603 else if (TUNE_MIPS3900) \
e9a25f70 3604 return COSTS_N_INSNS (2); \
5ce6f47b
EC
3605 else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
3606 return COSTS_N_INSNS ((xmode == DImode) ? 4 : 3); \
8f2e3902 3607 else if (TUNE_MIPS6000) \
9a863c83 3608 return COSTS_N_INSNS (17); \
8f2e3902 3609 else if (TUNE_MIPS5000) \
b8eb88d0 3610 return COSTS_N_INSNS (5); \
9a863c83
JW
3611 else \
3612 return COSTS_N_INSNS (10); \
e75b25e7
MM
3613 } \
3614 \
3615 case DIV: \
3616 case MOD: \
3617 { \
3618 enum machine_mode xmode = GET_MODE (X); \
3619 if (xmode == SFmode) \
9a863c83 3620 { \
8f2e3902
EC
3621 if (TUNE_MIPS3000 \
3622 || TUNE_MIPS3900) \
9a863c83 3623 return COSTS_N_INSNS (12); \
8f2e3902 3624 else if (TUNE_MIPS6000) \
9a863c83 3625 return COSTS_N_INSNS (15); \
5ce6f47b
EC
3626 else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
3627 return COSTS_N_INSNS (30); \
9a863c83
JW
3628 else \
3629 return COSTS_N_INSNS (23); \
3630 } \
e75b25e7
MM
3631 \
3632 if (xmode == DFmode) \
9a863c83 3633 { \
8f2e3902
EC
3634 if (TUNE_MIPS3000 \
3635 || TUNE_MIPS3900) \
9a863c83 3636 return COSTS_N_INSNS (19); \
5ce6f47b
EC
3637 else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
3638 return COSTS_N_INSNS (59); \
8f2e3902 3639 else if (TUNE_MIPS6000) \
9a863c83
JW
3640 return COSTS_N_INSNS (16); \
3641 else \
3642 return COSTS_N_INSNS (36); \
3643 } \
e75b25e7
MM
3644 } \
3645 /* fall through */ \
3646 \
3647 case UDIV: \
3648 case UMOD: \
8f2e3902
EC
3649 if (TUNE_MIPS3000 \
3650 || TUNE_MIPS3900) \
9a863c83 3651 return COSTS_N_INSNS (35); \
8f2e3902 3652 else if (TUNE_MIPS6000) \
9a863c83 3653 return COSTS_N_INSNS (38); \
8f2e3902 3654 else if (TUNE_MIPS5000) \
b8eb88d0 3655 return COSTS_N_INSNS (36); \
5ce6f47b
EC
3656 else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
3657 return COSTS_N_INSNS ((GET_MODE (X) == SImode) ? 42 : 74); \
9a863c83 3658 else \
1a4fa807
ILT
3659 return COSTS_N_INSNS (69); \
3660 \
3661 case SIGN_EXTEND: \
3662 /* A sign extend from SImode to DImode in 64 bit mode is often \
3663 zero instructions, because the result can often be used \
3664 directly by another instruction; we'll call it one. */ \
3665 if (TARGET_64BIT && GET_MODE (X) == DImode \
3666 && GET_MODE (XEXP (X, 0)) == SImode) \
3667 return COSTS_N_INSNS (1); \
3668 else \
3669 return COSTS_N_INSNS (2); \
3670 \
3671 case ZERO_EXTEND: \
3672 if (TARGET_64BIT && GET_MODE (X) == DImode \
3673 && GET_MODE (XEXP (X, 0)) == SImode) \
3674 return COSTS_N_INSNS (2); \
3675 else \
3676 return COSTS_N_INSNS (1);
e75b25e7
MM
3677
3678/* An expression giving the cost of an addressing mode that
3679 contains ADDRESS. If not defined, the cost is computed from the
3680 form of the ADDRESS expression and the `CONST_COSTS' values.
3681
3682 For most CISC machines, the default cost is a good approximation
3683 of the true cost of the addressing mode. However, on RISC
3684 machines, all instructions normally have the same length and
3685 execution time. Hence all addresses will have equal costs.
3686
3687 In cases where more than one form of an address is known, the
3688 form with the lowest cost will be used. If multiple forms have
3689 the same, lowest, cost, the one that is the most complex will be
3690 used.
3691
3692 For example, suppose an address that is equal to the sum of a
7dac2f89 3693 register and a constant is used twice in the same basic block.
e75b25e7
MM
3694 When this macro is not defined, the address will be computed in
3695 a register and memory references will be indirect through that
3696 register. On machines where the cost of the addressing mode
3697 containing the sum is no higher than that of a simple indirect
3698 reference, this will produce an additional instruction and
3699 possibly require an additional register. Proper specification
3700 of this macro eliminates this overhead for such machines.
3701
3702 Similar use of this macro is made in strength reduction of loops.
3703
3704 ADDRESS need not be valid as an address. In such a case, the
3705 cost is not relevant and can be any value; invalid addresses
3706 need not be assigned a different cost.
3707
3708 On machines where an address involving more than one register is
3709 as cheap as an address computation involving only one register,
3710 defining `ADDRESS_COST' to reflect this can cause two registers
3711 to be live over a region of code where only one would have been
3712 if `ADDRESS_COST' were not defined in that manner. This effect
7dac2f89 3713 should be considered in the definition of this macro.
e75b25e7
MM
3714 Equivalent costs should probably only be given to addresses with
3715 different numbers of registers on machines with lots of registers.
3716
3717 This macro will normally either not be defined or be defined as
987ba558 3718 a constant. */
e75b25e7
MM
3719
3720#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3721
3722/* A C expression for the cost of moving data from a register in
3723 class FROM to one in class TO. The classes are expressed using
3724 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3725 the default; other values are interpreted relative to that.
3726
3727 It is not required that the cost always equal 2 when FROM is the
3728 same as TO; on some machines it is expensive to move between
3729 registers if they are not general registers.
3730
3731 If reload sees an insn consisting of a single `set' between two
3732 hard registers, and if `REGISTER_MOVE_COST' applied to their
3733 classes returns a value of 2, reload does not check to ensure
3734 that the constraints of the insn are met. Setting a cost of
3735 other than 2 will allow reload to verify that the constraints are
3736 met. You should do this if the `movM' pattern's constraints do
d604bca3
MH
3737 not allow such copying. */
3738
3739#define REGISTER_MOVE_COST(MODE, FROM, TO) \
3740 mips_register_move_cost (MODE, FROM, TO)
e75b25e7 3741
516a2dfd 3742/* ??? Fix this to be right for the R8000. */
cbd5b9a2 3743#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
7dac2f89 3744 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
cbd5b9a2 3745 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
876c09d3 3746
7506f491
DE
3747/* Define if copies to/from condition code registers should be avoided.
3748
3749 This is needed for the MIPS because reload_outcc is not complete;
3750 it needs to handle cases where the source is a general or another
3751 condition code register. */
3752#define AVOID_CCMODE_COPIES
3753
e75b25e7
MM
3754/* A C expression for the cost of a branch instruction. A value of
3755 1 is the default; other values are interpreted relative to that. */
3756
516a2dfd 3757/* ??? Fix this to be right for the R8000. */
2bcb2ab3
GK
3758#define BRANCH_COST \
3759 ((! TARGET_MIPS16 \
7dac2f89 3760 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
2bcb2ab3 3761 ? 2 : 1)
e75b25e7 3762
0ff83799
MM
3763/* If defined, modifies the length assigned to instruction INSN as a
3764 function of the context in which it is used. LENGTH is an lvalue
3765 that contains the initially computed length of the insn and should
3766 be updated with the correct length of the insn. */
3767#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
3768 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
3769
e75b25e7
MM
3770\f
3771/* Optionally define this if you have added predicates to
3772 `MACHINE.c'. This macro is called within an initializer of an
3773 array of structures. The first field in the structure is the
31c714e3 3774 name of a predicate and the second field is an array of rtl
e75b25e7
MM
3775 codes. For each predicate, list all rtl codes that can be in
3776 expressions matched by the predicate. The list should have a
3777 trailing comma. Here is an example of two entries in the list
3778 for a typical RISC machine:
3779
3780 #define PREDICATE_CODES \
3781 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3782 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3783
3784 Defining this macro does not affect the generated code (however,
3785 incorrect definitions that omit an rtl code that may be matched
7dac2f89 3786 by the predicate can cause the compiler to malfunction).
e75b25e7
MM
3787 Instead, it allows the table built by `genrecog' to be more
3788 compact and efficient, thus speeding up the compiler. The most
3789 important predicates to include in the list specified by this
3790 macro are thoses used in the most insn patterns. */
3791
3792#define PREDICATE_CODES \
3793 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3794 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3795 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
def72bd2
GRK
3796 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
3797 {"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
e75b25e7
MM
3798 {"small_int", { CONST_INT }}, \
3799 {"large_int", { CONST_INT }}, \
e75b25e7 3800 {"mips_const_double_ok", { CONST_DOUBLE }}, \
b8eb88d0 3801 {"const_float_1_operand", { CONST_DOUBLE }}, \
e75b25e7 3802 {"simple_memory_operand", { MEM, SUBREG }}, \
e75b25e7
MM
3803 {"equality_op", { EQ, NE }}, \
3804 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3805 LTU, LEU }}, \
a0b6cdee 3806 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
f8634644 3807 {"pc_or_label_operand", { PC, LABEL_REF }}, \
ce57d6f4
JW
3808 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3809 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3810 SYMBOL_REF, LABEL_REF, SUBREG, \
3811 REG, MEM}}, \
1908a152
ILT
3812 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3813 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3814 MEM, SIGN_EXTEND }}, \
3815 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
def72bd2 3816 {"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
1908a152
ILT
3817 SIGN_EXTEND }}, \
3818 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3819 SIGN_EXTEND }}, \
3820 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3821 SIGN_EXTEND }}, \
3822 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3823 SYMBOL_REF, LABEL_REF, SUBREG, \
3824 REG, SIGN_EXTEND }}, \
2bcb2ab3 3825 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
cb923660
KR
3826 CONST_DOUBLE, CONST }}, \
3827 {"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
3828 {"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
3829
0e7e9155
RH
3830/* A list of predicates that do special things with modes, and so
3831 should not elicit warnings for VOIDmode match_operand. */
3832
3833#define SPECIAL_MODE_PREDICATES \
3834 "pc_or_label_operand",
e75b25e7
MM
3835
3836\f
3837/* If defined, a C statement to be executed just prior to the
3838 output of assembler code for INSN, to modify the extracted
3839 operands so they will be output differently.
3840
3841 Here the argument OPVEC is the vector containing the operands
3842 extracted from INSN, and NOPERANDS is the number of elements of
3843 the vector which contain meaningful data for this insn. The
3844 contents of this vector are what will be used to convert the
3845 insn template into assembler code, so you can change the
3846 assembler output by changing the contents of the vector.
3847
3848 We use it to check if the current insn needs a nop in front of it
3849 because of load delays, and also to update the delay slot
3850 statistics. */
3851
3852#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
65437fe8 3853 final_prescan_insn (INSN, OPVEC, NOPERANDS)
e75b25e7 3854
e75b25e7
MM
3855\f
3856/* Control the assembler format that we output. */
3857
3858/* Output at beginning of assembler file.
3859 If we are optimizing to use the global pointer, create a temporary
3860 file to hold all of the text stuff, and write it out to the end.
3861 This is needed because the MIPS assembler is evidently one pass,
3862 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3863 declaration when the code is processed, it generates a two
3864 instruction sequence. */
3865
44404b8b 3866#undef ASM_FILE_START
e75b25e7
MM
3867#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3868
3869/* Output to assembler file text saying following lines
3870 may contain character constants, extra white space, comments, etc. */
3871
b2bcb32d 3872#ifndef ASM_APP_ON
e75b25e7 3873#define ASM_APP_ON " #APP\n"
b2bcb32d 3874#endif
e75b25e7
MM
3875
3876/* Output to assembler file text saying following lines
3877 no longer contain unusual constructs. */
3878
b2bcb32d 3879#ifndef ASM_APP_OFF
e75b25e7 3880#define ASM_APP_OFF " #NO_APP\n"
b2bcb32d 3881#endif
e75b25e7
MM
3882
3883/* How to refer to registers in assembler output.
3884 This sequence is indexed by compiler's hard-register-number (see above).
3885
3886 In order to support the two different conventions for register names,
3887 we use the name of a table set up in mips.c, which is overwritten
3888 if -mrnames is used. */
3889
3890#define REGISTER_NAMES \
3891{ \
3892 &mips_reg_names[ 0][0], \
3893 &mips_reg_names[ 1][0], \
3894 &mips_reg_names[ 2][0], \
3895 &mips_reg_names[ 3][0], \
3896 &mips_reg_names[ 4][0], \
3897 &mips_reg_names[ 5][0], \
3898 &mips_reg_names[ 6][0], \
3899 &mips_reg_names[ 7][0], \
3900 &mips_reg_names[ 8][0], \
3901 &mips_reg_names[ 9][0], \
3902 &mips_reg_names[10][0], \
3903 &mips_reg_names[11][0], \
3904 &mips_reg_names[12][0], \
3905 &mips_reg_names[13][0], \
3906 &mips_reg_names[14][0], \
3907 &mips_reg_names[15][0], \
3908 &mips_reg_names[16][0], \
3909 &mips_reg_names[17][0], \
3910 &mips_reg_names[18][0], \
3911 &mips_reg_names[19][0], \
3912 &mips_reg_names[20][0], \
3913 &mips_reg_names[21][0], \
3914 &mips_reg_names[22][0], \
3915 &mips_reg_names[23][0], \
3916 &mips_reg_names[24][0], \
3917 &mips_reg_names[25][0], \
3918 &mips_reg_names[26][0], \
3919 &mips_reg_names[27][0], \
3920 &mips_reg_names[28][0], \
3921 &mips_reg_names[29][0], \
3922 &mips_reg_names[30][0], \
3923 &mips_reg_names[31][0], \
3924 &mips_reg_names[32][0], \
3925 &mips_reg_names[33][0], \
3926 &mips_reg_names[34][0], \
3927 &mips_reg_names[35][0], \
3928 &mips_reg_names[36][0], \
3929 &mips_reg_names[37][0], \
3930 &mips_reg_names[38][0], \
3931 &mips_reg_names[39][0], \
3932 &mips_reg_names[40][0], \
3933 &mips_reg_names[41][0], \
3934 &mips_reg_names[42][0], \
3935 &mips_reg_names[43][0], \
3936 &mips_reg_names[44][0], \
3937 &mips_reg_names[45][0], \
3938 &mips_reg_names[46][0], \
3939 &mips_reg_names[47][0], \
3940 &mips_reg_names[48][0], \
3941 &mips_reg_names[49][0], \
3942 &mips_reg_names[50][0], \
3943 &mips_reg_names[51][0], \
3944 &mips_reg_names[52][0], \
3945 &mips_reg_names[53][0], \
3946 &mips_reg_names[54][0], \
3947 &mips_reg_names[55][0], \
3948 &mips_reg_names[56][0], \
3949 &mips_reg_names[57][0], \
3950 &mips_reg_names[58][0], \
3951 &mips_reg_names[59][0], \
3952 &mips_reg_names[60][0], \
3953 &mips_reg_names[61][0], \
3954 &mips_reg_names[62][0], \
3955 &mips_reg_names[63][0], \
3956 &mips_reg_names[64][0], \
3957 &mips_reg_names[65][0], \
3958 &mips_reg_names[66][0], \
225b8835 3959 &mips_reg_names[67][0], \
39dffea3 3960 &mips_reg_names[68][0], \
b8eb88d0
ILT
3961 &mips_reg_names[69][0], \
3962 &mips_reg_names[70][0], \
3963 &mips_reg_names[71][0], \
3964 &mips_reg_names[72][0], \
3965 &mips_reg_names[73][0], \
3966 &mips_reg_names[74][0], \
3967 &mips_reg_names[75][0], \
d604bca3
MH
3968 &mips_reg_names[76][0], \
3969 &mips_reg_names[77][0], \
3970 &mips_reg_names[78][0], \
3971 &mips_reg_names[79][0], \
3972 &mips_reg_names[80][0], \
3973 &mips_reg_names[81][0], \
3974 &mips_reg_names[82][0], \
3975 &mips_reg_names[83][0], \
3976 &mips_reg_names[84][0], \
3977 &mips_reg_names[85][0], \
3978 &mips_reg_names[86][0], \
3979 &mips_reg_names[87][0], \
3980 &mips_reg_names[88][0], \
3981 &mips_reg_names[89][0], \
3982 &mips_reg_names[90][0], \
3983 &mips_reg_names[91][0], \
3984 &mips_reg_names[92][0], \
3985 &mips_reg_names[93][0], \
3986 &mips_reg_names[94][0], \
3987 &mips_reg_names[95][0], \
3988 &mips_reg_names[96][0], \
3989 &mips_reg_names[97][0], \
3990 &mips_reg_names[98][0], \
3991 &mips_reg_names[99][0], \
3992 &mips_reg_names[100][0], \
3993 &mips_reg_names[101][0], \
3994 &mips_reg_names[102][0], \
3995 &mips_reg_names[103][0], \
3996 &mips_reg_names[104][0], \
3997 &mips_reg_names[105][0], \
3998 &mips_reg_names[106][0], \
3999 &mips_reg_names[107][0], \
4000 &mips_reg_names[108][0], \
4001 &mips_reg_names[109][0], \
4002 &mips_reg_names[110][0], \
4003 &mips_reg_names[111][0], \
4004 &mips_reg_names[112][0], \
4005 &mips_reg_names[113][0], \
4006 &mips_reg_names[114][0], \
4007 &mips_reg_names[115][0], \
4008 &mips_reg_names[116][0], \
4009 &mips_reg_names[117][0], \
4010 &mips_reg_names[118][0], \
4011 &mips_reg_names[119][0], \
4012 &mips_reg_names[120][0], \
4013 &mips_reg_names[121][0], \
4014 &mips_reg_names[122][0], \
4015 &mips_reg_names[123][0], \
4016 &mips_reg_names[124][0], \
4017 &mips_reg_names[125][0], \
4018 &mips_reg_names[126][0], \
4019 &mips_reg_names[127][0], \
4020 &mips_reg_names[128][0], \
4021 &mips_reg_names[129][0], \
4022 &mips_reg_names[130][0], \
4023 &mips_reg_names[131][0], \
4024 &mips_reg_names[132][0], \
4025 &mips_reg_names[133][0], \
4026 &mips_reg_names[134][0], \
4027 &mips_reg_names[135][0], \
4028 &mips_reg_names[136][0], \
4029 &mips_reg_names[137][0], \
4030 &mips_reg_names[138][0], \
4031 &mips_reg_names[139][0], \
4032 &mips_reg_names[140][0], \
4033 &mips_reg_names[141][0], \
4034 &mips_reg_names[142][0], \
4035 &mips_reg_names[143][0], \
4036 &mips_reg_names[144][0], \
4037 &mips_reg_names[145][0], \
4038 &mips_reg_names[146][0], \
4039 &mips_reg_names[147][0], \
4040 &mips_reg_names[148][0], \
4041 &mips_reg_names[149][0], \
4042 &mips_reg_names[150][0], \
4043 &mips_reg_names[151][0], \
4044 &mips_reg_names[152][0], \
4045 &mips_reg_names[153][0], \
4046 &mips_reg_names[154][0], \
4047 &mips_reg_names[155][0], \
4048 &mips_reg_names[156][0], \
4049 &mips_reg_names[157][0], \
4050 &mips_reg_names[158][0], \
4051 &mips_reg_names[159][0], \
4052 &mips_reg_names[160][0], \
4053 &mips_reg_names[161][0], \
4054 &mips_reg_names[162][0], \
4055 &mips_reg_names[163][0], \
4056 &mips_reg_names[164][0], \
4057 &mips_reg_names[165][0], \
4058 &mips_reg_names[166][0], \
4059 &mips_reg_names[167][0], \
4060 &mips_reg_names[168][0], \
4061 &mips_reg_names[169][0], \
4062 &mips_reg_names[170][0], \
4063 &mips_reg_names[171][0], \
4064 &mips_reg_names[172][0], \
4065 &mips_reg_names[173][0], \
4066 &mips_reg_names[174][0], \
4067 &mips_reg_names[175][0] \
e75b25e7
MM
4068}
4069
46cca58c
RS
4070/* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
4071 So define this for it. */
4072#define DEBUG_REGISTER_NAMES \
4073{ \
4074 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
4075 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
4076 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
07e2e444 4077 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
46cca58c
RS
4078 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
4079 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
4080 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
4081 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
b8eb88d0 4082 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
d604bca3
MH
4083 "$fcc5","$fcc6","$fcc7","$rap", "", "", "", "", \
4084 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",\
4085 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",\
4086 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",\
4087 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",\
4088 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",\
4089 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",\
4090 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",\
4091 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",\
4092 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",\
4093 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",\
4094 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",\
4095 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"\
46cca58c
RS
4096}
4097
e75b25e7
MM
4098/* If defined, a C initializer for an array of structures
4099 containing a name and a register number. This macro defines
4100 additional names for hard registers, thus allowing the `asm'
4101 option in declarations to refer to registers using alternate
4102 names.
4103
4104 We define both names for the integer registers here. */
4105
4106#define ADDITIONAL_REGISTER_NAMES \
4107{ \
4108 { "$0", 0 + GP_REG_FIRST }, \
4109 { "$1", 1 + GP_REG_FIRST }, \
4110 { "$2", 2 + GP_REG_FIRST }, \
4111 { "$3", 3 + GP_REG_FIRST }, \
4112 { "$4", 4 + GP_REG_FIRST }, \
4113 { "$5", 5 + GP_REG_FIRST }, \
4114 { "$6", 6 + GP_REG_FIRST }, \
4115 { "$7", 7 + GP_REG_FIRST }, \
4116 { "$8", 8 + GP_REG_FIRST }, \
4117 { "$9", 9 + GP_REG_FIRST }, \
4118 { "$10", 10 + GP_REG_FIRST }, \
4119 { "$11", 11 + GP_REG_FIRST }, \
4120 { "$12", 12 + GP_REG_FIRST }, \
4121 { "$13", 13 + GP_REG_FIRST }, \
4122 { "$14", 14 + GP_REG_FIRST }, \
4123 { "$15", 15 + GP_REG_FIRST }, \
4124 { "$16", 16 + GP_REG_FIRST }, \
4125 { "$17", 17 + GP_REG_FIRST }, \
4126 { "$18", 18 + GP_REG_FIRST }, \
4127 { "$19", 19 + GP_REG_FIRST }, \
4128 { "$20", 20 + GP_REG_FIRST }, \
4129 { "$21", 21 + GP_REG_FIRST }, \
4130 { "$22", 22 + GP_REG_FIRST }, \
4131 { "$23", 23 + GP_REG_FIRST }, \
4132 { "$24", 24 + GP_REG_FIRST }, \
4133 { "$25", 25 + GP_REG_FIRST }, \
4134 { "$26", 26 + GP_REG_FIRST }, \
4135 { "$27", 27 + GP_REG_FIRST }, \
4136 { "$28", 28 + GP_REG_FIRST }, \
4137 { "$29", 29 + GP_REG_FIRST }, \
4138 { "$30", 30 + GP_REG_FIRST }, \
4139 { "$31", 31 + GP_REG_FIRST }, \
4140 { "$sp", 29 + GP_REG_FIRST }, \
4141 { "$fp", 30 + GP_REG_FIRST }, \
4142 { "at", 1 + GP_REG_FIRST }, \
4143 { "v0", 2 + GP_REG_FIRST }, \
4144 { "v1", 3 + GP_REG_FIRST }, \
4145 { "a0", 4 + GP_REG_FIRST }, \
4146 { "a1", 5 + GP_REG_FIRST }, \
4147 { "a2", 6 + GP_REG_FIRST }, \
4148 { "a3", 7 + GP_REG_FIRST }, \
4149 { "t0", 8 + GP_REG_FIRST }, \
4150 { "t1", 9 + GP_REG_FIRST }, \
4151 { "t2", 10 + GP_REG_FIRST }, \
4152 { "t3", 11 + GP_REG_FIRST }, \
4153 { "t4", 12 + GP_REG_FIRST }, \
4154 { "t5", 13 + GP_REG_FIRST }, \
4155 { "t6", 14 + GP_REG_FIRST }, \
4156 { "t7", 15 + GP_REG_FIRST }, \
4157 { "s0", 16 + GP_REG_FIRST }, \
4158 { "s1", 17 + GP_REG_FIRST }, \
4159 { "s2", 18 + GP_REG_FIRST }, \
4160 { "s3", 19 + GP_REG_FIRST }, \
4161 { "s4", 20 + GP_REG_FIRST }, \
4162 { "s5", 21 + GP_REG_FIRST }, \
4163 { "s6", 22 + GP_REG_FIRST }, \
4164 { "s7", 23 + GP_REG_FIRST }, \
4165 { "t8", 24 + GP_REG_FIRST }, \
4166 { "t9", 25 + GP_REG_FIRST }, \
4167 { "k0", 26 + GP_REG_FIRST }, \
4168 { "k1", 27 + GP_REG_FIRST }, \
4169 { "gp", 28 + GP_REG_FIRST }, \
4170 { "sp", 29 + GP_REG_FIRST }, \
4171 { "fp", 30 + GP_REG_FIRST }, \
4172 { "ra", 31 + GP_REG_FIRST }, \
924706a0 4173 { "$sp", 29 + GP_REG_FIRST }, \
b8eb88d0 4174 { "$fp", 30 + GP_REG_FIRST } \
d604bca3 4175 ALL_COP_ADDITIONAL_REGISTER_NAMES \
e75b25e7
MM
4176}
4177
33005162 4178/* This is meant to be redefined in the host dependent files. It is a
d604bca3
MH
4179 set of alternative names and regnums for mips coprocessors. */
4180
4181#define ALL_COP_ADDITIONAL_REGISTER_NAMES
4182
e75b25e7
MM
4183/* A C compound statement to output to stdio stream STREAM the
4184 assembler syntax for an instruction operand X. X is an RTL
4185 expression.
4186
4187 CODE is a value that can be used to specify one of several ways
4188 of printing the operand. It is used when identical operands
4189 must be printed differently depending on the context. CODE
4190 comes from the `%' specification that was used to request
4191 printing of the operand. If the specification was just `%DIGIT'
4192 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4193 is the ASCII code for LTR.
4194
4195 If X is a register, this macro should print the register's name.
4196 The names can be found in an array `reg_names' whose type is
4197 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4198
4199 When the machine description has a specification `%PUNCT' (a `%'
4200 followed by a punctuation character), this macro is called with
4201 a null pointer for X and the punctuation character for CODE.
4202
4203 See mips.c for the MIPS specific codes. */
4204
4205#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
4206
4207/* A C expression which evaluates to true if CODE is a valid
4208 punctuation character for use in the `PRINT_OPERAND' macro. If
4209 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
4210 punctuation characters (except for the standard one, `%') are
4211 used in this way. */
4212
4213#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
4214
4215/* A C compound statement to output to stdio stream STREAM the
4216 assembler syntax for an instruction operand that is a memory
fb49053f 4217 reference whose address is ADDR. ADDR is an RTL expression. */
e75b25e7
MM
4218
4219#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
4220
4221
4222/* A C statement, to be executed after all slot-filler instructions
4223 have been output. If necessary, call `dbr_sequence_length' to
4224 determine the number of slots filled in a sequence (zero if not
4225 currently outputting a sequence), to decide how many no-ops to
4226 output, or whatever.
4227
4228 Don't define this macro if it has nothing to do, but it is
4229 helpful in reading assembly output if the extent of the delay
4230 sequence is made explicit (e.g. with white space).
4231
4232 Note that output routines for instructions with delay slots must
4233 be prepared to deal with not being output as part of a sequence
4234 (i.e. when the scheduling pass is not run, or when no slot
4235 fillers could be found.) The variable `final_sequence' is null
4236 when not processing a sequence, otherwise it contains the
4237 `sequence' rtx being output. */
4238
4239#define DBR_OUTPUT_SEQEND(STREAM) \
4240do \
4241 { \
4242 if (set_nomacro > 0 && --set_nomacro == 0) \
4243 fputs ("\t.set\tmacro\n", STREAM); \
4244 \
4245 if (set_noreorder > 0 && --set_noreorder == 0) \
4246 fputs ("\t.set\treorder\n", STREAM); \
4247 \
4248 dslots_jump_filled++; \
4249 fputs ("\n", STREAM); \
4250 } \
4251while (0)
4252
4253
4254/* How to tell the debugger about changes of source files. Note, the
4255 mips ECOFF format cannot deal with changes of files inside of
4256 functions, which means the output of parser generators like bison
4257 is generally not debuggable without using the -l switch. Lose,
4258 lose, lose. Silicon graphics seems to want all .file's hardwired
4259 to 1. */
4260
4261#ifndef SET_FILE_NUMBER
4262#define SET_FILE_NUMBER() ++num_source_filenames
4263#endif
4264
4265#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
4266 mips_output_filename (STREAM, NAME)
4267
ddd5a7c1 4268/* This is defined so that it can be overridden in iris6.h. */
516a2dfd
JW
4269#define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
4270do \
4271 { \
4272 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
4273 output_quoted_string (STREAM, NAME); \
4274 fputs ("\n", STREAM); \
4275 } \
4276while (0)
4277
e75b25e7
MM
4278/* This is how to output a note the debugger telling it the line number
4279 to which the following sequence of instructions corresponds.
4280 Silicon graphics puts a label after each .loc. */
4281
4282#ifndef LABEL_AFTER_LOC
4283#define LABEL_AFTER_LOC(STREAM)
4284#endif
4285
b2bcb32d 4286#ifndef ASM_OUTPUT_SOURCE_LINE
e75b25e7
MM
4287#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
4288 mips_output_lineno (STREAM, LINE)
b2bcb32d 4289#endif
e75b25e7 4290
9ec36da5 4291/* The MIPS implementation uses some labels for its own purpose. The
e75b25e7
MM
4292 following lists what labels are created, and are all formed by the
4293 pattern $L[a-z].*. The machine independent portion of GCC creates
4294 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
4295
c5b7917e 4296 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
e75b25e7
MM
4297 $Lb[0-9]+ Begin blocks for MIPS debug support
4298 $Lc[0-9]+ Label for use in s<xx> operation.
33005162 4299 $Le[0-9]+ End blocks for MIPS debug support */
e75b25e7 4300
31c714e3
MM
4301/* A C statement (sans semicolon) to output to the stdio stream
4302 STREAM any text necessary for declaring the name NAME of an
4303 initialized variable which is being defined. This macro must
7dac2f89 4304 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
31c714e3
MM
4305 The argument DECL is the `VAR_DECL' tree node representing the
4306 variable.
4307
4308 If this macro is not defined, then the variable name is defined
4309 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
4310
44404b8b 4311#undef ASM_DECLARE_OBJECT_NAME
31c714e3 4312#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
f3b39eba
MM
4313do \
4314 { \
4315 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
f3b39eba
MM
4316 } \
4317while (0)
31c714e3 4318
506a61b1
KG
4319/* Globalizing directive for a label. */
4320#define GLOBAL_ASM_OP "\t.globl\t"
e75b25e7 4321
31c714e3 4322/* This says how to define a global common symbol. */
e75b25e7 4323
919509ce
DN
4324#define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
4325 do { \
4326 /* If the target wants uninitialized const declarations in \
4327 .rdata then don't put them in .comm */ \
4328 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
4329 && TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
4330 && (DECL_INITIAL (DECL) == 0 \
4331 || DECL_INITIAL (DECL) == error_mark_node)) \
4332 { \
4333 if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
5eb99654 4334 (*targetm.asm_out.globalize_label) (STREAM, NAME); \
919509ce 4335 \
d48bc59a 4336 readonly_data_section (); \
919509ce
DN
4337 ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
4338 mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
4339 (SIZE)); \
4340 } \
4341 else \
d239cdc0 4342 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
919509ce
DN
4343 (SIZE)); \
4344 } while (0)
4345
e75b25e7 4346
c5b7917e 4347/* This says how to define a local common symbol (ie, not visible to
31c714e3 4348 linker). */
e75b25e7
MM
4349
4350#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
69520b54 4351 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
e75b25e7
MM
4352
4353
4354/* This says how to output an external. It would be possible not to
4355 output anything and let undefined symbol become external. However
4356 the assembler uses length information on externals to allocate in
4357 data/sdata bss/sbss, thereby saving exec time. */
4358
4359#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4360 mips_output_external(STREAM,DECL,NAME)
4361
4362/* This says what to print at the end of the assembly file */
44404b8b 4363#undef ASM_FILE_END
e75b25e7
MM
4364#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4365
4366
f99ffb60
RH
4367/* Play switch file games if we're optimizing the global pointer. */
4368
4369#undef TEXT_SECTION
4370#define TEXT_SECTION() \
4371do { \
4372 extern FILE *asm_out_text_file; \
4373 if (TARGET_FILE_SWITCHING) \
4374 asm_out_file = asm_out_text_file; \
4375 fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
4376 fputc ('\n', asm_out_file); \
4377} while (0)
4378
4379
e75b25e7
MM
4380/* This is how to declare a function name. The actual work of
4381 emitting the label is moved to function_prologue, so that we can
4382 get the line number correctly emitted before the .ent directive,
789b7de5 4383 and after any .file directives. Define as empty so that the function
4e314d1f
EC
4384 is not declared before the .ent directive elsewhere. */
4385
44404b8b 4386#undef ASM_DECLARE_FUNCTION_NAME
33005162 4387#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
4e314d1f 4388
e75b25e7 4389
e75b25e7
MM
4390/* This is how to output an internal numbered label where
4391 PREFIX is the class of label and NUM is the number within the class. */
4392
44404b8b 4393#undef ASM_OUTPUT_INTERNAL_LABEL
e75b25e7 4394#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
6ae1498b 4395 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
e75b25e7
MM
4396
4397/* This is how to store into the string LABEL
4398 the symbol_ref name of an internal numbered label where
4399 PREFIX is the class of label and NUM is the number within the class.
4400 This is suitable for output with `assemble_name'. */
4401
44404b8b 4402#undef ASM_GENERATE_INTERNAL_LABEL
e75b25e7 4403#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4f70758f 4404 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
e75b25e7 4405
e75b25e7
MM
4406/* This is how to output an element of a case-vector that is absolute. */
4407
4408#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
6ae1498b 4409 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4410 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4411 LOCAL_LABEL_PREFIX, \
876c09d3 4412 VALUE)
e75b25e7
MM
4413
4414/* This is how to output an element of a case-vector that is relative.
e0bfcea5
ILT
4415 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4416 TARGET_EMBEDDED_PIC). */
e75b25e7 4417
33f7f353 4418#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
e0bfcea5 4419do { \
2bcb2ab3
GK
4420 if (TARGET_MIPS16) \
4421 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4422 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4423 else if (TARGET_EMBEDDED_PIC) \
6ae1498b 4424 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
1eeed24e 4425 Pmode == DImode ? ".dword" : ".word", \
6ae1498b 4426 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
a53f72db 4427 else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
6ae1498b 4428 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4429 Pmode == DImode ? ".gpdword" : ".gpword", \
6ae1498b 4430 LOCAL_LABEL_PREFIX, VALUE); \
516a2dfd 4431 else \
b2d8cf33 4432 fprintf (STREAM, "\t%s\t%sL%d\n", \
1eeed24e 4433 Pmode == DImode ? ".dword" : ".word", \
b2d8cf33 4434 LOCAL_LABEL_PREFIX, VALUE); \
e0bfcea5
ILT
4435} while (0)
4436
2bcb2ab3
GK
4437/* When generating embedded PIC or mips16 code we want to put the jump
4438 table in the .text section. In all other cases, we want to put the
4439 jump table in the .rdata section. Unfortunately, we can't use
e0bfcea5
ILT
4440 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4441 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4442 section if appropriate. */
44404b8b 4443#undef ASM_OUTPUT_CASE_LABEL
e0bfcea5
ILT
4444#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4445do { \
2bcb2ab3
GK
4446 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4447 function_section (current_function_decl); \
e0bfcea5
ILT
4448 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4449} while (0)
e75b25e7
MM
4450
4451/* This is how to output an assembler line
4452 that says to advance the location counter
4453 to a multiple of 2**LOG bytes. */
4454
4455#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
a688e0b7 4456 fprintf (STREAM, "\t.align\t%d\n", (LOG))
e75b25e7 4457
38e01259 4458/* This is how to output an assembler line to advance the location
e75b25e7
MM
4459 counter by SIZE bytes. */
4460
44404b8b 4461#undef ASM_OUTPUT_SKIP
e75b25e7
MM
4462#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4463 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4464
e75b25e7 4465/* This is how to output a string. */
44404b8b 4466#undef ASM_OUTPUT_ASCII
e75b25e7 4467#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
b3276c7a 4468 mips_output_ascii (STREAM, STRING, LEN)
e75b25e7 4469
e75b25e7 4470/* Output #ident as a in the read-only data section. */
0e5a4ad8 4471#undef ASM_OUTPUT_IDENT
e75b25e7
MM
4472#define ASM_OUTPUT_IDENT(FILE, STRING) \
4473{ \
3cce094d 4474 const char *p = STRING; \
e75b25e7 4475 int size = strlen (p) + 1; \
d48bc59a 4476 readonly_data_section (); \
e75b25e7
MM
4477 assemble_string (p, size); \
4478}
4479\f
b82b0773
MM
4480/* Default to -G 8 */
4481#ifndef MIPS_DEFAULT_GVALUE
4482#define MIPS_DEFAULT_GVALUE 8
4483#endif
e75b25e7 4484
f3b39eba
MM
4485/* Define the strings to put out for each section in the object file. */
4486#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4487#define DATA_SECTION_ASM_OP "\t.data" /* large data */
4488#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
2017ed61
EC
4489
4490#undef READONLY_DATA_SECTION_ASM_OP
d48bc59a 4491#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2017ed61 4492
3cf6400d 4493#define SMALL_DATA_SECTION sdata_section
e75b25e7
MM
4494
4495/* What other sections we support other than the normal .data/.text. */
4496
44404b8b 4497#undef EXTRA_SECTIONS
d48bc59a 4498#define EXTRA_SECTIONS in_sdata
e75b25e7
MM
4499
4500/* Define the additional functions to select our additional sections. */
4501
4502/* on the MIPS it is not a good idea to put constants in the text
4503 section, since this defeats the sdata/data mechanism. This is
4504 especially true when -O is used. In this case an effort is made to
4505 address with faster (gp) register relative addressing, which can
4506 only get at sdata and sbss items (there is no stext !!) However,
4507 if the constant is too large for sdata, and it's readonly, it
987ba558 4508 will go into the .rdata section. */
e75b25e7 4509
44404b8b 4510#undef EXTRA_SECTION_FUNCTIONS
e75b25e7
MM
4511#define EXTRA_SECTION_FUNCTIONS \
4512void \
4513sdata_section () \
4514{ \
4515 if (in_section != in_sdata) \
4516 { \
4517 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4518 in_section = in_sdata; \
4519 } \
e75b25e7
MM
4520}
4521
4522/* Given a decl node or constant node, choose the section to output it in
4523 and select that section. */
4524
ae46c4e0
RH
4525#undef TARGET_ASM_SELECT_SECTION
4526#define TARGET_ASM_SELECT_SECTION mips_select_section
e75b25e7
MM
4527\f
4528/* Store in OUTPUT a string (made with alloca) containing
4529 an assembler-name for a local static variable named NAME.
4530 LABELNO is an integer which is different for each call. */
4531
4532#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4533( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4534 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4535
4536#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4537do \
4538 { \
876c09d3
JW
4539 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4540 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7
MM
4541 reg_names[STACK_POINTER_REGNUM], \
4542 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4543 TARGET_64BIT ? "sd" : "sw", \
e75b25e7
MM
4544 reg_names[REGNO], \
4545 reg_names[STACK_POINTER_REGNUM]); \
4546 } \
4547while (0)
4548
4549#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4550do \
4551 { \
4552 if (! set_noreorder) \
4553 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4554 \
4555 dslots_load_total++; \
4556 dslots_load_filled++; \
876c09d3
JW
4557 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4558 TARGET_64BIT ? "ld" : "lw", \
e75b25e7
MM
4559 reg_names[REGNO], \
4560 reg_names[STACK_POINTER_REGNUM], \
876c09d3 4561 TARGET_64BIT ? "daddu" : "addu", \
e75b25e7
MM
4562 reg_names[STACK_POINTER_REGNUM], \
4563 reg_names[STACK_POINTER_REGNUM]); \
4564 \
4565 if (! set_noreorder) \
4566 fprintf (STREAM, "\t.set\treorder\n"); \
4567 } \
4568while (0)
4569
4baed42f
DE
4570/* How to start an assembler comment.
4571 The leading space is important (the mips native assembler requires it). */
e75b25e7 4572#ifndef ASM_COMMENT_START
4baed42f 4573#define ASM_COMMENT_START " #"
e75b25e7 4574#endif
e75b25e7
MM
4575\f
4576
4577/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4578 and mips-tdump.c to print them out.
4579
4580 These must match the corresponding definitions in gdb/mipsread.c.
987ba558 4581 Unfortunately, gcc and gdb do not currently share any directories. */
e75b25e7
MM
4582
4583#define CODE_MASK 0x8F300
4584#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4585#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4586#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
3f1f8d8c
MM
4587
4588\f
4589/* Default definitions for size_t and ptrdiff_t. */
4590
4591#ifndef SIZE_TYPE
79e69af0 4592#define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
3f1f8d8c
MM
4593#endif
4594
4595#ifndef PTRDIFF_TYPE
79e69af0 4596#define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
3f1f8d8c 4597#endif
28174a14
MS
4598
4599/* See mips_expand_prologue's use of loadgp for when this should be
4600 true. */
4601
a53f72db
GRK
4602#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
4603 && mips_abi != ABI_32 \
4604 && mips_abi != ABI_O64)
2bcb2ab3
GK
4605\f
4606/* In mips16 mode, we need to look through the function to check for
4607 PC relative loads that are out of range. */
4608#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4609
4610/* We need to use a special set of functions to handle hard floating
4611 point code in mips16 mode. */
337e2b69
ILT
4612
4613#ifndef INIT_SUBTARGET_OPTABS
4614#define INIT_SUBTARGET_OPTABS
4615#endif
4616
4617#define INIT_TARGET_OPTABS \
4618do \
4619 { \
2bcb2ab3
GK
4620 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4621 INIT_SUBTARGET_OPTABS; \
4622 else \
4623 { \
4624 add_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4625 init_one_libfunc ("__mips16_addsf3"); \
2bcb2ab3 4626 sub_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4627 init_one_libfunc ("__mips16_subsf3"); \
2bcb2ab3 4628 smul_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4629 init_one_libfunc ("__mips16_mulsf3"); \
ef89d648 4630 sdiv_optab->handlers[(int) SFmode].libfunc = \
e85cde9a 4631 init_one_libfunc ("__mips16_divsf3"); \
2bcb2ab3 4632 \
e85cde9a
JL
4633 eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
4634 nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
4635 gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
4636 gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
4637 ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
4638 lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
2bcb2ab3
GK
4639 \
4640 floatsisf_libfunc = \
e85cde9a 4641 init_one_libfunc ("__mips16_floatsisf"); \
2bcb2ab3 4642 fixsfsi_libfunc = \
e85cde9a 4643 init_one_libfunc ("__mips16_fixsfsi"); \
2bcb2ab3
GK
4644 \
4645 if (TARGET_DOUBLE_FLOAT) \
4646 { \
4647 add_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4648 init_one_libfunc ("__mips16_adddf3"); \
2bcb2ab3 4649 sub_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4650 init_one_libfunc ("__mips16_subdf3"); \
2bcb2ab3 4651 smul_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4652 init_one_libfunc ("__mips16_muldf3"); \
ef89d648 4653 sdiv_optab->handlers[(int) DFmode].libfunc = \
e85cde9a 4654 init_one_libfunc ("__mips16_divdf3"); \
2bcb2ab3
GK
4655 \
4656 extendsfdf2_libfunc = \
e85cde9a 4657 init_one_libfunc ("__mips16_extendsfdf2"); \
2bcb2ab3 4658 truncdfsf2_libfunc = \
e85cde9a 4659 init_one_libfunc ("__mips16_truncdfsf2"); \
2bcb2ab3
GK
4660 \
4661 eqdf2_libfunc = \
e85cde9a 4662 init_one_libfunc ("__mips16_eqdf2"); \
2bcb2ab3 4663 nedf2_libfunc = \
e85cde9a 4664 init_one_libfunc ("__mips16_nedf2"); \
2bcb2ab3 4665 gtdf2_libfunc = \
e85cde9a 4666 init_one_libfunc ("__mips16_gtdf2"); \
2bcb2ab3 4667 gedf2_libfunc = \
e85cde9a 4668 init_one_libfunc ("__mips16_gedf2"); \
2bcb2ab3 4669 ltdf2_libfunc = \
e85cde9a 4670 init_one_libfunc ("__mips16_ltdf2"); \
2bcb2ab3 4671 ledf2_libfunc = \
e85cde9a 4672 init_one_libfunc ("__mips16_ledf2"); \
2bcb2ab3
GK
4673 \
4674 floatsidf_libfunc = \
e85cde9a 4675 init_one_libfunc ("__mips16_floatsidf"); \
2bcb2ab3 4676 fixdfsi_libfunc = \
e85cde9a 4677 init_one_libfunc ("__mips16_fixdfsi"); \
2bcb2ab3
GK
4678 } \
4679 } \
337e2b69
ILT
4680 } \
4681while (0)
e0c13c70
L
4682
4683#define DFMODE_NAN \
4684 unsigned short DFbignan[4] = {0x7ff7, 0xffff, 0xffff, 0xffff}; \
4685 unsigned short DFlittlenan[4] = {0xffff, 0xffff, 0xffff, 0xfff7}
4686#define SFMODE_NAN \
4687 unsigned short SFbignan[2] = {0x7fbf, 0xffff}; \
4688 unsigned short SFlittlenan[2] = {0xffff, 0xffbf}
6d439235
EC
4689
4690/* Generate calls to memcpy, etc., not bcopy, etc. */
2017ed61 4691#define TARGET_MEM_FUNCTIONS
This page took 1.973499 seconds and 5 git commands to generate.