]> gcc.gnu.org Git - gcc.git/blame - gcc/config/mips/mips.h
c-decl.c, [...]: Don't check TARGET_MEM_FUNCTIONS.
[gcc.git] / gcc / config / mips / mips.h
CommitLineData
e75b25e7 1/* Definitions of target machine for GNU compiler. MIPS version.
214be03f 2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
7da1799a 3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
ae3e1bb4
RK
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
e75b25e7 8
7ec022b2 9This file is part of GCC.
e75b25e7 10
7ec022b2 11GCC is free software; you can redistribute it and/or modify
e75b25e7
MM
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2, or (at your option)
14any later version.
15
7ec022b2 16GCC is distributed in the hope that it will be useful,
e75b25e7
MM
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
7ec022b2 22along with GCC; see the file COPYING. If not, write to
75fe0c5e
RK
23the Free Software Foundation, 59 Temple Place - Suite 330,
24Boston, MA 02111-1307, USA. */
e75b25e7
MM
25
26
e75b25e7
MM
27/* Standard GCC variables that we reference. */
28
0fb5ac6f 29extern int target_flags;
e75b25e7
MM
30
31/* MIPS external variables defined in mips.c. */
32
33/* comparison type */
34enum cmp_type {
876c09d3
JW
35 CMP_SI, /* compare four byte integers */
36 CMP_DI, /* compare eight byte integers */
e75b25e7
MM
37 CMP_SF, /* compare single precision floats */
38 CMP_DF, /* compare double precision floats */
39 CMP_MAX /* max comparison type */
40};
41
e75b25e7
MM
42/* Which processor to schedule for. Since there is no difference between
43 a R2000 and R3000 in terms of the scheduler, we collapse them into
4a392643
RS
44 just an R3000. The elements of the enumeration must match exactly
45 the cpu attribute in the mips.md machine description. */
e75b25e7
MM
46
47enum processor_type {
48 PROCESSOR_DEFAULT,
fcc11c35
CD
49 PROCESSOR_4KC,
50 PROCESSOR_5KC,
51 PROCESSOR_20KC,
52 PROCESSOR_M4K,
e75b25e7 53 PROCESSOR_R3000,
e9a25f70 54 PROCESSOR_R3900,
e75b25e7 55 PROCESSOR_R6000,
876c09d3 56 PROCESSOR_R4000,
00b3e052 57 PROCESSOR_R4100,
5ce6f47b 58 PROCESSOR_R4111,
3f7967e3 59 PROCESSOR_R4120,
cf768d70 60 PROCESSOR_R4130,
00b3e052 61 PROCESSOR_R4300,
516a2dfd 62 PROCESSOR_R4600,
053665d7 63 PROCESSOR_R4650,
b8eb88d0 64 PROCESSOR_R5000,
5ce6f47b
EC
65 PROCESSOR_R5400,
66 PROCESSOR_R5500,
5fe25f47 67 PROCESSOR_R7000,
0e5a4ad8 68 PROCESSOR_R8000,
98450f0d 69 PROCESSOR_R9000,
fcc11c35
CD
70 PROCESSOR_SB1,
71 PROCESSOR_SR71000
e75b25e7
MM
72};
73
ac8ab9fe
RS
74/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
75 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
76 to work on a 64 bit machine. */
b2d8cf33 77
04bd620d
JW
78#define ABI_32 0
79#define ABI_N32 1
80#define ABI_64 2
81#define ABI_EABI 3
a53f72db 82#define ABI_O64 4
0e5a4ad8 83
05713b80 84/* Information about one recognized processor. Defined here for the
a27fb29b
RS
85 benefit of TARGET_CPU_CPP_BUILTINS. */
86struct mips_cpu_info {
87 /* The 'canonical' name of the processor as far as GCC is concerned.
88 It's typically a manufacturer's prefix followed by a numerical
89 designation. It should be lower case. */
90 const char *name;
91
92 /* The internal processor number that most closely matches this
93 entry. Several processors can have the same value, if there's no
94 difference between them from GCC's point of view. */
95 enum processor_type cpu;
96
97 /* The ISA level that the processor implements. */
98 int isa;
99};
100
987ba558 101extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
f540a7d3 102extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
e2fe6aba 103extern const char *current_function_file; /* filename current function is in */
e75b25e7 104extern int num_source_filenames; /* current .file # */
e75b25e7 105extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
e75b25e7
MM
106extern int sym_lineno; /* sgi next label # for each stmt */
107extern int set_noreorder; /* # of nested .set noreorder's */
108extern int set_nomacro; /* # of nested .set nomacro's */
109extern int set_noat; /* # of nested .set noat's */
110extern int set_volatile; /* # of nested .set volatile's */
e75b25e7
MM
111extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
112extern int mips_dbx_regno[]; /* Map register # to debug register # */
e2500fed 113extern GTY(()) rtx branch_cmp[2]; /* operands for compare */
e75b25e7 114extern enum cmp_type branch_type; /* what type of branch to use */
7dac2f89
EC
115extern enum processor_type mips_arch; /* which cpu to codegen for */
116extern enum processor_type mips_tune; /* which cpu to schedule for */
e75b25e7 117extern int mips_isa; /* architectural level */
f1d5187e 118extern int mips_abi; /* which ABI to use */
2bcb2ab3 119extern int mips16_hard_float; /* mips16 without -msoft-float */
7dac2f89
EC
120extern const char *mips_arch_string; /* for -march=<xxx> */
121extern const char *mips_tune_string; /* for -mtune=<xxx> */
e2fe6aba
KG
122extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
123extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
d490e8ad 124extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
a27fb29b
RS
125extern const struct mips_cpu_info mips_cpu_info_table[];
126extern const struct mips_cpu_info *mips_arch_info;
127extern const struct mips_cpu_info *mips_tune_info;
e75b25e7 128
3a6ee9f4
MM
129/* Macros to silence warnings about numbers being signed in traditional
130 C and unsigned in ISO C when compiled on 32-bit hosts. */
131
132#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
133#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
134#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
135
149e4e00
MM
136\f
137/* Run-time compilation parameters selecting different hardware subsets. */
138
139/* Macros used in the machine description to test the flags. */
140
141 /* Bits for real switches */
6d81ba45
CD
142#define MASK_INT64 0x00000001 /* ints are 64 bits */
143#define MASK_LONG64 0x00000002 /* longs are 64 bits */
144#define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
b8898790
RS
145#define MASK_NO_FUSED_MADD 0x00000008 /* Don't generate floating point
146 multiply-add operations. */
6d81ba45
CD
147#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
148#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
f29d1b66 149#define MASK_EXPLICIT_RELOCS 0x00000040 /* Use relocation operators. */
6d81ba45
CD
150#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
151#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
152#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
153#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
ee692410 154#define MASK_XGOT 0x00000800 /* emit big-got PIC */
6d81ba45
CD
155#define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
156#define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
827555ea
RS
157#define MASK_EMBEDDED_DATA 0x00004000 /* Reduce RAM usage, not fast code */
158#define MASK_BIG_ENDIAN 0x00008000 /* Generate big endian code */
159#define MASK_SINGLE_FLOAT 0x00010000 /* Only single precision FPU. */
160#define MASK_MAD 0x00020000 /* Generate mad/madu as on 4650. */
161#define MASK_4300_MUL_FIX 0x00040000 /* Work-around early Vr4300 CPU bug */
162#define MASK_MIPS16 0x00080000 /* Generate mips16 code */
6d81ba45 163#define MASK_NO_CHECK_ZERO_DIV \
827555ea
RS
164 0x00100000 /* divide by zero checking */
165#define MASK_BRANCHLIKELY 0x00200000 /* Generate Branch Likely
32ad6a47 166 instructions. */
6d81ba45 167#define MASK_UNINIT_CONST_IN_RODATA \
827555ea 168 0x00400000 /* Store uninitialized
6d81ba45 169 consts in rodata */
827555ea
RS
170#define MASK_FIX_R4000 0x00800000 /* Work around R4000 errata. */
171#define MASK_FIX_R4400 0x01000000 /* Work around R4400 errata. */
172#define MASK_FIX_SB1 0x02000000 /* Work around SB-1 errata. */
173#define MASK_FIX_VR4120 0x04000000 /* Work around VR4120 errata. */
dc884a86 174#define MASK_VR4130_ALIGN 0x08000000 /* Perform VR4130 alignment opts. */
50d32cf6
JW
175#define MASK_FP_EXCEPTIONS 0x10000000 /* FP exceptions are enabled. */
176
149e4e00 177 /* Debug switches, not documented */
6d81ba45 178#define MASK_DEBUG 0 /* unused */
08c2951c 179#define MASK_DEBUG_D 0 /* don't do define_split's */
149e4e00 180
6d81ba45
CD
181 /* Dummy switches used only in specs */
182#define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
183
149e4e00
MM
184 /* r4000 64 bit sizes */
185#define TARGET_INT64 (target_flags & MASK_INT64)
186#define TARGET_LONG64 (target_flags & MASK_LONG64)
149e4e00 187#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
876c09d3 188#define TARGET_64BIT (target_flags & MASK_64BIT)
149e4e00 189
5ef37cd3
JW
190 /* Mips vs. GNU linker */
191#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
192
149e4e00
MM
193 /* Mips vs. GNU assembler */
194#define TARGET_GAS (target_flags & MASK_GAS)
6d81ba45 195#define TARGET_MIPS_AS (!TARGET_GAS)
149e4e00 196
6d81ba45 197 /* Debug Modes */
149e4e00 198#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
149e4e00 199#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
149e4e00
MM
200
201 /* Reg. Naming in .s ($21 vs. $a0) */
202#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
203
149e4e00
MM
204 /* call memcpy instead of inline code */
205#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
206
207 /* .abicalls, etc from Pyramid V.4 */
208#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
ee692410 209#define TARGET_XGOT (target_flags & MASK_XGOT)
149e4e00 210
149e4e00
MM
211 /* software floating point */
212#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
213#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
214
215 /* always call through a register */
216#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
217
365c6a0b
JW
218 /* for embedded systems, optimize for
219 reduced RAM space instead of for
220 fastest code. */
221#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
222
919509ce
DN
223 /* always store uninitialized const
224 variables in rodata, requires
987ba558 225 TARGET_EMBEDDED_DATA. */
919509ce
DN
226#define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
227
96abdcb1
ILT
228 /* generate big endian code. */
229#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
230
46299de9
ILT
231#define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
232#define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
233
234#define TARGET_MAD (target_flags & MASK_MAD)
235
13fac94a
GK
236#define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
237
00b3e052
JW
238#define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
239
32ad6a47 240#define TARGET_CHECK_ZERO_DIV (!(target_flags & MASK_NO_CHECK_ZERO_DIV))
08c2951c 241
af34e51e
CD
242#define TARGET_BRANCHLIKELY (target_flags & MASK_BRANCHLIKELY)
243
beadc644 244#define TARGET_FIX_SB1 (target_flags & MASK_FIX_SB1)
cafe096b 245
46490403
MR
246 /* Work around R4000 errata. */
247#define TARGET_FIX_R4000 (target_flags & MASK_FIX_R4000)
248
6ba7b547 249 /* Work around R4400 errata. */
0d63bf21 250#define TARGET_FIX_R4400 (target_flags & MASK_FIX_R4400)
74b9f2d5 251#define TARGET_FIX_VR4120 (target_flags & MASK_FIX_VR4120)
dc884a86 252#define TARGET_VR4130_ALIGN (target_flags & MASK_VR4130_ALIGN)
6ba7b547 253
50d32cf6
JW
254#define TARGET_FP_EXCEPTIONS (target_flags & MASK_FP_EXCEPTIONS)
255
cafe096b
EC
256/* True if we should use NewABI-style relocation operators for
257 symbolic addresses. This is never true for mips16 code,
258 which has its own conventions. */
259
260#define TARGET_EXPLICIT_RELOCS (target_flags & MASK_EXPLICIT_RELOCS)
261
262
cafe096b
EC
263/* True if the call patterns should be split into a jalr followed by
264 an instruction to restore $gp. This is only ever true for SVR4 PIC,
265 in which $gp is call-clobbered. It is only safe to split the load
266 from the call when every use of $gp is explicit. */
267
268#define TARGET_SPLIT_CALLS \
269 (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
270
271/* True if we can optimize sibling calls. For simplicity, we only
272 handle cases in which call_insn_operand will reject invalid
273 sibcall addresses. There are two cases in which this isn't true:
274
275 - TARGET_MIPS16. call_insn_operand accepts constant addresses
276 but there is no direct jump instruction. It isn't worth
277 using sibling calls in this case anyway; they would usually
278 be longer than normal calls.
279
280 - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS. call_insn_operand
281 accepts global constants, but "jr $25" is the only allowed
282 sibcall. */
283
284#define TARGET_SIBCALLS \
285 (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
286
287/* True if .gpword or .gpdword should be used for switch tables.
117c5858
RS
288 There are some problems with using these directives with the
289 native IRIX tools:
cafe096b 290
117c5858
RS
291 - It has been reported that some versions of the native n32
292 assembler mishandle .gpword, complaining that symbols are
293 global when they are in fact local.
294
295 - The native assemblers don't understand .gpdword.
296
297 - Although GAS does understand .gpdword, the native linker
298 mishandles the relocations GAS generates (R_MIPS_GPREL32
299 followed by R_MIPS_64).
300
301 We therefore disable GP-relative switch tables for n32 and n64
302 on IRIX targets. */
303#define TARGET_GPWORD (TARGET_ABICALLS && !(TARGET_NEWABI && TARGET_IRIX))
cafe096b 304
2bcb2ab3
GK
305 /* Generate mips16 code */
306#define TARGET_MIPS16 (target_flags & MASK_MIPS16)
307
ce3649d2
EC
308/* Generic ISA defines. */
309#define ISA_MIPS1 (mips_isa == 1)
310#define ISA_MIPS2 (mips_isa == 2)
311#define ISA_MIPS3 (mips_isa == 3)
312#define ISA_MIPS4 (mips_isa == 4)
313#define ISA_MIPS32 (mips_isa == 32)
2d2a50c3 314#define ISA_MIPS32R2 (mips_isa == 33)
ce3649d2
EC
315#define ISA_MIPS64 (mips_isa == 64)
316
7dac2f89
EC
317/* Architecture target defines. */
318#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
319#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
3f7967e3 320#define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
cf768d70 321#define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
5ce6f47b
EC
322#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
323#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
5fe25f47 324#define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
98450f0d 325#define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
5ce6f47b 326#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
7dac2f89
EC
327
328/* Scheduling target defines. */
7a38df19
EC
329#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
330#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
331#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
dc884a86
RS
332#define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
333#define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
7a38df19 334#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
5ce6f47b
EC
335#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
336#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
7a38df19 337#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
5fe25f47 338#define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
98450f0d 339#define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
50d32cf6 340#define TUNE_SB1 (mips_tune == PROCESSOR_SB1)
7dac2f89 341
39ba1719
RS
342/* True if the pre-reload scheduler should try to create chains of
343 multiply-add or multiply-subtract instructions. For example,
344 suppose we have:
345
346 t1 = a * b
347 t2 = t1 + c * d
d0cb84e9
RS
348 t3 = e * f
349 t4 = t3 - g * h
39ba1719 350
d0cb84e9 351 t1 will have a higher priority than t2 and t3 will have a higher
39ba1719
RS
352 priority than t4. However, before reload, there is no dependence
353 between t1 and t3, and they can often have similar priorities.
354 The scheduler will then tend to prefer:
355
356 t1 = a * b
357 t3 = e * f
358 t2 = t1 + c * d
359 t4 = t3 - g * h
360
361 which stops us from making full use of macc/madd-style instructions.
362 This sort of situation occurs frequently in Fourier transforms and
363 in unrolled loops.
364
365 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
366 queue so that chained multiply-add and multiply-subtract instructions
367 appear ahead of any other instruction that is likely to clobber lo.
368 In the example above, if t2 and t3 become ready at the same time,
369 the code ensures that t2 is scheduled first.
370
371 Multiply-accumulate instructions are a bigger win for some targets
372 than others, so this macro is defined on an opt-in basis. */
dc884a86
RS
373#define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
374 || TUNE_MIPS4120 \
375 || TUNE_MIPS4130)
39ba1719 376
7f9be256 377#define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
cafe096b
EC
378#define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
379
3c7404d3
RO
380/* IRIX specific stuff. */
381#define TARGET_IRIX 0
382#define TARGET_IRIX5 0
383#define TARGET_SGI_O32_AS (TARGET_IRIX && mips_abi == ABI_32 && !TARGET_GAS)
384
a27fb29b
RS
385/* Define preprocessor macros for the -march and -mtune options.
386 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
387 processor. If INFO's canonical name is "foo", define PREFIX to
388 be "foo", and define an additional macro PREFIX_FOO. */
389#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
390 do \
391 { \
392 char *macro, *p; \
393 \
394 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
395 for (p = macro; *p != 0; p++) \
396 *p = TOUPPER (*p); \
397 \
398 builtin_define (macro); \
399 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
400 free (macro); \
401 } \
402 while (0)
403
ce3649d2
EC
404/* Target CPU builtins. */
405#define TARGET_CPU_CPP_BUILTINS() \
406 do \
407 { \
408 builtin_assert ("cpu=mips"); \
409 builtin_define ("__mips__"); \
410 builtin_define ("_mips"); \
411 \
412 /* We do this here because __mips is defined below \
413 and so we can't use builtin_define_std. */ \
414 if (!flag_iso) \
f1d5187e 415 builtin_define ("mips"); \
ce3649d2 416 \
a27fb29b
RS
417 /* Treat _R3000 and _R4000 like register-size defines, \
418 which is how they've historically been used. */ \
ce3649d2
EC
419 if (TARGET_64BIT) \
420 { \
421 builtin_define ("__mips64"); \
ce3649d2
EC
422 builtin_define_std ("R4000"); \
423 builtin_define ("_R4000"); \
424 } \
425 else \
426 { \
ce3649d2
EC
427 builtin_define_std ("R3000"); \
428 builtin_define ("_R3000"); \
429 } \
430 if (TARGET_FLOAT64) \
f1d5187e 431 builtin_define ("__mips_fpr=64"); \
ce3649d2 432 else \
f1d5187e 433 builtin_define ("__mips_fpr=32"); \
ce3649d2
EC
434 \
435 if (TARGET_MIPS16) \
f1d5187e 436 builtin_define ("__mips16"); \
ce3649d2 437 \
a27fb29b
RS
438 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
439 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
440 \
ce3649d2
EC
441 if (ISA_MIPS1) \
442 { \
443 builtin_define ("__mips=1"); \
444 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
445 } \
446 else if (ISA_MIPS2) \
447 { \
448 builtin_define ("__mips=2"); \
449 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
450 } \
451 else if (ISA_MIPS3) \
452 { \
453 builtin_define ("__mips=3"); \
454 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
455 } \
456 else if (ISA_MIPS4) \
457 { \
458 builtin_define ("__mips=4"); \
459 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
460 } \
461 else if (ISA_MIPS32) \
462 { \
463 builtin_define ("__mips=32"); \
2d2a50c3
CD
464 builtin_define ("__mips_isa_rev=1"); \
465 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
466 } \
467 else if (ISA_MIPS32R2) \
468 { \
469 builtin_define ("__mips=32"); \
470 builtin_define ("__mips_isa_rev=2"); \
ce3649d2
EC
471 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
472 } \
473 else if (ISA_MIPS64) \
474 { \
475 builtin_define ("__mips=64"); \
2d2a50c3 476 builtin_define ("__mips_isa_rev=1"); \
ce3649d2
EC
477 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
478 } \
479 \
480 if (TARGET_HARD_FLOAT) \
f1d5187e 481 builtin_define ("__mips_hard_float"); \
ce3649d2 482 else if (TARGET_SOFT_FLOAT) \
f1d5187e 483 builtin_define ("__mips_soft_float"); \
ce3649d2
EC
484 \
485 if (TARGET_SINGLE_FLOAT) \
f1d5187e 486 builtin_define ("__mips_single_float"); \
ce3649d2 487 \
ce3649d2
EC
488 if (TARGET_BIG_ENDIAN) \
489 { \
490 builtin_define_std ("MIPSEB"); \
491 builtin_define ("_MIPSEB"); \
492 } \
493 else \
494 { \
495 builtin_define_std ("MIPSEL"); \
496 builtin_define ("_MIPSEL"); \
497 } \
498 \
499 /* Macros dependent on the C dialect. */ \
500 if (preprocessing_asm_p ()) \
501 { \
502 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
503 builtin_define ("_LANGUAGE_ASSEMBLY"); \
504 } \
04df6730 505 else if (c_dialect_cxx ()) \
ce3649d2
EC
506 { \
507 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
508 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
509 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
510 } \
04df6730
NB
511 else \
512 { \
513 builtin_define_std ("LANGUAGE_C"); \
514 builtin_define ("_LANGUAGE_C"); \
515 } \
516 if (c_dialect_objc ()) \
ce3649d2
EC
517 { \
518 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
519 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
ce6e2d90 520 /* Bizarre, but needed at least for Irix. */ \
ce3649d2
EC
521 builtin_define_std ("LANGUAGE_C"); \
522 builtin_define ("_LANGUAGE_C"); \
523 } \
524 \
525 if (mips_abi == ABI_EABI) \
526 builtin_define ("__mips_eabi"); \
527 \
528} while (0)
529
530
531
149e4e00
MM
532/* Macro to define tables used to set the flags.
533 This is a list in braces of pairs in braces,
534 each pair being { "NAME", VALUE }
535 where VALUE is the bits to set or minus the bits to clear.
536 An empty string NAME is used to identify the default VALUE. */
537
538#define TARGET_SWITCHES \
539{ \
cafe096b 540 SUBTARGET_TARGET_SWITCHES \
a127db75 541 {"int64", MASK_INT64 | MASK_LONG64, \
047142d3 542 N_("Use 64-bit int type")}, \
a127db75 543 {"long64", MASK_LONG64, \
047142d3 544 N_("Use 64-bit long type")}, \
a127db75 545 {"long32", -(MASK_LONG64 | MASK_INT64), \
047142d3 546 N_("Use 32-bit long type")}, \
a127db75 547 {"split-addresses", MASK_SPLIT_ADDR, \
047142d3 548 N_("Optimize lui/addiu address loads")}, \
a127db75 549 {"no-split-addresses", -MASK_SPLIT_ADDR, \
047142d3 550 N_("Don't optimize lui/addiu address loads")}, \
a127db75 551 {"mips-as", -MASK_GAS, \
047142d3 552 N_("Use MIPS as")}, \
a127db75 553 {"gas", MASK_GAS, \
047142d3 554 N_("Use GNU as")}, \
a127db75 555 {"rnames", MASK_NAME_REGS, \
047142d3 556 N_("Use symbolic register names")}, \
a127db75 557 {"no-rnames", -MASK_NAME_REGS, \
047142d3 558 N_("Don't use symbolic register names")}, \
b8898790
RS
559 {"gpOPT", 0, \
560 N_("Use GP relative sdata/sbss sections (now ignored)")}, \
561 {"gpopt", 0, \
562 N_("Use GP relative sdata/sbss sections (now ignored)")}, \
ec24a740 563 {"no-gpOPT", 0, \
b8898790 564 N_("Don't use GP relative sdata/sbss sections (now ignored)")}, \
ec24a740 565 {"no-gpopt", 0, \
b8898790 566 N_("Don't use GP relative sdata/sbss sections (now ignored)")}, \
f29d1b66
RS
567 {"stats", 0, \
568 N_("Output compiler statistics (now ignored)")}, \
569 {"no-stats", 0, \
047142d3 570 N_("Don't output compiler statistics")}, \
a127db75 571 {"memcpy", MASK_MEMCPY, \
047142d3 572 N_("Don't optimize block moves")}, \
a127db75 573 {"no-memcpy", -MASK_MEMCPY, \
047142d3 574 N_("Optimize block moves")}, \
a127db75 575 {"mips-tfile", MASK_MIPS_TFILE, \
047142d3 576 N_("Use mips-tfile asm postpass")}, \
a127db75 577 {"no-mips-tfile", -MASK_MIPS_TFILE, \
047142d3 578 N_("Don't use mips-tfile asm postpass")}, \
a127db75 579 {"soft-float", MASK_SOFT_FLOAT, \
047142d3 580 N_("Use software floating point")}, \
a127db75 581 {"hard-float", -MASK_SOFT_FLOAT, \
047142d3 582 N_("Use hardware floating point")}, \
a127db75 583 {"fp64", MASK_FLOAT64, \
047142d3 584 N_("Use 64-bit FP registers")}, \
a127db75 585 {"fp32", -MASK_FLOAT64, \
047142d3 586 N_("Use 32-bit FP registers")}, \
a127db75 587 {"gp64", MASK_64BIT, \
047142d3 588 N_("Use 64-bit general registers")}, \
a127db75 589 {"gp32", -MASK_64BIT, \
047142d3 590 N_("Use 32-bit general registers")}, \
a127db75 591 {"abicalls", MASK_ABICALLS, \
047142d3 592 N_("Use Irix PIC")}, \
a127db75 593 {"no-abicalls", -MASK_ABICALLS, \
047142d3 594 N_("Don't use Irix PIC")}, \
a127db75 595 {"long-calls", MASK_LONG_CALLS, \
047142d3 596 N_("Use indirect calls")}, \
a127db75 597 {"no-long-calls", -MASK_LONG_CALLS, \
047142d3 598 N_("Don't use indirect calls")}, \
a127db75 599 {"embedded-data", MASK_EMBEDDED_DATA, \
047142d3 600 N_("Use ROM instead of RAM")}, \
a127db75 601 {"no-embedded-data", -MASK_EMBEDDED_DATA, \
047142d3 602 N_("Don't use ROM instead of RAM")}, \
919509ce 603 {"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
047142d3 604 N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
919509ce 605 {"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
047142d3 606 N_("Don't put uninitialized constants in ROM")}, \
a127db75 607 {"eb", MASK_BIG_ENDIAN, \
047142d3 608 N_("Use big-endian byte order")}, \
a127db75 609 {"el", -MASK_BIG_ENDIAN, \
047142d3 610 N_("Use little-endian byte order")}, \
a127db75 611 {"single-float", MASK_SINGLE_FLOAT, \
047142d3 612 N_("Use single (32-bit) FP only")}, \
a127db75 613 {"double-float", -MASK_SINGLE_FLOAT, \
047142d3 614 N_("Don't use single (32-bit) FP only")}, \
a127db75 615 {"mad", MASK_MAD, \
047142d3 616 N_("Use multiply accumulate")}, \
a127db75 617 {"no-mad", -MASK_MAD, \
047142d3 618 N_("Don't use multiply accumulate")}, \
13fac94a
GK
619 {"no-fused-madd", MASK_NO_FUSED_MADD, \
620 N_("Don't generate fused multiply/add instructions")}, \
621 {"fused-madd", -MASK_NO_FUSED_MADD, \
622 N_("Generate fused multiply/add instructions")}, \
dc884a86
RS
623 {"vr4130-align", MASK_VR4130_ALIGN, \
624 N_("Perform VR4130-specific alignment optimizations")}, \
625 {"no-vr4130-align", -MASK_VR4130_ALIGN, \
626 N_("Don't perform VR4130-specific alignment optimizations")}, \
a127db75 627 {"fix4300", MASK_4300_MUL_FIX, \
047142d3 628 N_("Work around early 4300 hardware bug")}, \
a127db75 629 {"no-fix4300", -MASK_4300_MUL_FIX, \
047142d3 630 N_("Don't work around early 4300 hardware bug")}, \
beadc644
CD
631 {"fix-sb1", MASK_FIX_SB1, \
632 N_("Work around errata for early SB-1 revision 2 cores")}, \
633 {"no-fix-sb1", -MASK_FIX_SB1, \
634 N_("Don't work around errata for early SB-1 revision 2 cores")}, \
46490403
MR
635 {"fix-r4000", MASK_FIX_R4000, \
636 N_("Work around R4000 errata")}, \
637 {"no-fix-r4000", -MASK_FIX_R4000, \
638 N_("Don't work around R4000 errata")}, \
6ba7b547
MR
639 {"fix-r4400", MASK_FIX_R4400, \
640 N_("Work around R4400 errata")}, \
641 {"no-fix-r4400", -MASK_FIX_R4400, \
642 N_("Don't work around R4400 errata")}, \
74b9f2d5
RS
643 {"fix-vr4120", MASK_FIX_VR4120, \
644 N_("Work around certain VR4120 errata")}, \
645 {"no-fix-vr4120", -MASK_FIX_VR4120, \
646 N_("Don't work around certain VR4120 errata")}, \
a127db75 647 {"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
047142d3 648 N_("Trap on integer divide by zero")}, \
a127db75 649 {"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
047142d3 650 N_("Don't trap on integer divide by zero")}, \
af34e51e
CD
651 { "branch-likely", MASK_BRANCHLIKELY, \
652 N_("Use Branch Likely instructions, overriding default for arch")}, \
653 { "no-branch-likely", -MASK_BRANCHLIKELY, \
654 N_("Don't use Branch Likely instructions, overriding default for arch")}, \
cafe096b
EC
655 {"explicit-relocs", MASK_EXPLICIT_RELOCS, \
656 N_("Use NewABI-style %reloc() assembly operators")}, \
657 {"no-explicit-relocs", -MASK_EXPLICIT_RELOCS, \
658 N_("Use assembler macros instead of relocation operators")}, \
3372178c
RS
659 {"ips16", MASK_MIPS16, \
660 N_("Generate mips16 code") }, \
661 {"no-mips16", -MASK_MIPS16, \
662 N_("Generate normal-mode code") }, \
ee692410
RS
663 {"xgot", MASK_XGOT, \
664 N_("Lift restrictions on GOT size") }, \
665 {"no-xgot", -MASK_XGOT, \
666 N_("Do not lift restrictions on GOT size") }, \
50d32cf6
JW
667 {"fp-exceptions", MASK_FP_EXCEPTIONS, \
668 N_("FP exceptions are enabled") }, \
669 {"no-fp-exceptions", -MASK_FP_EXCEPTIONS, \
670 N_("FP exceptions are not enabled") }, \
a127db75
JW
671 {"debug", MASK_DEBUG, \
672 NULL}, \
a127db75
JW
673 {"debugd", MASK_DEBUG_D, \
674 NULL}, \
96abdcb1
ILT
675 {"", (TARGET_DEFAULT \
676 | TARGET_CPU_DEFAULT \
50d32cf6
JW
677 | TARGET_ENDIAN_DEFAULT \
678 | TARGET_FP_EXCEPTIONS_DEFAULT), \
a127db75 679 NULL}, \
7dac2f89 680}
149e4e00
MM
681
682/* Default target_flags if no switches are specified */
683
684#ifndef TARGET_DEFAULT
685#define TARGET_DEFAULT 0
686#endif
687
404f986e
MM
688#ifndef TARGET_CPU_DEFAULT
689#define TARGET_CPU_DEFAULT 0
690#endif
691
96abdcb1 692#ifndef TARGET_ENDIAN_DEFAULT
96abdcb1 693#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
96abdcb1
ILT
694#endif
695
50d32cf6
JW
696#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
697#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
698#endif
699
a27fb29b 700/* 'from-abi' makes a good default: you get whatever the ABI requires. */
ea09f032 701#ifndef MIPS_ISA_DEFAULT
a27fb29b
RS
702#ifndef MIPS_CPU_STRING_DEFAULT
703#define MIPS_CPU_STRING_DEFAULT "from-abi"
704#endif
ea09f032
GRK
705#endif
706
996ed075
JJ
707#ifdef IN_LIBGCC2
708#undef TARGET_64BIT
709/* Make this compile time constant for libgcc2 */
710#ifdef __mips64
711#define TARGET_64BIT 1
712#else
713#define TARGET_64BIT 0
714#endif
440927ec 715#endif /* IN_LIBGCC2 */
996ed075 716
cbab8d02 717#ifndef MULTILIB_ENDIAN_DEFAULT
7f2e00db 718#if TARGET_ENDIAN_DEFAULT == 0
cbab8d02 719#define MULTILIB_ENDIAN_DEFAULT "EL"
7f2e00db 720#else
cbab8d02
GRK
721#define MULTILIB_ENDIAN_DEFAULT "EB"
722#endif
7f2e00db 723#endif
cbab8d02 724
ea09f032 725#ifndef MULTILIB_ISA_DEFAULT
7ce2fcb9
KG
726# if MIPS_ISA_DEFAULT == 1
727# define MULTILIB_ISA_DEFAULT "mips1"
728# else
729# if MIPS_ISA_DEFAULT == 2
730# define MULTILIB_ISA_DEFAULT "mips2"
731# else
732# if MIPS_ISA_DEFAULT == 3
733# define MULTILIB_ISA_DEFAULT "mips3"
734# else
735# if MIPS_ISA_DEFAULT == 4
736# define MULTILIB_ISA_DEFAULT "mips4"
737# else
0e5a4ad8
EC
738# if MIPS_ISA_DEFAULT == 32
739# define MULTILIB_ISA_DEFAULT "mips32"
740# else
2d2a50c3
CD
741# if MIPS_ISA_DEFAULT == 33
742# define MULTILIB_ISA_DEFAULT "mips32r2"
0e5a4ad8 743# else
2d2a50c3
CD
744# if MIPS_ISA_DEFAULT == 64
745# define MULTILIB_ISA_DEFAULT "mips64"
746# else
747# define MULTILIB_ISA_DEFAULT "mips1"
748# endif
749# endif
750# endif
7ce2fcb9
KG
751# endif
752# endif
753# endif
754# endif
ea09f032
GRK
755#endif
756
cbab8d02 757#ifndef MULTILIB_DEFAULTS
a27fb29b
RS
758#define MULTILIB_DEFAULTS \
759 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
7f2e00db
RK
760#endif
761
34bcd7fd
JW
762/* We must pass -EL to the linker by default for little endian embedded
763 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
764 linker will default to using big-endian output files. The OUTPUT_FORMAT
765 line must be in the linker script, otherwise -EB/-EL will not work. */
766
120dc6cd 767#ifndef ENDIAN_SPEC
34bcd7fd 768#if TARGET_ENDIAN_DEFAULT == 0
ac282977 769#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
34bcd7fd 770#else
ac282977 771#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
34bcd7fd
JW
772#endif
773#endif
774
149e4e00
MM
775#define TARGET_OPTIONS \
776{ \
b2d8cf33 777 SUBTARGET_TARGET_OPTIONS \
8f2e3902 778 { "tune=", &mips_tune_string, \
c409ea0d 779 N_("Specify CPU for scheduling purposes"), 0}, \
7dac2f89 780 { "arch=", &mips_arch_string, \
c409ea0d 781 N_("Specify CPU for code generation purposes"), 0}, \
a27fb29b 782 { "abi=", &mips_abi_string, \
c409ea0d 783 N_("Specify an ABI"), 0}, \
a127db75 784 { "ips", &mips_isa_string, \
c409ea0d 785 N_("Specify a Standard MIPS ISA"), 0}, \
d490e8ad 786 { "no-flush-func", &mips_cache_flush_func, \
c409ea0d 787 N_("Don't call any cache flush functions"), 0}, \
d490e8ad 788 { "flush-func=", &mips_cache_flush_func, \
c409ea0d 789 N_("Specify cache flush function"), 0}, \
149e4e00
MM
790}
791
b2d8cf33
JW
792/* This is meant to be redefined in the host dependent files. */
793#define SUBTARGET_TARGET_OPTIONS
794
7816bea0
DJ
795/* Support for a compile-time default CPU, et cetera. The rules are:
796 --with-arch is ignored if -march is specified or a -mips is specified
797 (other than -mips16).
798 --with-tune is ignored if -mtune is specified.
799 --with-abi is ignored if -mabi is specified.
800 --with-float is ignored if -mhard-float or -msoft-float are
801 specified. */
802#define OPTION_DEFAULT_SPECS \
803 {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
804 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
805 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
806 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
807
808
5ce6f47b
EC
809#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
810 && !TARGET_SR71K \
811 && !TARGET_MIPS16)
e4f5c5d6 812
0e5a4ad8
EC
813/* Generate three-operand multiply instructions for SImode. */
814#define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
5ce6f47b
EC
815 || TARGET_MIPS5400 \
816 || TARGET_MIPS5500 \
5fe25f47 817 || TARGET_MIPS7000 \
98450f0d 818 || TARGET_MIPS9000 \
ce3649d2 819 || ISA_MIPS32 \
2d2a50c3 820 || ISA_MIPS32R2 \
ce3649d2 821 || ISA_MIPS64) \
0e5a4ad8
EC
822 && !TARGET_MIPS16)
823
824/* Generate three-operand multiply instructions for DImode. */
825#define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
826 && !TARGET_MIPS16)
e9a25f70 827
149e4e00
MM
828/* Macros to decide whether certain features are available or not,
829 depending on the instruction set architecture level. */
830
ce3649d2 831#define HAVE_SQRT_P() (!ISA_MIPS1)
1d5d552e 832
a27fb29b
RS
833/* True if the ABI can only work with 64-bit integer registers. We
834 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
835 otherwise floating-point registers must also be 64-bit. */
7f9be256 836#define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
a27fb29b
RS
837
838/* Likewise for 32-bit regs. */
839#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
840
cafe096b
EC
841/* True if symbols are 64 bits wide. At present, n64 is the only
842 ABI for which this is true. */
843#define ABI_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
844
987ba558 845/* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
8f2e3902
EC
846#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
847 || ISA_MIPS4 \
ce3649d2 848 || ISA_MIPS64)
1d5d552e 849
987ba558 850/* ISA has branch likely instructions (eg. mips2). */
7dac2f89
EC
851/* Disable branchlikely for tx39 until compare rewrite. They haven't
852 been generated up to this point. */
5c8a81d5 853#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
1d5d552e 854
987ba558 855/* ISA has the conditional move instructions introduced in mips4. */
ce3649d2
EC
856#define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
857 || ISA_MIPS32 \
2d2a50c3 858 || ISA_MIPS32R2 \
ce3649d2 859 || ISA_MIPS64) \
5ce6f47b 860 && !TARGET_MIPS5500 \
ce3649d2 861 && !TARGET_MIPS16)
76ee8042 862
0025b7fa
GRK
863/* ISA has just the integer condition move instructions (movn,movz) */
864#define ISA_HAS_INT_CONDMOVE 0
865
76ee8042 866/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
987ba558 867 branch on CC, and move (both FP and non-FP) on CC. */
ce3649d2
EC
868#define ISA_HAS_8CC (ISA_MIPS4 \
869 || ISA_MIPS32 \
2d2a50c3 870 || ISA_MIPS32R2 \
ce3649d2 871 || ISA_MIPS64)
76ee8042 872
4dbe1556
CD
873/* This is a catch all for other mips4 instructions: indexed load, the
874 FP madd and msub instructions, and the FP recip and recip sqrt
875 instructions. */
12bf26b6
EC
876#define ISA_HAS_FP4 ((ISA_MIPS4 \
877 || ISA_MIPS64) \
ce3649d2 878 && !TARGET_MIPS16)
76ee8042 879
a0b6cdee 880/* ISA has conditional trap instructions. */
ce3649d2
EC
881#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
882 && !TARGET_MIPS16)
1d5d552e 883
12bf26b6 884/* ISA has integer multiply-accumulate instructions, madd and msub. */
ce3649d2 885#define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
2d2a50c3 886 || ISA_MIPS32R2 \
ce3649d2
EC
887 || ISA_MIPS64 \
888 ) && !TARGET_MIPS16)
0e5a4ad8 889
12bf26b6
EC
890/* ISA has floating-point nmadd and nmsub instructions. */
891#define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
892 || ISA_MIPS64) \
5ce6f47b 893 && (!TARGET_MIPS5400 || TARGET_MAD) \
974a3101 894 && ! TARGET_MIPS16)
149e4e00 895
0e5a4ad8 896/* ISA has count leading zeroes/ones instruction (not implemented). */
ce3649d2 897#define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
2d2a50c3 898 || ISA_MIPS32R2 \
ce3649d2
EC
899 || ISA_MIPS64 \
900 ) && !TARGET_MIPS16)
0e5a4ad8
EC
901
902/* ISA has double-word count leading zeroes/ones instruction (not
903 implemented). */
ce3649d2
EC
904#define ISA_HAS_DCLZ_DCLO (ISA_MIPS64 \
905 && !TARGET_MIPS16)
0e5a4ad8 906
5ce6f47b
EC
907/* ISA has three operand multiply instructions that put
908 the high part in an accumulator: mulhi or mulhiu. */
909#define ISA_HAS_MULHI (TARGET_MIPS5400 \
910 || TARGET_MIPS5500 \
911 || TARGET_SR71K \
912 )
913
914/* ISA has three operand multiply instructions that
915 negates the result and puts the result in an accumulator. */
916#define ISA_HAS_MULS (TARGET_MIPS5400 \
917 || TARGET_MIPS5500 \
918 || TARGET_SR71K \
919 )
920
921/* ISA has three operand multiply instructions that subtracts the
922 result from a 4th operand and puts the result in an accumulator. */
923#define ISA_HAS_MSAC (TARGET_MIPS5400 \
924 || TARGET_MIPS5500 \
925 || TARGET_SR71K \
926 )
927/* ISA has three operand multiply instructions that the result
928 from a 4th operand and puts the result in an accumulator. */
cafe096b 929#define ISA_HAS_MACC ((TARGET_MIPS4120 && !TARGET_MIPS16) \
cf768d70 930 || (TARGET_MIPS4130 && !TARGET_MIPS16) \
cafe096b 931 || TARGET_MIPS5400 \
5ce6f47b
EC
932 || TARGET_MIPS5500 \
933 || TARGET_SR71K \
934 )
935
936/* ISA has 32-bit rotate right instruction. */
2d2a50c3
CD
937#define ISA_HAS_ROTR_SI (!TARGET_MIPS16 \
938 && (ISA_MIPS32R2 \
939 || TARGET_MIPS5400 \
940 || TARGET_MIPS5500 \
941 || TARGET_SR71K \
942 ))
5ce6f47b 943
2d2a50c3 944/* ISA has 64-bit rotate right instruction. */
5ce6f47b 945#define ISA_HAS_ROTR_DI (TARGET_64BIT \
2d2a50c3 946 && !TARGET_MIPS16 \
5ce6f47b
EC
947 && (TARGET_MIPS5400 \
948 || TARGET_MIPS5500 \
949 || TARGET_SR71K \
950 ))
951
4dbe1556 952/* ISA has data prefetch instructions. This controls use of 'pref'. */
8f2e3902
EC
953#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
954 || ISA_MIPS32 \
2d2a50c3 955 || ISA_MIPS32R2 \
8f2e3902
EC
956 || ISA_MIPS64) \
957 && !TARGET_MIPS16)
958
4dbe1556
CD
959/* ISA has data indexed prefetch instructions. This controls use of
960 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
961 (prefx is a cop1x instruction, so can only be used if FP is
962 enabled.) */
963#define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
964 || ISA_MIPS64) \
965 && !TARGET_MIPS16)
966
8214bf98
RS
967/* True if trunc.w.s and trunc.w.d are real (not synthetic)
968 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
969 also requires TARGET_DOUBLE_FLOAT. */
970#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
971
2d2a50c3
CD
972/* ISA includes the MIPS32r2 seb and seh instructions. */
973#define ISA_HAS_SEB_SEH (!TARGET_MIPS16 \
974 && (ISA_MIPS32R2 \
975 ))
976
21c9500d
RS
977/* True if the result of a load is not available to the next instruction.
978 A nop will then be needed between instructions like "lw $4,..."
979 and "addiu $4,$4,1". */
980#define ISA_HAS_LOAD_DELAY (mips_isa == 1 \
981 && !TARGET_MIPS3900 \
982 && !TARGET_MIPS16)
983
984/* Likewise mtc1 and mfc1. */
985#define ISA_HAS_XFER_DELAY (mips_isa <= 3)
986
987/* Likewise floating-point comparisons. */
988#define ISA_HAS_FCMP_DELAY (mips_isa <= 3)
989
990/* True if mflo and mfhi can be immediately followed by instructions
fdcf1e1e
CD
991 which write to the HI and LO registers.
992
993 According to MIPS specifications, MIPS ISAs I, II, and III need
994 (at least) two instructions between the reads of HI/LO and
995 instructions which write them, and later ISAs do not. Contradicting
996 the MIPS specifications, some MIPS IV processor user manuals (e.g.
997 the UM for the NEC Vr5000) document needing the instructions between
998 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
999 MIPS64 and later ISAs to have the interlocks, plus any specific
1000 earlier-ISA CPUs for which CPU documentation declares that the
1001 instructions are really interlocked. */
1002#define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1003 || ISA_MIPS32R2 \
1004 || ISA_MIPS64 \
1005 || TARGET_MIPS5500)
e75b25e7 1006\f
dfad12b5 1007/* Add -G xx support. */
e75b25e7 1008
0e5a4ad8 1009#undef SWITCH_TAKES_ARG
e75b25e7 1010#define SWITCH_TAKES_ARG(CHAR) \
7d4ea832 1011 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
e75b25e7 1012
e75b25e7
MM
1013#define OVERRIDE_OPTIONS override_options ()
1014
ac8ab9fe 1015#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
516a2dfd 1016
7be1e523
RK
1017/* Show we can debug even without a frame pointer. */
1018#define CAN_DEBUG_WITHOUT_FP
1019\f
59c94430
MM
1020/* Tell collect what flags to pass to nm. */
1021#ifndef NM_FLAGS
2ce3c6c6 1022#define NM_FLAGS "-Bn"
59c94430
MM
1023#endif
1024
e75b25e7 1025\f
4e88bbcd
ILT
1026/* Assembler specs. */
1027
1028/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
1029 than gas. */
1030
1031#define MIPS_AS_ASM_SPEC "\
1032%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
c725bd79 1033%{pipe: %e-pipe is not supported} \
4e88bbcd
ILT
1034%{K} %(subtarget_mips_as_asm_spec)"
1035
1036/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
1037 rather than gas. It may be overridden by subtargets. */
1038
1039#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
1040#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
1041#endif
1042
1043/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
1044 assembler. */
1045
a27fb29b 1046#define GAS_ASM_SPEC "%{mtune=*} %{v}"
009da785 1047
3bd6d4c4 1048#define SUBTARGET_TARGET_SWITCHES
009da785 1049
0e5a4ad8 1050#ifndef MIPS_ABI_DEFAULT
009da785
EC
1051#define MIPS_ABI_DEFAULT ABI_32
1052#endif
0e5a4ad8 1053
a27fb29b
RS
1054/* Use the most portable ABI flag for the ASM specs. */
1055
1056#if MIPS_ABI_DEFAULT == ABI_32
1057#define MULTILIB_ABI_DEFAULT "mabi=32"
1058#define ASM_ABI_DEFAULT_SPEC "-32"
1059#endif
1060
1061#if MIPS_ABI_DEFAULT == ABI_O64
1062#define MULTILIB_ABI_DEFAULT "mabi=o64"
1063#define ASM_ABI_DEFAULT_SPEC "-mabi=o64"
1064#endif
1065
1066#if MIPS_ABI_DEFAULT == ABI_N32
1067#define MULTILIB_ABI_DEFAULT "mabi=n32"
1068#define ASM_ABI_DEFAULT_SPEC "-n32"
1069#endif
1070
1071#if MIPS_ABI_DEFAULT == ABI_64
1072#define MULTILIB_ABI_DEFAULT "mabi=64"
1073#define ASM_ABI_DEFAULT_SPEC "-64"
1074#endif
1075
1076#if MIPS_ABI_DEFAULT == ABI_EABI
1077#define MULTILIB_ABI_DEFAULT "mabi=eabi"
1078#define ASM_ABI_DEFAULT_SPEC "-mabi=eabi"
1079#endif
1080
a27fb29b
RS
1081/* Only ELF targets can switch the ABI. */
1082#ifndef OBJECT_FORMAT_ELF
1083#undef ASM_ABI_DEFAULT_SPEC
1084#define ASM_ABI_DEFAULT_SPEC ""
0e5a4ad8 1085#endif
4e88bbcd
ILT
1086
1087/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
1088 GAS_ASM_SPEC as the default, depending upon the value of
1089 TARGET_DEFAULT. */
e75b25e7 1090
bb98bc58
JW
1091#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
1092/* GAS */
bb98bc58 1093
4e88bbcd
ILT
1094#define TARGET_ASM_SPEC "\
1095%{mmips-as: %(mips_as_asm_spec)} \
1096%{!mmips-as: %(gas_asm_spec)}"
1097
1098#else /* not GAS */
1099
1100#define TARGET_ASM_SPEC "\
1101%{!mgas: %(mips_as_asm_spec)} \
1102%{mgas: %(gas_asm_spec)}"
1103
1104#endif /* not GAS */
1105
1106/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1107 to the assembler. It may be overridden by subtargets. */
1108#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1109#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
bb98bc58 1110%{noasmopt:-O0} \
4e88bbcd
ILT
1111%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1112#endif
1113
1114/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1115 the assembler. It may be overridden by subtargets. */
1116#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1117#define SUBTARGET_ASM_DEBUGGING_SPEC "\
bb98bc58
JW
1118%{g} %{g0} %{g1} %{g2} %{g3} \
1119%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1120%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1121%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
6d439235 1122%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
3bd4f460 1123%(mdebug_asm_spec)"
4e88bbcd 1124#endif
bb98bc58 1125
3bd4f460 1126/* Beginning with gas 2.13, -mdebug must be passed to correctly handle COFF
deae8de6 1127 debugging info. */
3bd4f460
RO
1128#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
1129/* GAS */
deae8de6
EC
1130#define MDEBUG_ASM_SPEC "%{gcoff*:-mdebug} \
1131 %{!gcoff*:-no-mdebug}"
3bd4f460
RO
1132#else /* not GAS */
1133#define MDEBUG_ASM_SPEC ""
1134#endif /* not GAS */
1135
4e88bbcd
ILT
1136/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1137 overridden by subtargets. */
1138
1139#ifndef SUBTARGET_ASM_SPEC
1140#define SUBTARGET_ASM_SPEC ""
bb98bc58 1141#endif
4e88bbcd 1142
a27fb29b
RS
1143/* ASM_SPEC is the set of arguments to pass to the assembler. Note: we
1144 pass -mgp32, -mgp64, -march, -mabi=eabi and -meabi=o64 regardless of
1145 whether we're using GAS. These options can only be used properly
1146 with GAS, and it is better to get an error from a non-GAS assembler
1147 than to silently generate bad code. */
4e88bbcd 1148
b2bcb32d 1149#undef ASM_SPEC
4e88bbcd 1150#define ASM_SPEC "\
2d2a50c3
CD
1151%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1152%{mips32} %{mips32r2} %{mips64} \
2bcb2ab3 1153%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
74b9f2d5 1154%{mfix-vr4120} \
4e88bbcd
ILT
1155%(subtarget_asm_optimizing_spec) \
1156%(subtarget_asm_debugging_spec) \
a27fb29b
RS
1157%{mabi=32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
1158%{mabi=eabi} %{mabi=o64} %{!mabi*: %(asm_abi_default_spec)} \
ee692410 1159%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
4e88bbcd
ILT
1160%(target_asm_spec) \
1161%(subtarget_asm_spec)"
e75b25e7 1162
31c714e3 1163/* Extra switches sometimes passed to the linker. */
bb98bc58
JW
1164/* ??? The bestGnum will never be passed to the linker, because the gcc driver
1165 will interpret it as a -b option. */
e75b25e7
MM
1166
1167#ifndef LINK_SPEC
31c714e3 1168#define LINK_SPEC "\
120dc6cd 1169%(endian_spec) \
2d2a50c3 1170%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
120dc6cd 1171%{bestGnum} %{shared} %{non_shared}"
0e5a4ad8
EC
1172#endif /* LINK_SPEC defined */
1173
e75b25e7
MM
1174
1175/* Specs for the compiler proper */
1176
c9db96ce
JR
1177/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1178 overridden by subtargets. */
1179#ifndef SUBTARGET_CC1_SPEC
1180#define SUBTARGET_CC1_SPEC ""
1181#endif
1182
1183/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1184
e75b25e7 1185#ifndef CC1_SPEC
31c714e3 1186#define CC1_SPEC "\
31c714e3 1187%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
96abdcb1 1188%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
c9db96ce 1189%{save-temps: } \
4e314d1f 1190%(subtarget_cc1_spec)"
e75b25e7
MM
1191#endif
1192
4e88bbcd
ILT
1193/* Preprocessor specs. */
1194
4e88bbcd
ILT
1195/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1196 overridden by subtargets. */
1197#ifndef SUBTARGET_CPP_SPEC
1198#define SUBTARGET_CPP_SPEC ""
1199#endif
1200
ce3649d2 1201#define CPP_SPEC "%(subtarget_cpp_spec)"
4e88bbcd
ILT
1202
1203/* This macro defines names of additional specifications to put in the specs
1204 that can be used in various specifications like CC1_SPEC. Its definition
1205 is an initializer with a subgrouping for each command option.
1206
1207 Each subgrouping contains a string constant, that defines the
7ec022b2 1208 specification name, and a string constant that used by the GCC driver
4e88bbcd
ILT
1209 program.
1210
1211 Do not define this macro if it does not need to do anything. */
1212
1213#define EXTRA_SPECS \
829245be
KG
1214 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1215 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
829245be
KG
1216 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
1217 { "gas_asm_spec", GAS_ASM_SPEC }, \
1218 { "target_asm_spec", TARGET_ASM_SPEC }, \
1219 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
1220 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1221 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
3bd4f460 1222 { "mdebug_asm_spec", MDEBUG_ASM_SPEC }, \
829245be 1223 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
a27fb29b 1224 { "asm_abi_default_spec", ASM_ABI_DEFAULT_SPEC }, \
120dc6cd 1225 { "endian_spec", ENDIAN_SPEC }, \
4e88bbcd
ILT
1226 SUBTARGET_EXTRA_SPECS
1227
1228#ifndef SUBTARGET_EXTRA_SPECS
1229#define SUBTARGET_EXTRA_SPECS
e75b25e7
MM
1230#endif
1231
1232/* If defined, this macro is an additional prefix to try after
1233 `STANDARD_EXEC_PREFIX'. */
1234
1235#ifndef MD_EXEC_PREFIX
31c714e3 1236#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
e75b25e7
MM
1237#endif
1238
59c94430
MM
1239#ifndef MD_STARTFILE_PREFIX
1240#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
1241#endif
1242
e75b25e7 1243\f
23532de9
JT
1244#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1245#define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
deae8de6
EC
1246#define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1247
1248#ifndef PREFERRED_DEBUGGING_TYPE
1249#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1250#endif
e75b25e7 1251
d2beeae7
EC
1252#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
1253
59c94430
MM
1254/* By default, turn on GDB extensions. */
1255#define DEFAULT_GDB_EXTENSIONS 1
1256
e75b25e7
MM
1257/* If we are passing smuggling stabs through the MIPS ECOFF object
1258 format, put a comment in front of the .stab<x> operation so
1259 that the MIPS assembler does not choke. The mips-tfile program
1260 will correctly put the stab into the object file. */
1261
78d057d8
HPN
1262#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
1263#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
1264#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
e75b25e7 1265
6ae1498b
JW
1266/* Local compiler-generated symbols must have a prefix that the assembler
1267 understands. By default, this is $, although some targets (e.g.,
987ba558 1268 NetBSD-ELF) need to override this. */
6ae1498b
JW
1269
1270#ifndef LOCAL_LABEL_PREFIX
1271#define LOCAL_LABEL_PREFIX "$"
1272#endif
1273
1274/* By default on the mips, external symbols do not have an underscore
987ba558 1275 prepended, but some targets (e.g., NetBSD) require this. */
6ae1498b
JW
1276
1277#ifndef USER_LABEL_PREFIX
1278#define USER_LABEL_PREFIX ""
1279#endif
1280
e75b25e7
MM
1281/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1282 since the length can run past this up to a continuation point. */
44404b8b 1283#undef DBX_CONTIN_LENGTH
e75b25e7
MM
1284#define DBX_CONTIN_LENGTH 1500
1285
987ba558 1286/* How to renumber registers for dbx and gdb. */
e75b25e7
MM
1287#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1288
dfad12b5 1289/* The mapping from gcc register number to DWARF 2 CFA column number. */
1f3d0661 1290#define DWARF_FRAME_REGNUM(REG) (REG)
c8cc5c4a
JM
1291
1292/* The DWARF 2 CFA column which tracks the return address. */
1f3d0661
DD
1293#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
1294
1295/* The DWARF 2 CFA column which tracks the return address from a
1296 signal handler context. */
1297#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
e75b25e7 1298
469ac993 1299/* Before the prologue, RA lives in r31. */
c5c76735 1300#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
469ac993 1301
9e800206 1302/* Describe how we implement __builtin_eh_return. */
f1d5187e
RS
1303#define EH_RETURN_DATA_REGNO(N) \
1304 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1305
9e800206
RH
1306#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1307
7dac2f89 1308/* Offsets recorded in opcodes are a multiple of this alignment factor.
b3276c7a
GK
1309 The default for this in 64-bit mode is 8, which causes problems with
1310 SFmode register saves. */
1311#define DWARF_CIE_DATA_ALIGNMENT 4
1312
ab78d4a8
MM
1313/* Correct the offset of automatic variables and arguments. Note that
1314 the MIPS debug format wants all automatic variables and arguments
1315 to be in terms of the virtual frame pointer (stack pointer before
1316 any adjustment in the function), while the MIPS 3.0 linker wants
1317 the frame pointer to be the stack pointer after the initial
1318 adjustment. */
e75b25e7 1319
8f2e3902 1320#define DEBUGGER_AUTO_OFFSET(X) \
f5963e61 1321 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
8f2e3902 1322#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
f5963e61 1323 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
e75b25e7
MM
1324\f
1325/* Target machine storage layout */
1326
4851a75c 1327#define BITS_BIG_ENDIAN 0
96abdcb1 1328#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
96abdcb1 1329#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1330
96abdcb1
ILT
1331/* Define this to set the endianness to use in libgcc2.c, which can
1332 not depend on target_flags. */
1333#if !defined(MIPSEL) && !defined(__MIPSEL__)
1334#define LIBGCC2_WORDS_BIG_ENDIAN 1
e75b25e7 1335#else
96abdcb1 1336#define LIBGCC2_WORDS_BIG_ENDIAN 0
e75b25e7
MM
1337#endif
1338
876c09d3 1339#define MAX_BITS_PER_WORD 64
e75b25e7
MM
1340
1341/* Width of a word, in units (bytes). */
456f6501 1342#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
ef0e53ce 1343#define MIN_UNITS_PER_WORD 4
876c09d3
JW
1344
1345/* For MIPS, width of a floating point register. */
456f6501 1346#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
e75b25e7 1347
3f26edaa
RS
1348/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1349 the next available register. */
1350#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1351
8a381273
AO
1352/* The largest size of value that can be held in floating-point
1353 registers and moved with a single instruction. */
1354#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1355
1356/* The largest size of value that can be held in floating-point
1357 registers. */
0e808055
RS
1358#define UNITS_PER_FPVALUE \
1359 (TARGET_SOFT_FLOAT ? 0 \
1360 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1361 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
4d72536e
RS
1362
1363/* The number of bytes in a double. */
1364#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
3f26edaa 1365
dfad12b5 1366/* Set the sizes of the core types. */
e75b25e7 1367#define SHORT_TYPE_SIZE 16
dfad12b5 1368#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
456f6501 1369#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
923d630e 1370#define LONG_LONG_TYPE_SIZE 64
e75b25e7 1371
dfad12b5 1372#define FLOAT_TYPE_SIZE 32
e75b25e7 1373#define DOUBLE_TYPE_SIZE 64
7f9be256 1374#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
8a381273
AO
1375
1376/* long double is not a fixed mode, but the idea is that, if we
1377 support long double, we also want a 128-bit integer type. */
1378#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1379
1380#ifdef IN_LIBGCC2
1381#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1382 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1383# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1384# else
1385# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1386# endif
1387#endif
e75b25e7 1388
cafe096b 1389/* Width in bits of a pointer. */
1eeed24e 1390#ifndef POINTER_SIZE
cafe096b 1391#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1eeed24e 1392#endif
e75b25e7 1393
cafe096b 1394#define POINTERS_EXTEND_UNSIGNED 0
e75b25e7
MM
1395
1396/* Allocation boundary (in *bits*) for storing arguments in argument list. */
7f9be256
TS
1397#define PARM_BOUNDARY ((mips_abi == ABI_O64 \
1398 || TARGET_NEWABI \
0b51254d 1399 || (mips_abi == ABI_EABI && TARGET_64BIT)) ? 64 : 32)
e75b25e7 1400
cafe096b 1401
e75b25e7
MM
1402/* Allocation boundary (in *bits*) for the code of a function. */
1403#define FUNCTION_BOUNDARY 32
1404
1405/* Alignment of field after `int : 0' in a structure. */
9e95597a 1406#define EMPTY_FIELD_BOUNDARY 32
e75b25e7
MM
1407
1408/* Every structure's size must be a multiple of this. */
1409/* 8 is observed right on a DECstation and on riscos 4.02. */
1410#define STRUCTURE_SIZE_BOUNDARY 8
1411
1412/* There is no point aligning anything to a rounder boundary than this. */
8a381273 1413#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
e75b25e7 1414
dfad12b5 1415/* All accesses must be aligned. */
31c714e3 1416#define STRICT_ALIGNMENT 1
e75b25e7
MM
1417
1418/* Define this if you wish to imitate the way many other C compilers
1419 handle alignment of bitfields and the structures that contain
1420 them.
1421
43a88a8c 1422 The behavior is that the type written for a bit-field (`int',
e75b25e7
MM
1423 `short', or other integer type) imposes an alignment for the
1424 entire structure, as if the structure really did contain an
43a88a8c 1425 ordinary field of that type. In addition, the bit-field is placed
e75b25e7
MM
1426 within the structure so that it would fit within such a field,
1427 not crossing a boundary for it.
1428
43a88a8c 1429 Thus, on most machines, a bit-field whose type is written as `int'
e75b25e7
MM
1430 would not cross a four-byte boundary, and would force four-byte
1431 alignment for the whole structure. (The alignment used may not
1432 be four bytes; it is controlled by the other alignment
1433 parameters.)
1434
1435 If the macro is defined, its definition should be a C expression;
1436 a nonzero value for the expression enables this behavior. */
1437
1438#define PCC_BITFIELD_TYPE_MATTERS 1
1439
1440/* If defined, a C expression to compute the alignment given to a
1441 constant that is being placed in memory. CONSTANT is the constant
1442 and ALIGN is the alignment that the object would ordinarily have.
1443 The value of this macro is used instead of that alignment to align
1444 the object.
1445
1446 If this macro is not defined, then ALIGN is used.
1447
1448 The typical use of this macro is to increase alignment for string
1449 constants to be word aligned so that `strcpy' calls that copy
1450 constants can be done inline. */
1451
1452#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1453 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
75131237 1454 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
e75b25e7
MM
1455
1456/* If defined, a C expression to compute the alignment for a static
1457 variable. TYPE is the data type, and ALIGN is the alignment that
1458 the object would ordinarily have. The value of this macro is used
1459 instead of that alignment to align the object.
1460
1461 If this macro is not defined, then ALIGN is used.
1462
1463 One use of this macro is to increase alignment of medium-size
1464 data to make it all fit in fewer cache lines. Another is to
1465 cause character arrays to be word-aligned so that `strcpy' calls
1466 that copy constants to character arrays can be done inline. */
1467
1468#undef DATA_ALIGNMENT
1469#define DATA_ALIGNMENT(TYPE, ALIGN) \
1470 ((((ALIGN) < BITS_PER_WORD) \
1471 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1472 || TREE_CODE (TYPE) == UNION_TYPE \
1473 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1474
f5c8ac96 1475
648bb159
RS
1476#define PAD_VARARGS_DOWN \
1477 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
f5c8ac96 1478
9a63901f
RK
1479/* Define if operations between registers always perform the operation
1480 on the full register even if a narrower mode is specified. */
1481#define WORD_REGISTER_OPERATIONS
1482
ec24a740 1483/* When in 64 bit mode, move insns will sign extend SImode and CCmode
dab66575 1484 moves. All other references are zero extended. */
a872728c
JL
1485#define LOAD_EXTEND_OP(MODE) \
1486 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1487 ? SIGN_EXTEND : ZERO_EXTEND)
2bcb2ab3
GK
1488
1489/* Define this macro if it is advisable to hold scalars in registers
7dac2f89 1490 in a wider mode than that declared by the program. In such cases,
2bcb2ab3
GK
1491 the value is constrained to be within the bounds of the declared
1492 type, but kept valid in the wider mode. The signedness of the
cafe096b 1493 extension may differ from that of the type. */
2bcb2ab3
GK
1494
1495#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1496 if (GET_MODE_CLASS (MODE) == MODE_INT \
cafe096b
EC
1497 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1498 { \
1499 if ((MODE) == SImode) \
1500 (UNSIGNEDP) = 0; \
1501 (MODE) = Pmode; \
1502 }
1503
1504/* Define if loading short immediate values into registers sign extends. */
1505#define SHORT_IMMEDIATES_SIGN_EXTEND
e75b25e7
MM
1506\f
1507/* Standard register usage. */
1508
dfad12b5 1509/* Number of hardware registers. We have:
e75b25e7 1510
dfad12b5
RS
1511 - 32 integer registers
1512 - 32 floating point registers
1513 - 8 condition code registers
1514 - 2 accumulator registers (hi and lo)
1515 - 32 registers each for coprocessors 0, 2 and 3
bcbc6b7f
RS
1516 - 3 fake registers:
1517 - ARG_POINTER_REGNUM
1518 - FRAME_POINTER_REGNUM
1519 - FAKE_CALL_REGNO (see the comment above load_callsi for details)
1520 - 3 dummy entries that were used at various times in the past. */
e75b25e7 1521
d604bca3 1522#define FIRST_PSEUDO_REGISTER 176
e75b25e7 1523
dfad12b5
RS
1524/* By default, fix the kernel registers ($26 and $27), the global
1525 pointer ($28) and the stack pointer ($29). This can change
1526 depending on the command-line options.
e75b25e7 1527
dfad12b5 1528 Regarding coprocessor registers: without evidence to the contrary,
d604bca3
MH
1529 it's best to assume that each coprocessor register has a unique
1530 use. This can be overridden, in, e.g., override_options() or
1531 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1532 for a particular target. */
1533
e75b25e7
MM
1534#define FIXED_REGISTERS \
1535{ \
1536 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
cafe096b 1537 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
e75b25e7
MM
1538 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1539 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
d334c3c1 1540 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
d604bca3
MH
1541 /* COP0 registers */ \
1542 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1543 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1544 /* COP2 registers */ \
1545 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1546 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1547 /* COP3 registers */ \
1548 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1549 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1550}
1551
1552
dfad12b5
RS
1553/* Set up this array for o32 by default.
1554
1555 Note that we don't mark $31 as a call-clobbered register. The idea is
1556 that it's really the call instructions themselves which clobber $31.
cafe096b
EC
1557 We don't care what the called function does with it afterwards.
1558
1559 This approach makes it easier to implement sibcalls. Unlike normal
1560 calls, sibcalls don't clobber $31, so the register reaches the
1561 called function in tact. EPILOGUE_USES says that $31 is useful
1562 to the called function. */
e75b25e7
MM
1563
1564#define CALL_USED_REGISTERS \
1565{ \
1566 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
cafe096b 1567 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
e75b25e7
MM
1568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1569 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
cafe096b 1570 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
d604bca3
MH
1571 /* COP0 registers */ \
1572 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1573 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1574 /* COP2 registers */ \
1575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1576 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1577 /* COP3 registers */ \
1578 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1579 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1580}
1581
2ca2d9ee 1582
dfad12b5 1583/* Define this since $28, though fixed, is call-saved in many ABIs. */
2ca2d9ee
EC
1584
1585#define CALL_REALLY_USED_REGISTERS \
1586{ /* General registers. */ \
1587 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
cafe096b 1588 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
2ca2d9ee
EC
1589 /* Floating-point registers. */ \
1590 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1591 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1592 /* Others. */ \
cafe096b 1593 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
d604bca3
MH
1594 /* COP0 registers */ \
1595 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1596 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1597 /* COP2 registers */ \
1598 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1600 /* COP3 registers */ \
1601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1602 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
2ca2d9ee 1603}
e75b25e7
MM
1604
1605/* Internal macros to classify a register number as to whether it's a
1606 general purpose register, a floating point register, a
516a2dfd 1607 multiply/divide register, or a status register. */
e75b25e7
MM
1608
1609#define GP_REG_FIRST 0
1610#define GP_REG_LAST 31
1611#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1612#define GP_DBX_FIRST 0
1613
1614#define FP_REG_FIRST 32
1615#define FP_REG_LAST 63
1616#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1617#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1618
1619#define MD_REG_FIRST 64
d334c3c1 1620#define MD_REG_LAST 65
e75b25e7 1621#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
77d4f3a4 1622#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
e75b25e7 1623
225b8835 1624#define ST_REG_FIRST 67
b8eb88d0 1625#define ST_REG_LAST 74
e75b25e7
MM
1626#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1627
39dffea3 1628
cafe096b 1629/* FIXME: renumber. */
d604bca3
MH
1630#define COP0_REG_FIRST 80
1631#define COP0_REG_LAST 111
1632#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1633
1634#define COP2_REG_FIRST 112
1635#define COP2_REG_LAST 143
1636#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1637
1638#define COP3_REG_FIRST 144
1639#define COP3_REG_LAST 175
1640#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1641/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1642#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1643
e75b25e7
MM
1644#define AT_REGNUM (GP_REG_FIRST + 1)
1645#define HI_REGNUM (MD_REG_FIRST + 0)
1646#define LO_REGNUM (MD_REG_FIRST + 1)
b8eb88d0 1647
dfad12b5
RS
1648/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1649 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
b8eb88d0 1650 should be used instead. */
e75b25e7
MM
1651#define FPSW_REGNUM ST_REG_FIRST
1652
75131237
RK
1653#define GP_REG_P(REGNO) \
1654 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
2bcb2ab3
GK
1655#define M16_REG_P(REGNO) \
1656 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
75131237
RK
1657#define FP_REG_P(REGNO) \
1658 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1659#define MD_REG_P(REGNO) \
1660 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1661#define ST_REG_P(REGNO) \
1662 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
d604bca3
MH
1663#define COP0_REG_P(REGNO) \
1664 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1665#define COP2_REG_P(REGNO) \
1666 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1667#define COP3_REG_P(REGNO) \
1668 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1669#define ALL_COP_REG_P(REGNO) \
1670 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1671
5b0f0db6
RS
1672#define FP_REG_RTX_P(X) (GET_CODE (X) == REG && FP_REG_P (REGNO (X)))
1673
d604bca3
MH
1674/* Return coprocessor number from register number. */
1675
1676#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1677 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1678 : COP3_REG_P (REGNO) ? '3' : '?')
e75b25e7 1679
e75b25e7 1680
0e5a4ad8 1681#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
e75b25e7 1682
dfad12b5 1683/* To make the code simpler, HARD_REGNO_MODE_OK just references an
e75b25e7
MM
1684 array built in override_options. Because machmodes.h is not yet
1685 included before this file is processed, the MODE bound can't be
1686 expressed here. */
1687
1688extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1689
1690#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1691 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1692
1693/* Value is 1 if it is a good idea to tie two pseudo registers
1694 when one has mode MODE1 and one has mode MODE2.
1695 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1696 for any hard reg, then this must be 0 for correct output. */
1697#define MODES_TIEABLE_P(MODE1, MODE2) \
1698 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1699 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1700 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1701 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1702
e75b25e7 1703/* Register to use for pushing function arguments. */
0fb5ac6f 1704#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
e75b25e7 1705
bcbc6b7f
RS
1706/* These two registers don't really exist: they get eliminated to either
1707 the stack or hard frame pointer. */
1708#define ARG_POINTER_REGNUM 77
1709#define FRAME_POINTER_REGNUM 78
2bcb2ab3
GK
1710
1711/* $30 is not available on the mips16, so we use $17 as the frame
1712 pointer. */
1713#define HARD_FRAME_POINTER_REGNUM \
1714 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
e75b25e7
MM
1715
1716/* Value should be nonzero if functions must have frame pointers.
1717 Zero means the frame pointer need not be set up (and parms
1718 may be accessed via the stack pointer) in functions that seem suitable.
1719 This is computed in `reload', in reload1.c. */
1720#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1721
e75b25e7 1722/* Register in which static-chain is passed to a function. */
0fb5ac6f 1723#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
e75b25e7 1724
be763023
RS
1725/* Registers used as temporaries in prologue/epilogue code. If we're
1726 generating mips16 code, these registers must come from the core set
1727 of 8. The prologue register mustn't conflict with any incoming
1728 arguments, the static chain pointer, or the frame pointer. The
1729 epilogue temporary mustn't conflict with the return registers, the
1730 frame pointer, the EH stack adjustment, or the EH data registers. */
1731
1732#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1733#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1734
1735#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1736#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
e75b25e7
MM
1737
1738/* Define this macro if it is as good or better to call a constant
1739 function address than to call an address kept in a register. */
1740#define NO_FUNCTION_CSE 1
1741
f833ffd4
RS
1742/* The ABI-defined global pointer. Sometimes we use a different
1743 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1744#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1745
1746/* We normally use $28 as the global pointer. However, when generating
1747 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1748 register instead. They can then avoid saving and restoring $28
1749 and perhaps avoid using a frame at all.
1750
1751 When a leaf function uses something other than $28, mips_expand_prologue
1752 will modify pic_offset_table_rtx in place. Take the register number
1753 from there after reload. */
1754#define PIC_OFFSET_TABLE_REGNUM \
1755 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
e75b25e7 1756
24e214e3 1757#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
e75b25e7
MM
1758\f
1759/* Define the classes of registers for register constraints in the
1760 machine description. Also define ranges of constants.
1761
1762 One of the classes must always be named ALL_REGS and include all hard regs.
1763 If there is more than one class, another class must be named NO_REGS
1764 and contain no registers.
1765
1766 The name GENERAL_REGS must be the name of a class (or an alias for
1767 another name such as ALL_REGS). This is the class of registers
1768 that is allowed by "g" or "r" in a register constraint.
1769 Also, registers outside this class are allocated only when
1770 instructions express preferences for them.
1771
1772 The classes must be numbered in nondecreasing order; that is,
1773 a larger-numbered class must never be contained completely
1774 in a smaller-numbered class.
1775
1776 For any two classes, it is very desirable that there be another
1777 class that represents their union. */
1778
1779enum reg_class
1780{
1781 NO_REGS, /* no registers in set */
2bcb2ab3
GK
1782 M16_NA_REGS, /* mips16 regs not used to pass args */
1783 M16_REGS, /* mips16 directly accessible registers */
1784 T_REG, /* mips16 T register ($24) */
1785 M16_T_REGS, /* mips16 registers plus T register */
cafe096b
EC
1786 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1787 LEA_REGS, /* Every GPR except $25 */
e75b25e7
MM
1788 GR_REGS, /* integer registers */
1789 FP_REGS, /* floating point registers */
1790 HI_REG, /* hi register */
1791 LO_REG, /* lo register */
1792 MD_REGS, /* multiply/divide registers (hi/lo) */
d604bca3
MH
1793 COP0_REGS, /* generic coprocessor classes */
1794 COP2_REGS,
1795 COP3_REGS,
e4f5c5d6
KR
1796 HI_AND_GR_REGS, /* union classes */
1797 LO_AND_GR_REGS,
ab093b81 1798 HI_AND_FP_REGS,
d604bca3
MH
1799 COP0_AND_GR_REGS,
1800 COP2_AND_GR_REGS,
1801 COP3_AND_GR_REGS,
1802 ALL_COP_REGS,
1803 ALL_COP_AND_GR_REGS,
e75b25e7
MM
1804 ST_REGS, /* status registers (fp status) */
1805 ALL_REGS, /* all registers */
1806 LIM_REG_CLASSES /* max value + 1 */
1807};
1808
1809#define N_REG_CLASSES (int) LIM_REG_CLASSES
1810
1811#define GENERAL_REGS GR_REGS
1812
1813/* An initializer containing the names of the register classes as C
1814 string constants. These names are used in writing some of the
1815 debugging dumps. */
1816
1817#define REG_CLASS_NAMES \
1818{ \
1819 "NO_REGS", \
2bcb2ab3
GK
1820 "M16_NA_REGS", \
1821 "M16_REGS", \
1822 "T_REG", \
1823 "M16_T_REGS", \
cafe096b
EC
1824 "PIC_FN_ADDR_REG", \
1825 "LEA_REGS", \
e75b25e7
MM
1826 "GR_REGS", \
1827 "FP_REGS", \
1828 "HI_REG", \
1829 "LO_REG", \
1830 "MD_REGS", \
d604bca3
MH
1831 /* coprocessor registers */ \
1832 "COP0_REGS", \
1833 "COP2_REGS", \
1834 "COP3_REGS", \
e4f5c5d6
KR
1835 "HI_AND_GR_REGS", \
1836 "LO_AND_GR_REGS", \
ab093b81 1837 "HI_AND_FP_REGS", \
d604bca3
MH
1838 "COP0_AND_GR_REGS", \
1839 "COP2_AND_GR_REGS", \
1840 "COP3_AND_GR_REGS", \
1841 "ALL_COP_REGS", \
1842 "ALL_COP_AND_GR_REGS", \
e75b25e7
MM
1843 "ST_REGS", \
1844 "ALL_REGS" \
1845}
1846
1847/* An initializer containing the contents of the register classes,
1848 as integers which are bit masks. The Nth integer specifies the
1849 contents of class N. The way the integer MASK is interpreted is
1850 that register R is in the class if `MASK & (1 << R)' is 1.
1851
1852 When the machine has more than 32 registers, an integer does not
1853 suffice. Then the integers are replaced by sub-initializers,
1854 braced groupings containing several integers. Each
1855 sub-initializer must be suitable as an initializer for the type
1856 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1857
ec24a740
EC
1858#define REG_CLASS_CONTENTS \
1859{ \
d604bca3
MH
1860 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1861 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1862 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1863 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1864 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
cafe096b 1865 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SVR4 PIC function address register */ \
ec24a740 1866 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* Every other GPR */ \
d604bca3
MH
1867 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
1868 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
1869 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
1870 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
d604bca3 1871 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
ec24a740
EC
1872 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
1873 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
1874 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
d604bca3
MH
1875 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
1876 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
d604bca3 1877 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
ec24a740
EC
1878 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
1879 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
1880 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
1881 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1882 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
d604bca3
MH
1883 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
1884 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0000ffff } /* all registers */ \
e75b25e7
MM
1885}
1886
1887
1888/* A C expression whose value is a register class containing hard
1889 register REGNO. In general there is more that one such class;
1890 choose a class which is "minimal", meaning that no smaller class
1891 also contains the register. */
1892
8b60264b 1893extern const enum reg_class mips_regno_to_class[];
e75b25e7
MM
1894
1895#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1896
1897/* A macro whose definition is the name of the class to which a
1898 valid base register must belong. A base register is one used in
1899 an address which is the register value plus a displacement. */
1900
2bcb2ab3 1901#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
e75b25e7
MM
1902
1903/* A macro whose definition is the name of the class to which a
1904 valid index register must belong. An index register is one used
1905 in an address where its value is either multiplied by a scale
1906 factor or added to another register (as well as added to a
1907 displacement). */
1908
876c09d3 1909#define INDEX_REG_CLASS NO_REGS
e75b25e7 1910
2bcb2ab3
GK
1911/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1912 registers explicitly used in the rtl to be used as spill registers
1913 but prevents the compiler from extending the lifetime of these
987ba558 1914 registers. */
2bcb2ab3
GK
1915
1916#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1917
1918/* This macro is used later on in the file. */
1919#define GR_REG_CLASS_P(CLASS) \
1920 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
cafe096b
EC
1921 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS \
1922 || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
2bcb2ab3 1923
d604bca3
MH
1924/* This macro is also used later on in the file. */
1925#define COP_REG_CLASS_P(CLASS) \
1926 ((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1927
2bcb2ab3
GK
1928/* REG_ALLOC_ORDER is to order in which to allocate registers. This
1929 is the default value (allocate the registers in numeric order). We
1930 define it just so that we can override it for the mips16 target in
1931 ORDER_REGS_FOR_LOCAL_ALLOC. */
1932
1933#define REG_ALLOC_ORDER \
1934{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1935 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1936 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1937 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
d604bca3
MH
1938 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1939 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1940 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1941 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1942 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1943 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1944 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 \
2bcb2ab3
GK
1945}
1946
1947/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1948 to be rearranged based on a particular function. On the mips16, we
1949 want to allocate $24 (T_REG) before other registers for
1950 instructions for which it is possible. */
1951
1952#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
e75b25e7
MM
1953
1954/* REGISTER AND CONSTANT CLASSES */
1955
1956/* Get reg_class from a letter such as appears in the machine
1957 description.
1958
1959 DEFINED REGISTER CLASSES:
1960
1961 'd' General (aka integer) registers
2bcb2ab3
GK
1962 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
1963 'y' General registers (in both mips16 and non mips16 mode)
23cf6987 1964 'e' Effective address registers (general registers except $25)
2bcb2ab3 1965 't' mips16 temporary register ($24)
e75b25e7
MM
1966 'f' Floating point registers
1967 'h' Hi register
1968 'l' Lo register
34b650b3 1969 'x' Multiply/divide registers
225b8835 1970 'z' FP Status register
d604bca3
MH
1971 'B' Cop0 register
1972 'C' Cop2 register
1973 'D' Cop3 register
225b8835 1974 'b' All registers */
e75b25e7 1975
f540a7d3 1976extern enum reg_class mips_char_to_class[256];
e75b25e7 1977
8f54374e 1978#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
e75b25e7 1979
cafe096b
EC
1980/* True if VALUE is a signed 16-bit number. */
1981
1982#define SMALL_OPERAND(VALUE) \
1983 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1984
1985/* True if VALUE is an unsigned 16-bit number. */
1986
1987#define SMALL_OPERAND_UNSIGNED(VALUE) \
1988 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1989
1990/* True if VALUE can be loaded into a register using LUI. */
1991
1992#define LUI_OPERAND(VALUE) \
1993 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
1994 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1995
1996/* Return a value X with the low 16 bits clear, and such that
1997 VALUE - X is a signed 16-bit value. */
1998
1999#define CONST_HIGH_PART(VALUE) \
2000 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2001
2002#define CONST_LOW_PART(VALUE) \
2003 ((VALUE) - CONST_HIGH_PART (VALUE))
2004
2005#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2006#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2007#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2008
e75b25e7
MM
2009/* The letters I, J, K, L, M, N, O, and P in a register constraint
2010 string can be used to stand for particular ranges of immediate
2011 operands. This macro defines what the ranges are. C is the
2012 letter, and VALUE is a constant value. Return 1 if VALUE is
2013 in the range specified by C. */
2014
2015/* For MIPS:
2016
2017 `I' is used for the range of constants an arithmetic insn can
2018 actually contain (16 bits signed integers).
2019
2020 `J' is used for the range which is just zero (ie, $r0).
2021
2022 `K' is used for the range of constants a logical insn can actually
2023 contain (16 bit zero-extended integers).
2024
2025 `L' is used for the range of constants that be loaded with lui
2026 (ie, the bottom 16 bits are zero).
2027
2028 `M' is used for the range of constants that take two words to load
2029 (ie, not matched by `I', `K', and `L').
2030
2bcb2ab3 2031 `N' is used for negative 16 bit constants other than -65536.
e75b25e7 2032
2bcb2ab3 2033 `O' is a 15 bit signed integer.
e75b25e7
MM
2034
2035 `P' is used for positive 16 bit constants. */
2036
e75b25e7 2037#define CONST_OK_FOR_LETTER_P(VALUE, C) \
cafe096b 2038 ((C) == 'I' ? SMALL_OPERAND (VALUE) \
e75b25e7 2039 : (C) == 'J' ? ((VALUE) == 0) \
cafe096b
EC
2040 : (C) == 'K' ? SMALL_OPERAND_UNSIGNED (VALUE) \
2041 : (C) == 'L' ? LUI_OPERAND (VALUE) \
2042 : (C) == 'M' ? (!SMALL_OPERAND (VALUE) \
2043 && !SMALL_OPERAND_UNSIGNED (VALUE) \
2044 && !LUI_OPERAND (VALUE)) \
2bcb2ab3
GK
2045 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
2046 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
99cbc4b0 2047 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
e75b25e7
MM
2048 : 0)
2049
2050/* Similar, but for floating constants, and defining letters G and H.
2051 Here VALUE is the CONST_DOUBLE rtx itself. */
2052
2053/* For Mips
2054
2055 'G' : Floating point 0 */
2056
2057#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
2058 ((C) == 'G' \
876c09d3 2059 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
e75b25e7
MM
2060
2061/* Letters in the range `Q' through `U' may be defined in a
7dac2f89 2062 machine-dependent fashion to stand for arbitrary operand types.
e75b25e7
MM
2063 The machine description macro `EXTRA_CONSTRAINT' is passed the
2064 operand as its first argument and the constraint letter as its
2065 second operand.
2066
cafe096b
EC
2067 `Q' is for signed 16-bit constants.
2068 `R' is for single-instruction memory references. Note that this
2069 constraint has often been used in linux and glibc code.
2070 `S' is for legitimate constant call addresses.
2071 `T' is for constant move_operands that cannot be safely loaded into $25.
ef1b5bbb
RS
2072 `U' is for constant move_operands that can be safely loaded into $25.
2073 `W' is for memory references that are based on a member of BASE_REG_CLASS.
1ae58c30 2074 This is true for all non-mips16 references (although it can sometimes
ef1b5bbb
RS
2075 be indirect if !TARGET_EXPLICIT_RELOCS). For mips16, it excludes
2076 stack and constant-pool references. */
e75b25e7
MM
2077
2078#define EXTRA_CONSTRAINT(OP,CODE) \
cafe096b
EC
2079 (((CODE) == 'Q') ? const_arith_operand (OP, VOIDmode) \
2080 : ((CODE) == 'R') ? (GET_CODE (OP) == MEM \
2081 && mips_fetch_insns (OP) == 1) \
2082 : ((CODE) == 'S') ? (CONSTANT_P (OP) \
2083 && call_insn_operand (OP, VOIDmode)) \
2084 : ((CODE) == 'T') ? (CONSTANT_P (OP) \
2085 && move_operand (OP, VOIDmode) \
a6008bd8 2086 && mips_dangerous_for_la25_p (OP)) \
cafe096b
EC
2087 : ((CODE) == 'U') ? (CONSTANT_P (OP) \
2088 && move_operand (OP, VOIDmode) \
a6008bd8 2089 && !mips_dangerous_for_la25_p (OP)) \
ef1b5bbb
RS
2090 : ((CODE) == 'W') ? (GET_CODE (OP) == MEM \
2091 && memory_operand (OP, VOIDmode) \
2092 && (!TARGET_MIPS16 \
2093 || (!stack_operand (OP, VOIDmode) \
2094 && !CONSTANT_P (XEXP (OP, 0))))) \
e75b25e7
MM
2095 : FALSE)
2096
ef1b5bbb
RS
2097/* Say which of the above are memory constraints. */
2098#define EXTRA_MEMORY_CONSTRAINT(C, STR) ((C) == 'R' || (C) == 'W')
2099
e75b25e7 2100#define PREFERRED_RELOAD_CLASS(X,CLASS) \
a6008bd8 2101 mips_preferred_reload_class (X, CLASS)
e75b25e7 2102
0fb5ac6f
MM
2103/* Certain machines have the property that some registers cannot be
2104 copied to some other registers without using memory. Define this
a0ab749a 2105 macro on those machines to be a C expression that is nonzero if
0fb5ac6f
MM
2106 objects of mode MODE in registers of CLASS1 can only be copied to
2107 registers of class CLASS2 by storing a register of CLASS1 into
2108 memory and loading that memory location into a register of CLASS2.
2109
2110 Do not define this macro if its value would always be zero. */
7b2e1077 2111#if 0
0fb5ac6f 2112#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2370b831
JW
2113 ((!TARGET_DEBUG_H_MODE \
2114 && GET_MODE_CLASS (MODE) == MODE_INT \
2bcb2ab3
GK
2115 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
2116 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
2370b831 2117 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
2bcb2ab3
GK
2118 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
2119 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
7b2e1077 2120#endif
46299de9 2121/* The HI and LO registers can only be reloaded via the general
b8eb88d0
ILT
2122 registers. Condition code registers can only be loaded to the
2123 general registers, and from the floating point registers. */
46299de9 2124
225b8835
ILT
2125#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2126 mips_secondary_reload_class (CLASS, MODE, X, 1)
2127#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2128 mips_secondary_reload_class (CLASS, MODE, X, 0)
46299de9 2129
e75b25e7
MM
2130/* Return the maximum number of consecutive registers
2131 needed to represent mode MODE in a register of class CLASS. */
2132
d604bca3 2133#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
e75b25e7 2134
b0c42aed
JH
2135#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2136 mips_cannot_change_mode_class (FROM, TO, CLASS)
e75b25e7
MM
2137\f
2138/* Stack layout; function entry, exit and calling. */
2139
e75b25e7
MM
2140#define STACK_GROWS_DOWNWARD
2141
f833ffd4
RS
2142/* The offset of the first local variable from the beginning of the frame.
2143 See compute_frame_size for details about the frame layout. */
24e214e3
JW
2144#define STARTING_FRAME_OFFSET \
2145 (current_function_outgoing_args_size \
f833ffd4
RS
2146 + (TARGET_ABICALLS && !TARGET_NEWABI \
2147 ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
ab78d4a8 2148
cafe096b 2149#define RETURN_ADDR_RTX mips_return_addr
39dffea3 2150
7f48c9e1
AO
2151/* Since the mips16 ISA mode is encoded in the least-significant bit
2152 of the address, mask it off return addresses for purposes of
2153 finding exception handling regions. */
2154
2155#define MASK_RETURN_ADDR GEN_INT (-2)
2156
cafe096b 2157
7f48c9e1
AO
2158/* Similarly, don't use the least-significant bit to tell pointers to
2159 code from vtable index. */
2160
2161#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2162
dfad12b5 2163/* The eliminations to $17 are only used for mips16 code. See the
2bcb2ab3 2164 definition of HARD_FRAME_POINTER_REGNUM. */
ab78d4a8
MM
2165
2166#define ELIMINABLE_REGS \
2167{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2168 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2169 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2bcb2ab3
GK
2170 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2171 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2172 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
ab78d4a8 2173
dfad12b5
RS
2174/* We can always eliminate to the hard frame pointer. We can eliminate
2175 to the stack pointer unless a frame pointer is needed.
2176
2177 In mips16 mode, we need a frame pointer for a large frame; otherwise,
2178 reload may be unable to compute the address of a local variable,
2179 since there is no way to add a large constant to the stack pointer
ef1b5bbb 2180 without using a temporary register. */
ab78d4a8 2181#define CAN_ELIMINATE(FROM, TO) \
dfad12b5
RS
2182 ((TO) == HARD_FRAME_POINTER_REGNUM \
2183 || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed \
dfad12b5
RS
2184 && (!TARGET_MIPS16 \
2185 || compute_frame_size (get_frame_size ()) < 32768)))
ab78d4a8 2186
b2471838 2187#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
dfad12b5 2188 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
e75b25e7 2189
dfad12b5 2190/* Allocate stack space for arguments at the beginning of each function. */
f73ad30e 2191#define ACCUMULATE_OUTGOING_ARGS 1
e75b25e7 2192
dfad12b5 2193/* The argument pointer always points to the first argument. */
305aa9e2 2194#define FIRST_PARM_OFFSET(FNDECL) 0
e75b25e7 2195
dfad12b5
RS
2196/* o32 and o64 reserve stack space for all argument registers. */
2197#define REG_PARM_STACK_SPACE(FNDECL) \
7f9be256 2198 (TARGET_OLDABI \
dfad12b5 2199 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
ac8ab9fe 2200 : 0)
e75b25e7
MM
2201
2202/* Define this if it is the responsibility of the caller to
7dac2f89 2203 allocate the area reserved for arguments passed in registers.
e75b25e7 2204 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
7dac2f89 2205 of this macro is to determine whether the space is included in
e75b25e7
MM
2206 `current_function_outgoing_args_size'. */
2207#define OUTGOING_REG_PARM_STACK_SPACE
2208
7f9be256 2209#define STACK_BOUNDARY ((TARGET_OLDABI || mips_abi == ABI_EABI) ? 64 : 128)
e75b25e7 2210\f
8b109b37 2211#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
e75b25e7 2212
e75b25e7
MM
2213/* Symbolic macros for the registers used to return integer and floating
2214 point values. */
2215
2216#define GP_RETURN (GP_REG_FIRST + 2)
2217#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2218
7f9be256 2219#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
ac8ab9fe 2220
e75b25e7
MM
2221/* Symbolic macros for the first/last argument registers. */
2222
2223#define GP_ARG_FIRST (GP_REG_FIRST + 4)
ac8ab9fe 2224#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
e75b25e7 2225#define FP_ARG_FIRST (FP_REG_FIRST + 12)
ac8ab9fe 2226#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
e75b25e7 2227
c6e6f5c1
RH
2228#define LIBCALL_VALUE(MODE) \
2229 mips_function_value (NULL_TREE, NULL, (MODE))
e75b25e7 2230
c6e6f5c1
RH
2231#define FUNCTION_VALUE(VALTYPE, FUNC) \
2232 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
e75b25e7
MM
2233
2234/* 1 if N is a possible register number for a function value.
2235 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
ce6e2d90 2236 Currently, R2 and F0 are only implemented here (C has no complex type) */
e75b25e7 2237
8a381273
AO
2238#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2239 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2240 && (N) == FP_RETURN + 2))
e75b25e7 2241
46af8e31
JW
2242/* 1 if N is a possible register number for function argument passing.
2243 We have no FP argument registers when soft-float. When FP registers
2244 are 32 bits, we can't directly reference the odd numbered ones. */
2245
2246#define FUNCTION_ARG_REGNO_P(N) \
8bf3ccbb 2247 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
ca87076c 2248 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
8bf3ccbb 2249 && !fixed_regs[N])
e75b25e7 2250\f
dfad12b5 2251/* This structure has to cope with two different argument allocation
4d72536e
RS
2252 schemes. Most MIPS ABIs view the arguments as a struct, of which the
2253 first N words go in registers and the rest go on the stack. If I < N,
2254 the Ith word might go in Ith integer argument register or the
dfad12b5
RS
2255 Ith floating-point one. For these ABIs, we only need to remember
2256 the number of words passed so far.
4d72536e
RS
2257
2258 The EABI instead allocates the integer and floating-point arguments
2259 separately. The first N words of FP arguments go in FP registers,
2260 the rest go on the stack. Likewise, the first N words of the other
2261 arguments go in integer registers, and the rest go on the stack. We
2262 need to maintain three counts: the number of integer registers used,
2263 the number of floating-point registers used, and the number of words
2264 passed on the stack.
2265
2266 We could keep separate information for the two ABIs (a word count for
2267 the standard ABIs, and three separate counts for the EABI). But it
2268 seems simpler to view the standard ABIs as forms of EABI that do not
2269 allocate floating-point registers.
2270
2271 So for the standard ABIs, the first N words are allocated to integer
2272 registers, and function_arg decides on an argument-by-argument basis
2273 whether that argument should really go in an integer register, or in
2274 a floating-point one. */
e75b25e7
MM
2275
2276typedef struct mips_args {
4d72536e
RS
2277 /* Always true for varargs functions. Otherwise true if at least
2278 one argument has been passed in an integer register. */
2279 int gp_reg_found;
2280
2281 /* The number of arguments seen so far. */
2282 unsigned int arg_number;
2283
2284 /* For EABI, the number of integer registers used so far. For other
2285 ABIs, the number of words passed in registers (whether integer
2286 or floating-point). */
bb63e5a0 2287 unsigned int num_gprs;
4d72536e
RS
2288
2289 /* For EABI, the number of floating-point registers used so far. */
bb63e5a0 2290 unsigned int num_fprs;
4d72536e
RS
2291
2292 /* The number of words passed on the stack. */
2293 unsigned int stack_words;
2294
2295 /* On the mips16, we need to keep track of which floating point
2296 arguments were passed in general registers, but would have been
2297 passed in the FP regs if this were a 32 bit function, so that we
2298 can move them to the FP regs if we wind up calling a 32 bit
2299 function. We record this information in fp_code, encoded in base
2300 four. A zero digit means no floating point argument, a one digit
2301 means an SFmode argument, and a two digit means a DFmode argument,
2302 and a three digit is not used. The low order digit is the first
2303 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2304 an SFmode argument. ??? A more sophisticated approach will be
2305 needed if MIPS_ABI != ABI_32. */
2306 int fp_code;
2307
2308 /* True if the function has a prototype. */
2309 int prototype;
e75b25e7
MM
2310} CUMULATIVE_ARGS;
2311
2312/* Initialize a variable CUM of type CUMULATIVE_ARGS
2313 for a call to a function whose data type is FNTYPE.
ce6e2d90 2314 For a library call, FNTYPE is 0. */
e75b25e7 2315
0f6937fe 2316#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
e75b25e7
MM
2317 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2318
2319/* Update the data in CUM to advance over an argument
2320 of mode MODE and data type TYPE.
2321 (TYPE is null for libcalls where that information may not be available.) */
2322
2323#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2324 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2325
2326/* Determine where to put an argument to a function.
2327 Value is zero to push the argument on the stack,
2328 or a hard register in which to store the argument.
2329
2330 MODE is the argument's machine mode.
2331 TYPE is the data type of the argument (as a tree).
2332 This is null for libcalls where that information may
2333 not be available.
2334 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2335 the preceding args and about the function being called.
2336 NAMED is nonzero if this argument is a named parameter
2337 (otherwise it is an extra parameter matching an ellipsis). */
2338
2339#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2340 function_arg( &CUM, MODE, TYPE, NAMED)
2341
2342/* For an arg passed partly in registers and partly in memory,
2343 this is the number of registers used.
987ba558 2344 For args passed entirely in registers or entirely in memory, zero. */
e75b25e7
MM
2345
2346#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2347 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2348
2349/* If defined, a C expression that gives the alignment boundary, in
2350 bits, of an argument with the specified mode and type. If it is
2351 not defined, `PARM_BOUNDARY' is used for all arguments. */
2352
2353#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2354 (((TYPE) != 0) \
75131237 2355 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
e75b25e7
MM
2356 ? PARM_BOUNDARY \
2357 : TYPE_ALIGN(TYPE)) \
2358 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2359 ? PARM_BOUNDARY \
2360 : GET_MODE_ALIGNMENT(MODE)))
2361
ac8ab9fe
RS
2362#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
2363 function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
2364
648bb159
RS
2365#define FUNCTION_ARG_PADDING(MODE, TYPE) \
2366 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2367
2368#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2369 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
ac8ab9fe
RS
2370
2371#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
2372 (mips_abi == ABI_EABI && (NAMED) \
2373 && FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
2374
7bc22451
RS
2375/* Modified version of the macro in expr.h. Only return true if
2376 the type has a variable size or if the front end requires it
2377 to be passed by reference. */
ac8ab9fe
RS
2378#define MUST_PASS_IN_STACK(MODE,TYPE) \
2379 ((TYPE) != 0 \
2380 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
7bc22451 2381 || TREE_ADDRESSABLE (TYPE)))
ac8ab9fe 2382
4d72536e
RS
2383/* True if using EABI and varargs can be passed in floating-point
2384 registers. Under these conditions, we need a more complex form
2385 of va_list, which tracks GPR, FPR and stack arguments separately. */
2386#define EABI_FLOAT_VARARGS_P \
2387 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2388
e75b25e7 2389\f
cafe096b
EC
2390/* Say that the epilogue uses the return address register. Note that
2391 in the case of sibcalls, the values "used by the epilogue" are
2392 considered live at the start of the called function. */
2393#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
2394
ac8ab9fe
RS
2395/* Treat LOC as a byte offset from the stack pointer and round it up
2396 to the next fully-aligned offset. */
2397#define MIPS_STACK_ALIGN(LOC) \
7f9be256 2398 ((TARGET_OLDABI || mips_abi == ABI_EABI) \
ac8ab9fe
RS
2399 ? ((LOC) + 7) & ~7 \
2400 : ((LOC) + 15) & ~15)
e75b25e7 2401
5d3f2bd5 2402\f
5d3f2bd5 2403/* Implement `va_start' for varargs and stdarg. */
e5faf155
ZW
2404#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2405 mips_va_start (valist, nextarg)
5d3f2bd5
RH
2406
2407/* Implement `va_arg'. */
2408#define EXPAND_BUILTIN_VA_ARG(valist, type) \
2409 mips_va_arg (valist, type)
e75b25e7
MM
2410\f
2411/* Output assembler code to FILE to increment profiler label # LABELNO
2412 for profiling a function entry. */
2413
2414#define FUNCTION_PROFILER(FILE, LABELNO) \
2415{ \
2bcb2ab3
GK
2416 if (TARGET_MIPS16) \
2417 sorry ("mips16 function profiling"); \
e75b25e7
MM
2418 fprintf (FILE, "\t.set\tnoat\n"); \
2419 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2420 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
7f9be256 2421 if (!TARGET_NEWABI) \
a0a89ed0
CD
2422 { \
2423 fprintf (FILE, \
2424 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2425 TARGET_64BIT ? "dsubu" : "subu", \
2426 reg_names[STACK_POINTER_REGNUM], \
2427 reg_names[STACK_POINTER_REGNUM], \
2428 Pmode == DImode ? 16 : 8); \
2429 } \
0617ed52 2430 fprintf (FILE, "\tjal\t_mcount\n"); \
e75b25e7
MM
2431 fprintf (FILE, "\t.set\tat\n"); \
2432}
2433
d8d5b1e1
MM
2434/* Define this macro if the code for function profiling should come
2435 before the function prologue. Normally, the profiling code comes
2436 after. */
2437
2438/* #define PROFILE_BEFORE_PROLOGUE */
2439
e75b25e7
MM
2440/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2441 the stack pointer does not matter. The value is tested only in
2442 functions that have frame pointers.
2443 No definition is equivalent to always zero. */
2444
2445#define EXIT_IGNORE_STACK 1
2446
2447\f
2448/* A C statement to output, on the stream FILE, assembler code for a
7dac2f89 2449 block of data that contains the constant parts of a trampoline.
e75b25e7
MM
2450 This code should not include a label--the label is taken care of
2451 automatically. */
2452
2453#define TRAMPOLINE_TEMPLATE(STREAM) \
2454{ \
2455 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2456 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2457 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
cafe096b 2458 if (ptr_mode == DImode) \
876c09d3
JW
2459 { \
2460 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2461 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2462 } \
2463 else \
2464 { \
0acefe54
JW
2465 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2466 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
876c09d3 2467 } \
0acefe54 2468 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
e75b25e7
MM
2469 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2470 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
cafe096b 2471 if (ptr_mode == DImode) \
876c09d3 2472 { \
876c09d3
JW
2473 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2474 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2475 } \
2476 else \
2477 { \
2478 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2479 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2480 } \
e75b25e7
MM
2481}
2482
2483/* A C expression for the size in bytes of the trampoline, as an
2484 integer. */
2485
cafe096b 2486#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
e75b25e7 2487
876c09d3 2488/* Alignment required for trampolines, in bits. */
e75b25e7 2489
cafe096b 2490#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
e75b25e7 2491
c85f7c16
JL
2492/* INITIALIZE_TRAMPOLINE calls this library function to flush
2493 program and data caches. */
2494
2495#ifndef CACHE_FLUSH_FUNC
2496#define CACHE_FLUSH_FUNC "_flush_cache"
2497#endif
2498
7dac2f89 2499/* A C statement to initialize the variable parts of a trampoline.
e75b25e7
MM
2500 ADDR is an RTX for the address of the trampoline; FNADDR is an
2501 RTX for the address of the nested function; STATIC_CHAIN is an
2502 RTX for the static chain value that should be passed to the
2503 function when it is called. */
2504
2505#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2506{ \
cafe096b
EC
2507 rtx func_addr, chain_addr; \
2508 \
2509 func_addr = plus_constant (ADDR, 32); \
2510 chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
91999e1d
RS
2511 emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
2512 emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
e75b25e7 2513 \
22b54c57
RK
2514 /* Flush both caches. We need to flush the data cache in case \
2515 the system has a write-back cache. */ \
876c09d3 2516 /* ??? Should check the return value for errors. */ \
d490e8ad
DD
2517 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2518 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
cafe096b 2519 0, VOIDmode, 3, ADDR, Pmode, \
d490e8ad
DD
2520 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2521 GEN_INT (3), TYPE_MODE (integer_type_node)); \
e75b25e7 2522}
e75b25e7
MM
2523\f
2524/* Addressing modes, and classification of registers for them. */
2525
bcbc6b7f
RS
2526#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2527#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2528 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
e75b25e7
MM
2529
2530/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2531 and check its validity for a certain class.
2532 We have two alternate definitions for each of them.
2533 The usual definition accepts all pseudo regs; the other rejects them all.
2534 The symbol REG_OK_STRICT causes the latter definition to be used.
2535
2536 Most source files want to accept pseudo regs in the hope that
2537 they will get allocated to the class that the insn wants them to be in.
2538 Some source files that are used after register allocation
2539 need to be strict. */
2540
2541#ifndef REG_OK_STRICT
2bcb2ab3 2542#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
bcbc6b7f 2543 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
e75b25e7 2544#else
2bcb2ab3 2545#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
bcbc6b7f 2546 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
e75b25e7
MM
2547#endif
2548
c94c9817
MM
2549#define REG_OK_FOR_INDEX_P(X) 0
2550
e75b25e7
MM
2551\f
2552/* Maximum number of registers that can appear in a valid memory address. */
2553
2554#define MAX_REGS_PER_ADDRESS 1
2555
c94c9817
MM
2556#ifdef REG_OK_STRICT
2557#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2558{ \
2559 if (mips_legitimate_address_p (MODE, X, 1)) \
2560 goto ADDR; \
e75b25e7 2561}
c94c9817
MM
2562#else
2563#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2564{ \
2565 if (mips_legitimate_address_p (MODE, X, 0)) \
2566 goto ADDR; \
2567}
2568#endif
e75b25e7 2569
cafe096b
EC
2570/* Check for constness inline but use mips_legitimate_address_p
2571 to check whether a constant really is an address. */
2572
2573#define CONSTANT_ADDRESS_P(X) \
2574 (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2575
cafe096b 2576#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2649b2ee 2577
cafe096b
EC
2578#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2579 do { \
2580 if (mips_legitimize_address (&(X), MODE)) \
2581 goto WIN; \
2582 } while (0)
e75b25e7
MM
2583
2584
2585/* A C statement or compound statement with a conditional `goto
2586 LABEL;' executed if memory address X (an RTX) can have different
2587 meanings depending on the machine mode of the memory reference it
2588 is used for.
2589
2590 Autoincrement and autodecrement addresses typically have
2591 mode-dependent effects because the amount of the increment or
2592 decrement is the size of the operand being addressed. Some
2593 machines have other mode-dependent addresses. Many RISC machines
2594 have no mode-dependent addresses.
2595
2596 You may assume that ADDR is a valid address for the machine. */
2597
2598#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2599
9c9e7632
GK
2600/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2601 'the start of the function that this code is output in'. */
2602
2603#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2604 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2605 asm_fprintf ((FILE), "%U%s", \
2606 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2607 else \
2608 asm_fprintf ((FILE), "%U%s", (NAME))
e75b25e7
MM
2609\f
2610/* Specify the machine mode that this machine uses
2bcb2ab3 2611 for the index in the tablejump instruction.
031a26c5 2612 ??? Using HImode in mips16 mode can cause overflow. */
2bcb2ab3 2613#define CASE_VECTOR_MODE \
cafe096b 2614 (TARGET_MIPS16 ? HImode : ptr_mode)
2bcb2ab3
GK
2615
2616/* Define as C expression which evaluates to nonzero if the tablejump
2617 instruction expects the table to contain offsets from the address of the
2618 table.
987ba558 2619 Do not define this if the table should contain absolute addresses. */
2bcb2ab3 2620#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
e75b25e7 2621
e75b25e7 2622/* Define this as 1 if `char' should by default be signed; else as 0. */
6639753e 2623#ifndef DEFAULT_SIGNED_CHAR
e75b25e7 2624#define DEFAULT_SIGNED_CHAR 1
6639753e 2625#endif
e75b25e7
MM
2626
2627/* Max number of bytes we can move from memory to memory
2628 in one reasonably fast instruction. */
876c09d3
JW
2629#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2630#define MAX_MOVE_MAX 8
e75b25e7
MM
2631
2632/* Define this macro as a C expression which is nonzero if
2633 accessing less than a word of memory (i.e. a `char' or a
2634 `short') is no faster than accessing a word of memory, i.e., if
2635 such access require more than one instruction or if there is no
2636 difference in cost between byte and (aligned) word loads.
2637
2638 On RISC machines, it tends to generate better code to define
2639 this as 1, since it avoids making a QI or HI mode register. */
2640#define SLOW_BYTE_ACCESS 1
2641
d969caf8 2642/* Define this to be nonzero if shift instructions ignore all but the low-order
987ba558 2643 few bits. */
d969caf8 2644#define SHIFT_COUNT_TRUNCATED 1
e75b25e7
MM
2645
2646/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2647 is done just by pretending it is already truncated. */
876c09d3
JW
2648#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2649 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
e75b25e7 2650
cafe096b 2651
e75b25e7
MM
2652/* Specify the machine mode that pointers have.
2653 After generation of rtl, the compiler makes no further distinction
cafe096b 2654 between pointers and any other objects of this machine mode. */
876c09d3 2655
1eeed24e 2656#ifndef Pmode
cafe096b 2657#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
1eeed24e 2658#endif
e75b25e7 2659
cafe096b
EC
2660/* Give call MEMs SImode since it is the "most permissive" mode
2661 for both 32-bit and 64-bit targets. */
e75b25e7 2662
cafe096b 2663#define FUNCTION_MODE SImode
e75b25e7 2664
e75b25e7 2665\f
cafe096b 2666/* The cost of loading values from the constant pool. It should be
f1ba665b 2667 larger than the cost of any constant we want to synthesize in-line. */
cafe096b
EC
2668
2669#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2670
e75b25e7
MM
2671/* A C expression for the cost of moving data from a register in
2672 class FROM to one in class TO. The classes are expressed using
2673 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2674 the default; other values are interpreted relative to that.
2675
2676 It is not required that the cost always equal 2 when FROM is the
2677 same as TO; on some machines it is expensive to move between
2678 registers if they are not general registers.
2679
2680 If reload sees an insn consisting of a single `set' between two
2681 hard registers, and if `REGISTER_MOVE_COST' applied to their
2682 classes returns a value of 2, reload does not check to ensure
2683 that the constraints of the insn are met. Setting a cost of
2684 other than 2 will allow reload to verify that the constraints are
2685 met. You should do this if the `movM' pattern's constraints do
031a26c5 2686 not allow such copying. */
d604bca3
MH
2687
2688#define REGISTER_MOVE_COST(MODE, FROM, TO) \
2689 mips_register_move_cost (MODE, FROM, TO)
e75b25e7 2690
516a2dfd 2691/* ??? Fix this to be right for the R8000. */
cbd5b9a2 2692#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
7dac2f89 2693 (((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
cbd5b9a2 2694 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
876c09d3 2695
7506f491
DE
2696/* Define if copies to/from condition code registers should be avoided.
2697
2698 This is needed for the MIPS because reload_outcc is not complete;
2699 it needs to handle cases where the source is a general or another
2700 condition code register. */
2701#define AVOID_CCMODE_COPIES
2702
e75b25e7
MM
2703/* A C expression for the cost of a branch instruction. A value of
2704 1 is the default; other values are interpreted relative to that. */
2705
516a2dfd 2706/* ??? Fix this to be right for the R8000. */
2bcb2ab3
GK
2707#define BRANCH_COST \
2708 ((! TARGET_MIPS16 \
50d32cf6 2709 && (TUNE_MIPS4000 || TUNE_MIPS6000)) \
2bcb2ab3 2710 ? 2 : 1)
e75b25e7 2711
0ff83799
MM
2712/* If defined, modifies the length assigned to instruction INSN as a
2713 function of the context in which it is used. LENGTH is an lvalue
2714 that contains the initially computed length of the insn and should
2715 be updated with the correct length of the insn. */
2716#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2717 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2718
e75b25e7
MM
2719\f
2720/* Optionally define this if you have added predicates to
2721 `MACHINE.c'. This macro is called within an initializer of an
2722 array of structures. The first field in the structure is the
31c714e3 2723 name of a predicate and the second field is an array of rtl
e75b25e7
MM
2724 codes. For each predicate, list all rtl codes that can be in
2725 expressions matched by the predicate. The list should have a
2726 trailing comma. Here is an example of two entries in the list
2727 for a typical RISC machine:
2728
2729 #define PREDICATE_CODES \
2730 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
2731 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
2732
2733 Defining this macro does not affect the generated code (however,
2734 incorrect definitions that omit an rtl code that may be matched
7dac2f89 2735 by the predicate can cause the compiler to malfunction).
e75b25e7
MM
2736 Instead, it allows the table built by `genrecog' to be more
2737 compact and efficient, thus speeding up the compiler. The most
2738 important predicates to include in the list specified by this
2739 macro are thoses used in the most insn patterns. */
2740
2741#define PREDICATE_CODES \
8fff4fc1 2742 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
cafe096b 2743 {"symbolic_operand", { CONST, SYMBOL_REF, LABEL_REF }}, \
e245bd81 2744 {"general_symbolic_operand", { CONST, SYMBOL_REF, LABEL_REF }}, \
108b61d5
RS
2745 {"global_got_operand", { CONST, SYMBOL_REF, LABEL_REF }}, \
2746 {"local_got_operand", { CONST, SYMBOL_REF, LABEL_REF }}, \
2747 {"const_arith_operand", { CONST_INT }}, \
2748 {"small_data_pattern", { SET, PARALLEL, UNSPEC, \
2749 UNSPEC_VOLATILE }}, \
8fff4fc1
RH
2750 {"arith_operand", { REG, CONST_INT, CONST, SUBREG }}, \
2751 {"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
e75b25e7 2752 {"small_int", { CONST_INT }}, \
b8eb88d0 2753 {"const_float_1_operand", { CONST_DOUBLE }}, \
ec24a740 2754 {"reg_or_const_float_1_operand", { CONST_DOUBLE, REG}}, \
e75b25e7
MM
2755 {"equality_op", { EQ, NE }}, \
2756 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
2757 LTU, LEU }}, \
a0b6cdee 2758 {"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
f8634644 2759 {"pc_or_label_operand", { PC, LABEL_REF }}, \
cafe096b 2760 {"call_insn_operand", { CONST, SYMBOL_REF, LABEL_REF, REG }}, \
ce57d6f4
JW
2761 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
2762 SYMBOL_REF, LABEL_REF, SUBREG, \
cafe096b 2763 REG, MEM}}, \
d9021800 2764 {"stack_operand", { MEM }}, \
2bcb2ab3 2765 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
cb923660 2766 CONST_DOUBLE, CONST }}, \
21c9500d 2767 {"fcc_register_operand", { REG, SUBREG }}, \
d334c3c1 2768 {"hilo_operand", { REG }}, \
3bd06df7 2769 {"macc_msac_operand", { PLUS, MINUS }}, \
d334c3c1 2770 {"extend_operator", { ZERO_EXTEND, SIGN_EXTEND }},
cb923660 2771
0e7e9155
RH
2772/* A list of predicates that do special things with modes, and so
2773 should not elicit warnings for VOIDmode match_operand. */
2774
2775#define SPECIAL_MODE_PREDICATES \
2776 "pc_or_label_operand",
e75b25e7
MM
2777\f
2778/* Control the assembler format that we output. */
2779
e75b25e7
MM
2780/* Output to assembler file text saying following lines
2781 may contain character constants, extra white space, comments, etc. */
2782
b2bcb32d 2783#ifndef ASM_APP_ON
e75b25e7 2784#define ASM_APP_ON " #APP\n"
b2bcb32d 2785#endif
e75b25e7
MM
2786
2787/* Output to assembler file text saying following lines
2788 no longer contain unusual constructs. */
2789
b2bcb32d 2790#ifndef ASM_APP_OFF
e75b25e7 2791#define ASM_APP_OFF " #NO_APP\n"
b2bcb32d 2792#endif
e75b25e7
MM
2793
2794/* How to refer to registers in assembler output.
2795 This sequence is indexed by compiler's hard-register-number (see above).
2796
2797 In order to support the two different conventions for register names,
2798 we use the name of a table set up in mips.c, which is overwritten
2799 if -mrnames is used. */
2800
2801#define REGISTER_NAMES \
2802{ \
2803 &mips_reg_names[ 0][0], \
2804 &mips_reg_names[ 1][0], \
2805 &mips_reg_names[ 2][0], \
2806 &mips_reg_names[ 3][0], \
2807 &mips_reg_names[ 4][0], \
2808 &mips_reg_names[ 5][0], \
2809 &mips_reg_names[ 6][0], \
2810 &mips_reg_names[ 7][0], \
2811 &mips_reg_names[ 8][0], \
2812 &mips_reg_names[ 9][0], \
2813 &mips_reg_names[10][0], \
2814 &mips_reg_names[11][0], \
2815 &mips_reg_names[12][0], \
2816 &mips_reg_names[13][0], \
2817 &mips_reg_names[14][0], \
2818 &mips_reg_names[15][0], \
2819 &mips_reg_names[16][0], \
2820 &mips_reg_names[17][0], \
2821 &mips_reg_names[18][0], \
2822 &mips_reg_names[19][0], \
2823 &mips_reg_names[20][0], \
2824 &mips_reg_names[21][0], \
2825 &mips_reg_names[22][0], \
2826 &mips_reg_names[23][0], \
2827 &mips_reg_names[24][0], \
2828 &mips_reg_names[25][0], \
2829 &mips_reg_names[26][0], \
2830 &mips_reg_names[27][0], \
2831 &mips_reg_names[28][0], \
2832 &mips_reg_names[29][0], \
2833 &mips_reg_names[30][0], \
2834 &mips_reg_names[31][0], \
2835 &mips_reg_names[32][0], \
2836 &mips_reg_names[33][0], \
2837 &mips_reg_names[34][0], \
2838 &mips_reg_names[35][0], \
2839 &mips_reg_names[36][0], \
2840 &mips_reg_names[37][0], \
2841 &mips_reg_names[38][0], \
2842 &mips_reg_names[39][0], \
2843 &mips_reg_names[40][0], \
2844 &mips_reg_names[41][0], \
2845 &mips_reg_names[42][0], \
2846 &mips_reg_names[43][0], \
2847 &mips_reg_names[44][0], \
2848 &mips_reg_names[45][0], \
2849 &mips_reg_names[46][0], \
2850 &mips_reg_names[47][0], \
2851 &mips_reg_names[48][0], \
2852 &mips_reg_names[49][0], \
2853 &mips_reg_names[50][0], \
2854 &mips_reg_names[51][0], \
2855 &mips_reg_names[52][0], \
2856 &mips_reg_names[53][0], \
2857 &mips_reg_names[54][0], \
2858 &mips_reg_names[55][0], \
2859 &mips_reg_names[56][0], \
2860 &mips_reg_names[57][0], \
2861 &mips_reg_names[58][0], \
2862 &mips_reg_names[59][0], \
2863 &mips_reg_names[60][0], \
2864 &mips_reg_names[61][0], \
2865 &mips_reg_names[62][0], \
2866 &mips_reg_names[63][0], \
2867 &mips_reg_names[64][0], \
2868 &mips_reg_names[65][0], \
2869 &mips_reg_names[66][0], \
225b8835 2870 &mips_reg_names[67][0], \
39dffea3 2871 &mips_reg_names[68][0], \
b8eb88d0
ILT
2872 &mips_reg_names[69][0], \
2873 &mips_reg_names[70][0], \
2874 &mips_reg_names[71][0], \
2875 &mips_reg_names[72][0], \
2876 &mips_reg_names[73][0], \
2877 &mips_reg_names[74][0], \
2878 &mips_reg_names[75][0], \
d604bca3
MH
2879 &mips_reg_names[76][0], \
2880 &mips_reg_names[77][0], \
2881 &mips_reg_names[78][0], \
2882 &mips_reg_names[79][0], \
2883 &mips_reg_names[80][0], \
2884 &mips_reg_names[81][0], \
2885 &mips_reg_names[82][0], \
2886 &mips_reg_names[83][0], \
2887 &mips_reg_names[84][0], \
2888 &mips_reg_names[85][0], \
2889 &mips_reg_names[86][0], \
2890 &mips_reg_names[87][0], \
2891 &mips_reg_names[88][0], \
2892 &mips_reg_names[89][0], \
2893 &mips_reg_names[90][0], \
2894 &mips_reg_names[91][0], \
2895 &mips_reg_names[92][0], \
2896 &mips_reg_names[93][0], \
2897 &mips_reg_names[94][0], \
2898 &mips_reg_names[95][0], \
2899 &mips_reg_names[96][0], \
2900 &mips_reg_names[97][0], \
2901 &mips_reg_names[98][0], \
2902 &mips_reg_names[99][0], \
2903 &mips_reg_names[100][0], \
2904 &mips_reg_names[101][0], \
2905 &mips_reg_names[102][0], \
2906 &mips_reg_names[103][0], \
2907 &mips_reg_names[104][0], \
2908 &mips_reg_names[105][0], \
2909 &mips_reg_names[106][0], \
2910 &mips_reg_names[107][0], \
2911 &mips_reg_names[108][0], \
2912 &mips_reg_names[109][0], \
2913 &mips_reg_names[110][0], \
2914 &mips_reg_names[111][0], \
2915 &mips_reg_names[112][0], \
2916 &mips_reg_names[113][0], \
2917 &mips_reg_names[114][0], \
2918 &mips_reg_names[115][0], \
2919 &mips_reg_names[116][0], \
2920 &mips_reg_names[117][0], \
2921 &mips_reg_names[118][0], \
2922 &mips_reg_names[119][0], \
2923 &mips_reg_names[120][0], \
2924 &mips_reg_names[121][0], \
2925 &mips_reg_names[122][0], \
2926 &mips_reg_names[123][0], \
2927 &mips_reg_names[124][0], \
2928 &mips_reg_names[125][0], \
2929 &mips_reg_names[126][0], \
2930 &mips_reg_names[127][0], \
2931 &mips_reg_names[128][0], \
2932 &mips_reg_names[129][0], \
2933 &mips_reg_names[130][0], \
2934 &mips_reg_names[131][0], \
2935 &mips_reg_names[132][0], \
2936 &mips_reg_names[133][0], \
2937 &mips_reg_names[134][0], \
2938 &mips_reg_names[135][0], \
2939 &mips_reg_names[136][0], \
2940 &mips_reg_names[137][0], \
2941 &mips_reg_names[138][0], \
2942 &mips_reg_names[139][0], \
2943 &mips_reg_names[140][0], \
2944 &mips_reg_names[141][0], \
2945 &mips_reg_names[142][0], \
2946 &mips_reg_names[143][0], \
2947 &mips_reg_names[144][0], \
2948 &mips_reg_names[145][0], \
2949 &mips_reg_names[146][0], \
2950 &mips_reg_names[147][0], \
2951 &mips_reg_names[148][0], \
2952 &mips_reg_names[149][0], \
2953 &mips_reg_names[150][0], \
2954 &mips_reg_names[151][0], \
2955 &mips_reg_names[152][0], \
2956 &mips_reg_names[153][0], \
2957 &mips_reg_names[154][0], \
2958 &mips_reg_names[155][0], \
2959 &mips_reg_names[156][0], \
2960 &mips_reg_names[157][0], \
2961 &mips_reg_names[158][0], \
2962 &mips_reg_names[159][0], \
2963 &mips_reg_names[160][0], \
2964 &mips_reg_names[161][0], \
2965 &mips_reg_names[162][0], \
2966 &mips_reg_names[163][0], \
2967 &mips_reg_names[164][0], \
2968 &mips_reg_names[165][0], \
2969 &mips_reg_names[166][0], \
2970 &mips_reg_names[167][0], \
2971 &mips_reg_names[168][0], \
2972 &mips_reg_names[169][0], \
2973 &mips_reg_names[170][0], \
2974 &mips_reg_names[171][0], \
2975 &mips_reg_names[172][0], \
2976 &mips_reg_names[173][0], \
2977 &mips_reg_names[174][0], \
2978 &mips_reg_names[175][0] \
e75b25e7
MM
2979}
2980
2981/* If defined, a C initializer for an array of structures
2982 containing a name and a register number. This macro defines
2983 additional names for hard registers, thus allowing the `asm'
2984 option in declarations to refer to registers using alternate
2985 names.
2986
2987 We define both names for the integer registers here. */
2988
2989#define ADDITIONAL_REGISTER_NAMES \
2990{ \
2991 { "$0", 0 + GP_REG_FIRST }, \
2992 { "$1", 1 + GP_REG_FIRST }, \
2993 { "$2", 2 + GP_REG_FIRST }, \
2994 { "$3", 3 + GP_REG_FIRST }, \
2995 { "$4", 4 + GP_REG_FIRST }, \
2996 { "$5", 5 + GP_REG_FIRST }, \
2997 { "$6", 6 + GP_REG_FIRST }, \
2998 { "$7", 7 + GP_REG_FIRST }, \
2999 { "$8", 8 + GP_REG_FIRST }, \
3000 { "$9", 9 + GP_REG_FIRST }, \
3001 { "$10", 10 + GP_REG_FIRST }, \
3002 { "$11", 11 + GP_REG_FIRST }, \
3003 { "$12", 12 + GP_REG_FIRST }, \
3004 { "$13", 13 + GP_REG_FIRST }, \
3005 { "$14", 14 + GP_REG_FIRST }, \
3006 { "$15", 15 + GP_REG_FIRST }, \
3007 { "$16", 16 + GP_REG_FIRST }, \
3008 { "$17", 17 + GP_REG_FIRST }, \
3009 { "$18", 18 + GP_REG_FIRST }, \
3010 { "$19", 19 + GP_REG_FIRST }, \
3011 { "$20", 20 + GP_REG_FIRST }, \
3012 { "$21", 21 + GP_REG_FIRST }, \
3013 { "$22", 22 + GP_REG_FIRST }, \
3014 { "$23", 23 + GP_REG_FIRST }, \
3015 { "$24", 24 + GP_REG_FIRST }, \
3016 { "$25", 25 + GP_REG_FIRST }, \
3017 { "$26", 26 + GP_REG_FIRST }, \
3018 { "$27", 27 + GP_REG_FIRST }, \
3019 { "$28", 28 + GP_REG_FIRST }, \
3020 { "$29", 29 + GP_REG_FIRST }, \
3021 { "$30", 30 + GP_REG_FIRST }, \
3022 { "$31", 31 + GP_REG_FIRST }, \
3023 { "$sp", 29 + GP_REG_FIRST }, \
3024 { "$fp", 30 + GP_REG_FIRST }, \
3025 { "at", 1 + GP_REG_FIRST }, \
3026 { "v0", 2 + GP_REG_FIRST }, \
3027 { "v1", 3 + GP_REG_FIRST }, \
3028 { "a0", 4 + GP_REG_FIRST }, \
3029 { "a1", 5 + GP_REG_FIRST }, \
3030 { "a2", 6 + GP_REG_FIRST }, \
3031 { "a3", 7 + GP_REG_FIRST }, \
3032 { "t0", 8 + GP_REG_FIRST }, \
3033 { "t1", 9 + GP_REG_FIRST }, \
3034 { "t2", 10 + GP_REG_FIRST }, \
3035 { "t3", 11 + GP_REG_FIRST }, \
3036 { "t4", 12 + GP_REG_FIRST }, \
3037 { "t5", 13 + GP_REG_FIRST }, \
3038 { "t6", 14 + GP_REG_FIRST }, \
3039 { "t7", 15 + GP_REG_FIRST }, \
3040 { "s0", 16 + GP_REG_FIRST }, \
3041 { "s1", 17 + GP_REG_FIRST }, \
3042 { "s2", 18 + GP_REG_FIRST }, \
3043 { "s3", 19 + GP_REG_FIRST }, \
3044 { "s4", 20 + GP_REG_FIRST }, \
3045 { "s5", 21 + GP_REG_FIRST }, \
3046 { "s6", 22 + GP_REG_FIRST }, \
3047 { "s7", 23 + GP_REG_FIRST }, \
3048 { "t8", 24 + GP_REG_FIRST }, \
3049 { "t9", 25 + GP_REG_FIRST }, \
3050 { "k0", 26 + GP_REG_FIRST }, \
3051 { "k1", 27 + GP_REG_FIRST }, \
3052 { "gp", 28 + GP_REG_FIRST }, \
3053 { "sp", 29 + GP_REG_FIRST }, \
3054 { "fp", 30 + GP_REG_FIRST }, \
3055 { "ra", 31 + GP_REG_FIRST }, \
924706a0 3056 { "$sp", 29 + GP_REG_FIRST }, \
b8eb88d0 3057 { "$fp", 30 + GP_REG_FIRST } \
d604bca3 3058 ALL_COP_ADDITIONAL_REGISTER_NAMES \
e75b25e7
MM
3059}
3060
33005162 3061/* This is meant to be redefined in the host dependent files. It is a
d604bca3
MH
3062 set of alternative names and regnums for mips coprocessors. */
3063
3064#define ALL_COP_ADDITIONAL_REGISTER_NAMES
3065
e75b25e7
MM
3066/* A C compound statement to output to stdio stream STREAM the
3067 assembler syntax for an instruction operand X. X is an RTL
3068 expression.
3069
3070 CODE is a value that can be used to specify one of several ways
3071 of printing the operand. It is used when identical operands
3072 must be printed differently depending on the context. CODE
3073 comes from the `%' specification that was used to request
3074 printing of the operand. If the specification was just `%DIGIT'
3075 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3076 is the ASCII code for LTR.
3077
3078 If X is a register, this macro should print the register's name.
3079 The names can be found in an array `reg_names' whose type is
3080 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3081
3082 When the machine description has a specification `%PUNCT' (a `%'
3083 followed by a punctuation character), this macro is called with
3084 a null pointer for X and the punctuation character for CODE.
3085
3086 See mips.c for the MIPS specific codes. */
3087
3088#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3089
3090/* A C expression which evaluates to true if CODE is a valid
3091 punctuation character for use in the `PRINT_OPERAND' macro. If
3092 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
3093 punctuation characters (except for the standard one, `%') are
3094 used in this way. */
3095
3096#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
3097
3098/* A C compound statement to output to stdio stream STREAM the
3099 assembler syntax for an instruction operand that is a memory
fb49053f 3100 reference whose address is ADDR. ADDR is an RTL expression. */
e75b25e7
MM
3101
3102#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3103
3104
3105/* A C statement, to be executed after all slot-filler instructions
3106 have been output. If necessary, call `dbr_sequence_length' to
3107 determine the number of slots filled in a sequence (zero if not
3108 currently outputting a sequence), to decide how many no-ops to
3109 output, or whatever.
3110
3111 Don't define this macro if it has nothing to do, but it is
3112 helpful in reading assembly output if the extent of the delay
3113 sequence is made explicit (e.g. with white space).
3114
3115 Note that output routines for instructions with delay slots must
3116 be prepared to deal with not being output as part of a sequence
3117 (i.e. when the scheduling pass is not run, or when no slot
3118 fillers could be found.) The variable `final_sequence' is null
3119 when not processing a sequence, otherwise it contains the
3120 `sequence' rtx being output. */
3121
3122#define DBR_OUTPUT_SEQEND(STREAM) \
3123do \
3124 { \
3125 if (set_nomacro > 0 && --set_nomacro == 0) \
3126 fputs ("\t.set\tmacro\n", STREAM); \
3127 \
3128 if (set_noreorder > 0 && --set_noreorder == 0) \
3129 fputs ("\t.set\treorder\n", STREAM); \
3130 \
e75b25e7
MM
3131 fputs ("\n", STREAM); \
3132 } \
3133while (0)
3134
3135
d82783b6 3136/* How to tell the debugger about changes of source files. */
e75b25e7
MM
3137
3138#ifndef SET_FILE_NUMBER
3139#define SET_FILE_NUMBER() ++num_source_filenames
3140#endif
3141
3142#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
3143 mips_output_filename (STREAM, NAME)
3144
ddd5a7c1 3145/* This is defined so that it can be overridden in iris6.h. */
516a2dfd
JW
3146#define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
3147do \
3148 { \
3149 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
3150 output_quoted_string (STREAM, NAME); \
3151 fputs ("\n", STREAM); \
3152 } \
3153while (0)
3154
e75b25e7
MM
3155/* This is how to output a note the debugger telling it the line number
3156 to which the following sequence of instructions corresponds.
3157 Silicon graphics puts a label after each .loc. */
3158
3159#ifndef LABEL_AFTER_LOC
3160#define LABEL_AFTER_LOC(STREAM)
3161#endif
3162
b2bcb32d 3163#ifndef ASM_OUTPUT_SOURCE_LINE
a8d0467e 3164#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) \
e75b25e7 3165 mips_output_lineno (STREAM, LINE)
b2bcb32d 3166#endif
e75b25e7 3167
9ec36da5 3168/* The MIPS implementation uses some labels for its own purpose. The
e75b25e7
MM
3169 following lists what labels are created, and are all formed by the
3170 pattern $L[a-z].*. The machine independent portion of GCC creates
3171 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
3172
c5b7917e 3173 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
e75b25e7
MM
3174 $Lb[0-9]+ Begin blocks for MIPS debug support
3175 $Lc[0-9]+ Label for use in s<xx> operation.
33005162 3176 $Le[0-9]+ End blocks for MIPS debug support */
e75b25e7 3177
44404b8b 3178#undef ASM_DECLARE_OBJECT_NAME
c1115ccd
RS
3179#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
3180 mips_declare_object (STREAM, NAME, "", ":\n", 0)
31c714e3 3181
506a61b1
KG
3182/* Globalizing directive for a label. */
3183#define GLOBAL_ASM_OP "\t.globl\t"
e75b25e7 3184
31c714e3 3185/* This says how to define a global common symbol. */
e75b25e7 3186
35f5add9 3187#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
e75b25e7 3188
c5b7917e 3189/* This says how to define a local common symbol (ie, not visible to
31c714e3 3190 linker). */
e75b25e7
MM
3191
3192#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
58e15542 3193 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (int)(SIZE))
e75b25e7
MM
3194
3195
3196/* This says how to output an external. It would be possible not to
3197 output anything and let undefined symbol become external. However
3198 the assembler uses length information on externals to allocate in
3199 data/sdata bss/sbss, thereby saving exec time. */
3200
3201#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
3202 mips_output_external(STREAM,DECL,NAME)
3203
e75b25e7
MM
3204/* This is how to declare a function name. The actual work of
3205 emitting the label is moved to function_prologue, so that we can
3206 get the line number correctly emitted before the .ent directive,
789b7de5 3207 and after any .file directives. Define as empty so that the function
4e314d1f
EC
3208 is not declared before the .ent directive elsewhere. */
3209
44404b8b 3210#undef ASM_DECLARE_FUNCTION_NAME
33005162 3211#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
4e314d1f 3212
3c7404d3
RO
3213#ifndef FUNCTION_NAME_ALREADY_DECLARED
3214#define FUNCTION_NAME_ALREADY_DECLARED 0
3215#endif
3216
e75b25e7
MM
3217/* This is how to store into the string LABEL
3218 the symbol_ref name of an internal numbered label where
3219 PREFIX is the class of label and NUM is the number within the class.
3220 This is suitable for output with `assemble_name'. */
3221
44404b8b 3222#undef ASM_GENERATE_INTERNAL_LABEL
e75b25e7 3223#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4f70758f 3224 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
e75b25e7 3225
e75b25e7
MM
3226/* This is how to output an element of a case-vector that is absolute. */
3227
3228#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
6ae1498b 3229 fprintf (STREAM, "\t%s\t%sL%d\n", \
cafe096b 3230 ptr_mode == DImode ? ".dword" : ".word", \
6ae1498b 3231 LOCAL_LABEL_PREFIX, \
876c09d3 3232 VALUE)
e75b25e7 3233
827555ea
RS
3234/* This is how to output an element of a case-vector. We can make the
3235 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
3236 is supported. */
e75b25e7 3237
33f7f353 3238#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
e0bfcea5 3239do { \
2bcb2ab3
GK
3240 if (TARGET_MIPS16) \
3241 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
3242 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
cafe096b 3243 else if (TARGET_GPWORD) \
6ae1498b 3244 fprintf (STREAM, "\t%s\t%sL%d\n", \
cafe096b 3245 ptr_mode == DImode ? ".gpdword" : ".gpword", \
6ae1498b 3246 LOCAL_LABEL_PREFIX, VALUE); \
516a2dfd 3247 else \
b2d8cf33 3248 fprintf (STREAM, "\t%s\t%sL%d\n", \
cafe096b 3249 ptr_mode == DImode ? ".dword" : ".word", \
b2d8cf33 3250 LOCAL_LABEL_PREFIX, VALUE); \
e0bfcea5
ILT
3251} while (0)
3252
827555ea
RS
3253/* When generating mips16 code we want to put the jump table in the .text
3254 section. In all other cases, we want to put the jump table in the .rdata
3255 section. Unfortunately, we can't use JUMP_TABLES_IN_TEXT_SECTION, because
3256 it is not conditional. Instead, we use ASM_OUTPUT_CASE_LABEL to switch back
3257 to the .text section if appropriate. */
44404b8b 3258#undef ASM_OUTPUT_CASE_LABEL
e0bfcea5
ILT
3259#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
3260do { \
827555ea 3261 if (TARGET_MIPS16) \
2bcb2ab3 3262 function_section (current_function_decl); \
ec24a740 3263 (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); \
e0bfcea5 3264} while (0)
e75b25e7
MM
3265
3266/* This is how to output an assembler line
3267 that says to advance the location counter
3268 to a multiple of 2**LOG bytes. */
3269
3270#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
a688e0b7 3271 fprintf (STREAM, "\t.align\t%d\n", (LOG))
e75b25e7 3272
38e01259 3273/* This is how to output an assembler line to advance the location
e75b25e7
MM
3274 counter by SIZE bytes. */
3275
44404b8b 3276#undef ASM_OUTPUT_SKIP
e75b25e7 3277#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
c394cdb7 3278 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
e75b25e7 3279
e75b25e7 3280/* This is how to output a string. */
44404b8b 3281#undef ASM_OUTPUT_ASCII
e75b25e7 3282#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
584e5527 3283 mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
e75b25e7 3284
e75b25e7 3285/* Output #ident as a in the read-only data section. */
0e5a4ad8 3286#undef ASM_OUTPUT_IDENT
e75b25e7
MM
3287#define ASM_OUTPUT_IDENT(FILE, STRING) \
3288{ \
3cce094d 3289 const char *p = STRING; \
e75b25e7 3290 int size = strlen (p) + 1; \
d48bc59a 3291 readonly_data_section (); \
e75b25e7
MM
3292 assemble_string (p, size); \
3293}
3294\f
b82b0773
MM
3295/* Default to -G 8 */
3296#ifndef MIPS_DEFAULT_GVALUE
3297#define MIPS_DEFAULT_GVALUE 8
3298#endif
e75b25e7 3299
f3b39eba
MM
3300/* Define the strings to put out for each section in the object file. */
3301#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3302#define DATA_SECTION_ASM_OP "\t.data" /* large data */
3303#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
2017ed61
EC
3304
3305#undef READONLY_DATA_SECTION_ASM_OP
d48bc59a 3306#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2017ed61 3307
e75b25e7
MM
3308/* Given a decl node or constant node, choose the section to output it in
3309 and select that section. */
3310
ae46c4e0
RH
3311#undef TARGET_ASM_SELECT_SECTION
3312#define TARGET_ASM_SELECT_SECTION mips_select_section
e75b25e7 3313\f
e75b25e7
MM
3314#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3315do \
3316 { \
876c09d3
JW
3317 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
3318 TARGET_64BIT ? "dsubu" : "subu", \
e75b25e7
MM
3319 reg_names[STACK_POINTER_REGNUM], \
3320 reg_names[STACK_POINTER_REGNUM], \
876c09d3 3321 TARGET_64BIT ? "sd" : "sw", \
e75b25e7
MM
3322 reg_names[REGNO], \
3323 reg_names[STACK_POINTER_REGNUM]); \
3324 } \
3325while (0)
3326
3327#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3328do \
3329 { \
3330 if (! set_noreorder) \
3331 fprintf (STREAM, "\t.set\tnoreorder\n"); \
3332 \
876c09d3
JW
3333 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
3334 TARGET_64BIT ? "ld" : "lw", \
e75b25e7
MM
3335 reg_names[REGNO], \
3336 reg_names[STACK_POINTER_REGNUM], \
876c09d3 3337 TARGET_64BIT ? "daddu" : "addu", \
e75b25e7
MM
3338 reg_names[STACK_POINTER_REGNUM], \
3339 reg_names[STACK_POINTER_REGNUM]); \
3340 \
3341 if (! set_noreorder) \
3342 fprintf (STREAM, "\t.set\treorder\n"); \
3343 } \
3344while (0)
3345
4baed42f
DE
3346/* How to start an assembler comment.
3347 The leading space is important (the mips native assembler requires it). */
e75b25e7 3348#ifndef ASM_COMMENT_START
4baed42f 3349#define ASM_COMMENT_START " #"
e75b25e7 3350#endif
3f1f8d8c 3351\f
48b80d93
AO
3352/* Default definitions for size_t and ptrdiff_t. We must override the
3353 definitions from ../svr4.h on mips-*-linux-gnu. */
3f1f8d8c 3354
498887c8 3355#undef SIZE_TYPE
cafe096b 3356#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
3f1f8d8c 3357
498887c8 3358#undef PTRDIFF_TYPE
cafe096b 3359#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
28174a14
MS
3360
3361/* See mips_expand_prologue's use of loadgp for when this should be
3362 true. */
3363
7f9be256 3364#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS && !TARGET_OLDABI)
2bcb2ab3 3365\f
28727f1f 3366#ifndef __mips16
3c0121e4
AO
3367/* Since the bits of the _init and _fini function is spread across
3368 many object files, each potentially with its own GP, we must assume
3369 we need to load our GP. We don't preserve $gp or $ra, since each
3370 init/fini chunk is supposed to initialize $gp, and crti/crtn
3371 already take care of preserving $ra and, when appropriate, $gp. */
27d54b2a 3372#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3c0121e4
AO
3373#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3374 asm (SECTION_OP "\n\
3375 .set noreorder\n\
3376 bal 1f\n\
3377 nop\n\
33781: .cpload $31\n\
3379 .set reorder\n\
3380 jal " USER_LABEL_PREFIX #FUNC "\n\
3381 " TEXT_SECTION_ASM_OP);
e1551d47
AO
3382#endif /* Switch to #elif when we're no longer limited by K&R C. */
3383#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
3c0121e4
AO
3384 || (defined _ABI64 && _MIPS_SIM == _ABI64)
3385#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3386 asm (SECTION_OP "\n\
3387 .set noreorder\n\
3388 bal 1f\n\
3389 nop\n\
33901: .set reorder\n\
3391 .cpsetup $31, $2, 1b\n\
3392 jal " USER_LABEL_PREFIX #FUNC "\n\
3393 " TEXT_SECTION_ASM_OP);
3394#endif
28727f1f 3395#endif
This page took 2.263493 seconds and 5 git commands to generate.