]> gcc.gnu.org Git - gcc.git/blame - gcc/config/m68k/m68k.h
(TARGET_SWITCHES): Add 68020-60.
[gcc.git] / gcc / config / m68k / m68k.h
CommitLineData
3d339ad2 1/* Definitions of target machine for GNU compiler. Sun 68000/68020 version.
d8fa884b 2 Copyright (C) 1987, 88, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
25a1b918 3
3d339ad2
RS
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
0e29e3c9
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
3d339ad2
RS
20
21
22/* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25
26/* Names to predefine in the preprocessor for this target machine. */
27
28/* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES. */
29
30/* Print subsidiary information on the compiler version in use. */
31#ifdef MOTOROLA
32#define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
33#else
34#define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
35#endif
36
37/* Define SUPPORT_SUN_FPA to include support for generating code for
38 the Sun Floating Point Accelerator, an optional product for Sun 3
39 machines. By default, it is not defined. Avoid defining it unless
40 you need to output code for the Sun3+FPA architecture, as it has the
41 effect of slowing down the register set operations in hard-reg-set.h
42 (total number of registers will exceed number of bits in a long,
43 if defined, causing the set operations to expand to loops).
44 SUPPORT_SUN_FPA is typically defined in sun3.h. */
45
46/* Run-time compilation parameters selecting different hardware subsets. */
47
48extern int target_flags;
49
50/* Macros used in the machine description to test the flags. */
51
52/* Compile for a 68020 (not a 68000 or 68010). */
7a1b98a9
RK
53#define MASK_68020 1
54#define TARGET_68020 (target_flags & MASK_68020)
3d339ad2
RS
55
56/* Compile 68881 insns for floating point (not library calls). */
7a1b98a9
RK
57#define MASK_68881 2
58#define TARGET_68881 (target_flags & MASK_68881)
3d339ad2
RS
59
60/* Compile using 68020 bitfield insns. */
7a1b98a9
RK
61#define MASK_BITFIELD 4
62#define TARGET_BITFIELD (target_flags & MASK_BITFIELD)
3d339ad2
RS
63
64/* Compile using rtd insn calling sequence.
65 This will not work unless you use prototypes at least
66 for all functions that can take varying numbers of args. */
7a1b98a9
RK
67#define MASK_RTD 8
68#define TARGET_RTD (target_flags & MASK_RTD)
3d339ad2
RS
69
70/* Compile passing first two args in regs 0 and 1.
71 This exists only to test compiler features that will
72 be needed for RISC chips. It is not usable
73 and is not intended to be usable on this cpu. */
7a1b98a9
RK
74#define MASK_REGPARM 16
75#define TARGET_REGPARM (target_flags & MASK_REGPARM)
3d339ad2
RS
76
77/* Compile with 16-bit `int'. */
7a1b98a9
RK
78#define MASK_SHORT 32
79#define TARGET_SHORT (target_flags & MASK_SHORT)
3d339ad2
RS
80
81/* Compile with special insns for Sun FPA. */
7a1b98a9
RK
82#define MASK_FPA 64
83#define TARGET_FPA (target_flags & MASK_FPA)
3d339ad2
RS
84
85/* Compile (actually, link) for Sun SKY board. */
7a1b98a9
RK
86#define MASK_SKY 128
87#define TARGET_SKY (target_flags & MASK_SKY)
3d339ad2 88
b4281273
RS
89/* Optimize for 68040, but still allow execution on 68020
90 (-m68020-40 or -m68040).
b4ac57ab 91 The 68040 will execute all 68030 and 68881/2 instructions, but some
3d339ad2
RS
92 of them must be emulated in software by the OS. When TARGET_68040 is
93 turned on, these instructions won't be used. This code will still
94 run on a 68030 and 68881/2. */
35bcca7b 95#define MASK_68040 256
7a1b98a9 96#define TARGET_68040 (target_flags & MASK_68040)
3d339ad2 97
30e6bc63 98/* Use the 68040-only fp instructions (-m68040 or -m68060). */
7a1b98a9
RK
99#define MASK_68040_ONLY 512
100#define TARGET_68040_ONLY (target_flags & MASK_68040_ONLY)
3d339ad2 101
30e6bc63 102/* Optimize for 68060, but still allow execution on 68020
35bcca7b 103 (-m68020-60 or -m68060).
30e6bc63
RK
104 The 68060 will execute all 68030 and 68881/2 instructions, but some
105 of them must be emulated in software by the OS. When TARGET_68060 is
106 turned on, these instructions won't be used. This code will still
107 run on a 68030 and 68881/2. */
7a1b98a9
RK
108#define MASK_68060 1024
109#define TARGET_68060 (target_flags & MASK_68060)
30e6bc63 110
106bee4b
RK
111/* Compile for mcf5200 */
112#define MASK_5200 2048
113#define TARGET_5200 (target_flags & MASK_5200)
114
dcd13066
RK
115/* Align ints to a word boundary. This breaks compatibility with the
116 published ABI's for structures containing ints, but produces faster
117 code on cpus with 32 bit busses (020, 030, 040, 060, CPU32+, coldfire).
118 It's required for coldfire cpus without a misalignment module. */
119#define MASK_ALIGN_INT 4096
120#define TARGET_ALIGN_INT (target_flags & MASK_ALIGN_INT)
121
b686ee30
RK
122/* Compile for a CPU32 */
123 /* A 68020 without bitfields is a good heuristic for a CPU32 */
124#define TARGET_CPU32 (TARGET_68020 && !TARGET_BITFIELD)
125
3d339ad2
RS
126/* Macro to define tables used to set the flags.
127 This is a list in braces of pairs in braces,
128 each pair being { "NAME", VALUE }
129 where VALUE is the bits to set or minus the bits to clear.
130 An empty string NAME is used to identify the default VALUE. */
131
132#define TARGET_SWITCHES \
35bcca7b
RK
133 { { "68020", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY)}, \
134 { "c68020", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY)}, \
7a1b98a9
RK
135 { "68020", (MASK_68020|MASK_BITFIELD)}, \
136 { "c68020", (MASK_68020|MASK_BITFIELD)}, \
35bcca7b
RK
137 { "68000", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY \
138 |MASK_68020|MASK_BITFIELD)}, \
139 { "c68000", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY \
140 |MASK_68020|MASK_BITFIELD)}, \
d6539615 141 { "bitfield", MASK_BITFIELD}, \
7a1b98a9
RK
142 { "nobitfield", - MASK_BITFIELD}, \
143 { "rtd", MASK_RTD}, \
144 { "nortd", - MASK_RTD}, \
145 { "short", MASK_SHORT}, \
146 { "noshort", - MASK_SHORT}, \
d6539615 147 { "fpa", -(MASK_SKY|MASK_68040_ONLY|MASK_68881)}, \
7a1b98a9
RK
148 { "fpa", MASK_FPA}, \
149 { "nofpa", - MASK_FPA}, \
d6539615 150 { "sky", -(MASK_FPA|MASK_68040_ONLY|MASK_68881)}, \
7a1b98a9
RK
151 { "sky", MASK_SKY}, \
152 { "nosky", - MASK_SKY}, \
d6539615
RK
153 { "68881" - (MASK_FPA|MASK_SKY)}, \
154 { "68881", MASK_68881}, \
155 { "soft-float", - (MASK_FPA|MASK_SKY|MASK_68040_ONLY|MASK_68881)}, \
35bcca7b
RK
156 { "68020-40", -(MASK_5200|MASK_68060)}, \
157 { "68020-40", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040)}, \
158 { "68020-60", -(MASK_5200|MASK_68040)}, \
159 { "68020-60", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68060)}, \
160 { "68030", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY)}, \
7a1b98a9 161 { "68030", (MASK_68020|MASK_BITFIELD)}, \
35bcca7b
RK
162 { "68040", - (MASK_5200|MASK_68060)}, \
163 { "68040", (MASK_68020|MASK_68881|MASK_BITFIELD \
164 |MASK_68040_ONLY|MASK_68040)}, \
165 { "68060", - (MASK_5200|MASK_68040)}, \
7a1b98a9
RK
166 { "68060", (MASK_68020|MASK_68881|MASK_BITFIELD \
167 |MASK_68040_ONLY|MASK_68060)}, \
106bee4b
RK
168 { "5200", - (MASK_68060|MASK_68040|MASK_68020|MASK_BITFIELD|MASK_68881)}, \
169 { "5200", (MASK_5200)}, \
7a1b98a9
RK
170 { "68851", 0}, \
171 { "no-68851", 0}, \
35bcca7b
RK
172 { "68302", - (MASK_5200|MASK_68060|MASK_68040|MASK_68020|MASK_BITFIELD)}, \
173 { "68332", - (MASK_5200|MASK_68060|MASK_68040|MASK_BITFIELD)}, \
bae37e71 174 { "68332", MASK_68020}, \
dcd13066
RK
175 { "align-int", MASK_ALIGN_INT }, \
176 { "no-align-int", -MASK_ALIGN_INT }, \
7a1b98a9 177 SUBTARGET_SWITCHES \
3d339ad2
RS
178 { "", TARGET_DEFAULT}}
179/* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */
882ed710 180
9e62c7f2
RK
181/* This macro is similar to `TARGET_SWITCHES' but defines names of
182 command options that have values. Its definition is an
183 initializer with a subgrouping for each command option.
184
185 Each subgrouping contains a string constant, that defines the
186 fixed part of the option name, and the address of a variable. The
187 variable, type `char *', is set to the variable part of the given
188 option if the fixed part matches. The actual option name is made
189 by appending `-m' to the specified name. */
190#define TARGET_OPTIONS \
191{ { "align-loops=", &m68k_align_loops_string }, \
192 { "align-jumps=", &m68k_align_jumps_string }, \
193 { "align-functions=", &m68k_align_funcs_string }, \
194 SUBTARGET_OPTIONS \
195}
196
197/* Sometimes certain combinations of command options do not make
198 sense on a particular target machine. You can define a macro
199 `OVERRIDE_OPTIONS' to take account of this. This macro, if
200 defined, is executed once just after all the command options have
201 been parsed.
202
203 Don't use this macro to turn on various extra optimizations for
204 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
84ab3bfb 205
3d339ad2
RS
206#define OVERRIDE_OPTIONS \
207{ \
9e62c7f2 208 override_options(); \
3d339ad2
RS
209 if (! TARGET_68020 && flag_pic == 2) \
210 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
cf9be6f0 211 SUBTARGET_OVERRIDE_OPTIONS; \
3d339ad2 212}
84ab3bfb 213
9e62c7f2
RK
214/* These are meant to be redefined in the host dependent files */
215#define SUBTARGET_SWITCHES
216#define SUBTARGET_OPTIONS
84ab3bfb 217#define SUBTARGET_OVERRIDE_OPTIONS
3d339ad2
RS
218\f
219/* target machine storage layout */
220
f6ba6a91
RS
221/* Define for XFmode extended real floating point support.
222 This will automatically cause REAL_ARITHMETIC to be defined. */
223#define LONG_DOUBLE_TYPE_SIZE 96
224
225/* Define if you don't want extended real, but do want to use the
226 software floating point emulator for REAL_ARITHMETIC and
227 decimal <-> binary conversion. */
228/* #define REAL_ARITHMETIC */
229
3d339ad2
RS
230/* Define this if most significant bit is lowest numbered
231 in instructions that operate on numbered bit-fields.
232 This is true for 68020 insns such as bfins and bfexts.
233 We make it true always by avoiding using the single-bit insns
234 except in special cases with constant bit numbers. */
235#define BITS_BIG_ENDIAN 1
236
237/* Define this if most significant byte of a word is the lowest numbered. */
238/* That is true on the 68000. */
239#define BYTES_BIG_ENDIAN 1
240
241/* Define this if most significant word of a multiword number is the lowest
242 numbered. */
243/* For 68000 we can decide arbitrarily
244 since there are no machine instructions for them.
245 So let's be consistent. */
246#define WORDS_BIG_ENDIAN 1
247
b4ac57ab 248/* number of bits in an addressable storage unit */
3d339ad2
RS
249#define BITS_PER_UNIT 8
250
251/* Width in bits of a "word", which is the contents of a machine register.
252 Note that this is not necessarily the width of data type `int';
253 if using 16-bit ints on a 68000, this would still be 32.
254 But on a machine with 16-bit registers, this would be 16. */
255#define BITS_PER_WORD 32
256
257/* Width of a word, in units (bytes). */
258#define UNITS_PER_WORD 4
259
260/* Width in bits of a pointer.
261 See also the macro `Pmode' defined below. */
262#define POINTER_SIZE 32
263
264/* Allocation boundary (in *bits*) for storing arguments in argument list. */
265#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
266
267/* Boundary (in *bits*) on which stack pointer should be aligned. */
268#define STACK_BOUNDARY 16
269
270/* Allocation boundary (in *bits*) for the code of a function. */
9e62c7f2 271#define FUNCTION_BOUNDARY (1 << (m68k_align_funcs + 3))
3d339ad2
RS
272
273/* Alignment of field after `int : 0' in a structure. */
274#define EMPTY_FIELD_BOUNDARY 16
275
dcd13066
RK
276/* No data type wants to be aligned rounder than this.
277 Most published ABIs say that ints should be aligned on 16 bit
278 boundries, but cpus with 32 bit busses get better performance
279 aligned on 32 bit boundries. Coldfires without a misalignment
280 module require 32 bit alignment. */
281#define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)
3d339ad2 282
b4ac57ab 283/* Set this nonzero if move instructions will actually fail to work
3d339ad2 284 when given unaligned data. */
b4ac57ab 285#define STRICT_ALIGNMENT 1
3d339ad2 286
9e62c7f2
RK
287/* Maximum power of 2 that code can be aligned to. */
288#define MAX_CODE_ALIGN 2 /* 4 byte alignment */
289
290/* Align loop starts for optimal branching. */
291#define ASM_OUTPUT_LOOP_ALIGN(FILE) ASM_OUTPUT_ALIGN ((FILE), m68k_align_loops)
292
293/* This is how to align an instruction for optimal branching. */
294#define ASM_OUTPUT_ALIGN_CODE(FILE) ASM_OUTPUT_ALIGN ((FILE), m68k_align_jumps)
295
3d339ad2
RS
296#define SELECT_RTX_SECTION(MODE, X) \
297{ \
298 if (!flag_pic) \
299 readonly_data_section(); \
300 else if (LEGITIMATE_PIC_OPERAND_P (X)) \
301 readonly_data_section(); \
302 else \
303 data_section(); \
304}
305
306/* Define number of bits in most basic integer type.
307 (If undefined, default is BITS_PER_WORD). */
308
309#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
310
311/* Define these to avoid dependence on meaning of `int'.
312 Note that WCHAR_TYPE_SIZE is used in cexp.y,
313 where TARGET_SHORT is not available. */
314
315#define WCHAR_TYPE "long int"
316#define WCHAR_TYPE_SIZE 32
317\f
318/* Standard register usage. */
319
320/* Number of actual hardware registers.
321 The hardware registers are assigned numbers for the compiler
322 from 0 to just below FIRST_PSEUDO_REGISTER.
323 All registers that the compiler knows about must be given numbers,
324 even those that are not normally considered general registers.
325 For the 68000, we give the data registers numbers 0-7,
326 the address registers numbers 010-017,
327 and the 68881 floating point registers numbers 020-027. */
328#ifndef SUPPORT_SUN_FPA
329#define FIRST_PSEUDO_REGISTER 24
330#else
331#define FIRST_PSEUDO_REGISTER 56
332#endif
333
334/* This defines the register which is used to hold the offset table for PIC. */
335#define PIC_OFFSET_TABLE_REGNUM 13
336
337/* Used to output a (use pic_offset_table_rtx) so that we
338 always save/restore a5 in functions that use PIC relocation
339 at *any* time during the compilation process. */
340#define FINALIZE_PIC finalize_pic()
341
342#ifndef SUPPORT_SUN_FPA
343
344/* 1 for registers that have pervasive standard uses
345 and are not available for the register allocator.
346 On the 68000, only the stack pointer is such. */
347
348#define FIXED_REGISTERS \
349 {/* Data registers. */ \
350 0, 0, 0, 0, 0, 0, 0, 0, \
351 \
352 /* Address registers. */ \
353 0, 0, 0, 0, 0, 0, 0, 1, \
354 \
355 /* Floating point registers \
356 (if available). */ \
357 0, 0, 0, 0, 0, 0, 0, 0 }
358
359/* 1 for registers not available across function calls.
360 These must include the FIXED_REGISTERS and also any
361 registers that can be used without being saved.
362 The latter must include the registers where values are returned
363 and the register where structure-value addresses are passed.
364 Aside from that, you can include as many other registers as you like. */
365#define CALL_USED_REGISTERS \
366 {1, 1, 0, 0, 0, 0, 0, 0, \
367 1, 1, 0, 0, 0, 0, 0, 1, \
368 1, 1, 0, 0, 0, 0, 0, 0 }
369
370#else /* SUPPORT_SUN_FPA */
371
372/* 1 for registers that have pervasive standard uses
373 and are not available for the register allocator.
374 On the 68000, only the stack pointer is such. */
375
376/* fpa0 is also reserved so that it can be used to move shit back and
377 forth between high fpa regs and everything else. */
378
379#define FIXED_REGISTERS \
380 {/* Data registers. */ \
381 0, 0, 0, 0, 0, 0, 0, 0, \
382 \
383 /* Address registers. */ \
384 0, 0, 0, 0, 0, 0, 0, 1, \
385 \
386 /* Floating point registers \
387 (if available). */ \
388 0, 0, 0, 0, 0, 0, 0, 0, \
389 \
390 /* Sun3 FPA registers. */ \
391 1, 0, 0, 0, 0, 0, 0, 0, \
392 0, 0, 0, 0, 0, 0, 0, 0, \
393 0, 0, 0, 0, 0, 0, 0, 0, \
394 0, 0, 0, 0, 0, 0, 0, 0 }
395
396/* 1 for registers not available across function calls.
397 These must include the FIXED_REGISTERS and also any
398 registers that can be used without being saved.
399 The latter must include the registers where values are returned
400 and the register where structure-value addresses are passed.
401 Aside from that, you can include as many other registers as you like. */
402#define CALL_USED_REGISTERS \
403 {1, 1, 0, 0, 0, 0, 0, 0, \
404 1, 1, 0, 0, 0, 0, 0, 1, \
405 1, 1, 0, 0, 0, 0, 0, 0, \
406 /* FPA registers. */ \
407 1, 1, 1, 1, 0, 0, 0, 0, \
408 0, 0, 0, 0, 0, 0, 0, 0, \
409 0, 0, 0, 0, 0, 0, 0, 0, \
410 0, 0, 0, 0, 0, 0, 0, 0 }
411
412#endif /* defined SUPPORT_SUN_FPA */
413
414
415/* Make sure everything's fine if we *don't* have a given processor.
416 This assumes that putting a register in fixed_regs will keep the
417 compiler's mitts completely off it. We don't bother to zero it out
418 of register classes. If neither TARGET_FPA or TARGET_68881 is set,
419 the compiler won't touch since no instructions that use these
eb939872 420 registers will be valid. */
3d339ad2 421
eb939872 422#ifdef SUPPORT_SUN_FPA
3d339ad2
RS
423
424#define CONDITIONAL_REGISTER_USAGE \
425{ \
426 int i; \
427 HARD_REG_SET x; \
428 if (!TARGET_FPA) \
429 { \
430 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \
431 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
432 if (TEST_HARD_REG_BIT (x, i)) \
433 fixed_regs[i] = call_used_regs[i] = 1; \
434 } \
435 if (TARGET_FPA) \
436 { \
437 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
438 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
439 if (TEST_HARD_REG_BIT (x, i)) \
440 fixed_regs[i] = call_used_regs[i] = 1; \
441 } \
3d339ad2
RS
442}
443
444#endif /* defined SUPPORT_SUN_FPA */
445
446/* Return number of consecutive hard regs needed starting at reg REGNO
447 to hold something of mode MODE.
448 This is ordinarily the length in words of a value of mode MODE
449 but can be less for certain modes in special long registers.
450
451 On the 68000, ordinary registers hold 32 bits worth;
452 for the 68881 registers, a single register is always enough for
453 anything that can be stored in them at all. */
454#define HARD_REGNO_NREGS(REGNO, MODE) \
455 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
456 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
457
458#ifndef SUPPORT_SUN_FPA
459
460/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
461 On the 68000, the cpu registers can hold any mode but the 68881 registers
462 can hold only SFmode or DFmode. The 68881 registers can't hold anything
463 if 68881 use is disabled. */
464
465#define HARD_REGNO_MODE_OK(REGNO, MODE) \
71380ac6
RK
466 (((REGNO) < 16 \
467 && !((REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8)) \
3d339ad2
RS
468 || ((REGNO) < 24 \
469 && TARGET_68881 \
470 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
471 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)))
472
473#else /* defined SUPPORT_SUN_FPA */
474
475/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
476 On the 68000, the cpu registers can hold any mode but the 68881 registers
477 can hold only SFmode or DFmode. And the 68881 registers can't hold anything
478 if 68881 use is disabled. However, the Sun FPA register can
479 (apparently) hold whatever you feel like putting in them.
480 If using the fpa, don't put a double in d7/a0. */
481
482#define HARD_REGNO_MODE_OK(REGNO, MODE) \
483(((REGNO) < 16 \
484 && !(TARGET_FPA \
485 && GET_MODE_CLASS ((MODE)) != MODE_INT \
486 && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
487 && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8 \
488 && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0)) \
489 || ((REGNO) < 24 \
490 ? TARGET_68881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
491 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
492 : ((REGNO) < 56 ? TARGET_FPA : 0)))
493
494#endif /* defined SUPPORT_SUN_FPA */
495
496/* Value is 1 if it is a good idea to tie two pseudo registers
497 when one has mode MODE1 and one has mode MODE2.
498 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
499 for any hard reg, then this must be 0 for correct output. */
500#define MODES_TIEABLE_P(MODE1, MODE2) \
501 (! TARGET_68881 \
502 || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
503 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
504 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
505 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
506
507/* Specify the registers used for certain standard purposes.
508 The values of these macros are register numbers. */
509
510/* m68000 pc isn't overloaded on a register. */
511/* #define PC_REGNUM */
512
513/* Register to use for pushing function arguments. */
514#define STACK_POINTER_REGNUM 15
515
516/* Base register for access to local variables of the function. */
517#define FRAME_POINTER_REGNUM 14
518
519/* Value should be nonzero if functions must have frame pointers.
520 Zero means the frame pointer need not be set up (and parms
521 may be accessed via the stack pointer) in functions that seem suitable.
522 This is computed in `reload', in reload1.c. */
523#define FRAME_POINTER_REQUIRED 0
524
525/* Base register for access to arguments of the function. */
526#define ARG_POINTER_REGNUM 14
527
528/* Register in which static-chain is passed to a function. */
529#define STATIC_CHAIN_REGNUM 8
530
531/* Register in which address to store a structure value
532 is passed to a function. */
533#define STRUCT_VALUE_REGNUM 9
534\f
535/* Define the classes of registers for register constraints in the
536 machine description. Also define ranges of constants.
537
538 One of the classes must always be named ALL_REGS and include all hard regs.
539 If there is more than one class, another class must be named NO_REGS
540 and contain no registers.
541
542 The name GENERAL_REGS must be the name of a class (or an alias for
543 another name such as ALL_REGS). This is the class of registers
544 that is allowed by "g" or "r" in a register constraint.
545 Also, registers outside this class are allocated only when
546 instructions express preferences for them.
547
548 The classes must be numbered in nondecreasing order; that is,
549 a larger-numbered class must never be contained completely
550 in a smaller-numbered class.
551
552 For any two classes, it is very desirable that there be another
553 class that represents their union. */
554
555/* The 68000 has three kinds of registers, so eight classes would be
556 a complete set. One of them is not needed. */
557
558#ifndef SUPPORT_SUN_FPA
559
560enum reg_class {
561 NO_REGS, DATA_REGS,
562 ADDR_REGS, FP_REGS,
563 GENERAL_REGS, DATA_OR_FP_REGS,
564 ADDR_OR_FP_REGS, ALL_REGS,
565 LIM_REG_CLASSES };
566
567#define N_REG_CLASSES (int) LIM_REG_CLASSES
568
569/* Give names of register classes as strings for dump file. */
570
571#define REG_CLASS_NAMES \
572 { "NO_REGS", "DATA_REGS", \
573 "ADDR_REGS", "FP_REGS", \
574 "GENERAL_REGS", "DATA_OR_FP_REGS", \
575 "ADDR_OR_FP_REGS", "ALL_REGS" }
576
577/* Define which registers fit in which classes.
578 This is an initializer for a vector of HARD_REG_SET
579 of length N_REG_CLASSES. */
580
581#define REG_CLASS_CONTENTS \
582{ \
583 0x00000000, /* NO_REGS */ \
584 0x000000ff, /* DATA_REGS */ \
585 0x0000ff00, /* ADDR_REGS */ \
586 0x00ff0000, /* FP_REGS */ \
587 0x0000ffff, /* GENERAL_REGS */ \
588 0x00ff00ff, /* DATA_OR_FP_REGS */ \
589 0x00ffff00, /* ADDR_OR_FP_REGS */ \
590 0x00ffffff, /* ALL_REGS */ \
591}
592
593/* The same information, inverted:
594 Return the class number of the smallest class containing
595 reg number REGNO. This could be a conditional expression
596 or could index an array. */
597
598#define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
599
600#else /* defined SUPPORT_SUN_FPA */
601
602/*
603 * Notes on final choices:
604 *
605 * 1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
606 * else.
607 * 2) Removed all unions that involve address registers with
608 * floating point registers (left in unions of address and data with
609 * floating point).
610 * 3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
611 * 4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
612 * 4) Left in everything else.
613 */
614enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
615 FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
616 DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
617 GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
618 LIM_REG_CLASSES };
619
620#define N_REG_CLASSES (int) LIM_REG_CLASSES
621
622/* Give names of register classes as strings for dump file. */
623
624#define REG_CLASS_NAMES \
625 { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS", \
626 "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS", \
627 "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS", \
628 "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
629
630/* Define which registers fit in which classes.
631 This is an initializer for a vector of HARD_REG_SET
632 of length N_REG_CLASSES. */
633
634#define REG_CLASS_CONTENTS \
635{ \
636 {0, 0}, /* NO_REGS */ \
637 {0xff000000, 0x000000ff}, /* LO_FPA_REGS */ \
638 {0xff000000, 0x00ffffff}, /* FPA_REGS */ \
639 {0x00ff0000, 0x00000000}, /* FP_REGS */ \
640 {0xffff0000, 0x00ffffff}, /* FP_OR_FPA_REGS */ \
641 {0x000000ff, 0x00000000}, /* DATA_REGS */ \
642 {0xff0000ff, 0x00ffffff}, /* DATA_OR_FPA_REGS */ \
643 {0x00ff00ff, 0x00000000}, /* DATA_OR_FP_REGS */ \
644 {0xffff00ff, 0x00ffffff}, /* DATA_OR_FP_OR_FPA_REGS */\
645 {0x0000ff00, 0x00000000}, /* ADDR_REGS */ \
646 {0x0000ffff, 0x00000000}, /* GENERAL_REGS */ \
647 {0xff00ffff, 0x00ffffff}, /* GENERAL_OR_FPA_REGS */\
648 {0x00ffffff, 0x00000000}, /* GENERAL_OR_FP_REGS */\
649 {0xffffffff, 0x00ffffff}, /* ALL_REGS */ \
650}
651
652/* The same information, inverted:
653 Return the class number of the smallest class containing
654 reg number REGNO. This could be a conditional expression
655 or could index an array. */
656
657extern enum reg_class regno_reg_class[];
658#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
659
660#endif /* SUPPORT_SUN_FPA */
661
662/* The class value for index registers, and the one for base regs. */
663
664#define INDEX_REG_CLASS GENERAL_REGS
665#define BASE_REG_CLASS ADDR_REGS
666
667/* Get reg_class from a letter such as appears in the machine description.
668 We do a trick here to modify the effective constraints on the
669 machine description; we zorch the constraint letters that aren't
670 appropriate for a specific target. This allows us to guarantee
671 that a specific kind of register will not be used for a given target
672 without fiddling with the register classes above. */
673
674#ifndef SUPPORT_SUN_FPA
675
676#define REG_CLASS_FROM_LETTER(C) \
677 ((C) == 'a' ? ADDR_REGS : \
678 ((C) == 'd' ? DATA_REGS : \
679 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
680 NO_REGS) : \
681 NO_REGS)))
682
683#else /* defined SUPPORT_SUN_FPA */
684
685#define REG_CLASS_FROM_LETTER(C) \
686 ((C) == 'a' ? ADDR_REGS : \
687 ((C) == 'd' ? DATA_REGS : \
688 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
689 NO_REGS) : \
690 ((C) == 'x' ? (TARGET_FPA ? FPA_REGS : \
691 NO_REGS) : \
692 ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \
693 NO_REGS) : \
694 NO_REGS)))))
695
696#endif /* defined SUPPORT_SUN_FPA */
697
698/* The letters I, J, K, L and M in a register constraint string
699 can be used to stand for particular ranges of immediate operands.
700 This macro defines what the ranges are.
701 C is the letter, and VALUE is a constant value.
702 Return 1 if VALUE is in the range specified by C.
703
704 For the 68000, `I' is used for the range 1 to 8
705 allowed as immediate shift counts and in addq.
706 `J' is used for the range of signed numbers that fit in 16 bits.
707 `K' is for numbers that moveq can't handle.
a9f6f5aa 708 `L' is for range -8 to -1, range of values that can be added with subq.
d8fa884b
RK
709 `M' is for numbers that moveq+notb can't handle.
710 'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
711 'O' is for 16 (for rotate using swap).
712 'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate. */
a9f6f5aa
RK
713
714#define CONST_OK_FOR_LETTER_P(VALUE, C) \
715 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
716 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
717 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
718 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
d8fa884b
RK
719 (C) == 'M' ? (VALUE) < -0x100 && (VALUE) >= 0x100 : \
720 (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
721 (C) == 'O' ? (VALUE) == 16 : \
722 (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)
3d339ad2
RS
723
724/*
725 * A small bit of explanation:
726 * "G" defines all of the floating constants that are *NOT* 68881
727 * constants. this is so 68881 constants get reloaded and the
728 * fpmovecr is used. "H" defines *only* the class of constants that
729 * the fpa can use, because these can be gotten at in any fpa
730 * instruction and there is no need to force reloads.
731 */
732#ifndef SUPPORT_SUN_FPA
733#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
734 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
735#else /* defined SUPPORT_SUN_FPA */
736#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
737 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
738 (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
739#endif /* defined SUPPORT_SUN_FPA */
740
741/* Given an rtx X being reloaded into a reg required to be
742 in class CLASS, return the class of reg to actually use.
743 In general this is just CLASS; but on some machines
744 in some cases it is preferable to use a more restrictive class.
745 On the 68000 series, use a data reg if possible when the
746 value is a constant in the range where moveq could be used
747 and we ensure that QImodes are reloaded into data regs.
9c05a5ad
RK
748 Also, if a floating constant needs reloading, put it in memory.
749 Don't do this for !G constants, since all patterns in the md file
750 expect them to be loaded into a register via fpmovecr. See above. */
3d339ad2
RS
751
752#define PREFERRED_RELOAD_CLASS(X,CLASS) \
753 ((GET_CODE (X) == CONST_INT \
754 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
755 && (CLASS) != ADDR_REGS) \
756 ? DATA_REGS \
757 : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
758 ? DATA_REGS \
759 : (GET_CODE (X) == CONST_DOUBLE \
760 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
9c05a5ad 761 ? (! CONST_DOUBLE_OK_FOR_LETTER_P (X, 'G') \
089a0f39 762 && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS) \
9c05a5ad 763 ? FP_REGS : NO_REGS) \
3d339ad2
RS
764 : (CLASS))
765
766/* Return the maximum number of consecutive registers
767 needed to represent mode MODE in a register of class CLASS. */
768/* On the 68000, this is the size of MODE in words,
769 except in the FP regs, where a single reg is always enough. */
770#ifndef SUPPORT_SUN_FPA
771
772#define CLASS_MAX_NREGS(CLASS, MODE) \
773 ((CLASS) == FP_REGS ? 1 \
774 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
775
776/* Moves between fp regs and other regs are two insns. */
777#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
778 (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
779 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
780 ? 4 : 2)
781
782#else /* defined SUPPORT_SUN_FPA */
783
784#define CLASS_MAX_NREGS(CLASS, MODE) \
785 ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
786 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
787
788/* Moves between fp regs and other regs are two insns. */
789/* Likewise for high fpa regs and other regs. */
790#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
791 ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
792 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
793 || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS) \
794 || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS)) \
795 ? 4 : 2)
796
797#endif /* define SUPPORT_SUN_FPA */
798\f
799/* Stack layout; function entry, exit and calling. */
800
801/* Define this if pushing a word on the stack
802 makes the stack pointer a smaller address. */
803#define STACK_GROWS_DOWNWARD
804
805/* Nonzero if we need to generate stack-probe insns.
806 On most systems they are not needed.
807 When they are needed, define this as the stack offset to probe at. */
808#define NEED_PROBE 0
809
810/* Define this if the nominal address of the stack frame
811 is at the high-address end of the local variables;
812 that is, each additional local variable allocated
813 goes at a more negative offset in the frame. */
814#define FRAME_GROWS_DOWNWARD
815
816/* Offset within stack frame to start allocating local variables at.
817 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
818 first local allocated. Otherwise, it is the offset to the BEGINNING
819 of the first local allocated. */
820#define STARTING_FRAME_OFFSET 0
821
822/* If we generate an insn to push BYTES bytes,
823 this says how many the stack pointer really advances by.
824 On the 68000, sp@- in a byte insn really pushes a word. */
825#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
826
827/* Offset of first parameter from the argument pointer register value. */
828#define FIRST_PARM_OFFSET(FNDECL) 8
829
830/* Value is the number of byte of arguments automatically
831 popped when returning from a subroutine call.
8b109b37 832 FUNDECL is the declaration node of the function (as a tree),
3d339ad2
RS
833 FUNTYPE is the data type of the function (as a tree),
834 or for a library call it is an identifier node for the subroutine name.
835 SIZE is the number of bytes of arguments passed on the stack.
836
837 On the 68000, the RTS insn cannot pop anything.
838 On the 68010, the RTD insn may be used to pop them if the number
839 of args is fixed, but if the number is variable then the caller
840 must pop them all. RTD can't be used for library calls now
841 because the library is compiled with the Unix compiler.
842 Use of RTD is a selectable option, since it is incompatible with
843 standard Unix calling sequences. If the option is not selected,
844 the caller must always pop the args. */
845
8b109b37 846#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
2033a41a 847 ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE) \
3d339ad2
RS
848 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
849 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
850 == void_type_node))) \
851 ? (SIZE) : 0)
852
853/* Define how to find the value returned by a function.
854 VALTYPE is the data type of the value (as a tree).
855 If the precise function being called is known, FUNC is its FUNCTION_DECL;
856 otherwise, FUNC is 0. */
857
858/* On the 68000 the return value is in D0 regardless. */
859
860#define FUNCTION_VALUE(VALTYPE, FUNC) \
861 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
862
863/* Define how to find the value returned by a library function
864 assuming the value has mode MODE. */
865
866/* On the 68000 the return value is in D0 regardless. */
867
868#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
869
870/* 1 if N is a possible register number for a function value.
871 On the 68000, d0 is the only register thus used. */
872
873#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
874
7972af82
TW
875/* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
876 more than one register. */
877
878#define NEEDS_UNTYPED_CALL 0
879
3d339ad2
RS
880/* Define this if PCC uses the nonreentrant convention for returning
881 structure and union values. */
882
883#define PCC_STATIC_STRUCT_RETURN
884
885/* 1 if N is a possible register number for function argument passing.
886 On the 68000, no registers are used in this way. */
887
888#define FUNCTION_ARG_REGNO_P(N) 0
889\f
890/* Define a data type for recording info about an argument list
891 during the scan of that argument list. This data type should
892 hold all necessary information about the function itself
893 and about the args processed so far, enough to enable macros
894 such as FUNCTION_ARG to determine where the next arg should go.
895
896 On the m68k, this is a single integer, which is a number of bytes
897 of arguments scanned so far. */
898
899#define CUMULATIVE_ARGS int
900
901/* Initialize a variable CUM of type CUMULATIVE_ARGS
902 for a call to a function whose data type is FNTYPE.
903 For a library call, FNTYPE is 0.
904
905 On the m68k, the offset starts at 0. */
906
2c7ee1a6 907#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
3d339ad2
RS
908 ((CUM) = 0)
909
910/* Update the data in CUM to advance over an argument
911 of mode MODE and data type TYPE.
912 (TYPE is null for libcalls where that information may not be available.) */
913
914#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
915 ((CUM) += ((MODE) != BLKmode \
916 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
917 : (int_size_in_bytes (TYPE) + 3) & ~3))
918
919/* Define where to put the arguments to a function.
920 Value is zero to push the argument on the stack,
921 or a hard register in which to store the argument.
922
923 MODE is the argument's machine mode.
924 TYPE is the data type of the argument (as a tree).
925 This is null for libcalls where that information may
926 not be available.
927 CUM is a variable of type CUMULATIVE_ARGS which gives info about
928 the preceding args and about the function being called.
929 NAMED is nonzero if this argument is a named parameter
930 (otherwise it is an extra parameter matching an ellipsis). */
931
932/* On the 68000 all args are pushed, except if -mregparm is specified
933 then the first two words of arguments are passed in d0, d1.
934 *NOTE* -mregparm does not work.
935 It exists only to test register calling conventions. */
936
937#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
938((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
939
940/* For an arg passed partly in registers and partly in memory,
941 this is the number of registers used.
942 For args passed entirely in registers or entirely in memory, zero. */
943
944#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
945((TARGET_REGPARM && (CUM) < 8 \
946 && 8 < ((CUM) + ((MODE) == BLKmode \
947 ? int_size_in_bytes (TYPE) \
948 : GET_MODE_SIZE (MODE)))) \
949 ? 2 - (CUM) / 4 : 0)
950
951/* Generate the assembly code for function entry. */
952#define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue(FILE, SIZE)
953
954/* Output assembler code to FILE to increment profiler label # LABELNO
955 for profiling a function entry. */
956
957#define FUNCTION_PROFILER(FILE, LABELNO) \
958 asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
959
960/* Output assembler code to FILE to initialize this source file's
961 basic block profiling info, if that has not already been done. */
962
6e753900
RK
963#define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
964do \
965 { \
966 switch (profile_block_flag) \
967 { \
968 case 2: \
969 asm_fprintf (FILE, "\tpea %d\n\tpea %LLPBX0\n\tjsr %U__bb_init_trace_func\n\taddql %I8,%Rsp\n", \
970 (BLOCK_OR_LABEL)); \
971 break; \
972 \
973 default: \
974 asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n", \
975 (BLOCK_OR_LABEL), (BLOCK_OR_LABEL)); \
976 break; \
977 } \
978 } \
979while(0)
980
981/* Output assembler code to FILE to increment the counter for
3d339ad2
RS
982 the BLOCKNO'th basic block in this source file. */
983
984#define BLOCK_PROFILER(FILE, BLOCKNO) \
6e753900
RK
985do \
986 { \
987 switch (profile_block_flag) \
988 { \
989 case 2: \
990 asm_fprintf (FILE, "\tmovel %Ra1,%Rsp@-\n\tlea ___bb,%Ra1\n\tmovel %I%d,%Ra1@(0)\n\tmovel %I%LLPBX0,%Ra1@(4)\n\tmovel %Rsp@+,%Ra1\n\tjsr %U__bb_trace_func\n", \
991 BLOCKNO); \
992 break; \
993 \
994 default: \
995 asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO); \
996 break; \
997 } \
998 } \
999while(0)
1000
1001/* Output assembler code to FILE to indicate return from
1002 a function during basic block profiling. */
1003
1004#define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1005 asm_fprintf (FILE, "\tjsr %U__bb_trace_ret\n");
1006
1007/* Save all registers which may be clobbered by a function call. */
1008
ad92f794
RK
1009#ifdef MOTOROLA
1010#define MACHINE_STATE_SAVE(id) \
0be1f0e1
JW
1011 if (TARGET_5200) \
1012 { \
1013 asm ("sub.l 20,%sp"); \
1014 asm ("movm.l &0x0303,4(%sp)"); \
1015 asm ("move.w %ccr,%d0"); \
1016 asm ("movm.l &0x0001,(%sp)"); \
1017 } \
1018 else \
1019 { \
1020 asm ("move.w %ccr,-(%sp)"); \
1021 asm ("movm.l &0xc0c0,-(%sp)"); \
1022 }
ad92f794
RK
1023#else
1024#define MACHINE_STATE_SAVE(id) \
0be1f0e1
JW
1025 if (TARGET_5200) \
1026 { \
1027 asm ("subl 20,sp"); \
1028 asm ("movml d0/d1/a0/a1,sp@(4)"); \
1029 asm ("movew cc,d0"); \
1030 asm ("movml d0,sp@"); \
1031 } \
1032 else \
1033 { \
1034 asm ("movew cc,sp@-"); \
1035 asm ("moveml d0/d1/a0/a1,sp@-"); \
1036 }
ad92f794 1037#endif
6e753900
RK
1038
1039/* Restore all registers saved by MACHINE_STATE_SAVE. */
1040
ad92f794
RK
1041#ifdef MOTOROLA
1042#define MACHINE_STATE_RESTORE(id) \
0be1f0e1
JW
1043 if (TARGET_5200) \
1044 { \
1045 asm ("movm.l (%sp),&0x0001"); \
1046 asm ("move.w %d0,%ccr"); \
1047 asm ("movm.l 4(%sp),&0x0303"); \
1048 asm ("add.l 20,%sp"); \
1049 } \
1050 else \
1051 { \
1052 asm ("movm.l (%sp)+,&0x0303"); \
1053 asm ("move.w (%sp)+,%ccr"); \
1054 }
ad92f794
RK
1055#else
1056#define MACHINE_STATE_RESTORE(id) \
0be1f0e1
JW
1057 if (TARGET_5200) \
1058 { \
1059 asm ("movml sp@,d0"); \
1060 asm ("movew d0,cc"); \
1061 asm ("movml sp@(4),d0/d1/a0/a1"); \
1062 asm ("addl 20,sp"); \
1063 } \
1064 else \
1065 { \
1066 asm ("moveml sp@+,d0/d1/a0/a1"); \
1067 asm ("movew sp@+,cc"); \
1068 }
ad92f794 1069#endif
3d339ad2
RS
1070
1071/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1072 the stack pointer does not matter. The value is tested only in
1073 functions that have frame pointers.
1074 No definition is equivalent to always zero. */
1075
1076#define EXIT_IGNORE_STACK 1
1077
1078/* Generate the assembly code for function exit. */
1079#define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue (FILE, SIZE)
1080
1081/* This is a hook for other tm files to change. */
1082/* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
1083
1084/* Determine if the epilogue should be output as RTL.
1085 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1086#define USE_RETURN_INSN use_return_insn ()
1087
1088/* Store in the variable DEPTH the initial difference between the
1089 frame pointer reg contents and the stack pointer reg contents,
1090 as of the start of the function body. This depends on the layout
1091 of the fixed parts of the stack frame and on how registers are saved.
1092
1093 On the 68k, if we have a frame, we must add one word to its length
1094 to allow for the place that a6 is stored when we do have a frame pointer.
1095 Otherwise, we would need to compute the offset from the frame pointer
1096 of a local variable as a function of frame_pointer_needed, which
1097 is hard. */
1098
1099#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1100{ int regno; \
1101 int offset = -4; \
1102 for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
1103 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1104 offset += 12; \
1105 for (regno = 0; regno < 16; regno++) \
1106 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1107 offset += 4; \
1108 (DEPTH) = (offset + ((get_frame_size () + 3) & -4) \
1109 + (get_frame_size () == 0 ? 0 : 4)); \
1110}
1111
1112/* Output assembler code for a block containing the constant parts
1113 of a trampoline, leaving space for the variable parts. */
1114
1115/* On the 68k, the trampoline looks like this:
27a55d6b
RK
1116 movl #STATIC,a0
1117 jmp FUNCTION
1118
1119 WARNING: Targets that may run on 68040+ cpus must arrange for
1120 the instruction cache to be flushed. Previous incarnations of
1121 the m68k trampoline code attempted to get around this by either
1122 using an out-of-line transfer function or pc-relative data, but
1123 the fact remains that the code to jump to the transfer function
1124 or the code to load the pc-relative data needs to be flushed
1125 just as much as the "variable" portion of the trampoline.
1126 Recognizing that a cache flush is going to be required anyway,
1127 dispense with such notions and build a smaller trampoline. */
1128
1129/* Since more instructions are required to move a template into
1130 place than to create it on the spot, don't use a template. */
3d339ad2
RS
1131
1132/* Length in units of the trampoline for entering a nested function. */
1133
27a55d6b
RK
1134#define TRAMPOLINE_SIZE 12
1135
1136/* Alignment required for a trampoline in bits. */
3d339ad2 1137
27a55d6b 1138#define TRAMPOLINE_ALIGNMENT 16
3d339ad2 1139
27a55d6b
RK
1140/* Targets redefine this to invoke code to either flush the cache,
1141 or enable stack execution (or both). */
1142
1143#ifndef FINALIZE_TRAMPOLINE
1144#define FINALIZE_TRAMPOLINE(TRAMP)
1145#endif
3d339ad2
RS
1146
1147/* Emit RTL insns to initialize the variable parts of a trampoline.
1148 FNADDR is an RTX for the address of the function's pure code.
1149 CXT is an RTX for the static chain value for the function. */
1150
1151#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1152{ \
27a55d6b
RK
1153 emit_move_insn (gen_rtx (MEM, HImode, TRAMP), GEN_INT(0x207C)); \
1154 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), CXT); \
1155 emit_move_insn (gen_rtx (MEM, HImode, plus_constant (TRAMP, 6)), \
1156 GEN_INT(0x4EF9)); \
1157 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), FNADDR); \
1158 FINALIZE_TRAMPOLINE(TRAMP); \
3d339ad2
RS
1159}
1160
1161/* This is the library routine that is used
1162 to transfer control from the trampoline
e73cbb04
RK
1163 to the actual nested function.
1164 It is defined for backward compatibility,
1165 for linking with object code that used the old
1166 trampoline definition. */
3d339ad2
RS
1167
1168/* A colon is used with no explicit operands
1169 to cause the template string to be scanned for %-constructs. */
1170/* The function name __transfer_from_trampoline is not actually used.
1171 The function definition just permits use of "asm with operands"
1172 (though the operand list is empty). */
1173#define TRANSFER_FROM_TRAMPOLINE \
1174void \
1175__transfer_from_trampoline () \
1176{ \
1177 register char *a0 asm ("%a0"); \
2e3c09cd 1178 asm (GLOBAL_ASM_OP " ___trampoline"); \
3d339ad2 1179 asm ("___trampoline:"); \
338818c7
RK
1180 asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
1181 asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
3d339ad2
RS
1182 asm ("rts":); \
1183}
1184\f
1185/* Addressing modes, and classification of registers for them. */
1186
1187#define HAVE_POST_INCREMENT
1188/* #define HAVE_POST_DECREMENT */
1189
1190#define HAVE_PRE_DECREMENT
1191/* #define HAVE_PRE_INCREMENT */
1192
1193/* Macros to check register numbers against specific register classes. */
1194
1195/* These assume that REGNO is a hard or pseudo reg number.
1196 They give nonzero only if REGNO is a hard reg of the suitable class
1197 or a pseudo reg currently allocated to a suitable hard reg.
1198 Since they use reg_renumber, they are safe only once reg_renumber
1199 has been allocated, which happens in local-alloc.c. */
1200
1201#define REGNO_OK_FOR_INDEX_P(REGNO) \
1202((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1203#define REGNO_OK_FOR_BASE_P(REGNO) \
1204(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1205#define REGNO_OK_FOR_DATA_P(REGNO) \
1206((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1207#define REGNO_OK_FOR_FP_P(REGNO) \
1208(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1209#ifdef SUPPORT_SUN_FPA
1210#define REGNO_OK_FOR_FPA_P(REGNO) \
1211(((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
1212#endif
1213
1214/* Now macros that check whether X is a register and also,
1215 strictly, whether it is in a specified class.
1216
1217 These macros are specific to the 68000, and may be used only
1218 in code for printing assembler insns and in conditions for
1219 define_optimization. */
1220
1221/* 1 if X is a data register. */
1222
1223#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1224
1225/* 1 if X is an fp register. */
1226
1227#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1228
1229/* 1 if X is an address register */
1230
1231#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1232
1233#ifdef SUPPORT_SUN_FPA
1234/* 1 if X is a register in the Sun FPA. */
1235#define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
1236#else
1237/* Answer must be no if we don't have an FPA. */
1238#define FPA_REG_P(X) 0
1239#endif
1240\f
1241/* Maximum number of registers that can appear in a valid memory address. */
1242
1243#define MAX_REGS_PER_ADDRESS 2
1244
1245/* Recognize any constant value that is a valid address. */
1246
6eff269e
BK
1247#define CONSTANT_ADDRESS_P(X) \
1248 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1249 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1250 || GET_CODE (X) == HIGH)
3d339ad2
RS
1251
1252/* Nonzero if the constant value X is a legitimate general operand.
1253 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1254
1255#define LEGITIMATE_CONSTANT_P(X) 1
1256
1257/* Nonzero if the constant value X is a legitimate general operand
1258 when generating PIC code. It is given that flag_pic is on and
1259 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1260
1261#define LEGITIMATE_PIC_OPERAND_P(X) \
c57eee67
RK
1262 ((! symbolic_operand (X, VOIDmode) \
1263 && ! (GET_CODE (X) == CONST_DOUBLE && CONST_DOUBLE_MEM (X) \
1264 && GET_CODE (CONST_DOUBLE_MEM (X)) == MEM \
1265 && symbolic_operand (XEXP (CONST_DOUBLE_MEM (X), 0), \
1266 VOIDmode))) \
1267 || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
3d339ad2
RS
1268
1269/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1270 and check its validity for a certain class.
1271 We have two alternate definitions for each of them.
1272 The usual definition accepts all pseudo regs; the other rejects
1273 them unless they have been allocated suitable hard regs.
1274 The symbol REG_OK_STRICT causes the latter definition to be used.
1275
1276 Most source files want to accept pseudo regs in the hope that
1277 they will get allocated to the class that the insn wants them to be in.
1278 Source files for reload pass need to be strict.
1279 After reload, it makes no difference, since pseudo regs have
1280 been eliminated by then. */
1281
1282#ifndef REG_OK_STRICT
1283
1284/* Nonzero if X is a hard reg that can be used as an index
1285 or if it is a pseudo reg. */
1286#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1287/* Nonzero if X is a hard reg that can be used as a base reg
1288 or if it is a pseudo reg. */
1289#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1290
1291#else
1292
1293/* Nonzero if X is a hard reg that can be used as an index. */
1294#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1295/* Nonzero if X is a hard reg that can be used as a base reg. */
1296#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1297
1298#endif
1299\f
1300/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1301 that is a valid memory address for an instruction.
1302 The MODE argument is the machine mode for the MEM expression
1303 that wants to use this address.
1304
1305 When generating PIC, an address involving a SYMBOL_REF is legitimate
1306 if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1307 We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1308 and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1309
1310 Likewise for a LABEL_REF when generating PIC.
1311
1312 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1313
22291e2f
JW
1314/* Allow SUBREG everywhere we allow REG. This results in better code. It
1315 also makes function inlining work when inline functions are called with
1316 arguments that are SUBREGs. */
1317
1318#define LEGITIMATE_BASE_REG_P(X) \
1319 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1320 || (GET_CODE (X) == SUBREG \
1321 && GET_CODE (SUBREG_REG (X)) == REG \
1322 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1323
3d339ad2
RS
1324#define INDIRECTABLE_1_ADDRESS_P(X) \
1325 ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
22291e2f 1326 || LEGITIMATE_BASE_REG_P (X) \
3d339ad2 1327 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
22291e2f 1328 && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
3d339ad2 1329 || (GET_CODE (X) == PLUS \
22291e2f 1330 && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
3d339ad2
RS
1331 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1332 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000) \
1333 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1334 && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
1335 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1336 && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF)) \
1337
1338#if 0
1339/* This should replace the last two (non-pic) lines
1340 except that Sun's assembler does not seem to handle such operands. */
1341 && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
1342 : (GET_CODE (XEXP (X, 1)) == CONST_INT \
1343 && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
1344#endif
1345
1346
1347#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
1348{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1349
875c5a31
RS
1350/* Only labels on dispatch tables are valid for indexing from. */
1351#define GO_IF_INDEXABLE_BASE(X, ADDR) \
1352{ rtx temp; \
1353 if (GET_CODE (X) == LABEL_REF \
1354 && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
1355 && GET_CODE (temp) == JUMP_INSN \
1356 && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
1357 || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
1358 goto ADDR; \
22291e2f 1359 if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
3d339ad2
RS
1360
1361#define GO_IF_INDEXING(X, ADDR) \
1362{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
1363 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
1364 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
1365 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1366
1367#define GO_IF_INDEXED_ADDRESS(X, ADDR) \
1368{ GO_IF_INDEXING (X, ADDR); \
1369 if (GET_CODE (X) == PLUS) \
1370 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1371 && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
1372 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
1373 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1374 && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
1375 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1376
1377#define LEGITIMATE_INDEX_REG_P(X) \
1378 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1379 || (GET_CODE (X) == SIGN_EXTEND \
1380 && GET_CODE (XEXP (X, 0)) == REG \
1381 && GET_MODE (XEXP (X, 0)) == HImode \
22291e2f
JW
1382 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1383 || (GET_CODE (X) == SUBREG \
1384 && GET_CODE (SUBREG_REG (X)) == REG \
1385 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
3d339ad2
RS
1386
1387#define LEGITIMATE_INDEX_P(X) \
1388 (LEGITIMATE_INDEX_REG_P (X) \
106bee4b 1389 || ((TARGET_68020 || TARGET_5200) && GET_CODE (X) == MULT \
3d339ad2
RS
1390 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
1391 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1392 && (INTVAL (XEXP (X, 1)) == 2 \
1393 || INTVAL (XEXP (X, 1)) == 4 \
1c4e4dc4 1394 || (INTVAL (XEXP (X, 1)) == 8 && !TARGET_5200))))
3d339ad2 1395
04e61bd4
RS
1396/* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
1397#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1398{ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
1399 GO_IF_INDEXED_ADDRESS (X, ADDR); \
1400 if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
1401 && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
1402 && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
1403 goto ADDR; }
1404
1405/* Don't call memory_address_noforce for the address to fetch
1406 the switch offset. This address is ok as it stands (see above),
1407 but memory_address_noforce would alter it. */
1408#define PIC_CASE_VECTOR_ADDRESS(index) index
3d339ad2
RS
1409\f
1410/* Try machine-dependent ways of modifying an illegitimate address
1411 to be legitimate. If we find one, return the new, valid address.
1412 This macro is used in only one place: `memory_address' in explow.c.
1413
1414 OLDX is the address as it was before break_out_memory_refs was called.
1415 In some cases it is useful to look at this to decide what needs to be done.
1416
1417 MODE and WIN are passed so that this macro can use
1418 GO_IF_LEGITIMATE_ADDRESS.
1419
1420 It is always safe for this macro to do nothing. It exists to recognize
1421 opportunities to optimize the output.
1422
1423 For the 68000, we handle X+REG by loading X into a register R and
1424 using R+REG. R will go in an address reg and indexing will be used.
1425 However, if REG is a broken-out memory address or multiplication,
1426 nothing needs to be done because REG can certainly go in an address reg. */
1427
1428#define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1429#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1430{ register int ch = (X) != (OLDX); \
1431 if (GET_CODE (X) == PLUS) \
1432 { int copied = 0; \
1433 if (GET_CODE (XEXP (X, 0)) == MULT) \
1434 { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1435 if (GET_CODE (XEXP (X, 1)) == MULT) \
1436 { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1437 if (ch && GET_CODE (XEXP (X, 1)) == REG \
1438 && GET_CODE (XEXP (X, 0)) == REG) \
1439 goto WIN; \
1440 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
1441 if (GET_CODE (XEXP (X, 0)) == REG \
1442 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
1443 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1444 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
1445 { register rtx temp = gen_reg_rtx (Pmode); \
1446 register rtx val = force_operand (XEXP (X, 1), 0); \
1447 emit_move_insn (temp, val); \
1448 COPY_ONCE (X); \
1449 XEXP (X, 1) = temp; \
1450 goto WIN; } \
1451 else if (GET_CODE (XEXP (X, 1)) == REG \
1452 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
1453 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1454 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
1455 { register rtx temp = gen_reg_rtx (Pmode); \
1456 register rtx val = force_operand (XEXP (X, 0), 0); \
1457 emit_move_insn (temp, val); \
1458 COPY_ONCE (X); \
1459 XEXP (X, 0) = temp; \
1460 goto WIN; }}}
1461
1462/* Go to LABEL if ADDR (a legitimate address expression)
1463 has an effect that depends on the machine mode it is used for.
1464 On the 68000, only predecrement and postincrement address depend thus
1465 (the amount of decrement or increment being the length of the operand). */
1466
1467#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1468 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1469\f
1470/* Specify the machine mode that this machine uses
1471 for the index in the tablejump instruction. */
1472#define CASE_VECTOR_MODE HImode
1473
1474/* Define this if the tablejump instruction expects the table
1475 to contain offsets from the address of the table.
1476 Do not define this if the table should contain absolute addresses. */
1477#define CASE_VECTOR_PC_RELATIVE
1478
1479/* Specify the tree operation to be used to convert reals to integers. */
1480#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1481
1482/* This is the kind of divide that is easiest to do in the general case. */
1483#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1484
1485/* Define this as 1 if `char' should by default be signed; else as 0. */
1486#define DEFAULT_SIGNED_CHAR 1
1487
1488/* Don't cse the address of the function being compiled. */
1489#define NO_RECURSIVE_FUNCTION_CSE
1490
1491/* Max number of bytes we can move from memory to memory
1492 in one reasonably fast instruction. */
1493#define MOVE_MAX 4
1494
1495/* Define this if zero-extension is slow (more than one real instruction). */
1496#define SLOW_ZERO_EXTEND
1497
1498/* Nonzero if access to memory by bytes is slow and undesirable. */
1499#define SLOW_BYTE_ACCESS 0
1500
3d339ad2
RS
1501/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1502 is done just by pretending it is already truncated. */
1503#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1504
1505/* We assume that the store-condition-codes instructions store 0 for false
1506 and some other value for true. This is the value stored for true. */
1507
1508#define STORE_FLAG_VALUE -1
1509
1510/* When a prototype says `char' or `short', really pass an `int'. */
1511#define PROMOTE_PROTOTYPES
1512
1513/* Specify the machine mode that pointers have.
1514 After generation of rtl, the compiler makes no further distinction
1515 between pointers and any other objects of this machine mode. */
1516#define Pmode SImode
1517
1518/* A function address in a call instruction
1519 is a byte address (for indexing purposes)
1520 so give the MEM rtx a byte's mode. */
1521#define FUNCTION_MODE QImode
1522
1523/* Compute the cost of computing a constant rtl expression RTX
1524 whose rtx-code is CODE. The body of this macro is a portion
1525 of a switch statement. If the code is computed here,
1526 return it with a return statement. Otherwise, break from the switch. */
1527
3bb22aee 1528#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
3d339ad2
RS
1529 case CONST_INT: \
1530 /* Constant zero is super cheap due to clr instruction. */ \
1531 if (RTX == const0_rtx) return 0; \
8dbda09a
RK
1532 /* if ((OUTER_CODE) == SET) */ \
1533 return const_int_cost(RTX); \
3d339ad2
RS
1534 case CONST: \
1535 case LABEL_REF: \
1536 case SYMBOL_REF: \
1537 return 3; \
1538 case CONST_DOUBLE: \
1539 return 5;
1540
1541/* Compute the cost of various arithmetic operations.
1542 These are vaguely right for a 68020. */
1543/* The costs for long multiply have been adjusted to
1544 work properly in synth_mult on the 68020,
1545 relative to an average of the time for add and the time for shift,
1546 taking away a little more because sometimes move insns are needed. */
3296aff4 1547/* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
7a13fe96
RK
1548#define MULL_COST (TARGET_68060 ? 2 : TARGET_68040 ? 5 : 13)
1549#define MULW_COST (TARGET_68060 ? 2 : TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
3296aff4 1550#define DIVW_COST (TARGET_68020 ? 27 : 12)
3d339ad2 1551
3bb22aee 1552#define RTX_COSTS(X,CODE,OUTER_CODE) \
3d339ad2
RS
1553 case PLUS: \
1554 /* An lea costs about three times as much as a simple add. */ \
1555 if (GET_MODE (X) == SImode \
8df73827
TG
1556 && GET_CODE (XEXP (X, 1)) == REG \
1557 && GET_CODE (XEXP (X, 0)) == MULT \
1558 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1559 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1560 && (INTVAL (XEXP (XEXP (X, 0), 1)) == 2 \
1561 || INTVAL (XEXP (XEXP (X, 0), 1)) == 4 \
1562 || INTVAL (XEXP (XEXP (X, 0), 1)) == 8)) \
3d339ad2
RS
1563 return COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */ \
1564 break; \
1565 case ASHIFT: \
1566 case ASHIFTRT: \
7a13fe96
RK
1567 case LSHIFTRT: \
1568 if (TARGET_68060) \
1569 return COSTS_N_INSNS(1); \
3296aff4
TG
1570 if (! TARGET_68020) \
1571 { \
1572 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1573 { \
1574 if (INTVAL (XEXP (X, 1)) < 16) \
1575 return COSTS_N_INSNS (2) + INTVAL (XEXP (X, 1)) / 2; \
1576 else \
1577 /* We're using clrw + swap for these cases. */ \
bd2e6d53 1578 return COSTS_N_INSNS (4) + (INTVAL (XEXP (X, 1)) - 16) / 2; \
3296aff4
TG
1579 } \
1580 return COSTS_N_INSNS (10); /* worst case */ \
1581 } \
3d339ad2 1582 /* A shift by a big integer takes an extra instruction. */ \
b4ac57ab
RS
1583 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1584 && (INTVAL (XEXP (X, 1)) == 16)) \
1585 return COSTS_N_INSNS (2); /* clrw;swap */ \
3d339ad2
RS
1586 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1587 && !(INTVAL (XEXP (X, 1)) > 0 \
1588 && INTVAL (XEXP (X, 1)) <= 8)) \
1589 return COSTS_N_INSNS (3); /* lsr #i,dn */ \
1590 break; \
1591 case MULT: \
3296aff4
TG
1592 if ((GET_CODE (XEXP (X, 0)) == ZERO_EXTEND \
1593 || GET_CODE (XEXP (X, 0)) == SIGN_EXTEND) \
1594 && GET_MODE (X) == SImode) \
1595 return COSTS_N_INSNS (MULW_COST); \
5d195441 1596 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
9fd3fbd0 1597 return COSTS_N_INSNS (MULW_COST); \
3d339ad2 1598 else \
9fd3fbd0 1599 return COSTS_N_INSNS (MULL_COST); \
3d339ad2
RS
1600 case DIV: \
1601 case UDIV: \
1602 case MOD: \
1603 case UMOD: \
1604 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
3296aff4 1605 return COSTS_N_INSNS (DIVW_COST); /* div.w */ \
3d339ad2
RS
1606 return COSTS_N_INSNS (43); /* div.l */
1607\f
1608/* Tell final.c how to eliminate redundant test instructions. */
1609
1610/* Here we define machine-dependent flags and fields in cc_status
1611 (see `conditions.h'). */
1612
1613/* Set if the cc value is actually in the 68881, so a floating point
1614 conditional branch must be output. */
1615#define CC_IN_68881 04000
1616
1617/* Store in cc_status the expressions that the condition codes will
1618 describe after execution of an instruction whose pattern is EXP.
1619 Do not alter them if the instruction would not alter the cc's. */
1620
1621/* On the 68000, all the insns to store in an address register fail to
1622 set the cc's. However, in some cases these instructions can make it
1623 possibly invalid to use the saved cc's. In those cases we clear out
1624 some or all of the saved cc's so they won't be used. */
1625
1626#define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1627
1628#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1629{ if (cc_prev_status.flags & CC_IN_68881) \
1630 return FLOAT; \
1631 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1632 return NO_OV; \
1633 return NORMAL; }
1634\f
1635/* Control the assembler format that we output. */
1636
1637/* Output at beginning of assembler file. */
1638
1639#define ASM_FILE_START(FILE) \
1640 fprintf (FILE, "#NO_APP\n");
1641
1642/* Output to assembler file text saying following lines
1643 may contain character constants, extra white space, comments, etc. */
1644
1645#define ASM_APP_ON "#APP\n"
1646
1647/* Output to assembler file text saying following lines
1648 no longer contain unusual constructs. */
1649
1650#define ASM_APP_OFF "#NO_APP\n"
1651
1652/* Output before read-only data. */
1653
1654#define TEXT_SECTION_ASM_OP ".text"
1655
1656/* Output before writable data. */
1657
1658#define DATA_SECTION_ASM_OP ".data"
1659
1660/* Here are four prefixes that are used by asm_fprintf to
1661 facilitate customization for alternate assembler syntaxes.
1662 Machines with no likelihood of an alternate syntax need not
1663 define these and need not use asm_fprintf. */
1664
1665/* The prefix for register names. Note that REGISTER_NAMES
1666 is supposed to include this prefix. */
1667
1668#define REGISTER_PREFIX ""
1669
1670/* The prefix for local labels. You should be able to define this as
1671 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1672 without having to make any other changes to account for the specific
1673 definition. Note it is a string literal, not interpreted by printf
1674 and friends. */
1675
1676#define LOCAL_LABEL_PREFIX ""
1677
1678/* The prefix to add to user-visible assembler symbols. */
1679
1680#define USER_LABEL_PREFIX "_"
1681
1682/* The prefix for immediate operands. */
1683
1684#define IMMEDIATE_PREFIX "#"
1685
1686/* How to refer to registers in assembler output.
1687 This sequence is indexed by compiler's hard-register-number (see above). */
1688
1689#ifndef SUPPORT_SUN_FPA
1690
1691#define REGISTER_NAMES \
1692{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1693 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1694 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1695
1696#else /* SUPPORTED_SUN_FPA */
1697
1698#define REGISTER_NAMES \
1699{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1700 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1701 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
1702 "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
1703 "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
1704 "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
1705 "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
1706
1707#endif /* defined SUPPORT_SUN_FPA */
1708
1709/* How to renumber registers for dbx and gdb.
1710 On the Sun-3, the floating point registers have numbers
1711 18 to 25, not 16 to 23 as they do in the compiler. */
1712
1713#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1714
1715/* This is how to output the definition of a user-level label named NAME,
1716 such as the label on a static function or variable NAME. */
1717
1718#define ASM_OUTPUT_LABEL(FILE,NAME) \
1719 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1720
1721/* This is how to output a command to make the user-level label named NAME
1722 defined for reference from other files. */
1723
9fd3fbd0 1724#define GLOBAL_ASM_OP ".globl"
3d339ad2 1725#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
9fd3fbd0
RS
1726 do { fprintf (FILE, "%s ", GLOBAL_ASM_OP); \
1727 assemble_name (FILE, NAME); \
1728 fputs ("\n", FILE);} while (0)
3d339ad2
RS
1729
1730/* This is how to output a reference to a user-level label named NAME.
1731 `assemble_name' uses this. */
1732
1733#define ASM_OUTPUT_LABELREF(FILE,NAME) \
338818c7 1734 asm_fprintf (FILE, "%0U%s", NAME)
3d339ad2
RS
1735
1736/* This is how to output an internal numbered label where
1737 PREFIX is the class of label and NUM is the number within the class. */
1738
1739#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
338818c7 1740 asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
3d339ad2
RS
1741
1742/* This is how to store into the string LABEL
1743 the symbol_ref name of an internal numbered label where
1744 PREFIX is the class of label and NUM is the number within the class.
1745 This is suitable for output with `assemble_name'. */
1746
1747#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1748 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
1749
f6ba6a91
RS
1750/* This is how to output a `long double' extended real constant. */
1751
1752#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1753do { long l[3]; \
1754 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
1755 if (sizeof (int) == sizeof (long)) \
1756 fprintf (FILE, "\t.long 0x%x,0x%x,0x%x\n", l[0], l[1], l[2]); \
1757 else \
1758 fprintf (FILE, "\t.long 0x%lx,0x%lx,0x%lx\n", l[0], l[1], l[2]); \
1759 } while (0)
1760
3d339ad2
RS
1761/* This is how to output an assembler line defining a `double' constant. */
1762
f6ba6a91
RS
1763#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1764 do { char dstr[30]; \
1765 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1766 fprintf (FILE, "\t.double 0r%s\n", dstr); \
1767 } while (0)
3d339ad2
RS
1768
1769/* This is how to output an assembler line defining a `float' constant. */
1770
f6ba6a91
RS
1771#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1772do { long l; \
1773 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1774 if (sizeof (int) == sizeof (long)) \
1775 fprintf (FILE, "\t.long 0x%x\n", l); \
1776 else \
1777 fprintf (FILE, "\t.long 0x%lx\n", l); \
3d339ad2
RS
1778 } while (0)
1779
3d339ad2
RS
1780/* This is how to output an assembler line defining an `int' constant. */
1781
1782#define ASM_OUTPUT_INT(FILE,VALUE) \
1783( fprintf (FILE, "\t.long "), \
1784 output_addr_const (FILE, (VALUE)), \
1785 fprintf (FILE, "\n"))
1786
1787/* Likewise for `char' and `short' constants. */
1788
1789#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1790( fprintf (FILE, "\t.word "), \
1791 output_addr_const (FILE, (VALUE)), \
1792 fprintf (FILE, "\n"))
1793
1794#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1795( fprintf (FILE, "\t.byte "), \
1796 output_addr_const (FILE, (VALUE)), \
1797 fprintf (FILE, "\n"))
1798
1799/* This is how to output an assembler line for a numeric constant byte. */
1800
1801#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1802 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1803
1804/* This is how to output an insn to push a register on the stack.
1805 It need not be very fast code. */
1806
1807#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1808 asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1809
1810/* This is how to output an insn to pop a register from the stack.
1811 It need not be very fast code. */
1812
1813#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1814 asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1815
1816/* This is how to output an element of a case-vector that is absolute.
1817 (The 68000 does not use such vectors,
1818 but we must define this macro anyway.) */
1819
1820#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1821 asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1822
1823/* This is how to output an element of a case-vector that is relative. */
1824
1825#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1826 asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1827
1828/* This is how to output an assembler line
1829 that says to advance the location counter
1830 to a multiple of 2**LOG bytes. */
1831
b4ac57ab
RS
1832/* We don't have a way to align to more than a two-byte boundary, so do the
1833 best we can and don't complain. */
3d339ad2 1834#define ASM_OUTPUT_ALIGN(FILE,LOG) \
b4ac57ab
RS
1835 if ((LOG) >= 1) \
1836 fprintf (FILE, "\t.even\n");
3d339ad2
RS
1837
1838#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1839 fprintf (FILE, "\t.skip %u\n", (SIZE))
1840
1841/* This says how to output an assembler line
1842 to define a global common symbol. */
1843
1844#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1845( fputs (".comm ", (FILE)), \
1846 assemble_name ((FILE), (NAME)), \
1847 fprintf ((FILE), ",%u\n", (ROUNDED)))
1848
1849/* This says how to output an assembler line
1850 to define a local common symbol. */
1851
1852#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1853( fputs (".lcomm ", (FILE)), \
1854 assemble_name ((FILE), (NAME)), \
1855 fprintf ((FILE), ",%u\n", (ROUNDED)))
1856
1857/* Store in OUTPUT a string (made with alloca) containing
1858 an assembler-name for a local static variable named NAME.
1859 LABELNO is an integer which is different for each call. */
1860
1861#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1862( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1863 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1864
1865/* Define the parentheses used to group arithmetic operations
1866 in assembler code. */
1867
1868#define ASM_OPEN_PAREN "("
1869#define ASM_CLOSE_PAREN ")"
1870
1871/* Define results of standard character escape sequences. */
1872#define TARGET_BELL 007
1873#define TARGET_BS 010
1874#define TARGET_TAB 011
1875#define TARGET_NEWLINE 012
1876#define TARGET_VT 013
1877#define TARGET_FF 014
1878#define TARGET_CR 015
1879
1880/* Output a float value (represented as a C double) as an immediate operand.
1881 This macro is a 68k-specific macro. */
f6ba6a91
RS
1882
1883#define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
1884 do { \
1885 if (CODE == 'f') \
1886 { \
1887 char dstr[30]; \
1888 REAL_VALUE_TO_DECIMAL (VALUE, "%.9g", dstr); \
1889 asm_fprintf ((FILE), "%I0r%s", dstr); \
1890 } \
1891 else \
1892 { \
1893 long l; \
1894 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1895 if (sizeof (int) == sizeof (long)) \
1896 asm_fprintf ((FILE), "%I0x%x", l); \
1897 else \
1898 asm_fprintf ((FILE), "%I0x%lx", l); \
1899 } \
1900 } while (0)
3d339ad2
RS
1901
1902/* Output a double value (represented as a C double) as an immediate operand.
1903 This macro is a 68k-specific macro. */
1904#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
f6ba6a91
RS
1905 do { char dstr[30]; \
1906 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1907 asm_fprintf (FILE, "%I0r%s", dstr); \
1908 } while (0)
1909
1910/* Note, long double immediate operands are not actually
1911 generated by m68k.md. */
1912#define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
1913 do { char dstr[30]; \
1914 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1915 asm_fprintf (FILE, "%I0r%s", dstr); \
1916 } while (0)
3d339ad2
RS
1917
1918/* Print operand X (an rtx) in assembler syntax to file FILE.
1919 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1920 For `%' followed by punctuation, CODE is the punctuation and X is null.
1921
1922 On the 68000, we use several CODE characters:
1923 '.' for dot needed in Motorola-style opcode names.
1924 '-' for an operand pushing on the stack:
1925 sp@-, -(sp) or -(%sp) depending on the style of syntax.
1926 '+' for an operand pushing on the stack:
1927 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1928 '@' for a reference to the top word on the stack:
1929 sp@, (sp) or (%sp) depending on the style of syntax.
1930 '#' for an immediate operand prefix (# in MIT and Motorola syntax
1931 but & in SGS syntax).
7c129456 1932 '!' for the fpcr register (used in some float-to-fixed conversions).
3d339ad2
RS
1933 '$' for the letter `s' in an op code, but only on the 68040.
1934 '&' for the letter `d' in an op code, but only on the 68040.
2ac5f14a 1935 '/' for register prefix needed by longlong.h.
3d339ad2
RS
1936
1937 'b' for byte insn (no effect, on the Sun; this is for the ISI).
1938 'd' to force memory addressing to be absolute, not relative.
1939 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1940 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
1941 than directly). Second part of 'y' below.
1942 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1943 or print pair of registers as rx:ry.
1944 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
1945 CONST_DOUBLE's as SunFPA constant RAM registers if
1946 possible, so it should not be used except for the SunFPA. */
1947
1948#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1949 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
1950 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
2ac5f14a 1951 || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
3d339ad2 1952
3d339ad2
RS
1953/* A C compound statement to output to stdio stream STREAM the
1954 assembler syntax for an instruction operand X. X is an RTL
1955 expression.
1956
1957 CODE is a value that can be used to specify one of several ways
1958 of printing the operand. It is used when identical operands
1959 must be printed differently depending on the context. CODE
1960 comes from the `%' specification that was used to request
1961 printing of the operand. If the specification was just `%DIGIT'
1962 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
1963 is the ASCII code for LTR.
1964
1965 If X is a register, this macro should print the register's name.
1966 The names can be found in an array `reg_names' whose type is
1967 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
1968
1969 When the machine description has a specification `%PUNCT' (a `%'
1970 followed by a punctuation character), this macro is called with
1971 a null pointer for X and the punctuation character for CODE.
1972
1973 See m68k.c for the m68k specific codes. */
1974
1975#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1976
1977/* A C compound statement to output to stdio stream STREAM the
1978 assembler syntax for an instruction operand that is a memory
1979 reference whose address is ADDR. ADDR is an RTL expression.
1980
1981 On some machines, the syntax for a symbolic address depends on
1982 the section that the address refers to. On these machines,
1983 define the macro `ENCODE_SECTION_INFO' to store the information
1984 into the `symbol_ref', and then check for it here. */
1985
1986#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1987
1988
e72498e1
JB
1989/* Definitions for generating bytecode */
1990
1991/* Just so it's known this target is supported by the bytecode generator.
1992 If this define isn't found anywhere in the target config files, then
1993 dummy stubs are supplied by bytecode.h, and any attempt to use
1994 -fbytecode will result in an error message. */
1995
1996#define TARGET_SUPPORTS_BYTECODE
1997
1998/* Minimal segment alignment within sections is 8 units. */
1999#define MACHINE_SEG_ALIGN 3
2000
2001/* Integer alignment is two units. */
2002#define INT_ALIGN 2
2003
2004/* Pointer alignment is eight units. */
2005#define PTR_ALIGN 3
2006
2007/* Global symbols begin with `_' */
2008#define NAMES_HAVE_UNDERSCORES
2009
2010/* BC_xxx below are similar to their ASM_xxx counterparts above. */
2011#define BC_GLOBALIZE_LABEL(FP, NAME) bc_globalize_label(NAME)
2012
2013#define BC_OUTPUT_COMMON(FP, NAME, SIZE, ROUNDED) \
2014 do { bc_emit_common(NAME, ROUNDED); bc_globalize_label(NAME); } while (0)
2015
f3d91607
DE
2016#define BC_OUTPUT_BSS(FP, NAME, SIZE, ROUNDED) \
2017 do { bc_data (); bc_emit_labeldef(NAME); bc_emit_skip (SIZE); } while (0)
2018
e72498e1
JB
2019#define BC_OUTPUT_LOCAL(FP, NAME, SIZE, ROUNDED) \
2020 bc_emit_common(NAME, ROUNDED)
2021
2022#define BC_OUTPUT_ALIGN(FP, ALIGN) bc_align(ALIGN)
2023
2024#define BC_OUTPUT_LABEL(FP, NAME) bc_emit_labeldef(NAME)
2025
2026#define BC_OUTPUT_SKIP(FP, SIZE) bc_emit_skip(SIZE)
2027
2028#define BC_OUTPUT_LABELREF(FP, NAME) \
2029 do { \
2030 char *foo = (char *) xmalloc(strlen(NAME) + 2); \
2031 strcpy(foo, "_"); \
2032 strcat(foo, NAME); \
2033 bc_emit_labelref (foo); \
2034 free (foo); \
2035 } while (0)
2036
2037#define BC_OUTPUT_FLOAT(FP, VAL) \
2038 do { \
2039 float F = VAL; \
2040 bc_emit ((char *) &F, sizeof F); \
2041 } while (0)
2042
2043#define BC_OUTPUT_DOUBLE(FP, VAL) \
2044 do { \
2045 double D = VAL; \
2046 bc_emit ((char *) &D, sizeof D); \
2047 } while (0)
2048
2049#define BC_OUTPUT_BYTE(FP, VAL) \
2050 do { \
2051 char C = VAL; \
2052 bc_emit (&C, 1); \
2053 } while (0)
2054
2055
2056#define BC_OUTPUT_FILE ASM_OUTPUT_FILE
2057#define BC_OUTPUT_ASCII ASM_OUTPUT_ASCII
2058#define BC_OUTPUT_IDENT ASM_OUTPUT_IDENT
2059
2060/* Same as XSTR, but for bytecode */
2061#define BCXSTR(RTX) ((RTX)->bc_label)
2062
2063
2064/* Flush bytecode buffer onto file */
2065#define BC_WRITE_FILE(FP) \
2066{ \
2067 fprintf (FP, ".text\n"); \
2068 bc_seg_write (bc_text_seg, FP); \
2069 fprintf(FP, "\n.data\n"); \
2070 bc_seg_write (bc_data_seg, FP); \
2071 bc_sym_write (FP); /* do .globl, .bss, etc. */ \
2072}
2073
2074/* Write one symbol */
2075#define BC_WRITE_SEGSYM(SEGSYM, FP) \
2076{ \
2077 prsym (FP, (SEGSYM)->sym->name); \
2078 fprintf (FP, ":\n"); \
2079}
2080
2081
2082/* Write one reloc entry */
2083#define BC_WRITE_RELOC_ENTRY(SEGRELOC, FP, OFFSET) \
2084{ \
2085 fprintf (FP, "\t.long "); \
2086 prsym (FP, (SEGRELOC)->sym->name); \
2087 fprintf (FP, " + %d\n", OFFSET); \
2088}
2089
2090/* Start new line of bytecodes */
2091#define BC_START_BYTECODE_LINE(FP) \
2092{ \
2093 fprintf (FP, "\t.byte"); \
2094}
2095
2096/* Write one bytecode */
2097#define BC_WRITE_BYTECODE(SEP, VAL, FP) \
2098{ \
2099 fprintf (FP, "%c0x%02X", (SEP), (VAL) & 0xff); \
2100}
2101
2102/* Write one bytecode RTL entry */
2103#define BC_WRITE_RTL(R, FP) \
2104{ \
2105 fprintf (FP, "%s+%d/0x%08X\n", (R)->label, (R)->offset, (R)->bc_label); \
2106}
2107
2108
2109/* Emit function entry trampoline */
2110#define BC_EMIT_TRAMPOLINE(TRAMPSEG, CALLINFO) \
2111{ \
2112 short insn; \
2113 \
2114 /* Push a reference to the callinfo structure. */ \
2115 insn = 0x4879; /* pea xxx.L */ \
2116 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
2117 seg_refsym (TRAMPSEG, CALLINFO, 0); \
2118 \
2119 /* Call __interp, pop arguments, and return. */ \
2120 insn = 0x4eb9; /* jsr xxx.L */ \
2121 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
2122 seg_refsym (TRAMPSEG, "__callint", 0); \
2123 insn = 0x588f; /* addql #4, sp */ \
2124 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
2125 insn = 0x4e75; /* rts */ \
2126 seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
2127}
2128
2129
2130
2131#if 0
2132#define VALIDATE_STACK() if (stack_depth < 0) abort ();
2133#else
2134#if 0
2135#define VALIDATE_STACK() \
2136 fprintf (stderr, " %%%d%%", stack_depth);
2137#endif
2138#endif
2139
3d339ad2
RS
2140/* Define functions defined in aux-output.c and used in templates. */
2141
8dbda09a 2142extern char *output_move_const_into_data_reg ();
cab70741 2143extern char *output_move_simode_const ();
6901b620
RK
2144extern char *output_move_simode ();
2145extern char *output_move_himode ();
2146extern char *output_move_qimode ();
d96b2631
RK
2147extern char *output_move_stricthi ();
2148extern char *output_move_strictqi ();
3d339ad2
RS
2149extern char *output_move_double ();
2150extern char *output_move_const_single ();
2151extern char *output_move_const_double ();
2152extern char *output_btst ();
71380ac6 2153extern char *output_scc_di ();
dfcce277 2154extern char *output_addsi3 ();
9e62c7f2
RK
2155
2156/* Variables in m68k.c */
2157extern char *m68k_align_loops_string;
2158extern char *m68k_align_jumps_string;
2159extern char *m68k_align_funcs_string;
2160extern int m68k_align_loops;
2161extern int m68k_align_jumps;
2162extern int m68k_align_funcs;
2b3600ac 2163extern int m68k_last_compare_had_fp_operands;
9e62c7f2 2164
3d339ad2
RS
2165\f
2166/*
2167Local variables:
2168version-control: t
2169End:
2170*/
This page took 0.581448 seconds and 5 git commands to generate.